Burns, Kimberly A.
2009-08-01
The accurate and efficient simulation of coupled neutron-photon problems is necessary for several important radiation detection applications. Examples include the detection of nuclear threats concealed in cargo containers and prompt gamma neutron activation analysis for nondestructive determination of elemental composition of unknown samples.
Neutron transport simulation (selected topics)
NASA Astrophysics Data System (ADS)
Vaz, P.
2009-10-01
Neutron transport simulation is usually performed for criticality, power distribution, activation, scattering, dosimetry and shielding problems, among others. During the last fifteen years, innovative technological applications have been proposed (Accelerator Driven Systems, Energy Amplifiers, Spallation Neutron Sources, etc.), involving the utilization of intermediate energies (hundreds of MeV) and high-intensity (tens of mA) proton accelerators impinging in targets of high Z elements. Additionally, the use of protons, neutrons and light ions for medical applications (hadrontherapy) impose requirements on neutron dosimetry-related quantities (such as kerma factors) for biologically relevant materials, in the energy range starting at several tens of MeV. Shielding and activation related problems associated to the operation of high-energy proton accelerators, emerging space-related applications and aircrew dosimetry-related topics are also fields of intense activity requiring as accurate as possible medium- and high-energy neutron (and other hadrons) transport simulation. These applications impose specific requirements on cross-section data for structural materials, targets, actinides and biologically relevant materials. Emerging nuclear energy systems and next generation nuclear reactors also impose requirements on accurate neutron transport calculations and on cross-section data needs for structural materials, coolants and nuclear fuel materials, aiming at improved safety and detailed thermal-hydraulics and radiation damage studies. In this review paper, the state-of-the-art in the computational tools and methodologies available to perform neutron transport simulation is presented. Proton- and neutron-induced cross-section data needs and requirements are discussed. Hot topics are pinpointed, prospective views are provided and future trends identified.
An Improved Neutron Transport Algorithm for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Clowdsley, Martha S.; Walker, Steven A.; Badavi, Francis F.
2010-01-01
Long term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures, and vehicles. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions, and that an extremely fine energy grid is required to resolve the problem under the current formulation. Two numerical methods are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. Convergence testing is completed by running the code for various environments and shielding materials with various energy grids to ensure stability of the newly implemented method.
Coupled Neutron Transport for HZETRN
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.
2009-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light particle transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
Influence of the neutron transport tube on neutron resonance densitometry
NASA Astrophysics Data System (ADS)
Kitatani, Fumito; Tsuchiya, Harufumi; Koizumi, Mitsuo; Takamine, Jun; Hori, Junichi; Sano, Tadafumi
2017-09-01
Neutron Resonance Densitometry (NRD) is a non-destructive assay technique of nuclear materials in particle-like debris that contains various materials. An aim of NRD is to quantify nuclear materials in a melting fuel of Fukusima Daiichi plant, spent nuclear fuel and annihilation disposal fuel etc. NRD consists of two techniques of Neutron Resonance Transmission Analysis (NRTA) and Neutron Resonance Capture Analysis (NRCA) or Prompt Gamma-ray Analysis (PGA). A density of nuclear material isotopes is decided with NRTA. The materials absorbing a neutron in a wide energy range such as boron in a sample are identified by NRCA/PGA. The information of NRCA/PGA is used in NRTA analysis to quantify nuclear material isotopes. A neutron time of flight (TOF) method is used in NRD measurements. A facility, consisting of a neutron source, a neutron flight path, and a detector is required. A short flight path and a strong neutron source are needed to downsize such a facility and put NRD into practical use. A neutron transport tube covers a flight path to prevent noises. In order to investigate the effect of neutron transport tube and pulse width of a neutron source, we carried out NRTA experiments with a 2-m short neutron transport tube constructed at Kyoto University Research Reactor Institute - Linear Accelerator (KURRI-LINAC), and impacts of shield of neutron transport tube and influence of pulse width of a neutron source were examined. A shield of the neutron transport tube reduced a background and had a good influence on the measurement. The resonance dips of 183W at 27 eV was successfully observed with a pulse width of a neutron source less than 2 μs.
Superconducting High Resolution Fast-Neutron Spectrometers
Hau, Ionel Dragos
2006-01-01
Superconducting high resolution fast-neutron calorimetric spectrometers based on ^{6}LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in ^{6}Li and ^{10}B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies k_{B}T on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (k_{B}T^{2}C)^{1/2}, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB_{2} absorber using thermal neutrons from a ^{252}Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in ^{7}Li. Fast-neutron spectra obtained with a ^{6}Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the ^{6}Li(n, α)^{3}H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.
High resolution mapping of martian neutron albedo
NASA Astrophysics Data System (ADS)
Sanin, A.
It is known from data of High Energy Neutron Detector (HEND) on Mars Odyssey that there is very large regional variation of leakage flux of epithermal neutrons on the surface of Mars. The factor of regional variations is about 10 for mapping with linear resolution of about 200-300 km. Two circumpolar depressions of epithermal neutrons emission were found above latitudes of 50 - 60, which correspond to Northern and Southern permafrost regions with very high (up to 50 wt%) content of water ice. Also, according to the HEND mapping data, there are two opposite equatorial regions Arabia Terra and Memnonia, which contain about 10 wt% of water under the top layer of dry soil with a column density of about 30 g/cm2. The surface resolution of orbital data about 300 km is determined by natural collimation of neutrons in the subsurface and in the atmosphere. For a territory larger than this size, the average content of water could be estimated by the large area approximation. In this case the comparison is performed between the average counts of neutrons over the territory and predicted counts for the planet with the same model of the entire surface. The content of water is found, as the best fitting parameter of this model. For local spots of depression with much smaller sizes this procedure underestimates the content of water. Thus, according this approximation, the spot with largest depression in the Arabia Terra at 10-12 N and 30-32 E contains at least 16 wt% of water, but in reality this value could be much larger. The content of water at this spot will be obtained with better spatial resolution by so-called inverse projection procedure. This model-dependent procedure allows to test water content for areas much smaller than the size of HEND surface resolution. The results of water content according to this procedure will be presented for the Arabia spot with the greatest depression of epithermal neutrons.
Neutron Transport Simulations for NIST Neutron Lifetime Experiment
NASA Astrophysics Data System (ADS)
Li, Fangchen; BL2 Collaboration Collaboration
2016-09-01
Neutrons in stable nuclei can exist forever; a free neutron lasts for about 15 minutes on average before it beta decays to a proton, an electron, and an antineutrino. Precision measurements of the neutron lifetime test the validity of weak interaction theory and provide input into the theory of the evolution of light elements in the early universe. There are two predominant ways of measuring the neutron lifetime: the bottle method and the beam method. The bottle method measures decays of ultracold neutrons that are stored in a bottle. The beam method measures decay protons in a beam of cold neutrons of known flux. An improved beam experiment is being prepared at the National Institute of Science and Technology (Gaithersburg, MD) with the goal of reducing statistical and systematic uncertainties to the level of 1 s. The purpose of my studies was to develop computer simulations of neutron transport to determine the beam collimation and study the neutron distribution's effect on systematic effects for the experiment, such as the solid angle of the neutron flux monitor. The motivation for the experiment and the results of this work will be presented. This work was supported, in part, by a Grant to Gettysburg College from the Howard Hughes Medical Institute through the Precollege and Undergraduate Science Education Program.
Neutron transport study of a beam port based dynamic neutron radiography facility
NASA Astrophysics Data System (ADS)
Khaial, Anas M.
Neutron radiography has the ability to differentiate between gas and liquid in two-phase flow due both to the density difference and the high neutron scattering probability of hydrogen. Previous studies have used dynamic neutron radiography -- in both real-time and high-speed -- for air-water, steam-water and gas-liquid metal two-phase flow measurements. Radiography with thermal neutrons is straightforward and efficient as thermal neutrons are easier to detect with relatively higher efficiency and can be easily extracted from nuclear reactor beam ports. The quality of images obtained using neutron radiography and the imaging speed depend on the neutron beam intensity at the imaging plane. A high quality neutron beam, with thermal neutron intensity greater than 3.0x 10 6 n/cm2-s and a collimation ratio greater than 100 at the imaging plane, is required for effective dynamic neutron radiography up to 2000 frames per second. The primary objectives of this work are: (1) to optimize a neutron radiography facility for dynamic neutron radiography applications and (2) to investigate a new technique for three-dimensional neutron radiography using information obtained from neutron scattering. In this work, neutron transport analysis and experimental validation of a dynamic neutron radiography facility is studied with consideration of real-time and high-speed neutron radiography requirements. A beam port based dynamic neutron radiography facility, for a target thermal neutron flux of 1.0x107 n/cm2-s, has been analyzed, constructed and experimentally verified at the McMaster Nuclear Reactor. The neutron source strength at the beam tube entrance is evaluated experimentally by measuring the thermal and fast neutron fluxes using copper activation flux-mapping technique. The development of different facility components, such as beam tube liner, gamma ray filter, beam shutter and biological shield, is achieved analytically using neutron attenuation and divergence theories. Monte
NASA Astrophysics Data System (ADS)
Trtik, Pavel; Lehmann, Eberhard H.
2016-09-01
Here we report the recent advances in the Neutron Microscope project at the Paul Scherrer Institut. We demonstrate the recent improvement on the capability of neutron imaging that allows us to acquire neutron images with isotropic spatial resolution of about 5 micrometres.
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver.
Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.
2010-08-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of {alpha}-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Higher Resolution Neutron Velocity Spectrometer Measurements of Enriched Uranium
DOE R&D Accomplishments Database
Rainwater, L. J.; Havens, W. W. Jr.
1950-08-09
The slow neutron transmission of a sample of enriched U containing 3.193 gm/cm2 was investigated with a resolution width of 1 microsec/m. Results of transmission measurements are shown graphically. (B.J.H.)
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less
Towards neutron scattering experiments with sub-millisecond time resolution
Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; Browning, James F.; Parizzi, Andre A.; Vacaliuc, Bogdan; Halbert, Candice E.; Rich, J. P.; Dennison, A. J. C.; Wolff, Max
2015-02-01
Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode at the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.
Neutron Transport Characteristics of a Nuclear Reactor Based Dynamic Neutron Imaging System
Khaial, Anas M.; Harvel, Glenn D.; Chang, Jen-Shih
2006-07-01
An advanced dynamic neutron imaging system has been constructed in the McMaster Nuclear Reactor (MNR) for nondestructive testing and multi-phase flow studies in energy and environmental applications. A high quality neutron beam is required with a thermal neutron flux greater than 5.0 x 10{sup 6} n/cm{sup 2}-s and a collimation ratio of 120 at image plane to promote high-speed neutron imaging up to 2000 frames per second. Neutron source strength and neutron transport have been experimentally and numerically investigated. Neutron source strength at the beam tube entrance was evaluated experimentally by measuring the thermal and fast neutron fluxes, and simple analytical neutron transport calculations were performed based upon these measured neutron fluxes to predict facility components in accordance with high-speed dynamic neutron imaging and operation safety requirements. Monte-Carlo simulations (using MCNP-4B code) with multiple neutron energy groups have also been used to validate neutron beam parameters and to ensure shielding capabilities of facility shutter and cave walls. Neutron flux distributions at the image plane and the neutron beam characteristics were experimentally measured by irradiating a two-dimensional array of Copper foils and using a real-time neutron radiography system. The neutron image characteristics -- such as neutron flux, image size, beam quality -- measured experimentally and predicted numerically for beam tube, beam shutter and radiography cave are compared and discussed in detail in this paper. The experimental results show that thermal neutron flux at image plane is nearly uniform over an imaging area of 20.0-cm diameter and its magnitude ranges from 8.0 x 10{sup 6} - 1.0 x 10{sup 7} n/cm{sup 2}-sec while the neutron-to-gamma ratio is 6.0 x 10{sup 5} n/cm{sup 2}-{mu}Sv. (authors)
Stable Difference Schemes for the Neutron Transport Equation
NASA Astrophysics Data System (ADS)
Ashyralyev, Allaberen; Taskin, Abdulgafur
2011-09-01
The initial boundary value problem for the neutron transport equation is considered. The first and second orders of accuracy difference schemes for the approximate solution of this problem are presented. In applications, the stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained. Numerical techniques are developed and algorithms are tested on an example in MATLAB.
NASA Astrophysics Data System (ADS)
Wang, Yahui; Yan, Liming; Ma, Yu
2017-06-01
Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.
Wang, Yahui; Yan, Liming; Ma, Yu
2017-06-01
Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.
Measurement of water content in polymer electrolyte membranes using high resolution neutron imaging
Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Davey, John; Mukherjee, Partha P; Hussey, Daniel S; Jacobson, David
2010-01-01
Sufficient water content within a polymer electrolyte membrane (PEM) is necessary for adequate ionic conductivity. Membrane hydration is therefore a fundamental requirement for fuel cell operation. The hydration state of the membrane affects the water transport within, as both the diffusion coefficient and electro-osmotic drag depend on the water content. Membrane's water uptake is conventionally measured ex situ by weighing free-swelling samples equilibrated at controlled water activity. In the present study, water profiles in Nafion{reg_sign} membranes were measured using the high-resolution neutron imaging. The state-of-the-art, 10 {micro}m resolution neutron detector is capable of resolving water distributions across N1120, N1110 and N117 membranes. It provides a means to measure the water uptake and transport properties of fuel cell membranes in situ.
High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane
Mukherjee, Partha P; Makundan, Rangachary; Spendelow, Jacob S; Borup, Rodney L; Hussey, D S; Jacobson, D L; Arif, M
2009-01-01
Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.
NASA Astrophysics Data System (ADS)
Maldonado-Velázquez, M.; Barrón-Palos, L.; Crawford, C.; Snow, W. M.
2017-05-01
The neutron spin is a critical degree of freedom for many precision measurements using low-energy neutrons. Fundamental symmetries and interactions can be studied using polarized neutrons. Parity-violation (PV) in the hadronic weak interaction and the search for exotic forces that depend on the relative spin and velocity, are two questions of fundamental physics that can be studied via the neutron spin rotations that arise from the interaction of polarized cold neutrons and unpolarized matter. The Neutron Spin Rotation (NSR) collaboration developed a neutron polarimeter, capable of determining neutron spin rotations of the order of 10-7 rad per meter of traversed material. This paper describes two key components of the NSR apparatus, responsible for the transport and manipulation of the spin of the neutrons before and after the target region, which is surrounded by magnetic shielding and where residual magnetic fields need to be below 100 μG. These magnetic field devices, called input and output coils, provide the magnetic field for adiabatic transport of the neutron spin in the regions outside the magnetic shielding while producing a sharp nonadiabatic transition of the neutron spin when entering/exiting the low-magnetic-field region. In addition, the coils are self contained, forcing the return magnetic flux into a compact region of space to minimize fringe fields outside. The design of the input and output coils is based on the magnetic scalar potential method.
Design of a transportable high efficiency fast neutron spectrometer
Roecker, C.; Bernstein, A.; Bowden, N. S.; ...
2016-04-12
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV andmore » a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.« less
Design of a transportable high efficiency fast neutron spectrometer
NASA Astrophysics Data System (ADS)
Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.
2016-08-01
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm2 rising to 5000 cm2. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm2 and 2500 cm2. The multiplicity mode was found to be sensitive to the incident neutron angular distribution.
Design of a transportable high efficiency fast neutron spectrometer
Roecker, C.; Bernstein, A.; Bowden, N. S.; Cabrera-Palmer, B.; Dazeley, S.; Gerling, M.; Marleau, P.; Sweany, M. D.; Vetter, K.
2016-04-12
A transportable fast neutron detection system has been designed and constructed for measuring neutron energy spectra and flux ranging from tens to hundreds of MeV. The transportability of the spectrometer reduces the detector-related systematic bias between different neutron spectra and flux measurements, which allows for the comparison of measurements above or below ground. The spectrometer will measure neutron fluxes that are of prohibitively low intensity compared to the site-specific background rates targeted by other transportable fast neutron detection systems. To measure low intensity high-energy neutron fluxes, a conventional capture-gating technique is used for measuring neutron energies above 20 MeV and a novel multiplicity technique is used for measuring neutron energies above 100 MeV. The spectrometer is composed of two Gd containing plastic scintillator detectors arranged around a lead spallation target. To calibrate and characterize the position dependent response of the spectrometer, a Monte Carlo model was developed and used in conjunction with experimental data from gamma ray sources. Multiplicity event identification algorithms were developed and used with a Cf-252 neutron multiplicity source to validate the Monte Carlo model Gd concentration and secondary neutron capture efficiency. The validated Monte Carlo model was used to predict an effective area for the multiplicity and capture gating analyses. For incident neutron energies between 100 MeV and 1000 MeV with an isotropic angular distribution, the multiplicity analysis predicted an effective area of 500 cm^{2} rising to 5000 cm^{2}. For neutron energies above 20 MeV, the capture-gating analysis predicted an effective area between 1800 cm^{2} and 2500 cm^{2}. As a result, the multiplicity mode was found to be sensitive to the incident neutron angular distribution.
High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms.
Li, Fankang; Feng, Hao; Thaler, Alexander N; Parnell, Steven R; Hamilton, William A; Crow, Lowell; Yang, Wencao; Jones, Amy B; Bai, Hongyu; Matsuda, Masaaki; Baxter, David V; Keller, Thomas; Fernandez-Baca, Jaime A; Pynn, Roger
2017-04-13
The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. The experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. We conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup can be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. The use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.
High resolution neutron Larmor diffraction using superconducting magnetic Wollaston prisms
Li, Fankang; Feng, Hao; Thaler, Alexander N.; ...
2017-04-13
The neutron Larmor diffraction technique has been implemented using superconducting magnetic Wollaston prisms in both single-arm and double-arm configurations. Successful measurements of the coefficient of thermal expansion of a single-crystal copper sample demonstrates that the method works as expected. Our experiment involves a new method of tuning by varying the magnetic field configurations in the device and the tuning results agree well with previous measurements. The difference between single-arm and double-arm configurations has been investigated experimentally. Here, we conclude that this measurement benchmarks the applications of magnetic Wollaston prisms in Larmor diffraction and shows in principle that the setup canmore » be used for inelastic phonon line-width measurements. The achievable resolution for Larmor diffraction is comparable to that using Neutron Resonance Spin Echo (NRSE) coils. Furthermore, the use of superconducting materials in the prisms allows high neutron polarization and transmission efficiency to be achieved.« less
VIM2/13. Continuous Energy MC Neutron Transport
Blomquist, R.N.
1984-04-01
VIM solves the three-dimensional steady-state multiplication eigenvalue or fixed source neutron transport problem using continuous energy-dependent nuclear data. It was designed for the analysis of fast critical experiments.
Efficiency and spatial resolution of the CASCADE thermal neutron detector
NASA Astrophysics Data System (ADS)
Köhli, M.; Allmendinger, F.; Häußler, W.; Schröder, T.; Klein, M.; Meven, M.; Schmidt, U.
2016-08-01
We report on the CASCADE project - a detection system, which has been designed for the purposes of neutron Spin Echo spectroscopy and which is continuously further developed and adapted to various applications. It features 2D spatially resolved detection of thermal neutrons at high rates. The CASCADE detector is composed of a stack of solid 10B coated Gas Electron Multiplier foils, which serve both as a neutron converter and as an amplifier for the primary ionization deposited in the standard counting gas environment. This multi-layer setup efficiently increases the detection efficiency and by extracting the signal of the charge traversing the stack the conversion layer can be identified allowing a precise determination of the time-of-flight. The spatial resolution is found by optical contrast determination to be σ =(1.39 ± 0.05) mm and by divergence corrected aperture measurements σ =(1.454 ± 0.007) mm , which is in agreement with the simulated detector model. Furthermore this enabled to investigate and describe the non-Gaussian resolution function. At the HEiDi diffractometer the absolute detection efficiency has been studied. At 0.6 Å for the 6 layer detector, which is currently part of the RESEDA spectrometer, an efficiency of 7.8% has been measured, which by means of Monte Carlo simulations translates to (21.0±1.5)% for thermal neutrons at 1.8 Å and (46.9±3.3)% at 5.4 Å.
Energy resolution analysis of a domestic neutron imager
NASA Astrophysics Data System (ADS)
Rousseau, Marissa Louise
The calibration and correction of the Neutron Spectroscope (NSPECT) time-of-flight (ToF) system are presented. This instrument is a double-scatter telescope designed to detect neutrons and gamma rays for the identification and location of radioactive materials. The ToF resolution is 0.72 ns FWHM. Results are reported for the ToF characterization using data obtained in the laboratory. An anomalous feature in the gamma-ray energy spectra measured with NSPECT neutron detectors is examined. A design based on NSPECT is proposed for the assay of spent nuclear fuel, where portability is increased in exchange for source location capabilities. The proposed modular device is modifiable for numerous safety applications at participating facilities in the nuclear fuel cycle. Optimization of the instrument to characterize alpha-neutron reactions in irradiated fuel is discussed. A delicate balance between energy resolution and detector efficiency is required. Results from laboratory testing are reported and compared to NSPECT measurements.
Neutron Stars—Cooling and Transport
NASA Astrophysics Data System (ADS)
Potekhin, Alexander Y.; Pons, José A.; Page, Dany
2015-10-01
Observations of thermal radiation from neutron stars can potentially provide information about the states of supranuclear matter in the interiors of these stars with the aid of the theory of neutron-star thermal evolution. We review the basics of this theory for isolated neutron stars with strong magnetic fields, including most relevant thermodynamic and kinetic properties in the stellar core, crust, and blanketing envelopes.
Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem
William Charlton
2007-07-01
Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.
Neutron-transport equation in a general curvelinear coordinate system
Takahashi, H
1981-01-01
Different from a fission reactor, a fusion reactor has complex geometry, such as toroidal geometry. Neutron transport equation for the toroidal coordinate system has been derived by using coordinate transformation from the cartesian coordinate. These methods require rather tedious calculations. Presented here is a simple method to formulate the neutron transport equation in the general curvelinear coordinate system. The equations for parabolic cylinder and toroidal coordinate systems are derived as an example.
Experimental validation of a coupled neutron-photon inverse radiation transport solver.
Mattingly, John K.; Harding, Lee; Mitchell, Dean James
2010-03-01
Forward radiation transport is the problem of calculating the radiation field given a description of the radiation source and transport medium. In contrast, inverse transport is the problem of inferring the configuration of the radiation source and transport medium from measurements of the radiation field. As such, the identification and characterization of special nuclear materials (SNM) is a problem of inverse radiation transport, and numerous techniques to solve this problem have been previously developed. The authors have developed a solver based on nonlinear regression applied to deterministic coupled neutron-photon transport calculations. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5-kg sphere of alpha-phase, weapons-grade plutonium. The source was measured in six different configurations: bare, and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses of 1.27, 2.54, 3.81, 7.62, and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to characterize the solver's ability to correctly infer the configuration of the source from its measured signatures.
NASA Astrophysics Data System (ADS)
Trtik, Pavel; Hovind, Jan; Grünzweig, Christian; Bollhalder, Alex; Thominet, Vincent; David, Christian; Kaestner, Anders; Lehmann, Eberhard H.
Here we present results stemming from the first prototype of the Neutron Microscope instrument at Paul ScherrerInstitut (PSI). The instrument is based on a very thin gadolinium oxysulfide (Gd2O2S:Tb+) scintillator screen and a magnifying optics. The Neutron Microscope prototype has been tested at the ICON and the BOA beamlines at PSI and sub-10 μm features can be clearly resolved on a focussed ion beam (FIB) enhance test object - a gadolinium-based Siemens star. The spatial resolution of the images of the gadolinium-based Siemensstar assessed by Fourier ring correlation was about 7.6 μm. The outlook for future improvement of the Neutron Microscope system is presented.
Transport coefficients in superfluid neutron stars
Tolos, Laura; Manuel, Cristina; Sarkar, Sreemoyee; Tarrus, Jaume
2016-01-22
We study the shear and bulk viscosity coefficients as well as the thermal conductivity as arising from the collisions among phonons in superfluid neutron stars. We use effective field theory techniques to extract the allowed phonon collisional processes, written as a function of the equation of state and the gap of the system. The shear viscosity due to phonon scattering is compared to calculations of that coming from electron collisions. We also comment on the possible consequences for r-mode damping in superfluid neutron stars. Moreover, we find that phonon collisions give the leading contribution to the bulk viscosities in the core of the neutron stars. We finally obtain a temperature-independent thermal conductivity from phonon collisions and compare it with the electron-muon thermal conductivity in superfluid neutron stars.
Neutrons and Granite: Transport and Activation
Bedrossian, P J
2004-04-13
In typical ground materials, both energy deposition and radionuclide production by energetic neutrons vary with the incident particle energy in a non-monotonic way. We describe the overall balance of nuclear reactions involving neutrons impinging on granite to demonstrate these energy-dependencies. While granite is a useful surrogate for a broad range of soil and rock types, the incorporation of small amounts of water (hydrogen) does alter the balance of nuclear reactions.
Novel Large Area High Resolution Neutron Detector for the Spallation Neutron Source
Lacy, Jeffrey L
2009-05-22
Neutron scattering is a powerful technique that is critically important for materials science and structural biology applications. The knowledge gained from past developments has resulted in far-reaching advances in engineering, pharmaceutical and biotechnology industries, to name a few. New facilities for neutron generation at much higher flux, such as the SNS at Oak Ridge, TN, will greatly enhance the capabilities of neutron scattering, with benefits that extend to many fields and include, for example, development of improved drug therapies and materials that are stronger, longer-lasting, and more impact-resistant. In order to fully realize this enhanced potential, however, higher neutron rates must be met with improved detection capabilities, particularly higher count rate capability in large size detectors, while maintaining practicality. We have developed a neutron detector with the technical and economic advantages to accomplish this goal. This new detector has a large sensitive area, offers 3D spatial resolution, high sensitivity and high count rate capability, and it is economical and practical to produce. The proposed detector technology is based on B-10 thin film conversion of neutrons in long straw-like gas detectors. A stack of many such detectors, each 1 meter in length, and 4 mm in diameter, has a stopping power that exceeds that of He-3 gas, contained at practical pressures within an area detector. With simple electronic readout methods, straw detector arrays can provide spatial resolution of 4 mm FWHM or better, and since an array detector of such form consists of several thousand individual elements per square meter, count rates in a 1 m^2 detector can reach 2?10^7 cps. Moreover, each individual event can be timetagged with a time resolution of less than 0.1 ?sec, allowing accurate identification of neutron energy by time of flight. Considering basic elemental cost, this novel neutron imaging detector can be commercially produced economically
High-resolution two dimensional advective transport
Smith, P.E.; Larock, B.E.
1989-01-01
The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.
Neutron Transport Associated with the Galactic Cosmic Ray Cascade
NASA Astrophysics Data System (ADS)
Singleterry, Robert Clay, Jr.
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with B scRYNTRN, a computer program written by the High Energy Physics Division of N scASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. B scRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As N scASA Langley improves B scRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the F_{rm N} method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs M scGSLAB and M scGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The E scNDF/B V database is used to generate the total and scattering
Computing the moments of the neutron population using deterministic neutron transport
Fichtl, E. D.; Baker, R. S.
2013-07-01
It is important to treat the inherent stochasticity of the fission process in systems where the behavior of the system is stochastic. This occurs when there are few neutrons in the system, or when the neutron source is weak. In order to characterize such systems, the capability to compute the first four moments of the neutron population distribution has been added to the deterministic neutral particle transport code, PARTISN. The moments are then fitted to probability density functions from the Pearson family. PARTISN is compared against MCNP6, with which it agrees well. (authors)
The Lattice Boltzmann Method applied to neutron transport
Erasmus, B.; Van Heerden, F. A.
2013-07-01
In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)
Samples to Determine the Resolution of Neutron Radiography and Tomography
NASA Astrophysics Data System (ADS)
Kaestner, A. P.; Kis, Z.; Radebe, M. J.; Mannes, D.; Hovind, J.; Grünzweig, C.; Kardjilov, N.; Lehmann, E. H.
Knowing the resolution and effective pixel size of an imaging system is essential for dimensional and quantitative measurements. A collection of test devices was developed for neutron imaging that can be used to quantify pixel and voxel size, resolution of the imaging system, and beam divergence. The first set of devices is intended for measurements with radiographs using test patterns or an absorbing edge. For tomography, Al vials were filled with Ti spheres of increasing dimensions in each vial. Ti was chosen since it provides sufficient contrast while the transmission is still guaranteed. The first resolution criterion was to determine from which vial that the spheres can be uniquely identified as spheres. More complex analysis would involve measuring the volume of the spheres or even to compute the edge spread function analogous to the method with the knife-edge for radiographs. For the edge analysis, a larger Ti sphere was considered. Using a sphere for the edge spread function analysis allowed for determination of the resolution in any direction. Images acquired using the different test items are included and methods to perform the analysis required to quantify the resolution from the images are proposed.
Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics
Micklich, B.J.; Fink, C.L.; Sagalovsky, L.
1995-07-01
Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutrons is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: Fast-Neutron Transmission Spectroscopy (FNTS) and Pulsed Fast-Neutron Analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ratio is greater than about 0.01. The Monte-Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projection angles and modest (2 cm) resolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and these reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte-Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA techniques are presented.
Optimization of a neutron detector design using adjoint transport simulation
Yi, C.; Manalo, K.; Huang, M.; Chin, M.; Edgar, C.; Applegate, S.; Sjoden, G.
2012-07-01
A synthetic aperture approach has been developed and investigated for Special Nuclear Materials (SNM) detection in vehicles passing a checkpoint at highway speeds. SNM is postulated to be stored in a moving vehicle and detector assemblies are placed on the road-side or in chambers embedded below the road surface. Neutron and gamma spectral awareness is important for the detector assembly design besides high efficiencies, so that different SNMs can be detected and identified with various possible shielding settings. The detector assembly design is composed of a CsI gamma-ray detector block and five neutron detector blocks, with peak efficiencies targeting different energy ranges determined by adjoint simulations. In this study, formulations are derived using adjoint transport simulations to estimate detector efficiencies. The formulations is applied to investigate several neutron detector designs for Block IV, which has its peak efficiency in the thermal range, and Block V, designed to maximize the total neutron counts over the entire energy spectrum. Other Blocks detect different neutron energies. All five neutron detector blocks and the gamma-ray block are assembled in both MCNP and deterministic simulation models, with detector responses calculated to validate the fully assembled design using a 30-group library. The simulation results show that the 30-group library, collapsed from an 80-group library using an adjoint-weighting approach with the YGROUP code, significantly reduced the computational cost while maintaining accuracy. (authors)
High resolution neutron imaging capabilities at BOA beamline at Paul Scherrer Institut
NASA Astrophysics Data System (ADS)
Tremsin, A. S.; Morgano, M.; Panzner, T.; Lehmann, E.; Filgers, U.; Vallerga, J. V.; McPhate, J. B.; Siegmund, O. H. W.; Feller, W. B.
2015-06-01
The cold neutron spectrum of the Beamline for neutron Optics and other Applications (BOA) at Paul Scherrer Institut enables high contrast neutron imaging because neutron cross sections for many materials increase with neutron wavelength. However, for many neutron imaging applications, spatial resolution can be as important as contrast. In this paper the neutron transmission imaging capabilities of an MCP/Timepix detector installed at the BOA beamline are presented, demonstrating the possibilities for studying sub-20 μm features in various samples. In addition to conventional neutron radiography and microtomography, the high degree of neutron polarization at the BOA beamline can be very attractive for imaging of magnetic fields, as demonstrated by our measurements. We also show that a collimated cold neutron beamline combined with a high resolution detector can produce image artifacts, (e.g. edge enhancements) due to neutron refraction and scattering. The results of our experiments indicate that the BOA beamline is a valuable addition to neutron imaging facilities, providing improved and sometimes unique capabilities for non-destructive studies with cold neutrons.
Graphical User Interface for Simplified Neutron Transport Calculations
Schwarz, Randolph; Carter, Leland L
2011-07-18
A number of codes perform simple photon physics calculations. The nuclear industry is lacking in similar tools to perform simplified neutron physics shielding calculations. With the increased importance of performing neutron calculations for homeland security applications and defense nuclear nonproliferation tasks, having an efficient method for performing simple neutron transport calculations becomes increasingly important. Codes such as Monte Carlo N-particle (MCNP) can perform the transport calculations; however, the technical details in setting up, running, and interpreting the required simulations are quite complex and typically go beyond the abilities of most users who need a simple answer to a neutron transport calculation. The work documented in this report resulted in the development of the NucWiz program, which can create an MCNP input file for a set of simple geometries, source, and detector configurations. The user selects source, shield, and tally configurations from a set of pre-defined lists, and the software creates a complete MCNP input file that can be optionally run and the results viewed inside NucWiz.
Rapid Measurement of Neutron Dose Rate for Transport Index
Morris, R.L.
2000-02-27
A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 {mu}Sv per hour (20 {mu}rem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNP{trademark} are reported for materials typical of those being shipped.
Neutron radiography with sub-15 μm resolution through event centroiding
NASA Astrophysics Data System (ADS)
Tremsin, Anton S.; McPhate, Jason B.; Vallerga, John V.; Siegmund, Oswald H. W.; Bruce Feller, W.; Lehmann, Eberhard; Kaestner, Anders; Boillat, Pierre; Panzner, Tobias; Filges, Uwe
2012-10-01
Conversion of thermal and cold neutrons into a strong ˜1 ns electron pulse with an absolute neutron detection efficiency as high as 50-70% makes detectors with 10B-doped Microchannel Plates (MCPs) very attractive for neutron radiography and microtomography applications. The subsequent signal amplification preserves the location of the event within the MCP pore (typically 6-10 μm in diameter), providing the possibility to perform neutron counting with high spatial resolution. Different event centroiding techniques of the charge landing on a patterned anode enable accurate reconstruction of the neutron position, provided the charge footprints do not overlap within the time required for event processing. The new fast 2×2 Timepix readout with >1.2 kHz frame rates provides the unique possibility to detect neutrons with sub-15 μm resolution at several MHz/cm2 counting rates. The results of high resolution neutron radiography experiments presented in this paper, demonstrate the sub-15 μm resolution capability of our detection system. The high degree of collimation and cold spectrum of ICON and BOA beamlines combined with the high spatial resolution and detection efficiency of MCP-Timepix detectors are crucial for high contrast neutron radiography and microtomography with high spatial resolution. The next generation of Timepix electronics with sparsified readout should enable counting rates in excess of 107 n/cm2/s taking full advantage of high beam intensity of present brightest neutron imaging facilities.
In situ quantification and visualization of lithium transport with neutrons.
Liu, Danny X; Wang, Jinghui; Pan, Ke; Qiu, Jie; Canova, Marcello; Cao, Lei R; Co, Anne C
2014-09-01
A real-time quantification of Li transport using a nondestructive neutron method to measure the Li distribution upon charge and discharge in a Li-ion cell is reported. By using in situ neutron depth profiling (NDP), we probed the onset of lithiation in a high-capacity Sn anode and visualized the enrichment of Li atoms on the surface followed by their propagation into the bulk. The delithiation process shows the removal of Li near the surface, which leads to a decreased coulombic efficiency, likely because of trapped Li within the intermetallic material. The developed in situ NDP provides exceptional sensitivity in the temporal and spatial measurement of Li transport within the battery material. This diagnostic tool opens up possibilities to understand rates of Li transport and their distribution to guide materials development for efficient storage mechanisms. Our observations provide important mechanistic insights for the design of advanced battery materials.
CMFD acceleration of spatial domain-decomposed neutron transport problems
Kelley, B. W.; Larsen, E. W.
2012-07-01
A significant limitation to parallelizing the solution of neutron transport problems is the need for sweeps across the entirety of the problem domain. Angular domain decomposition is common practice, as the equations for each direction are independent aside from their shared scattering/fission source. Accordingly, spatial domain decomposition does not naturally arise in the transport equations and is therefore less frequent in practice. In this paper, we show that a neutron transport domain can be straightforwardly divided into independent, parallelizable sweep regions, globally linked with the standard CMFD method, with an additional update equation. We verify, theoretically (via Fourier analysis) and computationally, that the convergence properties of this method are stable and nominally as rapid as standard CMFD. (authors)
Exact-to-precision generalized perturbation for neutron transport calculation
Wang, C.; Abdel-Khalik, H. S.
2013-07-01
This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)
The AN neutron transport by nodal diffusion
Barbarino, A.; Tomatis, D.
2013-07-01
The two group diffusion model combined to a nodal approach in space is the preferred scheme for the industrial simulation of nuclear water reactors. The main selling point is the speed of computation, allowing a large number of parametric studies. Anyway, the drawbacks of the underlying diffusion equation may arise with highly heterogeneous interfaces, often encountered in modern UO{sub 2} and MO{sub x} fuel loading patterns, and boron less controlled systems. This paper aims at showing how the simplified AN transport model, equivalent to the well known SPN, can be implemented in standard diffusion codes with minor modifications. Some numerical results are illustrated. (authors)
High resolution neutron imaging of water in PEM fuel cells
Mukundan, Rangachary; Borup, Rodney L; Davey, John R; Spendelow, Jacob S
2008-01-01
Optimal water management in Polymer Electrolyte Membrane (PEM) fuel cells is critical to improving the performance and durability of fuel cell systems especially during transient, start-up and shut-down operations. For example, while a high water content is desirable for improved membrane and catalyst ionomer conductivity, high water content can also block gas access to the triple-phase boundary resulting in lowered performance due to catalyst and gas diffusion layer (GDL) flooding. Visualizing liquid water by neutron imaging has been used over the past decade to study the water distribution inside operating fuel cells. In this paper, the results from our imaging at NIST using their recently installed higher resolution ({approx} 25 mm) Microchannel Plate (MCP) detector with a pixel pitch of 14.7 mm are presented. This detector is capable of quantitatively imaging the water inside the MEA (Membrane Electrode Assembly)/GDL (Gas Diffusion Layer) of working fuel cells and can provide the water profiles within these various components in addition to the channel water. Specially designed fuel cells (active area = 2.25 cm{sup 2}) have been used in order to take advantage of the full detector resolution. The cell design is illustrated in a figure where one of the current collector/end plates is shown. The serpentine pattern was machined into a block of aluminum and plated with nickel and then gold to form the flow field. The measurements were performed using beam no. 1 and aperture no. 2 with a fluence rate of 1.9 x 10{sup 6} neutrons cm{sup -2} sec{sup -1}. The cells were assembled with Gore{sup TM} Primea{sup R} MEAs and SGL Sigracet {sup R} 24 series GDLs (PRIMEA, GORE-SELECT and GORE are trademarks of W. L. Gore & Associates, Inc). All the cells were tested at 80 {sup o}C with 1.2 stoichiometry H{sub 2} and 2.0 stoichiometry air flows.
Mathematical models for volume rendering and neutron transport
Max, N.
1994-09-01
This paper reviews several different models for light interaction with volume densities of absorbing, glowing, reflecting, or scattering material. They include absorption only, glow only, glow and absorption combined, single scattering of external illumination, and multiple scattering. The models are derived from differential equations, and illustrated on a data set representing a cloud. They are related to corresponding models in neutron transport. The multiple scattering model uses an efficient method to propagate the radiation which does not suffer from the ray effect.
Electron transport through nuclear pasta in magnetized neutron stars
NASA Astrophysics Data System (ADS)
Yakovlev, D. G.
2015-10-01
We present a simple model for electron transport in a possible layer of exotic nuclear clusters (in the so-called nuclear pasta layer) between the crust and liquid core of a strongly magnetized neutron star. The electron transport there can be strongly anisotropic and gyrotropic. The anisotropy is produced by different electron effective collision frequencies along and across local symmetry axis in domains of exotic ordered nuclear clusters and by complicated effects of the magnetic field. We also calculate averaged kinetic coefficients in case local domains are freely oriented. Possible applications of the obtained results and open problems are outlined.
Benchmarking of Neutron Production of Heavy-Ion Transport Codes
Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence
2012-01-01
Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.
A diamond 14 MeV neutron energy spectrometer with high energy resolution
Shimaoka, Takehiro Kaneko, Junichi H.; Tsubota, Masakatsu; Shimmyo, Hiroaki; Ochiai, Kentaro; Chayahara, Akiyoshi; Umezawa, Hitoshi; Shikata, Shin-ichi; Watanabe, Hideyuki; Isobe, Mitsutaka; Osakabe, Masaki
2016-02-15
A self-standing single-crystal chemical vapor deposited diamond was obtained using lift-off method. It was fabricated into a radiation detector and response function measurements for 14 MeV neutrons were taken at the fusion neutronics source. 1.5% of high energy resolution was obtained by using the {sup 12}C(n, α){sup 9}Be reaction at an angle of 100° with the deuteron beam line. The intrinsic energy resolution, excluding energy spreading caused by neutron scattering, slowing in the target and circuit noises was 0.79%, which was also the best resolution of the diamond detector ever reported.
Neutron transport in WIMS by the characteristics method
Halsall, M.J. )
1993-01-01
The common methods of solving the neutron transport equation in reactor assembly geometries involve some geometric approximation. The standard differential transport methods and diffusion methods rely on pin-cell smearing, and transmission probability methods make approximations to the boundary fluxes linking pin cells. Integral transport methods (collision probabilities) can cope with pin geometries by numerical integration but require excessive computing times that increase with the square of the number of regions. The characteristics method in WIMS, known as CACTUS, solves the differential transport equation by a numerical tracking technique whose accuracy is limited only by computing resources; in its WIMS implementation it can handle any pin-type geometry without the need for preliminary spatial smearing.
A multi-DSP system for the neutron high resolution Fourier diffractometer
Drozdov, V.A.; Butenko, V.A.; Prikhodko, V.I.
1998-08-01
The multi-DSP data acquisition system for neutron time-of-flight spectrum measurements requiring fast real-time data processing is designed and is operated at the neutron High Resolution Fourier Diffractometer (HRFD). The use of high performance DSPs and front-end electronics based on flexible PLDs allows increasing of the efficiency of neutron diffractometers with a Fourier chopper and a multi-element detector system by the method of electronic time-focusing.
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-01-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330
NASA Astrophysics Data System (ADS)
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-06-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-06-08
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.
High-Resolution Fast-Neutron Spectrometry for Arms Control and Treaty Verification
David L. Chichester; James T. Johnson; Edward H. Seabury
2012-07-01
Many nondestructive nuclear analysis techniques have been developed to support the measurement needs of arms control and treaty verification, including gross photon and neutron counting, low- and high-resolution gamma spectrometry, time-correlated neutron measurements, and photon and neutron imaging. One notable measurement technique that has not been extensively studied to date for these applications is high-resolution fast-neutron spectrometry (HRFNS). Applied for arms control and treaty verification, HRFNS has the potential to serve as a complimentary measurement approach to these other techniques by providing a means to either qualitatively or quantitatively determine the composition and thickness of non-nuclear materials surrounding neutron-emitting materials. The technique uses the normally-occurring neutrons present in arms control and treaty verification objects of interest as an internal source of neutrons for performing active-interrogation transmission measurements. Most low-Z nuclei of interest for arms control and treaty verification, including 9Be, 12C, 14N, and 16O, possess fast-neutron resonance features in their absorption cross sections in the 0.5- to 5-MeV energy range. Measuring the selective removal of source neutrons over this energy range, assuming for example a fission-spectrum starting distribution, may be used to estimate the stoichiometric composition of intervening materials between the neutron source and detector. At a simpler level, determination of the emitted fast-neutron spectrum may be used for fingerprinting 'known' assemblies for later use in template-matching tests. As with photon spectrometry, automated analysis of fast-neutron spectra may be performed to support decision making and reporting systems protected behind information barriers. This paper will report recent work at Idaho National Laboratory to explore the feasibility of using HRFNS for arms control and treaty verification applications, including simulations and
Tagged Neutron Source for API Inspection Systems with Greatly Enhanced Spatial Resolution
2012-06-04
We recently developed induced fission and transmission imaging methods with time- and directionally-tagged neutrons offer new capabilities for characterization of fissile material configurations and enhanced detection of special nuclear materials (SNM). An Advanced Associated Particle Imaging (API) generator with higher angular resolution and neutron yield than existing systems is needed to fully exploit these methods.
High-resolution neutron radiography with microchannel plates: Proof-of-principle experiments at PSI
NASA Astrophysics Data System (ADS)
Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.
2009-06-01
With the appearance of highly collimated and intense neutron beamlines, the resolution of radiographic experiments is often limited by the parameters of the neutron imaging detector. Neutron-sensitive microchannel plates (MCPs) proved to be very efficient for conversion of a thermal or cold neutron into an electron pulse of up to 10 6 electrons preserving location of the neutron absorption within ˜15 μm. In this paper, we present the results of preliminary measurements performed with neutron-sensitive MCPs coupled with a Medipix2/Timepix active pixel sensor. A set of test objects was imaged at both thermal and cold neutron imaging beamlines of Paul Scherrer Institute. The spatial resolution of the detector operating at high counting rate mode was confirmed to be limited by the 55 μm pixel size of the Medipix2 readout. At the same time, event centroiding applied to the charge values measured with Timepix readout allowed individual neutron counting with spatial resolution on the scale of MCP pore spacing (11 μm in the present measurements). The ongoing improvement of the speed of the readout electronics should eliminate the low counting rate limitation of the latter high-resolution imaging.
A deterministic method for transient, three-dimensional neutron transport
NASA Astrophysics Data System (ADS)
Goluoglu, Sedat
A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and evaluated. The methodology used in this study for the time variable is the improved quasi-static (IQS) method. The position, energy, and angle variables of the neutron flux are computed using the three-dimensional (3-D) discrete ordinates code TORT. The resulting time-dependent, 3-D code is called TDTORT. The flux shape calculated by TORT is used to compute the point kinetics parameters (e.g., reactivity, generation time, etc.). The amplitude function is calculated by solving the point kinetics equations using LSODE (Livermore Solver of Ordinary differential Equations). Several transient 1-D, 2-D, and 3-D benchmark problems are used to verify TDTORT. The results show that methodology and code developed in this work have sufficient accuracy and speed to serve as a benchmarking tool for other less accurate models and codes. More importantly, a new computational tool based on transport theory now exists for analyzing the dynamic behavior of complex neutronic systems.
An Improved Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Clowdsley, Martha S.; Wilson, John W.
2000-01-01
A low-energy neutron transport algorithm for use in space radiation protection is developed. The algorithm is based upon a multigroup analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. This analysis is accomplished by solving a realistic but simplified neutron transport test problem. The test problem is analyzed by using numerical and analytical procedures to obtain an accurate solution within specified error bounds. Results from the test problem are then used for determining mean values associated with rescattering terms that are associated with a multigroup solution of the straight-ahead Boltzmann equation. The algorithm is then coupled to the Langley HZETRN code through the evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for a water and an aluminum-water shield-target configuration is then compared with LAHET and MCNPX Monte Carlo code calculations for the same shield-target configuration. The algorithm developed showed a great improvement in results over the unmodified HZETRN solution. In addition, a two-directional solution of the evaporation source showed even further improvement of the fluence near the front of the water target where diffusion from the front surface is important.
A transportable neutron radiography system based on a SbBe neutron source
NASA Astrophysics Data System (ADS)
Fantidis, J. G.; Nicolaou, G. E.; Tsagas, N. F.
2009-07-01
A transportable neutron radiography system, incorporating a SbBe neutron source, has been simulated using the MCNPX code. Design provisions have allowed two radiography systems to be utilised using the same SbBe neutron source. In this respect, neutron radiographies can be carried out using the photoneutrons produced when the 124Sb is surrounded by the Be target. Alternatively, γ-radiography can be utilised with the photons from the 124Sb with the target removed. Appropriate collimators were simulated for each of the radiography modes. Apart from Be, the materials considered were compatible with the European Union Directive on 'Restriction of Hazardous Substances' (RoHS) 2002/95/EC, hence excluding the use of cadmium and lead. Bismuth was chosen as the material for γ-radiation shielding and the proposed system allowed a maximum activity of the 124Sb up to 1.85×1013 Bq. The system simulated allows different object sizes to be studied with a wide range of radiography parameters.
First measurements with new high-resolution gadolinium-GEM neutron detectors
NASA Astrophysics Data System (ADS)
Pfeiffer, D.; Resnati, F.; Birch, J.; Etxegarai, M.; Hall-Wilton, R.; Höglund, C.; Hultman, L.; Llamas-Jansa, I.; Oliveri, E.; Oksanen, E.; Robinson, L.; Ropelewski, L.; Schmidt, S.; Streli, C.; Thuiner, P.
2016-05-01
European Spallation Source instruments like the macromolecular diffractometer (NMX) require an excellent neutron detection efficiency, high-rate capabilities, time resolution, and an unprecedented spatial resolution in the order of a few hundred micrometers over a wide angular range of the incoming neutrons. For these instruments solid converters in combination with Micro Pattern Gaseous Detectors (MPGDs) are a promising option. A GEM detector with gadolinium converter was tested on a cold neutron beam at the IFE research reactor in Norway. The μTPC analysis, proven to improve the spatial resolution in the case of 10B converters, is extended to gadolinium based detectors. For the first time, a Gd-GEM was successfully operated to detect neutrons with a measured efficiency of 11.8% at a wavelength of 2 Åand a position resolution better than 250 μm.
High resolution numerical relativity simulations for the merger of binary magnetized neutron stars
NASA Astrophysics Data System (ADS)
Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Wada, Tomohide
2014-08-01
We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS) formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded by an accretion torus which is strongly magnetized at birth.
Analysis of energy resolution in the KURRI-LINAC pulsed neutron facility
NASA Astrophysics Data System (ADS)
Sano, Tadafumi; Hori, Jun-ichi; Takahashi, Yoshiyuki; Yashima, Hiroshi; Lee, Jaehong; Harada, Hideo
2017-09-01
In this study, we carried out Monte Carlo simulations to obtain the energy resolution of the neutron flux for TOF measurements in the KURRI-LINAC pulsed neutron facility. The simulation was performed on the moderated neutron flux from the pac-man type moderator at the energy range from 0.1 eV to 10 keV. As the result, we obtained the energy resolutions (ΔE/E) of about 0.7% to 1.3% between 0.1 eV to 10 keV. The energy resolution obtained from Monte Carlo simulation agreed with the resolution using the simplified evaluation formula. In addition, we compared the energy resolution among KURRI-LINAC and other TOF facilities, the energy dependency of the energy resolution with the pac-man type moderator in KURRI-LINAC was similar to the J-PARC ANNRI for the single-bunch mode.
Characterization of new materials for Ultracold Neutron transport and storage
NASA Astrophysics Data System (ADS)
Pierre, Edgard; Christopher, Nicholas; Kawasaki, Shinsuke; Mammei, Russell; Marcellin, James; Matsumiya, Ryohei; Picker, Ruediger
2016-09-01
At TRIUMF, we are currently developing a super-thermal UltraCold Neutron (UCN) source using phonon exchange in super-fluid helium. To take full advantage of the high density of UCN from the TRIUMF source we are developing high UCN transmission guides and long storage time volumes for polarized UCN. These guides and storage volumes are important for experiments requiring a high density of polarized UCN, such as the neutron Electric Dipole Moment (EDM) measurement. The transportation efficiency depends on the capacity of the guide's walls to contain the UCN. The mean potential experienced by a UCN on wall collisions is called the Fermi potential and depends on the material. We have determined a set of potential candidates for our next generation UCN guides and EDM storage chamber. Their Fermi potential was measured using the SOFIA apparatus at MLF, J-PARC, Japan. Results of this measurement are presented in this talk.
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., themore » neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.« less
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., the neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.
Verbeke, J. M.; Petit, O.
2016-06-01
From nuclear safeguards to homeland security applications, the need for the better modeling of nuclear interactions has grown over the past decades. Current Monte Carlo radiation transport codes compute average quantities with great accuracy and performance; however, performance and averaging come at the price of limited interaction-by-interaction modeling. These codes often lack the capability of modeling interactions exactly: for a given collision, energy is not conserved, energies of emitted particles are uncorrelated, and multiplicities of prompt fission neutrons and photons are uncorrelated. Many modern applications require more exclusive quantities than averages, such as the fluctuations in certain observables (e.g., the neutron multiplicity) and correlations between neutrons and photons. In an effort to meet this need, the radiation transport Monte Carlo code TRIPOLI-4® was modified to provide a specific mode that models nuclear interactions in a full analog way, replicating as much as possible the underlying physical process. Furthermore, the computational model FREYA (Fission Reaction Event Yield Algorithm) was coupled with TRIPOLI-4 to model complete fission events. As a result, FREYA automatically includes fluctuations as well as correlations resulting from conservation of energy and momentum.
Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors
NASA Astrophysics Data System (ADS)
Giacomelli, L.; Nocente, M.; Rebai, M.; Rigamonti, D.; Milocco, A.; Tardocchi, M.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Hu, Z. M.; Peng, X. Y.; Hjalmarsson, A.; Gorini, G.
2016-11-01
This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.
Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors
Giacomelli, L. Tardocchi, M.; Nocente, M.; Rebai, M.; Rigamonti, D.; Gorini, G.; Milocco, A.; Chen, Z. J.; Du, T. F.; Fan, T. S.; Hu, Z. M.; Peng, X. Y.; Hjalmarsson, A.; Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB
2016-11-15
This work presents measurements done at the Peking University Van de Graaff neutron source of the response of single crystal synthetic diamond (SD) detectors to quasi-monoenergetic neutrons of 14-20 MeV. The results show an energy resolution of 1% for incoming 20 MeV neutrons, which, together with 1% detection efficiency, opens up to new prospects for fast ion physics studies in high performance nuclear fusion devices such as SD neutron spectrometry of deuterium-tritium plasmas heated by neutral beam injection.
Quantum transport in neutron-irradiated modulation-doped heterojunctions. I. Fast neutrons
Jin, W.; Zhou, J.; Huang, Y.; Cai, L.
1988-12-15
We have investigated the characteristics of low-temperature quantum transport in Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by fast neutrons of about 14 MeV energy. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields decrease with increase in the concentrations of scatterers, such as ionized impurities, lattice defects, and interface roughness. On the other hand, under strong magnetic fields, the Hall plateau broadening associated with the Landau localized states, and the Shubnikov--de Hass (SdH) oscillation enhancement associated with the Landau extended states, increase markedly after fast-neutron irradiation.
Large aperture fast neutron imaging detector with 10-ns time resolution
NASA Astrophysics Data System (ADS)
Arikawa, Y.; Matsubara, S.; Abe, Y.; Kato, Y.; Kishimoto, H.; Yogo, A.; Nishimura, H.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H.; Otake, Y.; Mima, K.; Honda, Y.
2017-02-01
Fast neutrons, which are neutrons with energies greater than 1 MeV, are expected to be a source of nondestructive inspection for a large-size infrastructure such as a bridge girder because of their mean free path exceeding the meter. A neutron-imaging device with 10-ns time resolution can discriminate pulsed neutrons from X-rays via time of flight. For this purpose, we require a fast-response neutron imager with large aperture and high image resolution. A neutron-imaging device with time resolution of 10 ns and aperture size of 40 cm × 60 cm was developed. It was filled with fast response liquid scintillator [1] in an aluminum honeycomb plate, which converts neutrons to optical light images. The scintillation light images were relayed using an optical lens and detected using a fast response image intensified CCD. The detector was tested at an electron linear accelerator (LINAC) facility in Osaka University. A short X-ray pulse (30 ps pulse duration) was generated using LINAC, and X-ray radiograph images were obtained with a 10- ns exposure time duration. The radiograph images were well attenuated within 10-ns from the X-ray injection. A high energy X-ray image and a neutron radiograph image of a 30-cm thick concrete block with iron blocks located behind it were successfully observed. This promising technique could facilitate nondestructive inspection of large concrete constructions.
Ambrosi, R. M.; Watterson, J. I. W.
1999-06-10
Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability.
C. DeW. Van Siclen; E. H. Seabury; C. J. Wharton; A. J. Caffrey
2012-10-01
The peak energy resolution of germanium detectors deteriorates with increasing neutron fluence. This is due to hole capture at neutron-created defects in the crystal which prevents the full energy of the gamma-ray from being recorded by the detector. A phenomenological model of coaxial HPGe detectors is developed that relies on a single, dimensionless parameter that is related to the probability for immediate trapping of a mobile hole in the damaged crystal. As this trap parameter is independent of detector dimensions and type, the model is useful for predicting energy resolution as a function of neutron fluence.
Sensitivity study of neutron transport through standard and rebar concrete
Bhuiyan, S.I.; Roussin, R.W.; Lucius, J.L.
1982-01-01
An investigation is under way at ORNL to (1) develop a data base pertinent to the transport of neutrons through thick concrete shields, (2) use the data base in an energy group boundary selection and collapsing scheme, and (3) develop a simple methodology to access the data base to provide rapid solutions to practical shielding problems. This paper describes work carried out to fulfill objective (1), the work consisting of calculations of the transport of fission neutrons through 1- and 2-m-thick slabs of standard concrete and rebar (steel-reinforced) concrete, together with calculations of the sensitivities of the results to total, absorption, and elastic cross sections. The transport calculations were performed with the one-dimensional discrete ordinates code ANISN in both forward and adjoint modes. The DLC-41C/VITAMIN-C cross-section library (171 neutron, 36 gamma groups) was employed, with a P/sub 3/ cross-section expansion and an S/sub 16/ angular quadrature. In all cases the fission source was assumed to be distributed within the first 1-cm thickness of the slab and the detector was assumed to occupy the last 1-cm thickness of the slab. For the rebar concrete the slab constituents were homogenized, with the horizontal and vertical No. 11 reinforcing steel rods comprising 7.6 vol. % of the slab. The quantity calculated was the absorbed dose rate, and care was taken in the mesh interval selection and source description to ensure agreement between the forward and adjoint results to within 0.02%.
A concurrent, multigroup, discrete ordinates model of neutron transport
Dorr, M.R.; Still, C.H.
1993-10-22
The authors present an algorithm for the concurrent solution of the linear system arising from a multigroup, discrete ordinates model of neutron transport. The target architectures consist of distributed memory computers ranging from workstation clusters to massively parallel computers. Based on an analysis of the memory requirement and floating point complexity of matrix-vector multiplication in the iterative solution of the linear system, the authors propose a data layout and communication strategy designed to achieve scalability with respect to all phase space variables. Numerical results are presented to demonstrate the performance of the algorithm on the nCUBE/2.
A killer micro attack on 3D neutron transport
Dorr, M.R.; Ferguson, J.M.
1990-11-01
We describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. 3 refs., 4 figs., 2 tabs.
Current status of the PSG Monte Carlo neutron transport code
Leppaenen, J.
2006-07-01
PSG is a new Monte Carlo neutron transport code, developed at the Technical Research Centre of Finland (VTT). The code is mainly intended for fuel assembly-level reactor physics calculations, such as group constant generation for deterministic reactor simulator codes. This paper presents the current status of the project and the essential capabilities of the code. Although the main application of PSG is in lattice calculations, the geometry is not restricted in two dimensions. This paper presents the validation of PSG against the experimental results of the three-dimensional MOX fuelled VENUS-2 reactor dosimetry benchmark. (authors)
LiF crystals as high spatial resolution neutron imaging detectors
NASA Astrophysics Data System (ADS)
Matsubayashi, M.; Faenov, A.; Pikuz, T.; Fukuda, Y.; Kato, Y.; Yasuda, R.; Iikura, H.; Nojima, T.; Sakai, T.
2011-09-01
Neutron imaging by color center formation in LiF crystals was applied to a sensitivity indicator (SI) as a standard samples for neutron radiography. The SI was exposed to a 5 mm pinhole-collimated thermal neutron beam with an LiF crystal and a neutron imaging plate (NIP) for 120 min in the JRR-3M thermal neutron radiography facility. The image in the LiF crystal was read out using a laser confocal microscope. All gaps were clearly observed in images for both the LiF crystal and the NIP. The experimental results showed that LiF crystals have excellent characteristics as neutron imaging detectors in areas such as high spatial resolution.
Structures of the fractional spaces generated by the difference neutron transport operator
Ashyralyev, Allaberen; Taskin, Abdulgafur
2015-09-18
The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB.
Novel Parallel Numerical Methods for Radiation& Neutron Transport
Brown, P N
2001-03-06
In many of the multiphysics simulations performed at LLNL, transport calculations can take up 30 to 50% of the total run time. If Monte Carlo methods are used, the percentage can be as high as 80%. Thus, a significant core competence in the formulation, software implementation, and solution of the numerical problems arising in transport modeling is essential to Laboratory and DOE research. In this project, we worked on developing scalable solution methods for the equations that model the transport of photons and neutrons through materials. Our goal was to reduce the transport solve time in these simulations by means of more advanced numerical methods and their parallel implementations. These methods must be scalable, that is, the time to solution must remain constant as the problem size grows and additional computer resources are used. For iterative methods, scalability requires that (1) the number of iterations to reach convergence is independent of problem size, and (2) that the computational cost grows linearly with problem size. We focused on deterministic approaches to transport, building on our earlier work in which we performed a new, detailed analysis of some existing transport methods and developed new approaches. The Boltzmann equation (the underlying equation to be solved) and various solution methods have been developed over many years. Consequently, many laboratory codes are based on these methods, which are in some cases decades old. For the transport of x-rays through partially ionized plasmas in local thermodynamic equilibrium, the transport equation is coupled to nonlinear diffusion equations for the electron and ion temperatures via the highly nonlinear Planck function. We investigated the suitability of traditional-solution approaches to transport on terascale architectures and also designed new scalable algorithms; in some cases, we investigated hybrid approaches that combined both.
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Livengood, T.; Starr, R. D.; Evans, L. G.; Mazarico, E.; Smith, D. E.
2012-01-01
We present a method and preliminary results related to determining the spatial resolution of orbital neutron detectors using epithermal maps and differential topographic masks. Our technique is similar to coded aperture imaging methods for optimizing photonic signals in telescopes [I]. In that approach photon masks with known spatial patterns in a telescope aperature are used to systematically restrict incoming photons which minimizes interference and enhances photon signal to noise. Three orbital neutron detector systems with different stated spatial resolutions are evaluated. The differing spatial resolutions arise due different orbital altitudes and the use of neutron collimation techniques. 1) The uncollimated Lunar Prospector Neutron Spectrometer (LPNS) system has spatial resolution of 45km FWHM from approx. 30km altitude mission phase [2]. The Lunar Rennaissance Orbiter (LRO) Lunar Exploration Neutron Detector (LEND) with two detectors at 50km altitude evaluated here: 2) the collimated 10km FWHM spatial resolution detector CSETN and 3) LEND's collimated Sensor for Epithermal Neutrons (SETN). Thus providing two orbital altitudes to study factors of: uncollimated vs collimated and two average altitudes for their effect on fields-of-view.
Numerical Simulations of Cosmogenic Neutron Production and Transport in Planetary Surfaces
NASA Technical Reports Server (NTRS)
Kim, Kyeong J.; Drake, Darrell M.; Reedy, Robert C.
2003-01-01
The numerical simulation code MCNPX was used to calculate the production and transport of cosmic-ray-produced neutrons in Mars and meteorites. These calculations help to understand the processes involved and the parameters that control the neutron fluxes. Results are presented here for neutrons in Mars and for the distribution of cosmic-ray neutrons and protons in a 50 cm-radius L-chondrite.
Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport
NASA Technical Reports Server (NTRS)
Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.
2008-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport
NASA Technical Reports Server (NTRS)
Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.
2008-01-01
Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.
NASA Astrophysics Data System (ADS)
Bülbül, Ahmet
2016-11-01
Eigenvalues are obtained for one-dimensional steady-state neutron transport equation in slab geometry using Henyey-Greenstein (HG) phase function. Firstly, HG phase function is inserted into neutron transport equation then eigenvalues are calculated for different values of collision parameters c and t parameters. All results are calculated for P9 and U9 approximation and these results compared each other.
NASA Astrophysics Data System (ADS)
Ersez, Tunay; Esposto, Fernando; Souza, Nicolas R. de
2017-09-01
The shielding for the neutron high-resolution backscattering spectrometer (EMU) located at the OPAL reactor (ANSTO) was designed using the Monte Carlo code MCNP 5-1.60. The proposed shielding design has produced compact shielding assemblies, such as the neutron pre-monochromator bunker with sliding cylindrical block shields to accommodate a range of neutron take-off angles, and in the experimental area - shielding of neutron focusing guides, choppers, flight tube, backscattering monochromator, and additional shielding elements inside the Scattering Tank. These shielding assemblies meet safety and engineering requirements and cost constraints. The neutron dose rates around the EMU instrument were reduced to < 0.5 µSv/h and the gamma dose rates to a safe working level of ≤ 3 µSv/h.
Quantifying moisture transport in cementitious materials using neutron radiography
NASA Astrophysics Data System (ADS)
Lucero, Catherine L.
A portion of the concrete pavements in the US have recently been observed to have premature joint deterioration. This damage is caused in part by the ingress of fluids, like water, salt water, or deicing salts. The ingress of these fluids can damage concrete when they freeze and expand or can react with the cementitious matrix causing damage. To determine the quality of concrete for assessing potential service life it is often necessary to measure the rate of fluid ingress, or sorptivity. Neutron imaging is a powerful method for quantifying fluid penetration since it can describe where water has penetrated, how quickly it has penetrated and the volume of water in the concrete or mortar. Neutrons are sensitive to light atoms such as hydrogen and thus clearly detect water at high spatial and temporal resolution. It can be used to detect small changes in moisture content and is ideal for monitoring wetting and drying in mortar exposed to various fluids. This study aimed at developing a method to accurately estimate moisture content in mortar. The common practice is to image the material dry as a reference before exposing to fluid and normalizing subsequent images to the reference. The volume of water can then be computed using the Beer-Lambert law. This method can be limiting because it requires exact image alignment between the reference image and all subsequent images. A model of neutron attenuation in a multi-phase cementitious composite was developed to be used in cases where a reference image is not available. The attenuation coefficients for water, un-hydrated cement, and sand were directly calculated from the neutron images. The attenuation coefficient for the hydration products was then back-calculated. The model can estimate the degree of saturation in a mortar with known mixture proportions without using a reference image for calculation. Absorption in mortars exposed to various fluids (i.e., deionized water and calcium chloride solutions) were investigated
NASA Astrophysics Data System (ADS)
Hussey, Daniel S.; LaManna, Jacob M.; Baltic, Elias; Jacobson, David L.
2017-09-01
We report on efforts to improve the achievable spatial resolution in neutron imaging by centroiding the scintillation light from gadolinium oxysulfide scintillators. The current state-of-the-art neutron imaging spatial resolution is about 10 μm, and many applications of neutron imaging would benefit from at least an order of magnitude improvement in the spatial resolution. The detector scheme that we have developed magnifies the scintillation light from a gadolinium oxysulfide scintillator, calculates the center of mass of the scintillation event, resulting in an event-based imaging detector with spatial resolution of about 2 μm.
NASA Astrophysics Data System (ADS)
Wang, Wen-Xin; Zhang, Yi; Wang, Ji-Jin; Hu, Bi-Tao
2009-02-01
In this paper Micromegas has been designed to detect neutrons. The simulation of the spatial resolution of Micromegas as neutron detector is carried out by GEANT4 toolkit. The neutron track reconstruction method based on the time coincidence technology is employed in the present work. The influence of the flux of incident 14 MeV neutron and high gamma background on the spatial resolution is carefully studied. Our results show that the spatial resolution of the detector is sensitive to the neutron flux, but insensitive to the intensity of γ background if the neutron track reconstruction method proposed by our group is used. The γ insensitivity makes it possible for us to use the Micromegas detector under condition which has high γ-rays background.
Wang, C. L.
2016-05-15
Three high-resolution positioning methods based on the FluoroBancroft linear-algebraic method [S. B. Andersson, Opt. Express 16, 18714 (2008)] are proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function, the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. After taking the super-Poissonian photon noise into account, the proposed algorithms give an average of 0.03-0.08 pixel position error much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. These improvements will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.
A Segmented Neutron Detector with a High Position Resolution for the (p,pn) Reactions
NASA Astrophysics Data System (ADS)
Kubota, Yuki; Sasano, Masaki; Uesaka, Tomohiro; Dozono, Masanori; Itoh, Masatoshi; Kawase, Shoichiro; Kobayashi, Motoki; Lee, CheongSoo; Matsubara, Hiroaki; Miki, Kenjiro; Miya, Hiroyuki; Ota, Shinsuke; Sekiguchi, Kimiko; Shima, Tatsushi; Taguchi, Takahiro; Tamii, Atsushi; Tang, Tsz Leung; Tokieda, Hiroshi; Wakasa, Tomotsugu; Wakui, Takashi; Yasuda, Jumpei; Zenihiro, Juzo
We are developing a neutron detector with a high position resolution to study the single particle properties of nuclei by the knockout (p,pn) reaction at intermediate energies. We constructed a prototype detector consisting of plastic scintillating fibers and multi-anode photomultiplier tubes (PMTs). Test experiments using 200- and 70-MeV proton and 199-, 188-, 68-, and 50-MeV neutron were performed for characterizing its performance. Preliminary results show that a position resolution of about 3 mm at full-width at half-maximum (FWHM) is realized as designed. The resulting separation-energy resolution to be obtained for (p,pn) measurement would be 1 MeV in FWHM, when the detector is used at a distance of 2 m from the target for measuring the neutron momentum.
A killer micro attack on 3D neutron transport
Dorr, M.R.; Ferguson, J.M.
1990-11-16
In this paper, we describe the deterministic solution of the neutron transport equation and the computation of the effective criticality of three-dimensional assemblies using the BBN TC2000 killer micros. We observe that the performance of our research code PTRAN running on 48 processors of the TC2000 is competitive with the partially vectorizable version running on a single Cray Y/MP processor. This performance scales well with the number of processors on real problems, including those that are not load balanced a priori. To obtain this performance, we explicitly specify and exploit data locality and data dependence using domain decomposition and dynamic job scheduling. From the results obtained here, it appears that, at least for this application, a production machine based on the TC2000 architecture with more powerful processors and a commensurate increase in switch speed could yield a significant gain in our design capability. 2 refs., 5 figs., 2 tabs.
Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P
2016-02-01
In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toward a resolution of the neutron-neutron scattering-length issue
NASA Astrophysics Data System (ADS)
Howell, C. R.; Chen, Q.; Carman, T. S.; Hussein, A.; Gibbs, W. R.; Gibson, B. F.; Mertens, G.; Moore, C. F.; Morris, C.; Obst, A.; Pasyuk, E.; Roper, C. D.; Salinas, F.; Slaus, I.; Sterbenz, S.; Tornow, W.; Walter, R. L.; Whiteley, C. R.; Whitton, M.
1998-12-01
We report a high-precision determination of the 1S0 neutron-neutron scattering length (ann) using the 2H(π-,nγ)n reaction. The value obtained in the present work is -18.50+/- 0.05 (statistical) +/- 0.44 (systematic) +/- 0.30 (theoretical) fm, which is consistent with the values from previous measurements. Combining our result with previous measurements reduces the total uncertainty in the world average of ann to +/-0.4 fm, matching the accuracy to which the charge-symmetric parameter app is determined.
High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin
Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A.; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul
2011-06-01
High-resolution crystallographic studies of the hydration of the coenzyme cob(II)alamin have provided hydrogen-bond parameters of unprecedented accuracy for a biomacromolecule. The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue–Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.
NASA Astrophysics Data System (ADS)
Tremsin, A. S.; McPhate, J. B.; Vallerga, J. V.; Siegmund, O. H. W.; Hull, J. S.; Feller, W. B.; Lehmann, E.
2009-06-01
Neutron counting detectors with boron or gadolinium doped microchannel plates (MCPs) have very high detection efficiency, spatial and temporal resolution, and have a very low readout noise. In this paper we present the results of both theoretical predictions and experimental evaluations of detection efficiency and spatial resolution measured at cold and thermal neutron beamlines. The quantum detection efficiency of a detector (not fully optimized) was measured to be 43% and 16% for the cold and thermal beamlines, respectively. The experiments also demonstrate that the spatial resolution can be better than 15 μm—highest achievable with the particular MCP pore dimension used in the experiment, although more electronics development is required in order to increase the counting rate capabilities of those <15 μm resolution devices. The timing accuracy of neutron detection is on the scale of few μs and is limited by the neutron absorption depth in the detector. The good agreement between the predicted and measured performance allows the optimization of the detector parameters in order to achieve the highest spatial resolution and detection efficiency in future devices.
A POD reduced order model for resolving angular direction in neutron/photon transport problems
Buchan, A.G.; Calloo, A.A.; Goffin, M.G.; Dargaville, S.; Fang, F.; Pain, C.C.; Navon, I.M.
2015-09-01
This article presents the first Reduced Order Model (ROM) that efficiently resolves the angular dimension of the time independent, mono-energetic Boltzmann Transport Equation (BTE). It is based on Proper Orthogonal Decomposition (POD) and uses the method of snapshots to form optimal basis functions for resolving the direction of particle travel in neutron/photon transport problems. A unique element of this work is that the snapshots are formed from the vector of angular coefficients relating to a high resolution expansion of the BTE's angular dimension. In addition, the individual snapshots are not recorded through time, as in standard POD, but instead they are recorded through space. In essence this work swaps the roles of the dimensions space and time in standard POD methods, with angle and space respectively. It is shown here how the POD model can be formed from the POD basis functions in a highly efficient manner. The model is then applied to two radiation problems; one involving the transport of radiation through a shield and the other through an infinite array of pins. Both problems are selected for their complex angular flux solutions in order to provide an appropriate demonstration of the model's capabilities. It is shown that the POD model can resolve these fluxes efficiently and accurately. In comparison to high resolution models this POD model can reduce the size of a problem by up to two orders of magnitude without compromising accuracy. Solving times are also reduced by similar factors.
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; Lauridsen, Erik M.; Bilheux, Hassina Z.; Molaison, Jamie J.; Santodonato, Louis J.; Tremsin, Anton S.; Grosse, Mirco; Morgano, Manuel; Kabra, Saurabh; Strobl, Markus
2015-12-15
High material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. This paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 °C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition, examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. This covers a broad field of research from fundamental to technological investigations of various types of materials and components.
Chen, Julian C-H; Hanson, B Leif; Fisher, S Zoë; Langan, Paul; Kovalevsky, Andrey Y
2012-09-18
The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.
Grid resolution study of ground water flow and transport.
Bower, Kathleen M; Gable, Carl W; Zyvoloski, George A
2005-01-01
Three-dimensional grids representing a heterogeneous, ground water system are generated at 10 different resolutions in support of a site-scale flow and transport modeling effort. These grids represent hydrostratigraphy near Yucca Mountain, Nevada, consisting of 18 stratigraphic units with contrasting fluid flow and transport properties. The grid generation method allows the stratigraphy to be modeled by numerical grids of different resolution so that comparison studies can be performed to test for grid quality and determine the resolution required to resolve geologic structure and physical processes such as fluid flow and solute transport. The process of generating numerical grids with appropriate property distributions from geologic conceptual models is automated, thus making the entire process easy to implement with fewer user-induced errors. The series of grids of various resolutions are used to assess the level at which increasing resolution no longer influences the flow and solute transport results. Grid resolution is found to be a critical issue for ground water flow and solute transport. The resolution required in a particular instance is a function of the feature size of the model, the intrinsic properties of materials, the specific physics of the problem, and boundary conditions. The asymptotic nature of results related to flow and transport indicate that for a hydrologic model of the heterogeneous hydrostratigraphy under Yucca Mountain, a horizontal grid spacing of 600 m and vertical grid spacing of 40 m resolve the hydrostratigraphic model with sufficient precision to accurately model the hypothetical flow and solute transport to within 5% of the value that would be obtained with much higher resolution.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA.more » Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.« less
Wang, C. L.
2016-05-17
On the basis of FluoroBancroft linear-algebraic method [S.B. Andersson, Opt. Exp. 16, 18714 (2008)] three highly-resolved positioning methods were proposed for wavelength-shifting fiber (WLSF) neutron detectors. Using a Gaussian or exponential-decay light-response function (LRF), the non-linear relation of photon-number profiles vs. x-pixels was linearized and neutron positions were determined. The proposed algorithms give an average 0.03-0.08 pixel position error, much smaller than that (0.29 pixel) from a traditional maximum photon algorithm (MPA). The new algorithms result in better detector uniformity, less position misassignment (ghosting), better spatial resolution, and an equivalent or better instrument resolution in powder diffraction than the MPA. Moreover, these characters will facilitate broader applications of WLSF detectors at time-of-flight neutron powder diffraction beamlines, including single-crystal diffraction and texture analysis.
A Study on Inhomogeneous Neutron Intensity Distribution Origin from Neutron Guide Transportation
NASA Astrophysics Data System (ADS)
Wang, Yu; Wei, Guohai; Wang, Hongli; Liu, Yuntao; He, Linfeng; Sun, Kai; Han, Songbai; Chen, Dongfeng
The uniformity of the neutron intensity spatial distribution at the sample position will directly affect the neutron imaging quality. But the unexpected inhomogeneous spatial distribution phenomenon always appears in the neutron radiography facilities installed at the end of neutron guide. In this paper, the source of this phenomenon has been analyzed through geometrical optics and confirmed by Monte Carlo simulations, and several optimization solutions are also proposed.
D. W. Nigg; J. K. Hartwell; J. R. Venhuizen; C. A. Wemple; R. Risler; G. E. Laramore; W. Sauerwein; G. Hudepohl; A. Lennox
2006-06-01
The Idaho National Laboratory (INL), the University of Washington (UW) Neutron Therapy Center, the University of Essen (Germany) Neutron Therapy Clinic, and the Northern Illinois University(NIU) Institute for Neutron Therapy at Fermilab have been collaborating in the development of fast-neutron therapy (FNT) with concurrent neutron capture (NCT) augmentation [1,2]. As part of this effort, we have conducted measurements to produce suitable benchmark data as an aid in validation of advanced three-dimensional treatment planning methodologies required for successful administration of FNT/NCT. Free-beam spectral measurements as well as phantom measurements with Lucite{trademark} cylinders using thermal, resonance, and threshold activation foil techniques have now been completed at all three clinical accelerator facilities. The same protocol was used for all measurements to facilitate intercomparison of data. The results will be useful for further detailed characterization of the neutron beams of interest as well as for validation of various charged particle and neutron transport codes and methodologies for FNT/NCT computational dosimetry, such as MCNP [3], LAHET [4], and MINERVA [5].
Study of Transport Behavior and Conversion Efficiency in Pillar Structured Neutron Detectors
Nikolic, R
2007-04-26
Room temperature, high efficiency and scalable radiation detectors can be realized by manipulating materials at the micro scale. With micro-semiconductor-pillars, we will advance the thermal neutron detection efficiency of semiconductor detectors to over 70% with 50 mm in detector thickness. New material science, new transport behavior, neutron to alpha conversion dynamics and their relationship with neutron detection will be discovered with the proposed structures.
FREND neutron telescope for mapping the Martian water with fine spatial resolution
NASA Astrophysics Data System (ADS)
Mitrofanov, Igor; Malakhov, Alexey; Mokrousov, Maxim; Golovin, Dmitry; Fedosov, Fedor; Kozyrev, Alexandr; Lisov, Denis; Litvak, Maxim; Nikiforov, Sergey; Sanin, Anton; Tret'yakov, Vlad; Vostrukhin, Andrey
2016-04-01
The concept of Fine Resolution Exploration Neutron Detector (FREND) is presented, as the Russian contributed instrument for the first element of ESA ExoMars mission, the TGO. FREND is the neutron collimated telescope, which is capable to measure the prompt neutron radiation of Mars from the 400 km orbit with the spatial resolution of about 40 km. The flux of epithermal neutrons is known to depend on the content of water in the shallow subsurface about 1 meter, so such measurements could allow to study the ground water distribution with fine spatial resolution over the entire martian surface from 70 degrees of the north latitude down to 70 degree of the south latitude. The resolution of tens of km is necessary to characterize the particular relief features on the surface by the content of water in the soil. Such mapping data should resolve the water distribution within the Gale crater, which is necessary to explain the paradoxic difefrence between the estimated contents of water in this crater, as about 5% by HEND on the Mars Odyssy and the ground data about 2 -3 % by DAN on the Curiosity. Also, the FREND mapping data of the ground water should be useful for the landing site selection of future Mars rovers, such as ExoMars or Mars 2020.
High resolution neutron crystallographic studies of the hydration of coenzyme cob(II)alamin
Jogl, Gerwald; Wang, Xiaoping; Mason, Sax; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zoe; Hoffmann, Christina; Kratky, Christoph; Langan, Paul
2011-01-01
The hydration of coenzyme cob(II)alamin has been studied using high resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of surrounded by flexible side chains with terminal functional groups may be significant for 0.92 on the original diffractometer D19 with a prototype 4o x 64o detector at the high-flux reactor neutron source run by the Institute Laue Langevin. The resulting structure provides H bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force-fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultra high resolution was investigated by collecting time-of-flight neutron crystallographic data on diffractometer TOPAZ with a prototype array of 14 modular 21o x 21o detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.
High-resolution neutron crystallographic studies of the hydration of the coenzyme cob(II)alamin.
Jogl, Gerwald; Wang, Xiaoping; Mason, Sax A; Kovalevsky, Andrey; Mustyakimov, Marat; Fisher, Zöe; Hoffman, Christina; Kratky, Christoph; Langan, Paul
2011-06-01
The hydration of the coenzyme cob(II)alamin has been studied using high-resolution monochromatic neutron crystallographic data collected at room temperature to a resolution of 0.92 Å on the original D19 diffractometer with a prototype 4° × 64° detector at the high-flux reactor neutron source run by the Institute Laue-Langevin. The resulting structure provides hydrogen-bonding parameters for the hydration of biomacromolecules to unprecedented accuracy. These experimental parameters will be used to define more accurate force fields for biomacromolecular structure refinement. The presence of a hydrophobic bowl motif surrounded by flexible side chains with terminal functional groups may be significant for the efficient scavenging of ligands. The feasibility of extending the resolution of this structure to ultrahigh resolution was investigated by collecting time-of-flight neutron crystallographic data during commissioning of the TOPAZ diffractometer with a prototype array of 14 modular 2° × 21° detectors at the Spallation Neutron Source run by Oak Ridge National Laboratory.
Improving the resolution of chopper spectrometers at pulsed neutron sources
Carpenter, J.M. ); Mildner, D.F.R. . Center for Analytical Chemistry)
1990-01-01
We examine the relationships between intensity and resolution in pulsed-source chopper spectrometers, including the effects of Soller collimation, narrower rotor slits and higher rotor speeds. The basis is a simplified description of a spectrometer, approximately optimizing the rotor pulse and lighthouse effects. the analysis includes a new treatment of the angular distribution transmitted through a system consisting of a coarse collimator and a Soller collimator. The results encourage the prospect for a reasonably easily accomplished, higher resolution, optional configuration of the pulsed source chopper spectrometers at IPNS. 6 refs., 5 figs.
Cooperative learning of neutron diffusion and transport theories
Robinson, Michael A.
1999-04-30
A cooperative group instructional strategy is being used to teach a unit on neutron transport and diffusion theory in a first-year-graduate level, Reactor Theory course that was formerly presented in the traditional lecture/discussion style. Students are divided into groups of two or three for the duration of the unit. Class meetings are divided into traditional lecture/discussion segments punctuated by cooperative group exercises. The group exercises were designed to require the students to elaborate, summarize, or practice the material presented in the lecture/discussion segments. Both positive interdependence and individual accountability are fostered by adjusting individual grades on the unit exam by a factor dependent upon group achievement. Group collaboration was also encouraged on homework assignments by assigning each group a single grade on each assignment. The results of the unit exam have been above average in the two classes in which the cooperative group method was employed. In particular, the problem solving ability of the students has shown particular improvement. Further,the students felt that the cooperative group format was both more educationally effective and more enjoyable than the lecture/discussion format.
Rayleigh Quotient Iteration in 3D, Deterministic Neutron Transport
Slaybaugh, R; Evans, Thomas M; Davidson, Gregory G; Wilson, P.
2012-01-01
Today's "grand challenge" neutron transport problems require 3-D meshes with billions of cells, hundreds of energy groups, and accurate quadratures and scattering expansions. Leadership-class computers provide platforms on which high-fidelity fluxes can be calculated. However, appropriate methods are needed that can use these machines effectively. Such methods must be able to use hundreds of thousands of cores and have good convergence properties. Rayleigh quotient iteration (RQI) is an eigenvalue solver that has been added to the Sn code Denovo to address convergence. Rayleigh quotient iteration is an optimal shifted inverse iteration method that should converge in fewer iterations than the more common power method and other shifted inverse iteration methods for many problems of interest. Denovo's RQI uses a new multigroup Krylov solver for the fixed source solutions inside every iteration that allows parallelization in energy in addition to space and angle. This Krylov solver has been shown to scale successfully to 200,000 cores: for example one test problem scaled from 69,120 cores to 190,080 cores with 98% efficiency. This paper shows that RQI works for some small problems. However, the Krylov method upon which it relies does not always converge because RQI creates ill-conditioned systems. This result leads to the conclusion that preconditioning is needed to allow this method to be applicable to a wider variety of problems.
Method for improving the angular resolution of a neutron scatter camera
Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.
2012-12-25
An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.
Fine Resolution Neutron Detector for ExoMars Trace Gas Orbiter. Instrument and science goals.
NASA Astrophysics Data System (ADS)
Malakhov, Alexey; Litvak, Maxim; Kozyrev, S. Alexander; Tretiyakov, Vladislav; Sanin, Anton; Mokrousov, Maxim; Vostrukhin, Andrey; Golovin, Dmitry; Semkova, Jordanka; Dachev, Tsvetan; Malchev, Stefan; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen; Koleva, Rositza; Mitrofanov, Igor; F
Fine Resolution Neutron Detector (FREND) will measure neutrons of different energy ranges, charged particles and radiation environment onboard ExoMars 2016 Trace Gas Orbiter spacecraft. The instrument contains a set of (3) He detectors for epithermal neutrons and a scintillation crystal for high-energy neutrons and charged particles measurements. Dosimeter module will perform dose and particle flux monitoring. The instrument also contains a collimation module that narrows 3He counters’ and scintillator’s field of view to a narrow spot on the surface of Mars of about 40 km. FREND will be the first experiment to perform high resolution hydrogen mapping of the Martian surface. Current hydrogen maps obtained by HEND instrument onboard Mars Odyssey provide only 300km spatial resolution. Improved data from FREND will be very valuable for further exploration missions in terms of landing sites selection, as well as enable us to better understand Martian geology, seasonal CO _{2} cycles and planet’s history. Radiation environment data from dosimeter module on Martian orbit will provide improved knowledge for future human exploration as well as perform solar particle events monitoring.
Evaluation Procedures for Spatial Resolution and Contrast Standards for Neutron Tomography
NASA Astrophysics Data System (ADS)
Radebe, M. J.; de Beer, F. C.; Kaestner, A.; Lehmann, E.; Sim, C. M.; Sideras-Haddad, E.
Digital neutron imaging (radiography and tomography) is a powerful non-destructive analytical tool and has demonstrated its importance in industrial and research application worldwide. The standardization process, to certify digital neutron imaging as a standard practice in industry, entails standardized test phantoms to be evaluated. Through the evaluation of the phantoms the spatial resolution and contrast of a neutron digital imaging system can be determined in a controlled and standardized manner by accepting good practice in terms of scanning, data processing, data visualization and evaluation. Standard test phantoms are objects with physical features designed to test the capability of an imaging setup to reveal these features without any ambiguity. The good practice enables the acceptable assessment of different international digital neutron imaging facilities for spatial resolution and contrast abilities. The purpose of this contribution is to establish good practice for the experimental setup, acquiring of 2-D digital projections and the reconstruction process of the 3-D digital images of standard test phantoms for spatial resolution and contrast. Results obtained from applying this suggested good practice on contrast standard test phantom will be discussed.
Fine Resolution Epithermal Neutron Detector (FREND) onboard ExoMars Trace Gas Orbiter
NASA Astrophysics Data System (ADS)
Malakhov, Alexey; Mitrofanov, Igor; Sanin, Anton; Litvak, Maxim; Kozyrev, Alexander; Tretiyakov, Vladislav; Mokrousov, Maxim; Vostrukhin, Andrey; Golovin, Dmitry; Fedosov, Fedor; Nikiforov, Sergey; Konovalov, Alexey; Tomilina, Tatiana; Bobrovnitsky, Yury; Grebennikov, Alexander; Bakhtin, Boris; Loktionova, Mariya
2013-04-01
ExoMars is a joint investigation of Mars carried out by Roscosmos and ESA that has 2 launches foreseen, in 2016 and 2018. Planned for launch in 2016, its first element, the Trace Gas Orbiter (TGO) will spend at least one Martian year orbiting the planet. Fine Resolution Neutron Detector (FREND) instrument was proposed by Roscosmos and will be measuring thermal, epithermal and high energy neutrons with energy ranges up to 10 MeV, which variations are an excellent signature of H bearing elements presence in the regolith at up to 1 meter depth. Neutron mapping of Mars is being performed by HEND instrument since 2002 as part of the Mars Odyssey instrument suite. The important step in Martian exploration from FREND will be its high spatial resolution: FREND contains a collimator structure that narrows the instrument's field of view to a 40 km diameter spot at 400 km altitude. The collimation technology was previously confirmed by LEND, an instrument onboard NASA's Lunar Reconnaissance Orbiter (LRO) mission. FREND collimator is a structure with 2 layers, external polyethylene moderating neutrons and internal layer of 10B absorbing them. The instrument uses as much of LEND heritage (detection systems, electronics etc.) as possible. Like LEND, FREND will have a set of 3He proportional counters covering the thermal and epithermal neutrons range, plus the stilbene scintillator to cover the high energy neutrons range. FREND's dosimeter module is another important part of the system, providing charged particles measurements of dose and flux with time resolution of up to 1 minute and energy spectra covering the 100 keV to 80 MeV range. This will provide additional information for radiation environment on the orbit around Mars. When built, FREND will be the first collimated neutron detector to orbit Mars and will improve existing neutron maps by up to 10 times in the linear spatial resolution. This potentially will clarify our knowledge of water/hydrogen rich features and other
Fine Resolution Epithermal Neutron Detector (FREND) for ExoMarsTrace Gas Orbiter
NASA Astrophysics Data System (ADS)
Malakhov, A.; Mitrofanov, I.; Sanin, A.; Litvak, M.; Kozyrev, A.; Tretiyakov, V.; Mokrousov, M.; Vostrukhin, A.; Golovin, D.; Fedosov, F.
2012-04-01
ExoMars is now under considerations, as a joint mission of the three agencies, ESA,Roscosmos and NASA to explore the red planet. Planned for launch in 2016, its first element, the Trace Gas Orbiter (TGO) is going to spend one Martian year (687 Earth days) orbiting around the planet. Fine Resolution Epithermal Neutron Detector (FREND), once aboard TGO, will be measuring thermal, epithermal and high energy neutrons with energy ranges up to 10 MeV, which variations are an excellent signature of H bearing elements presence in the regolith at up to 1 meter depth. Neutron mapping of Mars is being performed since 2002 by HEND instrument on board of Mars Odyssey, but the significant step up in FREND design compared to this previous mission will be its ability to collimate neutrons and thus have a very narrow Field of View of 40 km at a 400 km altitude. Its collimator consists of layers of polyethylene to moderate neutrons and 10B to absorb them. The collimator's design is equal to one used in LEND instrument on board the Lunar Reconnaissance Orbiter and proved to be efficient. The instrument design and detectors will also be very similar to ones used in its both ancestors, LEND and HEND, benefitting from the best heritage there is. FREND will use a set of 3He proportional counters to cover the thermal and epithermal neutrons energy ranges, providing a set of several independent measurements for higher statistics, as well as a stilbene scintillation detector for high energy neutrons. FREND will be the first collimated neutron instrument to fly towards Mars and, like LEND on the Moon, FREND will be able to produce Martian neutron maps that could supersede previously created ones by about 10 times in the linear spatial resolution. This will potentially clarify the available global Mars neutron maps, but could also point out new, never before seen small water/hydrogen rich features and other places of interest on the surface of the planet. Without a doubt, this kind of
Forrest, C. J.; Radha, P. B.; Glebov, V. Yu.; Goncharov, V. N.; Knauer, J. P.; Pruyne, A.; Romanofsky, M.; Sangster, T. C.; Shoup, M. J. III; Stoeckl, C.; Casey, D. T.; Gatu-Johnson, M.; Gardner, S.
2012-10-15
The areal density ({rho}R) of cryogenic DT implosions on Omega is inferred by measuring the spectrum of neutrons that elastically scatter off the dense deuterium (D) and tritium (T) fuel. Neutron time-of-flight (nTOF) techniques are used to measure the energy spectrum with high resolution. High signal-to-background data has been recorded on cryogenic DT implosions using a well-collimated 13.4-m line of sight and an nTOF detector with an advanced liquid scintillator compound. An innovative method to analyze the elastically scattered neutron spectra was developed using well-known cross sections of the DT nuclear reactions. The estimated areal densities are consistent with alternative {rho}R measurements and 1-D simulations.
Towards a high-resolution TOF-MIEZE spectrometer with very cold neutrons
NASA Astrophysics Data System (ADS)
Oda, T.; Hino, M.; Kitaguchi, M.; Filter, H.; Geltenbort, P.; Kawabata, Y.
2017-07-01
We report the first experimental test of TOF-MIEZE technique using very cold neutrons (VCNs) towards high-resolution quasi-elastic neutron scattering spectroscopy. TOF-MIEZE is a type of neutron resonance spin echo spectroscopy with a combination of the time-of-flight (TOF) method and modulation of intensity by zero effort (MIEZE). A compact MIEZE instrument was constructed at the VCN beam port at the High Flux Reactor at the Institut Laue Langevin. By accumulating individual oscillations of raw data, we observed a TOF-MIEZE signal with an effective frequency of 50 kHz in a wavelength band of 4-6 nm. The signal contrasts were 0.59 ± 0.04 and 0.29 ± 0.03 for wavelengths of 4 nm and 6 nm, respectively. The Fourier time was estimated to be 70 ns with 6 nm VCNs in the experimental set-up.
Monte-Carlo simulations of a high-resolution neutron TOF instrument
NASA Astrophysics Data System (ADS)
Bernhardt, Ph; Demmel, F.; Magerl, A.
2000-03-01
It is proposed to build a flexible, high-resolution time-of-flight diffractometer and spectrometer at the new reactor FRM II of the Technische Universität München. To optimize the layout of individual components and to estimate the performance of the entire instrument, we have made analytical calculations and Monte-Carlo simulations mainly with “McStas”, programmed by RISØ, Denmark. MC simulation routines for neutron devices like curved guides, disc- and Fermi choppers have been added. The influence of curved guides in neutron phase space has been developed and will be presented. Line shapes of neutron pulses and transmission have been studied for a Fermi chopper with straight slits and will be compared with the results of simulation.
NASA Technical Reports Server (NTRS)
Singleterry, R. C., Jr.; Wilson, J. W.
1997-01-01
Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He4 and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/sq cm of aluminum and 100 gm/sq cm of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.
Singleterry, R.C. Jr.; Wilson, J.W.
1997-05-01
Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He{sup 4} and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm{sup 2} of aluminum and 100 gm/cm{sup 2} of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.
Neutron interaction and their transport with bulk materials
Rani, Esther Kalpana; Radhika, K.
2015-05-15
In the current paper an attempt was made to study and provide fundamental information about neutron interactions that are important to nuclear material measurements. The application of this study is explained about macroscopic interactions with bulk compound materials through a program in DEV C++ language which is done by enabling interaction of neutrons in nature. The output of the entire process depends upon the random number (i.e., incident neutron number), thickness of the material and mean free path as input parameters. Further the current study emphasizes on the usage of materials in shielding.
Design of a neutron penumbral-aperture microscope with 10 µm resolution
NASA Astrophysics Data System (ADS)
Ress, D.; Lerche, R. A.; Ellis, R. J.; Lane, S. M.
1990-10-01
We are currently designing a 10 μm resolution neutron penumbral-aperture microscope to diagnose high-convergence targets at the Nova laser facility. To achieve such high resolution, the new microscope will require developments in three areas. First, we have designed thick penumbral apertures with extremely sharp cutoffs over a useful (≊100 μm) field of view; fabrication of such apertures appears feasible using gold electroplating techniques. Second, the limited field of view and required close proximity of the aperture to the target (2 cm) necessitates a durable mounting and alignment system with ±25 μm accuracy. Finally, a neutron detector containing 160 000 scintillator elements is required. We plan to utilize clad-scintillator elements in this array, bonded together with a high-Z paint to eliminate recoil-proton crosstalk. Two schemes are under consideration for readout of this large array.
NASA Astrophysics Data System (ADS)
Trtik, Pavel; Lehmann, Eberhard H.
2015-07-01
We demonstrate the feasibility of the production of isotopically-enriched gadolinium oxysulfide scintillator screens for the high spatial-resolution neutron imaging. Approximately 10 g of 157Gd2O2S:Tb was produced in the form of fine powder (particle size approximately 2 μm). The level of 157Gd enrichment was above 88%. Approximately 2.5 μm thick 157Gd2O2S:Tb scintillator screens were produced and tested for the absorption power and the light output. The results are compared to the reference screens based on natGd2O2S:Tb. The isotopically enriched screens provided increase by a factor of 3.8 and 3.6 for the absorption power and the light output, respectively. The potential of the scintillator screens based on 157Gd2O2S phosphor for the purpose of the (high-resolution) neutron imaging is discussed.
Superconducting gamma and fast-neutron spectrometers with high energy resolution
Friedrich, Stephan; , Niedermayr, Thomas R.; Labov, Simon E.
2008-11-04
Superconducting Gamma-ray and fast-neutron spectrometers with very high energy resolution operated at very low temperatures are provided. The sensor consists of a bulk absorber and a superconducting thermometer weakly coupled to a cold reservoir, and determines the energy of the incident particle from the rise in temperature upon absorption. A superconducting film operated at the transition between its superconducting and its normal state is used as the thermometer, and sensor operation at reservoir temperatures around 0.1 K reduces thermal fluctuations and thus enables very high energy resolution. Depending on the choice of absorber material, the spectrometer can be configured either as a Gamma-spectrometer or as a fast-neutron spectrometer.
Cosmic ray heliospheric transport study with neutron monitor data
NASA Astrophysics Data System (ADS)
Ahluwalia, H. S.; Ygbuhay, R. C.; Modzelewska, R.; Dorman, L. I.; Alania, M. V.
2015-10-01
Determining transport coefficients for galactic cosmic ray (GCR) propagation in the turbulent interplanetary magnetic field (IMF) poses a fundamental challenge in modeling cosmic ray modulation processes. GCR scattering in the solar wind involves wave-particle interaction, the waves being Alfven waves which propagate along the ambient field (B). Empirical values at 1 AU are determined for the components of the diffusion tensor for GCR propagation in the heliosphere using neutron monitor (NM) data. At high rigidities, particle density gradients and mean free paths at 1 AU in B can only be computed from the solar diurnal anisotropy (SDA) represented by a vector A (components Ar, Aϕ, and Aθ) in a heliospherical polar coordinate system. Long-term changes in SDA components of NMs (with long track record and the median rigidity of response Rm ~ 20 GV) are used to compute yearly values of the transport coefficients for 1963-2013. We confirm the previously reported result that the product of the parallel (to B) mean free path (λ||) and radial density gradient (Gr) computed from NM data exhibits a weak Schwabe cycle (11y) but strong Hale magnetic cycle (22y) dependence. Its value is most depressed in solar activity minima for positive (p) polarity intervals (solar magnetic field in the Northern Hemisphere points outward from the Sun) when GCRs drift from the polar regions toward the helioequatorial plane and out along the heliospheric current sheet (HCS), setting up a symmetric gradient Gθs pointing away from HCS. Gr drives all SDA components and λ|| Gr contributes to the diffusive component (Ad) of the ecliptic plane anisotropy (A). GCR transport is commonly discussed in terms of an isotropic hard sphere scattering (also known as billiard-ball scattering) in the solar wind plasma. We use it with a flat HCS model and the Ahluwalia-Dorman master equations to compute the coefficients α (=λ⊥/λ∥) and ωτ (a measure of turbulence in the solar wind) and transport
MCNPX Monte Carlo simulations of particle transport in SiC semiconductor detectors of fast neutrons
NASA Astrophysics Data System (ADS)
Sedlačková, K.; Zat'ko, B.; Šagátová, A.; Pavlovič, M.; Nečas, V.; Stacho, M.
2014-05-01
The aim of this paper was to investigate particle transport properties of a fast neutron detector based on silicon carbide. MCNPX (Monte Carlo N-Particle eXtended) code was used in our study because it allows seamless particle transport, thus not only interacting neutrons can be inspected but also secondary particles can be banked for subsequent transport. Modelling of the fast-neutron response of a SiC detector was carried out for fast neutrons produced by 239Pu-Be source with the mean energy of about 4.3 MeV. Using the MCNPX code, the following quantities have been calculated: secondary particle flux densities, reaction rates of elastic/inelastic scattering and other nuclear reactions, distribution of residual ions, deposited energy and energy distribution of pulses. The values of reaction rates calculated for different types of reactions and resulting energy deposition values showed that the incident neutrons transfer part of the carried energy predominantly via elastic scattering on silicon and carbon atoms. Other fast-neutron induced reactions include inelastic scattering and nuclear reactions followed by production of α-particles and protons. Silicon and carbon recoil atoms, α-particles and protons are charged particles which contribute to the detector response. It was demonstrated that although the bare SiC material can register fast neutrons directly, its detection efficiency can be enlarged if it is covered by an appropriate conversion layer. Comparison of the simulation results with experimental data was successfully accomplished.
Deterministic and Monte Carlo Neutron Transport Calculations of the Dounreay Fast Breeder Reactor
Ziver, A. Kemal; Shahdatullah, Sabu; Eaton, Matthew D.; Oliviera, Cassiano R.E. de; Ackroyd, Ron T.; Umpleby, Adrian P.; Pain, Christopher C.; Goddard, Antony J. H.; Fitzpatrick, James
2004-12-15
A homogenized whole-reactor cylindrical model of the Dounreay Fast Reactor has been constructed using both deterministic and Monte Carlo codes to determine neutron flux distributions inside the core and at various out-of-core components. The principal aim is to predict neutron-induced activation levels using both methods and make comparisons against the measured thermal reaction rates. Neutron transport calculations have been performed for a fixed source using a spatially lumped fission neutron distribution, which has been derived from measurements. The deterministic code used is based on the finite element approximation to the multigroup second-order even-parity neutron transport equation, which is implemented in the EVENT code. The Monte Carlo solutions were obtained using the MCNP4C code, in which neutron cross sections are represented in pointwise (or continuous) form. We have compared neutron spectra at various locations not only to show differences between using multigroup deterministic and continuous energy (point nuclear data) Monte Carlo methods but also to assess neutron-induced activation levels calculated using the spectra obtained from both methods. Results were also compared against experiments that were carried out to determine neutron-induced reaction rates. To determine activation levels, we employed the European Activation Code System FISPACT. We have found that the neutron spectra calculated at various in-core and out-of-core components show some differences, which mainly reflect the use of multigroup and point energy nuclear data libraries and methods employed, but these differences have not resulted in large errors on the calculated activation levels of materials that are important (such as steel components) for decommissioning studies of the reactor. The agreement of calculated reaction rates of thermal neutron detectors such as the {sup 55}Mn(n,{gamma}){sup 56}Mn against measurements was satisfactory.
Ganapol, B.
1993-09-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade.
On-the-fly Neutron Tomography of Water Transport into Lupine Roots
NASA Astrophysics Data System (ADS)
Zarebanadkouki, Mohsen; Carminati, Andrea; Kaestner, Anders; Mannes, David; Morgano, Manuel; Peetermans, Steven; Lehmann, Eberhard; Trtik, Pavel
Measurement and visualization of water flow in soil and roots is essential for understanding of how roots take up water from soils. Such information would allow for the optimization of irrigation practices and for the identification of the optimal traits for the capture of water, in particular when water is scarce. However, measuring water flow in roots growing in soil is challenging. The previous 2D experiments (Zarebanadkouki et al., 2012) have not been sufficient for understanding the water transport across the root and therefore we employed an on-the-fly tomography technique with temporal resolution of three minutes. In this paper, we show that the series of on-the-fly neutron tomographic experiments performed on the same sample allow for monitoring the three-dimensional spatial distribution of D2O across the root tissue. The obtained data will allow us to calculate the convective and diffusive transport properties across root tissue and to estimate the relative importance of different pathways of water across the root tissue.
How to polarise all neutrons in one beam: a high performance polariser and neutron transport system
NASA Astrophysics Data System (ADS)
Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.
2016-09-01
Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.
In situ studies of mass transport in liquid alloys by means of neutron radiography.
Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A
2011-06-29
When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast.
Development of a high spatial resolution neutron imaging system and performance evaluation
NASA Astrophysics Data System (ADS)
Cao, Lei
The combination of a scintillation screen and a charged coupled device (CCD) camera is a digitized neutron imaging technology that has been widely employed for research and industry application. The maximum of spatial resolution of scintillation screens is in the range of 100 mum and creates a bottleneck for the further improvement of the overall system resolution. In this investigation, a neutron sensitive micro-channel plate (MCP) detector with pore pitch of 11.4 mum is combined with a cooled CCD camera with a pixel size of 6.8 mum to provide a high spatial resolution neutron imaging system. The optical path includes a high reflection front surface mirror for keeping the camera out of neutron beam and a macro lens for achieving the maximum magnification that could be achieved. All components are assembled into an aluminum light tight box with heavy radiation shielding to protect the camera as well as to provide a dark working condition. Particularly, a remote controlled stepper motor is also integrated into the system to provide on-line focusing ability. The best focus is guaranteed through use of an algorithm instead of perceptual observation. An evaluation routine not previously utilized in the field of neutron radiography is developed in this study. Routines like this were never previously required due to the lower resolution of other systems. Use of the augulation technique to obtain presampled MTF addresses the problem of aliasing associated with digital sampling. The determined MTF agrees well with the visual inspection of imaging a testing target. Other detector/camera combinations may be integrated into the system and their performances are also compared. The best resolution achieved by the system at the TRIGA Mark II reactor at the University of Texas at Austin is 16.2 lp/mm, which is equivalent to a minimum resolvable spacing of 30 mum. The noise performance of the device is evaluated in terms of the noise power spectrum (NPS) and the detective quantum
Neutron cross-section probability tables in TRIPOLI-3 Monte Carlo transport code
Zheng, S.H.; Vergnaud, T.; Nimal, J.C.
1998-03-01
Neutron transport calculations need an accurate treatment of cross sections. Two methods (multi-group and pointwise) are usually used. A third one, the probability table (PT) method, has been developed to produce a set of cross-section libraries, well adapted to describe the neutron interaction in the unresolved resonance energy range. Its advantage is to present properly the neutron cross-section fluctuation within a given energy group, allowing correct calculation of the self-shielding effect. Also, this PT cross-section representation is suitable for simulation of neutron propagation by the Monte Carlo method. The implementation of PTs in the TRIPOLI-3 three-dimensional general Monte Carlo transport code, developed at Commissariat a l`Energie Atomique, and several validation calculations are presented. The PT method is proved to be valid not only in the unresolved resonance range but also in all the other energy ranges.
NASA Astrophysics Data System (ADS)
Holm, Sonja L.; Lefmann, Kim; Henry, Paul F.; Bertelsen, Mads; Schefer, Jürg; Christensen, Mogens
2016-08-01
HEIMDAL will be a multi length scale neutron scattering instrument for the study of structures covering almost nine orders of magnitude from 0.01 nm to 50 mm. The instrument is accepted for construction at the European Spallation Source (ESS) and features a variable resolution thermal neutron powder diffractometer (TNPD), combined with small angle neutron scattering (SANS) and neutron imaging (NI). The instrument uses a novel combination of a cold and a thermal guide to fulfill the diverse requirements for diffraction and SANS. With an instrument length of 170 m, HEIMDAL will take advantage of the high neutron flux of the long pulse at ESS, whilst maintaining a high q-resolution due to the long flight path. The q-range coverage is up to 20 Å-1 allowing low-resolution PDF analysis. With the addition of SANS, HEIMDAL will be able to cover a uniquely broad length scale within a single instrumental set-up. HEIMDAL will be able to accommodate modern materials research in a broad variety of fields, and the task of the instrument will be to study advanced functional materials in action, as in situ and in operandi at multiple length scales (0.01-100 nm) quasi simultaneously. The instrument combines state-of-the-art neutron scattering techniques (TNPD, SANS, and NI) with the goal of studying real materials, in real time, under real conditions. This article describes the instrument design ideas, calculations and results of simulations and virtual experiments.
NASA Astrophysics Data System (ADS)
Nobuhara, Fumiyoshi; Kuroyanagi, Makoto; Masumoto, Kazuyoshi; Nakamura, Hajime; Toyoda, Akihiro; Takahashi, Katsuhiko
2017-09-01
In order to evaluate the state of activation in a cyclotron facility used for the radioisotope production of PET diagnostics, we measured the neutron flux by using gold foils and TLDs. Then, the spatial distribution of neutrons and induced activity inside the cyclotron vault were simulated with the Monte Calro calculation code for neutron transport and DCHAIN-SP for activation calculation. The calculated results are in good agreement with measured values within factor 3. Therefore, the adaption of the advanced evaluation procedure for activation level is proved to be important for the planning of decommissioning of these facilities.
NASA Astrophysics Data System (ADS)
Sanin, A. B.; Mitrofanov, I. G.; Litvak, M. L.; Golovin, D.; Kozyrev, A.; Malakhov, A.; Mokrousov, M.; Tretyakov, V.; Vostrukhin, A.; Varenikov, A.; Milikh, G. M.; Sagdeev, R.; Nandikotkur, G.; Boynton, W. V.; Harshman, K.; Trombka, J.; McClanahan, T. P.; Chin, G.; Starr, R. D.; Evans, L. G.; Shvecov, V.; Shevchenko, V.
2009-12-01
LEND parameters and design will be presented in correspondence with the main goals of this investigation: the mapping of lunar hydrogen with high special resolution and determination of neutron radiation environment on the Moon. To perform orbital measuring of neutron flux in wide energy range from thermal neutrons up to fast neutrons, the LEND instrument contain a set of nine neutron sensors. Most important part of the LEND is the Module of Collimation (MC) which consist of polyethylene and boron isotope 10B powder. The MC surrounds five neutron sensors of the instrument. Four of these sensors are high pressure 3He proportional counters covered by Cd-foil and one sensor is based on a organic scintillator crystal measures high energy neutrons with energy up to ~10 MeV. Collimator was designed such to define foot-print of 10 km diameter on the Lunar surface from the 50 km mapping orbit of the LRO spacecraft. Four additional 3He sensors mounted outside of MC are provide data about neutron environment on the LRO orbit. Two of these sensors measure thermal neutrons propagated parallel and anti-parallel to the LRO velocity vector. Two other 3He sensors mounted outside of MC provide data about thermal and epithermal neutron background onboard the spacecraft. Joint analysis of these two set of data helps to distinguish local onboard background and neutron emission from the Moon. Results of numerical simulation of LEND investigations will be also discussed together with the data from physical calibration measurements on the ground. Analysis of the first data of LEND at the lunar orbits will be presented, which demonstrate that instrument parameters correspond to the objectives of this investigations.
NASA Astrophysics Data System (ADS)
Doan, T. C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J. Y.; Jiang, H. X.
2015-05-01
Hexagonal boron nitride (h-BN) is highly promising for solid-state thermal neutron detector applications due to its many outstanding physical properties, especially its very large thermal neutron capture cross-section (~3840 barns for 10B), which is several orders of magnitude larger than those of most other isotopes. The focus of the present work is to carry out studies on h-BN thin film and detector properties to lay the foundation for the development of a direct-conversion solid-state thermal neutron detector with high sensitivity. The measured carrier mobility-lifetime (μτ) product of h-BN thin films grown on sapphire substrates is 2.83×10-7 cm2/V for electrons and holes, which is comparable to the value of about 10-7 cm2/V for GaN thin films grown on sapphire. Detectors based on h-BN thin films were fabricated and the nuclear reaction product pulse height spectra were measured. Under a bias of 20 V, very narrow individual peaks corresponding to the reaction product energies of α and Li particles as well as the sum peaks have been clearly resolved in the pulse height spectrum for the first time by a B-based direct-conversion semiconductor neutron detector. Our results indicate that h-BN thin film detectors possess unique advantages including small size, low weight, portability, low voltage operation and high energy resolution of specific reaction products.
Chen, Julian C.-H.; Hanson, B. Leif; Fisher, S. Zoë; Langan, Paul; Kovalevsky, Andrey Y.
2012-01-01
The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data. PMID:22949690
Computational Transport Modeling of High-Energy Neutrons Found in the Space Environment
NASA Technical Reports Server (NTRS)
Cox, Brad; Theriot, Corey A.; Rohde, Larry H.; Wu, Honglu
2012-01-01
The high charge and high energy (HZE) particle radiation environment in space interacts with spacecraft materials and the human body to create a population of neutrons encompassing a broad kinetic energy spectrum. As an HZE ion penetrates matter, there is an increasing chance of fragmentation as penetration depth increases. When an ion fragments, secondary neutrons are released with velocities up to that of the primary ion, giving some neutrons very long penetration ranges. These secondary neutrons have a high relative biological effectiveness, are difficult to effectively shield, and can cause more biological damage than the primary ions in some scenarios. Ground-based irradiation experiments that simulate the space radiation environment must account for this spectrum of neutrons. Using the Particle and Heavy Ion Transport Code System (PHITS), it is possible to simulate a neutron environment that is characteristic of that found in spaceflight. Considering neutron dosimetry, the focus lies on the broad spectrum of recoil protons that are produced in biological targets. In a biological target, dose at a certain penetration depth is primarily dependent upon recoil proton tracks. The PHITS code can be used to simulate a broad-energy neutron spectrum traversing biological targets, and it account for the recoil particle population. This project focuses on modeling a neutron beamline irradiation scenario for determining dose at increasing depth in water targets. Energy-deposition events and particle fluence can be simulated by establishing cross-sectional scoring routines at different depths in a target. This type of model is useful for correlating theoretical data with actual beamline radiobiology experiments. Other work exposed human fibroblast cells to a high-energy neutron source to study micronuclei induction in cells at increasing depth behind water shielding. Those findings provide supporting data describing dose vs. depth across a water-equivalent medium. This
Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center
Mocko, Michal; Muhrer, Guenter; Daemen, Luke L; Kelsey, Charles T; Duran, Michael A; Tovesson, Fredrik K
2010-01-01
We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.
Neutron spectra and dose-rate measurements around a transport cask for spent reactor fuel
NASA Astrophysics Data System (ADS)
Rimpler, Arndt
1997-02-01
A storage facility with a capacity of 420 containers is available for the interim storage of spent fuel from power reactors at the village of Gorleben in Germany. During transportation and storage of spent fuel casks radiation exposure of the personnel is dominated by neutrons. The routine control of the dose rate limits according to the transport regulations and the licence of the storage facility is performed with conventional neutron survey meters. These monitors, calibrated for fast neutrons at radionuclide neutron sources, usually overestimate the real dose rate in unknown neutron fields. In this paper, a series of measurements with several monitoring instruments near a transport cask of the CASTOR type is presented. The results are compared with reference data for the does equivalents calculated from the measured fluence spectra using a Bonner multisphere spectrometer. Besides reliable information about neutron spectra and dose rates at the container, it was found that some of the rem counters overestimate the true dose rate by a factor of 2 or more.
Neutron and photon transport in seagoing cargo containers
Pruet, J.; Descalle, M.-A.; Hall, J.; Pohl, B.; Prussin, S.G.
2005-05-01
Factors affecting sensing of small quantities of fissionable material in large seagoing cargo containers by neutron interrogation and detection of {beta}-delayed photons are explored. The propagation of variable-energy neutrons in cargos, subsequent fission of hidden nuclear material and production of the {beta}-delayed photons, and the propagation of these photons to an external detector are considered explicitly. Detailed results of Monte Carlo simulations of these stages in representative cargos are presented. Analytical models are developed both as a basis for a quantitative understanding of the interrogation process and as a tool to allow ready extrapolation of our results to cases not specifically considered here.
Development of deterministic transport methods for low energy neutrons for shielding in space
NASA Technical Reports Server (NTRS)
Ganapol, Barry
1993-01-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in
Development of deterministic transport methods for low energy neutrons for shielding in space
NASA Astrophysics Data System (ADS)
Ganapol, Barry
1993-09-01
Transport of low energy neutrons associated with the galactic cosmic ray cascade is analyzed in this dissertation. A benchmark quality analytical algorithm is demonstrated for use with BRYNTRN, a computer program written by the High Energy Physics Division of NASA Langley Research Center, which is used to design and analyze shielding against the radiation created by the cascade. BRYNTRN uses numerical methods to solve the integral transport equations for baryons with the straight-ahead approximation, and numerical and empirical methods to generate the interaction probabilities. The straight-ahead approximation is adequate for charged particles, but not for neutrons. As NASA Langley improves BRYNTRN to include low energy neutrons, a benchmark quality solution is needed for comparison. The neutron transport algorithm demonstrated in this dissertation uses the closed-form Green's function solution to the galactic cosmic ray cascade transport equations to generate a source of neutrons. A basis function expansion for finite heterogeneous and semi-infinite homogeneous slabs with multiple energy groups and isotropic scattering is used to generate neutron fluxes resulting from the cascade. This method, called the FN method, is used to solve the neutral particle linear Boltzmann transport equation. As a demonstration of the algorithm coded in the programs MGSLAB and MGSEMI, neutron and ion fluxes are shown for a beam of fluorine ions at 1000 MeV per nucleon incident on semi-infinite and finite aluminum slabs. Also, to demonstrate that the shielding effectiveness against the radiation from the galactic cosmic ray cascade is not directly proportional to shield thickness, a graph of transmitted total neutron scalar flux versus slab thickness is shown. A simple model based on the nuclear liquid drop assumption is used to generate cross sections for the galactic cosmic ray cascade. The ENDF/B V database is used to generate the total and scattering cross sections for neutrons in
Poveschenko, T.; Poveschenko, O.
2012-07-01
This paper presents the new approach to creation of geometrical module for nuclear reactor neutron transport computer simulation analysis so called the differential cross method. It is elaborated for detecting boards between physical zones. It is proposed to use GMSH open source mesh editor extended by some features: a special option and a special kind of mesh (cubic background mesh).This method is aimed into Monte Carlo Method as well as for deterministic neutron transport methods. Special attention is attended for reactor core composed of a set of material zones with complicate geometrical boundaries. The idea of this approach is described. In general case method works for 3-D space. Algorithm of creation of the geometrical module is given. 2-D neutron transport benchmark-test for RBMK reactor cluster cell is described. It demonstrates the ability of this approach to provide flexible definition of geometrical meshing with preservation of curved surface or any level of heterogeneity. (authors)
Least-squares finite element discretizations of neutron transport equations in 3 dimensions
Manteuffel, T.A; Ressel, K.J.; Starkes, G.
1996-12-31
The least-squares finite element framework to the neutron transport equation introduced in is based on the minimization of a least-squares functional applied to the properly scaled neutron transport equation. Here we report on some practical aspects of this approach for neutron transport calculations in three space dimensions. The systems of partial differential equations resulting from a P{sub 1} and P{sub 2} approximation of the angular dependence are derived. In the diffusive limit, the system is essentially a Poisson equation for zeroth moment and has a divergence structure for the set of moments of order 1. One of the key features of the least-squares approach is that it produces a posteriori error bounds. We report on the numerical results obtained for the minimum of the least-squares functional augmented by an additional boundary term using trilinear finite elements on a uniform tesselation into cubes.
The Effect of Anisotropic Scatter on Atmospheric Neutron Transport
2015-03-26
and Training Command In Partial Fulfillment of the Requirements for the Degree of Master of Science in Nuclear Engineering Nicholas J. McIntee...Anisotropy is present in the angular distributions of neutrons departing from a nuclear scattering event. This anisotropy cannot be defined in a closed...distribution PDF is apparent, with a significant forward bias
Quantitative observation of tracer transport with high-resolution PET
NASA Astrophysics Data System (ADS)
Kulenkampff, Johannes; Gruendig, Marion; Zakhnini, Abdelhamid; Lippmann-Pipke, Johanna
2016-04-01
Transport processes in natural porous media are typically heterogeneous over various scales. This heterogeneity is caused by the complexity of pore geometry and molecular processes. Heterogeneous processes, like diffusive transport, conservative advective transport, mixing and reactive transport, can be observed and quantified with quantitative tomography of tracer transport patterns. Positron Emission Tomography (PET) is by far the most sensitive method and perfectly selective for positron-emitting radiotracers, therefore it is suited as reference method for spatiotemporal tracer transport observations. The number of such PET-applications is steadily increasing. However, many applications are afflicted by the low spatial resolution (3 - 5 mm) of the clinical scanners from cooperating nuclear medical departments. This resolution is low in relation to typical sample dimensions of 10 cm, which are restricted by the mass attenuation of the material. In contrast, our GeoPET-method applies a high-resolution scanner with a resolution of 1 mm, which is the physical limit of the method and which is more appropriate for samples of the size of soil columns or drill cores. This higher resolution is achieved at the cost of a more elaborate image reconstruction procedure, especially considering the effects of Compton scatter. The result of the quantitative image reconstruction procedure is a suite of frames of the quantitative tracer distribution with adjustable frame rates from minutes to months. The voxel size has to be considered as reference volume of the tracer concentration. This continuous variable includes contributions from structures far below the spatial resolution, as far as a detection threshold, in the pico-molar range, is exceeded. Examples from a period of almost 10 years (Kulenkampff et al. 2008a, Kulenkampff et al. 2008b) of development and application of quantitative GeoPET-process tomography are shown. These examples include different transport processes
Picowatt Resolution Calorimetry for Micro and Nanoscale Energy Transport Studies
NASA Astrophysics Data System (ADS)
Sadat, Seid H.
Precise quantification of energy transport is key to obtaining insights into a wide range of phenomena across various disciplines including physics, chemistry, biology and engineering. This thesis describes technical advancements into heat-flow calorimetry which enable measurement of energy transport at micro and nanoscales with picowatt resolution. I have developed two types of microfabricated calorimeter devices and demonstrated single digit picowatt resolution at room temperature. Both devices incorporate two distinct features; an active area isolated by a thermal conductance (GTh) of less than 1 microW/K and a high resolution thermometer with temperature resolution (DeltaTres) in the micro kelvin regime. These features enable measurements of heat currents (q) with picowatt resolution (q= Th xDeltaTres). In the first device the active area is suspended via silicon nitride beams with excellent thermal isolation (~600 nW/K) and a bimaterial cantilever (BMC) thermometer with temperature resolution of ~6 microK. Taken together this design enabled calorimetric measurements with 4 pW resolution. In the second device, the BMC thermometry technique is replaced by a high-resolution resistance thermometry scheme. A detailed noise analysis of resistance thermometers, confirmed by experimental data, enabled me to correctly predict the resolution of different measurement schemes and propose techniques to achieve an order of magnitude improvement in the resolution of resistive thermometers. By incorporating resistance thermometers with temperature resolution of ~30 microK, combined with a thermal isolation of ~150 nW/K, I demonstrated an all-electrical calorimeter device with a resolution of ~ 5 pW. Finally, I used these calorimeters to study Near-Field Radiative Heat Transfer (NF-RHT). Using these devices, we studied--for the first time--the effect of film thickness on the NF-RHT between two dielectric surfaces. We showed that even a very thin film (~50 nm) of silicon
NASA Astrophysics Data System (ADS)
Tsapatsaris, Nikolaos; Willendrup, Peter K.; Lechner, Ruep E.; Bordallo, Heloisa N.
2015-01-01
Results based on virtual instrument models for the first high-flux, high-resolution, spallation based, backscattering spectrometer, BASIS are presented in this paper. These were verified using the Monte Carlo instrument simulation packages McStas and VITESS. Excellent agreement of the neutron count rate at the sample position between the virtual instrument simulation and experiments was found, in both time and energy distributions. This achievement was only possible after a new component for a bent single crystal analyser in McStas, using a Gaussian approximation, was developed. These findings are pivotal to the conceptual design of the next generation backscattering spectrometer, MIRACLES at the European Spallation Source.
NASA Astrophysics Data System (ADS)
Krejci, F.; Zemlicka, J.; Jakubek, J.; Dudak, J.; Vavrik, D.; Köster, U.; Atkins, D.; Kaestner, A.; Soltes, J.; Viererbl, L.; Vacik, J.; Tomandl, I.
2016-12-01
Using a suitable isotope such as 6Li and 10B semiconductor hybrid pixel detectors can be successfully adapted for position sensitive detection of thermal and cold neutrons via conversion into energetic light ions. The adapted devices then typically provides spatial resolution at the level comparable to the pixel pitch (55 μm) and sensitive area of about few cm2. In this contribution, we describe further progress in neutron imaging performance based on the development of a large-area hybrid pixel detector providing practically continuous neutron sensitive area of 71 × 57 mm2. The measurements characterising the detector performance at the cold neutron imaging instrument ICON at PSI and high-flux imaging beam-line Neutrograph at ILL are presented. At both facilities, high-resolution high-contrast neutron radiography with the newly developed detector has been successfully applied for objects which imaging were previously difficult with hybrid pixel technology (such as various composite materials, objects of cultural heritage etc.). Further, a significant improvement in the spatial resolution of neutron radiography with hybrid semiconductor pixel detector based on the fast read-out Timepix-based detector is presented. The system is equipped with a thin planar 6LiF convertor operated effectively in the event-by-event mode enabling position sensitive detection with spatial resolution better than 10 μm.
Shafii, Mohammad Ali Meidianti, Rahma Wildian, Fitriyani, Dian; Tongkukut, Seni H. J.; Arkundato, Artoto
2014-09-30
Theoretical analysis of integral neutron transport equation using collision probability (CP) method with quadratic flux approach has been carried out. In general, the solution of the neutron transport using the CP method is performed with the flat flux approach. In this research, the CP method is implemented in the cylindrical nuclear fuel cell with the spatial of mesh being conducted into non flat flux approach. It means that the neutron flux at any point in the nuclear fuel cell are considered different each other followed the distribution pattern of quadratic flux. The result is presented here in the form of quadratic flux that is better understanding of the real condition in the cell calculation and as a starting point to be applied in computational calculation.
NASA Astrophysics Data System (ADS)
Talamo, Alberto
2013-05-01
This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.
NASA Astrophysics Data System (ADS)
Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu
2016-08-01
Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.
High-resolution reactive transport: A coupled parallel hydrogeochemical model
NASA Astrophysics Data System (ADS)
Beisman, J. J.; Maxwell, R. M.; Steefel, C. I.; Sitchler, A.; Molins, S.
2013-12-01
Subsurface hydrogeochemical systems are an especially complex component of the terrestrial environment and play host to a multitude of interactions. Parameterizations of these interactions are perhaps the least understood component of terrestrial systems, presenting uncertainties in the predictive understanding of biogeochemical cycling and transport. Thorough knowledge of biogeochemical transport processes is critical to the quantification of carbon/nutrient fluxes in the subsurface, and to the development of effective contaminant remediation techniques. Here we present a coupled parallel hydrogeochemical model, ParCrunchFlow, as a tool to further our understanding of governing processes and interactions in natural hydrogeochemical systems. ParCrunchFlow is a coupling of the reactive transport simulator CrunchFlow with the hydrologic model ParFlow. CrunchFlow is a multicomponent reactive flow and transport code that can be used to simulate a range of important processes and environments, including reactive contaminant transport, chemical weathering, carbon sequestration, biogeochemical cycling, and water-rock interaction. ParFlow is a parallel, three-dimensional, variably-saturated, coupled surface-subsurface flow and transport code with the ability to simulate complex topography, geology, and heterogeneity. ParCrunchflow takes advantage of the efficient parallelism built into Parflow, allowing the numerical simulation of reactive transport processes in chemically and physically heterogeneous media at high spatial resolutions. This model provides an ability to further examine the interactions and feedbacks between biogeochemical systems and complex subsurface flow fields. In addition to the details of model construction, results will be presented that show floodplain nutrient cycling and the effects of heterogeneity on small-scale mixing reactions at the Department of Energy's Old Rifle Legacy site.
High resolution measurement of neutron inelastic scattering cross-sections for 23Na
NASA Astrophysics Data System (ADS)
Rouki, C.; Archier, P.; Borcea, C.; De Saint Jean, C.; Drohé, J. C.; Kopecky, S.; Moens, A.; Nankov, N.; Negret, A.; Noguère, G.; Plompen, A. J. M.; Stanoiu, M.
2012-04-01
The neutron inelastic scattering cross-section of 23Na has been measured in response to the relevant request of the OECD-NEA High Priority Request List, which requires a target uncertainty of 4% in the energy range up to 1.35 MeV for the development of sodium-cooled fast reactors. The measurement was performed at the GELINA facility with the Gamma Array for Inelastic Neutron Scattering (GAINS), featuring eight high purity germanium detectors. The setup is installed at a 200 m flight path from the neutron source and provides high resolution measurements using the (n,n'γ)-technique. The sample was an 80 mm diameter metallic sodium disk prepared at IRMM. Transitions up to the seventh excited state were observed and the differential gamma cross-sections at 110° and 150° were measured, showing mostly isotropic gamma emission. From these the gamma production, level and inelastic cross-sections were determined for neutron energies up to 3838.9 keV. The results agree well with the existing data and the evaluated nuclear data libraries in the low energies, and provide new experimental points in the little studied region above 2 MeV. Following a detailed review of the methodology used for the gamma efficiency calibrations and flux normalization of GAINS data, an estimated total uncertainty of 2.2% was achieved for the inelastic cross-section integrals over the energy ranges 0.498-1.35 MeV and 1.35-2.23 MeV, meeting the required targets.
The adjoint neutron transport equation and the statistical approach for its solution
NASA Astrophysics Data System (ADS)
Saracco, P.; Dulla, S.; Ravetto, P.
2016-11-01
The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has been used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation, which is well known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appropriate kernels describing the transfer of the pseudo-particles in the phase space. This technique allows estimating the importance function by a standard Monte Carlo approach. The sampling scheme is validated by comparison with the analytical results previously obtained.
Existence Result for the Kinetic Neutron Transport Problem with a General Albedo Boundary Condition
NASA Astrophysics Data System (ADS)
Sanchez, Richard; Bourhrara, Lahbib
2011-09-01
We present an existence result for the kinetic neutron transport equation with a general albedo boundary condition. The proof is constructive in the sense that we build a sequence that converges to the solution of the problem by iterating on the albedo term. Both nonhomogeneous and albedo boundary conditions are studied.
Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons
NASA Astrophysics Data System (ADS)
Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír
2013-05-01
Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239Pu-Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm.
Time-independent one-speed neutron transport equation with anisotropic scattering in absorbing media
Hangelbroek, R. J.
1980-06-01
This report treats the time-independent, one-speed neutron transport equation with anisotropic scattering in absorbing media. For nuclear gain operators existence and uniqueness of solutions to the half-space and finite-slab problems are proved in L/sub 2/-space. The formulas needed for explicit calculations are derived by the use of perturbation theory techniques.
Nonlinear Acceleration Methods for Even-Parity Neutron Transport
W. J. Martin; C. R. E. De Oliveira; H. Park
2010-05-01
Convergence acceleration methods for even-parity transport were developed that have the potential to speed up transport calculations and provide a natural avenue for an implicitly coupled multiphysics code. An investigation was performed into the acceleration properties of the introduction of a nonlinear quasi-diffusion-like tensor in linear and nonlinear solution schemes. Using the tensor reduced matrix as a preconditioner for the conjugate gradients method proves highly efficient and effective. The results for the linear and nonlinear case serve as the basis for further research into the application in a full three-dimensional spherical-harmonics even-parity transport code. Once moved into the nonlinear solution scheme, the implicit coupling of the convergence accelerated transport method into codes for other physics can be done seamlessly, providing an efficient, fully implicitly coupled multiphysics code with high order transport.
NASA Astrophysics Data System (ADS)
Niranjan, Ram; Rout, R. K.; Srivastava, R.; Kaushik, T. C.; Gupta, Satish C.
2016-03-01
A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 108 neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.
Blakeley, Matthew P.; Hasnain, Samar S.; Antonyuk, Svetlana V.
2015-01-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron
Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V
2015-07-01
The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron
NASA Astrophysics Data System (ADS)
Lehmann, E. H.; Peetermans, S.; Josic, L.; Leber, H.; van Swygenhoven, H.
2014-01-01
Crystalline-structured materials with preferentially large grains were investigated by means of energy-selective neutron imaging methods (transmission radiography and tomography) under the conditions of the best possible spatial resolution at the ICON facility, SINQ, and PSI. Because of the cold spectrum at that beam line, access to the Bragg diffraction features was possible even when the energy resolution of the used selector device was only 15%. Grains with a size below the detector resolution (approximately 25 μm) are not visible, and a quasi-homogeneous contrast variation is found when the neutron energy is varied.In the cases of welded stainless steel samples and rolled Al plates, we obtained structural information from a very short exposure of approximately 60 s. Tomographic examinations of these samples at suitable neutron energies qualitatively verified the radiographic findings by showing the same features in the bulk. Comparison to common electron backscatter diffraction (EBSD) investigations in selected regions of the samples provided a complete verification of the neutron-image data with respect to the grain size and the different grain orientations. The method of energy-selective neutron imaging provides an easy and straightforward approach for non-invasive material research that can be performed without any sample preparation if the most suitable neutron energy is chosen. Further studies will be necessary to extend the experimental data base to other materials with different crystal structures and grain sizes. A comparison to diffraction data will enhance the quantitative value of the investigations.
Ganapol, B.D.; Kornreich, D.E.
1997-07-01
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) point source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.
Transport simulation and image reconstruction for fast-neutron detection of explosives and narcotics
NASA Astrophysics Data System (ADS)
Micklich, Bradley J.; Fink, Charles L.; Sagalovsky, Leonid
1995-09-01
Fast-neutron inspection techniques show considerable promise for explosive and narcotics detection. A key advantage of using fast neutron is their sensitivity to low-Z elements (carbon, nitrogen, and oxygen), which are the primary constituents of these materials. We are currently investigating two interrogation methods in detail: fast-neutron transmission spectroscopy (FNTS) and pulsed fast-neutron analysis (PFNA). FNTS is being studied for explosives and narcotics detection in luggage and small containers for which the transmission ration is greater than about 0.01. The Monte Carlo radiation transport code MCNP is being used to simulate neutron transmission through a series of phantoms for a few (3-5) projections angles and modest (2 cm) reolution. Areal densities along projection rays are unfolded from the transmission data. Elemental abundances are obtained for individual voxels by tomographic reconstruction, and the reconstructed elemental images are combined to provide indications of the presence or absence of explosives or narcotics. PFNA techniques are being investigated for detection of narcotics in cargo containers because of the good penetration of the fast neutrons and the low attenuation of the resulting high-energy gamma-ray signatures. Analytic models and Monte Carlo simulations are being used to explore the range of capabilities of PFNA techniques and to provide insight into systems engineering issues. Results of studies from both FNTS and PFNA technqiues are presented.
NASA Astrophysics Data System (ADS)
Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Farrell, M. P.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Hoppe, M.; Kilkenny, J. D.; Li, C. K.; Petrasso, R. D.; Reynolds, H. G.; Sayre, D. B.; Schoff, M. E.; Séguin, F. H.; Skulina, K.; Yeamans, C. B.
2016-11-01
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ˜200 keV FWHM.
Gatu Johnson, M; Frenje, J A; Bionta, R M; Casey, D T; Eckart, M J; Farrell, M P; Grim, G P; Hartouni, E P; Hatarik, R; Hoppe, M; Kilkenny, J D; Li, C K; Petrasso, R D; Reynolds, H G; Sayre, D B; Schoff, M E; Séguin, F H; Skulina, K; Yeamans, C B
2016-11-01
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.
Gatu Johnson, M. Frenje, J. A.; Li, C. K.; Petrasso, R. D.; Séguin, F. H.; Bionta, R. M.; Casey, D. T.; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Sayre, D. B.; Skulina, K.; Yeamans, C. B.; Farrell, M. P.; Hoppe, M.; Kilkenny, J. D.; Reynolds, H. G.; Schoff, M. E.
2016-11-15
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ∼200 keV FWHM.
Gatu Johnson, M.; Frenje, J. A.; Bionta, R. M.; ...
2016-08-09
The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. Here, this paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils. The new foils allow operation of MRS at yields 2 orders of magnitude higher than previously possible, at a resolution down to ~200 keV FWHM.
Gleicher, Frederick N.; Williamson, Richard L.; Ortensi, Javier; Wang, Yaqi; Spencer, Benjamin W.; Novascone, Stephen R.; Hales, Jason D.; Martineau, Richard C.
2014-10-01
The MOOSE neutron transport application RATTLESNAKE was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the self-adjoint angular flux equations) to a high fidelity fuel performance program, both of which can simulate on unstructured meshes. RATTLESNAKE solves self-adjoint angular flux transport equation and provides a sub-pin level resolution of the multigroup neutron flux with resonance treatment during burnup or a fast transient. BISON solves the coupled thermomechanical equations for the fuel on a sub-millimeter scale. Both applications are able to solve their respective systems on aligned and unaligned unstructured finite element meshes. The power density and local burnup was transferred from RATTLESNAKE to BISON with the MOOSE Multiapp transfer system. Multiple depletion cases were run with one-way data transfer from RATTLESNAKE to BISON. The eigenvalues are shown to agree well with values obtained from the lattice physics code DRAGON. The one-way data transfer of power density is shown to agree with the power density obtained from an internal Lassman-style model in BISON.
Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation
Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb
2014-11-24
The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.
Ageing of a neutron shielding used in transport/storage casks
Nizeyiman, Fidele; Alami, Aatif; Issard, Herve; Bellenger, Veronique
2012-07-11
In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.
Radiative or neutron transport modeling using a lattice Boltzmann equation framework.
Bindra, H; Patil, D V
2012-07-01
In this paper, the lattice Boltzmann equation (LBE)-based framework is used to obtain the solution for the linear radiative or neutron transport equation. The LBE framework is devised for the integrodifferential forms of these equations which arise due to the inclusion of the scattering terms. The interparticle collisions are neglected, hence omitting the nonlinear collision term. Furthermore, typical representative examples for one-dimensional or two-dimensional geometries and inclusion or exclusion of the scattering term (isotropic and anisotropic) in the Boltzmann transport equation are illustrated to prove the validity of the method. It has been shown that the solution from the LBE methodology is equivalent to the well-known P(n) and S(n) methods. This suggests that the LBE can potentially provide a more convenient and easy approach to solve the physical problems of neutron and radiation transport.
Garg, S.; Porcar, L.; Woodka, A.C.; Butler, P.D.; Perez-Salas, U.
2011-01-01
Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date. PMID:21767489
Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U
2011-07-20
Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.
Coughlin, P.J.
1989-01-01
The Shippingport Station Decommissioning Project (SSDP) is a US Department of Energy (DOE) project for dismantling the Shippingport atomic power station. One of the more significant and challenging technical aspects of the project, which is being managed for DOE by General Electric-Nuclear Energy, is the marine transport of the reactor pressure vessel (RPV) and its associated neutron shield tank (NST) to the government-owned Hanford Reservation near Richland, Washington. Planning of the transport activity, barge transportation operations, and Hanford transportation operations, are discussed. This work will be the first use of barge transportation in the United States of a radioactive RPV package from a decommissioned land-based nuclear power plant. This extensive transportation operation has been accomplished in a timely, safe, and cost-effective manner.
Wang, G. B.; Wang, K.; Liu, H. G.; Li, R. D.
2013-07-01
A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) was developed to simulate deuteron/triton transportation and reaction coupled problem. The 'Forced particle production' variance reduction technique was used to improve the simulation speed, which made the secondary product play a major role. The mono-energy 14 MeV fusion neutron source was employed as a validation. Then the thermal-to-fusion neutron convertor was studied with our tool. Moreover, an in-core conversion efficiency measurement experiment was performed with {sup 6}LiD and {sup 6}LiH converters. Threshold activation foils was used to indicate the fast and fusion neutron flux. Besides, two other pivotal parameters were calculated theoretically. Finally, the conversion efficiency of {sup 6}LiD is obtained as 1.97x10{sup -4}, which matches well with the theoretical result. (authors)
BioRef II—Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB
NASA Astrophysics Data System (ADS)
Trapp, M.; Steitz, R.; Kreuzer, M.; Strobl, M.; Rose, M.; Dahint, R.
2016-10-01
We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å-1 to 0.2 Å-1 with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.
BioRef II-Neutron reflectometry with relaxed resolution for fast, kinetic measurements at HZB.
Trapp, M; Steitz, R; Kreuzer, M; Strobl, M; Rose, M; Dahint, R
2016-10-01
We present an upgrade to the time-of-flight neutron reflectometer BioRef at the research reactor BER II of the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB). Through the integration of an additional chopper into the existing setup, the available wavelength resolution is significantly extended. Now two distinct operation modes can be used: a high resolution mode with Δλ/λ ranging from 1% to 5%, which allows for the investigation of thick films up to 4000 Å, and a high flux mode with Δλ/λ = 7%-11%. In the high flux mode, reflectivity curves from 0.007 Å(-1) to 0.2 Å(-1) with three angular settings can be recorded in 7 min. For a single angular setting and its respective window in Q-space, a time resolution of even less than 4 min is reached. The different configurations are documented by respective measurements (a) on a Ni-Ti multilayer and (b) the swelling kinetics of a solid-supported phospholipid coating upon incubation in a polyelectrolyte solution.
Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors
Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; Pozzi, Sara A.; Massey, Thomas N.
2013-03-26
Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for the light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.
Neutron light output response and resolution functions in EJ-309 liquid scintillation detectors
Enqvist, Andreas; Lawrence, Christopher C.; Wieger, Brian M.; ...
2013-03-26
Here, the neutron light output response functions and detector resolution functions were measured at Ohio University's tandem Van de Graaff generator for three cylindrical EJ-309 liquid scintillator cells, having dimensions 12.7(circle divide)-by-12.7, 7.6-by-7.6, and 7.6-by-5.1 cm. A 7.44 MeV deuteron beam was used on an Al-27 target generating a continuous spectrum over the energy range from a few hundred keV to over 10 MeV. The light output response functions are determined using an exponential fit. Detector resolution functions are obtained for the 12.7-by-12.7 and 7.6-by-7.6 cm detectors. It is demonstrated that the dependence on detector size is important for themore » light output response functions, but not to the same extent for the resolution function, even when photomultiplier tubes, detector material, and other detector characteristics are carefully matched.« less
High resolution imaging of vadose zone transport using crosswell radar and seismic methods
Majer, Ernest L.; Williams, Kenneth H.; Peterson, John E.; Daley, Thomas E.
2001-10-10
The summary and conclusions are that overall the radar and seismic results were excellent. At the time of design of the experiments we did not know how well these two methods could penetrate or resolve the moisture content and structure. It appears that the radar could easily go up to 5, even 10 meters between boreholes at 200 Mhz and even father (up to 20 to 40 m) at 50 Mhz. The seismic results indicate that at several hundred hertz propagation of 20 to 30 meters giving high resolution is possible. One of the most important results, however is that together the seismic and radar are complementary in their properties estimation. The radar being primarily sensitive to changes in moisture content, and the seismic being primarily sensitive to porosity. Taken in a time lapse sense the radar can show the moisture content changes to a high resolution, with the seismic showing high resolution lithology. The significant results for each method are: Radar: (1) Delineated geological layers 0.25 to 3.5 meters thick with 0.25 m resolution; (2) Delineated moisture movement and content with 0.25 m resolution; (3) Compared favorably with neutron probe measurements; and (4) Penetration up to 30 m. Radar results indicate that the transport of the riverwater is different from that of the heavier and more viscous sodium thiosulfate. It appears that the heavier fluids are not mixing readily with the in-situ fluids and the transport may be influenced by them. Seismic: (1) Delineated lithology at .25 m resolution; (2) Penetration over 20 meters, with a possibility of up to 30 or more meters; and (3) Maps porosity and density differences of the sediments. Overall the seismic is mapping the porosity and density distribution. The results are consistent with the flow field mapped by the radar, there is a change in flow properties at the 10 to 11 meter depth in the flow cell. There also appears to be break through by looking at the radar data with the denser sodium thiosulfate finally
Atmospheric transport of neutrons and gamma rays from a high-altitude nuclear detonation
Byrd, R.C.
1995-07-01
Although radiation outputs from nuclear detonations in free space are well established, few studies exist of effect of atmospheric transport on the resulting intensity, energy, and time signatures. This report presents calculations for generic sources at high altitudes, 20-50 km above the Earth`s surface, in an atmosphere whose density decreases almost exponentially with height. The sources are instantaneous time bursts with simple energy dependences: gamma rays use an evaporation spectrum; neutrons use either a Gaussian fusion or a Maxwell fission spectrum. The observation angles vary from vertical to 5{degrees} below the horizon, and detectors are placed in either geosynchronous or low Earth orbits (100 km). All calculations use the Monte Carlo N-Particle (MCNP) transport code in either its photon, neutron, or coupled neutron-photon modes, with the coupled mode being applied to the production of gamma rays by neutron inelastic scattering. The standard MCNP outputs are analyzed to extract the intensity, energy, and time dependences of the fluence as functions of either source altitude or observation angle. In general, the intensities drop rapidly below about 30-km source altitude or +5` slant angle. Above these limits, the gamma-ray signal loses substantial intensity but still contains most of the original source information. In contrast, neutron scattering produces little or no decrease in intensity, but it rapidly degrades much of the information about the original source spectrum. Finally, although there is abundant gamma-ray production from neutron inelastic scattering, the resulting signatures appear to provide little additional information.
Chatterji, Tapan; Jalarvo, Niina
2013-04-17
We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.
Interfacing MCNPX and McStas for simulation of neutron transport
NASA Astrophysics Data System (ADS)
Klinkby, Esben; Lauritzen, Bent; Nonbøl, Erik; Kjær Willendrup, Peter; Filges, Uwe; Wohlmuther, Michael; Gallmeier, Franz X.
2013-02-01
Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4-7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides.
An integral equation arising in two group neutron transport theory
NASA Astrophysics Data System (ADS)
Cassell, J. S.; Williams, M. M. R.
2003-07-01
An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically.
NASA Astrophysics Data System (ADS)
Mezzacappa, A.; Calder, A. C.; Bruenn, S. W.; Blondin, J. M.; Guidry, M. W.; Strayer, M. R.; Umar, A. S.
1998-01-01
We couple two-dimensional hydrodynamics to realistic one-dimensional multigroup flux-limited diffusion neutrino transport to investigate proto-neutron star convection in core-collapse supernovae, and more specifically, the interplay between its development and neutrino transport. Our initial conditions, time-dependent boundary conditions, and neutrino distributions for computing neutrino heating, cooling, and deleptonization rates are obtained from one-dimensional simulations that implement multigroup flux-limited diffusion and one-dimensional hydrodynamics. The development and evolution of proto-neutron star convection are investigated for both 15 and 25 M⊙ models, representative of the two classes of stars with compact and extended iron cores, respectively. For both models, in the absence of neutrino transport, the angle-averaged radial and angular convection velocities in the initial Ledoux unstable region below the shock after bounce achieve their peak values in ~20 ms, after which they decrease as the convection in this region dissipates. The dissipation occurs as the gradients are smoothed out by convection. This initial proto-neutron star convection episode seeds additional convectively unstable regions farther out beneath the shock. The additional proto-neutron star convection is driven by successive negative entropy gradients that develop as the shock, in propagating out after core bounce, is successively strengthened and weakened by the oscillating inner core. The convection beneath the shock distorts its sphericity, but on the average the shock radius is not boosted significantly relative to its radius in our corresponding one-dimensional models. In the presence of neutrino transport, proto-neutron star convection velocities are too small relative to bulk inflow velocities to result in any significant convective transport of entropy and leptons. This is evident in our two-dimensional entropy snapshots, which in this case appear spherically symmetric
Hoshi, M; Hiraoka, M; Hayakawa, N; Sawada, S; Munaka, M; Kuramoto, A; Oka, T; Iwatani, K; Shizuma, K; Hasai, H
1992-11-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a 252Cf fission neutron source to validate the use of the code for the energy spectrum analyses of Hiroshima atomic bomb neutrons. Nuclear data libraries used in the Monte Carlo neutron and photon transport code calculation were ENDF/B-III, ENDF/B-IV, LASL-SUB, and ENDL-73. The neutron moderators used were granite (the main component of which is SiO2, with a small fraction of hydrogen), Newlight [polyethylene with 3.7% boron (natural)], ammonium chloride (NH4Cl), and water (H2O). Each moderator was 65 cm thick. The neutron detectors were gold and nickel foils, which were used to detect thermal and epithermal neutrons (4.9 eV) and fast neutrons (> 0.5 MeV), respectively. Measured activity data from neutron-irradiated gold and nickel foils in these moderators decreased to about 1/1,000th or 1/10,000th, which correspond to about 1,500 m ground distance from the hypocenter in Hiroshima. For both gold and nickel detectors, the measured activities and the calculated values agreed within 10%. The slopes of the depth-yield relations in each moderator, except granite, were similar for neutrons detected by the gold and nickel foils. From the results of these studies, the Monte Carlo neutron and photon transport code was verified to be accurate enough for use with the elements hydrogen, carbon, nitrogen, oxygen, silicon, chlorine, and cadmium, and for the incident 252Cf fission spectrum neutrons.
Sippel, K H; Bacik, J; Quiocho, F A; Fisher, S Z
2014-06-01
Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP-phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4-) and dibasic (HPO4(2-)) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily.
Sippel, K. H.; Bacik, J.; Quiocho, F. A.; Fisher, S. Z.
2014-01-01
Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP–phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4 −) and dibasic (HPO4 2−) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101
Discontinuous Galerkin finite element method applied to the 1-D spherical neutron transport equation
Machorro, Eric . E-mail: machorro@amath.washington.edu
2007-04-10
Discontinuous Galerkin finite element methods are used to estimate solutions to the non-scattering 1-D spherical neutron transport equation. Various trial and test spaces are compared in the context of a few sample problems whose exact solution is known. Certain trial spaces avoid unphysical behaviors that seem to plague other methods. Comparisons with diamond differencing and simple corner-balancing are presented to highlight these improvements.
Domain Decomposition and Load Balancing in the Amtran Neutron Transport Code
Compton, J; Clouse, C
2003-07-07
Effective spatial domain decomposition for discrete ordinate (Sn) neutron transport calculations has been critical for exploiting massively parallel architectures typified by the ASCI White computer at Lawrence Livermore National Laboratory. A combination of geometrical and computational constraints has posed a unique challenge as problems have been scaled up to several thousand processors. Carefully scripted decomposition and corresponding execution algorithms have been developed to handle a range of geometrical and hardware configurations.
Systems guide to MCNP (Monte Carlo Neutron and Photon Transport Code)
Kirk, B.L.; West, J.T.
1984-06-01
The subject of this report is the implementation of the Los Alamos National Laboratory Monte Carlo Neutron and Photon Transport Code - Version 3 (MCNP) on the different types of computer systems, especially the IBM MVS system. The report supplements the documentation of the RSIC computer code package CCC-200/MCNP. Details of the procedure to follow in executing MCNP on the IBM computers, either in batch mode or interactive mode, are provided.
NASA Technical Reports Server (NTRS)
Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)
2012-01-01
An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.
NASA Astrophysics Data System (ADS)
Kyutoku, K.; Kiuchi, K.; Sekiguchi, Y.; Shibata, M.; Taniguchi, K.
2016-10-01
We present our recent results of numerical-relativity simulations of black hole-neutron star binary mergers incorporating approximate neutrino transport. We in particular discuss dynamical mass ejection and neutrino-driven wind.
NASA Astrophysics Data System (ADS)
Andreasen, M.; Looms, M. C.; Bogena, H. R.; Desilets, D.; Zreda, M. G.; Sonnenborg, T. O.; Jensen, K. H.
2014-12-01
The water stored in the various compartments of the terrestrial ecosystem (in snow, canopy interception, soil and litter) controls the exchange of the water and energy between the land surface and the atmosphere. Therefore, measurements of the water stored within these pools are critical for the prediction of e.g. evapotranspiration and groundwater recharge. The detection of cosmic-ray neutron intensity is a novel non-invasive method for the quantification of continuous intermediate-scale soil moisture. The footprint of the cosmic-ray neutron probe is a hemisphere of a few hectometers and subsurface depths of 10-70 cm depending on wetness. The cosmic-ray neutron method offers measurements at a scale between the point-scale measurements and large-scale satellite retrievals. The cosmic-ray neutron intensity is inversely correlated to the hydrogen stored within the footprint. Overall soil moisture represents the largest pool of hydrogen and changes in the soil moisture clearly affect the cosmic-ray neutron signal. However, the neutron intensity is also sensitive to variations of hydrogen in snow, canopy interception and biomass offering the potential to determine water content in such pools from the signal. In this study we tested the potential of determining canopy interception and biomass using cosmic-ray neutron intensity measurements within the framework of the Danish Hydrologic Observatory (HOBE) and the Terrestrial Environmental Observatories (TERENO). Continuous measurements at the ground and the canopy level, along with profile measurements were conducted at towers at forest field sites. Field experiments, including shielding the cosmic-ray neutron probes with cadmium foil (to remove lower-energy neutrons) and measuring reference intensity rates at complete water saturated conditions (on the sea close to the HOBE site), were further conducted to obtain an increased understanding of the physics controlling the cosmic-ray neutron transport and the equipment used
Synergism of the method of characteristics and CAD technology for neutron transport calculation
Chen, Z.; Wang, D.; He, T.; Wang, G.; Zheng, H.
2013-07-01
The method of characteristics (MOC) is a very popular methodology in neutron transport calculation and numerical simulation in recent decades for its unique advantages. One of the key problems determining whether the MOC can be applied in complicated and highly heterogeneous geometry is how to combine an effective geometry processing method with MOC. Most of the existing MOC codes describe the geometry by lines and arcs with extensive input data, such as circles, ellipses, regular polygons and combination of them. Thus they have difficulty in geometry modeling, background meshing and ray tracing for complicated geometry domains. In this study, a new idea making use of a CAD solid modeler MCAM which is a CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport developed by FDS Team in China was introduced for geometry modeling and ray tracing of particle transport to remove these geometrical limitations mentioned above. The diamond-difference scheme was applied to MOC to reduce the spatial discretization error of the flat flux approximation in theory. Based on MCAM and MOC, a new MOC code was developed and integrated into SuperMC system, which is a Super Multi-function Computational system for neutronics and radiation simulation. The numerical testing results demonstrated the feasibility and effectiveness of the new idea for geometry treatment in SuperMC. (authors)
An Algorithm for the Transport of Anisotropic Neutrons
NASA Technical Reports Server (NTRS)
Tweed, J.
2005-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effect of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar particle events (SPE) were of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated GCR exposures can be high. Because cancer induction rates increase behind low to rather large thicknesses of aluminum shielding, according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Therefore, a critical issue in the Human Exploration and Development of Space enterprise is cost effective mitigation of risk associated with ionizing radiation exposure. In order to estimate astronaut risk to GCR exposure and associated cancer risks and health hazards, it is necessary to do shield material studies. To determine an optimum radiation shield material it is necessary to understand nuclear interaction processes such as fragmentation and secondary particle production which is a function of energy dependent cross sections. This requires knowledge of material transmission characteristics either through laboratory testing or improved theoretical modeling. Here ion beam transport theory is of importance in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are a major emphasis of the present work.
The FN method for anisotropic scattering in neutron transport theory: the critical slab problem.
NASA Astrophysics Data System (ADS)
Gülecyüz, M. C.; Tezcan, C.
1996-08-01
The FN method which has been applied to many physical problems for isotropic and anisotropic scattering in neutron transport theory is extended for problems for extremely anisotropic scattering. This method depends on the Placzek lemma and the use of the infinite medium Green's function. Here the Green's function for extremely anisotropic scattering which was expressed as a combination of the Green's functions for isotropic scattering is used to solve the critical slab problem. It is shown that the criticality condition is in agreement with the one obtained previously by reducing the transport equation for anisotropic scattering to isotropic scattering and solving using the FN method.
NASA Astrophysics Data System (ADS)
Ene, D.; Borcea, C.; Kopecky, S.; Mondelaers, W.; Negret, A.; Plompen, A. J. M.
2010-06-01
A comprehensive set of Monte Carlo simulations was performed with the MCNP5 code to provide a generic characterisation of the neutron and photon fluxes for time-of-flight measurements at all flight paths of the GELINA facility. Simulations were performed for the direct flux configuration (DFC, 10 keV-20 MeV) and the moderated flux configuration (MFC, 10 meV-1 MeV). Fluxes and flux energy spectra were obtained for both neutrons and photons. For neutrons, additionally, detailed resolution functions and figures of merit were obtained. The validity of the approach for the photon spectra is shown by comparison with a dedicated measurement. Also, a verification is presented of the validity of the neutron resolution function by comparison with measured capture and transmission data for 103Rh and 56Fe in the incident neutron energy range from 70 eV to 50 keV. This comprehensive overview will facilitate the planning and analysis of measurements at the GELINA facility with an improved knowledge of its physical characteristics.
A portable, parallel, object-oriented Monte Carlo neutron transport code in C++
Lee, S.R.; Cummings, J.C.; Nolen, S.D. |
1997-05-01
We have developed a multi-group Monte Carlo neutron transport code using C++ and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and {alpha}-eigenvalues and is portable to and runs parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities of MC++ are discussed, along with physics and performance results on a variety of hardware, including all Accelerated Strategic Computing Initiative (ASCI) hardware. Current parallel performance indicates the ability to compute {alpha}-eigenvalues in seconds to minutes rather than hours to days. Future plans and the implementation of a general transport physics framework are also discussed.
Improved algorithms and coupled neutron-photon transport for auto-importance sampling method
NASA Astrophysics Data System (ADS)
Wang, Xin; Li, Jun-Li; Wu, Zhen; Qiu, Rui; Li, Chun-Yan; Liang, Man-Chun; Zhang, Hui; Gang, Zhi; Xu, Hong
2017-01-01
The Auto-Importance Sampling (AIS) method is a Monte Carlo variance reduction technique proposed for deep penetration problems, which can significantly improve computational efficiency without pre-calculations for importance distribution. However, the AIS method is only validated with several simple examples, and cannot be used for coupled neutron-photon transport. This paper presents improved algorithms for the AIS method, including particle transport, fictitious particle creation and adjustment, fictitious surface geometry, random number allocation and calculation of the estimated relative error. These improvements allow the AIS method to be applied to complicated deep penetration problems with complex geometry and multiple materials. A Completely coupled Neutron-Photon Auto-Importance Sampling (CNP-AIS) method is proposed to solve the deep penetration problems of coupled neutron-photon transport using the improved algorithms. The NUREG/CR-6115 PWR benchmark was calculated by using the methods of CNP-AIS, geometry splitting with Russian roulette and analog Monte Carlo, respectively. The calculation results of CNP-AIS are in good agreement with those of geometry splitting with Russian roulette and the benchmark solutions. The computational efficiency of CNP-AIS for both neutron and photon is much better than that of geometry splitting with Russian roulette in most cases, and increased by several orders of magnitude compared with that of the analog Monte Carlo. Supported by the subject of National Science and Technology Major Project of China (2013ZX06002001-007, 2011ZX06004-007) and National Natural Science Foundation of China (11275110, 11375103)
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; Kovalevsky, Andrey; Nix, Jay C.; Cuneo, Matthew J.; Coates, Leighton; Vaaje-Kolstad, Gustav; Chen, Julian C. -H.; Eijsink, Vincent G. H.; Unkefer, Clifford J.
2015-01-01
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm^{3}) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P2_{1}2_{1}2_{1}. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.
Bacik, John -Paul; Mekasha, Sophanit; Forsberg, Zarah; ...
2015-01-01
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1–3 mm3) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processedmore » to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. As a result, joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.« less
Iwatani, K; Hoshi, M; Shizuma, K; Hiraoka, M; Hayakawa, N; Oka, T; Hasai, H
1994-10-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated 252Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate 152Eu and 60Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated 252Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen.
Iwatani, Kazuo; Shizuma, Kiyoshi; Hasai, Hiromi; Hoshi, Masaharu; Hiraoka, Masayuki; Hayakawa, Norihiko; Oka, Takamitsu
1994-10-01
A benchmark test of the Monte Carlo neutron and photon transport code system (MCNP) was performed using a bare- and energy-moderated {sup 252}Cf fission neutron source which was obtained by transmission through 10-cm-thick iron. An iron plate was used to simulate the effect of the Hiroshima atomic bomb casing. This test includes the activation of indium and nickel for fast neutrons and gold, europium, and cobalt for thermal and epithermal neutrons, which were inserted in the moderators. The latter two activations are also to validate {sup 152}Eu and {sup 60}Co activity data obtained from the atomic bomb-exposed specimens collected at Hiroshima and Nagasaki, Japan. The neutron moderators used were Lucite and Nylon 6 and the total thickness of each moderator was 60 cm or 65 cm. Measured activity data (reaction yield) of the neutron-irradiated detectors in these moderators decreased to about 1/1,000th or 1/10,000th, which corresponds to about 1,500 m ground distance from the hypocenter in Hiroshima. For all of the indium, nickel, and gold activity data, the measured and calculated values agreed within 25%, and the corresponding values for europium and cobalt were within 40%. From this study, the MCNP code was found to be accurate enough for the bare- and energy-moderated {sup 252}Cf neutron activation calculations of these elements using moderators containing hydrogen, carbon, nitrogen, and oxygen. 18 refs., 10 figs., 4 tabs.
Becker, Torsten; Smith, Jeremy C
2003-02-01
Incoherent neutron scattering is widely used to probe picosecond-nanosecond time scale dynamics of molecular systems. In systems of spatially confined atoms the relatively high intensity of elastic incoherent neutron scattering is often used to obtain a first estimate of the dynamics present. For many complex systems, however, experimental elastic scattering is difficult to interpret unambiguously using analytical dynamical models that go beyond the determination of an average mean-square displacement. To circumvent this problem a description of the scattering is derived here that encompasses a variety of analytical models in a common framework. The framework describes the time-converged part of the dynamic structure factor [the elastic incoherent scattering function (EISF)] and lends itself to practical use by explicitly incorporating effects due to the finite energy resolution of the instrument used. The dependence of the elastic scattering on wave vector is examined, and it is shown how heterogeneity in the distribution of mean-square displacements can be related to deviations of the scattering from Gaussian behavior. In this case, a correction to fourth order in the scattering vector can be used to extract the variance of the distribution of mean-square displacements. The formalism is used in a discussion of measurements on dynamics accompanying the glass transition in molecular systems. By fitting to experimental data obtained on a protein solution the present methodology is used to show how the existence of a temperature-dependent relaxation frequency can lead to a transition in the measured mean-square displacement in the absence of an EISF change.
NASA Technical Reports Server (NTRS)
Boynton, W. V.; Droege, G. F.; Mitrofanov, I. G.; McClanahan, T. P.; Sanin, A. B.; Litvak, M. L.; Schaffner, M.; Chin, G.; Evans, L. G.; Garvin, J. B.; Harshman, K.; Malakhov, A.; Milikh, G.; Sagdeev, R.; Starr, R.
2012-01-01
The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 plus or minus 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions. There is a significant increase in H content in the polar regions independent of the H content of the NSRs. The non-NSR H content increases directly with latitude, and the rate of increase is virtually identical at both poles. There is little or no increase with latitude outside the polar region. Various mechanisms to explain this steep increase in the non-NSR polar H with latitude are investigated, and it is suggested that thermal volatilization is responsible for the increase because it is minimized at the low surface temperatures close to the poles.
An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.
2000-01-01
A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions.
Syed Mohd, A; Pütter, S; Mattauch, S; Koutsioubas, A; Schneider, H; Weber, A; Brückel, T
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å(-1). The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
An Improved Elastic and Nonelastic Neutron Transport Algorithm for Space Radiation
NASA Astrophysics Data System (ADS)
Clowdsley, Martha S.; Wilson, John W.; Heinbockel, John H.; Tripathi, R. K.; Singleterry, Robert C., Jr.; Shinn, Judy L.
2000-07-01
A neutron transport algorithm including both elastic and nonelastic particle interaction processes for use in space radiation protection for arbitrary shield material is developed. The algorithm is based upon a multiple energy grouping and analysis of the straight-ahead Boltzmann equation by using a mean value theorem for integrals. The algorithm is then coupled to the Langley HZETRN code through a bidirectional neutron evaporation source term. Evaluation of the neutron fluence generated by the solar particle event of February 23, 1956, for an aluminum water shield-target configuration is then compared with MCNPX and LAHET Monte Carlo calculations for the same shield-target configuration. With the Monte Carlo calculation as a benchmark, the algorithm developed in this paper showed a great improvement in results over the unmodified HZETRN solution. In addition, a high-energy bidirectional neutron source based on a formula by Ranft showed even further improvement of the fluence results over previous results near the front of the water target where diffusion out the front surface is important. Effects of improved interaction cross sections are modest compared with the addition of the high-energy bidirectional source terms.
A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions
NASA Astrophysics Data System (ADS)
Syed Mohd, A.; Pütter, S.; Mattauch, S.; Koutsioubas, A.; Schneider, H.; Weber, A.; Brückel, T.
2016-12-01
We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å-1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.
CAD-Based Monte Carlo Neutron Transport KSTAR Analysis for KSTAR
NASA Astrophysics Data System (ADS)
Seo, Geon Ho; Choi, Sung Hoon; Shim, Hyung Jin
2017-09-01
The Monte Carlo (MC) neutron transport analysis for a complex nuclear system such as fusion facility may require accurate modeling of its complicated geometry. In order to take advantage of modeling capability of the computer aided design (CAD) system for the MC neutronics analysis, the Seoul National University MC code, McCARD, has been augmented with a CAD-based geometry processing module by imbedding the OpenCASCADE CAD kernel. In the developed module, the CAD geometry data are internally converted to the constructive solid geometry model with help of the CAD kernel. An efficient cell-searching algorithm is devised for the void space treatment. The performance of the CAD-based McCARD calculations are tested for the Korea Superconducting Tokamak Advanced Research device by comparing with results of the conventional MC calculations using a text-based geometry input.
Geant4 simulations of the neutron production and transport in the n_TOF spallation target
NASA Astrophysics Data System (ADS)
Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.
2016-11-01
The neutron production and transport in the spallation target of the n_TOF facility at CERN has been simulated with Geant4. The results obtained with the different hadronic Physics Lists provided by Geant4 have been compared with the experimental neutron flux in n_TOF-EAR1. The best overall agreement in both the absolute value and the energy dependence of the flux from thermal to 1GeV, is obtained with the INCL++ model coupled with the Fritiof Model(FTFP). This Physics List has been thus used to simulate and study the main features of the new n_TOF-EAR2 beam line, currently in its commissioning phase.
Radiation Transport Analysis in Chalcogenide-Based Devices and a Neutron Howitzer Using MCNP
NASA Astrophysics Data System (ADS)
Bowler, Herbert
As photons, electrons, and neutrons traverse a medium, they impart their energy in ways that are analytically difficult to describe. Monte Carlo methods provide valuable insight into understanding this behavior, especially when the radiation source or environment is too complex to simplify. This research investigates simulating various radiation sources using the Monte Carlo N-Particle (MCNP) transport code, characterizing their impact on various materials, and comparing the simulation results to general theory and measurements. A total of five sources were of interest: two photon sources of different incident particle energies (3.83 eV and 1.25 MeV), two electron sources also of different energies (30 keV and 100 keV), and a californium-252 (Cf-252) spontaneous fission neutron source. Lateral and vertical programmable metallization cells (PMCs) were developed by other researchers for exposure to these photon and electron sources, so simplified PMC models were implemented in MCNP to estimate the doses and fluences. Dose rates measured around the neutron source and the predicted maximum activity of activation foils exposed to the neutrons were determined using MCNP and compared to experimental results obtained from gamma-ray spectroscopy. The analytical fluence calculations for the photon and electron cases agreed with MCNP results, and differences are due to MCNP considering particle movements that hand calculations do not. Doses for the photon cases agreed between the analytical and simulated results, while the electron cases differed by a factor of up to 4.8. Physical dose rate measurements taken from the neutron source agreed with MCNP within the 10% tolerance of the measurement device. The activity results had a percent error of up to 50%, which suggests a need to further evaluate the spectroscopy setup.
Application of three-dimensional transport code to the analysis of the neutron streaming experiment
Chatani, K.; Slater, C.O.
1990-01-01
This paper summarized the calculational results of neutron streaming through a Clinch River Breeder Reactor (CRBR) Prototype coolant pipe chaseway. Particular emphasis is placed on results at bends in the chaseway. Calculations were performed with three three-dimensional codes: the discrete ordinates radiation transport code TORT and Monte Carlo radiation transport code MORSE, which were developed by Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, which was developed in Japan. The purpose of the calculations is not only to compare the calculational results with the experimental results, but also to compare the results of TORT and MORSE with those of ENSEMBLE. In the TORT calculations, two types of difference methods, weighted-difference method was applied in ENSEMBLE calculation. Both TORT and ENSEMBLE produced nearly the same calculational results, but differed in the number of iterations required for converging each neutron group. Also, the two types of difference methods in the TORT calculations showed no appreciable variance in the number of iterations required. However, a noticeable disparity in the computer times and some variation in the calculational results did occur. The comparisons of the calculational results with the experimental results, showed for the epithermal neutron flux generally good agreement in the first and second legs and at the first bend where the two-dimensional modeling might be difficult. Results were fair to poor along the centerline of the first leg near the opening to the second leg because of discrete ordinates ray effects. Additionally, the agreement was good throughout the first and second legs for the thermal neutron region. Calculations with MORSE were made. These calculational results and comparisons are described also. 8 refs., 4 figs.
Lakshmanan, Manu N; Kapadia, Anuj J
2012-07-01
We present a quantitative analysis of the image quality obtained using filtered back-projection (FBP) with Ram-Lak filtering and maximum likelihood-expectation maximization (ML-EM)-with no post-reconstruction filtering in either case-in neutron stimulated emission computed tomography (NSECT) imaging using Monte Carlo simulations in the context of clinically relevant models of liver iron overload. The ratios of pixel intensities for several regions of interest and lesion shape detection using an active-contours segmentation algorithm are assessed for accuracy across different scanning configurations and reconstruction algorithms. The modulation transfer functions (MTFs) are also computed for the cases under study and are applied to determine a minimum detectable lesion spacing as a form of sensitivity analysis. The accuracy of NSECT imaging in measuring relative tissue concentration is presented for simulated clinical liver cases. When using the 15th iteration, ML-EM provides at least 25% better resolution than FBP and proves to be highly robust under low-signal high-noise conditions prevalent in NSECT. However, FBP gives more accurate lesion pixel intensity ratios and size estimates in some cases; due to advantages provided by both reconstruction algorithms, it is worth exploring the development of an algorithm that is a hybrid of the two. We also show that NSECT imaging can be used to accurately detect 3-cm lesions in backgrounds that are a significant fraction (one-quarter) of the concentration of the lesion, down to a 4-cm spacing between lesions.
NASA Astrophysics Data System (ADS)
Wang, Guan-bo; Liu, Han-gang; Wang, Kan; Yang, Xin; Feng, Qi-jie
2012-09-01
Thermal-to-fusion neutron convertor has being studied in China Academy of Engineering Physics (CAEP). Current Monte Carlo codes, such as MCNP and GEANT, are inadequate when applied in this multi-step reactions problems. A Monte Carlo tool RSMC (Reaction Sequence Monte Carlo) has been developed to simulate such coupled problem, from neutron absorption, to charged particle ionization and secondary neutron generation. "Forced particle production" variance reduction technique has been implemented to improve the calculation speed distinctly by making deuteron/triton induced secondary product plays a major role. Nuclear data is handled from ENDF or TENDL, and stopping power from SRIM, which described better for low energy deuteron/triton interactions. As a validation, accelerator driven mono-energy 14 MeV fusion neutron source is employed, which has been deeply studied and includes deuteron transport and secondary neutron generation. Various parameters, including fusion neutron angle distribution, average neutron energy at different emission directions, differential and integral energy distributions, are calculated with our tool and traditional deterministic method as references. As a result, we present the calculation results of convertor with RSMC, including conversion ratio of 1 mm 6LiD with a typical thermal neutron (Maxwell spectrum) incidence, and fusion neutron spectrum, which will be used for our experiment.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-12-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
NASA Astrophysics Data System (ADS)
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-12-01
A consistent "2D/1D" neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; ...
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-08-25
We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Cullen, D; Latkowski, J; Sanz, J
1999-06-18
Recent modifications to the TART Monte Carlo neutron and photon transport code enable calculation of 566-group neutron spectra. This expanded group structure represents a significant improvement over the 50- and 175-group structures that have been previously available. To support use of this new capability, neutron activation cross section libraries have been created in the 175- and 566-group structures starting from the FENDL/A-2.0 pointwise data. Neutron spectra have been calculated for the first walls of the HYLIFE-II and SOMBRERO inertial fusion energy power plant designs and have been used in subsequent neutron activation calculations. The results obtained using the two different group structures are compared to each other as well as to those obtained using a 175-group version of the EAF3.1 activation cross section library.
NASA Astrophysics Data System (ADS)
Piazolo, Sandra; Kaminsky, Felix V.; Trimby, Patrick; Evans, Lynn; Luzin, V.
2016-11-01
One of the most controversial diamond types is carbonado, as its origin and geological history are still under debate. Here, we investigate selected carbonado samples using neutron diffraction and high resolution orientation mapping in combination with numerical simulations. Neutron diffraction analyses show that fine grained carbonado samples exhibit a distinct lack of crystallographic preferred orientation. Quantitative crystallographic orientation analyses performed on transmission electron microscope (TEM) sections reveal that the 2-10 μm grains exhibit locally significant internal deformation. Such features are consistent with crystal plastic deformation of a grain aggregate that initially formed by rapid nucleation, characterized by a high number of nucleation sites and no crystallographic preferred orientation. Crystal plastic deformation resulted in high stress heterogeneities close to grain boundaries, even at low bulk strains, inducing a high degree of lattice distortion without significant grain size reduction and the development of a crystallographic preferred orientation. Observed differences in the character of the grain boundary network and internal deformation structures can be explained by significant post-deformation annealing occurring to variable degrees in the carbonado samples. Differences in intensity of crystal bending and subgrain boundary sharpness can be explained by dislocation annihilation and rearrangement, respectively. During annealing grain energy is reduced resulting in distinct changes to the grain boundary geometry. Grain scale numerical modelling shows that anisotropic grain growth, where grain boundary energy is determined by the orientation of a boundary segment relative to the crystallographic orientation of adjacent grains results in straight boundary segments with abrupt changes in orientation even if the boundary is occurring between two triple junctions forming a ;zigzag; pattern. In addition, in diamond anisotropic
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Geometric Correction in Diffusive Limit of Neutron Transport Equation in 2D Convex Domains
NASA Astrophysics Data System (ADS)
Guo, Yan; Wu, Lei
2017-10-01
Consider the steady neutron transport equation with diffusive boundary condition. In Wu and Guo (Commun Math Phys 336:1473-1553, 2015) and Wu et al. (J Stat Phys 165:585-644, 2016), it was discovered that geometric correction is necessary for the Milne problem of Knudsen-layer construction in a disk or annulus. In this paper, we establish the diffusive limit for a 2D convex domain. Our contribution relies on novel weighted W^{1,∞} estimates for the Milne problem with geometric correction in the presence of a convex domain, as well as an L^{2m}-L^{∞} framework which yields stronger remainder estimates.
Effect of high fluence neutron irradiation on transport properties of thermoelectrics
Wang, H.; Leonard, K. J.
2017-07-25
Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This paper is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the powermore » factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300–400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. Finally, these results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.« less
Effect of high fluence neutron irradiation on transport properties of thermoelectrics
NASA Astrophysics Data System (ADS)
Wang, H.; Leonard, K. J.
2017-07-01
Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.
High resolution neutron imaging of water in the polymer electrolyte membrane
Spernjak, Dusan; Mukundan, Rangachary; Borup, Rodney L; Spendelow, Jacob S; Davey, John; Fairweather, Joseph; Mukherjee, Partha
2010-01-01
To achieve a deeper understanding of water transport and performance issues associated with water management, we have conducted in situ water examinations to help understand the effects of components and operation. High Frequency Resistance (HFR), AC Impedance and neutron radiography were used to measure water content in operating fuel cells under various operating conditions. Variables examined include: sub-freezing conditions, inlet relative humidities, cell temperature, current density and response transients, different flow field orientations and different component materials (membranes, GDLs and MEAs). Quantification of the water within the membrane was made by neutron radiography after equilibration to different humidified gases, during fuel cell operation and in hydrogen pump mode. The water content was evaluated in bare Nafion{reg_sign} membranes as well as in MEAs operated in both fuel cell and H{sub 2} pump mode. These in situ imaging results allow measurement of the water content and gradients in the PEFC membrane and relate the membrane water transport characteristics to the fuel cell operation and performance under disparate materials and operational combinations. Flow geometry makes a large impact on MEA water content. Higher membrane water with counter flow was measured compared with co-flow for sub-saturated inlet RH's. This correlates to lower HFR and higher performance compared with co-flow. Higher anode stoichiometry helps remove water which accumulates in the anode channels and GDL material. Cell orientation was measured to affect both the water content and cell performance. While membrane water content was measured to be similar regardless of orientation, cells with the cathode on top show flooding and loss of performance compared with similarly operated cells with the anode on top. Transient fuel cell current measurements show a large degree of hysteresis in terms of membrane hydration as measured by HFR. Current step transients from 0.01 A cm
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Monte Carlo Simulation of Atmospheric Neutron Transport at High Altitudes Using MCNP
1990-08-01
interaction data, (2) discrete reaction neutron interaction data, (3) multigroup neutron interaction data, (4) continuous photon interaction data and (5... multigroup photon interaction data. In neutron - only and coupled neutron /photon problems, one continuous-energy, multigroup or discrete reaction...as histograms rather than as continuous curves. The multigroup tables have been derived from the same sources as the other neutron interaction tables
Multi-purpose neutron radiography system
Barton, J.P.; Bryant, L.E.; Berry, P.
1996-07-01
A conceptual design is given for a low cost, multipurpose radiography system suited for the needs of the Los Alamos National Laboratory (LANL). The proposed neutron source is californium-252. One purpose is to provide an in-house capability for occasional, reactor quality, neutron radiography thus replacing the recently closed Omega-West Reactor. A second purpose is to provide a highly reliable standby transportable neutron radiography system. A third purpose is to provide for transportable neutron probe gamma spectroscopy techniques. The cost is minimized by shared use of an existing x-ray facility, and by use of an existing transport cask. The achievable neutron radiography and radioscopy performance characteristics have been verified. The demonstrated image qualities range from high resolution gadolinium - SR film, with L:D = 100:1, to radioscopy using a LIXI image with L:D = 30:1 and neutron fluence 3.4 x 10{sup 5} n/cm{sup 2}.
Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operationa)
NASA Astrophysics Data System (ADS)
Han, B. X.; Kalvas, T.; Tarvainen, O.; Welton, R. F.; Murray, S. N.; Pennisi, T. R.; Santana, M.; Stockli, M. P.
2012-02-01
The H- injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ˜38 mA beam current in the linac at 60 Hz with a pulse length of up to ˜1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.
High Resolution Spectroscopy And Timing Of The Isolated Neutron Star RBS 1774
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Drake, Jeremy
2005-01-01
The 2004 May 31 XMM-Newton observation was reprocessed using SASv6.0.0 and times of high background were filtered out. The net exposure time remaining was 23 ks. The source was clearly detected in MOS1, MOS2 and PN chips. We performed both timing and spectroscopic analysis on the data. We performed a spectral analysis by fitting data from the three EPIC detectors simultaneously, finding that the broadband spectrum can be represented by a single absorbed blackbody, with kT = 0.10 keV. The fitting revealed the presence of an absorption feature at 0:7 keV, but the data did have enough resolution to allow us to discriminate between an absorption line and an edge. We also tested magnetized models of Pavlov et a1 and Zavlin et al, but found that fits with these models were considerably worse than with a blackbody. For the timing analysis, we extracted the counts within a 3000 radius aperture in both PN and MOS 1 and MOS2 but with the aperture truncated by a chord where it approached the edge of the CCD window in each case: this maximized the counts while avoiding any edge effects. We analyzed PN, MOSl and MOS2 data both individually and combined using the Maximum Likelihood Periodogram technique of Zane et al. (2002) and Cropper et al. (2004). Periods from 10000 s to 30 ms were searched, ensuring that in each case the period grid was 2.5 times better sampled than the Nyquist frequency. The search revealed a significant period at 9.437s. Taken overall, we found the characteristics of RBS 1774 to be remarkably similar to those of another X-ray faint isolated neutron stars. These results were written up for the Astrophysical Journal, and the paper has recently been accepted for publication.
High Resolution Spectroscopy And Timing Of The Isolated Neutron Star RBS 1774
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Drake, Jeremy
2005-01-01
The 2004 May 31 XMM-Newton observation was reprocessed using SASv6.0.0 and times of high background were filtered out. The net exposure time remaining was 23 ks. The source was clearly detected in MOS1, MOS2 and PN chips. We performed both timing and spectroscopic analysis on the data. We performed a spectral analysis by fitting data from the three EPIC detectors simultaneously, finding that the broadband spectrum can be represented by a single absorbed blackbody, with kT = 0.10 keV. The fitting revealed the presence of an absorption feature at 0:7 keV, but the data did have enough resolution to allow us to discriminate between an absorption line and an edge. We also tested magnetized models of Pavlov et a1 and Zavlin et al, but found that fits with these models were considerably worse than with a blackbody. For the timing analysis, we extracted the counts within a 3000 radius aperture in both PN and MOS 1 and MOS2 but with the aperture truncated by a chord where it approached the edge of the CCD window in each case: this maximized the counts while avoiding any edge effects. We analyzed PN, MOSl and MOS2 data both individually and combined using the Maximum Likelihood Periodogram technique of Zane et al. (2002) and Cropper et al. (2004). Periods from 10000 s to 30 ms were searched, ensuring that in each case the period grid was 2.5 times better sampled than the Nyquist frequency. The search revealed a significant period at 9.437s. Taken overall, we found the characteristics of RBS 1774 to be remarkably similar to those of another X-ray faint isolated neutron stars. These results were written up for the Astrophysical Journal, and the paper has recently been accepted for publication.
NASA Astrophysics Data System (ADS)
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.
2013-12-01
Time-dependent equations of the surface harmonics method (SHM) are obtained for planar one-dimensional geometry. The equations are verified by calculations of test problems from Benchmark Problem Book ANL-7416, and the capabilities and efficiency of applying the SHM for solving the time-dependent neutron transport equation in the diffusion approximation are demonstrated. The results of the work show that the implementation of the SHG for full-scale computations will make possible substantial progress in the efficient solution of time-dependent problems of neutron transport in nuclear reactors.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
Jacobs, Philipp; Houben, Andreas; Dronskowski, Richard; Tchougréeff, Andrei L.
2013-12-14
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ∼100 K after which it rises again. The same trend—albeit more pronounced—is observed for the c lattice parameter at ∼35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) state to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.
Jacobs, Philipp; Houben, Andreas; Tchougréeff, Andrei L; Dronskowski, Richard
2013-12-14
Copper carbodiimide (CuNCN) is the nitrogen-containing analogue of cupric oxide. Based on high-resolution neutron-diffraction data, CuNCN's lattice parameters are derived as a function of the temperature. In accordance with a recent synchrotron study, a clear trend in the cell parameter a is observed accompanying the changing magnetic behavior. With decreasing temperature, a slowly decreases to a minimum at ~100 K after which it rises again. The same trend-albeit more pronounced-is observed for the c lattice parameter at ~35 K. The herein presented neutron powder-diffraction data also support the conjectured sequence of transitions from the high-temperature one-dimensional resonating valence-bond (RVB) state to a transient two-dimensional RVB state and eventually, at lowest temperatures, into another two-dimensional RVB state, presumably the ground state.
MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS
Richers, Sherwood; Ott, Christian D.; Kasen, Daniel; Fernández, Rodrigo; O’Connor, Evan
2015-11-01
We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.
Monte Carlo Neutrino Transport through Remnant Disks from Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Richers, Sherwood; Kasen, Daniel; O'Connor, Evan; Fernández, Rodrigo; Ott, Christian D.
2015-11-01
We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 1046 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 1048 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.
Probing multiscale transport and inhomogeneity in a lithium-ion cells using in-situ neutron methods
Zhou, Hui; An, Ke; Allu, Srikanth; ...
2016-01-01
Here, we demonstrate for the first time the lithiation process in graphitic anodes using insitu neutron radiography in a pouch cell format. The neutron absorption contrast shows a direct correlation between degree of lithiation and the discharge voltage plateau. Furthermore, we provide a semi-quantitative comparison between the observed spatial variations of neutron attenuation line profile across the graphite electrode and the calculated lithium concentration profiles computed under similar electrochemical discharge conditions. In conjunction, in situ neutron diffraction of a similar pouch cell under identical test protocol was carried to obtain information about the local phase changes upon lithiation. Combined in-situmore » radiography and diffraction opens up a powerful nondestructive method to understand the multi-scale nature of lithium transport and degradation in practical lithium-ion cells.« less
Probing multiscale transport and inhomogeneity in a lithium-ion cells using in-situ neutron methods
Zhou, Hui; An, Ke; Allu, Srikanth; Pannala, Sreekanth; Li, Jianlin; Bilheux, Hassina Z.; Martha, Surendra; Nanda, Jagjit
2016-01-01
Here, we demonstrate for the first time the lithiation process in graphitic anodes using insitu neutron radiography in a pouch cell format. The neutron absorption contrast shows a direct correlation between degree of lithiation and the discharge voltage plateau. Furthermore, we provide a semi-quantitative comparison between the observed spatial variations of neutron attenuation line profile across the graphite electrode and the calculated lithium concentration profiles computed under similar electrochemical discharge conditions. In conjunction, in situ neutron diffraction of a similar pouch cell under identical test protocol was carried to obtain information about the local phase changes upon lithiation. Combined in-situ radiography and diffraction opens up a powerful nondestructive method to understand the multi-scale nature of lithium transport and degradation in practical lithium-ion cells.
NASA Astrophysics Data System (ADS)
Sy, Amy Vong
The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrates such capabilities in the characterization of fissile material configurations and greatly benefits from improvements to existing neutron generator systems. Increased neutron yields and improved spatial resolution can enhance the capabilities of imaging methods utilizing the API technique. The work presented in this dissertation focused on the development of components for use within an API neutron generator with enhanced system spatial resolution. The major focus areas were the ion source development for plasma generation, and passive ion beam focusing techniques for the small ion beam widths necessary for the enhanced spatial resolution. The ion source development focused on exploring methods for improvement of Penning-type ion sources that are used in conventional API neutron generator systems, while the passive beam focusing techniques explored both ion beam collimation and ion guiding with tapered dielectric capillaries for reduced beam widths at the neutron production target.
Global Error Bounds for the Petrov-Galerkin Discretization of the Neutron Transport Equation
Chang, B; Brown, P; Greenbaum, A; Machorro, E
2005-01-21
In this paper, we prove that the numerical solution of the mono-directional neutron transport equation by the Petrov-Galerkin method converges to the true solution in the L{sup 2} norm at the rate of h{sup 2}. Since consistency has been shown elsewhere, the focus here is on stability. We prove that the system of Petrov-Galerkin equations is stable by showing that the 2-norm of the inverse of the matrix for the system of equations is bounded by a number that is independent of the order of the matrix. This bound is equal to the length of the longest path that it takes a neutron to cross the domain in a straight line. A consequence of this bound is that the global error of the Petrov-Galerkin approximation is of the same order of h as the local truncation error. We use this result to explain the widely held observation that the solution of the Petrov-Galerkin method is second accurate for one class of problems, but is only first order accurate for another class of problems.
Using the transportable, computer-operated, liquid-scintillator fast-neutron spectrometer system
Thorngate, J.H.
1988-11-01
When a detailed energy spectrum is needed for radiation-protection measurements from approximately 1 MeV up to several tens of MeV, organic-liquid scintillators make good neutron spectrometers. However, such a spectrometer requires a sophisticated electronics system and a computer to reduce the spectrum from the recorded data. Recently, we added a Nuclear Instrument Module (NIM) multichannel analyzer and a lap-top computer to the NIM electronics we have used for several years. The result is a transportable fast-neutron spectrometer system. The computer was programmed to guide the user through setting up the system, calibrating the spectrometer, measuring the spectrum, and reducing the data. Measurements can be made over three energy ranges, 0.6--2 MeV, 1.1--8 MeV, or 1.6--16 MeV, with the spectrum presented in 0.1-MeV increments. Results can be stored on a disk, presented in a table, and shown in graphical form. 5 refs., 51 figs.
Ueda, H; Tanaka, H; Sakurai, Y
2015-10-01
Bonner sphere is useful to evaluate the neutron spectrum in detail. We are improving the energy resolution in epi-thermal neutron region of Bonner sphere, using boric acid water solution as a moderator. Its response function peak is narrower than that for polyethylene moderator and the improvement of the resolution is expected. The resolutions between polyethylene moderator and boric acid water solution moderator were compared by simulation calculation. Also the influence in the uncertainty of Bonner sphere configuration to spectrum estimation was simulated. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.
2016-11-01
Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy < K > ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
Willert, Jeffrey; Park, H.; Knoll, D.A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton–Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
Lithium Transport in an Amorphous LixSi Anode Investigated by Quasi-elastic Neutron Scattering
Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...
2017-04-27
Here, we demonstrate the room temperature mechanochemical synthesis of highly defective LixSi anode materials and characterization of the Li transport. We probed the Li+ self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10–6 cm2 s–1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol–1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defective Li–Si structures may improve the utilitymore » of Si anodes for Li-ion batteries.« less
Analysis of EBR-II neutron and photon physics by multidimensional transport-theory techniques
Jacqmin, R.P.; Finck, P.J.; Palmiotti, G.
1994-03-01
This paper contains a review of the challenges specific to the EBR-II core physics, a description of the methods and techniques which have been developed for addressing these challenges, and the results of some validation studies relative to power-distribution calculations. Numerical tests have shown that the VARIANT nodal code yields eigenvalue and power predictions as accurate as finite difference and discrete ordinates transport codes, at a small fraction of the cost. Comparisons with continuous-energy Monte Carlo results have proven that the errors introduced by the use of the diffusion-theory approximation in the collapsing procedure to obtain broad-group cross sections, kerma factors, and photon-production matrices, have a small impact on the EBR-II neutron/photon power distribution.
A demonstration of a whole core neutron transport method in a gas cooled reactor
Connolly, K. J.; Rahnema, F.
2013-07-01
This paper illustrates a capability of the whole core transport method COMET. Building on previous works which demonstrated the accuracy of the method, this work serves to emphasize the robust capability of the method while also accentuating its efficiency. A set of core configurations is presented based on an operating gas-cooled thermal reactor, Japan's HTTR, and COMET determines the eigenvalue and fission density profile throughout each core configuration. Results for core multiplication factors are compared to MCNP for accuracy and also to compare runtimes. In all cases, the values given by COMET differ by those given by MCNP by less than the uncertainty inherent in the stochastic solution procedure, however, COMET requires runtimes shorter on the order of a few hundred. Figures are provided illustrating the whole core fission density profile, with segments of pins explicitly modeled individually, so that pin-level neutron flux behavior can be seen without any approximation due to simplification strategies such as homogenization. (authors)
NASA Astrophysics Data System (ADS)
Wang, Yi; He, Xi; Mukherjee, T.; Fitzsimmons, M. R.; Sahoo, S.; Binek, Ch.
2011-11-01
Exchange coupled magnetic hard layer/soft layer thin films show a variety of complex magnetization reversal mechanisms depending on the hierarchy of interaction strengths within and between the films. Magnetization reversal can include uniform rotation, soft layer biasing, as well as exchange spring behavior. We investigate the magnetization reversal of a CoPt/Permalloy/Ta/Permalloy heterostructure. Here, Stoner-Wohlfarth-type uniform magnetization rotation of the virtually free Permalloy layer and exchange spring behavior of the strongly pinned Permalloy layer are found in the same sample. We investigate the complex magnetization reversal by polarized neutron reflectometry, magnetometry, and magneto-transport. The synergy of combining these experimental methods together with theoretical modeling is key to obtain the complete quantitative depth resolved information of the magnetization reversal processes for a multilayer of mesoscopic thickness.
TART97 a coupled neutron-photon 3-D, combinatorial geometry Monte Carlo transport code
Cullen, D.E.
1997-11-22
TART97 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART97 is distributed on CD. This CD contains on- line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and its data riles.
NASA Technical Reports Server (NTRS)
Armstrong, T. W.
1972-01-01
Several Monte Carlo radiation transport computer codes are used to predict quantities of interest in the fields of radiotherapy and radiobiology. The calculational methods are described and comparisions of calculated and experimental results are presented for dose distributions produced by protons, neutrons, and negatively charged pions. Comparisons of calculated and experimental cell survival probabilities are also presented.
Miller, T.M.; Pevey, R.E.; Lillie, R.A.; Johnson, J.O.
2000-12-01
A detailed radiation transport analysis of the Spallation Neutron Source (SNS) shutters is important for the construction of the SNS because of its impact on conventional facility design, normal operation of the facility, and maintenance operations. Thus far the analysis of the SNS shutter travel gaps has been completed. This analysis was performed using coupled Monte Carlo and multi-dimensional discrete ordinates calculations.
FISHER,RK
2003-02-01
OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 {micro}, are the most promising approach to imaging NIF target plasmas with the desired 5 {micro} spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 {center_dot} 10{sup 13} yield DT target plasmas with a target plane spatial resolution of {approx} 140 {micro}. As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of {approx} 5000 drops ({approx} 100 {micro} in diameter) of bubble detector liquid/cm{sup 3} suspended in an inactive support gel that occupies {approx} 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are {approx} 10 {micro} in diameter, should result in {approx} 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of {approx} 10 to 50 {micro}.
Coupled full core neutron transport/CFD simulations of pressurized water reactors
Kochunas, B.; Stimpson, S.; Collins, B.; Downar, T.; Brewster, R.; Baglietto, E.; Yan, J.
2012-07-01
Recently as part of the CASL project, a capability to perform 3D whole-core coupled neutron transport and computational fluid dynamics (CFD) calculations was demonstrated. This work uses the 2D/1D transport code DeCART and the commercial CFD code STAR-CCM+. It builds on previous CASL work demonstrating coupling for smaller spatial domains. The coupling methodology is described along with the problem simulated and results are presented for fresh hot full power conditions. An additional comparison is made to an equivalent model that uses lower order T/H feedback to assess the importance and cost of high fidelity feedback to the neutronics problem. A simulation of a quarter core Combustion Engineering (CE) PWR core was performed with the coupled codes using a Fixed Point Gauss-Seidel iteration technique. The total approximate calculation requirements are nearly 10,000 CPU hours and 1 TB of memory. The problem took 6 coupled iterations to converge. The CFD coupled model and low order T/H feedback model compared well for global solution parameters, with a difference in the critical boron concentration and average outlet temperature of 14 ppm B and 0.94 deg. C, respectively. Differences in the power distribution were more significant with maximum relative differences in the core-wide pin peaking factor (Fq) of 5.37% and average relative differences in flat flux region power of 11.54%. Future work will focus on analyzing problems more relevant to CASL using models with less approximations. (authors)
Conflict Detection and Resolution for Future Air Transportation Management
NASA Technical Reports Server (NTRS)
Krozel, Jimmy; Peters, Mark E.; Hunter, George
1997-01-01
With a Free Flight policy, the emphasis for air traffic control is shifting from active control to passive air traffic management with a policy of intervention by exception. Aircraft will be allowed to fly user preferred routes, as long as safety Alert Zones are not violated. If there is a potential conflict, two (or more) aircraft must be able to arrive at a solution for conflict resolution without controller intervention. Thus, decision aid tools are needed in Free Flight to detect and resolve conflicts, and several problems must be solved to develop such tools. In this report, we analyze and solve problems of proximity management, conflict detection, and conflict resolution under a Free Flight policy. For proximity management, we establish a system based on Delaunay Triangulations of aircraft at constant flight levels. Such a system provides a means for analyzing the neighbor relationships between aircraft and the nearby free space around air traffic which can be utilized later in conflict resolution. For conflict detection, we perform both 2-dimensional and 3-dimensional analyses based on the penetration of the Protected Airspace Zone. Both deterministic and non-deterministic analyses are performed. We investigate several types of conflict warnings including tactical warnings prior to penetrating the Protected Airspace Zone, methods based on the reachability overlap of both aircraft, and conflict probability maps to establish strategic Alert Zones around aircraft.
High Resolution Numerical Modeling of Cohesive Sediment Transport
2011-01-01
Transport Tian-Jian Hsu Civil and Environmental Engineering Center for Applied Coastal Research University of Delaware, Newark, DE 19716...ORGANIZATION NAME(S) AND ADDRESS(ES) Civil and Environmental Engineering Center for Applied Coastal Research University of Delaware, Newark, DE 19716 8...Hence, there exists a competition between direct mud dissipation and shoaling process at muddy shelf. This problem is not only dependent on mud rheology
High Resolution Numerical Modeling of Cohesive Sediment Transport
2009-01-01
floc breakup and aggregation processes (e.g., Winterwerp 1998). Existing flocculation models is able to predict flocs in equilibrium condition. However...addition, existing flocculation models commonly assume constant floc yield strength in modeling floc break-up process . However, laboratory evidences...induced fluid mud process , tidal- driven cohesive sediment transport and flocculation and sediment-laden river plume dynamics and initial deposition. Our
Radulescu, Aurel; Székely, Noémi Kinga; Polachowski, Stephan; Leyendecker, Marko; Amann, Matthias; Buitenhuis, Johan; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter; Lindner, Peter; Papagiannopoulos, Aristeidis; Pipich, Vitaliy; Willner, Lutz; Frielinghaus, Henrich; Richter, Dieter
2015-12-01
Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes.
Radulescu, Aurel; Székely, Noémi Kinga; Polachowski, Stephan; Leyendecker, Marko; Amann, Matthias; Buitenhuis, Johan; Drochner, Matthias; Engels, Ralf; Hanslik, Romuald; Kemmerling, Günter; Lindner, Peter; Papagiannopoulos, Aristeidis; Pipich, Vitaliy; Willner, Lutz; Frielinghaus, Henrich; Richter, Dieter
2015-01-01
Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes. PMID:26664343
Duke, Daniel J.; Finney, Charles E. A.; Kastengren, Alan; ...
2017-03-14
Given the importance of the fuel-injection process on the combustion and emissions performance of gasoline direct injected engines, there has been significant recent interest in understanding the fluid dynamics within the injector, particularly around the needle and through the nozzles. Furthermore, the pressure losses and transients that occur in the flow passages above the needle are also of interest. Simulations of these injectors typically use the nominal design geometry, which does not always match the production geometry. Computed tomography (CT) using x-ray and neutron sources can be used to obtain the real geometry from production injectors, but there are trade-offsmore » in using these techniques. X-ray CT provides high resolution, but cannot penetrate through the thicker parts of the injector. Neutron CT has excellent penetrating power but lower resolution. Here, we present results from a joint effort to characterize a gasoline direct injector representative of the Spray G injector as defined by the Engine Combustion Network. High-resolution (1.2 to 3 µm) x-ray CT measurements from the Advanced Photon Source at Argonne National Laboratory were combined with moderate-resolution (40 µm) neutron CT measurements from the High Flux Isotope Reactor at Oak Ridge National Laboratory to generate a complete internal geometry for the injector. This effort combined the strengths of both facilities’ capabilities, with extremely fine spatially resolved features in the nozzles and injector tips and fine resolution of internal features of the needle along the length of injector. Analysis of the resulting surface model of the internal fluid flow volumes of the injector reveals how the internal cross-sectional area and nozzle hole geometry differs slightly from the design dimensions. A simplified numerical simulation of the internal flow shows how deviations from the design geometry can alter the flow inside the sac and holes. Our results of this study will provide
NASA Astrophysics Data System (ADS)
Pohlmann, Carsten; Herbrig, Kai; Gondek, Łukasz; Kardjilov, Nikolay; Hilger, André; Figiel, Henryk; Banhart, John; Kieback, Bernd; Manke, Ingo; Röntzsch, Lars
2015-03-01
Hydrogen solid-state storage in metal hydrides has attracted remarkable attention within the past decades due to their high volumetric storage densities at low operating pressures. In particular, recently emerged hydride-graphite composites (HGC) can enable a safe, reliable and very compact hydrogen storage solution for various applications. In this regard, only little is known about the activation behavior of such HGC, their cycle stability and degradation effects. Because of the high sensitivity to hydrogen, neutron imaging offers a distinctive approach to examine in operando reaction fronts, swelling effects and microstructural changes of hydrogen absorbing materials with high spatial and temporal resolution. In this contribution, a comprehensive analysis of various phenomena during activation and cycling of HGC based on a Ti-Mn hydrogen absorbing alloy and expanded natural graphite is reported for the first time. A neutron radiography and tomography set-up with a spatial resolution down to 7 μm was utilized allowing highest detection precision. During initial hydrogenation, regions with enhanced reactivity are observed which contradicts a theoretically expected homogeneous reactivity inside the HGC. These active regions grow with the number of hydrogenation-dehydrogenation cycles until the whole HGC volume uniformly participates in the hydrogen sorption reaction. With regard to long-term hydrogenation-dehydrogenation cycling, inhomogeneous swelling effects were observed from which essential conclusions for technical HGC-based tank systems can be derived.
A neutron crystallographic analysis of T{sub 6} porcine insulin at 2.1 Å resolution
Iwai, Wakari; Yamada, Taro; Kurihara, Kazuo; Ohnishi, Yuki; Kobayashi, Yoichiro; Tanaka, Ichiro; Takahashi, Haruyuki; Kuroki, Ryota; Tamada, Taro; Niimura, Nobuo
2009-10-01
The charge balance and hydrogen-bonding network at the core of the insulin T{sub 6} hexamer have been investigated by neutron diffraction analysis at 2.1 Å resolution. Neutron diffraction data for T{sub 6} porcine insulin were collected to 2.1 Å resolution from a single crystal partly deuterated by exchange of mother liquor. A maximum-likelihood structure refinement was undertaken using the neutron data and the structure was refined to a residual of 0.179. The hydrogen-bonding network of the central core of the hexamer was observed and the charge balance between positively charged Zn ions and their surrounding structure was interpreted by considering the protonation and/or deprotonation states and interactions of HisB10, water and GluB13. The observed double conformation of GluB13 was essential to interpreting the charge balance and could be compared with the structure of a dried crystal of T{sub 6} human insulin at 100 K. Differences in the dynamic behaviour of the water molecules coordinating the upper and lower Zn ions were observed and interpreted. The hydrogen bonds in the insulin molecules, as well as those involving HisB10 and GluB13, are discussed. The hydrogen/deuterium (H/D) exchange ratios of the amide H atoms of T{sub 6} porcine insulin in crystals were obtained and showed that regions highly protected from H/D exchange are concentrated in the centre of a helical region of the B chains. From the viewpoint of soaking time versus H/D-exchange ratios, the amide H atoms can be classified into three categories.
Attaya, H.
1995-01-01
The primary goal of this task is to provide the capabilities in the activation code RACC, to treat pulsed operation modes. In addition, it is required that the code utilizes the same spatial mesh and geometrical models as employed in the one or multidimensional neutron transport codes used in ITER design. This would ensure the use of the same neutron flux generated by those codes to calculate the different activation parameters. It is also required to have the capabilities for generating graphical outputs for the calculated activation parameters.
U{sub N} Method For The Critical Slab Problem In One-Speed Neutron Transport Theory
Oeztuerk, Hakan; Guengoer, Sueleyman
2008-11-11
The Chebyshev polynomial approximation (U{sub N} method) is used to solve the critical slab problem in one-speed neutron transport theory using Marshak boundary condition. The isotropic scattering kernel with the combination of forward and backward scattering is chosen for the neutrons in a uniform finite slab. Numerical results obtained by the U{sub N} method are presented in the tables together with the results obtained by the well-known P{sub N} method for comparison. It is shown that the method converges rapidly with its easily executable equations.
Boyarinov, V. F.; Kondrushin, A. E.; Fomichenko, P. A.
2013-07-01
Time-dependent equations of the Surface Harmonics Method (SHM) have been derived from the time-dependent neutron transport equation with explicit representation of delayed neutrons for solving the two-dimensional time-dependent problems. These equations have been realized in the SUHAM-TD code. The TWIGL benchmark problem has been used for verification of the SUHAM-TD code. The results of the study showed that computational costs required to achieve necessary accuracy of the solution can be an order of magnitude less than with the use of the conventional finite difference method (FDM). (authors)
Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Graham, Jennifer A.; Dinniman, Michael S.; Klinck, John M.
2016-10-01
The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on-shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf-break and in the deep ocean off-shore. Cross-shelf troughs are key locations of on-shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on-shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf-break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on-shelf transport. Increased eddy activity off-shelf may lead to greater cross-front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf-break jet, and therefore on-shelf heat transport. These results demonstrate the importance of model resolution for understanding cross-shelf transport around Antarctica.
Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris
2014-12-01
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP^{+} from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm^{3} crystal with the quasi-Laue technique, and the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pK_{a} of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.
Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; ...
2014-12-01
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structuremore » reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed.« less
The TORT three-dimensional discrete ordinates neutron/photon transport code (TORT version 3)
Rhoades, W.A.; Simpson, D.B.
1997-10-01
TORT calculates the flux or fluence of neutrons and/or photons throughout three-dimensional systems due to particles incident upon the system`s external boundaries, due to fixed internal sources, or due to sources generated by interaction with the system materials. The transport process is represented by the Boltzman transport equation. The method of discrete ordinates is used to treat the directional variable, and a multigroup formulation treats the energy dependence. Anisotropic scattering is treated using a Legendre expansion. Various methods are used to treat spatial dependence, including nodal and characteristic procedures that have been especially adapted to resist numerical distortion. A method of body overlay assists in material zone specification, or the specification can be generated by an external code supplied by the user. Several special features are designed to concentrate machine resources where they are most needed. The directional quadrature and Legendre expansion can vary with energy group. A discontinuous mesh capability has been shown to reduce the size of large problems by a factor of roughly three in some cases. The emphasis in this code is a robust, adaptable application of time-tested methods, together with a few well-tested extensions.
A Systematic Solution Approach for Neutron Transport Problems in Diffuse Regimes
NASA Technical Reports Server (NTRS)
Manteuffel, T. A.; Ressel, K. J.
1996-01-01
A systematic solution approach for the neutron transport equation, based on a least-squares finite-element discretization, is presented. This approach includes the theory for the existence and uniqueness of the analytical as well as of the discrete solution, bounds for the discretization error, and guidance for the development of an efficient multigrid solver for the resulting discrete problem. To guarantee the accuracy of the discrete solution for diffusive regimes, a scaling transformation is applied to the transport operator prior to the discretization. The key result is the proof of the V-ellipticity and continuity of the scaled least-squares bilinear form with constants that are independent of the total cross section and the absorption cross section. For a variety of least-squares finite-element discretizations this leads to error bounds that remain valid in diffusive regimes. Moreover, for problems in slab geometry a full multigrid solver is presented with V(1, 1)-cycle convergence rates approximately equal to 0.1, independent of the size of the total cross section and the absorption cross section.
A Complex-Geometry Validation Experiment for Advanced Neutron Transport Codes
David W. Nigg; Anthony W. LaPorta; Joseph W. Nielsen; James Parry; Mark D. DeHart; Samuel E. Bays; William F. Skerjanc
2013-11-01
The Idaho National Laboratory (INL) has initiated a focused effort to upgrade legacy computational reactor physics software tools and protocols used for support of core fuel management and experiment management in the Advanced Test Reactor (ATR) and its companion critical facility (ATRC) at the INL.. This will be accomplished through the introduction of modern high-fidelity computational software and protocols, with appropriate new Verification and Validation (V&V) protocols, over the next 12-18 months. Stochastic and deterministic transport theory based reactor physics codes and nuclear data packages that support this effort include MCNP5[1], SCALE/KENO6[2], HELIOS[3], SCALE/NEWT[2], and ATTILA[4]. Furthermore, a capability for sensitivity analysis and uncertainty quantification based on the TSUNAMI[5] system has also been implemented. Finally, we are also evaluating the Serpent[6] and MC21[7] codes, as additional verification tools in the near term as well as for possible applications to full three-dimensional Monte Carlo based fuel management modeling in the longer term. On the experimental side, several new benchmark-quality code validation measurements based on neutron activation spectrometry have been conducted using the ATRC. Results for the first four experiments, focused on neutron spectrum measurements within the Northwest Large In-Pile Tube (NW LIPT) and in the core fuel elements surrounding the NW LIPT and the diametrically opposite Southeast IPT have been reported [8,9]. A fifth, very recent, experiment focused on detailed measurements of the element-to-element core power distribution is summarized here and examples of the use of the measured data for validation of corresponding MCNP5, HELIOS, NEWT, and Serpent computational models using modern least-square adjustment methods are provided.
High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials
Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B; Bilheux, Jean-Christophe; Yan, Yong
2015-01-01
Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.
High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials
NASA Astrophysics Data System (ADS)
Smith, Tyler; Bilheux, Hassina; Ray, Holly; Bilheux, Jean-Christophe; Yan, Yong
Hydrogen content and distribution in Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm were studied using neutron radiography and computed tomography. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 μm × 55 μm). Image analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to image analysis, tomography experiments were performed on Zircaloy-4 tube samples to study the local hydrogen distribution. A 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.
NASA Astrophysics Data System (ADS)
Dhital, Chetan
The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr 3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr 3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO 3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O 7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr 3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35+/-0.06 muB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRu x)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of 'Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an
NASA Astrophysics Data System (ADS)
Sunil, C.; Tyagi, Mohit; Biju, K.; Shanbhag, A. A.; Bandyopadhyay, T.
2015-12-01
The scarcity and the high cost of 3He has spurred the use of various detectors for neutron monitoring. A new lithium yttrium borate scintillator developed in BARC has been studied for its use in a neutron rem counter. The scintillator is made of natural lithium and boron, and the yield of reaction products that will generate a signal in a real time detector has been studied by FLUKA Monte Carlo radiation transport code. A 2 cm lead introduced to enhance the gamma rejection shows no appreciable change in the shape of the fluence response or in the yield of reaction products. The fluence response when normalized at the average energy of an Am-Be neutron source shows promise of being used as rem counter.
Wheeler, F.J.; Wessol, D.E.
1995-12-31
The rtt-MC dose calculation module of the BNCT-Rtpe treatment planning system has been developed specifically for boron neutron cancer therapy. Due to the complicated nature of combined gamma, fast-, epithermal- and thermal-energy neutron transport in tissue, all approaches to treatment planning to date for this treatment modality rely on Monte Carlo or three-dimensional discrete ordinates methods. Simple, fast and accurate methods for this modality have simply not been developed. In this paper the authors discuss some of the unique attributes of this therapy and the approaches they have used to begin to merge into clinical applications. As this paper is under draft, the modern implementation of boron neutron cancer therapy in the US is being realized. Research of skin and tumor effect for superficial melanoma of the extremities has been initiated at the Massachusetts Institute of Technology and brain cancer therapy (using this planning system) has begun at Brookhaven National Laboratory.
Escobar, M.; Meyerovich, A. E.
2014-12-15
We discuss transport of particles along random rough surfaces in quantum size effect conditions. As an intriguing application, we analyze gravitationally quantized ultracold neutrons in rough waveguides in conjunction with GRANIT experiments (ILL, Grenoble). We present a theoretical description of these experiments in the biased diffusion approximation for neutron mirrors with both one- and two-dimensional (1D and 2D) roughness. All system parameters collapse into a single constant which determines the depletion times for the gravitational quantum states and the exit neutron count. This constant is determined by a complicated integral of the correlation function (CF) of surface roughness. The reliable identification of this CF is always hindered by the presence of long fluctuation-driven correlation tails in finite-size samples. We report numerical experiments relevant for the identification of roughness of a new GRANIT waveguide and make predictions for ongoing experiments. We also propose a radically new design for the rough waveguide.
Azmy, Yousry
2014-06-10
We employ the Integral Transport Matrix Method (ITMM) as the kernel of new parallel solution methods for the discrete ordinates approximation of the within-group neutron transport equation. The ITMM abandons the repetitive mesh sweeps of the traditional source iterations (SI) scheme in favor of constructing stored operators that account for the direct coupling factors among all the cells' fluxes and between the cells' and boundary surfaces' fluxes. The main goals of this work are to develop the algorithms that construct these operators and employ them in the solution process, determine the most suitable way to parallelize the entire procedure, and evaluate the behavior and parallel performance of the developed methods with increasing number of processes, P. The fastest observed parallel solution method, Parallel Gauss-Seidel (PGS), was used in a weak scaling comparison with the PARTISN transport code, which uses the source iteration (SI) scheme parallelized with the Koch-baker-Alcouffe (KBA) method. Compared to the state-of-the-art SI-KBA with diffusion synthetic acceleration (DSA), this new method- even without acceleration/preconditioning-is completitive for optically thick problems as P is increased to the tens of thousands range. For the most optically thick cells tested, PGS reduced execution time by an approximate factor of three for problems with more than 130 million computational cells on P = 32,768. Moreover, the SI-DSA execution times's trend rises generally more steeply with increasing P than the PGS trend. Furthermore, the PGS method outperforms SI for the periodic heterogeneous layers (PHL) configuration problems. The PGS method outperforms SI and SI-DSA on as few as P = 16 for PHL problems and reduces execution time by a factor of ten or more for all problems considered with more than 2 million computational cells on P = 4.096.
Low Resolution Structure and Dynamics of a Colicin-Receptor Complex Determined by Neutron Scattering
Clifton, Luke A; Johnson, Christopher L; Solovyova, Alexandra; Callow, Phil; Weiss, Kevin L; Ridley, Helen; Le Brun, Anton P; Kinane, Christian; Webster, John; Holt, Stephen A; Lakey, Jeremy H
2012-01-01
Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.
Wan, Qun; Bennett, Brad C.; Wilson, Mark A.; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E.; Dealwis, Chris
2014-01-01
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP+. The neutron data were collected to 2.0-Å resolution using a 3.6-mm3 crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed. PMID:25453083
Performance of European chemistry transport models as function of horizontal resolution
NASA Astrophysics Data System (ADS)
Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.
2015-07-01
Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2013-12-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium-deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium-tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23µSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject.
Liu, Yingzi; Koltick, David; Byrne, Patrick; Wang, Haoyu; Zheng, Wei; Nie, Linda H
2014-01-01
This study was conducted to investigate the methodology and feasibility of developing a transportable neutron activation analysis (NAA) system to quantify manganese (Mn) in bone using a portable deuterium–deuterium (DD) neutron generator as the neutron source. Since a DD neutron generator was not available in our laboratory, a deuterium–tritium (DT) neutron generator was used to obtain experimental data and validate the results from Monte Carlo (MC) simulations. After validation, MC simulations using a DD generator as the neutron source were then conducted. Different types of moderators and reflectors were simulated, and the optimal thicknesses for the moderator and reflector were determined. To estimate the detection limit (DL) of the system, and to observe the interference of the magnesium (Mg) γ line at 844 keV to the Mn γ line at 847 keV, three hand phantoms with Mn concentrations of 30 parts per million (ppm), 150 ppm, and 500 ppm were made and irradiated by the DT generator system. The Mn signals in these phantoms were then measured using a 50% high-efficiency high-purity germanium (HPGe) detector. The DL was calculated to be about 4.4 ppm for the chosen irradiation, decay, and measurement time. This was calculated to be equivalent to a DL of about 3.3 ppm for the DD generator system. To achieve this DL with one 50% high-efficiency HPGe detector, the dose to the hand was simulated to be about 37 mSv, with the total body equivalent dose being about 23μSv. In conclusion, it is feasible to develop a transportable NAA system to quantify Mn in bone in vivo with an acceptable radiation exposure to the subject. PMID:24165395
Neutron radiography and modelling of water flow and D2O transport in soil and plants
NASA Astrophysics Data System (ADS)
Zare, Mohsen; Carminati, Andrea; Kröner, Eva
2014-05-01
Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soil. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly from diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots, as well as the ration between the apoplastic and symplastic flow. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The results indicated the water crossed the root cortex mainly through the apoplastic pathway. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in
Niranjan, Ram; Rout, R K; Srivastava, R; Kaushik, T C; Gupta, Satish C
2016-03-01
A 17 kJ transportable plasma focus (PF) device with flexible transmission lines is developed and is characterized. Six custom made capacitors are used for the capacitor bank (CB). The common high voltage plate of the CB is fixed to a centrally triggered spark gap switch. The output of the switch is coupled to the PF head through forty-eight 5 m long RG213 cables. The CB has a quarter time-period of 4 μs and an estimated current of 506 kA is delivered to the PF device at 17 kJ (60 μF, 24 kV) energy. The average neutron yield measured using silver activation detector in the radial direction is (7.1 ± 1.4) × 10(8) neutrons/shot over 4π sr at 5 mbar optimum D2 pressure. The average neutron yield is more in the axial direction with an anisotropy factor of 1.33 ± 0.18. The average neutron energies estimated in the axial as well as in the radial directions are (2.90 ± 0.20) MeV and (2.58 ± 0.20) MeV, respectively. The flexibility of the PF head makes it useful for many applications where the source orientation and the location are important factors. The influence of electromagnetic interferences from the CB as well as from the spark gap on applications area can be avoided by putting a suitable barrier between the bank and the PF head.
Characterizing Neutron-Proton Equilibration in Nuclear Reactions with Subzeptosecond Resolution
NASA Astrophysics Data System (ADS)
Jedele, A.; McIntosh, A. B.; Hagel, K.; Huang, M.; Heilborn, L.; Kohley, Z.; May, L. W.; McCleskey, E.; Youngs, M.; Zarrella, A.; Yennello, S. J.
2017-02-01
We study neutron-proton equilibration in dynamically deformed atomic nuclei created in nuclear collisions. The two ends of the elongated nucleus are initially dissimilar in composition and equilibrate on a subzeptosecond time scale following first-order kinetics. We use angular momentum to relate the breakup orientation to the time scale of the breakup. The extracted rate constant is 3 zs-1 , which corresponds to a mean equilibration time of 0.3 zs. This technique enables new insight into the nuclear equation of state that governs many nuclear and astrophysical phenomena leading to the origin of the chemical elements.
Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C
2016-10-01
Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.
Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C.
2016-10-14
Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.
A high resolution, inelastic neutron scattering investigation of tunnelling methyl groups in aspirin
NASA Astrophysics Data System (ADS)
Johnson, M. R.; Frick, B.; Trommsdorff, H. P.
1996-08-01
The tunnel frequency of protonated methyl groups in aspirin has been measured, by inelastic neutron scattering, at 2 K, to be 1.22 μeV. This result and the temperature dependence up to 42 K are in poor agreement with NMR measurements of deuterated methyl groups which conclude that the rotational potential is purely three-fold symmetric. The discrepancy is attributed to a six-fold contribution in the rotational potential for which justification is provided by a calculation of the rotational potential based on the room temperature crystal structure.
Hong, Liang; Jain, Nitin; Cheng, Xiaolin; Bernal, Ana; Tyagi, Madhusudan; Smith, Jeremy C.
2016-01-01
Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems. PMID:27757419
NASA Astrophysics Data System (ADS)
Kiuchi, Kenta; Sekiguchi, Yuichiro; Kyutoku, Koutarou; Shibata, Masaru; Taniguchi, Keisuke; Wada, Tomohide
2015-09-01
We report results of a high resolution numerical-relativity simulation for the merger of black hole-magnetized neutron star binaries on Japanese supercomputer "K." We focus on a binary that is subject to tidal disruption and subsequent formation of a massive accretion torus. We find the launch of thermally driven torus wind, subsequent formation of a funnel wall above the torus and a magnetosphere with collimated poloidal magnetic field, and high Blandford-Znajek luminosity. We show for the first time this picture in a self-consistent simulation. The turbulencelike motion induced by the nonaxisymmetric magnetorotational instability as well as the Kelvin-Helmholtz instability inside the accretion torus works as an agent to drive the mass accretion and converts the accretion energy to thermal energy, which results in the generation of a strong wind. By an in-depth resolution study, we reveal that high resolution is essential to draw such a picture. We also discuss the implication for the r-process nucleosynthesis, the radioactively powered transient emission, and short gamma ray bursts.
Hoffman, Adam J. Lee, John C.
2016-02-15
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
NASA Astrophysics Data System (ADS)
Hoffman, Adam J.; Lee, John C.
2016-02-01
A new time-dependent Method of Characteristics (MOC) formulation for nuclear reactor kinetics was developed utilizing angular flux time-derivative propagation. This method avoids the requirement of storing the angular flux at previous points in time to represent a discretized time derivative; instead, an equation for the angular flux time derivative along 1D spatial characteristics is derived and solved concurrently with the 1D transport characteristic equation. This approach allows the angular flux time derivative to be recast principally in terms of the neutron source time derivatives, which are approximated to high-order accuracy using the backward differentiation formula (BDF). This approach, called Source Derivative Propagation (SDP), drastically reduces the memory requirements of time-dependent MOC relative to methods that require storing the angular flux. An SDP method was developed for 2D and 3D applications and implemented in the computer code DeCART in 2D. DeCART was used to model two reactor transient benchmarks: a modified TWIGL problem and a C5G7 transient. The SDP method accurately and efficiently replicated the solution of the conventional time-dependent MOC method using two orders of magnitude less memory.
3D Neutron Transport PWR Full-core Calculation with RMC code
NASA Astrophysics Data System (ADS)
Qiu, Yishu; She, Ding; Fan, Xiao; Wang, Kan; Li, Zeguang; Liang, Jingang; Leroyer, Hadrien
2014-06-01
Nowadays, there are more and more interests in the use of Monte Carlo codes to calculate the detailed power density distributions in full-core reactors. With the Inspur TS1000 HPC Server of Tsinghua University, several calculations have been done based on the EDF 3D Neutron Transport PWR Full-core benchmark through large-scale parallelism. To investigate and compare the results of the deterministic method and Monte Carlo method, EDF R&D and Department of Engineering Physics of Tsinghua University are having a collaboration to make code to code verification. So in this paper, two codes are used. One is the code COCAGNE developed by the EDF R&D, a deterministic core code, and the other is the Monte Carlo code RMC developed by Department of Engineering Physics in Tsinghua University. First, the full-core model is described and a 26-group calculation was performed by these two codes using the same 26-group cross-section library provided by EDF R&D. Then the parallel and tally performance of RMC is discussed. RMC employs a novel algorithm which can cut down most of the communications. It can be seen clearly that the speedup ratio almost linearly increases with the nodes. Furthermore the cell-mapping method applied by RMC consumes little time to tally even millions of cells. The results of the codes COCAGNE and RMC are compared in three ways. The results of these two codes agree well with each other. It can be concluded that both COCAGNE and RMC are able to provide 3D-transport solutions associated with detailed power density distributions calculation in PWR full-core reactors. Finally, to investigate how many histories are needed to obtain a given standard deviation for a full 3D solution, the non-symmetrized condensed 2-group fluxes of RMC are discussed.
Filippone, W.L.; Baker, R.S.
1990-12-31
The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S{sub N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S{sub N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S{sub N} is well suited for by themselves. The fully coupled Monte Carlo/S{sub N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S{sub N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S{sub N} region. The Monte Carlo and S{sub N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S{sub N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response matrices and volumetric sources, and linkage subrountines to carry out the interface flux iterations. The common angular boundary fluxes are included in the S{sub N} code as interior boundary sources, leaving the logic for the solution of the transport flux unchanged, while, with minor modifications, the diffusion synthetic accelerator remains effective in accelerating S{sub N} calculations. The special-purpose Monte Carlo routines used are essentially analog, with few variance reduction techniques employed. However, the routines have been successfully vectorized, with approximately a factor of five increase in speed over the non-vectorized version.
Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; ...
2015-09-21
Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less
NASA Astrophysics Data System (ADS)
Ding, M.; Hjelm, R.; Sussman, A. J.
2016-12-01
Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.
A White Beam Far-field Neutron Interferometer for Multi-scale Resolution of Porosity
NASA Astrophysics Data System (ADS)
Hussey, D. S.; Miao, H.; Anovitz, L. M.; Jacobson, D. L.; LaManna, J.; Wen, H.
2016-12-01
The pore structure of geological formations spans many decades of length scales, from the Angstrom to the kilometer. There are few probes which can assess characterize these structures simultaneously. We will present a demonstration of a new neutron phase imaging method that can provide quantitative, multi-scale images, addressing length scales from the nanometer to the centimeter. The phase imaging method is based on a far field interferometer that produces phase gradient and small-angle scattering images using a polychromatic neutron beam. The interferometer is based on the Moiré pattern of two phase modulating gratings which was previously realized in hard x-ray and visible light experiments. An important aspect of the method is the ability to tune the auto-correlation length of the interferometer by changing the separation of the two gratings, and thereby provides a measure of the real-space pair-correlation function, G(z), of the sample. As has been shown for other scattering methods, measures of G(z) can incorporate multiple scattering permitting the study of thick samples. As well, the method has the potential to enable tomographic reconstruction so that a fully 3D distribution of the microstructure can be measured. Multi-scale data from several core specimens will be presented showing the quantitative ability of the method.
NASA Astrophysics Data System (ADS)
Lösche, Matthias
2012-02-01
The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and
NASA Astrophysics Data System (ADS)
Steigies, C. T.
2016-12-01
Cosmic rays are routinely measured by standardized ground-based Neutron Monitors (NM) around the world. Stations provide measurements as 1-hour averages to the World-Data Center for Cosmic Rays, but most stations can also provide high-resolution measurements at 1-minute cadence. Measurements of one station provide information about the cosmic ray intensity over time at this location. By correcting the measurement for changes in atmospheric pressure, the intensity of the incoming radiation at the top of the atmosphere can be determined. Studying this time series gives information about long-term changes in the heliospheric environment (11 and 22 year solar cycles), as well as information on shorter (Forbush decrease, Fd) and impulsive (Ground Level Enhancement, GLE) events. Since the measurement of a NM is a cumulative measurement a single station can provide only limited information on the spectrum of the incoming radiation. The whole network of Neutron Monitors, however, can act as a large spectrometer. By combining the measurements of many NM stations, the direction and the spectrum of the incoming radiation can be modeled. With this method, high energy solar particle events (that lead to GLEs) and the precursors of Coronal Mass Ejections (CME, manifesting as a Fd) can be detected by the ground-based instruments before the lower energy particles can harm satellites or astronauts. These ALERT systems require the availability of NM data in real-time, which wass one of the goals of the NMDB project. The easy to use NEST interface (nest.nmdb.eu) to NMDB data allows everyone to plot and download data for all participating stations. Since the project started, not only space agencies and ALERT systems make use of the data, but NMDB has attracted several users outside the cosmic ray community. This data is now also used for example as reference value for soil humidity measurements with cosmic rays, or by the DHS for radiation monitors at border crossings, as well as for
Dioszegi, Istvan; Salwen, Cynthia; Vanier, Peter
2014-12-30
A .gamma.-radiation detection system that includes at least one semiconductor detector such as HPGe-Detector, a position-sensitive .alpha.-Detector, a TOF Controller, and a Digitizer/Integrator. The Digitizer/Integrator starts to process the energy signals of a .gamma.-radiation sent from the HPGe-Detector instantly when the HPGe-Detector detects the .gamma.-radiation. Subsequently, it is determined whether a coincidence exists between the .alpha.-particles and .gamma.-radiation signal, based on a determination of the time-of-flight of neutrons obtained from the .alpha.-Detector and the HPGe-Detector. If it is determined that the time-of-flight falls within a predetermined coincidence window, the Digitizer/Integrator is allowed to continue and complete the energy signal processing. If, however, there is no coincidence, the Digitizer/Integrator is instructed to be clear and reset its operation instantly.
A low resolution model for the chromatin core particle by neutron scattering
Suau, Pedro; Kneale, G.Geoff; Braddock, Gordon W.; Baldwin, John P.; Bradbury, E.Morton
1977-01-01
Neutron scattering studies have been applied to chromatin core particles in solution, using the contrast variation technique. On the basis of the contrast dependance of the radius of gyration and the radial distribution function it is shown that the core particle consists of a core containing most of the histone around which is wound the DNA helix,following a path with a mean radius of 4.5 nm,in association with a small proportion of the histones. Separation of the shape from the internal structure, followed by model calculations shows that the overall shape of the particle is that of a flat cylinder with dimensions ca. 11×11×6 nm. Further details of the precise folding of the DNA cannot be deduced from the data, but detailed model calculations support concurrent results from crystallographic studies25. Images PMID:593885
NASA Astrophysics Data System (ADS)
Seo, Gwang-Ho; Cho, Yang-Ki; Choi, Byoung-Ju
2014-02-01
High-resolution reanalysis of heat transport in the northwestern Pacific marginal seas was conducted for the period January 1980-December 2009 using ensemble Kalman filter. An ocean circulation model with a grid of 0.1 × 0.1° horizontal resolution and 20 vertical levels was used. Atmospheric forcing data from daily European Centre for Medium-Range Weather Forecasts were used in the ocean model. The assimilated data for the reanalysis were based on available observations of hydrographic profiles, including field surveys and Argo float and satellite-observed sea-surface temperature data. This study focused on mean and temporal variations in oceanic heat transport within the major straits among the marginal seas over 30 years. The mean heat transport in the Korea/Tsushima Strait and onshore transport across the shelf break in the East China Sea (ECS), Taiwan Strait, Tsugaru Strait, and Soya Strait were 182, 123, 82, 100, and 34 × 1012 W, respectively. The long-term trends in heat transport through the Korea/Tsushima Strait and Tsugaru Strait and onshore transport across the shelf break of the ECS were increasing, whereas the trend in heat transport through the Taiwan Strait was decreasing. There was little long-term change in heat transport in the Soya Strait. These long-term changes in heat transport through the Korea/Tsushima Strait, across the shelf of the ECS, and through the Taiwan Strait may be related to increased northeasterly wind stress in the ECS, which drives Ekman transport onto the shelf across the shelf break.
Modelling neutron transport in planetary media via analytical multigroup diffusion theory
NASA Astrophysics Data System (ADS)
Panfili, P.; Luciani, A.; Furfaro, R.; Ganapol, B. D.; Mostacci, D.
A novel analytical solution to the 1D, steady-state, multi-slab, multi-group diffusion equation is proposed as a mean to compute the energy-dependent galactic cosmic ray-induced neutron fluxes established in planetary media. More specifically, the proposed algorithm is implemented to allow fast and highly accurate determination of low-energy cosmic ray neutrons inside the Earth's surface and atmosphere. Two sets of experimental measurements have been considered to validate our model. In both cases, a good agreement between the calculated and observed neutron fluxes is achieved. Subsequently, neutron diffusion calculations have been performed for various Earth-based scenarios comprising (a) two-slab (air-soil) configuration and (b) three-slab (air-soil-ice) configuration to investigate the functional relationship between soil composition and neutron spatial distribution.
NASA Technical Reports Server (NTRS)
Cottam, J.
2007-01-01
Neutron stars were discovered almost 40 years ago, and yet many of their most fundamental properties remain mysteries. There have been many attempts to measure the mass and radius of a neutron star and thereby constrain the equation of state of the dense nuclear matter at their cores. These have been complicated by unknown parameters such as the source distance and burning fractions. A clean, straightforward way to access the neutron star parameters is with high-resolution spectroscopy. I will present the results of searches for gravitationally red-shifted absorption lines from the neutron star atmosphere using XMM-Newton and Chandra.
Imanaka, T
2001-09-01
A transport calculation of the neutrons leaked to the environment by the JCO criticality accident was carried out based on three-dimensional geometrical models of the buildings within the JCO territory. Our work started from an initial step to simulate the leakage process of neutrons from the precipitation tank, and proceeded to a step to calculate the neutron propagation throughout the JCO facilities. The total fission number during the accident in the precipitation tank was evaluated to be 2.5 x 10(18) by comparing the calculated neutron-induced activities per 235U fission with the measured values in a stainless-steel net sample taken 2 m from the precipitation tank. Shield effects by various structures within the JCO facilities were evaluated by comparing the present results with a previous calculation using two-dimensional models which suppose a point source of the fission spectrum in the air above the ground without any shield structures. The shield effect by the precipitation tank, itself, was obtained to be a factor of 3. The shield factor by the conversion building varied between 1.1 and 2, depending on the direction from the building. The shield effect by the surrounding buildings within the JCO territory was between I and 5, also depending on the direction.
Transport in fuel cells: Electrochemical impedance spectroscopy and neutron imaging studies
NASA Astrophysics Data System (ADS)
Aaron, Douglas Scott
This dissertation focuses on two powerful methods of performing in-situ studies of transport limitations in fuel cells. The first is electrochemical impedance spectroscopy (EIS) while the second is neutron imaging. Three fuel cell systems are studied in this work: polymer electrolyte membrane fuel cells (PEMFCs), microbial fuel cells (MFCs) and enzyme fuel cells (EFCs). The first experimental section of this dissertation focuses on application of EIS and neutron imaging to an operating PEMFC. The effects of cathode-side humidity and flow rate, as well as cell temperature and a transient response to cathode-side humidity, were studied for a PEMFC via EIS. It was found that increased air humidity in the cathode resulted in greatly reduced cathode resistance as well as a significant reduction in membrane resistance. The anode resistance was only slightly reduced in this case. Increased air flow rate was observed to have little effect on any resistance in the PEMFC, though slight reductions in both the anode and the cathode were observed. Increased cell temperature resulted in decreased cathode and anode resistances. Finally, the transient response to increased humidity exhibited unstable behavior for both the anode and the cathode resistances and the PEMFC power output. Neutron imaging allowed the calculation of water content throughout the PEMFC, showing a maximum in water content at the cathode gas diffusion layer - membrane interface. The second experimental section of this dissertation delves into the world of microbial fuel cells. Multiple long-term observations of changes in internal resistances were performed and illustrated the reduction in anode resistance as the bacterial community was established. Over this same time period, the cathode resistance was observed to have increased; these two phenomena suggest that the anode improved over time while the cathode suffered from degradation. Increased anode fluid ionic strength and flow rate both led to significant
NASA Astrophysics Data System (ADS)
Andreasen, Mie; Jensen, Karsten H.; Desilets, Darin; Zreda, Marek; Bogena, Heye R.; Looms, Majken C.
2017-04-01
Cosmic-ray neutron intensity is inversely correlated to all hydrogen present in the upper decimeters of the subsurface and the first few hectometers of the atmosphere above the ground surface. This correlation forms the base of the cosmic-ray neutron soil moisture estimation method. The method is, however, complicated by the fact that several hydrogen pools other than soil moisture affect the neutron intensity. In order to improve the cosmic-ray neutron soil moisture estimation method and explore the potential for additional applications, knowledge about the environmental effect on cosmic-ray neutron intensity is essential (e.g., the effect of vegetation, litter layer and soil type). In this study the environmental effect is examined by performing a sensitivity analysis using neutron transport modeling. We use a neutron transport model with various representations of the forest and different parameters describing the subsurface to match measured height profiles and time series of thermal and epithermal neutron intensities at a field site in Denmark. Overall, modeled thermal and epithermal neutron intensities are in satisfactory agreement with measurements; however, the choice of forest canopy conceptualization is found to be significant. Modeling results show that the effect of canopy interception, soil chemistry and dry bulk density of litter and mineral soil on neutron intensity is small. On the other hand, the neutron intensity decreases significantly with added litter-layer thickness, especially for epithermal neutron energies. Forest biomass also has a significant influence on the neutron intensity height profiles at the examined field site, altering both the shape of the profiles and the ground-level thermal-to-epithermal neutron ratio. This ratio increases with increasing amounts of biomass, and was confirmed by measurements from three sites representing agricultural, heathland and forest land cover. A much smaller effect of canopy interception on the ground
Quo vadis, carbon? High resolution tracing of xylem and phloem carbon transport and release in trees
NASA Astrophysics Data System (ADS)
Ingrisch, J.; Bloemen, J.; Bahn, M.
2016-12-01
Carbon (C) allocation defines the flows of C between plant organs, and between storage pools and metabolic processes and is therefore considered an important determinant of ecosystem C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported as sugars via the phloem to above- and below-ground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, above- and below-ground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a transport pathway opposite to the downward transport of sugars along the phloem. So far, it is unclear to what extent these transport pathways interact, for instance by lateral transport of C, and contribute to above- and belowground respiratory fluxes to the atmosphere. We performed a combined canopy and stem infusion 13C labeling study on six year old potted oak (Quercus rubra) trees to trace C transport along the phloem and xylem, respectively, in order to investigate the role of both transport pathways in C allocation. In addition, high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux were used to monitor the contribution of both pathways to respiratory fluxes. Additional tissue analysis was performed to analyze the occurrence of lateral transport of C between the phloem and xylem transport pathway. Our results will permit disentangling the contribution of metabolic versus xylem and phloem transport processes to stem and soil CO2 efflux and give insight into lateral C transport between xylem and phloem in trees.
Chen, Julian C.-H.; Fisher, Zoë; Kovalevsky, Andrey Y.; Mustyakimov, Marat; Hanson, B. Leif; Zhurov, Vladimir V.; Langan, Paul
2012-01-01
The room-temperature (RT) X-ray structure of H/D-exchanged crambin is reported at 0.85 Å resolution. As one of the very few proteins refined with anisotropic atomic displacement parameters at two temperatures, the dynamics of atoms in the RT and 100 K structures are compared. Neutron diffraction data from an H/D-exchanged crambin crystal collected at the Protein Crystallography Station (PCS) showed diffraction beyond 1.1 Å resolution. This is the highest resolution neutron diffraction reported to date for a protein crystal and will reveal important details of the anisotropic motions of H and D atoms in protein structures. PMID:22297981
Roberts, N J; Jones, L N; Liu, Z Z; Tagziria, H; Thomas, D J
2014-10-01
High-resolution neutron energy spectra, covering the entire energy range of interest, for two standard radionuclide neutron sources ((241)Am-B and (241)Am-F) have been derived from Bonner sphere measurements by using high-resolution a priori data in the unfolding process. In each case, two a priori spectra were used, one from a two-stage calculation and also one from a combination of the calculated spectrum with a high-resolution measured spectrum. The unfolded spectra are compared with those published elsewhere and show significant differences from the ISO- and IAEA-recommended spectra for (241)Am-B and (241)Am-F, respectively. Values for the fluence-average energy and fluence-to-dose-equivalent conversion coefficients are presented for the new spectra, and the implications of the new spectra for the emission rates of the sources when measured by the manganese bath technique are also determined. © Crown copyright 2013.
Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; McIntosh, Steven
2015-09-21
Ruddlesden-Popper structured oxides, general form A_{n+1}B_{n}O_{3n+1}, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo_{0.5}Fe_{0.5}O_{4-δ} (n = 1), La_{0.3}Sr_{2.7}CoFeO_{7-δ} (n = 2), and LaSr_{3}Co_{1.5}Fe_{1.5}O_{10-δ} (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO_{2} of 10^{-1} atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La_{0.3}Sr_{2.7}CoFeO_{7-δ} > LaSr_{3}Co_{1.5}Fe_{1.5}O_{10-δ} > LaSrCo_{0.5}Fe_{0.5}O_{4-δ}, following the trend predicted for charge compensation upon increasing Sr^{2+}/La^{3+} ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.
High Resolution Neutron Scattering Study of Ho2Ti2O7
NASA Astrophysics Data System (ADS)
Gardner, Jason
2010-03-01
I will review recent neutron scattering work on the pyrochlore oxides Ho2Ti2O7, looking at the slow spin dynamics in the system. For many years now, the nuclear spin system was held responsible for the persistent (electronic) spin dynamics in Ho2Ti2O7 at mK temperatures. We can now measure both spin systems directly with the improved signal to noise ratio seen at modern back scattering instrumentation. I hope to show this is not the case. To complicate the story further propagating magnetic ``monopoles'' have now been observed in this and other spin ice materials. I will comment on these exotic excitations and what our data can say about them. This work was performed in collaboration with Georg Ehlers and other at the SNS, in Oak Ridge. [4pt] [1] ``Direct observation of a nuclear spin excitation in Ho2Ti2O7'' G Ehlers, E Mamontov, M Zamponi, K C Kam and J S Gardner, Phys. Rev. Lett. 102, 016405 (2009). [0pt] [2] ``Observation of Magnetic Monopoles in Spin Ice'' Kadowaki et al., J. Phys. Soc Japan 78 103706 (2009) and Signature of magnetic monopole and Dirac string dynamics in spin ice'' Jaubert and Holdsworth, Nature Phys. 5, 258 (2009).
High temporal resolution tracing of up-and downward carbon transport in oak trees
NASA Astrophysics Data System (ADS)
Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael
2017-04-01
Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a secondary C flux of large magnitude. The relative magnitude of both fluxes in a same set of trees and their concurrent role in C allocation remains unclear. In this study, we 13C pulse labeled five year old potted oak (Quercus rubra) trees to investigate both the role of C transport via the phloem and xylem in C allocation. To this end trees were randomly assigned to two 13C labeling experiments: 1) a canopy labeling experiment using transparent canopy chambers and 2) a stem labeling experiment based on the infusion of 13C labeled water in the stem base. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux to monitor both the down-and upward transport of 13C label. Additional tissue samples at stem, canopy and root level were analyzed to validate the assimilation of the label in tree tissues during transport. Overall, after both labeling experiments enrichment was observed in both stem and soil CO2 efflux, showing that the 13C label was removed from both xylem and phloem transport during up- and downward transport, respectively. Higher enrichments of CO2 efflux were observed after stem labeling as compared to canopy labeling, which implies that xylem transport strongly contributes to C lost to the atmosphere. This study is the first to show combined results from tracing of xylem and phloem transport of C for a same set of trees at high temporal resolution using a
Thomas, Sarah A; Uhoya, Walter O; Tsoi, Georgiy M; Wenger, Lowell E; Vohra, Yogesh K; Chesnut, Gary N; Weir, Samuel T; Tulk, Christopher A; dos Santos, Antonio M
2012-05-30
Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Néel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.
Thomas, Sarah; Uhoya, Walter; Tsoi, Georgiy; Wenger, Lowell E; Vohra, Yogesh; Chesnut, Gary Neal; Weir, S. T.; Tulk, Christopher A; Moreira Dos Santos, Antonio F
2012-01-01
Neutron diffraction and electrical transport measurements have been made on the heavy rare earth metal holmium at high pressures and low temperatures in order to elucidate its transition from a paramagnetic (PM) to a helical antiferromagnetic (AFM) ordered phase as a function of pressure. The electrical resistance measurements show a change in the resistance slope as the temperature is lowered through the antiferromagnetic Neel temperature. The temperature of this antiferromagnetic transition decreases from approximately 122 K at ambient pressure at a rate of -4.9 K GPa(-1) up to a pressure of 9 GPa, whereupon the PM-to-AFM transition vanishes for higher pressures. Neutron diffraction measurements as a function of pressure at 89 and 110 K confirm the incommensurate nature of the phase transition associated with the antiferromagnetic ordering of the magnetic moments in a helical arrangement and that the ordering occurs at similar pressures as determined from the resistance results for these temperatures.
Bandini, B.R.; Baratta, A.J. ); Fricke, V.R. )
1988-06-01
Since the March 1979 accident, the source range monitors (SRMs) at Three Mile Island Unit 2 (TMI-2) have been reading several orders of magnitude higher than would be expected in a normal shutdown core. A study in which these anomalous SRM readings are analyzed and the cause determined is reported. Here, the DOT 4.3 two-dimensional transport code was used to simulate the SRM response and the response of an axial string of solid-state track recorders by modeling the neutronics of the damaged TMI-2 core. This modeling has indicated the presence of -- 10 tonnes of fuel material in the lower vessel plenum, a condition that was subsequently verified by direct observation. The computational model, the method of cross-section preparation, and an analysis of the various core neutron sources are described, as well as the results obtained from this effort.
High temporal resolution tracing of xylem CO2 transport in oak trees
NASA Astrophysics Data System (ADS)
Bloemen, Jasper; Ingrisch, Johannes; Bahn, Michael
2016-04-01
Carbon (C) allocation defines the flows of C between plant organs and their storage pools and metabolic processes and is therefore considered as an important determinant of forest C budgets and their responses to climate change. In trees, assimilates derived from leaf photosynthesis are transported via the phloem to above- and belowground sink tissues, where partitioning between growth, storage, and respiration occurs. At the same time, root- and aboveground respired CO2 can be dissolved in water and transported in the xylem tissue, thereby representing a C flux of large magnitude whose role in C allocation yet is unresolved. In this study, we infused 13C labeled water into the stem base of five year old potted oak (Quercus rubra) trees as a surrogate for respired CO2 to investigate the role of respired CO2 transport in trees in C allocation. We used high-resolution laser-based measurements of the isotopic composition of stem and soil CO2 efflux combined with stem gas probes to monitor the transport of 13C label. The high enrichment of the gas probes in the stem at the bottom of the canopy showed that the label was transported upwards from the base of the tree toward the top. During its ascent, the 13C label was removed from the transpiration stream and lost to the atmosphere at stem level, as was observed using the stem CO2 efflux laser-based measurements. This study is the first to show results from tracing xylem CO2 transport in trees at high temporal resolution using a 13C labeling approach. Moreover, they extend results from previous studies on internal CO2 transport in species with high transpiration rates like poplar to species with lower transpiration rates like oak. Internal transport of CO2 indicates that the current concepts of the tree C allocation need to be revisited, as they show that current gas exchange approach to estimating above- and belowground autotrophic respiration is inadequate.
NASA Astrophysics Data System (ADS)
Heller, A. K.; Brenizer, J. S.
Neutron radiography and its related two-dimensional (2D) neutron imaging techniques have been established as invaluable nondestructive inspection methods and quantitative measurement tools. They have been used in a wide variety of applications ranging from inspection of aircraft engine turbine blades to study of two-phase fluid flow in operating proton exchange membrane fuel cells. Neutron radiography is similar to X-ray radiography in that the method produces a 2D attenuation map of neutron radiation that has penetrated the object being examined. However, the images produced differ and are often complementary due to the differences between X-ray and neutron interaction mechanisms. The uses and types of 2D neutron imaging have expanded over the past 15 years as a result of advances in imaging technology and improvements in neutron generators/sources and computers. Still, high-intensity sources such as those from reactors and spallation neutron sources, together with conventional film radiography, remain the mainstay of high-resolution, large field-of-view neutron imaging. This chapter presents a summary of the history, methods, and related variations of neutron radiography techniques.
Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea
2014-01-01
Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. PMID:25189533
Highly parallel transport recordings on a membrane-on-nanopore chip at single molecule resolution.
Urban, Michael; Kleefen, Alexander; Mukherjee, Nobina; Seelheim, Patrick; Windschiegl, Barbara; Vor der Brüggen, Marc; Koçer, Armagan; Tampé, Robert
2014-03-12
Membrane proteins are prime drug targets as they control the transit of information, ions, and solutes across membranes. Here, we present a membrane-on-nanopore platform to analyze nonelectrogenic channels and transporters that are typically not accessible by electrophysiological methods in a multiplexed manner. The silicon chip contains 250,000 femtoliter cavities, closed by a silicon dioxide top layer with defined nanopores. Lipid vesicles containing membrane proteins of interest are spread onto the nanopore-chip surface. Transport events of ligand-gated channels were recorded at single-molecule resolution by high-parallel fluorescence decoding.
High resolution inventory of GHG emissions of the road transport sector in Argentina
NASA Astrophysics Data System (ADS)
Puliafito, Salvador Enrique; Allende, David; Pinto, Sebastián; Castesana, Paula
2015-01-01
Air quality models require the use of extensive background information, such as land use and topography maps, meteorological data and emission inventories of pollutant sources. This challenge increases when considering the vehicular sources. The available international databases have uneven resolution for all countries including some areas with low spatial resolution associated with large districts (several hundred km). A simple procedure is proposed in order to develop an inventory of emissions with high resolution (9 km) for the transport sector based on a geographic information system using readily available information applied to Argentina. The basic variable used is the vehicle activity (vehicle - km transported) estimated from fuel consumption and fuel efficiency. This information is distributed to a spatial grid according to a road hierarchy and segment length assigned to each street within the cell. Information on fuel is obtained from district consumption, but weighted using the DMSP-OLS satellite "Earth at night" image. The uncertainty of vehicle estimation and emission calculations was tested using sensitivity Montecarlo analysis. The resulting inventory is calibrated using annual average daily traffic counts in around 850 measuring points all over the country leading to an uncertainty of 20%. Uncertainties in the emissions calculation at pixel level can be estimated to be less than 12%. Comparison with international databases showed a better spatial distribution of greenhouse gases (GHG) emissions in the transport sector, but similar total national values.
Wang, C.L.
1985-06-19
A neutron detector of very high temporal resolution is described. It may be used to measure distributions of neutrons produced by fusion reactions that persist for times as short as about 50 picoseconds.
Filho, J. F. P.
2013-07-01
In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)
NASA Astrophysics Data System (ADS)
Everett, M.; Rawn, C.; Huq, A.; Chakoumakos, B. C.; Phelps, T. J.
2012-12-01
The exchange of CO2 for CH4 in natural gas hydrates could produce energy from untapped sources while at the same time sequestering CO2. In addition to the energy and environmental aspects the solid solution of (CH4)1-x(CO2)x 5.75H2O provides a framework inclusion structure that enables the scientific study of how two molecules that differ greatly in their bonding, shape, coordination and molecular weight can influence the structure and properties of the compound and interact with the framework that occludes the molecules. Samples synthesized by cooling liquid water pressurized with either pure CH4 or CO2 or mixtures of the two gases to temperatures where hydrate formation occurs have been studied using high-resolution neutron diffraction. Static images of the nuclear scattering density of the free moving gas molecules have been determined. Cage occupants and occupancies, the volume change of the unit cell and the individual cages based on composition have been determined.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2017-06-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2a p × 2a p × 4a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m ) aristotype through tetragonal (P4/mbm) and orthorhombic (Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S (Pmmn) phase, and the R (Pmmn or Pnma) and P (Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
NASA Technical Reports Server (NTRS)
Bogart, D. D.; Shook, D. F.; Fieno, D.
1973-01-01
Integral tests of evaluated ENDF/B high-energy cross sections have been made by comparing measured and calculated neutron leakage flux spectra from spheres of various materials. An Am-Be (alpha,n) source was used to provide fast neutrons at the center of the test spheres of Be, CH2, Pb, Nb, Mo, Ta, and W. The absolute leakage flux spectra were measured in the energy range 0.5 to 12 MeV using a calibrated NE213 liquid scintillator neutron spectrometer. Absolute calculations of the spectra were made using version 3 ENDF/B cross sections and an S sub n discrete ordinates multigroup transport code. Generally excellent agreement was obtained for Be, CH2, Pb, and Mo, and good agreement was observed for Nb although discrepancies were observed for some energy ranges. Poor comparative results, obtained for Ta and W, are attributed to unsatisfactory nonelastic cross sections. The experimental sphere leakage flux spectra are tabulated and serve as possible benchmarks for these elements against which reevaluated cross sections may be tested.
Košťál, Michal; Cvachovec, František; Milčák, Ján; Mravec, Filip
2013-05-01
The paper is intended to show the effect of a biological shielding simulator on fast neutron and photon transport in its vicinity. The fast neutron and photon fluxes were measured by means of scintillation spectroscopy using a 45×45 mm(2) and a 10×10 mm(2) cylindrical stilbene detector. The neutron spectrum was measured in the range of 0.6-10 MeV and the photon spectrum in 0.2-9 MeV. The results of the experiment are compared with calculations. The calculations were performed with various nuclear data libraries.
NASA Astrophysics Data System (ADS)
Bartkowiak, M.; Hofmann, T.; Stüßer, N.
2017-02-01
Energy resolution is an important design goal for time-of-flight instruments and neutron spectroscopy. For high-resolution applications, it is required that the burst times of choppers be short, going down to the μs-range. To produce short pulses while maintaining high neutron flux, we propose beam masks with more than two slits on a counter-rotating 2-disc chopper, behind specially adapted focusing multi-channel guides. A novel non-regular arrangement of the slits ensures that the beam opens only once per chopper cycle, when the masks are congruently aligned. Additionally, beam splitting and intensity focusing by guides before and after the chopper position provide high intensities even for small samples. Phase-space analysis and Monte Carlo simulations on examples of four-slit masks with adapted guide geometries show the potential of the proposed setup.
Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; Kovalevsky, Andrey Y; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Nix, Jay C; Coates, Leighton; Cuneo, Matthew J; Unkefer, Clifford J; Chen, Julian C-H
2017-05-23
A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. Both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). In the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND2 and ND(-), suggesting a role for the copper ion in shifting the pKa of the amino terminus.
Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...
2017-05-08
A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND2 and ND–, suggesting a role for the copper ion in shifting themore » pKa of the amino terminus.« less
White, Morgan C.
2000-07-01
The fundamental motivation for the research presented in this dissertation was the need to development a more accurate prediction method for characterization of mixed radiation fields around medical electron accelerators (MEAs). Specifically, a model is developed for simulation of neutron and other particle production from photonuclear reactions and incorporated in the Monte Carlo N-Particle (MCNP) radiation transport code. This extension of the capability within the MCNP code provides for the more accurate assessment of the mixed radiation fields. The Nuclear Theory and Applications group of the Los Alamos National Laboratory has recently provided first-of-a-kind evaluated photonuclear data for a select group of isotopes. These data provide the reaction probabilities as functions of incident photon energy with angular and energy distribution information for all reaction products. The availability of these data is the cornerstone of the new methodology for state-of-the-art mutually coupled photon-neutron transport simulations. The dissertation includes details of the model development and implementation necessary to use the new photonuclear data within MCNP simulations. A new data format has been developed to include tabular photonuclear data. Data are processed from the Evaluated Nuclear Data Format (ENDF) to the new class ''u'' A Compact ENDF (ACE) format using a standalone processing code. MCNP modifications have been completed to enable Monte Carlo sampling of photonuclear reactions. Note that both neutron and gamma production are included in the present model. The new capability has been subjected to extensive verification and validation (V&V) testing. Verification testing has established the expected basic functionality. Two validation projects were undertaken. First, comparisons were made to benchmark data from literature. These calculations demonstrate the accuracy of the new data and transport routines to better than 25 percent. Second, the ability to
Tuan, Han-Fang; Erskine, Peter; Langan, Paul; Cooper, Jon; Coates, Leighton
2007-12-01
Three data sets have been collected on endothiapepsin complexed with the gem-diol inhibitor PD-135,040: a high-resolution synchrotron X-ray data set, a room-temperature X-ray data set and a neutron diffraction data set. Until recently, it has been impossible to grow large protein crystals of endothiapepsin with any gem-diol inhibitor that are suitable for neutron diffraction. Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site.
Derrien, Herve; Leal, Luiz C; Larson, Nancy M
2009-01-01
The neutron resonance parameters of 238U were obtained from a SAMMY analysis of high-resolution neutron transmission measurements and high-resolution capture cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) in the years 1970-1990 and from more recent transmission and capture cross section measurements performed at the Geel Linear Accelerator (GELINA). Compared with previous evaluations, the energy range for this resonance analysis was extended from 10 to 20 keV, taking advantage of the high resolution of the most recent ORELA transmission measurements. The experimental database and the method of analysis are described in this report. The neutron transmissions and the capture cross sections calculated with the resonance parameters are compared with the experimental data. A description is given of the statistical properties of the resonance parameters and of the recommended values of the average parameters. The new evaluation results in a slight decrease of the effective capture resonance integral and improves the prediction of integral thermal benchmarks by 70 to 200 pcm.
Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu
2015-03-01
The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB(0,+), LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB(0,+) became significant at 1000 μM, accounting for 20-25% of the total BPA uptake in MCF-7 breast cancer cells. ATB(0,+), LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB(0,+), respectively, differentiate their roles in BPA uptake. ATB(0,+), as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose.
Tuan, Han-Fang; Erskine, Peter; Langan, Paul; Cooper, Jon; Coates, Leighton
2007-01-01
Endothiapepsin has been cocrystallized with the gem-diol inhibitor PD-135,040 in a low solvent-content (39%) unit cell, which is unprecedented for this enzyme–inhibitor complex and enables ultrahigh-resolution (1.0 Å) X-ray diffraction data to be collected. This atomic resolution X-ray data set will be used to deduce the protonation states of the catalytic aspartate residues. A room-temperature neutron data set has also been collected for joint refinement with a room-temperature X-ray data set in order to locate the H/D atoms at the active site. PMID:18084100
NASA Astrophysics Data System (ADS)
Alonso-Vargas, G.
A computer program has been developed which uses a technique of synthetic acceleration by diffusion by analytical schemes. Both in the diffusion equation as in that of transport, analytical schemes were used which allowed a substantial time saving in the number of iterations required by source iteration method to obtain the K(sub e)ff. The program developed ASD (Synthetic Diffusion Acceleration) by diffusion was written in FORTRAN and can be executed on a personal computer with a hard disc and mathematical O-processor. The program is unlimited as to the number of regions and energy groups. The results obtained by the ASD program for K(sub e)ff is nearly completely concordant with those obtained by utilizing the ANISN-PC code for different analytical type problems in this work. The ASD program allowed obtention of an approximate solution of the neutron transport equation with a relatively low number of internal reiterations with good precision. One of its applications would be in the direct determinations of axial distribution neutronic flow in a fuel assembly as well as in the obtention of the effective multiplication factor.
Neutron Imaging Reveals Internal Plant Hydraulic Dynamics
Warren, Jeffrey; Bilheux, Hassina Z; Kang, Misun; Voisin, Sophie; Cheng, Chu-Lin; Horita, Jusuke; Perfect, Edmund
2013-01-01
Many terrestrial ecosystem processes are constrained by water availability and transport within the soil. Knowledge of plant water fluxes is thus critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolution of root structure and xylem water transport dynamics has been a particularly daunting task for the ecologist. Through neutron imaging, we demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings growing in a sandy medium. Root structure and growth were readily imaged by neutron radiography and neutron computed tomography. Seedlings were irrigated with water or deuterium oxide and imaged through time as a growth lamp was cycled on to alter leaf demand for water. Sub-millimeter scale resolution reveals timing and magnitudes of root water uptake, redistribution within the roots, and root-shoot hydraulic linkages, relationships not well characterized by other techniques.
NASA Astrophysics Data System (ADS)
Bordallo, H. N.; Herwig, K. W.; Zsigmond, G.
2002-09-01
Using the Monte-Carlo simulation programs McStas and VITESS, we present the design principles of the proposed high-resolution inverse geometry spectrometer on the Spallation neutron source (SNS)—long wavelength target station (LWTS). LWTS will enable the combination of large energy and momentum transfer ranges with energy resolution. Indeed the resolution of this spectrometer lie between that routinely achieved by spin echo techniques and the design goal of the high-power target station (HPTS) backscattering spectrometer. This niche of energy resolution is interesting for the study of slow motions of large objects and we are led to the domain of large molecules—polymers and biological molecules.
Atomic resolution structure of the E. coli YajR transporter YAM domain
Jiang, Daohua; Zhao, Yan; Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei; Zhang, Xuejun C.
2014-07-25
Highlights: • We report the crystal structure of the YAM domain of YajR transporter at 1.07 Å. • The YAM dimerization is related to the halogen-dependent high thermal stability. • A belt of poly-pentagonal water molecules was observed in the dimer interface. - Abstract: YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration.
Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert
2016-08-16
Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different
NASA Astrophysics Data System (ADS)
Bergmann, Ryan
Graphics processing units, or GPUs, have gradually increased in computational power from the small, job-specific boards of the early 1990s to the programmable powerhouses of today. Compared to more common central processing units, or CPUs, GPUs have a higher aggregate memory bandwidth, much higher floating-point operations per second (FLOPS), and lower energy consumption per FLOP. Because one of the main obstacles in exascale computing is power consumption, many new supercomputing platforms are gaining much of their computational capacity by incorporating GPUs into their compute nodes. Since CPU-optimized parallel algorithms are not directly portable to GPU architectures (or at least not without losing substantial performance), transport codes need to be rewritten to execute efficiently on GPUs. Unless this is done, reactor simulations cannot take full advantage of these new supercomputers. WARP, which can stand for ``Weaving All the Random Particles,'' is a three-dimensional (3D) continuous energy Monte Carlo neutron transport code developed in this work as to efficiently implement a continuous energy Monte Carlo neutron transport algorithm on a GPU. WARP accelerates Monte Carlo simulations while preserving the benefits of using the Monte Carlo Method, namely, very few physical and geometrical simplifications. WARP is able to calculate multiplication factors, flux tallies, and fission source distributions for time-independent problems, and can run in both criticality or fixed source modes. WARP can transport neutrons in unrestricted arrangements of parallelepipeds, hexagonal prisms, cylinders, and spheres. WARP uses an event-based algorithm, but with some important differences. Moving data is expensive, so WARP uses a remapping vector of pointer/index pairs to direct GPU threads to the data they need to access. The remapping vector is sorted by reaction type after every transport iteration using a high-efficiency parallel radix sort, which serves to keep the
3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory
Ragusa, Jean; Bangerth, Wolfgang
2011-08-01
here explores the inverse problem of optical tomography applied to heterogeneous domains. The neutral particle transport equation was used as the forward model for how neutral particles stream through and interact within these heterogeneous domains. A constrained optimization technique that uses Newtons method served as the basis of the inverse problem. Optical tomography aims at reconstructing the material properties using (a) illuminating sources and (b) detector readings. However, accurate simulations for radiation transport require that the particle (gamma and/or neutron) energy be appropriate discretize in the multigroup approximation. This, in turns, yields optical tomography problems where the number of unknowns grows (1) about quadratically with respect to the number of energy groups, G, (notably to reconstruct the scattering matrix) and (2) linearly with respect to the number of unknown material regions. As pointed out, a promising approach could rely on algorithms to appropriately select a material type per material zone rather than G2 values. This approach, though promising, still requires further investigation: (a) when switching from cross-section values unknowns to material type indices (discrete integer unknowns), integer programming techniques are needed since derivative information is no longer available; and (b) the issue of selecting the initial material zoning remains. The work reported here proposes an approach to solve the latter item, whereby a material zoning is proposed using one-group or few-groups transport approximations. The capabilities and limitations of the presented method were explored; they are briefly summarized next and later described in fuller details in the Appendices. The major factors that influenced the ability of the optimization method to reconstruct the cross sections of these domains included the locations of the sources used to illuminate the domains, the number of separate experiments used in the reconstruction, the
Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea
2014-10-01
Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. © 2014 American Society of Plant Biologists. All Rights Reserved.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
The theory used in FASTER-III, a Monte Carlo computer program for the transport of neutrons and gamma rays in complex geometries, is outlined. The program includes the treatment of geometric regions bounded by quadratic and quadric surfaces with multiple radiation sources which have specified space, angle, and energy dependence. The program calculates, using importance sampling, the resulting number and energy fluxes at specified point, surface, and volume detectors. It can also calculate minimum weight shield configuration meeting a specified dose rate constraint. Results are presented for sample problems involving primary neutron, and primary and secondary photon, transport in a spherical reactor shield configuration.
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
Do, Changwoo; Lunkenheimer, Peter; Diddens, Diddo; Götz, Marion; Weiss, Matthias; Loidl, Alois; Sun, Xiao-Guang; Allgaier, Jürgen; Ohl, Michael
2013-07-05
The dynamics of Li(+) transport in polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imde mixtures are investigated by combining neutron spin-echo (NSE) and dielectric spectroscopy with molecular dynamics (MD) simulations. The results are summarized in a relaxation time map covering wide ranges of temperature and time. The temperature dependence of the dc conductivity and the dielectric α relaxation time is found to be identical, indicating a strong coupling between both. The relaxation times obtained from the NSE measurements at 0.05 Å(-1)transportation process is shown in which the PEO chain forms EO cages over several monomer units and the Li ion "jump" from cage to cage. The role of the backbone of the polymer is discussed and contributes signifcantly to the Li ion transportation process. Moreover, detailed characteristic length and time scales of the Li(+) transport process in this polymer electrolyte are identified and interpreted.
Modelling of the non-stationary thermal neutron transport in hydrogenous media using the MCNP code
NASA Astrophysics Data System (ADS)
Wiącek, Urszula
2006-06-01
The work is aimed to compare results of the Monte Carlo simulations of pulsed neutron experiments with results of real experiments. The simulations have been performed for homogenous and two-zone system. In the first case the cylinder of Plexiglas has been used. In two-zone systems, Plexiglas has been used as an outer moderator and aqueous solutions of H 3BO 3 or KCl of known concentrations have been used as the inner samples. The simulations have been performed (1) using for neutron scattering in Plexiglas a standard library for H in polyethylene (a commonly suggested way) and (2) using a modification of this library. The modification gives very good agreement between simulations and experimental results.
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.
Transport realization of high resolution fossil fuel CO2 emissions in an urban domain
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gurney, K. R.
2010-12-01
CO2 emissions from fossil fuel combustion are the largest net annual flux of carbon in the earth atmosphere system and energy consumption in urban environments is a major contributor to total fossil fuel CO2 emissions. Understanding how the emissions are transported in space and time, especially in urban environments and resolving contributions from individual sources of fossil-fuel CO2 emissions are an essential component of a complete reliable monitoring, reporting, and verification (MRV) system that are emerging at local, national, and international levels. As grid models are not designed to resolve concentrations on local scales, we tested the transport realization of fossil fuel CO2 emissions using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model, a commonly used transport algorithm for small domain air quality studies, in the greater Indianapolis region, USA. A typical 24-hour point, mobile, and area sources fossil fuel CO2 emissions in four seasons (spring, summer, autumn and winter) were processed from hourly emissions data and prepared at 500-meter spatial resolution for the model inputs together with other parameters. The simulation result provides a complete 4-dimensional concentration matrix transported from all sources for the urban domain which can be analyzed in order to isolate individual sources or test sampling strategies for verification at selected time periods. In addition, the urban 4-dimensional concentration matrix can be visualized in a virtual environment, which provides a powerful education and outreach platform for researchers, students, and public.
High resolution model studies of transport of sedimentary material in the south-western Baltic
NASA Astrophysics Data System (ADS)
Seifert, Torsten; Fennel, Wolfgang; Kuhrts, Christiane
2009-02-01
The paper presents high resolution model simulations of transport, deposition and resuspension of sedimentary material in the south-western Baltic, based on an upgrade of the sediment transport model described in the work of Kuhrts et al. [Kuhrts, C., Fennel, W., Seifert, T., 2004. Model studies of transport of sedimentary material in the Western Baltic. Journal of Marine Systems 52, 167.]. In the western Baltic, a grid spacing of at least 1 nautical mile is required to resolve the shallow and narrow bathymetry and the associated current patterns. A series of experimental model simulations is carried out with forcing data for the year 1993, which include a sequence of storms in January. Compared to earlier model versions, a more detailed description of potential deposition areas can be provided. The study quantifies the influence of enhanced bottom roughness caused by biological structures, like mussels and worm holes, provides estimates of the regional erosion risks for fine grained sediments, and analyses scenarios of the settling and spreading of material at dumping sites. Although the effects of changed bottom roughness, as derived from more detailed, re-classified sea floor data, are relatively small, the sediment transport and deposition patterns are clearly affected by the variation of the sea bed properties.
Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator
Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.
1984-01-01
A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.
NASA Astrophysics Data System (ADS)
Dogan Diker, Mine
Aquifers are the primary sources of clean drinking water. Pollution in aquifers is one of the most challenging and important environmental problems. It is not only extremely complex to map but also difficult to remediate. Flow and transport of water and pollutants in porous media requires detailed characterization of the properties of the media. The main property which controls the flow and transport is hydraulic conductivity (K), which can be defined as the ability of the media to let the water flow through. Intensive studies to map the distribution of hydraulic conductivity are necessary to model the plume migration. Conventional in-situ aquifer characterization techniques are invasive and lack the necessary high resolution. Therefore, novel methods are required to improve the methods to monitor and simulate the flow and transport through aquifers. This study introduces a combination of novel techniques to provide the necessary information related to porous media. The proposed method was tested at a highly heterogeneous site called the Macro Dispersion Experiment (MADE) site in Mississippi. The MADE site is a very well studied site where several large scale tracer tests were conducted in the 1980s and 1990s. The tracers used for these tests were monitored using more than 300 multi-level sampler (MLS) wells. Concentration measurements showed that the majority of the mass stayed near the injection area, whereas minute concentrations were measured further down-gradient. This behavior is significantly different from the simulations created using models based on the Advection-Dispersion Equation (ADE). This behavior and the inability to explain this using most models has led to a major debate in the hydrologic science community. The hypothesis of this study is that the ADE based models can reproduce simulations of the measured transport when the models are parameterized with sufficient high-resolution hydraulic conductivity data. Two novel high resolution
NASA Technical Reports Server (NTRS)
Ghorai, S. K.
1983-01-01
The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.
NASA Astrophysics Data System (ADS)
Košťál, Michal; Milčák, Ján; Cvachovec, František; Jánský, Bohumil; Rypar, Vojtěch; Juříček, Vlastimil; Novák, Evžen; Egorov, Alexander; Zaritskiy, Sergey
2016-02-01
A set of benchmark experiments was carried out in the full scale VVER-1000 mock-up on the reactor LR-0 in order to validate neutron transport calculation methodologies and to perform the optimization of the shape and locations of neutron flux operation monitors channels inside the shielding of the new VVER-1000 type reactors. Compared with previous experiments on the VVER-1000 mock-up on the reactor LR-0, the fast neutron spectra were measured in the extended neutron energy interval (0.1-10 MeV) and new calculations were carried out with the MCNPX code using various nuclear data libraries (ENDF/B VII.0, JEFF 3.1, JENDL 3.3, JENDL 4, ROSFOND 2009, and CENDL 3.1). Measurements and calculations were carried out at different points in the mock-up. The calculation and experimental data are compared.
NASA Astrophysics Data System (ADS)
Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William
2017-10-01
We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.
NASA Astrophysics Data System (ADS)
Mantzius Hansen, Kaj
2010-05-01
We have investigated the importance of spatial resolution for the performance of the Danish Eulerian Hemispheric Model (DEHM), a state-of-the-art atmospheric chemistry-transport model covering the majority of the Northern Hemisphere with a horizontal grid resolution of 150 km X 150 km. DEHM has 29 vertical layers in terrain-following sigma-coordinates extending up to a height of 100 hPa. Two-way nesting options with a nesting factor of three can be applied with higher resolution over a limited area of the model. At present the model can be run without nests or with one, two or three nests, each with resolutions of 50 km X 50 km, 16.7 km X 16.7 km, and 5.6 km X 5.6 km, respectively. The model includes a comprehensive chemistry scheme with more than 100 reactions and 67 atmospheric constituents, of which 4 relate to primary particulates (PM2.5, PM10, TSP and sea salt), other species are SOx, NOx, NHx, VOCs, and secondary inorganic particulates. DEHM is driven by meteorological data from the numerical weather prediction model MM5v3. Three simulations were performed with DEHM: one simulation with only the mother domain, one simulation with one nest over Europe, and one simulation with an additional nest covering Denmark and surrounding countries. All three simulations cover the period from 1989 to 2006. The predicted concentrations were evaluated against measurements from the EMEP monitoring network. Only sites within the innermost nest were included in the evaluation and the evaluations of the three simulations were compared to test the influence of spatial resolution on the performance of the model.
McCall, R.C.
1981-01-01
Methods of neutron detection and measurement are discussed. Topics include sources of neutrons, neutrons in medicine, interactions of neutrons with matter, neutron shielding, neutron measurement units, measurement methods, and neutron spectroscopy. (ACR)
Chatani, K. )
1992-08-01
This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.
NAGAYA, YASANOBU
2008-02-29
Version 00 (1) Problems to be solved: MVP/GMVP II can solve eigenvalue and fixed-source problems. The multigroup code GMVP can solve forward and adjoint problems for neutron, photon and neutron-photon coupled transport. The continuous-energy code MVP can solve only the forward problems. Both codes can also perform time-dependent calculations. (2) Geometry description: MVP/GMVP employs combinatorial geometry to describe the calculation geometry. It describes spatial regions by the combination of the 3-dimensional objects (BODIes). Currently, the following objects (BODIes) can be used. - BODIes with linear surfaces : half space, parallelepiped, right parallelepiped, wedge, right hexagonal prism - BODIes with quadratic surface and linear surfaces : cylinder, sphere, truncated right cone, truncated elliptic cone, ellipsoid by rotation, general ellipsoid - Arbitrary quadratic surface and torus The rectangular and hexagonal lattice geometry can be used to describe the repeated geometry. Furthermore, the statistical geometry model is available to treat coated fuel particles or pebbles for high temperature reactors. (3) Particle sources: The various forms of energy-, angle-, space- and time-dependent distribution functions can be specified. See Abstract for more detail.
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; ...
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function ofmore » pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.« less
Thomas, Sarah; Montgomery, Jeffrey M; Tsoi, Georgiy; Vohra, Yogesh; Chesnut, Gary Neal; Weir, S. T.; Tulk, Christopher A; Moreira Dos Santos, Antonio F
2013-01-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare-earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic (FM) order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the FM Curie temperature. The temperature of this FM transition decreases at a rate of-16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of FM order is suppressed. The neutron diffraction measurements as a function of pressure at temperatures ranging from 90 to 290 K confirm that the change of slope in the resistance is associated with the FM ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. A disappearance of FM ordering was observed as the pressure is increased above 3.6 GPa and is correlated with the phase transition from the ambient hexagonal close packed structure to an -Sm-type structure at high pressures.
Thomas, Sarah A.; Montgomery, Jeffrey M.; Tsoi, Georgiy M.; Vohra, Yogesh K.; Chesnut, Gary N.; Weir, Samuel T.; Tulk, Christopher A.; dos Santos, Antonio M.
2013-06-11
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate the onset of ferromagnetic order as a function of pressure. The electrical resistance measurements show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of this ferromagnetic transition decreases from approximately 240 K at ambient pressure at a rate of –16.7 K/GPa up to a pressure of 3.6 GPa, at which point the onset of ferromagnetic order is suppressed. Neutron diffraction measurements as a function of pressure at temperatures ranging from 90 K to 290 K confirm that the change of slope in the resistance is associated with the ferromagnetic ordering, since this occurs at pressures similar to those determined from the resistance results at these temperatures. Furthermore, a change in ferromagnetic ordering as the pressure is increased above 3.6 GPa is correlated with the phase transition from the ambient hexagonal close packed (hcp) structure to an α-Sm type structure at high pressures.
Analysis of subgrid-scale vertical transport in convective boundary layers at gray-zone resolutions
NASA Astrophysics Data System (ADS)
Shin, Hyeyum Hailey; Hong, Song-You
2013-04-01
The gray zone of a physics process in numerical models is defined as the range of model resolution in which the process is partly resolved by model dynamics and partly parameterized. In this study, we examine the effects of grid size on resolved and parameterized vertical transport for horizontal grid scales including the gray zone. To assess how stability alters the dependency on grid size, four convective boundary layer (CBL)s with different surface heating and geostrophic winds are considered. For this purpose, reference data for grid-scale (GS) and subgrid-scale (SGS) fields are constructed for 50-4000 mesh sizes by filtering 25-m large-eddy simulations (LES) data. As wind shear becomes stronger, turbulent kinetic energy and the vertical transport of potential temperature and momentum are more resolved for a given grid spacing. A passive scalar with bottom-up diffusion behaves in a similar fashion. For a top-down diffusion scalar, the cospectral peak scale of the scalar flux is larger than the horizontal size of the thermals and increases in time. For the scalar, the entrainment ratio, in conjunction with the shear, influences the mesh-size dependency of GS and SGS transport. The total vertical transport of heat and the bottom-up scalar is decomposed into a non-local mixing owing to the coherent structures and remaining local mixing. The contribution of the resolved parts is larger when roll-like structures are present than when only thermals exist, for both non-local and local fluxes. The grid-size dependency of the non-local flux and its sensitivity to stability predominantly determines the dependency of total (non-local plus local) transport.
NASA Astrophysics Data System (ADS)
Sutter, P.; Sutter, E.; Ohno, T. R.
2004-03-01
We demonstrate a spectroscopic technique based on scanning tunneling microscopy that provides high-resolution maps of local carrier transport across contacts to polycrystalline thin-film solar cells. Using this technique, preferential transport channels across a p+-ZnTe/p-CdTe back contact of a p-CdTe/n-CdS solar cell are imaged with 20 nm spatial resolution. Transport across this contact is highly nonuniform. Large areas of high resistance coexist with nanoscale low-resistance regions that are strongly correlated with grain boundaries in the CdTe absorber. These results suggest an important role of grain boundaries as near-contact conducting channels.
Neutron-neutron and neutron-photon correlations with FREYA
NASA Astrophysics Data System (ADS)
Vogt, R.; Randrup, J.
2017-09-01
For many years, the state of the art for modeling fission in radiation transport codes has involved sampling from average distributions. However, in a true fission event, the energies, momenta and multiplicities of emitted particles are correlated. The FREYA (Fission Reaction Event Yield Algorithm) code generates complete fission events. Event-by-event techniques such as those of FREYA are particularly useful because it is possible to obtain complete kinematic information on the prompt neutrons and photons emitted during the fission process. It is therefore possible to extract any desired correlation observables. We describe FREYA and compare our results with neutron-neutron, neutron-light fragment and neutron-photon correlation data.
Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E
2015-01-01
Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).
O'Brien, S.; Azmy, Y. Y.
2013-07-01
When calculating numerical solutions of the neutron transport equation it is important to have a measure of the accuracy of the solution. As the true solution is generally not known, a suitable estimation of the error must be made. The steady state transport equation possesses discretization errors in all its independent variables: angle, energy and space. In this work only spatial discretization errors are considered. An exact transport solution, in which the degree of regularity of the exact flux across the singular characteristic is controlled, is manufactured to determine the numerical solutions true discretization error. This solution is then projected onto a Legendre polynomial space in order to form an exact solution on the same basis space as the numerical solution, Discontinuous Galerkin Finite Element Method (DGFEM), to enable computation of the true error. Over a series of test problems the true error is compared to the error estimated by: Ragusa and Wang (RW), residual source (LER) and cell discontinuity estimators (JD). The validity and accuracy of the considered estimators are primarily assessed by considering the effectivity index and global L2 norm of the error. In general RW excels at approximating the true error distribution but usually under-estimates its magnitude; the LER estimator emulates the true error distribution but frequently over-estimates the magnitude of the true error; the JD estimator poorly captures the true error distribution and generally under-estimates the error about singular characteristics but over-estimates it elsewhere. (authors)
Cullen, D.E
2000-11-22
TART2000 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input Preparation, running Monte Carlo calculations, and analysis of output results. TART2000 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART2000 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART2000 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART2000 and its data files.
Cullen, D E
1998-11-22
TART98 is a coupled neutron-photon, 3 Dimensional, combinatorial geometry, time dependent Monte Carlo radiation transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART98 is also incredibly FAST; if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system can save you a great deal of time and energy. TART98 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART98 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART98 and its data files.
Mechanistic picture for conformational transition of a membrane transporter at atomic resolution.
Moradi, Mahmoud; Tajkhorshid, Emad
2013-11-19
During their transport cycle, ATP-binding cassette (ABC) transporters undergo large-scale conformational changes between inward- and outward-facing states. Using an approach based on designing system-specific reaction coordinates and using nonequilibrium work relations, we have performed extensive all-atom molecular dynamics simulations in the presence of explicit membrane/solvent to sample a large number of mechanistically distinct pathways for the conformational transition of MsbA, a bacterial ABC exporter whose structure has been solved in multiple functional states. The computational approach developed here is based on (i) extensive exploration of system-specific biasing protocols (e.g., using collective variables designed based on available low-resolution crystal structures) and (ii) using nonequilibrium work relations for comparing the relevance of the transition pathways. The most relevant transition pathway identified using this approach involves several distinct stages reflecting the complex nature of the structural changes associated with the function of the protein. The opening of the cytoplasmic gate during the outward- to inward-facing transition of apo MsbA is found to be disfavored when the periplasmic gate is open and facilitated by a twisting motion of the nucleotide-binding domains that involves a dramatic change in their relative orientation. These results highlight the cooperativity between the transmembrane and the nucleotide-binding domains in the conformational transition of ABC exporters. The approach introduced here provides a framework to study large-scale conformational changes of other membrane transporters whose computational investigation at an atomic resolution may not be currently feasible using conventional methods.
Performance tests on PNL`s transportable neutron/gamma waste assay system
Haggard, D.L.; Davidson, D.; Lemons, C.J.
1995-12-31
Battelle Pacific Northwest Laboratory, in conjunction with Canberra Industries, has implemented a 55-gallon drum waste assay system. The single system unit consists of a combined segmented gamma assay system and a neutron assay system. The unit is designed to function either in the laboratory or in a mobile trailer. The system is on wheels and can be moved through standard double doors. The gamma system uses an HPGe detector with a Se-75 source for transmission corrections. The neutron detector uses 40 He-3 detectors connected to a JSR-12 neutron coincidence counter. The system`s software is unique and is interactive with the user; it features a menu driven operator screen from which all functions regarding operations and calibrations can be selected. Single or combined assays with various setups, including containers smaller than 55 gallons, may be performed. The software and analysis is designed for unknown waste contents, but allows input of waste stream information prior to assay. The system was originally designed for safeguards` MC&A requirements and has enough sensitivity to determine whether a drum is TRU or LLW in one assay pass. Typical counting times are approximately 1800 seconds for a dual pass. Preliminary testing of the system with the available Pu standards has shown the system will perform to the required levels stated in the Data Quality Objectives of the WIPP Performance Demonstration program. An overall study of the system is underway to determine the lower limit of detection (LLD) for different isotopes, to best utilize the combined assay results, and to apply the appropriate data corrections for more complete answers, such as corrections for the end effects. Results from these developments will be presented at the conference.
High resolution direct upscaling of flow and reactive transport: bridging the continuum gap
NASA Astrophysics Data System (ADS)
Engdahl, N. B.; Fogg, G. E.
2010-12-01
Upscaling of flow and transport systems at any scale has been a significant challenge to modern hydrogeology. There is still great uncertainty in the validity of assumptions made during the upscaling process, particularly for reactive transport where locally unresolved concentration distributions can strongly control contaminant fate. Pore-scale modeling may provide a means of investigating the problem, but conventional pore scale models fail to represent the broad range (clay to sand/gravel) of pore sizes in typical geologic media. We present a modeling framework capable of explicitly modelling nearly all of the pore-scale heterogeneities that are believed to influence flow and transport. This framework has pore-scale resolution but the final simulation domain will be the size of a small laboratory column experiment (20cm length) enabling us to compare the detailed pore-scale parameter fields directly to their upscaled equivalents. Knowledge of the complete parameter field allows explicit volume averaging to be done which will permit us to investigate the validity of many of the assumptions commonly invoked when upscaling. The simulations will balance model size, resolution, and a realistic representation of the media using a triple continuum domain which includes: (1) open pore space flows through granular material, (2) Darcy flow through finer material (silt and clay), and (3) immobile diffusion regions within grains. The domains will be directly coupled and solved simultaneously using the Lattice-Boltzmann method which we are optimizing to run on graphical processing unit enabled computers. In addition to flow and passive transport, we will add the ability to simulate any number of reactions in any of the domains for which the mechanics of the reaction are defined. We will also be able to selectively volume average the different domains to determine the mobile and immobile portions of the complete parameter distributions. These models will help us to determine
Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2
Hong, S. G.; Kim, K. S.; Cho, J. Y.; Lee, K. H.
2012-07-01
KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)
NASA Astrophysics Data System (ADS)
Martinez-Carranza, J.; Falaggis, K.; Kozacki, T.
2016-03-01
Quantitative Phase Imaging based on the Transport of Intensity Equation (TIE) has shown to be a practical tool for retrieving the phase information of biological and technical samples. When recovering the phase information with the TIE, the maximum lateral resolution that can be obtained is limited by the numerical aperture (NA) of the optical system. In order to overcome this limitation, a system that combines structured illumination and TIE-like techniques have been proposed. These methodologies enlarge synthetically the NA of the optical system, and thus, the lateral resolution of the retrieved phase can be improved. However, the employment of structured illumination may bring error amplifications in the retrieved phase due to its sensitiveness to phase discontinuities and shot noise. In this work, we propose a new methodology that improves the lateral resolution of the retrieved phase beyond the diffraction limit avoiding the problems related with the structured illumination. The methodology presented here uses tilted illumination and a TIE solver. We show that when using this configuration, we can extend the set of recovered frequencies by adjusting the angle of the tilted wave-front. Further, our methodology is designed to extend the NA by employing less tilted angles than other similar techniques. Hence, the final retrieved phase will have an enhanced lateral resolution without amplifying the numerical errors and employing a few tilted angles. Moreover, we show that the algorithm presented here can be combined with other TIE algorithms that are used for suppressing the Low Frequency Artifacts (LFAs) usually present when using TIE based techniques.
Wang, Ching L.
1983-09-13
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Wang, C.L.
1981-05-14
Apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon.
Wang, C.L.
1983-09-13
Disclosed is an apparatus for improved sensitivity and time resolution of a neutron measurement. The detector is provided with an electrode assembly having a neutron sensitive cathode which emits relatively low energy secondary electrons. The neutron sensitive cathode has a large surface area which provides increased sensitivity by intercepting a greater number of neutrons. The cathode is also curved to compensate for differences in transit time of the neutrons emanating from the point source. The slower speeds of the secondary electrons emitted from a certain portion of the cathode are matched to the transit times of the neutrons impinging thereupon. 4 figs.
WHIST transport analysis of high neutron production, ICRH heated, pellet fueled jet plasmas
Houlberg, W.A.; Milora, S.L.; Tolliver, J.S.; Phillips, C.K.
1988-01-01
The WHIST 1-1/2-D predictive transport code is used to model the particle and energy transport of JET pellet-fueled, ICRH-heated plasmas. Pellet injection during the current rise phase was used to produce strong central peaking of the particle density followed by central ICRH heating and led to transient period of enhanced confinement. The evolution of the density profile as well as the electron and ion temperature profiles and strong ICRH heating conditions are examined during this period of enhanced confinement in the context of models for particle and energy transport. Because WHIST is a predictive transport code, it requires models for particle and energy sources and transport coefficients. The analysis procedure thus consists of modeling the particle source terms (pellets, gas, and recycled neutrals), energy source terms (ohmic and ICRH heating), and energy loss terms (primarily radiation), and varying the transport models until the best qualitative and quantitative agreement is obtained between calculated and observed quantities. We find that plasma behavior is well described during the first second of ICRH heating following pellet injection by the same transport coefficients that describe the ohmic plasma. The distinction between electron and ion thermal losses depends on the relative heating rates of electrons and ions as determined by the ICRH model, as well as the radiation losses. 10 refs., 4 figs.
On the emissions and transport of bromoform: sensitivity to model resolution and emission location
NASA Astrophysics Data System (ADS)
Russo, M. R.; Ashfold, M. J.; Harris, N. R. P.; Pyle, J. A.
2015-12-01
Bromoform (CHBr3) is a short-lived species with an important but poorly quantified ocean source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid, deep convective lifting, from where it can influence the global stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealized CHBr3 emission fields (one coastal, one uniformly distributed across the oceans) implemented in high- and coarse-resolution (HR and CR) versions of the same global model and focus on February as the period of peak convection in the West Pacific. Using outgoing long-wave radiation and precipitation as metrics, the HR version of the model is found to represent convection better. In the more realistic HR model version, the coastal emission scenario leads to 15-20 % more CHBr3 in the global TTL, and up to three times more CHBr3 in the TTL over the Maritime Continent, than when uniform emissions of the same tropical magnitude are employed. Using the uniform emission scenario in both model versions, the distribution of CHBr3 at 15.7 km (approximately the level of zero net radiative heating) is qualitatively consistent with the differing geographic distributions of convection. However, averaged over the whole tropics, the amount of CHBr3 in the TTL in the two model versions is similar. Using the coastal scenario, in which emissions are particularly high in the Maritime Continent because of its long coastlines, the mixing ratio of CHBr3 in the TTL is enhanced over the Maritime Continent in both model versions. The enhancement is larger, and the peak in CHBr3 mixing ratio occurs at a higher altitude, in the HR model version. Our regional-scale results indicate that using aircraft measurements and coarse global models to infer CHBr3 emissions will be very difficult, particularly if (as is possible) emissions are distributed
On the emissions and transport of bromoform: sensitivity to model resolution and emission location
NASA Astrophysics Data System (ADS)
Russo, M. R.; Ashfold, M. J.; Harris, N. R. P.; Pyle, J. A.
2015-07-01
Bromoform (CHBr3) is a short-lived species with an important but poorly quantified ocean source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid, deep convective lifting, from where it can influence the global stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealised CHBr3 emission fields (one coastal, one uniformly distributed across the oceans) implemented in high and coarse resolution (HR and CR) versions of the same global model and focus on February as the period of peak convection in the West Pacific. Using outgoing long-wave radiation and precipitation as metrics, the HR version of the model is found to represent convection better. In the more realistic HR model version, the coastal emission scenario leads to 15-20 % more CHBr3 in the global TTL, and up to three times more CHBr3 in the TTL over the Maritime Continent, than when uniform emissions of the same tropical magnitude are employed. Using the uniform emission scenario in both model versions, the distribution of CHBr3 at 15.7 km (approximately the level of zero net radiative heating) is qualitatively consistent with the differing geographic distributions of convection. However, averaged over the whole tropics, the amount of CHBr3 in the TTL in the two model versions is similar. Using the coastal scenario, in which emissions are particularly high in the Maritime Continent because of its long coastlines, the mixing ratio of CHBr3 in the TTL is enhanced over the Maritime Continent in both model versions. The enhancement is larger, and the peak in CHBr3 mixing ratio occurs at a higher altitude, in the HR model version. Our regional-scale results indicate that using aircraft measurements and coarse global models to infer CHBr3 emissions will be very difficult, particularly if (as is possible) emissions are distributed
NASA Astrophysics Data System (ADS)
Yin, Yu-Hsuan; Shyu, J. Bruce H.
2017-04-01
In recent years, spatial information with high resolution and accuracy have become widely available, thanks to the rapid technological developments. Such data have been applied in a variety of topics, including the digitization and monitoring of outcrops and the construction of digital elevation models (DEMs) of landscapes. In fluvial geomorphology, it is critical to understand the sediment transport and erosional processes of bedrock channels, but previously this is generally done using computer numerical simulations or minimized experiments. Therefore, this study intends to observe in situ fluvial sediment transport and erosional processes using terrestrial laser scanning (also called "ground LiDAR") and structure-from-motion (SfM) photogrammetry in a mountain bedrock channel in eastern Taiwan. Along the Swallow Grotto (Yanzikou) section of the Liwu River, there are many large boulders with different sizes that are up to more than ten meters. Most of these boulders came from rock fall events of a nearby tributary, and are gneiss in composition, distinctively different from the bedrock of the river channel (marble). Thus in this study, we chose these boulders as our survey targets. We applied ground LiDAR survey to observe the movement of the boulders, and to understand the transportation threshold of sediments under different flow conditions. For those giant boulders that do not seem to be moveable under regular fluvial conditions, we suspect that bedrock erosional processes apply to them. We then used SfM photogrammetry to monitor the erosion of particular boulders. By constructing 3D models of the boulders before and after flooding events, we will be able to analyze the amount and location of erosion occurred on the boulders. Combining these different datasets and results, we hope to further understand the sediment transport and erosional processes of bedrock channels.
Chang, B
2004-03-22
This paper contains three analytical solutions of transport problems which can be used to test ray-effect errors in the numerical solutions of the Boltzmann Transport Equation (BTE). We derived the first two solutions and the third was shown to us by M. Prasad. Since this paper is intended to be an internal LLNL report, no attempt was made to find the original derivations of the solutions in the literature in order to cite the authors for their work.
Multi-core performance studies of a Monte Carlo neutron transport code
Siegel, A. R.; Smith, K.; Romano, P. K.; Forget, B.; Felker, K. G.
2013-07-14
Performance results are presented for a multi-threaded version of the OpenMC Monte Carlo neutronics code using OpenMP in the context of nuclear reactor criticality calculations. Our main interest is production computing, and thus we limit our approach to threading strategies that both require reasonable levels of development effort and preserve the code features necessary for robust application to real-world reactor problems. Several approaches are developed and the results compared on several multi-core platforms using a popular reactor physics benchmark. A broad range of performance studies are distilled into a simple, consistent picture of the empirical performance characteristics of reactor Monte Carlo algorithms on current multi-core architectures.
NASA Astrophysics Data System (ADS)
Shi, Xue-Ming; Peng, Xian-Jue
2016-09-01
Fusion science and technology has made progress in the last decades. However, commercialization of fusion reactors still faces challenges relating to higher fusion energy gain, irradiation-resistant material, and tritium self-sufficiency. Fusion Fission Hybrid Reactors (FFHR) can be introduced to accelerate the early application of fusion energy. Traditionally, FFHRs have been classified as either breeders or transmuters. Both need partition of plutonium from spent fuel, which will pose nuclear proliferation risks. A conceptual design of a Fusion Fission Hybrid Reactor for Energy (FFHR-E), which can make full use of natural uranium with lower nuclear proliferation risk, is presented. The fusion core parameters are similar to those of the International Thermonuclear Experimental Reactor. An alloy of natural uranium and zirconium is adopted in the fission blanket, which is cooled by light water. In order to model blanket burnup problems, a linkage code MCORGS, which couples MCNP4B and ORIGEN-S, is developed and validated through several typical benchmarks. The average blanket energy Multiplication and Tritium Breeding Ratio can be maintained at 10 and 1.15 respectively over tens of years of continuous irradiation. If simple reprocessing without separation of plutonium from uranium is adopted every few years, FFHR-E can achieve better neutronic performance. MCORGS has also been used to analyze the ultra-deep burnup model of Laser Inertial Confinement Fusion Fission Energy (LIFE) from LLNL, and a new blanket design that uses Pb instead of Be as the neutron multiplier is proposed. In addition, MCORGS has been used to simulate the fluid transmuter model of the In-Zinerater from Sandia. A brief comparison of LIFE, In-Zinerater, and FFHR-E will be given.
Bergmann, Ryan M.; Rowland, Kelly L.; Radnović, Nikola; ...
2017-05-01
In this companion paper to "Algorithmic Choices in WARP - A Framework for Continuous Energy Monte Carlo Neutron Transport in General 3D Geometries on GPUs" (doi:10.1016/j.anucene.2014.10.039), the WARP Monte Carlo neutron transport framework for graphics processing units (GPUs) is benchmarked against production-level central processing unit (CPU) Monte Carlo neutron transport codes for both performance and accuracy. We compare neutron flux spectra, multiplication factors, runtimes, speedup factors, and costs of various GPU and CPU platforms running either WARP, Serpent 2.1.24, or MCNP 6.1. WARP compares well with the results of the production-level codes, and it is shown that on the newestmore » hardware considered, GPU platforms running WARP are between 0.8 to 7.6 times as fast as CPU platforms running production codes. Also, the GPU platforms running WARP were between 15% and 50% as expensive to purchase and between 80% to 90% as expensive to operate as equivalent CPU platforms performing at an equal simulation rate.« less
Design of a high-current low-energy beam transport line for an intense D-T/D-D neutron generator
NASA Astrophysics Data System (ADS)
Lu, Xiaolong; Wang, Junrun; Zhang, Yu; Li, Jianyi; Xia, Li; Zhang, Jie; Ding, Yanyan; Jiang, Bing; Huang, Zhiwu; Ma, Zhanwen; Wei, Zheng; Qian, Xiangping; Xu, Dapeng; Lan, Changlin; Yao, Zeen
2016-03-01
An intense D-T/D-D neutron generator is currently being developed at the Lanzhou University. The Cockcroft-Walton accelerator, as a part of the neutron generator, will be used to accelerate and transport the high-current low-energy beam from the duoplasmatron ion source to the rotating target. The design of a high-current low-energy beam transport (LEBT) line and the dynamics simulations of the mixed beam were carried out using the TRACK code. The results illustrate that the designed beam line facilitates smooth transportation of a deuteron beam of 40 mA, and the number of undesired ions can be reduced effectively using two apertures.
NASA Technical Reports Server (NTRS)
Olinto, Angela V.; Haensel, Pawel; Frieman, Joshua A.
1991-01-01
The effects are studied of H-dibaryons on the structure of neutron stars. It was found that H particles could be present in neutron stars for a wide range of dibaryon masses. The appearance of dibaryons softens the equations of state, lowers the maximum neutron star mass, and affects the transport properties of dense matter. The parameter space is constrained for dibaryons by requiring that a 1.44 solar mass neutron star be gravitationally stable.
Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E
2008-10-24
Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.
NASA Astrophysics Data System (ADS)
Grosse, Mirco; Kardjilov, Nikolay
Current methodical developments improve the spatial resolution of neutron imaging facilities. Objects with dimensions down to several microns should be detectable. However, the minimum object size detectable depends not only on the facility hardware like detector resolution or neutron optics, but also on the attenuation contrast. In this paper the relation between illumination time needed, neutron contrast of the objects and their minimal size detectable is derived and an analysis of the minimal dimension of an object can be detected in neutron radiography and tomography is discussed at two examples: zirconium hydride ZrH2 in Zircaloy-4 as a high contrast system and zirconium nitride ZrN in zirconium oxide ZrO2 as a low contrast system. It is concluded which minimal sizes of the precipitates can be detected in realistic times.
NASA Astrophysics Data System (ADS)
Zarebanadkouki, M.; Kroener, E.; Ahmed, M. A.; Carminati, A.
2014-12-01
Our understanding of soil and plant water relations is currently limited by the lack of experimental methods to measure the water fluxes in soil and plants. Our study aimed to develop a new non-destructive method to measure the local fluxes of water into roots of plants growing in soils. We injected deuterated water (D2O) near the roots of lupines growing in sandy soils, and we used neutron radiography to image the transport of D2O through the root system. The experiments were performed during day, when plants were transpiring, and at night, when transpiration was reduced. The radiographs showed that: 1) the radial transport of D2O from soil and roots depended similarly to diffusion and convection; and 2) the axial transport of D2O along the root xylem was largely dominated by convection. To determine the convective fluxes from the radiographs, we simulated the D2O transport in soils and roots. A dual porosity model was used to describe the apoplastic and symplastic pathways of water across the root tissue. Other features such as the endodermis and the xylem were also included in the model. The D2O transport was modelled solving a convection-diffusion numerical model in soil and plants. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that at night the convective fluxes were negligible. Inverse modelling of the experiment at day gave the profile of water fluxes into the roots. For 24 day-old lupine grown in a sandy soil with uniform water content, our modelling results showed that root water uptake was higher at the proximal parts of the roots near soil surface and it decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along root systems growing in soils. Future applications of this method include the characterization of varying root systems, the radial and axial hydraulic conductivity of different root
NASA Astrophysics Data System (ADS)
Krysta, M.; Szintai, B.; Kuśmierczyk-Michulec, J.; Carter, J. A.; Given, J. W.
2014-12-01
In order to support its mission of monitoring compliance with the treaty banning nuclear explosions, the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates four global networks of seismic, infrasound, hydroacoustic, referred to as waveform, sensors and air samplers accompanied with radionuclide detectors. The role of the International Data Centre (IDC) of CTBTO is to associate the signals detected in the monitoring networks with the physical phenomena which emitted these signals, by forming events. While the process of event building for the waveform technologies is well-established, the task of event building using the radionuclide detections remains a challenge. One of the reasons is the complexity of the process of atmospheric transport of airborne radionuclides from their sources to the detecting stations and subsequent difficulties in representing this process in models. An atmospheric transport model is driven by meteorological fields generated by numerical models coupled to observations. In addition, it is equipped with parameterisations of sub-grid scale processes to account for incompleteness of the representation of meteorological processes in the meteorological fields. In this presentation we will discuss possibilities of improving the accuracy of the atmospheric transport modelling simulations in support of radionuclide detections at CTBTO. Some of these improvements can be implemented operationally, while others, due to their computational cost, could only be performed on request. We will present the influence an increase of resolution of global meteorological fields, provided by the EMCWF (European Centre of Medium-Range Weather Forecasts), has on the quality of the simulations. We will address possible benefits of using high resolution regional meteorological fields generated with the mesoscale model WRF (Weather research and Forecasting). We will illustrate the impact of parameterisations, namely those linked to the atmospheric
Sagua, A.; Lescano, Gabriela M.; Alonso, J.A.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Morán, E.
2012-06-15
Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, λ = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ► A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ► NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ► Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ► Thermal analysis, transport measurements complement characterization of this oxide. ► A structure–properties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup ¯}m, Z = 8, with a = 8.3940(2) Å at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, λ = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at
Gabel, Frank; Bellissent-Funel, Marie-Claire
2007-01-01
We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998
Gabel, Frank; Bellissent-Funel, Marie-Claire
2007-06-01
We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,omega) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations--one diffusing inside a sphere and the other diffusing quasifreely--with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235-320 K). The effective diffusion coefficient extracted is reduced by a factor of 10-15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water.
2010-03-01
an integro - differential equation that is not directly solvable except in the simplest cases; therefore it requires a numerical approximation...AFIT researchers have developed a new approach to solving Discrete Ordinates equations , which approximate the linear Boltzmann Transport Equation ...linear equation . Positive, linear methods are available, but are only first-order accurate. The latter can achieve needed accuracy by using optically
Frankel, J.I.
1997-09-01
This investigation used sysmbolic manipulation in developing analytical methods and general computational strategies for solving both linear and nonlinear, regular and singular integral and integro-differential equations which appear in radiative and mixed-mode energy transport. Contained in this report are seven papers which present the technical results as individual modules.
Review of current neutron detection systems for emergency response
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig
2014-09-05
Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (^{3}He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (^{10}B), lithium-6 (^{6}Li), and gadollinium-157 (^{157}Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (^{4}He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.
Review of current neutron detection systems for emergency response
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; Kruschwitz, Craig
2014-09-01
Neutron detectors are used in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutron detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.
Prompt fission neutron investigation in 235U(nth,f) reaction
NASA Astrophysics Data System (ADS)
Zeynalov, Shakir; Sedyshev, Pavel; Shvetsov, Valery; Sidorova, Olga
2017-09-01
The prompt neutron emission in thermal neutron induced fission of 235U has been investigated applying digital signal electronics. The goal was to compare the results of this digital data acquisition and digital signal processing analysis to the results of the pioneering work of Apalin et al. Using a twin Frisch grid ionization chamber for the fission fragment detection and a NE213 equivalent neutron detector in total about 106 neutron coincidences have been registered. The fission fragment kinetic energy, mass and angular distribution has been investigated along with prompt neutron time of flight and pulse shape using a six channel synchronous waveform digitizer with sampling frequency of 250 MHz and 12 bit resolution. The signals have been analyzed using digital pulse processing algorithms, developed by authors. The thermal neutron beam was transported from the IBR-2 reactor to the target with bent mirror neutron guide.
Interpolation method for the transport theory and its application in fusion-neutronics analysis
Jung, J.
1981-09-01
This report presents an interpolation method for the solution of the Boltzmann transport equation. The method is based on a flux synthesis technique using two reference-point solutions. The equation for the interpolated solution results in a Volterra integral equation which is proved to have a unique solution. As an application of the present method, tritium breeding ratio is calculated for a typical D-T fusion reactor system. The result is compared to that of a variational technique.
Updated version of the DOT 4 one- and two-dimensional neutron/photon transport code
Rhoades, W.A.; Childs, R.L.
1982-07-01
DOT 4 is designed to allow very large transport problems to be solved on a wide range of computers and memory arrangements. Unusual flexibilty in both space-mesh and directional-quadrature specification is allowed. For example, the radial mesh in an R-Z problem can vary with axial position. The directional quadrature can vary with both space and energy group. Several features improve performance on both deep penetration and criticality problems. The program has been checked and used extensively.
Neutron Speed Echo Spectroscopy
NASA Astrophysics Data System (ADS)
Ioffe, A.
Neutron speed echo (NSPE) technique is in a way a generalization of the neutron spin echo (NSE) technique. Similar to NSE spectrometers, the resolution of such NSPE spectrometer is extremely high and is not connected with the monochromatization of the incoming beam. However, in contrast to NSE spectrometers, the operation of proposed spectrometer does not necessarily require a polarized neutron beam. Such decoupling the polarization and the resolution is in clear contrast to NSE technique. Because the resolution of a NSPE spectrometer can be a few orders higher than the resolution of NSE spectrometers, one can achieve the energy resolution of about 10-14 eV by the use of ultra cold neutrons; a fact that can be used in some fundamental physics experiments. Though the scattering on the sample impose limitations on the resolution of a NSPE spectrometer, the use of the proposed technique in a low-resolution mode can be useful in the combination with triple-axis spectrometers and allow for the significant improvement of their energy resolution, however, without the use of polarized neutrons. This fact opens new possibilities for the study of magnetic phenomena in solids, where the NSE method is principally not applicable because of the neutron precession in the sample, especially by combining polarization analysis with high-resolution spectroscopy. The proposed technique also allows for an easy implementation of the principle of the NSE focusing, when the resolution ellipse is aligned along a dispersion curve.
Nyhan, Marguerite; Sobolevsky, Stanislav; Kang, Chaogui; Robinson, Prudence; Corti, Andrea; Szell, Michael; Streets, David; Lu, Zifeng; Britter, Rex; Barrett, Steven R. H.; Ratti, Carlo
2016-06-07
Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset Results demonstrated that high resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.
NASA Astrophysics Data System (ADS)
Nyhan, Marguerite; Sobolevsky, Stanislav; Kang, Chaogui; Robinson, Prudence; Corti, Andrea; Szell, Michael; Streets, David; Lu, Zifeng; Britter, Rex; Barrett, Steven R. H.; Ratti, Carlo
2016-09-01
Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters in high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset. Results demonstrated that high-resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.
Mitrofanov, I G; Sanin, A B; Golovin, D V; Litvak, M L; Konovalov, A A; Kozyrev, A S; Malakhov, A V; Mokrousov, M I; Tretyakov, V I; Troshin, V S; Uvarov, V N; Varenikov, A B; Vostrukhin, A A; Shevchenko, V V; Shvetsov, V N; Krylov, A R; Timoshenko, G N; Bobrovnitsky, Y I; Tomilina, T M; Grebennikov, A S; Kazakov, L L; Sagdeev, R Z; Milikh, G N; Bartels, A; Chin, G; Floyd, S; Garvin, J; Keller, J; McClanahan, T; Trombka, J; Boynton, W; Harshman, K; Starr, R; Evans, L
2008-08-01
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.
Williams, Kenneth H.; Kowalsky, Mike B.; Peterson, John E.
2002-11-05
-groundwater system control flow geometry? (2) What physical properties or mechanisms control flow and transport in unconsolidated soils of the vadose zone? (3) What is the optimum suite of field tests to provide information for predicting flow and transport behavior? (4) How can the information obtained during site characterization be used for building confidence in predictive numerical models? Fully developed, application of geophysics should enable location of contaminant distributions. Questions addressed in this study were the sensitivity, resolution, and accuracy of the geophysical methods in order to derive the spatial and temporal distribution of properties controlling transport and contaminant distribution between and away from boreholes and the surface. Implicit in this activity is that geophysical methods will be used to extrapolate and extend measurements made at the point scale to the volumetric scale. Overall there are two broad hypotheses being addressed in the geophysical work: (1) Geophysical methods can identify physical and chemical heterogeneity controlling contaminant transport at a meaningful scale. (2) Geophysical methods have the sensitivity to directly or indirectly detect the location of introduced fluids and/or contaminants at relevant concentrations (i.e. the subsurface has been altered from its natural state enough to create anomalies that can be detected in terms of a combination of mechanical, electrical, and thermal effects).
NASA Astrophysics Data System (ADS)
Orfanoz-Cheuquelaf, A. P.; Gallardo, L.; Huneeus, N.; Lambert, F.
2015-12-01
Santiago, Chile (33.5 S, 70.5 W, 500 m.a.s.l., population 7 millions) is a large city situated in a basin surrounded by the Andes in the East and smaller mountain ranges to the North, West, and South. It is plagued by abnormally high pollution levels for its size due to climatological and topological features. To date, it is unclear how far the urban pollution plume reaches up the mountain. Here we explore the region's complex atmospheric circulation and particularly the transport of black carbon (BC) using a state of the art numerical model (WRF-Chem, Weather Research and Forecasting model).Observations indicate the presence of multiple layers within the boundary layer, as well as the occurrence of uncoupled layers above the boundary layer. Here we explore mechanisms within our simulation that may explain these features. Our results suggest that they may correspond to residual layers that are produced by recirculation along mountain slopes due to the complex terrain around the city.In late August 2013, a short multi-platform measuring campaign (DIVERSOL) took place in the Santiago basin, providing the first vertical profiles of BC, accompanied by meteorological soundings. We analyze the dispersion of a quasi-passive tracer (carbon monoxide) of black carbon in our simulation to improve our understanding of the governing mixing and transport processes. We also perform sensitivity studies with respect to vertical resolution and turbulence schemes, contrasting our results against DIVERSOL data. Our simulations suggest that pollutants emitted in Santiago could reach the high regions of Andes mountains during the afternoon circulation, thus affecting local glaciers. With an entire year of simulation we find that the stratification of pollutants within the basin displays a seasonal signal, as well as a capacity to reach the Chilean Andes and affect the Andean cryosphere.
Time dependent discrete ordinates neutron transport using distribution iteration in XYZ geometry
NASA Astrophysics Data System (ADS)
Dishaw, James R.
The distribution iteration (DI) algorithm, developed by Wager [32] and Prins [28], for solving the Boltzmann Transport Equation (BTE) has proven, with further development, to be a robust alternative to von Neumann iteration on the scattering source, aka source iteration (SI). Previous work with DI was based on the time-independent form of the transport equation. In this research, the DI algorithm was (1) Improved to provide faster, more efficient, robust convergence; (2) Extended to XYZ geometry; (3) Extended to Multigroup Energy treatment; (4) Extended to solve the time-dependent form of the Boltzmann Transport Equation. The discrete ordinates equations for approximating the BTE have been solved using SI since the discrete ordinates method was developed at Los Alamos Scientific Laboratory by 1953. However, SI is often inefficient by itself and requires an accelerator in order to produce results efficiently and reliably. The acceleration schemes that are in use in production codes are Diffusion Synthetic Acceleration (DSA) and Transport Synthetic Acceleration (TSA). DSA is ineffective for some problems, and cannot be extended to high-performance spatial quadratures. TSA is less effective than DSA and fails for some problems. Krylov acceleration has been explored in recent years, but has many parameters that require problem-dependent tuning for efficiency and effectiveness. The DI algorithm is an alternative to source iteration that, in our testing, does not require an accelerator. I developed a formal verification plan and executed it to verify the results produced by my code that implemented DI with the above features. A new, matrix albedo, boundary condition treatment was developed and implemented so that infinite-medium benchmarks could be included in the verification test suite. The DI algorithm was modified for parallel efficiency and the prior instability of the refinement sweep was corrected. The testing revealed that DI performed as well or faster than
Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.
2010-06-22
An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (PN) on the axial interfaces. The x-y surfaces are treated with high-order PN combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
D. Scott Lucas; D. S. Lucas
2005-09-01
An LDRD (Laboratory Directed Research and Development) project is underway at the Idaho National Laboratory (INL) to apply the three-dimensional multi-group deterministic neutron transport code (Attila®) to criticality, flux and depletion calculations of the Advanced Test Reactor (ATR). This paper discusses the development of Attila models for ATR, capabilities of Attila, the generation and use of different cross-section libraries, and comparisons to ATR data, MCNP, MCNPX and future applications.
Neutron-emission measurements at a white neutron source
Haight, Robert C
2010-01-01
Data on the spectrum of neutrons emittcd from neutron-induced reactions are important in basic nuclear physics and in applications. Our program studies neutron emission from inelastic scattering as well as fission neutron spectra. A ''white'' neutron source (continuous in energy) allows measurements over a wide range of neutron energies all in one experiment. We use the tast neutron source at the Los Alamos Neutron Science Center for incident neutron energies from 0.5 MeV to 200 MeV These experiments are based on double time-of-flight techniques to determine the energies of the incident and emitted neutrons. For the fission neutron measurements, parallel-plate ionization or avalanche detectors identify fission in actinide samples and give the required fast timing pulse. For inelastic scattering, gamma-ray detectors provide the timing and energy spectroscopy. A large neutron-detector array detects the emitted neutrons. Time-of-flight techniques are used to measure the energies of both the incident and emitted neutrons. Design considerations for the array include neutron-gamma discrimination, neutron energy resolution, angular coverage, segmentation, detector efficiency calibration and data acquisition. We have made preliminary measurements of the fission neutron spectra from {sup 235}U, {sup 238}U, {sup 237}Np and {sup 239}Pu. Neutron emission spectra from inelastic scattering on iron and nickel have also been investigated. The results obtained will be compared with evaluated data.
Review of current neutron detection systems for emergency response
Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul; ...
2014-09-05
Neutron detectors are utilized in a myriad of applications—from safeguarding special nuclear materials (SNM) to determining lattice spacing in soft materials. The transformational changes taking place in neutron detection and imaging techniques in the last few years are largely being driven by the global shortage of helium-3 (3He). This article reviews the status of neutron sensors used specifically for SNM detection in radiological emergency response. These neutron detectors must be highly efficient, be rugged, have fast electronics to measure neutron multiplicity, and be capable of measuring direction of the neutron sources and possibly image them with high spatial resolution. Neutronmore » detection is an indirect physical process: neutrons react with nuclei in materials to initiate the release of one or more charged particles that produce electric signals that can be processed by the detection system. Therefore, neutron detection requires conversion materials as active elements of the detection system; these materials may include boron-10 (10B), lithium-6 (6Li), and gadollinium-157 (157Gd), to name a few, but the number of materials available for neutron detection is limited. However, in recent years, pulse-shape-discriminating plastic scintillators, scintillators made of helium-4 (4He) under high pressure, pillar and trench semiconductor diodes, and exotic semiconductor neutron detectors made from uranium oxide and other materials have widely expanded the parameter space in neutron detection methodology. In this article we will pay special attention to semiconductor-based neutron sensors. Finally, modern microfabricated nanotubes covered inside with neutron converter materials and with very high aspect ratios for better charge transport will be discussed.« less
Flux extrapolation models used in the DOT IV discrete ordinates neutron transport code
Tomlinson, E.T.; Rhoades, W.A.; Engle, W.W. Jr.
1980-05-01
The DOT IV code solves the Boltzmann transport equation in two dimensions using the method of discrete ordinates. Special techniques have been incorporated in this code to mitigate the effects of flux extrapolation error in space meshes of practical size. This report presents the flux extrapolation models as they appear in DOT IV. A sample problem is also presented to illustrate the effects of the various models on the resultant flux. Convergence of the various models to a single result as the mesh is refined is also examined. A detailed comparison with the widely used TWOTRAN II code is reported. The features which cause DOT and TWOTRAN to differ in the converged results are completely observed and explained.
Whole-core neutron transport calculations without fuel-coolant homogenization
Smith, M. A.; Tsoulfanidis, N.; Lewis, E. E.; Palmiotti, G.; Taiwo, T. A.
2000-02-10
The variational nodal method implemented in the VARIANT code is generalized to perform full core transport calculations without spatial homogenization of cross sections at either the fuel-pin cell or fuel assembly level. The node size is chosen to correspond to one fuel-pin cell in the radial plane. Each node is divided into triangular finite subelements, with the interior spatial flux distribution represented by piecewise linear trial functions. The step change in the cross sections at the fuel-coolant interface can thus be represented explicitly in global calculations while retaining the fill spherical harmonics capability of VARIANT. The resulting method is applied to a two-dimensional seven-group representation of a LWR containing MOX fuel assemblies. Comparisons are made of the accuracy of various space-angle approximations and of the corresponding CPU times.
Semiconductor neutron detector
Ianakiev, Kiril D.; Littlewood, Peter B.; Blagoev, Krastan B.; Swinhoe, Martyn T.; Smith, James L.; Sullivan, Clair J.; Alexandrov, Boian S.; Lashley, Jason Charles
2011-03-08
A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.
Nicol, A. C.
1998-12-21
We have studied by electron microscopy the copper-rich precipitates in an Fe-1.3wt%Cu model alloy irradiated with neutrons to doses of 8.61 x 10{sup {minus}3} dpa and 6.3 x 10{sup {minus}2} dpa at a temperature of {approximately}270 C. In the lower dose material a majority (ca. 60%)of the precipitates visible in high-resolution electron microscopy were timed 9R precipitates of size {approximately}2-4 nm, while ca. 40% were untwinned. In the higher dose material, a majority (ca. 75%) of visible precipitates were untwinned although many still seemed to have a 9R structure. The average angle {alpha} between the herring-bone fringes in the twin variants was measured as 125{degree}, not the 129{degree} characteristic of precipitates in thermally-aged and electron-irradiated material immediately after the bcc{r_arrow}9R martensitic transformation. We argue that these results imply that the bcc{r_arrow}9R transformation of small (<4 nm) precipitates under neutron irradiation takes place at the irradiation temperature of 270 C rather than after subsequent cooling. Preliminary measurements showed that precipitate sizes did not depend strongly on dose, with a mean diameter of 3.4 {+-} 0.7 nm for the lower dose material, and 3.0 {+-} 0.5 nm for the higher dose material. This result agrees with the previous assumption that the lack of coarsening in precipitates formed under neutron irradiation is a consequence of the partial dissolution of larger precipitates by high-energy cascades.
High resolution Raman and neutron investigation of Mg(BH4)2 in an extensive temperature range.
Giannasi, A; Colognesi, D; Ulivi, L; Zoppi, M; Ramirez-Cuesta, A J; Bardají, E G; Roehm, E; Fichtner, M
2010-03-04
Raman spectra of Mg(BH(4))(2) have been measured in an extensive temperature range, from 15 to 473 K. Taking into account the high temperature conversion from the alpha to the beta phase, we have observed evident signatures of this phase transition and determined the Raman vibrational spectrum of each phase. The neutron scattering spectra of the beta phase sample were also recorded. The present experimental results have been compared to the density functional theory calculations available in the literature, and a substantial agreement has been found.
Koehler, Paul Edward; Guber, Klaus H; Harvey, John A; Wiarda, Dorothea
2008-01-01
Abundances of Mo isotopes predicted by stellar models of the s process are, except for {sup 95}Mo, in good agreement with data from single grains of mainstream presolar SiC. Because the meteorite data seemed sound and no reasonable modification to stellar theory resulted in good agreement for {sup 95}Mo, it has been suggested that the recommended neutron capture reaction rate for this nuclide is 30% too low. Therefore, we have made a new determination of the {sup 95}Mo(n,{gamma}) reaction rate via high-resolution measurements of the neutron-capture and total cross sections of {sup 95}Mo at the Oak Ridge Electron Linear Accelerator. These data were analyzed with the R-matrix code SAMMY to obtain parameters for resonances up to E{sub n} = 10 keV. Also, a small change to our capture apparatus allowed us to employ a new technique to vastly improve resonance spin and parity assignments. These new resonance parameters, together with our data in the unresolved range, were used to calculate the {sup 95}Mo(n,{gamma}) reaction rate at s-process temperatures. We compare the currently recommended rate to our new results and discuss their astrophysical impact.
FOREWORD: Neutron metrology Neutron metrology
NASA Astrophysics Data System (ADS)
Thomas, David J.; Nolte, Ralf; Gressier, Vincent
2011-12-01
industry, from the initial fuel enrichment and fabrication processes right through to storage or reprocessing, and neutron metrology is clearly important in this area. Neutron fields do, however, occur in other areas, for example where neutron sources are used in oil well logging and moisture measurements. They also occur around high energy accelerators, including photon linear accelerators used for cancer therapy, and are expected to be a more serious problem around the new hadron radiation therapy facilities. Roughly 50% of the cosmic ray doses experienced by fliers at the flight altitudes of commercial aircraft are due to neutrons. Current research on fusion presents neutron metrology with a whole new range of challenges because of the very high fluences expected. One of the most significant features of neutron fields is the very wide range of possible neutron energies. In the nuclear industry, for example, neutrons occur with energies from those of thermal neutrons at a few meV to the upper end of the fission spectrum at perhaps 10 MeV. For cosmic ray dosimetry the energy range extends into the GeV region. This enormous range sets a challenge for designing measuring devices and a parallel challenge of developing measurement standards for characterizing these devices. One of the major considerations when deciding on topics for this special issue was agreeing on what not to include. Modelling, i.e. the use of radiation transport codes, is now a very important aspect of neutron measurements. These calculations are vital for shielding and for instrument design; nevertheless, the topic has only been included here where it has a direct bearing on metrology and the development of standards. Neutron spectrometry is an increasingly important technique for unravelling some of the problems of dose equivalent measurements and for plasma diagnostics in fusion research. However, this topic is at least one step removed from primary metrology and so it was felt that it should not be
Crystal structure of Bi{sub 1-x}Tb{sub x}FeO{sub 3} from high-resolution neutron diffraction
Saxin, Stefan; Knee, Christopher S.
2011-06-15
Samples of Bi{sub 1-x}Tb{sub x}FeO{sub 3}, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO{sub 3} to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi{sup 3+} lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment ({approx}3.8 {mu}{sub B}) and the T{sub N} ({approx}375 deg. C) are relatively insensitive to increasing Tb concentrations at the A-site. - Graphical abstract: High resolution neutron powder diffraction has been used to study the evolution of the RT crystal structure of Bi{sub 1-x}Tb{sub x}FeO{sub 3} (0.05{<=}x{<=}0.25) with terbium content. A transition from polar R3c to centrosymmetric Pnma symmetry is observed. The antiferromagnetic ordering temperature and size of the ordered magnetic moment are relatively insensitive to the change of crystal structure. Highlights: > Structural transition from polar R3c symmetry to non-polar Pnma symmetry occurs. > Behaviour is rationalised via dilution of the stereochemical nature of the Bi lone pair. > Magnetic properties are largely unaffected.
NASA Astrophysics Data System (ADS)
Uehara, Hiroki; Kizu, Shoichi; Hanawa, Kimio; Yoshikawa, Yasushi; Roemmich, Dean
2008-02-01
The mean heat and freshwater transports in the North Pacific subtropical gyre during 1998-2002 are estimated. High-resolution expendable bathythermograph/expendable conductivity-temperature-depth (XBT/XCTD) transects (PX-40, Honolulu to Japan; PX-37, San Francisco to Honolulu; PX-10, Honolulu to Guam; PX-44, Guam to Taiwan/Hong Kong) are used to calculate geostrophic transport across each of the ship tracks. Ekman transport is estimated from satellite-scatterometer wind stress. The mean heat and freshwater transport convergences into the northern box bounded by the PX-40/37 transects and the Tsushima and Bering Straits are 0.26 ± 0.16 pW (pW = 1015 W) and -0.26 ± 0.11 Sv (Sv = 106 m3/s), respectively. Heat and freshwater transport convergences into the western box bounded by the PX-40/10/44 transects and the Tsushima Strait are estimated to be 0.32 ± 0.17 pW and 0.08 ± 0.07 Sv, respectively. In both boxes, warmer waters transported inward by the Ekman flow and by the Kuroshio are compensated by the export of waters at cooler temperatures, whose peaks are found in the temperatures of the mode waters formed in the North Pacific. The salt budget is also described to consider the mechanisms of freshwater transport. Since the western box includes the region with the strongest heat loss to the atmosphere and is possibly a key region for climatic decadal variation, it is necessary to continue the high-resolution XBT/XCTD measurement and to make an effort at improving the estimation of heat and freshwater transports in order to contribute to advancing climate studies.
NASA Astrophysics Data System (ADS)
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ˜10 kJ is segregated into four modules of ˜2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ˜2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ˜17 kV/550 kA discharge. At ˜7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ˜4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ˜2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-01
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10(9) neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
Verma, Rishi E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag
2016-09-15
The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.
NASA Astrophysics Data System (ADS)
Madonna, S.; García-Rojas, J.; Sterling, N. C.; Luridiana, V.
2017-03-01
We have done a spectroscopical analysis of the type I planetary nebula (PN) NGC 5315, through high-resolution (R ˜ 40000) optical spectroscopy with UVES at the 8.2m Very Large Telescope, and medium-resolution (R ˜ 4800) near-IR spectroscopy with FIRE at the 6.5m Magellan Baade telescope, covering a wide spectral range from 0.31 μm to 2.50μm. The main aim of this work is to investigate the slow neutron(n)-capture process (the s-process) in the Asymptotic Giant Branch (AGB) star progenitor of a type I PNe. We detected and identified about 700 features, including lines from the n-capture elements Kr, Se, and possibly Br and Xe. We compute physical conditions using line ratios of common ions. Ionic abundances are computed for the species with available atomic data. We calculate total abundances using recent ionization correction factors (ICFs) or by summing ionic abundances. Our results for common elements are in good agreement with previous works on the same object. We do not find a substantial s-process enrichment in NGC 5315, which is typical for type I PNe.
Naff, R.L.; Haley, D.F.; Sudicky, E.A.
1998-01-01
In this, the second of two papers concerned with the use of numerical simulation to examine flow and transport parameters in heterogeneous porous media via Monte Carlo methods, results from the transport aspect of these simulations are reported on. Transport simulations contained herein assume a finite pulse input of conservative tracer, and the numerical technique endeavors to realistically simulate tracer spreading as the cloud moves through a heterogeneous medium. Medium heterogeneity is limited to the hydraulic conductivity field, and generation of this field assumes that the hydraulic- conductivity process is second-order stationary. Methods of estimating cloud moments, and the interpretation of these moments, are discussed. Techniques for estimation of large-time macrodispersivities from cloud second-moment data, and for the approximation of the standard errors associated with these macrodispersivities, are also presented. These moment and macrodispersivity estimation techniques were applied to tracer clouds resulting from transport scenarios generated by specific Monte Carlo simulations. Where feasible, moments and macrodispersivities resulting from the Monte Carlo simulations are compared with first- and second-order perturbation analyses. Some limited results concerning the possible ergodic nature of these simulations, and the presence of non- Gaussian behavior of the mean cloud, are reported on as well.
NASA Astrophysics Data System (ADS)
Wong, M.; Ovchinnikov, M.; Wang, M.; Larson, V. E.
2014-12-01
In current climate models, the model resolution is too coarse to explicitly resolve deep convective systems. Parameterization schemes are therefore needed to represent the physical processes at the sub-grid scale. Recently, an approach based on assumed probability density functions (PDFs) has been developed to help unify the various parameterization schemes used in current global models. In particular, a unified parameterization scheme called the Cloud Layers Unified By Binormals (CLUBB) scheme has been developed and tested successfully for shallow boundary-layer clouds. CLUBB's implementation in the Community Atmosphere Model, version 5 (CAM5) is also being extended to treat deep convection cases, but parameterizing subgrid-scale vertical transport of hydrometeors remains a challenge. To investigate the roots of the problem and possible solutions, we generate a high-resolution benchmark simulation of a deep convection case using a cloud-resolving model (CRM) called System for Atmospheric Modeling (SAM). We use the high-resolution 3D CRM results to assess the prognostic and diagnostic higher-order moments in CLUBB that are in relation to the subgrid-scale transport of hydrometeors. We also analyze the heat and moisture budgets in terms of CLUBB variables from the SAM benchmark simulation. The results from this study will be used to devise a better representation of vertical subgrid-scale transport of hydrometeors by utilizing the sub-grid variability information from CLUBB.
Williams, Mark L.
2001-06-30
In July of 1999 Louisiana State University (LSU) was awarded a two year research grant by the D.O.E. NEER program to develop a methodology for neutron transport calculations using pointwise (PW) nuclear data in the thermal energy range, and to implement the method into the CENTRM transport code being developed at LSU for Oak Ridge National Laboratory (ORNL). This work has extended CENTRM's current epithermal PW calculation to encompass the thermal range, providing a continuous-energy deterministic transport code that can address problems that may not be adequately treated using multigroup methods. The new version of the CENTRM code was completed, and provided to ORNL for inclusion in the next release of the SCALE code system. The new thermal calculation developed by the NEER project is a significant improvement in the CENTRM capability, and should have an impact on criticality and shipping cask analysis done by numerous organizations who use this code system.
NASA Astrophysics Data System (ADS)
Xiao, Heng; Gustafson, William I.; Hagos, Samson M.; Wu, Chien-Ming; Wan, Hui
2015-06-01
To better understand the behavior of quasi-equilibrium-based convection parameterizations at higher resolution, we use a diagnostic framework to examine the resolution-dependence of subgrid-scale vertical transport of moist static energy as parameterized by the Zhang-McFarlane convection parameterization (ZM). Grid-scale input to ZM is supplied by coarsening output from cloud-resolving model (CRM) simulations onto subdomains ranging in size from 8 × 8 to 256 × 256 km2. Then the ZM-based parameterization of vertical transport of moist static energy for scales smaller than the subdomain size (w'h'>¯ZM) are compared to those directly calculated from the CRM simulations (w'h'>¯CRM) for different subdomain sizes. The ensemble mean w'h'>¯CRM decreases by more than half as the subdomain size decreases from 128 to 8 km across while w'h'>¯ZM decreases with subdomain size only for strong convection cases and increases for weaker cases. The resolution dependence of w'h'>¯ZM is determined by the positive-definite grid-scale tendency of convective available potential energy (CAPE) in the convective quasi-equilibrium (QE) closure. Further analysis shows the actual grid-scale tendency of CAPE (before taking the positive definite value) and w'h'>¯CRM behave very similarly as the subdomain size changes because they are both tied to grid-scale advective tendencies. We can improve the resolution dependence of w'h'>¯ZM significantly by averaging the grid-scale tendency of CAPE over an appropriately large area surrounding each subdomain before taking its positive definite value. Even though the ensemble mean w'h'>¯CRM decreases with increasing resolution, its variability increases dramatically. w'h'>¯ZM cannot capture such increase in the variability, suggesting the need for stochastic treatment of convection at relatively high spatial resolution (8 or 16 km).
NASA Astrophysics Data System (ADS)
Karsanina, Marina; Gerke, Kirill; Khirevich, Siarhei; Sizonenko, Timofey; Korost, Dmitry
2017-04-01
Permeability is one of the fundamental properties of porous media and is required for large-scale Darcian fluid flow and mass transport models. Whilst permeability can be directly measured at a range of scales, there are increasing opportunities to evaluate permeability from pore-scale simulations. It is well known that single phase flow properties of digital rocks will depend on the resolution of the 3D pore image. Such studies are usually performed by coarsening X-ray microtomography scans. Recently we have proposed a novel approach to fuse multi-scale porous media images using stochastic reconstruction techniques based on directional correlation functions. Here we apply this slightly modified approach to create 3D pore images of different spatial resolution, i.e. stochastic super-resolution method. Contrary to coarsening techniques, this approach preserves porosity values and allows to incorporate fine scale data coming from such imaging techniques as SEM or FIB-SEM. We compute absolute permeability of the same porous media species under different resolutions using lattice-Boltzmann and finite difference methods to model Stokes flow in order to elucidate the effects of image resolution on resulting permeability values and compare stochastic super-resolution technique against conventional coarsening image processing technique. References: 1) Karsanina, M.V., Gerke, K.M., Skvortsova, E.B. and Mallants, D. (2015) Universal spatial correlation functions for describing and reconstructing soil microstructure. PLoS ONE 10(5), e0126515. 2) Gerke, K. M., & Karsanina, M. V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. EPL (Europhysics Letters),111(5), 56002. 3) Gerke, K. M., Karsanina, M. V., Vasilyev, R. V., & Mallants, D. (2014). Improving pattern reconstruction using directional correlation functions. EPL (Europhysics Letters), 106(6), 66002. 4) Gerke, K.M., Karsanina, M. V, Mallants, D., 2015. Universal
Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai
2015-09-14
Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereas the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.
NASA Technical Reports Server (NTRS)
Jordan, T. M.
1970-01-01
A description of the FASTER-III program for Monte Carlo Carlo calculation of photon and neutron transport in complex geometries is presented. Major revisions include the capability of calculating minimum weight shield configurations for primary and secondary radiation and optimal importance sampling parameters. The program description includes a users manual describing the preparation of input data cards, the printout from a sample problem including the data card images, definitions of Fortran variables, the program logic, and the control cards required to run on the IBM 7094, IBM 360, UNIVAC 1108 and CDC 6600 computers.
Rubinson, Kenneth A; Faraone, Antonio
2016-05-14
X-ray and neutron scattering have been used to provide insight into the structures of ionic solutions for over a century, but the probes have covered distances shorter than 8 Å. For the non-hydrolyzing salt SrI2 in aqueous solution, a locally ordered lattice of ions exists that scatters slow neutrons coherently down to at least 0.1 mol L(-1) concentration, where the measured average distance between scatterers is over 18 Å. To investigate the motions of these scatterers, coherent quasielastic neutron scattering (CQENS) data on D2O solutions with SrI2 at 1, 0.8, 0.6, and 0.4 mol L(-1) concentrations was obtained to provide an experimental measure of the diffusive transport rate for the motion between pairs of ions relative to each other. Because CQENS measures the motion of one ion relative to another, the frame of reference is centered on an ion, which is unique among all diffusion measurement methods. We call the measured quantity the pairwise diffusive transport rate Dp. In addition to this ion centered frame of reference, the diffusive transport rate can be measured as a function of the momentum transfer q, where q = (4π/λ)sin θ with a scattering angle of 2θ. Since q is related to the interion distance (d = 2π/q), for the experimental range 0.2 Å(-1)≤q≤ 1.0 Å(-1), Dp is, then, measured over interion distances from 40 Å to ≈6 Å. We find the measured diffusional transport rates increase with increasing distance between scatterers over the entire range covered and interpret this behavior to be caused by dynamic coupling among the ions. Within the model of Fickian diffusion, at the longer interionic distances Dp is greater than the Nernst-Hartley value for an infinitely dilute solution. For these nm-distance diffusional transport rates to conform with the lower, macroscopically measured diffusion coefficients, we propose that local, coordinated counter motion of at least pairs of ions is part of the transport process.
Ali, F; Waker, A J; Waller, E J
2014-10-01
Tissue-equivalent proportional counters (TEPC) can potentially be used as a portable and personal dosemeter in mixed neutron and gamma-ray fields, but what hinders this use is their typically large physical size. To formulate compact TEPC designs, the use of a Monte Carlo transport code is necessary to predict the performance of compact designs in these fields. To perform this modelling, three candidate codes were assessed: MCNPX 2.7.E, FLUKA 2011.2 and PHITS 2.24. In each code, benchmark simulations were performed involving the irradiation of a 5-in. TEPC with monoenergetic neutron fields and a 4-in. wall-less TEPC with monoenergetic gamma-ray fields. The frequency and dose mean lineal energies and dose distributions calculated from each code were compared with experimentally determined data. For the neutron benchmark simulations, PHITS produces data closest to the experimental values and for the gamma-ray benchmark simulations, FLUKA yields data closest to the experimentally determined quantities.
Global ocean circulation and equator-pole heat transport as a function of ocean GCM resolution
Covey, C.
1994-06-01
To determine whether resolution of smaller scales is necessary to simulate large-scale ocean climate correctly, I examine results from a global ocean GCM run with horizontal grid spacings spanning a range from coarse resolutions traditionally used in climate modeling to nearly the highest resolution attained with today`s computers. The experiments include four cases employing 4{degrees}, 2{degrees}, 1{degrees} and 1/2{degrees} spacing in latitude and longitude, which were run with minimal differences among them, i.e., in a controlled experiment. Two additional cases-1/2{degrees} spacing with a more scale-selective sub-gridscale mixing of heat and momentum, and approximate 1/4{degrees} spacing-are also included. The 1/4{degrees} run resolves most of the observed mesoscale eddy energy in the ocean. Several artificial constraints on the model tend to minimize differences among the different resolution cases. Nevertheless, for quantities of interest to global climate studies,the simulations show significant changes as resolution increases.
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; ...
2016-06-02
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-stat battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions ho within and among oxygen octahedra, and Br- ions are not involved in the tetragonal Na4OI2 antiperovskite, Na ions, which connectmore » octahedra in the ab plane, have the lowest activation energy barrier. In conclusion, the transport of sodium ions along the c axis is assisted by I- ions.« less
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; Howard, John W.; Neuefeind, Jörg; Ren, Yang; Wang, Hui; Liang, Chengdu; Yang, Wenge; Zou, Ruqiang; Jin, Changqing; Zhao, Yusheng
2016-01-01
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br- ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I- ions.
Zhu, Jinlong; Wang, Yonggang; Li, Shuai; Howard, John W; Neuefeind, Jörg; Ren, Yang; Wang, Hui; Liang, Chengdu; Yang, Wenge; Zou, Ruqiang; Jin, Changqing; Zhao, Yusheng
2016-06-20
Na-rich antiperovskites are recently developed solid electrolytes with enhanced sodium ionic conductivity and show promising functionality as a novel solid electrolyte in an all solid-state battery. In this work, the sodium ionic transport pathways of the parent compound Na3OBr, as well as the modified layered antiperovskite Na4OI2, were studied and compared through temperature-dependent neutron diffraction combined with the maximum entropy method. In the cubic Na3OBr antiperovskite, the nuclear density distribution maps at 500 K indicate that sodium ions hop within and among oxygen octahedra, and Br(-) ions are not involved. In the tetragonal Na4OI2 antiperovskite, Na ions, which connect octahedra in the ab plane, have the lowest activation energy barrier. The transport of sodium ions along the c axis is assisted by I(-) ions.
Wongthai, Printip; Hagiwara, Kohei; Miyoshi, Yurika; Wiriyasermkul, Pattama; Wei, Ling; Ohgaki, Ryuichi; Kato, Itsuro; Hamase, Kenji; Nagamori, Shushi; Kanai, Yoshikatsu
2015-01-01
The efficacy of boron neutron capture therapy relies on the selective delivery of boron carriers to malignant cells. p-Boronophenylalanine (BPA), a boron delivery agent, has been proposed to be localized to cells through transporter-mediated mechanisms. In this study, we screened aromatic amino acid transporters to identify BPA transporters. Human aromatic amino acid transporters were functionally expressed in Xenopus oocytes and examined for BPA uptake and kinetic parameters. The roles of the transporters in BPA uptake were characterized in cancer cell lines. For the quantitative assessment of BPA uptake, HPLC was used throughout the study. Among aromatic amino acid transporters, ATB0,+, LAT1 and LAT2 were found to transport BPA with Km values of 137.4 ± 11.7, 20.3 ± 0.8 and 88.3 ± 5.6 μM, respectively. Uptake experiments in cancer cell lines revealed that the LAT1 protein amount was the major determinant of BPA uptake at 100 μM, whereas the contribution of ATB0,+ became significant at 1000 μM, accounting for 20–25% of the total BPA uptake in MCF-7 breast cancer cells. ATB0,+, LAT1 and LAT2 transport BPA at affinities comparable with their endogenous substrates, suggesting that they could mediate effective BPA uptake in vivo. The high and low affinities of LAT1 and ATB0,+, respectively, differentiate their roles in BPA uptake. ATB0,+, as well as LAT1, could contribute significantly to the tumor accumulation of BPA at clinical dose. PMID:25580517
NASA Astrophysics Data System (ADS)
Chatterji, Tapan; Frick, Bernhard; Nair, Harikrishnan S.
2012-07-01
We have investigated low energy nuclear spin excitations in double perovskite compounds R2CoMnO6 (R=Y, Tb) by inelastic neutron scattering with a high resolution back-scattering spectrometer. We observed inelastic signals at about 2.1 μeV for Y2CoMnO6 and also for Tb2CoMnO6 at T = 2 K in both energy-loss and energy-gain sides. We interpret these inelastic peaks to be due to the transitions between the hyperfine split nuclear levels of the 59Co nucleus. The inelastic peaks move towards the central elastic peak and finally merge with it at the magnetic ordering temperature TC. The energy of the low energy excitations decreases continuously and becomes zero at TC ≈ 75 K for Y2CoMnO6 and TC ≈ 100 K for Tb2CoMnO6. For Tb2CoMnO6, which contains magnetic rare earth ions, additional quasielastic scattering due presumably to the fluctuations of large Tb magnetic moments was observed. The present study reveals the magnetic ordering of the Co sublattice. The results of this investigation along with that obtained by us for other compounds indicate the presence of unquenched orbital moments in some of the Co compounds.
Geant4 Analysis of a Thermal Neutron Real-Time Imaging System
NASA Astrophysics Data System (ADS)
Datta, Arka; Hawari, Ayman I.
2017-07-01
Thermal neutron imaging is a technique for nondestructive testing providing complementary information to X-ray imaging for a wide range of applications in science and engineering. Advancement of electronic imaging systems makes it possible to obtain neutron radiographs in real time. This method requires a scintillator to convert neutrons to optical photons and a charge-coupled device (CCD) camera to detect those photons. Alongside, a well collimated beam which reduces geometrical blurriness, the use of a thin scintillator can improve the spatial resolution significantly. A representative scintillator that has been applied widely for thermal neutron imaging is 6LiF:ZnS (Ag). In this paper, a multiphysics simulation approach for designing thermal neutron imaging system is investigated. The Geant4 code is used to investigate the performance of a thermal neutron imaging system starting with a neutron source and including the production of charged particles and optical photons in the scintillator and their transport for image formation in the detector. The simulation geometry includes the neutron beam collimator and sapphire filter. The 6LiF:ZnS (Ag) scintillator is modeled along with a pixelated detector for image recording. The spatial resolution of the system was obtained as the thickness of the scintillator screen was varied between 50 and 400 μm. The results of the simulation were compared to experimental results, including measurements performed using the PULSTAR nuclear reactor imaging beam, showing good agreement. Using the established model, further examination showed that the resolution contribution of the scintillator screen is correlated with its thickness and the range of the neutron absorption reaction products (i.e., the alpha and triton particles). Consequently, thinner screens exhibit improved spatial resolution. However, this will compromise detection efficiency due to the reduced probability of neutron absorption.
Nigg, D W; Randolph, P D; Wheeler, F J
1991-01-01
The Monte Carlo stochastic simulation technique has traditionally been the only well-recognized method for computing three-dimensional radiation dose distributions in connection with boron neutron capture therapy (BNCT) research. A deterministic approach to this problem would offer some advantages over the Monte Carlo method. This paper describes an application of a deterministic method to analytically simulate BNCT treatment of a canine head phantom using the epithermal neutron beam at the Brookhaven medical research reactor (BMRR). Calculations were performed with the TORT code from Oak Ridge National Laboratory (ORNL), an implementation of the discrete ordinates, or Sn method. Calculations were from first principles and used no empirical correction factors. The phantom surface was modeled by flat facets of approximately 1 cm2. The phantom interior was homogeneous. Energy-dependent neutron and photon scalar fluxes were calculated on a 32 x 16 x 22 mesh structure with 96 discrete directions in angular phase space. The calculation took 670 min on an Apollo DN10000 workstation. The results were subsequently integrated over energy to obtain full three-dimensional dose distributions. Isodose contours and depth-dose curves were plotted for several separate dose components of interest. Phantom measurements were made by measuring neutron activation (and therefore neutron flux) as a function of depth in copper-gold alloy wires that were inserted through catheters placed in holes drilled in the phantom. Measurements agreed with calculations to within about 15%. The calculations took about an order of magnitude longer than comparable Monte Carlo calculations but provided various conveniences, as well as a useful check.
High-Resolution 4D Imaging of Technetium Transport in Porous Media using Preclinical SPECT-CT
NASA Astrophysics Data System (ADS)
Dogan, M.; DeVol, T. A.; Groen, H.; Moysey, S. M.; Ramakers, R.; Powell, B. A.
2015-12-01
Preclinical SPECT-CT (single-photon emission computed tomography with integrated X-ray computed tomography) offers the potential to quantitatively image the dynamic three-dimensional distribution of radioisotopes with sub-millimeter resolution, overlaid with structural CT images (20-200 micron resolution), making this an attractive method for studying transport in porous media. A preclinical SPECT-CT system (U-SPECT4CT, MILabs BV. Utrecht, The Netherlands) was evaluated for imaging flow and transport of 99mTc (t1/2=6hrs) using a 46,5mm by 156,4mm column packed with individual layers consisting of <0.2mm diameter silica gel, 0.2-0.25, 0.5, 1.0, 2.0, 3.0, and 4.0mm diameter glass beads, and a natural soil sample obtained from the Savannah River Site. The column was saturated with water prior to injecting the 99mTc solution. During the injection the flow was interrupted intermittently for 10 minute periods to allow for the acquisition of a SPECT image of the transport front. Non-uniformity of the front was clearly observed in the images as well as the retarded movement of 99mTc in the soil layer. The latter is suggesting good potential for monitoring transport processes occurring on the timescale of hours. After breakthrough of 99mTc was achieved, the flow was stopped and SPECT data were collected in one hour increments to evaluate the sensitivity of the instrument as the isotope decayed. Fused SPECT- CT images allowed for improved interpretation of 99mTc distributions within individual pore spaces. With ~3 MBq remaining in the column, the lowest activity imaged, it was not possible to clearly discriminate any of the pore spaces.
High-resolution numerical models for smoke transport in plumes from wildland fires
Philip Cunningham; Scott Goodrick
2013-01-01
A high-resolution large-eddy simulation (LES) model is employed to examine the fundamental structure and dynamics of buoyant plumes arising from heat sources representative of wildland fires. Herein we describe several aspects of the mean properties of the simulated plumes. Mean plume trajectories are apparently well described by the traditional two-thirds law for...
NASA Astrophysics Data System (ADS)
Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick
2017-04-01
There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.
NASA Astrophysics Data System (ADS)
Hu, Q.; Wang, J.
2001-12-01
from the source. Sorbing chemicals will be subjected to retardation that leads to delayed transport (compared to nonsorbing chemicals). This approach enables us to investigate the contaminant-medium-fluid system with weak (yet nonzero) sorption. Two profiling techniques, rock drilling (with a sampling interval of 1 mm) and laser ablation-inductively coupled plasma-mass spectrometry (with a spatial resolution of { ~}20 microns), have been developed to measure chemical concentration as a function of distance in the sample. The results shows that Kd values for sorbing chemicals (e.g., lithium, and cesium) are consistently much lower (~3-7 times) than the data from the batch-sorption approaches reported in the literature. This new approach generates more realistic sorption data (under unsaturated transport conditions) for flow and transport modeling.
A multitask neutron beam line for spallation neutron sources
NASA Astrophysics Data System (ADS)
Pietropaolo, A.; Festa, G.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.; Civita, F.
2011-08-01
Here we present a new concept for a time-of-flight neutron scattering instrument allowing for simultaneous application of three different techniques: time-of-flight neutron diffraction, neutron resonance capture analysis and Bragg edge transmission analysis. The instrument can provide average resolution neutron radiography too. The potential of the proposed concept was explored by implementing the necessary equipment on INES (Italian Neutron Experimental Station) at the ISIS spallation neutron source (UK). The results obtained show the effectiveness of the proposed instrument to acquire relevant quantitative information in a non-invasive way on a historical metallurgical sample, namely a Japanese hand guard (tsuba). The aforementioned neutron techniques simultaneously exploited the extended neutron energy range available from 10 meV to 1 keV. This allowed a fully satisfactory characterization of the sample in terms of metal components and their combination in different phases, and forging and assembling methods.
General relativistic viscous hydrodynamics of differentially rotating neutron stars
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro
2017-04-01
Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.
NASA Astrophysics Data System (ADS)
Thomas, Ian; Murphy, Paul; Fenton, Owen; Shine, Oliver; Mellander, Per-Erik; Dunlop, Paul; Jordan, Phil
2015-04-01
A new phosphorus index (PI) tool is presented which aims to improve the identification of critical source areas (CSAs) of phosphorus (P) losses from agricultural land to surface waters. In a novel approach, the PI incorporates topographic indices rather than watercourse proximity as proxies for runoff risk, to account for the dominant control of topography on runoff-generating areas and P transport pathways. Runoff propensity and hydrological connectivity are modelled using the Topographic Wetness Index (TWI) and Network Index (NI) respectively, utilising high resolution digital elevation models (DEMs) derived from Light Detection and Ranging (LiDAR) to capture the influence of micro-topographic features on runoff pathways. Additionally, the PI attempts to improve risk estimates of particulate P losses by incorporating an erosion factor that accounts for fine-scale topographic variability within fields. Erosion risk is modelled using the Unit Stream Power Erosion Deposition (USPED) model, which integrates DEM-derived upslope contributing area and Universal Soil Loss Equation (USLE) factors. The PI was developed using field, sub-field and sub-catchment scale datasets of P source, mobilisation and transport factors, for four intensive agricultural catchments in Ireland representing different agri-environmental conditions. Datasets included soil test P concentrations, degree of P saturation, soil attributes, land use, artificial subsurface drainage locations, and 2 m resolution LiDAR DEMs resampled from 0.25 m resolution data. All factor datasets were integrated within a Geographical Information System (GIS) and rasterised to 2 m resolution. For each factor, values were categorised and assigned relative risk scores which ranked P loss potential. Total risk scores were calculated for each grid cell using a component formulation, which summed the products of weighted factor risk scores for runoff and erosion pathways. Results showed that the new PI was able to predict
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Edburg, S. L.; Lamb, B.; Forthofer, J.
2012-12-01
In areas of complex terrain, fine-scale changes in topography or vegetation substantially alter the flow field, and in turn, the transport and dispersion of air pollutants, pheromones, or other scalars. Thus, accurate modeling of scalar transport in complex topography requires accurate prediction of the flow field at a high spatial resolution. Mesoscale weather models typically operate on horizontal grids of 4 km or larger and are not capable of handling the effects of sub-grid complex terrain, such as wind speed-up over ridges, flow channeling in valleys, flow separation around terrain obstacles, and enhanced surface roughness from vegetation. In this paper we describe a scalar transport algorithm (advection and turbulent diffusion) used with WindNinja, a high-resolution mass-consistent wind model. WindNinja operates on a terrain-following coordinate system with a hexahedral cell mesh that grows in vertical size with height above the ground. A variational calculus approach is used in WindNinja that results in fast run times on the order of one minute for a 50 km x 50 km domain and 100 m horizontal resolution. The advection-diffusion algorithm uses a first order closure scheme for turbulent diffusion, where diffusivities are parameterized based on mixing length theory and modified as a function of atmospheric stability. We initialize WindNinja simulations with output from mesoscale weather forecasts using the Weather Research and Forecasting (WRF) model to capture the large-scale atmospheric flows and stability conditions. Model performance is evaluated against field data collected under a range of conditions at different locations including a multi-day continuous tracer gas dispersion experiment in an orchard located on rolling terrain in eastern Washington and a post-wildfire PM10 monitoring campaign in SE Idaho. The combination of fast run times, low computational demands, and explicit treatment of terrain and vegetation at a high spatial resolution are expected
Wolter Mirrors for Neutron Imaging
NASA Astrophysics Data System (ADS)
Wu, Huarui; Khaykovich, Boris; Wang, Xuewu; Hussey, Daniel S.
Conventional radiography based on attenuation of a well-collimated beam remains the mainstay of neutron imaging. The spatial resolution attained with this pinhole-camera method depends on the beam collimation; therefore, achieving the spatial resolution of a few microns is practically difficult, since collimating the neutron beam results in a low flux. The use of focusing devices allows maintaining sufficient spatial resolution without collimating the beam. Therefore, axisymmetric grazing-incidence focusing mirrors (Wolter mirrors) have begun to be introduced to neutron imaging. In this paper, a design of a neutron microscope for NIST Center for Neutron Research (NCNR) is presented. We evaluate the spatial resolution and study field curvature aberrations of Wolter mirrors through ray-tracing simulations. A general formula is found describing the field curvature, and ways to counter these aberrations are discussed.
NASA Astrophysics Data System (ADS)
Ding, M.; Hartl, M.; Wang, Y.; Hjelm, R.
2013-12-01
In nuclear waste management, clays are canonical materials in the construction of engineered barriers. They are also naturally occurring reactive minerals which play an important role in retention and colloidal facilitated reactive transport in subsurface systems. Knowledge of total and accessible porosity in clays is crucial in determining fluids transport behavior in clays. It will provide fundamental insight on the performance efficiency of specific clays as a barrier material and their role in regulating radionuclide transport in subsurface environments. The aim of the present work is to experimentally investigate the change in pore characteristics of clays as function of moisture content, and to determine their pore character in relation to their water retention capacity. Recent developments in small-angle neutron scattering (SANS) techniques allow quantitative measurement of pore morphology and size distribution of various materials in their pristine state under various sample environments (exposure to solution, high temperature, and so on). Furthermore, due to dramatic different neutron scattering properties of hydrogen and deuterium, one can readily use contrast variation, which is the isotopic labeling with various ratios of H and D (e.g. mixture of H2O/D2O) to highlight or suppress features of the sample. This is particularly useful in the study of complex pore system such as clays. In this study, we have characterized the pore structures for a number of clays including clay minerals and field samples which are relevant to high-level waste systems under various sample environments (e.g., humidity, temperature and pressure) using SANS. Our results suggest that different clays show unique pore features under various sample environments. To distinguish between accessible/non-accessible pores and the nature of pore filling (e.g. the quantity of H2O adsorbed by clays, and the distribution of H2O in relation to pore character) to water, clays were exposed for
Pautrat, A; Goupil, C; Simon, Ch; Charalambous, D; Forgan, E M; Lazard, G; Mathieu, P; Brûlet, A
2003-02-28
We report small-angle neutron scattering measurements on the vortex lattice in a PbIn polycrystal in the presence of an applied current. Using the rocking curves as a probe of the distribution of current in the sample, we observe that vortex pinning is due to the surface roughness. This leads to a surface current that persists in the flux-flow region. We show the influence of surface treatments on the distribution of this current.
Ray Next-Event Estimator Transport of Primary and Secondary Gamma Rays
2011-03-01
66 Run #1 - Neutron Transport, Monoenergetic Source ........................ 67 Run #2 - Neutron Transport, Fission Source...Transport, Fission Neutron Source ...................... 81 Run #6 - Coupled Transport, Monoenergetic Neutron Source...68 24. Ray-Estimated Neutron Flux Per Source Neutron at the Flux-Point from a Monoenergetic Point Source in Time and Energy Computed by
2010-01-01
Background Lung epithelial Na+ channels (ENaC) are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC) by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441), and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P < 0.05, n = 12) in mice intratracheally administrated verapamil. KCa3.1 (1-EBIO) and KATP (minoxidil) channel openers significantly recovered AFC. In addition to short-circuit current (Isc) in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na), K Ca3.1 (1-EBIO), and KATP (minoxidil) channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal. PMID:20507598
Isaacson, L C
1977-01-28
In amphibian epithelia, amiloride reduces net sodium transport by hindering the entry of sodium to the active transport mechanism, that is, by increasing the series resistance (Rser). Theoretically, therefore, analysis of amiloride-induced changes in potential differences and short-circuit current should yield numerical estimates of all the parameters in the equivalent electrical circuit of the sodium transport mechanism. The concept has been explored by analysis of such changes in toad skins (Xenopus laevis) bathed in hypotonic sulphate Ringer's, after exposure to varying doses of amiloride, or to amphotericin, dinitrophenol or Pitressin. The estimated values of Rser, of the electromotive force of the sodium pump (ENa), and of the shunt resistance (Rsh) were independent of the dose of amiloride employed. Skins bathed in hypotonic sulphate Ringer's exhibited a progressive rise in ENa. Amphotericin produced a fall in Rser, while dinitrophenol caused a fall in ENa; washout of the drugs reversed these effects. Pitressin produced a fall in both Rser and Rsh, with a rise in ENa. These results are in accord with earlier suggestions regarding the site(s) of action of these agents.
Californium-252: A New Isotopic Source for Neutron Radiography
Reinig, W.C.
2001-08-29
This report discusses a new isotopic source for neutron radiography, Californium-252. Nuclear reactors are the usual source of neutrons for radiography, primarily because of their intense neutron beams. If neutron radiography is to have widespread use, intense transportable neutron sources are required that can be used in plants, in laboratories and in the field.
Storm, M.; Begishev, I. A.; Brown, R. J.; Mileham, C.; Myatt, J. F.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Theobald, W.; Zuegel, J. D.; Guo, C.; Meyerhofer, D. D.
2008-10-15
High-resolution images of the rear-surface optical emission from high-intensity (I{approx}10{sup 19} W/cm{sup 2}) laser illuminated metal foils have been recorded using coherent transition radiation (CTR). CTR is generated as relativistic electrons, generated in high-intensity laser-plasma interactions, exit the target's rear surface and move into vacuum. A transition radiation diagnostic (TRD) records time-integrated images in a 24 nm bandwidth window around {lambda}=529 nm. The optical transmission at {lambda}=1053 nm, the laser wavelength, is 15 orders of magnitude lower than the transmission at the wavelength of interest, {lambda}=527 nm. The detector is a scientific grade charge-coupled device (CCD) camera that operates with a signal-to-noise ratio of 10{sup 3} and has a dynamic range of 10{sup 4}. The TRD has demonstrated a spatial resolution of 1.4 {mu}m over a 1 mm field of view, limited only by the CCD pixel size.
Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution
Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie A; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V
2010-01-01
The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.
FEM-FCT - Combining unstructured grids with high resolution. [Flux Corrected Transport
NASA Technical Reports Server (NTRS)
Lohner, R.; Morgan, K.; Vahdati, M.; Boris, J. P.; Book, D. L.
1988-01-01
The extension of flux-corrected transport (FCT) schemes to unstructured grids is presented. The spatial discretization is performed via finite elements. In particular, triangular elements in two dimensions have been chosen. The limiting procedure is based on Zalesak's (1979) extension to more than one dimension of the FCT schemes developed by Boris and Book (1973). The resulting scheme, FEM-FCT, is capable of resolving moving and stationary shocks within two elements, and several examples are given that demonstrate the accuracy attainable, even for complicated geometries.
Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution.
Balke, Nina; Jesse, Stephen; Kim, Yoongu; Adamczyk, Leslie; Tselev, Alexander; Ivanov, Ilia N; Dudney, Nancy J; Kalinin, Sergei V
2010-09-08
The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.
Bingham, Philip R; Santos-Villalobos, Hector J
2011-01-01
Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.
NASA Astrophysics Data System (ADS)
Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken
2011-03-01
Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.
Voronov, Roman S.; Stalker, Timothy J.; Brass, Lawrence F.; Diamond, Scott L.
2013-01-01
The mouse laser injury thrombosis model provides up to 0.22 μm-resolved voxel information about the pore architecture of the dense inner core and loose outer shell regions of an in-vivo arterial thrombus. Computational studies were conducted on this 3D structure to quantify transport within and around the clot: Lattice Boltzmann method defined vessel hemodynamics, while passive Lagrangian Scalar Tracking with Brownian motion contribution simulated diffusive-convective transport of various inert solutes (released from lumen or the injured wall). For an input average lumen blood velocity of 0.478 cm/s (measured by Doppler velocimetry), a 0.2 mm/s mean flow rate was obtained within the thrombus structure, most of which occurred in the 100-fold more permeable outer shell region (calculated permeability of the inner core was 10−11 cm2). Average wall shear stresses were 80–100 dyne/cm2 (peak values > 200 dyne/cm2) on the outer rough surface of the thrombus. Within the thrombus, small molecule tracers (0.1 kDa) experienced ~70,000 collisions/sec and penetrated/exited it in about 1 sec, whereas proteins (~50 kDa) had ~9,000 collisions/sec and required about 10 sec (tortuosity ~ 2 to 2.5). These simulations help define physical processes during thrombosis and constraints for drug delivery to the thrombus. PMID:23423707
High Resolution Numerical Simulations and Diagnostic Studies Atmospheric Transport During TRACE-A
NASA Technical Reports Server (NTRS)
Krishnamurti, T. N.; Fuelberg, Henry
1995-01-01
The enclosed publications constitute our final report. These are publications completed in referred journals. The completed work includes: Meteorological conditions associated with vertical distributions of aerosols off the west coast of Africa. TRACE-A trajectory intercomparison 2. Isentropic and kinematic methods. Chemical characteristics of tropospheric air over the tropical South Atlantic Ocean: Relationship to trajectory history. Passive Tracer Transport Relevant to the TRACE-A Experiment. The meteorological environment of the tropospheric ozone maximum over the tropical south Atlantic Ocean. : Influence of a middle-latitude cyclone on tropospheric ozone distributions during a period of TRACE-A. All of this work provided the meteorological background for the Transport of Atmospheric Chemistry near the Equator (TRACE-A) project sponsored by Dr,, Joe McNeal of NASA. Our principal findings are that bio-mass burning sources from Africa and South America did contribute to the accumulation of tropospheric ozone over the tropical Atlantic Ocean. Other findings relate to circulations, advections of Ozone and other plausible sources for the TOMS based ozone maximum over the Atlantic Ocean.
High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE
NASA Astrophysics Data System (ADS)
Terrenoire, E.; Bessagnet, B.; Rouïl, L.; Tognet, F.; Pirovano, G.; Létinois, L.; Beauchamp, M.; Colette, A.; Thunis, P.; Amann, M.; Menut, L.
2015-01-01
A modified version of CHIMERE 2009, including new methodologies in emissions modelling and an urban correction, is used to perform a simulation at high resolution (0.125° × 0.0625°) over Europe for the year 2009. The model reproduces the temporal variability of NO2, O3, PM10, PM2.5 better at rural (RB) than urban (UB) background stations, with yearly correlation values for the different pollutants ranging between 0.62 and 0.77 at RB sites and between 0.52 and 0.73 at UB sites. Also, the fractional biases (FBs) show that the model performs slightly better at RB sites than at UB sites for NO2 (RB = -33.9%, UB = -53.6%), O3 (RB = 20.1%, UB = 25.2%) and PM10 (RB = -5.50%, UB = -20.1%). The difficulties for the model in reproducing NO2 concentrations can be attributed to the general underestimation of NOx emissions as well as to the adopted horizontal resolution, which represents only partially the spatial gradient of the emissions over medium-size and small cities. The overestimation of O3 by the model is related to the NO2 underestimation and the overestimated O3 concentrations of the lateral boundary conditions. At UB sites, CHIMERE reproduces PM2.5 better than PM10. This is primarily the result of an underestimation of coarse particulate matter (PM) associated with uncertainties in secondary organic aerosol (SOA) chemistry and its precursor emissions (Po valley and Mediterranean basin), dust (south of Spain) and sea salt (western Europe). The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions.
NASA Astrophysics Data System (ADS)
Acosta, R. P.; Huber, M.
2016-12-01
Moisture transport across the Indo-Gangetic Plain, especially during peak monsoon season (July and August), is an integral part of the regional hydrological cycle of the Indian subcontinent. This study highlights the importance of such east-west, low-level (1000-600 mb) moisture flux, that is tied to the orographic precipitation over the Himalayan foothills, and identifies the regional atmospheric forcing that allows such phenomenon to occur. We used various reanalysis products, ERAI, JRA55, and output from NCAR regional weather forecasting model (HAR). Additionally, our analysis also includes results from the NCAR family of atmospheric general circulation models (CAM). We evaluate how various resolutions of CAM from low (200 km) to high (28 km) simulate such critical flow patterns. A secondary purpose of this study is to demonstrate that the commonly used, low-resolution version of NCAR CAM models, lack the ability to simulate such east-west flow and in consequence, produces excessive precipitation on the foothills of the Himalayan Mountains and Southern Tibetan Plateau. We identify that an anomalous sub-cloud, equivalent potential temperature near the Indian-Pakistan border, as well as an anomalous geopotential height at 500 mb across the Ganges basin, are key to the formation of such phenomenon. The combination of both regional processes allows the establishment of strong near surface low-pressure system that forces moisture transport to depart from the more dominant southwest monsoon circulation. This study has major implications for modeling studies that simulation the Asian monsoon system and is critical for the monsoon community that heavily relies on NCAR AGCMs.
NASA Astrophysics Data System (ADS)
Scoccimarro, E.; Gualdi, S.; Bellucci, A.; Sanna, A.; Vichi, M.; Manzini, E.; Fogli, P.; Navarra, A.; Oddo, P.
2010-12-01
Tropical cyclones (TCs) activity and their relationship with the Northern hemispheric Ocean Heat Transport (OHT) is investigated. The analysis has been performed using 20C3M (20th Century) and A1B (21st Century) IPCC scenario climate simulations obtained running a state-of-the-art atmosphere-ocean-seaice coupled global model, with high-resolution in the atmosphere. The capability of the model to reproduce a realistic TC climatology has been assessed by comparing the model results from the simulation of the 20th Century with observations. The model is able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic structure, geographical distribution and interannual variability, indicating that the model is able to reproduce the major basic mechanisms that link the TC activity with the large scale circulation. The TC-induced ocean cooling is well represented and the TCs activity increases significantly the poleward OHT out of the tropics, but also increases the heat transport into the deep tropics. This effect, investigated looking at the 100 most intense Northern hemisphere TCs, is strongly correlated to the TC-induced momentum flux at the surface of the ocean. TCs frequency and intensity appear to be substantially stationary through the whole 1950- 2069 period. Also the effect of the TCs induced OHT) does not significantly change during the simulated period.
Corell, Hanna; Döös, Kristofer
2013-05-01
A particle-tracking model based on high-resolution ocean flow data was used to investigate particle residence times and spatial distribution of settling sediment for two geo-morphologically different Swedish coastal areas. The study was a part of a safety assessment for the location of a future nuclear-waste repository, and information about the particle-transport patterns can contribute to predictions of the fate of a possible leakage. It is also, to our knowledge, the first time particle-transport differences between two coastal areas have been quantified in this manner. In Forsmark, a funnel-shaped bay shielded by a number of islands, the average residence time for clay particles was 5 times longer than in the modeled part of Simpevarp, which is open to the Baltic Sea. In Forsmark, <10 % of the released particles left the domain compared to 60-80 % in Simpevarp. These site-specific differences will increase over time with the differences in land uplift between the areas.
Barnard, Patrick L.; Erikson, Li H.; Rubin, David M.; Kvitek, Rikk G.
2011-01-01
New multibeam echosounder and processing technologies yield sub-meter-scale bathymetric resolution, revealing striking details of bedform morphology that are shaped by complex boundary-layer flow dynamics at a range of spatial and temporal scales. An inertially aided post processed kinematic (IAPPK) technique generates a smoothed best estimate trajectory (SBET) solution to tie the vessel motion-related effects of each sounding directly to the ellipsoid, significantly reducing artifacts commonly found in multibeam data, increasing point density, and sharpening seafloor features. The new technique was applied to a large bedform field in 20–30 m water depths in central San Francisco Bay, California (USA), revealing bedforms that suggest boundary-layer flow deflection by the crests where 12-m-wavelength, 0.2-m-amplitude bedforms are superimposed on 60-m-wavelength, 1-m-amplitude bedforms, with crests that often were strongly oblique (approaching 90°) to the larger features on the lee side, and near-parallel on the stoss side. During one survey in April 2008, superimposed bedform crests were continuous between the crests of the larger features, indicating that flow detachment in the lee of the larger bedforms is not always a dominant process. Assessment of bedform crest peakedness, asymmetry, and small-scale bedform evolution between surveys indicates the impact of different flow regimes on the entire bedform field. This paper presents unique fine-scale imagery of compound and superimposed bedforms, which is used to (1) assess the physical forcing and evolution of a bedform field in San Francisco Bay, and (2) in conjunction with numerical modeling, gain a better fundamental understanding of boundary-layer flow dynamics that result in the observed superimposed bedform orientation.
Atmospheric Chemical Transport Based on High Resolution Model- Derived Winds: A Case Study
NASA Technical Reports Server (NTRS)
Hannan, John R.; Fuelberg, Henry E.; Thompson, Anne M.; Bieberbach, George, Jr.; Knabb, Richard D.; Kondo, Yutaka; Anderson, Bruce E.; Browell, Edward V.; Gregory, Gerald L.; Sachse, Glen;