Sample records for neutron-irradiated cr-mo ferritic

  1. Formation of austenite in high Cr ferritic/martensitic steels by high fluence neutron irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Faulkner, R. G.; Morgan, T. S.

    2008-12-01

    High Cr ferritic/martensitic steels are leading candidates for structural components of future fusion reactors and new generation fission reactors due to their excellent swelling resistance and thermal properties. A commercial grade 12%CrMoVNb ferritic/martensitic stainless steel in the form of parent plate and off-normal weld materials was fast neutron irradiated up to 33 dpa (1.1 × 10 -6 dpa/s) at 400 °C and 28 dpa (1.7 × 10 -6 dpa/s) at 465 °C, respectively. TEM investigation shows that the fully martensitic weld metal transformed to a duplex austenite/ferrite structure due to high fluence neutron irradiation, the austenite was heavily voided (˜15 vol.%) and the ferrite was relatively void-free; whilst no austenite phases were detected in plate steel. Thermodynamic and phase equilibria software MTDATA has been employed for the first time to investigate neutron irradiation-induced phase transformations. The neutron irradiation effect is introduced by adding additional Gibbs free energy into the system. This additional energy is produced by high energy neutron irradiation and can be estimated from the increased dislocation loop density caused by irradiation. Modelling results show that neutron irradiation reduces the ferrite/austenite transformation temperature, especially for high Ni weld metal. The calculated results exhibit good agreement with experimental observation.

  2. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  3. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel

    DOE PAGES

    Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...

    2015-08-08

    To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less

  4. On α‧ precipitate composition in thermally annealed and neutron-irradiated Fe- 9-18Cr alloys

    NASA Astrophysics Data System (ADS)

    Reese, Elaina R.; Bachhav, Mukesh; Wells, Peter; Yamamoto, Takuya; Robert Odette, G.; Marquis, Emmanuelle A.

    2018-03-01

    Ferritic-martensitic steels are leading candidates for many nuclear energy applications. However, formation of nanoscale α‧ precipitates during thermal aging at temperatures above 450 °C, or during neutron irradiation at lower temperatures, makes these Fe-Cr steels susceptible to embrittlement. To complement the existing literature, a series of Fe-9 to 18 Cr alloys were neutron-irradiated at temperatures between 320 and 455 °C up to doses of 20 dpa. In addition, post-irradiation annealing treatments at 500 and 600 °C were performed on a neutron-irradiated Fe-18 Cr alloy to validate the α-α‧ phase boundary. The microstructures were characterized using atom probe tomography and the results were analyzed in light of the existing literature. Under neutron irradiation and thermal annealing, the measured α‧ concentrations ranged from ∼81 to 96 at.% Cr, as influenced by temperature, precipitate size, technique artifacts, and, possibly, cascade ballistic mixing.

  5. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Howard, Richard H.; Yamamoto, Yukinori

    2017-06-01

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloys with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). The results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.

  6. Mechanical properties of neutron-irradiated model and commercial FeCrAl alloys

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-03-28

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  7. TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2018-04-01

    The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.

  8. The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy under Xe26+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Huaican; Hai, Yang; Liu, Renduo; Jiang, Li; Ye, Xiang-xi; Li, Jianjian; Xue, Wandong; Wang, Wanxia; Tang, Ming; Yan, Long; Yin, Wen; Zhou, Xingtai

    2018-04-01

    The irradiation hardening of Ni-Mo-Cr and Ni-W-Cr alloy was investigated. 7 MeV Xe26+ ion irradiation was performed at room temperature and 650 °C with peak damage dose from 0.05 to 10 dpa. With the increase of damage dose, the hardness of Ni-Mo-Cr and Ni-W-Cr alloy increases, and reaches saturation at damage dose ≥1 dpa. Moreover, the damage dose dependence of hardness in both alloys can be described by the Makin and Minter's equation, where the effective critical volume of obstacles can be used to represent irradiation hardening resistance of the alloys. Our results also show that Ni-W-Cr alloy has better irradiation hardening resistance than Ni-Mo-Cr alloy. This is ascribed to the fact that the W, instead of Mo in the alloy, can suppress the formation of defects under ion irradiation.

  9. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.

    1998-10-01

    Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.

  10. Fracture toughness of irradiated modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Kim, Sung Ho; Yoon, Ji-Hyun; Ryu, Woo Seog; Lee, Chan Bock; Hong, Jun Hwa

    2009-04-01

    The effects of irradiation on fracture toughness of modified 9Cr-1Mo steel in the transition region were investigated. Half size precracked Charpy specimens were irradiated up to 1.2 × 10 21n/cm 2 ( E > 0.1 MeV) at 340 °C and 400 °C in the Korean research reactor. The irradiation induced transition temperature shift for a modified 9Cr-1Mo was evaluated by using the Master Curve methodology. The T0 temperature for the unirradiated specimens were measured as -67.7 °C and -72.4 °C from the tests with standard PCVN (precracked charpy V-notch) and half sized PCVN specimens, respectively. The T0 shifts of specimens after irradiation at 340 °C and 400 °C were 70.7 °C and 66.1 °C, respectively. The Weibull slopes for the fracture toughness data obtained from the unirradiated and irradiated modified 9Cr-1Mo steels were determined to confirm the applicability of master curve methodology to modified 9Cr-1Mo steel.

  11. A combined APT and SANS investigation of α' phase precipitation in neutron-irradiated model FeCrAl alloys

    DOE PAGES

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.; ...

    2017-03-01

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  12. Dynamic strain aging behavior of modified 9Cr-1Mo and reduced activation ferritic martensitic steels under low cycle fatigue

    NASA Astrophysics Data System (ADS)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Prasad Reddy, G. V.; Mathew, M. D.

    2013-04-01

    Influence of temperature and strain rate on low cycle fatigue (LCF) behavior of modified 9Cr-1Mo ferritic martensitic steel and 1.4W-0.06Ta reduced activation ferritic martensitic (RAFM) steel in normalized and tempered conditions was studied. Total strain controlled LCF tests between 300 and 873 K on modified 9Cr-1Mo steel and RAFM steel and at various strain rates on modified 9Cr-1Mo steel were performed at total strain amplitude of ±0.6%. Both the steels showed continuous cyclic softening at all temperatures. Whereas manifestations of dynamic strain aging (DSA) were observed in both the steels which decreased fatigue life at intermediate temperatures, at higher temperatures, oxidation played a crucial role in decreasing fatigue life.

  13. Behavior of implanted hydrogen in ferritic/martensitic steels under irradiation

    NASA Astrophysics Data System (ADS)

    Wan, F.; Takahashi, H.; Ohnuki, S.; Nagasaki, R.

    1988-07-01

    The aim of this study was to clarify the behavior of hydrogen under irradiation in ferritic/martensitic stainless steel Fe-10Cr-2Mo-1Ni. Hydrogen was implanted into the specimens by ion accelerator or chemical cathodic charging method, followed by electron irradiation in a HVEM at temperatures from room temperature to 773 K. Streaks in the electron diffraction patterns were observed only during electron irradiation at 623-723 K. From these results it is suggested that the occurrence of the streak pattern is due to the formation of radiation-induced complexes of Ni or Cr with hydrogen along <100> directions.

  14. Heat treatment effects on toughness of 9Cr-1MoVNb and 12Cr-1MoVW steels irradiated at 365°C

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    1992-09-01

    The 9Cr-1MoVNb and 12Cr-1MoVW steels were austenitized at 1040 and 1100°C to produce different prior austenite grain sizes, after which they were given different tempering treatments (1 h at 760°C or 2.5 h at 780°C). Subsize Charpy impact specimens from these materials were irradiated at 365°C up to 5 dpa. For 9Cr-1MoVNb steel in the unirradiated condition, the smaller the prior austenite grain size and the higher the tempering temperature, the lower the ductile-brittle transition temperature (DBTT). Regardless of the DBTT in the unirradiated condition, however, the DBTT shift for 9Cr-1MoVNb steel due to irradiation was the same for all heat treatments. This means heat treatment can be used to ensure a lower DBTT before and after irradiation. The 12Cr-1MoVW steel showed little effect of heat treatment on DBTT in the unirradiated condition, and the shift in DBTT was relatively constant. Thus, it appears that heat treatment cannot be used to reduce the effect of irradiation on DBTT for this steel.

  15. Precipitation behavior in austenitic and ferritic steels during fast neutron irradiation and thermal aging*1

    NASA Astrophysics Data System (ADS)

    Kawanishi, H.; Hajima, R.; Sekimura, N.; Arai, Y.; Ishino, S.

    1988-07-01

    Precipitation behavior has been studied using a carbon extraction replica technique in Ti-modified Type 316 stainless steels (JPCA-2) and 9Cr-2Mo ferritic/martensitic steels (JFMS) irradiated to 8.1 × 10 24 n/m 2 at 873 and 673 K, respectively, in the experimental fast breeder reactor JOYO. Precipitate identification and compositional analysis were carried out on extracted replicas. The results were compared to those from the as-received steel and a control which had been given the same thermal as-treatment as the specimens received during irradiations. Carbides, Ti-sulphides and phosphides were precipitated in JPCA-2. Precipitate observed in JFMS included carbides, Laves-phases and phosphides. The precipitates in both steels were concluded to be stable under irradiation except for MC and M 6C in JPCA-2. Small MC particles were found precipitated in JPCA-2 during both irradiation and aging. Irradiation proved to promote the precipitation of M 6C in JPCA-2.

  16. Development of new ferritic steels as cladding material for metallic fuel fast breeder reactor

    NASA Astrophysics Data System (ADS)

    Tokiwai, Moriyasu; Horie, Masaaki; Kako, Kenji; Fujiwara, Masayuki

    1993-09-01

    The excellent thermal, chemical and neutronic properties of metallic fuel (U-Pu-Zr alloy) will lead to drastic improvements in fast reactor safety and the related fuel cycle economy. Some new high molybdenum 12Cr ferritic stainless steel candidate cladding alloys have been designed to achieve the mechanical properties required for high performance metallic fuel elements. These candidate claddings were irradiated by ion bombardment and tested to determine their strength and creep rupture properties. A 12Cr-8Mo and a 12Cr-8Mo-0.1Y 2O 3 steel were fabricated into cladding via a powder metallurgy process and by a mechanical alloying process, respectively. These claddings had two and three times the creep rupture strength (pressurized at 650°C for 10000 h) of a conventional 12Cr ferritic steel (HT-9). These two steels also showed no void formation up to 350 dpa by Ni 3+ irradiation. A zircaloy-2 lined steel cladding tube has also been fabricated for the purpose of reducing fuel-cladding interdiffusion and chemical interaction.

  17. Effects of titanium on ferrite continuous cooling transformation curves of high-thickness Cr-Mo steels

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hoon; Na, Hye-Sung; Park, Gi-Deok; Kim, Byung-Hoon; Song, Sang-Woo; Kang, Chung-Yun

    2013-09-01

    The effect of Ti on the ferrite-phase transformation in the middle portion of high-thickness Cr-Mo steel vessels was studied. The phase diagrams and ferrite continuous cooling transformation (CCT) curves were calculated thermodynamically, and dilatometry tests were performed to determine the start and finish times of the ferrite transformation. When the Ti concentration was 0.015 mass%, Δ( F s - F f ) of ferrite CCT curve decreased owing to an increase in the concentration of Mn dissolved as a result of (Mn, Ti) oxide formation. When the Ti concentration was 0.03 mass% or greater, the ferrite CCT curves shifted considerably to the right along the time axis owing to an increase in Ti oxide formation and the precipitation of Ti4C2S2, both of which affect the concentration of Mn dissolved in the austenite matrix. As a result, a completely bainitic structure was obtained when the Ti concentration was 0.03 mass% or greater.

  18. Heat treatment effects on impact toughness of 9Cr 1MoVNb and 12Cr 1MoVW steels irradiated to 100 dpa

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    1998-10-01

    Plates of 9Cr-1MoVNb and 12Cr-1MoVW steels were given four different heat treatments: two normalizing treatments were used and for each normalizing treatment two tempers were used. Miniature Charpy specimens from each heat treatment were irradiated to ≈20 dpa at 365°C and to ≈100 dpa at 420°C in the Fast Flux Test Facility (FFTF). In previous work, the same steels were irradiated in FFTF to 4-5 dpa at 365°C and 35-36 dpa at 420°C. The tests indicated that prior austenite grain size, which was varied by the different normalizing treatments, affected the impact behavior of the 9Cr-1MoVNb but not the 12Cr-1MoVW. Tempering had relatively little effect on the impact behavior of both steels. Conclusions are presented on how heat treatment can be used to optimize impact properties.

  19. High Temperature Strengthening in 12Cr-W-Mo Steels by Controlling the Formation of Delta Ferrite

    NASA Astrophysics Data System (ADS)

    Wang, Shushen; Chang, Li; Lin, Deye; Chen, Xiaohua; Hui, Xidong

    2014-09-01

    Novel 12Cr-W-Mo-Co heat resistance steels (HRSs) with excellent mechanical properties have been developed for ultra-supercritical (USC) applications above 923 K (650 °C). The thermal analysis of the present steels indicates that the remelting temperature of secondary phases is increased by Co alloying, resulting in the improvement of microstructural stability. Delta ferrite in these HRSs is completely suppressed as the content of Co is increased up to 5 pct. The room temperature tensile strength (TS), yield strength (YS), and the elongation (EL) of the HRS with 5 pct Co reach 887.9, 652.6 MPa, and 21.07 pct, respectively. At 948 K (675 °C), the TS and YS of the HRS with 5 pct Co attain 360 and 290 MPa, respectively, which are higher than those of T/P122 steel by 27.4 and 22.1 pct, respectively. TEM study of the microstructure confirmed that the strengthening effects for these 12Cr-W-Mo-Co HRSs are attributed to the suppression of delta ferrite, the formation of fine martensitic laths with substructure, dislocation networks and walls, and the precipitation of second nanoscale phases.

  20. Nanocluster irradiation evolution in Fe-9%Cr ODS and ferritic-martensitic alloys

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2017-12-01

    The objective of this study is to evaluate the influence of dose rate and cascade morphology on nanocluster evolution in a model Fe-9%Cr oxide dispersion strengthened steel and the commercial ferritic/martensitic (F/M) alloys HCM12A and HT9. We present a large, systematic data set spanning the three alloys, three irradiating particle types, four orders of magnitude in dose rate, and doses ranging 1-100 displacements per atom over 400-500 °C. Nanoclusters are characterized using atom probe tomography. ODS oxide nanoclusters experience partial dissolution after irradiation due to inverse Ostwald ripening, while F/M nanoclusters undergo Ostwald ripening. Damage cascade morphology is indicative of nanocluster number density evolution. Finally, the effects of dose rate on nanocluster morphology provide evidence for a temperature dilation theory, which purports that a negative temperature shift is necessary for higher dose rate irradiations to emulate nanocluster evolution in lower dose rate irradiations.

  1. Precipitation of α' in neutron irradiated commercial FeCrAl alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Littrell, Kenneth C.; Briggs, Samuel A.

    2017-08-17

    In this paper, Alkrothal 720 and Kanthal APMT™, two commercial FeCrAl alloys, were neutron irradiated up to damage doses of 7.0 displacements per atom (dpa) in the temperature range of 320 to 382 °C to characterize the α' precipitation in these alloys using small-angle neutron scattering. Both alloys exhibited α' precipitation. Kanthal APMT™ exhibited higher number densities and volume fraction, a result attributed to its higher Cr content compared with Alkrothal 720. Finally, trends observed as a function of damage dose (dpa) are consistent with literature trends for both FeCr and FeCrAl alloys

  2. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  3. Use of double and triple-ion irradiation to study the influence of high levels of helium and hydrogen on void swelling of 8-12% Cr ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Kupriiyanova, Y. E.; Bryk, V. V.; Borodin, O. V.; Kalchenko, A. S.; Voyevodin, V. N.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    In accelerator-driven spallation (ADS) devices, some of the structural materials will be exposed to intense fluxes of very high energy protons and neutrons, producing not only displacement damage, but very high levels of helium and hydrogen. Unlike fission flux-spectra where most helium and hydrogen are generated by transmutation in nickel and only secondarily in iron or chromium, gas production in ADS flux-spectra are rather insensitive to alloy composition, such that Fe-Cr base ferritic alloys also generate very large gas levels. While ferritic alloys are known to swell less than austenitic alloys in fission spectra, there is a concern that high gas levels in fusion and especially ADS facilities may strongly accelerate void swelling in ferritic alloys. In this study of void swelling in response to helium and hydrogen generation, irradiation was conducted on three ferritic-martensitic steels using the Electrostatic Accelerator with External Injector (ESUVI) facility that can easily produce any combination of helium to dpa and/or hydrogen to dpa ratios. Irradiation was conducted under single, dual and triple beam modes using 1.8 MeV Cr+3, 40 keV He+, and 20 keV H+. In the first part of this study we investigated the response of dual-phase EP-450 to variations in He/dpa and H/dpa ratio, focusing first on dual ion studies and then triple ion studies, showing that there is a diminishing influence on swelling with increasing total gas content. In the second part we investigated the relative response of three alloys spanning a range of starting microstructure and composition. In addition to observing various synergisms between He and H, the most important conclusion was that the tempered martensite phase, known to lag behind the ferrite phase in swelling in the absence of gases, loses much of its resistance to void nucleation when irradiated at large gas/dpa levels.

  4. Can gamma irradiation during radiotherapy influence the metal release process for biomedical CoCrMo and 316L alloys?

    PubMed

    Wei, Zheng; Edin, Jonathan; Karlsson, Anna Emelie; Petrovic, Katarina; Soroka, Inna L; Odnevall Wallinder, Inger; Hedberg, Yolanda

    2018-02-09

    The extent of metal release from implant materials that are irradiated during radiotherapy may be influenced by irradiation-formed radicals. The influence of gamma irradiation, with a total dose of relevance for radiotherapy (e.g., for cancer treatments) on the extent of metal release from biomedical stainless steel AISI 316L and a cobalt-chromium alloy (CoCrMo) was investigated in physiological relevant solutions (phosphate buffered saline with and without 10 g/L bovine serum albumin) at pH 7.3. Directly after irradiation, the released amounts of metals were significantly higher for irradiated CoCrMo as compared to nonirradiated CoCrMo, resulting in an increased surface passivation (enhanced passive conditions) that hindered further release. A similar effect was observed for 316L showing lower nickel release after 1 h of initially irradiated samples as compared to nonirradiated samples. However, the effect of irradiation (total dose of 16.5 Gy) on metal release and surface oxide composition and thickness was generally small. Most metals were released initially (within seconds) upon immersion from CoCrMo but not from 316L. Albumin induced an increased amount of released metals from AISI 316L but not from CoCrMo. Albumin was not found to aggregate to any greater extent either upon gamma irradiation or in the presence of trace metal ions, as determined using different light scattering techniques. Further studies should elucidate the effect of repeated friction and fractionated low irradiation doses on the short- and long term metal release process of biomedical materials. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  5. Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry.

    PubMed

    Sahoo, G S; Paul, S; Tripathy, S P; Sharma, S C; Jena, S; Rout, S; Joshi, D S; Bandyopadhyay, T

    2014-12-01

    Effects of high-dose neutron irradiation on chemical and optical properties of CR-39 were studied using FTIR (Fourier Transform Infrared) and UV-vis (Ultraviolet-Visible) spectroscopy. The primary goal was to find a correlation between the neutron dose and the corresponding changes in the optical and chemical properties of CR-39 resulted from the neutron irradiation. The neutrons were produced by bombarding a thick Be target with 22-MeV protons. In the FTIR spectra, prominent absorbance peaks were observed at 1735cm(-1) (C=O stretching), 1230cm(-1)(C-O-C stretching), and 783cm(-1)(=C-H bending), the intensities of which decreased with increasing neutron dose. The optical absorbance in the visible range increased linearly with the neutron dose. Empirical relations were established to estimate neutron doses from these optical properties. This technique is particularly useful in measuring high doses, where track analysis with an optical microscope is difficult because of track overlapping. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neutron irradiation effects in Fe and Fe-Cr at 300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ying; Miao, Yinbin; Gan, Jian

    2016-06-01

    Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less

  7. Thermomechanical Processing and Texture Development in Ni-Cr-Mo and Mn-Mo-B Armor Steels

    DTIC Science & Technology

    1984-04-01

    steel , has a fairly low hardenability with respect to the forma- tion of ferrite fcom austenite. However, both steels transformed isothermally to...plates of both armor steels . Because of the relatively low hardenabilities of these steels , particularly the Ni-Cr-Mo steel , ferrite formation could not be...Austenite at Selected Temperatures. To obtain some information on the kinetics of phase transformations in highly deformed austenite of the two

  8. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; ...

    2017-08-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and alunimum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3–0.8 displacements per atom (dpa) at temperatures of 335–355°C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a/2< 111 > or a< 100 > Burgers vectors. Weak composition dependencies were observedmore » and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Here, the results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.« less

  9. Dislocation loop formation in model FeCrAl alloys after neutron irradiation below 1 dpa

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar; Yamamoto, Yukinori; Howard, Richard H.

    2017-11-01

    FeCrAl alloys with varying compositions and microstructures are under consideration for accident-tolerant fuel cladding, but limited details exist on dislocation loop formation and growth for this class of alloys under neutron irradiation. Four model FeCrAl alloys with chromium contents ranging from 10.01 to 17.51 wt % and aluminum contents of 4.78 to 2.93 wt % were neutron irradiated to doses of 0.3-0.8 displacements per atom (dpa) at temperatures of 335-355 °C. On-zone STEM imaging revealed a mixed population of black dots and larger dislocation loops with either a / 2 〈 111 〉 or a 〈 100 〉 Burgers vectors. Weak composition dependencies were observed and varied depending on whether the defect size, number density, or ratio of defect types was of interest. Results were found to mirror those of previous studies on FeCrAl and FeCr alloys irradiated under similar conditions, although distinct differences exist.

  10. Temperature effects on the mechanical properties of candidate SNS target container materials after proton and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Lee, E. H.; Mansur, L. K.; Maloy, S. A.; James, M. R.; Johnson, W. R.

    2002-05-01

    This report presents the tensile properties of EC316LN austenitic stainless steel and 9Cr-2WVTa ferritic/martensitic steel after 800 MeV proton and spallation neutron irradiation to doses in the range 0.54-2.53 dpa at 30-100 °C. Tensile testing was performed at room temperature (20 °C) and 164 °C. The EC316LN stainless steel maintained notable strain-hardening capability after irradiation, while the 9Cr-2WVTa ferritic/martensitic steel posted negative hardening in the engineering stress-strain curves. In the EC316LN stainless steel, increasing the test temperature from 20 to 164 °C decreased the strength by 13-18% and the ductility by 8-36%. The effect of test temperature for the 9Cr-2WVTa ferritic/martensitic steel was less significant than for the EC316LN stainless steel. In addition, strain-hardening behaviors were analyzed for EC316LN and 316L stainless steels. The strain-hardening rate of the 316 stainless steels was largely dependent on test temperature. A calculation using reduction of area measurements and stress-strain data predicted positive strain hardening during plastic instability.

  11. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    DOE PAGES

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...

    2016-11-01

    FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less

  12. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  13. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  14. Cr incorporated phase transformation in Y2O3 under ion irradiation

    PubMed Central

    Li, N.; Yadav, S. K.; Xu, Y.; Aguiar, J. A.; Baldwin, J. K.; Wang, Y. Q.; Luo, H. M.; Misra, A.; Uberuaga, B. P.

    2017-01-01

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y2O3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1st layer)/100 nm Y2O3 (2nd layer)/135 nm Fe - 20 at.% Cr (3rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y2O3 interface. Further, correlated with Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y2O3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y2O3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys. PMID:28091522

  15. Cr incorporated phase transformation in Y 2O 3 under ion irradiation

    DOE PAGES

    Li, Nan; Yadav, Satyesh Kumar; Xu, Yun; ...

    2017-01-16

    Under irradiation, chemical species can redistribute in ways not expected from equilibrium behavior. In oxide-dispersed ferritic alloys, the phenomenon of irradiation-induced Cr redistribution at the metal/oxide interfaces has drawn recent attention. Here, the thermal and irradiation stability of the FeCr/Y 2O 3 interface has been systematically studied. Trilayer thin films of 90 nm Fe - 20 at.% Cr (1 st layer)/100 nm Y 2O 3 (2 nd layer)/135 nm Fe - 20 at.% Cr (3 rd layer) were deposited on MgO substrates at 500 °C. After irradiation, Cr diffuses towards and enriches the FeCr/Y 2O 3 interface. Further, correlated withmore » Cr redistributed into the oxide, an amorphous layer is generated at the interface. In the Y 2O 3 layer, the original cubic phase is observed to transform to the monoclinic phase after irradiation. Meanwhile, nanosized voids, with relatively larger size at interfaces, are also observed in the oxide layer. First-principles calculations reveal that Cr substitution of Y interstitials in Y 2O 3 containing excess Y interstitials is favored and the irradiation-induced monoclinic phase enhances this process. Lastly, our findings provide new insights that may aid in the development of irradiation resistant oxide-dispersed ferritic alloys.« less

  16. Heterogeneous dislocation loop formation near grain boundaries in a neutron-irradiated commercial FeCrAl alloy

    NASA Astrophysics Data System (ADS)

    Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar

    2017-01-01

    FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a〈100〉 dislocation loops, a/2〈111〉 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2〈111〉 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a〈100〉 dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.

  17. Application of a three-feature dispersed-barrier hardening model to neutron-irradiated Fe-Cr model alloys

    NASA Astrophysics Data System (ADS)

    Bergner, F.; Pareige, C.; Hernández-Mayoral, M.; Malerba, L.; Heintze, C.

    2014-05-01

    An attempt is made to quantify the contributions of different types of defect-solute clusters to the total irradiation-induced yield stress increase in neutron-irradiated (300 °C, 0.6 dpa), industrial-purity Fe-Cr model alloys (target Cr contents of 2.5, 5, 9 and 12 at.% Cr). Former work based on the application of transmission electron microscopy, atom probe tomography, and small-angle neutron scattering revealed the formation of dislocation loops, NiSiPCr-enriched clusters and α‧-phase particles, which act as obstacles to dislocation glide. The values of the dimensionless obstacle strength are estimated in the framework of a three-feature dispersed-barrier hardening model. Special attention is paid to the effect of measuring errors, experimental details and model details on the estimates. The three families of obstacles and the hardening model are well capable of reproducing the observed yield stress increase as a function of Cr content, suggesting that the nanostructural features identified experimentally are the main, if not the only, causes of irradiation hardening in these model alloys.

  18. Comminuting irradiated ferritic steel

    DOEpatents

    Bauer, Roger E.; Straalsund, Jerry L.; Chin, Bryan A.

    1985-01-01

    Disclosed is a method of comminuting irradiated ferritic steel by placing the steel in a solution of a compound selected from the group consisting of sulfamic acid, bisulfate, and mixtures thereof. The ferritic steel is used as cladding on nuclear fuel rods or other irradiated components.

  19. Critical cracking potentials of 26Cr-1 Mo ferritic stainless steels in boiling 42% LiCl solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, H.S.; Troiano, A.R.; Hehemann, R.F.

    This paper reports that the critical cracking potentials (E[sub cc] for 26Cr-1Mo ferritic stainless steels (UNS S44627), above which stress corrosion cracking (SCC) does occur, have been measured at constant load in a hot chloride solution. Various factors affecting E[sub cc] for the low interstitial 26Cr-1Mo alloy (E-Brite) is shown to be a potential for crack initiation and is determined by the competing rates of generation of new surface by slip-induced film breakdown and repassivation. E[sub cc] for E-Brite is very sensitive to the microstructural conditions developed by prior thermal and mechanical treatments; varying in the range of -485 mVmore » for the mill annealed to -625 mV for the grain coarsened. On the other hand, the minimum potential permitting crack growth is insensitive to these treatments and corresponds to the most active value of E[sub cc] -625 mV. When strained at a constant strain rate (2.5 [times] 10[sup [minus]6]/S), the critical potential above which E-Brite is susceptible to SCC corresponds to the most active value of E[sub cc] measured at constant load. Thus, it appears that the most active value of E[sub cc](-625 mV) is a repassivation potential for growing cracks, and E[sub cc] approaches that for crack propagation as a limiting condition.« less

  20. Hydrogen attack in Cr-Mo steels. [3Cr-1. 5Mo and 2. 25Cr-1Mo steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruoff, S.; Stone, D.; Wanagel, J.

    Experiments conducted upon 3Cr-1.5Mo steel at elevated temperatures (600 C), and high pressure hydrogen (2000 psi), have shown a greater resistence to hydrogen attack compared with similar studies of 2.25Cr-lMo steels. Hydrogen exposure tests with and without an applied stress have been performed on both types of steels. Results of similar conditions show clear evidence of hydrogen attack in 2.25Cr-lMo steel, however, for the 3Cr-1.5Mo steel with exposure time up to 80 days without an applied stress no evidence of hydrogen attack is observed. For stress-rupture tests using stresses of 14 and 16 ksi, the 3Cr-1.5Mo steel showed no effectsmore » of hydrogen attack, and no damage was observed using a SEM.« less

  1. Technical Letter Report on the Cracking of Irradiated Cast Stainless Steels with Low Ferrite Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Y.; Alexandreanu, B.; Natesan, K.

    2014-11-01

    Crack growth rate and fracture toughness J-R curve tests were performed on CF-3 and CF-8 cast austenite stainless steels (CASS) with 13-14% of ferrite. The tests were conducted at ~320°C in either high-purity water with low dissolved oxygen or in simulated PWR water. The cyclic crack growth rates of CF-8 were higher than that of CF-3, and the differences between the aged and unaged specimens were small. No elevated SCC susceptibility was observed among these samples, and the SCC CGRs of these materials were comparable to those of CASS alloys with >23% ferrite. The fracture toughness values of unirradiated CF-3more » were similar between unaged and aged specimens, and neutron irradiation decreased the fracture toughness significantly. The fracture toughness of CF-8 was reduced after thermal aging, and declined further after irradiation. It appears that while lowering ferrite content may help reduce the tendency of thermal aging embrittlement, it is not very effective to mitigate irradiation-induced embrittlement. Under a combined condition of thermal aging and irradiation, neutron irradiation plays a dominant role in causing embrittlement in CASS alloys.« less

  2. A preliminary investigation of high dose ion irradiation response of a lanthana-bearing nanostructured ferritic steel processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Guria, Ankan; Wu, Yaqiao; Burns, Jatuporn; Butt, Darryl P.; Cole, James I.; Shao, Lin

    2017-11-01

    A nanostructured ferritic steel with nominal composition of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) was irradiated with Fe+2 ions at 475 °C for 100, 200, 300 and 400 dpa. Grain coarsening was observed for the samples irradiated for 200-400 dpa resulting in an increase of the average grain size from 152 nm to 620 nm. Growth of submicron grains at higher radiation doses is due to decreased pinning effect imparted by Cr-O rich nanoparticles (NPs) that underwent coarsening via Ostwald ripening. Dislocation density consistently increased with increasing irradiation dose at 300 and 400 dpa. The mean radius of lanthanum-containing nanoclusters (NCs) decreased and their number density increased above 200 dpa, which is likely due to solutes ejection caused by ballistic dissolution and irradiation-enhanced diffusion. Chromium, titanium, oxygen and lanthanum content of nanoclusters irradiated at 200 dpa and higher got reduced by almost half the initial value. The reduction in size of the nanoclusters accompanied with their higher number density and higher dislocation density led to significant radiation hardening with increasing irradiation dose.

  3. Radiation induced segregation and precipitation behavior in self-ion irradiated Ferritic/Martensitic HT9 steel

    DOE PAGES

    Zheng, Ce; Auger, Maria A.; Moody, Michael P.; ...

    2017-04-24

    In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470more » °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α' phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.« less

  4. Impact of neutron irradiation on mechanical performance of FeCrAl alloy laser-beam weldments

    NASA Astrophysics Data System (ADS)

    Gussev, M. N.; Cakmak, E.; Field, K. G.

    2018-06-01

    Oxidation-resistant iron-chromium-aluminum (FeCrAl) alloys demonstrate better performance in Loss-of-Coolant Accidents, compared with austenitic- and zirconium-based alloys. However, further deployment of FeCrAl-based materials requires detailed characterization of their performance under irradiation; moreover, since welding is one of the key operations in fabrication of light water reactor fuel cladding, FeCrAl alloy weldment performance and properties also should be determined prior to and after irradiation. Here, advanced C35M alloy (Fe-13%Cr-5%Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions were characterized after neutron irradiation in Oak Ridge National Laboratory's High Flux Isotope Reactor at 1.8-1.9 dpa in a temperature range of 195-559 °C. Specimen sets included as-received (AR) materials and specimens after controlled laser-beam welding. Tensile tests with digital image correlation (DIC), scanning electron microscopy-electron back scatter diffraction analysis, fractography, and x-ray tomography analysis were performed. DIC allowed for investigating local yield stress in the weldments, deformation hardening behavior, and plastic anisotropy. Both AR and welded material revealed a high degree of radiation-induced hardening for low-temperature irradiation; however, irradiation at high-temperatures (i.e., 559 °C) had little overall effect on the mechanical performance.

  5. Bootstrap calculation of ultimate strength temperature maxima for neutron irradiated ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Obraztsov, S. M.; Konobeev, Yu. V.; Birzhevoy, G. A.; Rachkov, V. I.

    2006-12-01

    The dependence of mechanical properties of ferritic/martensitic (F/M) steels on irradiation temperature is of interest because these steels are used as structural materials for fast, fusion reactors and accelerator driven systems. Experimental data demonstrating temperature peaks in physical and mechanical properties of neutron irradiated pure iron, nickel, vanadium, and austenitic stainless steels are available in the literature. A lack of such an information for F/M steels forces one to apply a computational mathematical-statistical modeling methods. The bootstrap procedure is one of such methods that allows us to obtain the necessary statistical characteristics using only a sample of limited size. In the present work this procedure is used for modeling the frequency distribution histograms of ultimate strength temperature peaks in pure iron and Russian F/M steels EP-450 and EP-823. Results of fitting the sums of Lorentz or Gauss functions to the calculated distributions are presented. It is concluded that there are two temperature (at 360 and 390 °C) peaks of the ultimate strength in EP-450 steel and single peak at 390 °C in EP-823.

  6. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making

    DOEpatents

    Klueh, Ronald L.; Maziasz, Philip J.

    1994-01-01

    A high strength, high toughness Cr-W-V ferritic steel composition suitable for fast induced-radioactivity (FIRD) decay after irradiation in a fusion reactor comprises 2.5-3.5 wt % Cr, 2. This invention was made with Government support under contract DE-AC05-840R21400 awarded by the U.S. Department of Energy to Martin Marietta Energy Systems, Inc. and the Government has certain rights in this invention.

  7. Formation of He-Rich Layers Observed by Neutron Reflectometry in the He-Ion-Irradiated Cr/W Multilayers: Effects of Cr/W Interfaces on the He-Trapping Behavior.

    PubMed

    Chen, Feida; Tang, Xiaobin; Huang, Hai; Li, Xinxi; Wang, Yan; Huang, Chaoqiang; Liu, Jian; Li, Huan; Chen, Da

    2016-09-21

    Cr/W multilayer nanocomposites were presented in the paper as potential candidate materials for the plasma facing components in fusion reactors. We used neutron reflectometry to measure the depth profile of helium in the multienergy He ions irradiated [Cr/W (50 nm)]3 multilayers. Results showed that He-rich layers with low neutron scattering potential energy form at the Cr/W interfaces, which is in great agreement with previous modeling results of other multilayers. This phenomenon provided a strong evidence for the He trapping effects of Cr/W interfaces and implied the possibility of using the Cr/W multilayer nanocomposites as great He-tolerant plasma facing materials.

  8. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    NASA Astrophysics Data System (ADS)

    Al-Jobouri, Hussain A.; Rajab, Mustafa Y.

    2016-03-01

    CR-39 detector which covered with boric acid (H3Bo3) pellet was irradiated by thermal neutrons from (241Am - 9Be) source with activity 12Ci and neutron flux 105 n. cm-2. s-1. The irradiation times -TD for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C˚ temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLAB software were analyzed and found the following relationships: (a) The irradiation time -TD has behavior linear relationships with following nuclear track parameters: i) total track number - NT ii) maximum track number - MRD (relative to track diameter - DT) at response region range 2.5 µm to 4 µm iii) maximum track number - MD (without depending on track diameter - DT). (b) The irradiation time -TD has behavior logarithmic relationship with maximum track number - MA (without depending on track area - AT). The image processing technique principally track diameter - DT can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.

  9. Embrittlement behavior of neutron irradiated RAFM steels

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2007-08-01

    The effects of neutron irradiation on the embrittlement behavior of reduced activation ferritic/martensitic (RAFM) steel EUROFER97 for different heat treatment conditions have been investigated. The irradiation to 16.3 dpa at different irradiation temperatures (250-450 °C) was carried out in the Petten High Flux Reactor in the framework of the HFR Phase-IIb (SPICE) irradiation project. Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X) and MANET-I were also irradiated at selected temperatures. The embrittlement behavior and hardening were investigated by instrumented Charpy-V tests with subsize specimens. The neutron irradiation induced embrittlement and hardening of as-delivered EUROFER97 are comparable to those of investigated reference steels, being mostly pronounced for 250 °C and 300 °C irradiation temperatures. Heat treatment of EUROFER97 at higher austenization temperature substantially improves the embrittlement behavior at irradiation temperatures of 250 °C and 350 °C.

  10. Microstructure-strength relations in a hardenable stainless steel with 16 pct Cr, 1.5 pct Mo, and 5 pct Ni

    NASA Astrophysics Data System (ADS)

    Grobner, P. J.; Blšs, V.

    1984-07-01

    Metallographic studies have been conducted on a 0.024 pct C-16 pct Cr-1.5 pct Mo-5 pct Ni stainless steel to study the phase reactions associated with heat treatments and investigate the strengthening mechanisms of the steel. In the normalized condition, air cooled from 1010 °C, the microstructure consists of 20 pct ferrite and 80 pct martensite. Tempering in a temperature range between 500 and 600 °C results in a gradual transformation of martensite to a fine mixture of ferrite and austenite. At higher tempering temperatures, between 600 and 800 °C, progressively larger quantities of austenite form and are converted during cooling to proportionally increasing amounts of fresh martensite. The amount of retained austenite in the microstructure is reduced to zero at 800 °C, and the microstructure contains 65 pct re-formed martensite and 35 pct total ferrite. Chromium rich M23C6 carbides precipitate in the single tempered microstructures. The principal strengthening is produced by the presence of martensite in the microstructure. Additional strengthening is provided by a second tempering treatment at 400 °C due to the precipitation of ultrafine (Cr, Mo) (C,N) particles in the ferrite.

  11. Hot-rolling of reduced activation 8CrODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Wu, Xiaochao; Ukai, Shigeharu; Leng, Bin; Oono, Naoko; Hayashi, Shigenari; Sakasegawa, Hideo; Tanigawa, Hiroyasu

    2013-11-01

    The 8CrODS ferritic steel is based on J1-lot developed for the advanced fusion blanket material to increase the coolant outlet temperature. A hot-rolling was conducted at the temperature above Ar3 of 716 °C, and its effect on the microstructure and tensile strength in 8CrODS ferritic steel was evaluated, comparing together with normalized and tempered specimen. It was confirmed that hot-rolling leads to slightly increased fraction of the ferrite and highly improved tensile strength. This ferrite was formed by transformation from the hot-rolled austenite during cooling due to fine austenite grains induced by hot-rolling. The coarsening of the transformed ferrite in hot-rolled specimen can be attributed to the crystalline rotation and coalescence of the similar oriented grains. The improved strength of hot-rolled specimen was ascribed to the high dislocation density and replacement of easily deformed martensite with the transformed coarse ferrite.

  12. Deformation twinning in irradiated ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  13. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  14. Features of structure-phase transformations and segregation processes under irradiation of austenitic and ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Neklyudov, I. M.; Voyevodin, V. N.

    1994-09-01

    The difference between crystal lattices of austenitic and ferritic steels leads to distinctive features in mechanisms of physical-mechanical change. This paper presents the results of investigations of dislocation structure and phase evolution, and segregation phenomena in austenitic and ferritic-martensitic steels and alloys during irradiation with heavy ions in the ESUVI and UTI accelerators and by neutrons in fast reactors BOR-60 and BN-600. The influence of different factors (including different alloying elements) on processes of structure-phase transformation was studied.

  15. Image processing analysis of nuclear track parameters for CR-39 detector irradiated by thermal neutron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Jobouri, Hussain A., E-mail: hahmed54@gmail.com; Rajab, Mustafa Y., E-mail: mostafaheete@gmail.com

    CR-39 detector which covered with boric acid (H{sub 3}Bo{sub 3}) pellet was irradiated by thermal neutrons from ({sup 241}Am - {sup 9}Be) source with activity 12Ci and neutron flux 10{sup 5} n. cm{sup −2}. s{sup −1}. The irradiation times -T{sub D} for detector were 4h, 8h, 16h and 24h. Chemical etching solution for detector was sodium hydroxide NaOH, 6.25N with 45 min etching time and 60 C° temperature. Images of CR-39 detector after chemical etching were taken from digital camera which connected from optical microscope. MATLAB software version 7.0 was used to image processing. The outputs of image processing of MATLABmore » software were analyzed and found the following relationships: (a) The irradiation time -T{sub D} has behavior linear relationships with following nuclear track parameters: i) total track number - N{sub T} ii) maximum track number - MRD (relative to track diameter - D{sub T}) at response region range 2.5 µm to 4 µm iii) maximum track number - M{sub D} (without depending on track diameter - D{sub T}). (b) The irradiation time -T{sub D} has behavior logarithmic relationship with maximum track number - M{sub A} (without depending on track area - A{sub T}). The image processing technique principally track diameter - D{sub T} can be take into account to classification of α-particle emitters, In addition to the contribution of these technique in preparation of nano- filters and nano-membrane in nanotechnology fields.« less

  16. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  17. Ion-irradiation-induced damage of steels characterized by means of nanoindentation

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Recknagel, C.; Bergner, F.; Hernández-Mayoral, M.; Kolitsch, A.

    2009-05-01

    Self-ion irradiation was used to simulate the damage caused by fast neutrons in the austenitic stainless steel SS 304 SA, the ferritic/martensitic steel Eurofer'97 and a Fe-9 at.%Cr model alloy. The irradiation-induced hardness change in the damage layer was evaluated by means of nanoindentation. Three-step irradiations were performed at room temperature and 300 °C up to 1 and 10 dpa. An irradiation-induced hardness change was shown for all materials. No influence of irradiation temperature could be resolved. Irradiation-induced hardening exhibits different fluence dependencies in Eurofer'97 and Fe-9 at.%Cr. While the data indicate a saturation-like behaviour for Fe-9 at.%Cr, an increase of hardness with fluence up to 10 dpa was found for Eurofer'97.

  18. Ion irradiation testing and characterization of FeCrAl candidate alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commerciallymore » available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.« less

  19. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  20. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 °C

    NASA Astrophysics Data System (ADS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-06-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 °C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 °C and 300 °C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 °C (up to 2.6 dpa), and tested between -170 °C and 300 °C. Irradiation effects at lower irradiation temperatures are more significant.

  1. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6},more » Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F

  2. Predicting neutron damage using TEM with in situ ion irradiation and computer modeling

    NASA Astrophysics Data System (ADS)

    Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.

    2018-01-01

    We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.

  3. Fracture toughness and the master curve for modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Yoon, Ji-Hyun; Yoon, Eui-Pak

    2006-12-01

    Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.

  4. Transformations structurales d'un acier AU Cr(9%) Mo(2%) (type ZlOCDNbV 09-02) utilisable dans les generateurs de vapeur des reacteurs a neutrons rapides

    NASA Astrophysics Data System (ADS)

    Vilar, Rui M.; Cizeron, Georges; Pelletier, Michel

    1981-12-01

    Transformations undergone by a 9 Cr-2 Mo-Nb-V steel on heating depend on the structure previously developped by quenching or tempering and on the heating rate. TTT and CCT diagrams, plotted after austenizing at 1000 and 1100°C, show only one diffusional transformation at high temperature producing equiaxed ferrite which contains a precipitate of M 23C 6 carbide; the activation energy of the process involved is 123.3 kJ/mol. At low temperatures a martensitic transformation is observed; the martensite is lath-type and autotempered.

  5. Modelling and analysis of creep deformation and fracture in a 1 Cr 1/2 Mo ferritic steel

    NASA Astrophysics Data System (ADS)

    Dyson, B. F.; Osgerby, D.

    A quantitative model, based upon a proposed new mechanism of creep deformation in particle-hardened alloys, has been validated by analysis of creep data from a 13CrMo 4 4 (1Cr 1/2 Mo) material tested under a range of stresses and temperatures. The methodology that has been used to extract the model parameters quantifies, as a first approximation, only the main degradation (damage) processes - in the case of the 1CR 1/2 Mo steel, these are considered to be the parallel operation of particle-coarsening and a progressively increasing stress due to a constant-load boundary condition. These 'global' model parameters can then be modified (only slightly) as required to obtain a detailed description and 'fit' to the rupture lifetime and strain/time trajectory of any individual test. The global model parameter approach may be thought of as predicting average behavior and the detailed fits as taking account of uncertainties (scatter) due to variability in the material. Using the global parameter dataset, predictions have also been made of behavior under biaxial stressing; constant straining rate; constant total strain (stress relaxation) and the likely success or otherwise of metallographic and mechanical remanent lifetime procedures.

  6. Irradiation-induced formation of a spinel phase at the FeCr/MgO interface

    DOE PAGES

    Xu, Yun; Yadav, Satyesh Kumar; Aguiar, Jeffery A.; ...

    2015-04-27

    Oxide dispersion strengthened ferritic/martensitic alloys have attracted significant attention for their potential uses in future nuclear reactors and storage vessels, as the metal/oxide interfaces act as stable high-strength sinks for point defects while also dispersing helium. Here, in order to unravel the evolution and interplay of interface structure and chemistry upon irradiation in these types of materials, an atomically sharp FeCr/MgO interface was synthesized at 500 °C and separately annealed and irradiated with Ni 3+ ions at 500 °C. After annealing, a slight enrichment of Cr atoms was observed at the interface, but no other structural changes were found. However,more » under irradiation, sufficient Cr diffuses across the interface into the MgO to form a Cr-enriched transition layer that contains spinel precipitates. First-principles calculations indicate that it is energetically favorable to incorporate Cr, but not Fe, substitutionally into MgO. Furthermore, our results indicate that irradiation can be used to form new phases and complexions at interfaces, which may have different radiation tolerance than the pristine structures.« less

  7. Atom Probe Tomography Characterization of the Solute Distributions in a Neutron-Irradiated and Annealed Pressure Vessel Steel Weld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, M.K.

    2001-01-30

    A combined atom probe tomography and atom probe field ion microscopy study has been performed on a submerged arc weld irradiated to high fluence in the Heavy-Section Steel irradiation (HSSI) fifth irradiation series (Weld 73W). The composition of this weld is Fe - 0.27 at. % Cu, 1.58% Mn, 0.57% Ni, 0.34% MO, 0.27% Cr, 0.58% Si, 0.003% V, 0.45% C, 0.009% P, and 0.009% S. The material was examined after five conditions: after a typical stress relief treatment of 40 h at 607 C, after neutron irradiation to a fluence of 2 x 10{sup 23} n m{sup {minus}2} (Emore » > 1 MeV), and after irradiation and isothermal anneals of 0.5, 1, and 168 h at 454 C. This report describes the matrix composition and the size, composition, and number density of the ultrafine copper-enriched precipitates that formed under neutron irradiation and the change in these parameters with post-irradiation annealing treatments.« less

  8. The influence of Cr content on the mechanical properties of ODS ferritic steels

    NASA Astrophysics Data System (ADS)

    Li, Shaofu; Zhou, Zhangjian; Jang, Jinsung; Wang, Man; Hu, Helong; Sun, Hongying; Zou, Lei; Zhang, Guangming; Zhang, Liwei

    2014-12-01

    The present investigation aimed at researching the mechanical properties of the oxide dispersion strengthened (ODS) ferritic steels with different Cr content, which were fabricated through a consolidation of mechanical alloyed (MA) powders of 0.35 wt.% nano Y2O3 dispersed Fe-12.0Cr-0.5Ti-1.0W (alloy A), Fe-16.0Cr-0.5Ti-1.0W (alloy B), and Fe-18.0Cr-0.5Ti-1.0W (alloy C) alloys (all in wt.%) by hot isostatic pressing (HIP) with 100 MPa pressure at 1150 °C for 3 h. The mechanical properties, including the tensile strength, hardness, and impact fracture toughness were tested by universal testers, while Young's modulus was determined by ultrasonic wave non-destructive tester. It was found that the relationship between Cr content and the strength of ODS ferritic steels was not a proportional relationship. However, too high a Cr content will cause the precipitation of Cr-enriched segregation phase, which is detrimental to the ductility of ODS ferritic steels.

  9. Structural and thermodynamic study of dicesium molybdate Cs2Mo2O7: Implications for fast neutron reactors

    NASA Astrophysics Data System (ADS)

    Smith, A. L.; Kauric, G.; van Eijck, L.; Goubitz, K.; Wallez, G.; Griveau, J.-C.; Colineau, E.; Clavier, N.; Konings, R. J. M.

    2017-09-01

    The structure of α-Cs2Mo2O7 (monoclinic in space group P21 / c), which can form during irradiation in fast breeder reactors in the space between nuclear fuel and cladding, has been refined in this work at room temperature from neutron diffraction data. Furthermore, the compounds' thermal expansion and polymorphism have been investigated using high temperature X-ray diffraction combined with high temperature Raman spectroscopy. A phase transition has been observed at Ttr(α → β)=(621.9±0.8) K using Differential Scanning Calorimetry, and the structure of the β-Cs2Mo2O7 phase, orthorhombic in space group Pbcm, has been solved ab initio from the high temperature X-ray diffraction data. Furthermore, the low temperature heat capacity of α-Cs2Mo2O7 has been measured in the temperature range T=(1.9-313.2) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The heat capacity and entropy values at T=298.15 K have been derived as Cp,mo (Cs2Mo2O7 , cr , 298.15 K) = (211.9 ± 2.1) J K-1mol-1 and Smo (Cs2Mo2O7 , cr , 298.15 K) = (317.4 ± 4.3) J K-1mol-1 . When combined with the enthalpy of formation reported in the literature, these data yield standard entropy and Gibbs energy of formation as Δf Smo (Cs2Mo2O7 , cr , 298.15 K) = - (628.2 ± 4.4) J K-1mol-1 and Δf Gmo (Cs2Mo2O7 , cr , 298.15 K) = - (2115.1 ± 2.5) kJmol-1 . Finally, the cesium partial pressure expected in the gap between fuel and cladding following the disproportionation reaction 2Cs2MoO4=Cs2Mo2O7+2Cs(g)+ 1/2 O2(g) has been calculated from the newly determined thermodynamic functions.

  10. Effect of Mo contents on corrosion behaviors of welded duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Bae, Seong Han; Lee, Hae Woo

    2013-05-01

    The corrosion behaviour and change of the phase fraction in welded 24Cr Duplex stainless steel was investigated for different chemical composition ranges of Mo contents. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 0.5, 1.4, 2.5, 3.5 wt%. The δ-ferrite fraction was observed to increase as the content of Mo increased. A polarisation test conducted in a salt solution, indicated the pitting corrosion potential increased continuously to 3.5 wt% Mo, while the corrosion potential changed most between 0.5 and 1.41 wt% Mo. The location of the pitting corrosion in 0.5 wt% Mo steel was randomly distributed, but it occurred selectively at the grain boundary between the γ- and δ-ferrite phases in 1.4, 2.5 and 3.5 wt% Mo steel. Energy dispersive X-ray spectroscopy mapping analysis showed that areas deficient in Cr, Mo, and Ni occurred around the grain boundary of the γ- and δ-ferrite phases. Non-metallic inclusions are thought to act as initiation points for the pitting corrosion that occurs in the salt solution initially as a result of the potential difference between the matrix structure and the incoherent inclusions.

  11. TEM and HRTEM study of oxide particles in an Al-alloyed high-Cr oxide dispersion strengthened ferritic steel with Hf addition

    NASA Astrophysics Data System (ADS)

    Dou, Peng; Kimura, Akihiko; Kasada, Ryuta; Okuda, Takanari; Inoue, Masaki; Ukai, Shigeharu; Ohnuki, Somei; Fujisawa, Toshiharu; Abe, Fujio; Jiang, Shan; Yang, Zhigang

    2017-03-01

    The nanoparticles in an Al-alloyed high-Cr oxide dispersion strengthened (ODS) ferritic steel with Hf addition, i.e., SOC-16 (Fe-15Cr-2W-0.1Ti-4Al-0.62Hf-0.35Y2O3), have been examined by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Relative to an Al-alloyed high-Cr ODS ferritic steel without Hf addition, i.e., SOC-9 (Fe-15.5Cr-2W-0.1Ti-4Al-0.35Y2O3), the dispersion morphology and coherency of the oxide nanoparticles in SOC-16 were significantly improved. Almost all the small nanoparticles (diameter <10 nm) in SOC-16 were found to be consistent with cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure and coherent with the bcc steel matrix. The larger particles (diameter >10 nm) were also mainly identified as cubic Y2Hf2O7 oxides with the anion-deficient fluorite structure. The results presented here are compared with those of SOC-9 with a brief discussion of the underlying mechanisms of the unusual thermal and irradiation stabilities of the oxides as well as the superior strength, excellent irradiation tolerance and extraordinary corrosion resistance of SOC-16.

  12. Surface modification to improve fireside corrosion resistance of Fe-Cr ferritic steels

    DOEpatents

    Park, Jong-Hee; Natesan, Krishnamurti; Rink, David L.

    2010-03-16

    An article of manufacture and a method for providing an Fe--Cr ferritic steel article of manufacture having a surface layer modification for corrosion resistance. Fe--Cr ferritic steels can be modified to enhance their corrosion resistance to liquid coal ash and other chemical environments, which have chlorides or sulfates containing active species. The steel is modified to form an aluminide/silicide passivating layer to reduce such corrosion.

  13. Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji-Hyun, Yoon; Sung-Ho, Kim; Bong-Sang, Lee

    2006-07-01

    Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The resultsmore » are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)« less

  14. Database on Performance of Neutron Irradiated FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken

    The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less

  15. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  16. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  17. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE PAGES

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...

    2018-03-02

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  18. Creep Rupture Analysis and Life Estimation of 1.25Cr-0.5Mo, 2.25Cr-1Mo and Modified 9Cr-1Mo Steel: A Comparative Study

    NASA Astrophysics Data System (ADS)

    Roy, Prabir Kumar

    2018-04-01

    This paper highlights a comparative assessment of creep life of 1.25Cr-0.5Mo, 2.25Cr-1Mo and modified 9Cr-1Mo steels based on accelerated creep rupture tests. Creep rupture test data have been analysed and creep life of the above mentioned materials have been assessed using Larson Miller parameter at the stress levels of 60 and 42 MPa for different temperatures. Limiting steam temperatures for minimum design life of 105 h at 42 and 60 MPa for the above mentioned steels have also been calculated. Microstructural studies for the three above mentioned steels are also done.

  19. Irradiation-enhanced α' precipitation in model FeCrAl alloys

    DOE PAGES

    Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...

    2016-02-17

    We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less

  20. Study of self-ion irradiated nanostructured ferritic alloy (NFA) and silicon carbide-nanostructured ferritic alloy (SiC-NFA) cladding materials

    NASA Astrophysics Data System (ADS)

    Ning, Kaijie; Bai, Xianming; Lu, Kathy

    2018-07-01

    Silicon carbide-nanostructured ferritic alloy (SiC-NFA) materials are expected to have the beneficial properties of each component for advanced nuclear claddings. Fabrication of pure NFA (0 vol% SiC-100 vol% NFA) and SiC-NFAs (2.5 vol% SiC-97.5 vol% NFA, 5 vol% SiC-95 vol% NFA) has been reported in our previous work. This paper is focused on the study of radiation damage in these materials under 5 MeV Fe++ ion irradiation with a dose up to ∼264 dpa. It is found that the material surfaces are damaged to high roughness with irregularly shaped ripples, which can be explained by the Bradley-Harper (B-H) model. The NFA matrix shows ion irradiation induced defect clusters and small dislocation loops, while the crystalline structure is maintained. Reaction products of Fe3Si and Cr23C6 are identified in the SiC-NFA materials, with the former having a partially crystalline structure but the latter having a fully amorphous structure upon irradiation. The different radiation damage behaviors of NFA, Fe3Si, and Cr23C6 are explained using the defect reaction rate theory.

  1. Solute redistribution and phase stability at FeCr/TiO 2–x interfaces under ion irradiation

    DOE PAGES

    Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...

    2015-02-26

    Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO 2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni 3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO 2 layer, with negligible segregation to the FeCr/TiO 2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO 2–x was enhanced in ion-irradiated samples as compared to annealed.more » Irradiation-induced voids and amorphization of TiO 2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO 2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less

  2. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Zhenke; Zhang, F; Miller, Michael K

    2012-01-01

    NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less

  3. [Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].

    PubMed

    Mizutani, M

    1990-03-01

    The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr

  4. The Influence of Mo, Cr and B Alloying on Phase Transformation and Mechanical Properties in Nb Added High Strength Dual Phase Steels

    NASA Astrophysics Data System (ADS)

    Girina, O.; Fonstein, N.; Yakubovsky, O.; Panahi, D.; Bhattacharya, D.; Jansto, S.

    The influence of Nb, Mo, Cr and B on phase transformations and mechanical properties are studied in a 0.15C-2.0Mn-0.3Si-0.020Ti dual phase steel separately and in combination. The formation and decomposition of austenite together with recrystallization of ferrite are evaluated by dilatometry and constructed CCT-diagrams in laboratory processed cold rolled material cooled after full austenitization and from intercritical temperature range. The effect of alloying elements on formation of austenite through their effect on initial hot rolled structure is taken into account. The interpretation of phase transformations during heating and cooling is supported by metallography. The effect of alloying elements on mechanical properties and structure are evaluated by annealing simulations. It has been shown that mechanical properties are strongly influenced by alloying additions such as Nb, Mo, Cr and B through their effect on ferrite formation during continuous cooling and corresponding enrichment of remaining austenite by carbon. Depending on combined effect of these alloying elements, different phase transformations can be promoted during cooling. This allows controlling of final microstructural constituents and mechanical properties.

  5. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    NASA Astrophysics Data System (ADS)

    Tang, S. M.; Tay, T. S.

    1999-04-01

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ( 46Sc, 51Cr, 54Mn and 59Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of 46Sc, 51Cr and 59Fe would only fall to this safe limit after 15 months and that of 54Mn could remain above this limit for several years.

  6. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-12-01

    SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.

  7. Characterization of High Damping Fe-Cr-Mo and Fe-Cr-Al Alloys for Naval Ships Application.

    DTIC Science & Technology

    1988-03-01

    austenitic , and martensitic. The high damping Fe-Cr-based alloys are closely related to ferritic stainless steels . Ferritic stainless steel consists of an Fe...cm reveme it Prectiaq #no ’uenf r oy o.o(a tflrowf U S9GO..P Damping; Ship Silencing; Ferritic Stainless Steels ; Ti-Ni 7 LhV I,. Cintunue on roere .r...decreased. E. METALLURGY OF THE IRON-CHROMIUM ALLOY SYSTEM 1. Physical Properties Stainless steels are divided into three main classes: ferritic

  8. Magnetic moment directions and distributions of cations in Cr (Co) substituted spinel ferrites Ni0.7Fe2.3O4

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Lang, L. L.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Wu, L. Q.

    2015-09-01

    Powder samples of the spinel ferrites MxNi0.7-xFe2.3O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and CrxNi0.7Fe2.3-xO4 (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μexp) per formula both at 10 K and 300 K increased with Co substitution, while the values of μexp decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μexp, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.

  9. Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiang; Miao, Yinbin; Li, Meimei

    In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 x 10(15) ions/cm(2) at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 x 1015 ions/cm(2), aboutmore » 51% of the loops were a(0)/2 < 111 > type for the 673 K irradiation, and the dominant loop type was a(0)< 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa. (C) 2017 Elsevier B.V. All rights reserved.« less

  10. Microstructural and optical properties of Ca and Cr doped cobalt ferrite nanoparticles synthesized by auto combustion

    NASA Astrophysics Data System (ADS)

    Agrawal, Shraddha; Parveen, Azra; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.8Ca0.2) (Fe0.8 Cr0.2)2O4 were synthesized by auto combustion method. Microstructural studies were carried out by X-ray diffraction (XRD). The crystalline size of synthesized nanoparticles as determined by the XRD was found to be 17.6 nm. These structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 200-800 nm. The energy band gap was calculated with the help of Tauc relationship. Ca and Cr doped cobalt ferrite annealed at 600°C exhibit significant dispersion in complex permeability. The dielectric constant and dielectric loss of cobalt ferrite were studied as a function of frequency and were explained on the basis of Koop's theory based on Maxwell Wagner two layer models and electron hopping.

  11. Effects of Mo, Cr, and V Additions on Tensile and Charpy Impact Properties of API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Seo, Chang-Hyo; Lee, Hakcheol; Bae, Jin-Ho; Kim, Kisoo; Lee, Sunghak; Kim, Nack J.

    2009-08-01

    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.

  12. Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linton, Kory D.; Field, Kevin G.; Petrie, Christian M.

    The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. Tomore » address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).« less

  13. Alloy Design and Development of Cast Cr-W-V Ferritic Steels for Improved High-Temperature Strength for Power Generation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, R L; Maziasz, P J; Vitek, J M

    2006-09-23

    Economic and environmental concerns demand that the power-generation industry seek increased efficiency for gas turbines. Higher efficiency requires higher operating temperatures, with the objective temperature for the hottest sections of new systems {approx} 593 C, and increasing to {approx} 650 C. Because of their good thermal properties, Cr-Mo-V cast ferritic steels are currently used for components such as rotors, casings, pipes, etc., but new steels are required for the new operating conditions. The Oak Ridge National Laboratory (ORNL) has developed new wrought Cr-W-V steels with 3-9% Cr, 2-3% W, 0.25% V (compositions are in wt.%), and minor amounts of additionalmore » elements. These steels have the strength and toughness required for turbine applications. Since cast alloys are expected to behave differently from wrought material, work was pursued to develop new cast steels based on the ORNL wrought compositions. Nine casting test blocks with 3, 9, and 11% Cr were obtained. Eight were Cr-W-V-Ta-type steels based on the ORNL wrought steels; the ninth was COST CB2, a 9Cr-Mo-Co-V-Nb cast steel, which was the most promising cast steel developed in a European alloy-development program. The COST CB2 was used as a control to which the new compositions were compared, and this also provided a comparison between Cr-W-V-Ta and Cr-Mo-V-Nb compositions. Heat treatment studies were carried out on the nine castings to determine normalizing-and-tempering treatments. Microstructures were characterized by both optical and transmission electron microscopy (TEM). Tensile, impact, and creep tests were conducted. Test results on the first nine cast steel compositions indicated that properties of the 9Cr-Mo-Co-V-Nb composition of COST CB2 were better than those of the 3Cr-, 9Cr-, and 11Cr-W-V-Ta steels. Analysis of the results of this first iteration using computational thermodynamics raised the question of the effectiveness in cast steels of the Cr-W-V-Ta combination versus the

  14. High-dose neutron irradiation embrittlement of RAFM steels

    NASA Astrophysics Data System (ADS)

    Gaganidze, E.; Schneider, H.-C.; Dafferner, B.; Aktaa, J.

    2006-09-01

    Neutron irradiation-induced embrittlement of the reduced-activation ferritic/martensitic (RAFM) steel EUROFER97 was studied under different heat treatment conditions. Irradiation was performed in the Petten High Flux Reactor within the HFR Phase-IIb (SPICE) irradiation project up to 16.3 dpa and at different irradiation temperatures (250-450 °C). Several reference RAFM steels (F82H-mod, OPTIFER-Ia, GA3X and MANET-I) were also irradiated at selected temperatures. The impact properties were investigated by instrumented Charpy-V tests with subsize specimens. Embrittlement and hardening of as-delivered EUROFER97 steel are comparable to those of reference steels. Heat treatment of EUROFER97 at a higher austenitizing temperature substantially improves the embrittlement behaviour at low irradiation temperatures. Analysis of embrittlement in terms of the parameter C = ΔDBTT/Δ σ indicates hardening-dominated embrittlement at irradiation temperatures below 350 °C with 0.17 ⩽ C ⩽ 0.53 °C/MPa. Scattering of C at irradiation temperatures above 400 °C indicates no hardening embrittlement.

  15. Positron annihilation lifetime measurements of austenitic stainless and ferritic/martensitic steels irradiated in the SINQ target irradiation program

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Dai, Y.; Kikuchi, K.

    2012-12-01

    Titanium-doped austenitic stainless steel (JPCA) and reduced activated ferritic/martensitic steel (F82H) irradiated with high-energy protons and spallation neutrons were investigated by positron annihilation lifetime measurements. Subnanometer-sized (<˜0.8 nm) helium bubbles, which cannot be observed by transmission electron microscopy, were detected by positron annihilation lifetime measurements for the first time. For the F82H steel, the positron annihilation lifetime of the bubbles decreased with increasing irradiation dose and annealing temperature because the bubbles absorb additional He atoms. In the case of JPCA steel, the positron annihilation lifetime increased with increasing annealing temperature above 773 K, in which case the dissociation of complexes of vacancy clusters with He atoms and the growth of He bubbles was detected. He bubble size and density were also discussed.

  16. Helium sequestration at nanoparticle-matrix interfaces in helium + heavy ion irradiated nanostructured ferritic alloys

    DOE PAGES

    Parish, Chad M.; Unocic, Kinga A.; Tan, Lizhen; ...

    2016-10-24

    Here we irradiated four ferritic alloys with energetic Fe and He ions: one castable nanostructured alloy (CNA) containing Ti-W-Ta-carbides, and three nanostructured ferritic alloys (NFAs). The NFAs were: 9Cr containing Y-Ti-O nanoclusters, and two Fe-12Cr-5Al NFAs containing Y-Zr-O or Y-Hf-O clusters. All four were subjected to simultaneous dual-beam Fe + He ion implantation (650 °C, ~50 dpa, ~15 appm He/dpa), simulating fusion-reactor conditions. Examination using scanning/transmission electron microscopy (STEM) revealed high-number-density helium bubbles of ~8 nm, ~10 21 m -3 (CNA), and of ~3 nm, 10 23 m -3 (NFAs). STEM combined with multivariate statistical analysis data mining suggests thatmore » the precipitate-matrix interfaces in all alloys survived ~50 dpa at 650 °C and serve as effective helium trapping sites. All alloys appear viable structural material candidates for fusion or advanced fission energy systems. Finally, among these developmental alloys the NFAs appear to sequester the helium into smaller bubbles and away from the grain boundaries more effectively than the early-generation CNA.« less

  17. In situ high-energy X-ray diffraction study of tensile deformation of neutron-irradiated polycrystalline Fe-9%Cr alloy

    DOE PAGES

    Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...

    2016-12-30

    The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less

  18. Study of cation magnetic moment directions in Cr (Co) doped nickel ferrites

    NASA Astrophysics Data System (ADS)

    Lang, L. L.; Xu, J.; Qi, W. H.; Li, Z. Z.; Tang, G. D.; Shang, Z. F.; Zhang, X. Y.; Wu, L. Q.; Xue, L. C.

    2014-09-01

    Powder samples of the ferrites MxNi1-xFe2O4 (M = Cr, Co and 0.0 ≤ x ≤ 0.3) were prepared using a chemical co-precipitation method. X-ray diffraction analysis showed that the two series of samples had a single-phase cubic spinel structure. It was found that the magnetic moments (μexp) per formula of samples measured at 10 K decreased when Cr substituted for Ni, but increased when Co substituted for Ni, in spite of the fact that the magnetic moments of Cr2+ (4 μB) and Co2+ (3 μB) are higher than that of Ni2+ (2 μB). With the assumption that the magnetic moments of Cr2+ and Cr3+ lie antiparallel to those of the Fe, Co, and Ni cations in the same sublattices of spinel ferrites, the dependences on the Cr (Co) doping level of the sample magnetic moments at 10 K were fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. For the two series of samples, the fitted magnetic moments are close to the experimental results.

  19. Delta-Ferrite Distribution in a Continuous Casting Slab of Fe-Cr-Mn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Cheng, Guoguang

    2017-10-01

    The delta-ferrite distribution in a continuous casting slab of Fe-Cr-Mn stainless steel grade (200 series J4) was analyzed. The results showed that the ferrite fraction was less than 3 pct. The "M" type distribution was observed in the thickness direction. For the distribution at the centerline, the maximum ferrite content was found in the triangular zone of the macrostructure. In addition, in this zone, the carbon and sulfur were severely segregated. Furthermore, an equilibrium solidification calculation by Thermo-Calc® software indicates that the solidification mode of the composition in this triangular zone is the same as the solidification mode of the averaged composition, i.e., the FA (ferrite-austenite) mode. None of the nickel-chromium equivalent formulas combined with the Schaeffler-type diagram could predict the ferrite fraction of the Cr-Mn stainless steel grade in a reasonable manner. The authors propose that more attention should be paid to the development of prediction models for the ferrite fraction of stainless steels under continuous casting conditions.

  20. Oxide dispersion strengthened ferritic steels: a basic research joint program in France

    NASA Astrophysics Data System (ADS)

    Boutard, J.-L.; Badjeck, V.; Barguet, L.; Barouh, C.; Bhattacharya, A.; Colignon, Y.; Hatzoglou, C.; Loyer-Prost, M.; Rouffié, A. L.; Sallez, N.; Salmon-Legagneur, H.; Schuler, T.

    2014-12-01

    AREVA, CEA, CNRS, EDF and Mécachrome are funding a joint program of basic research on Oxide Dispersion Strengthened Steels (ODISSEE), in support to the development of oxide dispersion strengthened 9-14% Cr ferritic-martensitic steels for the fuel element cladding of future Sodium-cooled fast neutron reactors. The selected objectives and the results obtained so far will be presented concerning (i) physical-chemical characterisation of the nano-clusters as a function of ball-milling process, metallurgical conditions and irradiation, (ii) meso-scale understanding of failure mechanisms under dynamic loading and creep, and, (iii) kinetic modelling of nano-clusters nucleation and α/α‧ unmixing.

  1. The use of ultrasonic properties of CR-39 track detectors in neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Afifi, H.; El-Sersy, A.; Khaled, N.

    2004-01-01

    The longitudinal and shear wave ultrasonic velocities have been measured before and after exposing 5-mm thick CR-39 solid state nuclear track detectors to both a mixed field of gamma-rays and fast neutrons from an Am-Be source in the ranges from 0 to 10 4 mSv. The change in the intermolecular structure as caused by the fast neutron exposure was studied by the ultrasonic pulse echo method at a frequency of 2 MHz and at room temperature. The elastic coefficients, Poisson's ratio, microhardness, ultrasonic absorption coefficient and internal friction have been determined. The study shows that the gamma-ray irradiation had no effect on the ultrasonic properties of CR-39 at least at the used doses. However, all the ultrasonic properties are influenced by the fast neutrons at doses up to 10 4 mSv. Our experimental results confirmed that the ultrasonic technique is useful for fast neutron detection, by exploiting the differences in mechanical properties of CR-39.

  2. Effect of Tempering Temperature on the Microstructure and Properties of Fe-2Cr-Mo-0.12C Pressure Vessel Steel

    NASA Astrophysics Data System (ADS)

    Wang, Qi-wen; Li, Chang-sheng; Peng, Huan; Chen, Jie; Zhang, Jian

    2018-03-01

    To obtain the high-temperature strength and toughness of the medium-high-temperature-pressure steel, the microstructure evolution and mechanical properties of Fe-2Cr-Mo-0.12C steel subjected to three different tempering temperatures after being normalized were investigated. The results show that the microstructure of the sample, tempered in the range 675-725 °C for 50 min, did not change dramatically, yet the martensite/austenite constituents decomposed, and the bainite lath merged together and transformed into polygonal ferrite. At the same time, the precipitate size increased with an increase in tempering temperature. With the increase in the tempering temperature from 675 to 725 °C, the impact absorbed energy of the Fe-2Cr-Mo-0.12C steel at -40 °C increased from 257 to 325 J, and the high-temperature yield strength decreased; however, the high-temperature ultimate tensile strength tempered at 700 °C was outstanding (422-571 MPa) at different tested temperatures. The variations of the properties were attributed to the decomposition of M/A constituents and the coarsening of the precipitates. Fe-2Cr-Mo-0.12C steel normalized at 930 °C and tempered at 700 °C was found to have the best combination of ductility and strength.

  3. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    NASA Astrophysics Data System (ADS)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  4. Magnetic moment directions and distributions of cations in Cr (Co) substituted spinel ferrites Ni{sub 0.7}Fe{sub 2.3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, L. C.; Lang, L. L.; Li, Z. Z.

    2015-09-15

    Powder samples of the spinel ferrites M{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (M = Cr, Co and 0.0 ≤ x ≤ 0.3) and Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0 ≤ x ≤ 0.3) were synthesized using the chemical co-precipitation method. The XRD spectra confirmed that the samples had a single-phase cubic spinel structure. Magnetic measurements showed that the magnetic moments (μ{sub exp}) per formula both at 10 K and 300 K increased with Co substitution, while the values of μ{sub exp} decreased with Cr substitution. Applying the assumption that the magnetic moments of Cr{sup 2+} and Cr{sup 3+} lie antiparallel tomore » those of the divalent and trivalent Fe, Co, and Ni cations in the same sublattice of spinel ferrites, these interesting behaviors could be easily interpreted. The cation distributions of the three series of samples were estimated successfully by fitting the dependences of μ{sub exp}, measured at 10 K, on the doping level x, using a quantum-mechanical potential barrier model earlier proposed by our group. The results obtained for the Cr cation distributions at the (A) and [B] sites are very close to those obtained elsewhere using neutron diffraction.« less

  5. Influence of Chemical Composition and Heat Treatment Condition on Impact Toughness of 15Cr Ferritic Creep Resistant Steel

    NASA Astrophysics Data System (ADS)

    Toda, Yoshiaki; Tohyama, Hideaki; Kushima, Hideaki; Kimura, Kazuhiro; Abe, Fujio

    Influences of chemical compositions, heat treatment and microstructure on impact toughness of 15Cr ferritic steel have been investigated. Charpy impact values of the furnace cooled steels were lower than 15J/cm2 at room temperature independent of chemical compositions. Drastic improvement in impact toughness has been attained by controlling the carbon and nitrogen contents, by the addition of nickel and by the increase in cooling rate after annealing. However, the effect of nickel on impact toughness strongly depends on carbon and nitrogen contents. Improvement in impact toughness of the 15Cr ferritic steel has not been explained by individual microstructural factors of grain size, distribution of precipitates, volume fraction of martensitic phase. It has been supposed that the increase in Charpy impact toughness of the 15Cr ferritic steel was attained by improvement in toughness of ferrite matrix itself.

  6. Development of Advanced Ods Ferritic Steels for Fast Reactor Fuel Cladding

    NASA Astrophysics Data System (ADS)

    Ukai, S.; Oono, N.; Ohtsuka, S.; Kaito, T.

    Recent progress of the 9CrODS steel development is presented focusing on their microstructure control to improve sufficient high-temperature strength as well as cladding manufacturing capability. The martensitic 9CrODS steel is primarily candidate cladding materials for the Generation IV fast reactor fuel. They are the attractive composite-like materials consisting of the hard residual ferrite and soft tempered martensite, which are able to be easily controlled by α-γ phase transformation. The residual ferrite containing extremely nanosized oxide particles leads to significantly improved creep rupture strength in 9CrODS cladding. The creep strength stability at extended time of 60,000 h at 700 ºC is ascribed to the stable nanosized oxide particles. It was also reviewed that 9CrODS steel has well irradiation stability and fuel pin irradiation test was conducted up to 12 at% burnup and 51 dpa at the cladding temperature of 700ºC.

  7. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    PubMed

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  8. The phases and magnetic properties of (Ti, Co), and Cr doped Zn 2Y-type hexagonal ferrite

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Wang, C. C.; Chin, T. S.; Yen, F. S.

    1988-04-01

    The phases and magnetic properties of Y-type hexagonal ferrite, Ba 2Zn 2 (Ti, Co) yFe 12-2 yO 22 doped with two sets of ions, (Ti, Co) and Cr were studied. In (Ti, Co) - doped ferrites the second phase appears at y ⩾ 0.6, which is a spinel type with the formula of (Zn 1-ηCo η)(Fe 2-δCo δ)O 4. Two resonant peaks are observed in ESR studies at the fields of 1020 and 2430 Oe, respectively, at a frequency of 9.684 GHz. The linewidth increases with the addition of the dopants. In chromium doped ferrite, two phases are identified as the amount of chromium is up to 0.2: spinel type of Zn(Fe 2-ɛCr ɛ)O 4 and orthorhombic BaCr 2O 4. Although the amount of Cr used does not influence the resonant field of the unique peak of the derivative curves from ESR, it eventually enlarges the linewidth.

  9. 9 Cr-- 1 Mo steel material for high temperature application

    DOEpatents

    Jablonski, Paul D; Alman, David; Dogan, Omer; Holcomb, Gordon; Cowen, Christopher

    2012-11-27

    One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650.degree. C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 .mu.m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.

  10. Current status and recent research achievements in ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Diegele, E.; Lindau, R.; Luzginova, N.; Tanigawa, H.

    2014-12-01

    When the austenitic stainless steel 316L(N) was selected for ITER, it was well known that it would not be suitable for DEMO and fusion reactors due to its irradiation swelling at high doses. A parallel programme to ITER collaboration already had been put in place, under an IEA fusion materials implementing agreement for the development of a low activation ferritic/martensitic steel, known for their excellent high dose irradiation swelling resistance. After extensive screening tests on different compositions of Fe-Cr alloys, the chromium range was narrowed to 7-9% and the first RAFM was industrially produced in Japan (F82H: Fe-8%Cr-2%W-TaV). All IEA partners tested this steel and contributed to its maturity. In parallel several other RAFM steels were produced in other countries. From those experiences and also for improving neutron efficiency and corrosion resistance, European Union opted for a higher chromium lower tungsten grade, Fe-9%Cr-1%W-TaV steel (Eurofer), and in 1997 ordered the first industrial heats. Other industrial heats have been produced since and characterised in different states, including irradiated up to 80 dpa. China, India, Russia, Korea and US have also produced their grades of RAFM steels, contributing to overall maturity of these steels. This paper reviews the work done on RAFM steels by the fusion materials community over the past 30 years, in particular on the Eurofer steel and its design code qualification for RCC-MRx.

  11. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  12. Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films

    NASA Astrophysics Data System (ADS)

    Yan, Q. Y.; Gambino, R. J.; Sampath, S.; Huang, Q.

    2005-02-01

    The magnetic properties of MnZn ferrites are affected by the plasma spray process. It is found that improvements can be made by annealing the ferrite films at 500°C-800°C. The annealing induced magnetic property changes are studied by neutron diffraction and ferromagnetic resonance techniques. The increase of the saturation magnetization is attributed to the cation ordering within the spinel lattice, which increases the magnetic moment per ferrite formula. The refinements on the neutron diffraction data suggest that the redistribution of the cation during annealing neither starts from a fully disordered state nor ends to a fully ordered state. The decrease of the coercivity is analyzed with the domain wall pinning model. The measurements on the magnetostriction and residual stress indicate that coercive mechanisms arising from the magnetoelastic energy term are not dominant in these ferrite films. The decrease of the coercivity for annealed ferrite films is mainly attributed to the decrease of the effective anisotropic field, which may result from the homogenization of the film composition and the reduction of the microstructural discontinuity (e.g., cracks, voids, and splat boundaries).

  13. Radiation resistance of endohedral metallofullerenols under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szhogina, A. A.; Shilin, V. A., E-mail: allin-ok2@mail.ru; Sedov, V. P.

    2016-07-15

    The endohedral metallofullerenols Me@C{sub 2n}(OH){sub 38–40} + C{sub 2n}(OH){sub 38–40} (Me = Tb, Sc, Gd, Fe, Pr, Mo) have been obtained and their radiation resistance under irradiation by a neutron flux of 8 × 10{sup 13} cm{sup –2} s{sup –1} has been studied. The factors affecting the radiation resistance of endohedral metallofullerenols are discussed.

  14. Microstructures and Mechanical Properties of 12Cr1MoVG Tube Welded Joints With/Without Post-weld Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Sun, Jian; Yu, Xinhai; Chen, Guohong; Fu, Qiuhua; Gao, Chao; Tang, Wenming

    2017-10-01

    Small-caliber, thick-wall 12Cr1MoVG seamless steel tube welded joints were fabricated in this study by gas tungsten arc welding and shielded metal arc welding techniques, then the microstructures, mechanical properties, and residual stress distributions of the joints with or without post-weld heat treatment (PWHT) were compared. The welded joints are mainly composed of bcc ferrite (F), Fe3C, and M7C3 carbides. PWHT did not cause an apparent microstructure evolution in the joints, but promoted granular pearlite decomposition and growth of F grains and carbides, therefore decreasing the yield, tensile strength, and hardness while increasing the impact toughness and elongation of the welded joints. PWHT also released the circumferential residual stress and altered the stress state in the joint from tensile to compressive. Although the mechanical properties and bending performance of the small-caliber, thick-wall 12Cr1MoVG seamless welded joints without PWHT are acceptable, our results show that the joints with PWHT are more reliable.

  15. Irradiation creep of various ferritic alloys irradiated at {approximately}400{degrees}C in the PFR and FFTF reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toloczko, M.B.; Garner, F.A.; Eiholzer, C.R.

    1997-04-01

    Three ferritic alloys were irradiated in two fast reactors to doses of 50 dpa or more at temperatures near 400{degrees}C. One martensitic alloy, HT9, was irradiated in both the FFTF and PFR reactors. PFR is the Prototype Fast Reactor in Dourneay, Scotland, and FFTF is the Fast Flux Test Facility in Richland, WA. D57 is a developmental alloy that was irradiated in PFR only, and MA957 is a Y{sub 2}O{sub 3} dispersion-hardened ferritic alloy that was irradiated only in FFTF. These alloys exhibited little or no void swelling at {approximately}400{degrees}C. Depending on the alloy starting condition, these steels develop amore » variety of non-creep strains early in the irradiation that are associated with phase changes. Each of these alloys creeps at a rate that is significantly lower than that of austenitic steels irradiated in the same experiments. The creep compliance for ferritic alloys in general appears to be {approximately}0.5 x 10{sup {minus}6} MPa{sup {minus}1} dpa{sup {minus}1}, independent of both composition and starting state. The addition of Y{sub 2}O{sub 3} as a dispersoid does not appear to change the creep behavior.« less

  16. AsMo7O27-bridged dinuclear sandwich-type heteropolymolybdates of Cr(III) and Fe(III): magnetism of [MM'(AsMo7O27)2]12- with MM' = FeFe, CrFe, and CrCr.

    PubMed

    Xu, Haisheng; Li, Lili; Liu, Bin; Xue, Ganglin; Hu, Huaiming; Fu, Feng; Wang, Jiwu

    2009-11-02

    Two new dinuclear sandwich-type heteropolymolybdates based on the mulitidendate inorganic fragment [AsMo(7)O(27)] and Cr(III) and Fe(III) ions, namely, the homometallic sandwich polyoxometalate (POM) (NH(4))(12)[Fe(2)(AsMo(7)O(27))(2)] x 12 H(2)O (1) and the first example of the "symmetrical" heterometallic Cr(III)-Fe(III) sandwich POM, (NH(4))(12)[FeCr(AsMo(7)O(27))(2)] x 13 H(2)O (2), were simultaneously synthesized in high yield. Their magnetic properties are thoroughly investigated together with the homometallic sandwich POM (NH(4))(12)[Cr(2)(AsMo(7)O(27))(2)] x 11 H(2)O (3). The chi(M)T values for compounds 1-3 at 300 K correspond well to the calculated spin-only values for Fe(III) (S = 5/2) and Cr(III) (S = 3/2) with g(Fe) = g(Cr) = 2. Upon cooling, the chi(M)T values decline monotonously and reach 0.14, 1.00, and 0.11 cm(3) K mol(-1) at 2.0 K for 1, 2, and 3, respectively, indicating a significant antiferromagnetic exchange between the magnetic centers with J = -2.09, -4.09, and -6.26 cm(-1), respectively, for 1, 2, and 3. The magnetic results clearly establish that compound 2 is formed by bimetallic Cr(III)-Fe(III) units and not by a mixture of the two antiferromagnetically coupled homometallic species. Their thermal properties are also characterized.

  17. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies.

    PubMed

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K

    2017-04-07

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2 TiAl/NiAl or single-Ni 2 TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.

  18. High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies

    PubMed Central

    Song, Gian; Sun, Zhiqian; Li, Lin; Clausen, Bjørn; Zhang, Shu Yan; Gao, Yanfei; Liaw, Peter K.

    2017-01-01

    The ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni2TiAl/NiAl or single-Ni2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxation behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate. PMID:28387230

  19. Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Eldrup, M.; Byun, Thak Sang

    2008-01-01

    Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 x 10{sup -5} to 0.28 dpa at {approx} 80 C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between -50 and 100 C over the strain rate range 1 x 10{sup -5} to 1 x 10{sup -2} s{sup -1}. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM atmore » {approx}0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at {approx}0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.« less

  20. The effect of chloride ions on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation.

    PubMed

    Wan, Tong; Xiao, Ning; Shen, Hanjie; Yong, Xingyue

    2016-11-01

    The effects of Cl(-) on the corroded surface layer of 00Cr22Ni5Mo3N duplex stainless steel under cavitation in chloride solutions were investigated using nanoindentation in conjunction with XRD and XPS. The results demonstrate that Cl(-) had a strong effect on the nano-mechanical properties of the corroded surface layer under cavitation, and there was a threshold Cl(-) concentration. Furthermore, a close relationship between the nano-mechanical properties and the cavitation corrosion resistance of 00Cr22Ni5Mo3N duplex stainless steel was observed. The degradation of the nano-mechanical properties of the corroded surface layer was accelerated by the synergistic effect between cavitation erosion and corrosion. A key factor was the adsorption of Cl(-), which caused a preferential dissolution of the ferrous oxides in the passive film layer on the corroded surface layer. Cavitation further promoted the preferential dissolution of the ferrous oxides in the passive film layer. Simultaneously, cavitation accelerated the erosion of the ferrite in the corroded surface layer, resulting in the degradation of the nano-mechanical properties of the corroded surface layer on 00Cr22Ni5Mo3N duplex stainless steel under cavitation. Copyright © 2016. Published by Elsevier B.V.

  1. Self-ion emulation of high dose neutron irradiated microstructure in stainless steels

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Michalicka, J.; Was, G. S.

    2018-04-01

    Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.

  2. Defect and void evolution in oxide dispersion strengthened ferritic steels under 3.2 MeV Fe + ion irradiation with simultaneous helium injection

    NASA Astrophysics Data System (ADS)

    Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.

    2000-08-01

    In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.

  3. Postirradiation thermocyclic loading of ferritic-martensitic structural materials

    NASA Astrophysics Data System (ADS)

    Belyaeva, L.; Orychtchenko, A.; Petersen, C.; Rybin, V.

    Thermonuclear fusion reactors of the Tokamak-type will be unique power engineering plants to operate in thermocyclic mode only. Ferritic-martensitic stainless steels are prime candidate structural materials for test blankets of the ITER fusion reactor. Beyond the radiation damage, thermomechanical cyclic loading is considered as the most detrimental lifetime limiting phenomenon for the above structure. With a Russian and a German facility for thermal fatigue testing of neutron irradiated materials a cooperation has been undertaken. Ampule devices to irradiate specimens for postirradiation thermal fatigue tests have been developed by the Russian partner. The irradiation of these ampule devices loaded with specimens of ferritic-martensitic steels, like the European MANET-II, the Russian 05K12N2M and the Japanese Low Activation Material F82H-mod, in a WWR-M-type reactor just started. A description of the irradiation facility, the qualification of the ampule device and the modification of the German thermal fatigue facility will be presented.

  4. Void swelling and irradiation creep in austenitic and martensitic stainless steels under cyclic irradiation

    NASA Astrophysics Data System (ADS)

    Zhiyong, Zhu; Jung, Peter; Klein, Horst

    1993-07-01

    A high purity austenitic FeCrNiMo alloy and DIN 1.4914 martensitic stainless steel were irradiated with 6.2 MeV protons. The pulsed operation of a tokamak fusion reactor was simulated by simultaneous cycling of beam, temperature and stress similar to that anticipated in the NET (Next European Torus) design. Void swelling and irradiation creep of the FeCrNiMo alloy under cyclic and stationary conditions were identical within the experimental error. The martensitic steel showed no swelling at the present low doses (~0.2 dpa). The plastic deformation under continuous and cyclic irradiation was essentially determined by thermal creep. During irradiation the electrical resistivity of FeCrNiMo slightly increased, probably due to swelling, while that of DIN 1.4914 linearly decreased, probably due to segregation effects.

  5. Albumin adsorption on CoCrMo alloy surfaces

    NASA Astrophysics Data System (ADS)

    Yan, Yu; Yang, Hongjuan; Su, Yanjing; Qiao, Lijie

    2015-12-01

    Proteins can adsorb on the surface of artificial joints immediately after being implanted. Although research studying protein adsorption on medical material surfaces has been carried out, the mechanism of the proteins’ adsorption which affects the corrosion behaviour of such materials still lacks in situ observation at the micro level. The adsorption of bovine serum albumin (BSA) on CoCrMo alloy surfaces was studied in situ by AFM and SKPFM as a function of pH and the charge of CoCrMo alloy surfaces. Results showed that when the specimens were uncharged, hydrophobic interaction could govern the process of the adsorption rather than electrostatic interaction, and BSA molecules tended to adsorb on the surfaces forming a monolayer in the side-on model. Results also showed that adsorbed BSA molecules could promote the corrosion process for CoCrMo alloys. When the surface was positively charged, the electrostatic interaction played a leading role in the adsorption process. The maximum adsorption occurred at the isoelectric point (pH 4.7) of BSA.

  6. Biochemical surface modification of Co-Cr-Mo.

    PubMed

    Puleo, D A

    1996-01-01

    Because of the limited mechanical properties of tissue substitutes formed by culturing cells on polymeric scaffolds, other approaches to tissue engineering must be explored for applications that require complete and immediate ability to bear weight, e.g. total joint replacements. Biochemical surface modification offers a way to partially regulate events at the bone-implant interface to obtain preferred tissue responses. Tresyl chloride, gamma-aminopropyltriethoxysilane (APS) and p-nitrophenyl chloroformate (p-NPC) immobilization schemes were used to couple a model enzyme, trypsin, on bulk samples of Co-Cr-Mo. For comparison, samples were simply adsorbed with protein. The three derivatization schemes resulted in different patterns and levels of activity. Tresyl chloride was not effective in immobilizing active enzyme on Co-Cr-Mo. Aqueous silanization with 12.5% APS resulted in optimal immobilized activity. Activity on samples derivatized with 0.65 mg p-NPC cm-2 was four to five times greater than that on samples simple adsorbed with enzyme or optimally derivatized with APS and was about eight times that on tresylated samples. This work demonstrates that, although different methods have different effectiveness, chemical derivatization can be used to alter the amount and/or stability of biomolecules immobilized on the surface of Co-Cr-Mo.

  7. Mechanical Performance of Ferritic Martensitic Steels for High Dose Applications in Advanced Nuclear Reactors

    NASA Astrophysics Data System (ADS)

    Anderoglu, Osman; Byun, Thak Sang; Toloczko, Mychailo; Maloy, Stuart A.

    2013-01-01

    Ferritic/martensitic (F/M) steels are considered for core applications and pressure vessels in Generation IV reactors as well as first walls and blankets for fusion reactors. There are significant scientific data on testing and industrial experience in making this class of alloys worldwide. This experience makes F/M steels an attractive candidate. In this article, tensile behavior, fracture toughness and impact property, and creep behavior of the F/M steels under neutron irradiations to high doses with a focus on high Cr content (8 to 12) are reviewed. Tensile properties are very sensitive to irradiation temperature. Increase in yield and tensile strength (hardening) is accompanied with a loss of ductility and starts at very low doses under irradiation. The degradation of mechanical properties is most pronounced at <0.3 T M ( T M is melting temperature) and up to 10 dpa (displacement per atom). Ferritic/martensitic steels exhibit a high fracture toughness after irradiation at all temperatures even below 673 K (400 °C), except when tested at room temperature after irradiations below 673 K (400 °C), which shows a significant reduction in fracture toughness. Creep studies showed that for the range of expected stresses in a reactor environment, the stress exponent is expected to be approximately one and the steady state creep rate in the absence of swelling is usually better than austenitic stainless steels both in terms of the creep rate and the temperature sensitivity of creep. In short, F/M steels show excellent promise for high dose applications in nuclear reactors.

  8. Dielectric and magnetic studies of Cr+3 doped nickel ferrite by combustion method

    NASA Astrophysics Data System (ADS)

    Parveez, Asiya; Shekhawat, M. S.; Sindhu, S.; Srikanth, C.; Nayeem, Firdous; Mohd. Shariff, S.; Sinha, R. R.; Chaudhuri, Arka; Khader, S. Abdul

    2018-05-01

    Cr+3 doped nickel ferrite nanoparticles having the basic composition NiCrxFe2-xO4 (x=0, 0.1, 0.15, 0.2, 1) were prepared using auto combustion method. Structural, dielectric, a.c conductivity and magnetic properties of these samples, which are sintered at 800°C were studied. The structures of the synthesized samples were probed by X-ray diffraction (XRD) studies. The peaks observed in the XRD spectrum indicated single phase spinel cubic structure for the synthesized samples. Surface morphology of the samples has been investigated using Field Emission Scanning Electron Microscope (FESEM). The dielectric constant (ɛ') and dielectric loss factor (ɛ″) of nanocrystalline nickel ferrites were investigated as a function of frequency and Cr+3 concentration at room temperature over the frequency range 100 Hz to 1 MHz using Hioki make LCR Hi-Tester 3250. The dependence of ɛ' and ɛ″ with the frequency of the alternating applied electric field is in accordance with the Maxwell-Wagner type interfacial polarization, which is in agreement with the Koop's theory. The electrical conductivity (σac) deduced from the measured dielectric data has been thoroughly analyzed and found that the conduction mechanism in NiCrxFe2-xO4 nanoferrites are in conformity with the electron hopping model. The magnetic properties of Cr+3 doped nano-nickel ferrite were analyzed using a Vibrating Sample Magnetometer (VSM). It is observed that the values of saturation magnetization decreases along with the increase in chromium content.

  9. High temperature deformation mechanism in hierarchical and single precipitate strengthened ferritic alloys by in situ neutron diffraction studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Li, Lin

    Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less

  10. High temperature deformation mechanism in hierarchical and single precipitate strengthened ferritic alloys by in situ neutron diffraction studies

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Li, Lin; ...

    2017-04-07

    Here, the ferritic Fe-Cr-Ni-Al-Ti alloys strengthened by hierarchical-Ni 2TiAl/NiAl or single-Ni 2TiAl precipitates have been developed and received great attentions due to their superior creep resistance, as compared to conventional ferritic steels. Although the significant improvement of the creep resistance is achieved in the hierarchical-precipitate-strengthened ferritic alloy, the in-depth understanding of its high-temperature deformation mechanisms is essential to further optimize the microstructure and mechanical properties, and advance the development of the creep resistant materials. In the present study, in-situ neutron diffraction has been used to investigate the evolution of elastic strain of constitutive phases and their interactions, such as load-transfer/load-relaxationmore » behavior between the precipitate and matrix, during tensile deformation and stress relaxation at 973 K, which provide the key features in understanding the governing deformation mechanisms. Crystal-plasticity finite-element simulations were employed to qualitatively compare the experimental evolution of the elastic strain during tensile deformation at 973 K. It was found that the coherent elastic strain field in the matrix, created by the lattice misfit between the matrix and precipitate phases for the hierarchical-precipitate-strengthened ferritic alloy, is effective in reducing the diffusional relaxation along the interface between the precipitate and matrix phases, which leads to the strong load-transfer capability from the matrix to precipitate.« less

  11. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix wasmore » executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.« less

  12. Fracture behavior of neutron-irradiated high-manganese austenitic steels

    NASA Astrophysics Data System (ADS)

    Yoshida, H.; Miyata, K.; Narui, M.; Kayano, H.

    1991-03-01

    The instrumented Charpy impact test was applied to study the fracture behavior of high-manganese austenitic steels before and after neutron irradiations. Quarter-size specimens of a commercial high-manganese steel (18% Mn-5% Ni-16% Cr), three reference steels (21% Mn-1% Ni-9% Cr, 20% Mn-1% Ni-11% Cr, 15% Mn-1% Ni-13% Cr) and two model steels (17% Mn-4.5% Si-6.5% Cr, 22% Mn-4.5% Si-6.5% Cr-0.2% N) were used for the impact tests at temperatures between 77 and 523 K. The load-deflection curves showed typical features corresponding to characteristics of the fracture properties. The temperature dependences of fracture energy and failure deflection obtained from the curves clearly demonstrate only small effects up to 2 × 10 23 n/m 2 ( E > 0.1 MeV) and brittleness at room temperature in 17% Mn-Si-Cr steel at 1.6 × 10 25 n/m 2 ( E > 0.1 MeV), while ductility still remains in 22%Mn-Si-Cr steel.

  13. Microstructure examination of Fe-14Cr ODS ferritic steels produced through different processing routes

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Hosemann, P.; Vogel, S. C.; Baluc, N.

    2014-08-01

    Various thermo-mechanical treatments were applied to refine and homogenise grain size and improve mechanical properties of hot-isostatically pressed (HIP) 14%Cr ODS ferritic steel. The grain size was reduced, improving mechanical properties, tensile strength and Charpy impact, however bimodal-like distribution was also observed. As a result, larger, frequently elongated grains with size above 1 μm and refined, equiaxed grains with a diameter ranging from 250 to 500 nm. Neutron diffraction measurements revealed that for HIP followed by hydrostatic extrusion material the strongest fiber texture was observed oriented parallel to the extrusion direction. In comparison with hot rolling and hot pressing methods, this material exhibited promising mechanical properties: the ultimate tensile strength of 1350 MPa, yield strength of 1280 MPa, total elongation of 21.7% and Charpy impact energy of 5.8 J. Inferior Charpy impact energy of ∼3.0 J was measured for HIP and hot rolled material, emphasising that parameters of this manufacturing process still have to be optimised. As an alternative manufacturing route, due to the uniform microstructure and simplicity of the process, hot pressing might be a promising method for production of smaller parts of ODS ferritic steels. Besides, the ductile-to-brittle transition temperature of all thermo-mechanically treated materials, in comparison with as-HIPped ODS steel, was improved by more than 50%, the transition temperature ranging from 50 to 70 °C (323 and 343 K) remains still unsatisfactory.

  14. Status Report on Irradiation Capsules Designed to Evaluate FeCrAl-UO 2 Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    This status report provides the background and current status of a series of irradiation capsules that were designed and are being built to test the interactions between candidate FeCrAl cladding for enhanced accident tolerant applications and prototypical enriched commercial UO 2 fuel in a neutron radiation environment. These capsules will test the degree, if any, of fuel cladding chemical interactions (FCCI) between FeCrAl and UO 2. The capsules are to be irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory to burn-ups of 10, 30, and 50 GWd/MT with a nominal target temperature at the interfaces between themore » pellets and clad of 350°C.« less

  15. Studies on separation and purification of fission (99)Mo from neutron activated uranium aluminum alloy.

    PubMed

    Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L

    2014-07-01

    A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R, Lisha; P, Geetha; B, Aravind P.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness andmore » composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.« less

  17. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  18. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, J.; Keiser, D. D.; Miller, B. D.

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less

  19. TEM characterization of irradiated U-7Mo/Mg dispersion fuel

    DOE PAGES

    Gan, J.; Keiser, D. D.; Miller, B. D.; ...

    2017-07-15

    This paper presents the results of transmission electron microscopy (TEM) characterization on neutron-irradiated samples taken from the low-flux and high-flux sides of the same fuel plate with U-7Mo fuel particles dispersed in Mg matrix with aluminum alloy Al6061 as cladding material that was irradiated edge-on to the core in the Advanced Test Reactor. The corresponding local fission density and fission rate of the fuel particles and the average fuel-plate centerline temperature for the low-flux and high-flux samples are estimated to be 3.7 × 10 21 f/cm 3, 7.4 × 10 14 f/cm 3/s and 123 °C, and 5.5 × 10more » 21 f/cm3, 11.0 × 10 14 f/cm 3/s and 158 °C, respectively. Complex interaction layers developed at the Al-Mg interface, consisting of Al 3Mg 2 and Al 12Mg 17 along with precipitates of MgO, Mg 2Si and FeAl 5.3. No interaction between Mg matrix and U-Mo fuel particle was identified. For the U-Mo fuel particles, at low fission density, small elongated bubbles wrapped around the clean areas with a fission gas bubble superlattice, which suggests that bubble coalescence is an important mechanism for converting the fission gas bubble superlattice to large bubbles. At high fission density, no bubbles or porosity were observed in the Mg matrix, and pockets of residual fission gas bubble superlattice were observed in the U-Mo fuel particle interior.« less

  20. Stress-relief cracking of a new ferritic steel

    NASA Astrophysics Data System (ADS)

    Nawrocki, Jesse Gerald

    The mechanism of stress-relief cracking in the coarse-grained heat-affected zone (CGHAZ) of low-alloy ferritic steels was studied through a tempering study, stress-relaxation testing, and detailed microstructural characterization. A new ferritic alloy steel, HCM2S, was used as the model system. Common 2.25Cr-1 Mo steel, which is susceptible to stress-relief cracking, was used for comparison to HCM2S. The CGHAZ was simulated using Gleeble techniques. A dense distribution of small tungsten-rich carbides within the prior austenite grains induced secondary hardening in the CGHAZ of HCM2S. The CGHAZ of 2.25Cr-1 Mo steel exhibited secondary hardening due to the intragranular precipitation of many Fe-rich M3C carbides. The hardness of HCM2S was more stable at longer times and high temperatures than 2.25Cr-1 Mo steel due to the intragranular precipitation of small W and V-rich carbides. The CGHAZs of HCM2S and 2.25Cr-1 Mo steel were susceptible to stress-relief cracking between 575 and 725°C. HCM2S exhibited C-curve behavior with respect to the time to failure as a function of post-weld heat treatment (PWHT) temperature. No segregation of tramp elements to prior austenite grain boundaries was detected in HCM2S. Both intergranular and intragranular carbide precipitation controlled the stress-relief cracking behavior. The amount of intergranular failure increased with test temperature due to the increasing amounts of Fe-rich M3C carbides at the prior austenite grain boundaries. These carbides acted as cavity nucleation sites. The cavities coalesced to form microcracks along prior austenite grain boundaries. Eventually, the remaining uncracked areas could not support the load and failed by ductile rupture. The balance of intergranular and intragranular carbide precipitation resulted in the C-curve behavior. The nose of the C-curve occurred at 675°C. The intragranular regions were strong because of a dense distribution of W/Fe-rich carbides, but the prior austenite grain

  1. A two-stage constitutive model of X12CrMoWVNbN10-1-1 steel during elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhu, Luobei; He, Jianli; Zhang, Ying

    2018-02-01

    In order to clarify the competition between work hardening (WH) caused by dislocation movements and the dynamic softening result from dynamic recovery (DRV) and dynamic recrystallization (DRX), a new two-stage flow stress model of X12CrMoWVNbN10-1-1 (X12) ferrite heat-resistant steel was established to describe the whole hot deformation behavior. And the parameters were determined by the experimental data operated on a Gleeble-3800 thermo- mechanical simulation. In this constitutive model, a single internal variable dislocation density evolution model is used to describe the influence of WH and DRV to flow stress. The DRX kinetic dynamic model can express accurately the contribution of DRX to the decline of flow stress, which was established on the Avrami equation. Furthermore, The established new model was compared with Fields-Bachofen (F-B) model and experimental data. The results indicate the new two-stage flow stress model can more accurately represent the hot deformation behavior of X12 ferrite heat-resistant steel, and the average error is only 0.0995.

  2. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures

    DOE PAGES

    Huang, Shenyan; Gao, Yanfei; An, Ke; ...

    2014-10-22

    In this study, the ferritic superalloy Fe–10Ni–6.5Al–10Cr–3.4Mo strengthened by ordered (Ni,Fe)Al B2-type precipitates is a candidate material for ultra-supercritical steam turbine applications above 923 K. Despite earlier success in improving its room-temperature ductility, the creep resistance of this material at high temperatures needs to be further improved, which requires a fundamental understanding of the high-temperature deformation mechanisms at the scales of individual phases and grains. In situ neutron diffraction has been utilized to investigate the lattice strain evolution and the microscopic load-sharing mechanisms during tensile deformation of this ferritic superalloy at elevated temperatures. Finite-element simulations based on the crystal plasticitymore » theory are employed and compared with the experimental results, both qualitatively and quantitatively. Based on these interphase and intergranular load-partitioning studies, it is found that the deformation mechanisms change from dislocation slip to those related to dislocation climb, diffusional flow and possibly grain boundary sliding, below and above 873 K, respectively. Insights into microstructural design for enhancing creep resistance are also discussed.« less

  3. Influence of Cu-Cr substitution on structural, morphological, electrical and magnetic properties of magnesium ferrite

    NASA Astrophysics Data System (ADS)

    Yonatan Mulushoa, S.; Murali, N.; Tulu Wegayehu, M.; Margarette, S. J.; Samatha, K.

    2018-03-01

    Cu-Cr substituted magnesium ferrite materials (Mg1 - xCuxCrxFe21 - xO4 with x = 0.0-0.7) have been synthesized by the solid state reaction method. XRD analysis revealed the prepared samples are cubic spinel with single phase face centered cubic. A significant decrease of ∼41.15 nm in particle size is noted in response to the increase in Cu-Cr substitution level. The room temperature resistivity increases gradually from 0.553 × 105 Ω cm (x = 0.0) to 0.105 × 108 Ω cm (x = 0.7). Temperature dependent DC-electrical resistivity of all the samples, exhibits semiconductor like behavior. Cu-Cr doped materials can be suitable to limit the eddy current losses. VSM result shows pure and doped magnesium ferrite particles show soft ferrimagnetic nature at room temperature. The saturation magnetization of the samples decreases initially from 34.5214 emu/g for x = 0.0 to 18.98 emu/g (x = 0.7). Saturation magnetization, remanence and coercivity are decreased with doping, which may be due to the increase in grain size.

  4. Experimental evidence for the magnetic moment directions of Cr2+ and Cr3+ cations in the spinel ferrites Cux1Crx2Fe3-x1-x2O4

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Xu, J.; Li, Z. Z.; Qi, W. H.; Tang, G. D.; Shang, Z. F.; Ji, D. H.; Lang, L. L.

    2014-08-01

    (A)[B]2O4 spinel ferrite samples with the composition Cux1Crx2Fe3-x1-x2O4 (0.0≤x1≤0.284 and 1.04≥x2≥0.656) were prepared by a chemical co-precipitation method. X-ray diffraction patterns indicated that the samples had a single-phase cubic spinel structure. It is interesting that the saturation magnetization of the samples increased when Cu2+ or Cu3+ (with 1 or 2μB of magnetic moment) substituted for Cr2+ or Cr3+ (with 4 or 3μB), which cannot be obviously explained if the magnetic moments of Cr2+ and Cr3+ cations are assumed to be parallel to those of the Fe and Cu cations. However, with the assumption that the magnetic moments of Cr2+ and Cr3+ cations are antiparallel to the Fe and Cu cation moments in spinel ferrites, the dependence on the Cu doping level of the sample magnetic moments at 10 K was fitted successfully, using the quantum-mechanical potential barrier model earlier proposed by our group. Using the cation distributions obtained in the fitting process, the experimental observation that the magnetic moment of the samples increased with increasing Cu doping level was explained. This work therefore provides experimental evidence that the magnetic moments of the Cr2+ and Cr3+ cations are antiparallel to those of the Fe and Cu cations in spinel ferrites.

  5. Research on flow stress model and dynamic recrystallization model of X12CrMoWVNbN10-1-1 steel

    NASA Astrophysics Data System (ADS)

    Sui, Da-shan; Wang, Wei; Fu, Bo; Cui, Zhen-shan

    2013-05-01

    Plastic deformation behavior of X12CrMoWVNbN10-1-1 ferrite heat-resistant steel was studied systematically at high temperature. The stress-strain curves were measured at the temperature of 950°C-1250°C and strain rate of 0.0005s-1-0.1s-1 by Gleeble thermo-mechanical simulator. The flow stress model and dynamic recrystallization model were established based on Laasraoui two-stage model. The activation energy was calculated and the parameters were determined accordingly based on the experimental results and Sellars creep equation. The verification was performed to prove the models and it indicated the calculated results were identical to the experimental data.

  6. Neutron irradiation effects on plasma facing materials

    NASA Astrophysics Data System (ADS)

    Barabash, V.; Federici, G.; Rödig, M.; Snead, L. L.; Wu, C. H.

    2000-12-01

    This paper reviews the effects of neutron irradiation on thermal and mechanical properties and bulk tritium retention of armour materials (beryllium, tungsten and carbon). For each material, the main properties affected by neutron irradiation are described and the specific tests of neutron irradiated armour materials under thermal shock and disruption conditions are summarized. Based on current knowledge, the expected thermal and structural performance of neutron irradiated armour materials in the ITER plasma facing components are analysed.

  7. Toughness of 2,25Cr-1Mo steel and weld metal

    NASA Astrophysics Data System (ADS)

    Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret

    2017-09-01

    2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.

  8. Effect of neutron energy and fluence on deuterium retention behaviour in neutron irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroe; Yuyama, Kenta; Li, Xiaochun; Hatano, Yuji; Toyama, Takeshi; Ohta, Masayuki; Ochiai, Kentaro; Yoshida, Naoaki; Chikada, Takumi; Oya, Yasuhisa

    2016-02-01

    Deuterium (D) retention behaviours for 14 MeV neutron irradiated tungsten (W) and fission neutron irradiated W were evaluated by thermal desorption spectroscopy (TDS) to elucidate the correlation between D retention and defect formation by different energy distributions of neutrons in W at the initial stage of fusion reactor operation. These results were compared with that for Fe2+ irradiated W with various damage concentrations. Although dense vacancies and voids within the shallow region near the surface were introduced by Fe2+ irradiation, single vacancies with low concentration were distributed throughout the sample for 14 MeV neutron irradiated W. Only the dislocation loops were introduced by fission neutron irradiation at low neutron fluence. The desorption peak of D for fission neutron irradiated W was concentrated at low temperature region less than 550 K, but that for 14 MeV neutron irradiated W was extended toward the higher temperature side due to D trapping by vacancies. It can be said that the neutron energy distribution could have a large impact on irradiation defect formation and the D retention behaviour.

  9. The comparison of microstructures and mechanical properties between 14Cr-Al and 14Cr-Ti ferritic ODS alloys

    DOE PAGES

    Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...

    2016-03-03

    In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less

  10. Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals

    NASA Astrophysics Data System (ADS)

    Byun, T. S.

    2007-04-01

    The dose dependence of true stress parameters has been investigated for nuclear structural materials: A533B pressure vessel steels, modified 9Cr-1Mo and 9Cr-2WVTa ferritic martensitic steels, 316 and 316LN stainless steels, and Zircaloy-4. After irradiation to significant doses, these alloys show radiation-induced strengthening and often experience prompt necking at yield followed by large necking deformation. In the present work, the critical true stresses for deformation and fracture events, such as yield stress (YS), plastic instability stress (PIS), and true fracture stress (FS), were obtained from uniaxial tensile tests or calculated using a linear strain-hardening model for necking deformation. At low dose levels where no significant embrittlement was detected, the true fracture stress was nearly independent of dose. The plastic instability stress was also independent of dose before the critical dose-to-prompt-necking at yield was reached. A few bcc alloys such as ferritic martensitic steels experienced significant embrittlement at doses above ∼1 dpa; and the true fracture stress decreased with dose. The materials fractured before yield at or above 10 dpa.

  11. Determination of 30 elements in coal and fly ash by thermal and epithermal neutron-activation analysis

    USGS Publications Warehouse

    Rowe, J.J.; Steinnes, E.

    1977-01-01

    Thirty elements are determined in coal and fly ash by instrumental neutron-activation analysis using both thermal and epithermal irradiation. Gamma-ray spectra were recorded 7 and 20 days after the irradiations. The procedure is applicable to the routine analysis of coals and fly ash. Epithermal irradiation was found preferable for the determination of Ni, Zn, As, Se, Br, Rb, Sr, Mo, Sb, Cs, Ba, Sm, Tb, Hf, Ta, W, Th and U, whereas thermal irradiation was best for Sc, Cr, Fe, Co, La, Ce, Nd, Eu, Yb and Lu. Results for SRM 1632 (coal) and SRM 1633 (fly ash) agree with those of other investigators. ?? 1977.

  12. Recent results on the neutron irradiation of ITER candidate copper alloys irradiated in DR-3 at 250{degrees}C to 0.3 dpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, D.J.; Singh, B.N.; Toft, P.

    1997-04-01

    Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime-ageing and bonding thermal treatment with additional specimens re-aged and given a reactor bakeout treatment at 350{degrees}C for 100 h. CuAl-25 was also heat treated to simulate the effects of a bonding thermal cycle on the material. A number of heat treated specimens were neutron irradiated at 250{degrees}C to a dose level of {approximately}0.3 dpa in the DR-3 reactor as Riso. The main effect of the bonding thermal cycle heat treatment was a slight decrease in strength of CuCrZr and CuNiBe alloys. The strengthmore » of CuAl-25, on the other hand, remained almost unaltered. The post irradiation tests at 250{degrees}C showed a severe loss of ductility in the case of the CuNiBe alloy. The irradiated CuAl-25 and CuCrZr specimens exhibited a reasonable amount of uniform elongation, with CuCrZr possessing a lower strength.« less

  13. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  14. Radiochemical purity of Mo and Tc solution obtained after irradiation and dissolution of Mo-100-enriched and ultra-high-purity natural Mo disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkac, Peter; Gromov, Roman; Chemerisov, Sergey D.

    2016-09-01

    Four irradiations of ultra-high-purity natural Mo targets and one irradiation using 97.4% Mo-100-enriched material were performed. The purpose of these irradiations was to determine whether the presence of Sn stabilizer in the H 2O 2 used for the dissolution of sintered Mo disks can affect the radiochemical purity of the final K 2MoO 4 in 5M KOH solution. Results from radiochemical purity tests performed using thin-layer paper chromatography show that even 2– 3× excess of Sn-stabilized H 2O 2 typically used for dissolution of sintered Mo disks did not affect the radiochemical purity of the final product.

  15. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  16. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    NASA Astrophysics Data System (ADS)

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  17. Past research and fabrication conducted at SCK•CEN on ferritic ODS alloys used as cladding for FBR's fuel pins

    NASA Astrophysics Data System (ADS)

    De Bremaecker, Anne

    2012-09-01

    In the 1960s in the frame of the sodium-cooled fast breeders, SCK•CEN decided to develop claddings made with ferritic stainless materials because of their specific properties, namely a higher thermal conductivity, a lower thermal expansion, a lower tendency to He-embrittlement, and a lower swelling than the austenitic stainless steels. To enhance their lower creep resistance at 650-700 °C arose the idea to strengthen the microstructure by oxide dispersions. This was the starting point of an ambitious programme where both the matrix and the dispersions were optimized. A purely ferritic 13 wt% Cr matrix was selected and its mechanical strength was improved through addition of ferritizing elements. Results of tensile and stress-rupture tests showed that Ti and Mo were the most beneficial elements, partly because of the chi-phase precipitation. In 1973 the optimized matrix composition was Fe-13Cr-3.5Ti-2Mo. To reach creep properties similar to those of AISI 316, different dispersions and methods were tested: internal oxidation (that was not conclusive), and the direct mixing of metallic and oxide powders (Al2O3, MgO, ZrO2, TiO2, ZrSiO4) followed by pressing, sintering, and extrusion. The compression and extrusion parameters were determined: extrusion as hollow at 1050 °C, solution annealing at 1050 °C/15 min, cleaning, cold drawing to the final dimensions with intermediate annealings at 1050 °C, final annealing at 1050 °C, straightening and final aging at 800 °C. The choice of titania and yttria powders and their concentrations were finalized on the basis of their out-of-pile and in-pile creep and tensile strength. As soon as a resistance butt welding machine was developed and installed in a glove-box, fuel segments with PuO2 were loaded in the Belgian MTR BR2. The fabrication parameters were continuously optimized: milling and beating, lubrication, cold drawing (partial and final reduction rates, temperature, duration, atmosphere and furnace). Specific non

  18. Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service

    DOE PAGES

    Tan, L.; Katoh, Y.; Tavassoli, A. -A. F.; ...

    2016-07-26

    Reduced-activation ferritic-martensitic (RAFM) steels, candidate structural materials for fusion reactors, have achieved technological maturity after about three decades of research and development. The recent status of a few developmental aspects of current RAFM steels, such as aging resistance, plate thickness effects, fracture toughness, and fatigue, is updated in this paper, together with ongoing efforts to develop next-generation RAFM steels for superior high-temperature performance. Additionally, to thermomechanical treatments, including nonstandard heat treatment, alloy chemistry refinements and modifications have demonstrated some improvements in high-temperature performance. Castable nanostructured alloys (CNAs) were developed by significantly increasing the amount of nanoscale MX (M = V/Ta/Ti,more » X = C/N) precipitates and reducing coarse M 23C 6 (M = Cr). Preliminary results showed promising improvement in creep resistance and Charpy impact toughness. We present and compare limited low-dose neutron irradiation results for one of the CNAs and China low activation martensitic with data for F82H and Eurofer97 irradiated up to ~70 displacements per atom at ~300–325 °C.« less

  19. Microstructural control of FeCrAl alloys using Mo and Nb additions

    DOE PAGES

    Sun, Zhiqian; Bei, Hongbin; Yamamoto, Yukinori

    2017-08-14

    The effects of Mo and Nb additions on the microstructure and mechanical properties of two FeCrAl alloys were studied in this paper. Fine and uniform recrystallized grain structures (~ 20–30 μm) were achieved in both alloys through suitable annealing after warm-rolling. The formation of Fe 2Nb-type Laves phase precipitates in the Nb-containing FeCrAl alloy effectively stabilized the deformed and recrystallized microstructures. The Mo-containing FeCrAl alloy exhibited strong γ texture fiber after annealing at 650–900 °C, whereas the annealed Nb-containing FeCrAl alloy had much weaker texture. Finally, both strength and ductility decreased as the grain size increased in both alloys.

  20. Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3

    NASA Astrophysics Data System (ADS)

    Park, D. G.; Kim, C. G.; Kim, H. C.; Hong, J. H.; Kim, I. S.

    1997-04-01

    The B-H hysteresis loop and Barkhausen noise have been measured in the neutron irradiated SA508 steel of 45 μm thickness. The coercive force of B-H loop showed a slow change up to a neutron dose of 1014 n/cm2 and increased by 15.4% for a 1016 n/cm2 dose sample compared with that of the unirradiated one, related to the domain wall motion hindered by the increased defects. However, the amplitude of Barkhausen noise reflecting the wall motion decreased slowly up to 1014 n/cm2 irradiation, followed by a rapid decrease of 37.5% at 1016 n/cm2.

  1. Irradiation hardening of pure tungsten exposed to neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-08-26

    In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less

  2. Effect of Activated Flux on the Microstructure, Mechanical Properties, and Residual Stresses of Modified 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Maduraimuthu, V.; Vasudevan, M.; Muthupandi, V.; Bhaduri, A. K.; Jayakumar, T.

    2012-02-01

    A novel variant of tungsten inert gas (TIG) welding called activated-TIG (A-TIG) welding, which uses a thin layer of activated flux coating applied on the joint area prior to welding, is known to enhance the depth of penetration during autogenous TIG welding and overcomes the limitation associated with TIG welding of modified 9Cr-1Mo steels. Therefore, it is necessary to develop a specific activated flux for enhancing the depth of penetration during autogeneous TIG welding of modified 9Cr-1Mo steel. In the current work, activated flux composition is optimized to achieve 6 mm depth of penetration in single-pass TIG welding at minimum heat input possible. Then square butt weld joints are made for 6-mm-thick and 10-mm-thick plates using the optimized flux. The effect of flux on the microstructure, mechanical properties, and residual stresses of the A-TIG weld joint is studied by comparing it with that of the weld joints made by conventional multipass TIG welding process using matching filler wire. Welded microstructure in the A-TIG weld joint is coarser because of the higher peak temperature in A-TIG welding process compared with that of multipass TIG weld joint made by a conventional TIG welding process. Transverse strength properties of the modified 9Cr-1Mo steel weld produced by A-TIG welding exceeded the minimum specified strength values of the base materials. The average toughness values of A-TIG weld joints are lower compared with that of the base metal and multipass weld joints due to the presence of δ-ferrite and inclusions in the weld metal caused by the flux. Compressive residual stresses are observed in the fusion zone of A-TIG weld joint, whereas tensile residual stresses are observed in the multipass TIG weld joint.

  3. Personnel neutron dosimetry using electrochemically etched CR-39 foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankins, D.E.; Homann, S.; Westermark, J.

    1986-09-17

    A personnel neutron dosimetry system has been developed based on the electrochemical etching of CR-39 plastic at elevated temperatures. The doses obtained using this dosimeter system are more accurate than those obtained using other dosimetry systems, especially when varied neutron spectra are encountered. This Cr-39 dosimetry system does not have the severe energy dependence that exists with albedo neutron dosimeters or the fading and reading problems encountered with NTA film. The dosimetry system employs an electrochemical etch procedure that be used to process large numbers of Cr-39 dosimeters. The etch procedure is suitable for operations where the number of personnelmore » requires that many CR-39 dosimeters be processed. Experience shows that one full-time technician can etch and evaluate 2000 foils per month. The energy response to neutrons is fairly flat from about 80 keV to 3.5 MeV, but drops by about a factor of three in the 13 to 16 MeV range. The sensitivity of the dosimetry system is about 7 tracks/cm/sup 2//mrem, with a background equivalent to about 8 mrem for new CR-39 foils. The limit of sensitivity is approximately 10 mrem. The dosimeter has a significant variation in directional dependence, dropping to about 20% at 90/sup 0/. This dosimeter has been used for personnel neutron dosimetry at the Lawrence Livermore National Laboratory for more tha 18 months. 6 refs., 23 figs., 2 tabs.« less

  4. Effect of microstructural evolution by isothermal aging on the mechanical properties of 9Cr-1WVTa reduced activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Park, Min-Gu; Lee, Chang-Hoon; Moon, Joonoh; Park, Jun Young; Lee, Tae-Ho; Kang, Namhyun; Chan Kim, Hyoung

    2017-03-01

    The influence of microstructural changes caused by aging condition on tensile and Charpy impact properties was investigated for reduced activation ferritic-martensitic (RAFM) 9Cr-1WVTa steels having single martensite and a mixed microstructure of martensite and ferrite. For the mixed microstructure of martensite and ferrite, the Charpy impact properties deteriorated in both as-normalized and tempered conditions due to the ferrite and the accompanying M23C6 carbides at the ferrite grain boundaries which act as path and initiation sites for cleavage cracks, respectively. However, aging at 550 °C for 20-100 h recovered gradually the Charpy impact toughness without any distinct drop in strength, as a result of the spheroidization of the coarse M23C6 carbides at the ferrite grain boundaries, which makes crack initiation more difficult.

  5. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    PubMed

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  6. The irradiation behavior of atomized U-Mo alloy fuels at high temperature

    NASA Astrophysics Data System (ADS)

    Park, Jong-Man; Kim, Ki-Hwan; Kim, Chang-Kyu; Meyer, M. K.; Hofman, G. L.; Strain, R. V.

    2001-04-01

    Post-irradiation examinations of atomized U-10Mo, U-6Mo, and U-6Mo-1.7Os dispersion fuels from the RERTR-3 experiment irradiated in the Advanced Test Reactor (ATR) were carried out in order to investigate the fuel behavior of high uranium loading (8 gU/cc) at a high temperature (higher than 200°C). It was observed after about 40 at% BU that the U-Mo alloy fuels at a high temperature showed similar irradiation bubble morphologies compared to those at a lower temperature found in the RERTR-1 irradiation result, but there was a thick reaction layer with the aluminum matrix which was found to be greatly affected by the irradiation temperature and to a lesser degree by the fuel composition. In addition, the chemical analysis for the irradiated U-Mo fuels using the Electron Probe Micro Analysis (EPMA) method were conducted to investigate the compositional changes during the formation of the reaction product.

  7. Parametric study of irradiation effects on the ductile damage and flow stress behavior in ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Chakraborty, Pritam; Biner, S. Bulent

    2015-10-01

    Ferritic-martensitic steels are currently being considered as structural materials in fusion and Gen-IV nuclear reactors. These materials are expected to experience high dose radiation, which can increase their ductile to brittle transition temperature and susceptibility to failure during operation. Hence, to estimate the safe operational life of the reactors, precise evaluation of the ductile to brittle transition temperatures of ferritic-martensitic steels is necessary. Owing to the scarcity of irradiated samples, particularly at high dose levels, micro-mechanistic models are being employed to predict the shifts in the ductile to brittle transition temperatures. These models consider the ductile damage evolution, in the form of nucleation, growth and coalescence of voids; and the brittle fracture, in the form of probabilistic cleavage initiation, to estimate the influence of irradiation on the ductile to brittle transition temperature. However, the assessment of irradiation dependent material parameters is challenging and influences the accuracy of these models. In the present study, the effects of irradiation on the overall flow stress and ductile damage behavior of two ferritic-martensitic steels is parametrically investigated. The results indicate that the ductile damage model parameters are mostly insensitive to irradiation levels at higher dose levels though the resulting flow stress behavior varies significantly.

  8. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  9. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  10. Evaluation of neutron flux parameters in irradiation sites of research reactor using the Westcott-formalism for the k0 neutron activation analysis method

    NASA Astrophysics Data System (ADS)

    Kasban, H.; Hamid, Ashraf

    2015-12-01

    Instrumental Neutron Activation Analysis using k0 (k0-INAA) method has been used to determine a number of elements in sediment samples collected from El-Manzala Lake in Egypt. k0-INAA according to Westcott's formalism has been implemented using the complete irradiation kit of the fast pneumatic rabbit and some selected manually loaded irradiation sites for short and long irradiation at Egypt Second Research Reactor (ETRR-2). Zr-Au and Co sets as neutron flux monitors are used to determine the neutron flux parameters (f and α) in each irradiation sites. Two reference materials IAEA Soil-7 samples have been inserted and implemented for data validation and an internal monostandard multi monitor used (k0 based IM-NAA). It was given a good agreement between the experimental analyzed values and that obtained of the certified values. The major and trace elements in the sediment samples have been evaluated with the use of Co as an internal and Au as an external monostandard comparators. The concentrations of the elements (Cr, Mn and Zn) in the sediment samples of the present work are discussed regarding to those obtained from other sites.

  11. Total body calcium analysis. [neutron irradiation

    NASA Technical Reports Server (NTRS)

    Lewellen, T. K.; Nelp, W. B.

    1974-01-01

    A technique to quantitate total body calcium in humans is developed. Total body neutron irradiation is utilized to produce argon 37. The radio argon, which diffuses into the blood stream and is excreted through the lungs, is recovered from the exhaled breath and counted inside a proportional detector. Emphasis is placed on: (1) measurement of the rate of excretion of radio argon following total body neutron irradiation; (2) the development of the radio argon collection, purification, and counting systems; and (3) development of a patient irradiation facility using a 14 MeV neutron generator. Results and applications are discussed in detail.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Emmanuelle; Wirth, Brian; Was, Gary

    Ferritic/martensitic (FM) steels such as HT-9, T-91 and NF12 with chromium concentrations in the range of 9-12 at.% Cr and high Cr ferritic steels (oxide dispersion strengthened steels with 12-18% Cr) are receiving increasing attention for advanced nuclear applications, e.g. cladding and duct materials for sodium fast reactors, pressure vessels in Generation IV reactors and first wall structures in fusion reactors, thanks to their advantages over austenitic alloys. Predicting the behavior of these alloys under radiation is an essential step towards the use of these alloys. Several radiation-induced phenomena need to be taken into account, including phase separation, solute clustering,more » and radiation-induced segregation or depletion (RIS) to point defect sinks. RIS at grain boundaries has raised significant interest because of its role in irradiation assisted stress corrosion cracking (IASCC) and corrosion of structural materials. Numerous observations of RIS have been reported on austenitic stainless steels where it is generally found that Cr depletes at grain boundaries, consistently with Cr atoms being oversized in the fcc Fe matrix. While FM and ferritic steels are also subject to RIS at grain boundaries, unlike austenitic steels, the behavior of Cr is less clear with significant scatter and no clear dependency on irradiation condition or alloy type. In addition to the lack of conclusive experimental evidence regarding RIS in F-M alloys, there have been relatively few efforts at modeling RIS behavior in these alloys. The need for predictability of materials behavior and mitigation routes for IASCC requires elucidating the origin of the variable Cr behavior. A systematic detailed high-resolution structural and chemical characterization approach was applied to ion-implanted and neutron-irradiated model Fe-Cr alloys containing from 3 to 18 at.% Cr. Atom probe tomography analyses of the microstructures revealed slight Cr clustering and segregation to

  13. Effect of alloy composition on high-temperature bending fatigue strength of ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Ahn, Yong-Sik; Song, Jeon-Young

    2011-12-01

    Exhaust manifolds are subjected to an environment in which heating and cooling cycles occur due to the running pattern of automotive engines. This temperature profile results in the repeated bending stress of exhaust pipes. Therefore, among high-temperature characteristics, the bending fatigue strength is an important factor that affects the lifespan of exhaust manifolds. Here, we report on the effect of the alloy composition, namely the weight fraction of the elements Cr, Mo, Nb, and Ti, on the high-temperature bending fatigue strength of the ferritic stainless steel used in exhaust manifolds. Little difference in the tensile strength and bending fatigue strength of the different composition steels was observed below 600 °C, with the exception of the low-Cr steel. However, steels with high Cr, Mo, or Nb fractions showed considerably larger bending fatigue strength at temperatures of 800 °C. After heating, the precipitates from the specimens were extracted electrolytically and analyzed using scanning electron microscopy energy dispersive spectrometry and transmission electron microscopy. Alloying with Cr and Mo was found to increase the bending fatigue strength due to the substitutional solid solution effect, while alloying with Nb enhanced the strength by forming fine intermetallic compounds, including NbC and Fe2Nb.

  14. Microstructural probing of ferritic/martensitic steels using internal transmutation-based positron source

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Dai, Yong

    2015-10-01

    This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.

  15. Neutron Capture Measurements on 97Mo with the DANCE Array

    NASA Astrophysics Data System (ADS)

    Walker, Carrie L.

    Neutron capture is a process that is crucial to understanding nucleosynthesis, reactors, and nuclear weapons. Precise knowledge of neutron capture cross-sections and level densities is necessary in order to model these high-flux environments. High-confidence spin and parity assignments for neutron resonances are of critical importance to this end. For nuclei in the A=100 mass region, the p-wave neutron strength function is at a maximum, and the s-wave strength function is at a minimum, producing up to six possible Jpi combinations. Parity determination becomes important to assigning spins in this mass region, and the large number of spin groups adds complexity to the problem. In this work, spins and parities for 97Mo resonances are assigned, and best fit models for photon strength function and level density are determined. The neutron capture-cross section for 97Mo is also determined, as are resonance parameters for neutron energies ranging from 16 eV to 2 keV.

  16. Composition-controlled active-passive transition and corrosion behavior of Fe-Cr(Mo)-Zr-B bulk amorphous steels

    NASA Astrophysics Data System (ADS)

    Si, Jiajia; Wu, Yidong; Wang, Tan; Liu, Yanhui; Hui, Xidong

    2018-07-01

    Various corrosive environments in daily life and industry have put forward high requirement on corrosion resistance of metals, especially steels. Unlike the strict demand in Cr content of crystalline stainless steels, amorphous steels (ASs) with lower Cr content can be endowed with outstanding corrosion resistance, while the intrinsic mechanism is not fully understood. Herein, we present a novel Fe92-x-y-zCrxMoyZr8Bz (6 ≤ x ≤ 40, 0 ≤ y ≤ 22, and 12 ≤ z ≤ 18) bulk amorphous steel (BAS) forming system and reveal the synergistic effect of Cr and Mo in determining the chemical stability of oxide films. It has been found the Fe92-x-zCrxZr8Bz BASs with 1 mm in diameter display a Cr-controlling active-passive transition at the Cr threshold of ∼25% in 1 M hydrochloric acid. When adding minor Mo into the BASs, the Cr threshold can be remarkably reduced by forming favorable hexavalent Mo oxides. The generation of Mo6+ is facilitated by atomic selective dissolution at the interface and can promote the passivation. In contrast, when the Cr content of the Mo-doped glasses exceeds 25%, few Mo6+ oxides would produce as the prior formation of protective passive films inhibits the further oxidation of Mo. Therefore, manipulating the active-passive transition properly is crucial to designing ASs with high stainlessness.

  17. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  18. Phase composition and fine structure of 0.18C-1Cr-3Ni-1Mo-Fe steel after plasma-electrolytic treatment

    NASA Astrophysics Data System (ADS)

    Popova, Natalya; Bayatanova, Lyayla; Nikonenko, Elena; Skakov, Mazhyn; Kozlov, Eduard

    2017-01-01

    The paper presents the transmission electron microscopy (TEM) investigation of 0.18C-1Cr-3Mn-1Mo- Fe steel specimens to study phase transitions and modification of fine structure after plasma-electrolytic treatment (carbonitriding at 850°C during 5 min). TEM investigations involve two points: on the specimen surface and at ˜40 µm distance from it. The experiments show that the structure in the original state is a mixture consisting of ferrite and perlite grains. Carbonitriding results in a considerable modification of the quality and quantity of steel structure. Thus, on the surface, α-phase is represented by lamellar martensite, while at ˜40 µm depth - by massive and lamellar martensite tempered at low and high temperatures. Moreover, on the subsurface of the martensite plates' boundaries retained austenite layers are observed, while inside plates the particles of alloyed cementite, carbonitrides of M23(C,N)6, M2C0.61N0.39, M6,2C3,5N0,3, M(C,N)2, Cr12Fe32Mo7Ni7 types, and β-graphite are present. In the specimen at the depth of ˜40 µm, retained austenite layers are observed on the boundaries of martensite laths and plates, while inside plates only the particles of alloyed cementite and M23(C,N)6 carbonitride are formed.

  19. Conversion from film to image plates for transfer method neutron radiography of nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.

    This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutronmore » radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.« less

  20. Study on Tribological Properties of CoCrMo Alloys against Metals and Ceramics as Bearing Materials for Artificial Cervical Disc

    NASA Astrophysics Data System (ADS)

    Xiang, Dingding; Song, Jian; Wang, Song; Liao, Zhenhua; Liu, Yuhong; Tyagi, Rajnesh; Liu, Weiqiang

    2018-02-01

    CoCrMo alloys are believed to be a kind of potential material for artificial cervical disc. However, the tribological properties of CoCrMo alloys against different metals and ceramics are not systematically studied. In this study, the tribological behaviors of CoCrMo alloys against metals (316L, Ti6Al4V) and ceramics (Si3N4, ZrO2) were focused under dry friction and 25 wt.% newborn calf serum (NCS)-lubricated conditions using a ball-on-disc apparatus under reciprocating motion. The microstructure, composition and hardness of CoCrMo alloys were characterized using x-ray diffraction, scanning electron microscopy (SEM) and hardness testers, respectively. The contact angles of the CoCrMo alloys with deionized water and 25 wt.% NCS were measured by the OCA contact angle measuring instrument. The maximum wear width, wear depth and wear volume were measured by three-dimensional white light interference. The morphology and the EDX analysis of the wear marks on CoCrMo alloys were examined by SEM to determine the basic mechanism of friction and wear. The dominant wear mechanism in dry friction for CoCrMo alloys against all pairings was severe abrasive wear, accompanied with a lot of material transfer. Under 25 wt.% NCS-lubricated condition, the wear mechanism for CoCrMo alloys against ceramics (Si3N4, ZrO2) was also mainly severe abrasive wear. However, severe abrasive wear and electrochemical corrosion occurred for the CoCrMo-316L pairing under lubrication. Severe abrasive wear, adhesive wear and electrochemical corrosion occurred for the CoCrMo-Ti6Al4V pairing under lubrication. According to the results, the tribological properties of CoCrMo alloys against ceramics were better than those against metals. The CoCrMo-ZrO2 pairing displayed the best tribological behaviors and could be taken as a potential candidate bearing material for artificial cervical disc.

  1. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  2. Microstructural development under irradiation in European ODS ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.

    2006-06-01

    Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F

  3. Performance comparison of MoNA and LISA neutron detectors

    NASA Astrophysics Data System (ADS)

    Purtell, Kimberly; Rethman, Kaitlynne; Haagsma, Autumn; Finck, Joseph; Smith, Jenna; Snyder, Jesse

    2010-11-01

    In 2002 eight primarily undergraduate institutions constructed and tested the Modular Neutron Array (MoNA) which has been used to detect high energy neutrons at the National Superconducting Cyclotron Laboratory (NSCL). Nine institutions have now designed, constructed and tested the Large-area multi-Institutional Scintillator Array (LISA) neutron detector which will be used at the NSCL and the future Facility for Rare Isotope Beams (FRIB). Both detectors are comprised of 144 detector modules. Each module is a 200 x 10 x 10 cm^3 bar organic plastic scintillator with a photomultiplier tube mounted on each end. Using cosmic rays and a gamma source, we compared the performance of MoNA and LISA by using the same electronics to check light attenuation, position resolution, rise times, and cosmic ray peak widths. Results will be presented.

  4. DNA Double-strand Breaks Induced byFractionated Neutron Beam Irradiation for Boron Neutron Capture Therapy.

    PubMed

    Kinashi, Yuko; Yokomizo, Natsuya; Takahashi, Sentaro

    2017-04-01

    To use the 53BP1 foci assay to detect DNA double-strand breaks induced by fractionated neutron beam irradiation of normal cells. The Kyoto University Research Reactor heavy-water facility and gamma-ray irradiation system were used as experimental radiation sources. After fixation of Chinese Hamster Ovary cells with 3.6% formalin, immunofluorescence staining was performed. Number and size of foci were analyzed using ImageJ software. Fractionated neutron irradiation induced 25% fewer 53BP1 foci than single irradiation at the same dose. By contrast, gamma irradiation induced 30% fewer 53BP1 foci than single irradiation at the same dose. Fractionated neutron irradiation induced larger foci than gamma irradiation, raising the possibility that persistent unrepaired DNA damage was amplified due to the high linear energy transfer component in the neutron beam. Unrepaired cluster DNA damage was more prevalent after fractionated neutron irradiation than after gamma irradiation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. Current status and future R&D for reduced-activation ferritic/martensitic steels

    NASA Astrophysics Data System (ADS)

    Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.

    1998-10-01

    International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.

  6. Different Effect of Co on the Formation of Topologically Close-Packed Phases in Ni-Cr-Mo and Ni-Cr-Re Alloys

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Ding, Xianfei; Zheng, Yunrong; Feng, Qiang

    2017-11-01

    In current study, two sets of Ni-based alloys (Ni-Cr-Mo and Ni-Cr-Re series) containing 0 to 15 at. pct of Co addition were investigated to understand the formation behavior of TCP phases. Significant difference on the formation behavior of TCP phases and corresponding Co effect was found in two series alloys. TCP precipitates ( P and µ phase) were observed in both grain interiors and boundaries in Ni-Cr-Mo series alloys. Higher levels of Co addition increased the supersaturation of Mo in the γ matrix, which explained that Co addition promoted µ phase formation. In contrast, the TCP precipitates ( σ phase) formed by the manner of discontinuous precipitation transformation in the grain boundaries in Ni-Cr-Re series alloys. More Co additions suppressed the formation of σ phase, which was mainly attributed to the decreased supersaturation of Re in thermodynamically metastable γ matrix. The information obtained from simplified alloy systems in this study is helpful for the design of multicomponent Ni-based superalloys.

  7. An evaluation of multilayer mirrors for the soft x ray and extreme ultraviolet wavelength range that were irradiated with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S.P.; May, M.J.; Soukhanovskii, V.

    1997-01-01

    The Plasma Spectroscopy Group at the Johns Hopkins University develops high photon throughput multilayer mirror (MLM) based soft x ray and extreme ultraviolet (XUV 10 {Angstrom}{lt}{lambda}{lt}304 {Angstrom}) spectroscopic diagnostics for magnetically confined fusion plasmas. The D-T reactions in large fusion reactor type devices such as the International Thermonuclear Experimental Reactor will produce neutrons at a rate as high as 5{times}10{sup 19} ns{sup -1}. The MLMs, which are used as dispersive and focusing optics, will not be shielded from these neutrons. In an effort to assess the potential radiation damage, four MLMs (No. 1: Mo/Si, d=87.8 {Angstrom}, Zerodur substrate with 50more » cm concave spherical curvature; No. 2: W/B{sub 4}C, d=22.75 {Angstrom}, Si wafer substrate; No. 3: W/C, d=25.3 {Angstrom}, Si wafer substrate; and No. 4: Mo/Si, d=186.6 {Angstrom}, Si wafer substrate) were irradiated with fast neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF). The neutron beam at LASREF has an energy distribution that peaks at 1{endash}2 MeV with a tail that extends out to 100 MeV. The MLMs were irradiated to a fast neutron fluence of 1.1{times}10{sup 19} ncm{sup {minus}2} at 270{endash}300{degree}C. A comparison between the dispersive and reflective characteristics of the irradiated MLMs and the corresponding qualities of control samples will be given. {copyright} {ital 1997 American Institute of Physics.}« less

  8. An investigation on the biotribocorrosion behaviour of CoCrMo alloy grafted with polyelectrolyte brush.

    PubMed

    Zhang, Hong-Yu; Zhu, Yu-Jiao; Hu, Xiang-Yu; Sun, Yan-Fang; Sun, Yu-Long; Han, Jian-Min; Yan, Yu; Zhou, Ming

    2014-01-01

    Surface grafting of polyelectrolyte brush, such as 3-sulfopropyl methacrylate potassium salt (SPMK), on hip implant materials has been reported to reduce the wear of the orthopaedic bearing surface. However, the biotribocorrosion behaviour of the SPMK brush has not been taken into consideration in previous research. In the present study, SPMK was grafted on Co28Cr6Mo alloy through photo-induced polymerization, and the biotribocorrosion behaviour was investigated by a series of frictional-electrochemical tests using a universal materials tester combined with an electrochemical measurement (three-electrode) system. Co28Cr6Mo disk and polyethylene (PE) pin were used as the contact pair, and the lubricants were 0.9% saline solution (NaCl) and 0.9% saline solution coupled with 25% bovine serum albumin (BSA). The results showed that SPMK was successfully grafted on Co28Cr6Mo alloy, which was confirmed by the comparison of Raman spectroscopy and static contact angle of the samples before and after surface modification. The greatly reduced electrochemical parameters such as corrosion current and pitting potential indicated that the corrosion rate of Co28Cr6Mo alloy was significantly reduced following SPMK grafting. Additionally, the frictional-electrochemical coupled measurement performed under reciprocating sliding demonstrated that the lowest corrosion current was obtained for the SPMK-grafted Co28Cr6Mo disk, with 0.9% NaCl coupled with 25% BSA as the electrolyte. It is indicated from the present study that SPMK polyelectrolyte brush can greatly improve the anti-biotribocorrosion properties of Co28Cr6Mo alloy, and thus has potential application on surface modification of hip implant materials.

  9. Carbide Precipitation in 2.25 Cr-1 Mo Bainitic Steel: Effect of Heating and Isothermal Tempering Conditions

    NASA Astrophysics Data System (ADS)

    Dépinoy, Sylvain; Toffolon-Masclet, Caroline; Urvoy, Stéphane; Roubaud, Justine; Marini, Bernard; Roch, François; Kozeschnik, Ernst; Gourgues-Lorenzon, Anne-Françoise

    2017-05-01

    The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.

  10. Scratch Testing of Hot-Pressed Monolithic Chromium Diboride (CrB2) and CrB2 + MoSi2 Composite

    NASA Astrophysics Data System (ADS)

    Bhatt, B.; Murthy, T. S. R. Ch.; Singh, K.; Sashanka, A.; Vishwanadh, B.; Sonber, J. K.; Sairam, K.; Nageswara Rao, G. V. S.; Srinivasa Rao, T.; Kain, Vivekanand

    2017-10-01

    The tribological performance of hot-pressed monolithic CrB2 and a newly developed CrB2 + 20 vol.% MoSi2 composite was investigated by using scratch test. The test was carried out under progressive loading ranging from 0.9 to 30 N over a scratch distance of 3 mm. In situ values of coefficient of friction (COF), depth of penetration and acoustic emission were recorded. The wear volume and fracture toughness were also calculated. COF of both materials is increased with increasing the scratch length and progressive load. COF of the composite was observed to be slightly higher compared to the monolithic CrB2. The wear volume of the composite is 60% higher compared to monolithic CrB2. Fracture toughness values of 2.48 and 2.81 MPa m1/2 were calculated for monolithic CrB2 and CrB2 + 20 vol.% MoSi2 composite, respectively. Microstructural characterization indicates that the abrasive wear is the dominant wear mechanism in both the materials.

  11. Microstructure control for high strength 9Cr ferritic-martensitic steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Lizhen; Hoelzer, David T; Busby, Jeremy T

    2012-01-01

    Ferritic-martensitic (F-M) steels with 9 wt.%Cr are important structural materials for use in advanced nuclear reactors. Alloying composition adjustment, guided by computational thermodynamics, and thermomechanical treatment (TMT) were employed to develop high strength 9Cr F-M steels. Samples of four heats with controlled compositions were subjected to normalization and tempering (N&T) and TMT, respectively. Their mechanical properties were assessed by Vickers hardness and tensile testing. Ta-alloying showed significant strengthening effect. The TMT samples showed strength superior to the N&T samples with similar ductility. All the samples showed greater strength than NF616, which was either comparable to or greater than the literaturemore » data of the PM2000 oxide-dispersion-strengthened (ODS) steel at temperatures up to 650 C without noticeable reduction in ductility. A variety of microstructural analyses together with computational thermodynamics provided rational interpretations on the strength enhancement. Creep tests are being initiated because the increased yield strength of the TMT samples is not able to deduce their long-term creep behavior.« less

  12. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ˜ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  13. Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.

    PubMed

    Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A

    2013-12-01

    CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.

  14. Microstructure and Room-Temperature Mechanical Properties of FeCrMoVTi x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Huang, Xuefei; Huang, Weigang

    2017-07-01

    FeCrMoVTi x ( x values represent the molar ratio, where x = 0, 0.5, 1.0, 1.5, and 2.0) high-entropy alloys were prepared by a vacuum arc melting method. The effects of Ti element on the microstructure and room-temperature mechanical properties of the as-cast FeCrMoVTi x alloys were investigated. The results show that the prepared alloys exhibited typical dendritic microstructure and the size of the microstructure became fine with increasing Ti content. The FeCrMoV alloy exhibited a single body-centered cubic structure (BCC1) and the alloys prepared with Ti element exhibited BCC1 + BCC2 mixed structure. The new BCC2 phase is considered as (Fe, Ti)-rich phase and was distributed in the dendrite region. With the increase of Ti content, the volume fraction of the BCC2 phase increased and its shape changed from a long strip to a network. For the FeCrMoV alloy, the fracture strength, plastic strain, and hardness reached as high as 2231 MPa, 28.2%, and 720 HV, respectively. The maximum hardness of 887 HV was obtained in the FeCrMoVTi alloy. However, the fracture strength, yield stress, and plastic strain of the alloys decreased continuously as Ti content increased. In the room-temperature compressive test, the alloys showed typical brittle fracture characteristics.

  15. The development of an energy-independent personnel neutron dosimeter using CR-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doremus, S.W.

    The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less

  16. Effect of neutron irradiation on magnetic properties in the low alloy Ni-Mo steel SA508-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, D.G.; Kim, C.G.; Kim, H.C.

    1997-04-01

    The B-H hysteresis loop and Barkhausen noise have been measured in the neutron irradiated SA508 steel of 45 {mu}m thickness. The coercive force of B-H loop showed a slow change up to a neutron dose of 10{sup 14} n/cm{sup 2} and increased by 15.4{percent} for a 10{sup 16} n/cm{sup 2} dose sample compared with that of the unirradiated one, related to the domain wall motion hindered by the increased defects. However, the amplitude of Barkhausen noise reflecting the wall motion decreased slowly up to 10{sup 14} n/cm{sup 2} irradiation, followed by a rapid decrease of 37.5{percent} at 10{sup 16} n/cm{supmore » 2}. {copyright} {ital 1997 American Institute of Physics.}« less

  17. Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro

    NASA Astrophysics Data System (ADS)

    Kim, Myong-Seop; Park, Sang-Jun

    2009-08-01

    Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.

  18. Hair dosimetry following neutron irradiation.

    PubMed

    Lebaron-Jacobs, L; Gaillard-Lecanu, E; Briot, F; Distinguin, S; Boisson, P; Exmelin, L; Racine, Y; Berard, P; Flüry-Herard, A; Miele, A; Fottorino, R

    2007-05-01

    Use of hair as a biological dosimeter of neutron exposure was proposed a few years ago. To date, the (32)S(n,p)(32)P reaction in hair with a threshold of 2.5 MeV is the best choice to determine the fast neutron dose using body activation. This information is essential with regards to the heterogeneity of the neutron transfer to the organism. This is a very important parameter for individual dose reconstruction from the surface to the deeper tissues. This evaluation is essential to the adapted management of irradiated victims by specialized medical staff. Comparison exercises between clinical biochemistry laboratories from French sites (the CEA and COGEMA) and from the IRSN were carried out to validate the measurement of (32)P activity in hair and to improve the techniques used to perform this examination. Hair was placed on a phantom and was irradiated at different doses in the SILENE reactor (Valduc, France). Different parameters were tested: variation of hair type, minimum weight of hair sample, hair wash before measurement, delivery period of results, and different irradiation configurations. The results obtained in these comparison exercises by the different laboratories showed an excellent correlation. This allowed the assessment of a dose-activity relationship and confirmed the feasibility and the interest of (32)P measurement in hair following fast neutron irradiation.

  19. Radiation damage studies of ion-irradiated low-activation developmental martensitic steel alloys for fusion applications

    NASA Astrophysics Data System (ADS)

    Mazey, D. J.; Hanks, W.; Lurcook, O. K.

    1990-09-01

    Five martensitic, nominally 9 and 11% Cr-W-V-Mn-Ta stainless steels which have been developed as low-activation alloys for fusion-reactor structural applications have been irradiated with 52 MeV Cr 6+ ions to 20 dpa at 475°C in the Harwell Variable Energy Cyclotron (VEC). Four of the alloys contained additions of 0.1 wt% Ta and these had been shown in prior tests to have mechanical properties comparable with the conventional FV 448 alloy. Examinations by TEM showed that irradiation-induced precipitates were present on a fine-scale in all of the alloys. These comprised Cr-rich lath-like defects in the 9Cr, Ta-free alloy; small Cr-rich particles in the 9Cr-3W-0.1Ta alloy and Cr-rich planar precipitates in the remaining alloys. Little or no irradiation-induced cavitation was observed. The other important irradiation-induced response was in the dislocation structure in the Ta-containing alloys which comprised an extensive rafted array of elongated a <100> type dislocation loops having major axes aligned in <100> directions. A significant fraction of the presumed a <100> loops contained stacking-fault fringes and analysis suggested that these were Cr 2N or Fe 4N nitride phase which it is known can form on {001} habit planes. Such nitrides are observed frequently under thermal-annealing conditions in ferritic steels, but less frequently under irradiation. Their formation in relation to the void swelling resistance of ferritic-martensitic alloys is discussed.

  20. Optimizing Heat Treatment Process of Fe-13Cr-3Mo-3Ni Martensitic Stainless of Steel

    NASA Astrophysics Data System (ADS)

    Anwar, M. S.; Prifiharni, S.; Mabruri, E.

    2017-05-01

    The Fe-13Cr-3Mo-3Ni stainless steels are modified into martensitic stainless steels for steam turbine blades application. The working temperature of steam turbine was around 600 - 700 °C. The improvement properties of turbine blade material is necessary to maintain steam turbine work. The previous research revealed that it has corrosion resistance of Fe-13Cr-3Mo-3Ni which is better than 13Cr stainless steels in the chloride environment. In this work, the effect of heat treatment on microstructure and hardness of Fe-13Cr-3Mo-3Ni stainless steels has been studied. The steel was prepared by induction melting followed by hot forging. The steels were austenitized at 1000, 1050, and 1100 °C for 1 hour and were tempered at 600, 650, and 700 °C for 1 hour. The steels were then subjected to metallographic observation and hardness test of Rockwell C. The optimal heat treatment of Fe-13Cr-3Mo-3Ni was carried out austenitized in 1050 °C and tempered in 600 - 700 °C.

  1. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appmmore » over 7 dpa appears to have little effect on the mechanical properties of the alloys.« less

  2. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  3. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Samuel A.; Edmondson, Philip D.; Littrell, Kenneth C.

    Here, FeCrAl alloys are currently under consideration for accident-tolerant fuel cladding applications in light water reactors owing to their superior high-temperature oxidation and corrosion resistance compared to the Zr-based alloys currently employed. However, their performance could be limited by precipitation of a Cr-rich α' phase that tends to embrittle high-Cr ferritic Fe-based alloys. In this study, four FeCrAl model alloys with 10–18 at.% Cr and 5.8–9.3 at.% Al were neutron-irradiated to nominal damage doses up to 7.0 displacements per atom at a target temperature of 320 °C. Small angle neutron scattering techniques were coupled with atom probe tomography to assessmore » the composition and morphology of the resulting α' precipitates. It was demonstrated that Al additions partially destabilize the α' phase, generally resulting in precipitates with lower Cr contents when compared with binary Fe-Cr systems. The precipitate morphology evolution with dose exhibited a transient coarsening regime akin to previously observed behavior in aged Fe-Cr alloys. Similar behavior to predictions of the LSW/UOKV models suggests that α' precipitation in irradiated FeCrAl is a diffusion-limited process with coarsening mechanisms similar to those in thermally aged high-Cr ferritic alloys.« less

  5. Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Long, B.; Dai, Y.

    2008-06-01

    In this work metallography investigations and microhardness measurements have been performed on 15 ferritic/martensitic (FM) steels and 6 weld metals irradiated in the SINQ Target Irradiation Program (STIP). The results demonstrate that all the steels have quite similar martensite lath structures. However, the sizes of the prior austenite grain (PAG) of these steels are quite different and vary from 10 to 86 μm. The microstructure in the fusion zones (FZ) of electron-beam welds (EBWs) of 5 steels (T91, EM10, MANET-II, F82H and Optifer-IX) is similar in respect to the martensite lath structure and PAG size. The FZ of the inert-gas-tungsten weld (TIGW) of the T91 steel shows a duplex structure of large ferrite gains and martensite laths. The microhardness measurements indicate that the normalized and tempered FM steels have rather close hardness values. The unusual high hardness values of the EBW and TIGW of the T91 steel were detected, which suggests that these materials are without proper tempering or post-welding heat treatment.

  6. Effect of Ultrasonic Melt Treatment on Microstructure and Mechanical Properties of 35CrMo Steel Casting

    NASA Astrophysics Data System (ADS)

    Shi, Chen; Li, Fan; Liang, Gen; Mao, Daheng

    2018-01-01

    Effects of different power ultrasonic on microstructure and mechanical properties of 35CrMo steel casting were investigated using optical microscopy (OM), scanning electron microscopy (SEM) and hardness testing. A self-developed experiment apparatus was used for the propagation of ultrasonic vibration into the 35CrMo steel melt to carry out ultrasonic treatment. The experimental results showed that compared to the traditional casting, ultrasonic treatment can obviously change the solidification microstructure of 35CrMo steel, which is changed from coarse dendrites to fined dendrites or equiaxed grains. With the increase of ultrasonic power, equiaxed crystal is remarkably refined and its area is broadened. The micro porosity percentage of ingot casting decreases significantly and the porosity defects can be suppressed under ultrasonic treatment. The mechanical properties of 35CrMo steel ingot after heat treatment were enhanced by ultrasonic treatment: the maximum tensile strength is improved by 8.4% and the maximum elongation increased by 1.5 times.

  7. Irradiation induced structural change in Mo 2Zr intermetallic phase

    DOE PAGES

    Gan, J.; Keiser, Jr., D. D.; Miller, B. D.; ...

    2016-05-14

    The Mo 2Zr phase has been identified as a major interaction product at the interface of U-10Mo and Zr. Transmission electron microscopy in-situ irradiation with Kr ions at 200 °C with doses up to 2.0E+16 ions/cm 2 was carried out to investigate the radiation stability of the Mo 2Zr. The Mo 2Zr undergoes a radiation-induced structural change, from a large cubic (cF24) to a small cubic (cI2), along with an estimated 11.2% volume contraction without changing its composition. The structural change begins at irradiation dose below 1.0E+14 ions/cm 2. Furthermore, the transformed Mo 2Zr phase demonstrates exceptional radiation tolerance withmore » the development of dislocations without bubble formation.« less

  8. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ⩾50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  9. Irradiation performance of U-Mo monolithic fuel

    DOE PAGES

    Meyer, M. K.; Gan, J.; Jue, J. F.; ...

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  10. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved« less

  11. Contributions from research on irradiated ferritic/martensitic steels to materials science and engineering

    NASA Astrophysics Data System (ADS)

    Gelles, D. S.

    1990-05-01

    Ferritic and martensitic steels are finding increased application for structural components in several reactor systems. Low-alloy steels have long been used for pressure vessels in light water fission reactors. Martensitic stainless steels are finding increasing usage in liquid metal fast breeder reactors and are being considered for fusion reactor applications when such systems become commercially viable. Recent efforts have evaluated the applicability of oxide dispersion-strengthened ferritic steels. Experiments on the effect of irradiation on these steels provide several examples where contributions are being made to materials science and engineering. Examples are given demonstrating improvements in basic understanding, small specimen test procedure development, and alloy development.

  12. Microstructure and Properties of a Refractory NbCrMo0.5Ta0.5ZrTi Alloy (Preprint)

    DTIC Science & Technology

    2011-10-01

    slightly enriched with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was...FCC phase was highly enriched with Cr and it was identified as a Laves C15 phase, ( Zr ,Ta)(Cr,Mo, Nb )2, with the lattice parameter a = 733.38 ± 0.18 pm...with Nb , Mo and Ta and depleted with Zr and Cr, and its lattice parameter after HIP was a = 324.76 ± 0.16 pm. The BCC2 phase was enriched with Zr and Ti

  13. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less

  14. PERFORMANCE IMPROVEMENT OF CREEP-RESISTANT FERRITIC STEEL WELDMENTS THROUGH THERMO-MECHANICAL TREATMENT AND ALLOY DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Yukinori; Babu, Prof. Sudarsanam Suresh; Shassere, Benjamin

    Two different approaches have been proposed for improvement of cross-weld creep properties of the high temperature ferrous structural materials for fossil-fired energy applications. The traditional creep strength-enhanced ferritic (CSEF) steel weldments suffer from Type IV failures which occur at the fine-grained heat affected zone (FGHAZ). In order to minimize the premature failure at FGHAZ in the existing CSEF steels, such as modified 9Cr-1Mo ferritic-martensitic steels (Grade 91), a thermo-mechanical treatment consisting of aus-forging/rolling and subsequent aus-aging is proposed which promotes the formation of stable MX carbonitrides prior to martensitic transformation. Such MX remains undissolved during welding process, even in FGHAZ,more » which successfully improves the cross-weld creep properties. Another approach is to develop a new fully ferrtic, creep-resistant FeCrAl alloy which is essentially free from Type IV failure issues. Fe-30Cr-3Al base alloys with minor alloying additions were developed which achieved a combination of good oxidation/corrosion resistance and improved tensile and creep performance comparable or superior to Grade 92 steel.« less

  15. Direct in vivo inflammatory cell-induced corrosion of CoCrMo alloy orthopedic implant surfaces.

    PubMed

    Gilbert, Jeremy L; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi B; Arnholt, Christina M; Kurtz, Steven M

    2015-01-01

    Cobalt-chromium-molybdenum (CoCrMo) alloy, used for over five decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40-100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and hydrochloric acid to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. © 2014 Wiley Periodicals, Inc.

  16. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  17. Structural responses of metallic glasses under neutron irradiation.

    PubMed

    Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y

    2017-12-01

    Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.

  18. The influence of Ga doping on structural magnetic and dielectric properties of NiCr0.2Fe1.8O4 spinel ferrite

    NASA Astrophysics Data System (ADS)

    Ajmal, Muhammad; Islam, M. U.; Ashraf, Ghulam Abbas; Nazir, Muhammad Aamir; Ghouri, M. I.

    2017-12-01

    A series of spinel ferrites NiCr0.2GaxFe1.8-xO4 (x=0.00, 0.002, 0.04, 0.06, 0.08) was prepared by co precipitation technique. The influence of rare earth element Ga ions the structural dielectric and magnetic properties of NiCr0.2Fe1.8O4 ferrites was investigated. The X-ray diffraction confirmed the phase precipitated out was pure spinel phase with few traces of secondary phases. The crystallite size decreases and density increases with the increases of Ga contents. The magnetic moment, saturation magnetization and remanent magnetization increased with addition of Ga ions in spinel ferrite. The dielectric constant is described that it decreases more suddenly at low frequencies as compare at higher frequencies. The decrease in dielectric loss with frequency follows Deby's relaxation phenomena. Both the variation in tan loss and dielectric loss with frequency shows a similar. AC conductivity increases with the increases of frequency which inversely proportional to concentration of Ga3+ ions follows Jonscher law. These Gallium Chromium doped nickel ferrites are very helpful for high frequency switching devices.

  19. Charpy impact toughness of martensitic steels irradiated in FFTF: Effect of heat treatment

    NASA Astrophysics Data System (ADS)

    Klueh, R. L.; Alexander, D. J.

    Charpy tests were made on plates of 9Cr-1MoVNb and 12Cr-1MoVW steels given four different normalizing-and-tempering treatments. One-third-size Charpy specimens from each steel were irradiated to 7.4 - 8 (times) 10(sup 26) n/m(sup 2) (about 34 - 37 dpa) at 420 C in the Materials Open Test Assembly of the Fast Flux Test Facility. Specimens were also thermally aged to 20000 h at 400 C to determine the effect of aging during irradiation. Previous work on these steels irradiated to 4 - 5 dpa at 365 C in MOTA were reexamined in light of the new results. The tests indicated that prior austenite grain size, which was varied by different normalizing treatments, had an effect on impact behavior of the 9Cr-1MoVNb but not on the 12Cr-1MoVW. Tempering treatment had relatively little effect on the shift in DBTT for both steels. Conclusions are presented on how heat treatment can be used to optimize properties.

  20. A novel method for vanadium slag comprehensive utilization to synthesize Zn-Mn ferrite and Fe-V-Cr alloy.

    PubMed

    Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih

    2018-07-15

    Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Study of variations in structural, optical parameters and bulk etch rate of CR-39 polymer due to electron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, G. S.; Joshi, D. S.; Tripathy, S. P., E-mail: sam.tripathy@gmail.com, E-mail: tripathy@barc.gov.in

    2016-07-14

    In this work, electron induced modifications on the bulk etch rate, structural and optical parameters of CR-39 polymer were studied using gravimetric, FTIR (Fourier Transform Infrared) and UV–vis (Ultraviolet–Visible) techniques, respectively. CR-39 samples were irradiated with 10 MeV electron beam for different durations to have the absorbed doses of 1, 10, 550, 5500, 16 500, and 55 000 kGy. From the FTIR analysis, the peak intensities at different bands were found to be changing with electron dose. A few peaks were observed to shift at high electron doses. From the UV-vis analysis, the optical band gaps for both direct and indirect transitions weremore » found to be decreasing with the increase in electron dose whereas the opacity, number of carbon atoms in conjugation length, and the number of carbon atoms per cluster were found to be increasing. The bulk etch rate was observed to be increasing with the electron dose. The primary objective of this investigation was to study the response of CR-39 to high electron doses and to determine a suitable pre-irradiation condition. The results indicated that, the CR-39 pre-irradiated with electrons can have better sensitivity and thus can be potentially applied for neutron dosimetry.« less

  2. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  3. Application of SP test to Evaluate Embrittlement of Dual Phase Stainless Steel Caused by Sigma Phase and Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.S.; Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011; Kim, I.S.

    2004-07-01

    The degradation of mechanical properties in dual phase 309L stainless steel RPV clad caused by the presence of s-phase as well as neutron irradiation was investigated using a small punch (SP) test. Two kinds of overlay-weld clad were fabricated on SA508 cl.3 pressure vessel steel plates with ER309L welding consumable strip by differing in heat input rates. The microstructure of the clad was composed of a main part of fcc austenite, a few percent of bcc d- ferrite and brittle bct s-phase. Area fraction of s-phase was ranging approximately 2 {approx} 8 percent depending on welding conditions. The JMTR wasmore » utilized for neutron irradiation and SP specimens were irradiated up to 1.02 x 10{sup 19} n/cm{sup 2} (E>1 MeV) at 563 K. After irradiation the SP ductile-to-brittle transition behavior moved to higher temperatures, however, it was more strongly affected by the amount of brittle s-phase rather than the irradiation at current doses. The cracking appearances in the SP specimens gradually changed from circumferential to radial cracking as the test temperature became low, content of {sigma}-phase increased and the specimens were irradiated. Those results were accounted for in terms of the inconsistency of fracture stress between the phases as well as the effects of stress-strain portioning combined with the changes of governing stress components for crack initiation. (authors)« less

  4. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  5. Prediction of Ductile Fracture Behaviors for 42CrMo Steel at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Liu, Yan-Xing; Liu, Ge; Chen, Ming-Song; Huang, Yuan-Chun

    2015-01-01

    The ductile fracture behaviors of 42CrMo steel are studied by hot tensile tests with the deformation temperature range of 1123-1373 K and strain rate range of 0.0001-0.1 s-1. Effects of deformation temperature and strain rate on the flow stress and fracture strain of the studied steel are discussed in detail. Based on the experimental results, a ductile damage model is established to describe the combined effects of deformation temperature and strain rate on the ductile fracture behaviors of 42CrMo steel. It is found that the flow stress first increases to a peak value and then decreases, showing an obvious dynamic softening. This is mainly attributed to the dynamic recrystallization and material intrinsic damage during the hot tensile deformation. The established damage model is verified by hot forging experiments and finite element simulations. Comparisons between the predicted and experimental results indicate that the established ductile damage model is capable of predicting the fracture behaviors of 42CrMo steel during hot forging.

  6. Stacking-fault strengthening of biomedical Co-Cr-Mo alloy via multipass thermomechanical processing.

    PubMed

    Yamanaka, Kenta; Mori, Manami; Sato, Shigeo; Chiba, Akihiko

    2017-09-07

    The strengthening of metallic biomaterials, such as Co-Cr-Mo and titanium alloys, is of crucial importance to the improvement of the durability of orthopedic implants. In the present study, we successfully developed a face-centered cubic (fcc) Co-Cr-Mo alloy with an extremely high yield strength (1400 MPa) and good ductility (12%) by multipass hot-rolling, which is suitable for industrial production, and examined the relevant strengthening mechanisms. Using an X-ray diffraction line-profile analysis, we revealed that a substantial increase in the number of stacking faults (SFs) in the fcc γ-matrix occurred at a greater height reduction (r), while physical modeling demonstrated that the contribution of the accumulated SFs (i.e., the reduction in SF spacing) with an increase in r successfully explains the entire strengthening behavior of the hot-rolled alloy. The present study sheds light on the importance of the SF strengthening mechanism, and will help to guide the design and manufacturing strategy for the high-strength Co-Cr-Mo alloys used in highly durable medical devices.

  7. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    NASA Astrophysics Data System (ADS)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  8. Cross section TEM characterization of high-energy-Xe-irradiated U-Mo

    DOE PAGES

    Ye, B.; Jamison, L.; Miao, Y.; ...

    2017-03-09

    U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.

  9. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high-temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C tomore » a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.« less

  10. The research of axial corrosion fatigue on 10Ni3CrMoV steel

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Yi, Hong; Xu, Jian; Xie, Kun

    2017-09-01

    Fatigue life had been studied with 10CrNi3MoV steel at different load ratios and in different environmental medias. The microstructure and micro-topography had been observed and analyzed by means of SEM, EDS and TEM. Our findings indicated that, the fatigue life of 10Ni3CrMoV steel in seawater was shorter than in air, the difference in longevity was larger with the decreasing of axis stress. Corrosion pits had a great influence on corrosion fatigue life.

  11. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys inmore » the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a

  12. Effect of laser absorption on picosecond laser ablation of Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide

    NASA Astrophysics Data System (ADS)

    Wu, Baoye; Liu, Peng; Wang, Xizhao; Zhang, Fei; Deng, Leimin; Duan, Jun; Zeng, Xiaoyan

    2018-05-01

    Due to excellent properties, Cr12MoV mold steel, 9Cr18 stainless steel and H13A cemented carbide are widely used in industry. In this paper, the effect of absorption of laser light on ablation efficiency and roughness have been studied using a picosecond pulse Nd:YVO4 laser. The experimental results reveal that laser wavelength, original surface roughness and chemical composition play an important role in controlling ablation efficiency and roughness. Firstly, higher ablation efficiency with lower surface roughness is achieved on the ablation of 9Cr18 at 532, comparing with 1064 nm. Secondly, the ablation efficiency increases while the Ra of the ablated region decreases with the decrease of original surface roughness on ablation of Cr12MoV mold steel at 532 nm. Thirdly, the ablation efficiency of H13A cemented carbide is much higher than 9Cr18 stainless steel and Cr12MoV mold steel at 1064 nm. Scanning electron microscopy images reveals the formation of pores on the surface of 9Cr18 stainless steel and Cr12MoV mold steel at 532 nm while no pores are formed at 1064 nm. As to H13A cemented carbide, worm-like structure is formed at 1064 nm. The synergetic effects of the heat accumulation, plasma shielding and ablation threshold on laser ablation efficiency and machining quality were analyzed and discussed systematically in this paper.

  13. Investigation of structural, magnetic and dielectric properties of Cr3+ substituted Cu0.75Co0.25Fe2-xO4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Reddi, M. Sushma; Ramesh, M.; Sreenivasu, T.; Rao, G. S. N.; Samatha, K.

    2018-05-01

    Chromium doped Copper-Cobalt ferrite Nanoparticles were obtained by sol-gel auto-combustion method using citric acid as a fuel. The metal nitrates to citric acid ratio was taken as 1:1. The prepared powder of Cr3+ doped copper-cobalt ferrite nanoparticles is annealed at 600°C for 5 hrs and the same powder was used for characterization and investigations of structural properties. The phase composition, micro-structural, micro morphological and elemental analysis studies were carried out by X-ray diffraction (XRD), scanning electron microscope (SEM) technique and energy dispersive spectroscopy (EDS). The FTIR spectra of these samples are recorded to ensure the presence of the metallic compounds. The average crystallite size obtained by Scherrer's formula is of the order of 19.28 nm to 32.92 nm. The dielectric properties are investigated as a function of frequency at room temperature using LCR-Q meter. The saturation magnetization (Ms) of the Cr3+ substituted Cu-Co ferrite sintered at 1100°C lies in the range of 5.4136-28.9943 emu/g, the coercivity (Hc) dropped desperately from about 2091.3-778.53Oe as Cr3+ composition increases from 0.0 to 0.25.

  14. Enhanced photodegradation activity of methyl orange over Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites under visible light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jin, E-mail: lj328520504@126.com; Zhou, Xiaosong; Ma, Lin

    Highlights: • Novel visible-light-driven Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites are synthesized. • Ag{sub 2}CrO{sub 4}/SnS{sub 2} exhibits higher photocatalytic activity than pure Ag{sub 2}CrO{sub 4} and SnS{sub 2}. • Ag{sub 2}CrO{sub 4}/SnS{sub 2} exhibits excellent stability for the photodegradation of MO. • The possible photocatalytic mechanism was discussed in detail. - Abstract: Novel Ag{sub 2}CrO{sub 4}/SnS{sub 2} composites were prepared by a simple chemical precipitation method and characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The visible light photocatalytic tests showed that the Ag{sub 2}CrO{sub 4}/SnS{sub 2} compositesmore » enhanced photocatalytic activities for the photodegradation of methyl orange (MO) under visible light irradiation (λ > 420 nm), and the optimum rate constant of Ag{sub 2}CrO{sub 4}/SnS{sub 2} at a weight content of 1.0% Ag{sub 2}CrO{sub 4} for the degradation of MO was 2.2 and 1.5 times larger than that of pure Ag{sub 2}CrO{sub 4} and SnS{sub 2}, respectively. The improved activity could be attributed to high separation efficiency of photogenerated electrons-hole pairs on the interface of Ag{sub 2}CrO{sub 4} and SnS{sub 2}, which arised from the synergistic effect between Ag{sub 2}CrO{sub 4} and SnS{sub 2}. Moreover, the possible photocatalytic mechanism with superoxide radical anions and holes species as the main reactive species in photocatalysis process was proposed on the basis of experimental results.« less

  15. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10 19 ions/m 2 at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.« less

  16. Corrosion-resistant amorphous metallic films of Mo49Cr33B18 alloy

    NASA Technical Reports Server (NTRS)

    Ramesham, R.; Distefano, S.; Fitzgerald, D.; Thakoor, A. P.; Khanna, S. K.

    1987-01-01

    Corrosion-resistant amorphous metallic alloy films of Mo49Cr33B18 with a crystallization temperature of 590 C were deposited onto glass and quartz substrates by magnetron sputter-quench technique. The amorphous nature of the films was confirmed by their diffuse X-ray diffraction patterns. The deposited films are densely packed (zone T) and exhibit low stress and good adhesion to the substrate. Corrosion current of as-deposited coating of MoCrB amorphous metallic alloy is approximately three orders of magnitude less than the corrosion current of 304 stainless steel in 1N H2SO4 solution.

  17. Ferroelectric like behavior in Cr substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Pandey, Rabichandra; Pradhan, Lagen Kumar; Kar, Manoranjan

    2018-05-01

    The article presents the temperature dependent dielectric behavior of chromium substituted cobalt ferrite (CoFe2-xCrxO4, x = 0.0, 0.1, 0.2, 0.3, 0.4). It is observed that the temperature variation of dielectric constant is similar to that of conventional ferroelectricalmaterials. Two transition temperatures called TD and TM has been observed in the dielectric versus temperature plots. The behavior of the spin flipping frequency with respect to temperature has been analyzedby employing the power law. The present study can help to understand the temperature and frequency variation of dielectric behavior in not only cobalt ferrite, but also it can be extended to other ferrites.

  18. Effect on fast neutron irradiation to 4 dpa at 400{degrees}C on the properties of V-(4-5)Cr-(4-5)Ti alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S.J.; Alexander, D.J.; Robertson, J.P.

    1997-04-01

    Tensile, Charpy impact and electrical resistivity measurements have been performed at ORNL on V-4Cr-4Ti and V-5Cr-5Ti specimens that were prepared at ANL and irradiated in the lithium-bonded X530 experiment in the EBR-II fast reactor. All of the specimens were irradiated to a damage level of about 4 dpa at a temperature of {approximately}400{degrees}C. A significant amount of radiation hardening was evident in both the tensile and Charpy impact tests. The irradiated V-4Cr-4Ti yield strength measured at {approximately}390{degrees}C was >800 MPa, which is more than three times as high as the unirradiated value. The uniform elongations of the irradiated tensile specimensmore » were typically {approximately}1%, with corresponding total elongations of 4-6%. The ductile to brittle transition temperature of the irradiated specimens was less than the unirradiated resistivity, which suggests that hardening associated with interstitial solute pickup was minimal.« less

  19. IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M.K. Meyer; J. Gan; J.-F. Jue

    2014-04-01

    High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. UMo alloys represent the best known tradeoff in these properties.more » Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.« less

  20. Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels

    NASA Astrophysics Data System (ADS)

    Oksiuta, Z.; Baluc, N.

    2008-02-01

    This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.

  1. Structural and magnetic studies of Cr doped nickel ferrite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panwar, Kalpana, E-mail: kalpanapanwar99@gmail.com; Department of Physics, Govt. Women Engg. College, Ajmer-305002; Heda, N. L.

    We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Simore » (111). It turns out that structural and magnetic properties of these two films are correlated.« less

  2. On the 16O 6+ ion irradiation induced magnetic moment generation in ZnFe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Raghuvanshi, S.

    2018-05-01

    X-ray diffraction (XRD) was utilized to study the effect of 80 MeV 16O 6+ ion irradiation of the as-burnt ZnFe2O4 samples, prepared by sol-gel auto-combustion technique. The samples were irradiated at fluence: 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 ions/cm2 to observe the effect of irradiation on structural properties and cationic distribution. XRD confirms the formation of single phase nanocrystalline cubic spinel ferrites with Scherrer's particle diameter (D) ranging between 15.7 - 17.4 nm. Results very distinctly show the electronic energy loss induced changes in: - experimental and theoretical lattice parameter (aexp., ath.), tetrahedral and octahedral bond length (RA, RB), and shared tetrahedral and octahedral edge (dAE, dBE). The paper reports the generation of magnetic moment of Zn ferrite by swift heavy ion irradiation induced distortion at tetrahedral site.

  3. On the empirical determination of positron trapping coefficient at nano-scale helium bubbles in steels irradiated in spallation target

    NASA Astrophysics Data System (ADS)

    Krsjak, Vladimir; Kuriplach, Jan; Vieh, Christiane; Peng, Lei; Dai, Yong

    2018-06-01

    In the present work, the specific positron trapping rate of small helium bubbles was empirically derived from positron annihilation lifetime spectroscopy (PALS) and transmission electron microscopy (TEM) studies of Fe9Cr martensitic steels. Both techniques are well known to be sensitive to nanometer-sized helium-filled cavities induced during irradiation in a mixed proton-neutron spectrum of spallation target. Complementary TEM and PALS studies show that positrons are being trapped to these defects at a rate of 1.2 ± 0.8 × 10-14 m3s-1. This suggests that helium bubbles in ferritic/martensitic steels are attractive traps for positrons comparable to mono-vacancies and quantitative analysis of the bubbles by PALS technique is plausible.

  4. Small-angle neutron scattering investigations of Co-doped iron oxide nanoparticles. Preliminary results

    NASA Astrophysics Data System (ADS)

    Creanga, Dorina; Balasoiu, Maria; Soloviov, Dmitro; Balasoiu-Gaina, Alexandra-Maria; Puscasu, Emil; Lupu, Nicoleta; Stan, Cristina

    2018-03-01

    Preliminary small-angle neutron scattering investigations on aqueous suspensions of several cobalt doped ferrites (CoxFe3-xO4, x=0; 0.5; 1) nanoparticles prepared by chemical co-precipitation method, are reported. The measurements were accomplished at the YuMO instrument in function at the IBR-2 reactor. Results of intermediary data treatment are presented and discussed.

  5. Characterization of neutron calibration fields at the TINT's 50 Ci americium-241/beryllium neutron irradiator

    NASA Astrophysics Data System (ADS)

    Liamsuwan, T.; Channuie, J.; Ratanatongchai, W.

    2015-05-01

    Reliable measurement of neutron radiation is important for monitoring and protection in workplace where neutrons are present. Although Thailand has been familiar with applications of neutron sources and neutron beams for many decades, there is no calibration facility dedicated to neutron measuring devices available in the country. Recently, Thailand Institute of Nuclear Technology (TINT) has set up a multi-purpose irradiation facility equipped with a 50 Ci americium-241/beryllium neutron irradiator. The facility is planned to be used for research, nuclear analytical techniques and, among other applications, calibration of neutron measuring devices. In this work, the neutron calibration fields were investigated in terms of neutron energy spectra and dose equivalent rates using Monte Carlo simulations, an in-house developed neutron spectrometer and commercial survey meters. The characterized neutron fields can generate neutron dose equivalent rates ranging from 156 μSv/h to 3.5 mSv/h with nearly 100% of dose contributed by neutrons of energies larger than 0.01 MeV. The gamma contamination was less than 4.2-7.5% depending on the irradiation configuration. It is possible to use the described neutron fields for calibration test and routine quality assurance of neutron dose rate meters and passive dosemeters commonly used in radiation protection dosimetry.

  6. EFFECT OF HEAT TREATMENT ON (Cr, Fe)7C3/γ-Fe COATINGS IN SITU SYNTHESIZED BY VACUUM ELECTRON BEAM IRRADIATION

    NASA Astrophysics Data System (ADS)

    Lu, Binfeng; Chen, Yunxia; Xu, Mengjia

    (Cr, Fe)7C3/γ-Fe composite layer has been in situ synthesized on a low carbon steel surface by vacuum electron beam VEB irradiation. The synthesized samples were then subdued to different heat treatments to improve their impaired impact toughness. The microstructure, impact toughness and wear resistance of the heat-treated samples were studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester, impact test machine and tribological tester. After heat treatment, the primary and eutectic carbides remained in their original shape and size, and a large number of secondary carbides precipitated in the iron matrix. Since the Widmanstatten ferrite in the heat affected zone (HAZ) transformed to fine ferrite completely, the impact toughness of the heat-treated samples increased significantly. The microhardness of the heat-treated samples decreased slightly due to the decreased chromium content in the iron matrix. The wear resistance of 1000∘C and 900∘C heat-treated samples was almost same with the as-synthesized sample. While the wear resistance of the 800∘C heat-treated one decreased slightly because part of the austenite matrix had transformed to ferrite matrix, which reduced the bonding of carbides particulates.

  7. Neutron Focusing Mirrors for Neutron Radiography of Irradiated Nuclear Fuel at Idaho National Laboratory

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Wu, Huarui; Abir, Muhammad; Giglio, Jeffrey; Khaykovich, Boris

    Post irradiation examination (PIE) of samples irradiated in nuclear reactors is a challenging but necessary task for the development on novel nuclear power reactors. Idaho National Laboratory (INL) has neutron radiography capabilities, which are especially useful for the PIE of irradiated nuclear fuel. These capabilities are limited due to the extremely high gamma-ray radiation from the irradiated fuel, which precludes the use of standard digital detectors, in turn limiting the ability to do tomography and driving the cost of the measurements. In addition, the small 250 kW Neutron Radiography Reactor (NRAD) provides a relatively weak neutron flux, which leads to low signal-to-noise ratio. In this work, we develop neutron focusing optics suitable for the installation at NRAD. The optics would separate the sample and the detector, potentially allowing for the use of digital radiography detectors, and would provide significant intensity enhancement as well. The optics consist of several coaxial nested Wolter mirrors and is suited for polychromatic thermal neutron radiation. Laboratory Directed Research and Development program of Idaho National Laboratory.

  8. Ferrite grain refinement in low carbon Cu–P–Cr–Ni–Mo weathering steel at various temperatures in the (α + γ) region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chunling, E-mail: zhangchl@ysu.edu.cn; School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401; Zhang, Mengmeng

    2016-03-15

    Self-designed Cu–P–Cr–Ni–Mo weathering steel was subjected to compression test to determine the mechanism of ferrite grain refinement from 750 °C to 925 °C. Optical microscopic images showed that ferrite grain size declined, whereas the ferrite volume fraction increased with increasing compression temperature. Electron backscatter diffraction patterns revealed that several low-angle boundaries shifted to high-angle boundaries, thereby generating fine ferrite grains surrounded by high-angle boundaries. Numerous low-angle boundaries were observed within ferrite grains at 750 °C, which indicated the existence of pre-eutectoid ferrite. Results showed that ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775more » °C, and deformation-induced ferrite transformation could be the main mechanism at 800 °C and 850 °C. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were produced in the (α + γ) dual-phase region. - Graphical abstract: There is a close relationship between the microstructure evolution and flow curves during deformation. Fine equiaxed ferrite grains with size ranging from 1.77 μm to 2.69 μm were achieved in the (α + γ) dual-phase region. Ferrite grain refinement could be due to continuous dynamic recrystallization at 750 °C and 775 °C, and deformation-induced ferrite transformation at 800 °C and 850 °C. The occurrence of deformation-induced ferrite transformation and continuous dynamic recrystallization can be monitored by analysis of flow curves and microstructures. Deformation-induced ferrite transformation leads to the dynamic softening in flow curve when temperature just below A{sub r3}, while the dynamic softening in flow curve is ferrite continuous dynamic recrystallization (Special Fig. 5b). - Highlights: • Compression deformation was operated at temperatures from 750 °C to 925 °C at a strain rate of 0.1 s–1, and a strain of 1.2. • Fine equiaxed ferrite

  9. Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations

    DOE PAGES

    Aydogan, E.; Almirall, N.; Odette, G. R.; ...

    2017-01-10

    We produced a nanostructured ferritic alloy (NFA), 14YWT, in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe +2 irradiations up to a dose of ~585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ~25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ~30% after irradiation. Moreover, this ‘inverse coarsening’ can be rationalized by the competitionmore » between radiation driven ballistic dissolution and diffusional NO reformation. There were no significant changes in the composition of the matrix or NOs observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.« less

  10. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.

    PubMed

    Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao

    2005-08-01

    Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy.

  11. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.Q.; Li, J.; Wang, Z.F.

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, itmore » is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.« less

  12. Phase Transformations and Microstructural Evolution of Mo-Bearing Stainless Steels

    NASA Astrophysics Data System (ADS)

    Anderson, T. D.; Dupont, J. N.; Perricone, M. J.; Marder, A. R.

    2007-01-01

    The good corrosion resistance of superaustenitic stainless steel (SASS) alloys has been shown to be a direct consequence of high concentrations of Mo, which can have a significant effect on the microstructural development of welds in these alloys. In this research, the microstructural development of welds in the Fe-Ni-Cr-Mo system was analyzed over a wide variety of Cr/Ni ratios and Mo contents. The system was first simulated by construction of multicomponent phase diagrams using the CALPHAD technique. Data from vertical sections of these diagrams are presented over a wide compositional range to produce diagrams that can be used as a guide to understand the influence of composition on microstructural development. A large number of experimental alloys were then prepared via arc-button melting for comparison with the diagrams. Each alloy was characterized using various microscopy techniques. The expected δ-ferrite and γ-austenite phases were accompanied by martensite at low Cr/Ni ratios and by σ phase at high Mo contents. A total of 20 possible phase transformation sequences are proposed, resulting in various amounts and morphologies of the γ, δ, σ, and martensite phases. The results were used to construct a map of expected phase transformation sequence and resultant microstructure as a function of composition. The results of this work provide a working guideline for future base metal and filler metal development of this class of materials.

  13. First-principles study on influence of molybdenum on acicular ferrite formation on TiC particles in microallyed steels

    NASA Astrophysics Data System (ADS)

    Hua, Guomin; Li, Changsheng; Cheng, Xiaonong; Zhao, Xinluo; Feng, Quan; Li, Zhijie; Li, Dongyang; Szpunar, Jerzy A.

    2018-01-01

    In this study, influences of molybdenum on acicular ferrite formation on precipitated TiC particles are investigated from thermodynamic and kinetic respects. In thermodynamics, Segregation of Mo towards austenite/TiC interface releases the interfacial energy and induces phase transformation from austenite to acicular ferrite on the precipitated TiC particles. The Phase transformation can be achieved by displacive deformation along uniaxial Bain path. In addition, the segregation of Mo atom will also lead to the enhanced stability of ferrite in comparison with austenite no matter at low temperature or at high temperature. In kinetics, the Mo solute in acicular ferrite can effectively suppress the diffusion of carbon atoms, which ensures that orientation relationship between acicular ferrite and austenitized matrix can be satisfied during the diffusionless phase transformation. In contrast to ineffectiveness of TiC particles, the alloying Mo element can facilitate the formation of acicular ferrite on precipitated TiC particles, which is attributed to the above thermodynamic and kinetic reasons. Furthermore, Interfacial toughness and ductility of as-formed acicular ferrite/TiC interface can be improved simultaneously by segregation of Mo atom.

  14. AC conductivity and dielectric properties of Ti-doped CoCr 1.2Fe 0.8O 4 spinel ferrite

    NASA Astrophysics Data System (ADS)

    Elkestawy, M. A.; Abdel kader, S.; Amer, M. A.

    2010-01-01

    Dielectric properties of spinel ferrite samples Co 1+xTi xCr 1.2-2xFe 0.8O 4 (0≤ x≤0.5) were investigated as a function of frequency at different temperatures using a complex impedance technique. Also Cole-Cole diagrams of both permittivity and electric modulus were investigated at different temperatures to have an insight into the electric nature of the studied solids. It has been found that the electric modulus M* is the dominating property clarifying the intrinsic picture of these polycrystalline ferrites. The low conductivity and loss factor values indicate that the studied compositions may be good candidates for practical applications.

  15. Effect of free Cr content on corrosion behavior of 3Cr steels in a CO2 environment

    NASA Astrophysics Data System (ADS)

    Li, Wei; Xu, Lining; Qiao, Lijie; Li, Jinxu

    2017-12-01

    The corrosion behavior of 3Cr steels with three microstructures (martensite, bainite, combined ferrite and pearlite) in simulated oil field formation water with a CO2 partial pressure of 0.8 MPa was investigated. The relationships between Cr concentrations in corrosion scales and corrosion rates were studied. The precipitated phases that contained Cr were observed in steels of different microstructures, and free Cr content levels were compared. The results showed that steel with the martensite microstructure had the highest free Cr content, and thus had the highest corrosion resistance. The free Cr content of bainite steel was lower than that of martensite steel, and the corrosion rate of bainite steel was higher than that of martensite steel. Because large masses of Cr were combined in ferrite and pearlite steel, the corrosion rates of ferrite and pearlite steel were the highest. Free Cr content in steel affects its corrosion behavior greatly.

  16. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    DOE PAGES

    Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...

    2015-09-10

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less

  17. ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai; Howard, Richard H.

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterizationmore » of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.« less

  18. Corrosion Behavior of High Nitrogen Nickel-Free Fe-16Cr-Mn-Mo-N Stainless Steels

    NASA Astrophysics Data System (ADS)

    Chao, K. L.; Liao, H. Y.; Shyue, J. J.; Lian, S. S.

    2014-04-01

    The purpose of the current study is to develop austenitic nickel-free stainless steels with lower chromium content and higher manganese and nitrogen contents. In order to prevent nickel-induced skin allergy, cobalt, manganese, and nitrogen were used to substitute nickel in the designed steel. Our results demonstrated that manganese content greater than 14 wt pct results in a structure that is in full austenite phase. The manganese content appears to increase the solubility of nitrogen; however, a lower corrosion potential was found in steel with high manganese content. Molybdenum appears to be able to increase the pitting potential. The effects of Cr, Mn, Mo, and N on corrosion behavior of Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were evaluated with potentiodynamic tests and XPS surface analysis. The results reveal that anodic current and pits formation of the Fe-16Cr-2Co-Mn-Mo-N high nitrogen stainless steels were smaller than those of lower manganese and nitrogen content stainless steel.

  19. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  20. A Weakest-Link Approach for Fatigue Limit of 30CrNiMo8 Steels (Preprint)

    DTIC Science & Technology

    2011-03-01

    34Application of a Weakest-Link Concept to the Fatigue Limit of the Bearing Steel Sae 52100 in a Bainitic Condition," Fatigue and Fracture of...AFRL-RX-WP-TP-2011-4206 A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) S. Ekwaro-Osire and H.V. Kulkarni Texas...2011 4. TITLE AND SUBTITLE A WEAKEST-LINK APPROACH FOR FATIGUE LIMIT OF 30CrNiMo8 STEELS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  1. Metal release and speciation of released chromium from a biomedical CoCrMo alloy into simulated physiologically relevant solutions.

    PubMed

    Hedberg, Yolanda; Odnevall Wallinder, Inger

    2014-05-01

    The objective of this study was to investigate the extent of released Co, Cr(III), Cr(VI), and Mo from a biomedical high-carbon CoCrMo alloy exposed in phosphate-buffered saline (PBS), without and with the addition of 10 µM H2 O2 (PBS + H2 O2 ), and 10 g L(-1) bovine serum albumin (PBS + BSA) for time periods up to 28 days. Comparative studies were made on AISI 316L for the longest time period. No Cr(VI) release was observed for any of the alloys in either PBS or PBS + H2 O2 at open-circuit potential (no applied potential). However, at applied potentials (0.7 V vs. Ag/AgCl), Cr was primarily released as Cr(VI). Co was preferentially released from the CoCrMo alloy at no applied potential. As a consequence, Cr was enriched in the utmost surface oxide reducing the extent of metal release over time. This passivation effect was accelerated in PBS + H2 O2 . As previously reported for 316L, BSA may also enhance metal release from CoCrMo. However, this was not possible to verify due to the precipitation of metal-protein complexes with reduced metal concentrations in solution as a consequence. This was particularly important for Co-BSA complexes after sufficient time and resulted in an underestimation of metals in solution. Copyright © 2013 Wiley Periodicals, Inc.

  2. In-situ Raman and X-ray photoelectron spectroscopic studies on the pitting corrosion of modified 9Cr-1Mo steel in neutral chloride solution

    NASA Astrophysics Data System (ADS)

    Ramya, S.; Nanda Gopala Krishna, D.; Mudali, U. Kamachi

    2018-01-01

    In-situ Raman and X-ray photoelectron spectroscopic studies were performed for the identification of native and corroded surface oxide layers of modified 9Cr-1Mo steel. The Raman data obtained for native oxide layer of modified 9Cr-1Mo steel revealed that it was mainly composed of oxides of Fe and Cr. The presence of alloying element Mo was found to be less significant in the native oxide film. The oxides of Cr were dominant at the surface and were found to be decreasing closer to metal/oxide layer interface. The changes in the chemical composition of the native films upon in-situ pitting during potentiostatic polarization experiment were characterized by in-situ Raman analysis. The corrosion products of potentiostatically polarized modified 9Cr-1Mo steel was composed of dominant Fe (III) phases viz., γ- Fe2O3, α and γ - FeOOH along with the oxides of chromium. The results from Raman analysis were corroborated with the XPS experiments on as received and pitted samples of modified 9Cr-1Mo steel specimens. It was observed that the oxides of Cr and Mo contributed for the stability of the surface layer by forming Cr2O3 and MoO3. Also, the study attempted to find out the intermediate corrosion products inside the metastable pits to account for the pseudo passive behavior of modified 9Cr-1Mo steel in 0.1 M NaCl solution.

  3. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  4. Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei

    DOE PAGES

    Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...

    2015-09-10

    Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less

  5. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co-28Cr-6Mo alloy for biomedical applications.

    PubMed

    Ren, Fuzeng; Zhu, Weiwei; Chu, Kangjie

    2016-07-01

    Nickel and carbides free Co-28Cr-6Mo alloy was fabricated by combination of mechanical alloying and warm pressing. The microstructure, mechanical properties, pin-on-disk dry sliding wear and corrosion behavior in simulated physiological solution were investigated. The produced Co-28Cr-6Mo alloy has elongated ultra-fine grained (UFG) structure of ε-phase with average grain size of 600nm in length and 150nm in thickness. The hardness and modulus were determined to be 8.87±0.56GPa and 198.27±7.02GPa, respectively. The coefficient of friction upon dry sliding against alumina is pretty close to that of the forged Co-29Cr-6Mo alloy. The initial ε-phase and UFG microstructure contribute to reduce the depth of severe plastic deformation region during wear and enable the alloy with excellent wear resistance. The corrosion potential of such UFG Co-Cr-Mo alloy has more positive corrosion potential and much lower corrosion current density than those of ASTM alloy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Phase transformation in rapidly quenched Fe-Cr-Co-Mo-Ti-Si-B alloys

    NASA Astrophysics Data System (ADS)

    Zhukov, D. G.; Shubakov, V. S.; Zhukova, E. Kh; Gorshenkov, M. V.

    2018-03-01

    The research results of phase transformations in Fe-24Cr-16Co-3Mo-0.2Ti-1Si-B alloys (with a boron content of 1 to 3% by mass) obtained by rapid quenching are presented. The structure formation regularities during the melt spinning and during the subsequent crystallization annealing in rapidly quenched bands of the Fe-Cr-Co-Mo-Ti-Si-B system alloys were studied. The changes in the phase composition of the rapidly quenched Fe-Cr-Co-Mo-Ti- Si-B system alloys after quenching at various quench rates and at different boron concentrations in the alloys are studied. It is shown that during crystallization from an amorphous state, at temperatures above 570 °C, in addition to the α-phase, the σ-phase appears first, followed by the γ-phase. Heat treatment of rapidly quenched bands to high-coercive state was carried out. A qualitative assessment of magnetic properties in a high-coercivity state was carried out. An evaluation of the level of magnetic properties in a high-coercivity state allows us to conclude that the application of a magnetic field during crystallization from an amorphous state leads to anisotropy of the magnetic properties, that is, an anisotropic effect of thermo-magnetic treatment is detected.

  7. Amorphization of the interaction products in U-Mo/Al dispersion fuel during irradiation

    NASA Astrophysics Data System (ADS)

    Ryu, Ho Jin; Kim, Yeon Soo; Hofman, G. L.

    2009-04-01

    The microstructures of the product resulting from interaction between U-Mo fuel particles and the Al matrix in U-Mo/Al dispersion fuel are discussed. We analyzed the available characterization results for the Al matrix dispersion fuels from both the out-of-pile and in-pile tests and examined the difference between these results. The morphology of pores that form in the interaction products during irradiation is similar to the porosity previously observed in irradiation-induced amorphized uranium compounds. The available diffraction studies for the interaction products formed in both the out-of-pile and in-pile tests are analyzed. We have concluded that the interaction products in the U-Mo/Al dispersion fuel are formed as an amorphous state or become amorphous during irradiation, depending on the irradiation conditions.

  8. Mechanical Properties and Microstructure of Dissimilar Friction Stir Welds of 11Cr-Ferritic/Martensitic Steel to 316 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sato, Yutaka S.; Kokawa, Hiroyuki; Fujii, Hiromichi T.; Yano, Yasuhide; Sekio, Yoshihiro

    2015-12-01

    Dissimilar joints between ferritic and austenitic steels are of interest for selected applications in next generation fast reactors. In this study, dissimilar friction-stir welding of an 11 pct Cr ferritic/martensitic steel to a 316 austenitic stainless steel was attempted and the mechanical properties and microstructure of the resulting welds were examined. Friction-stir welding produces a stir zone without macroscopic weld-defects, but the two dissimilar steels are not intermixed. The two dissimilar steels are interleaved along a sharp zigzagging interface in the stir zone. During small-sized tensile testing of the stir zone, this sharp interface did not act as a fracture site. Furthermore, the microstructure of the stir zone was refined in both the ferritic/martensitic steel and the 316 stainless steel resulting in improved mechanical properties over the adjacent base material regions. This study demonstrates that friction-stir welding can produce welds between dissimilar steels that contain no macroscopic weld-defects and display suitable mechanical properties.

  9. Infrared spectra and density functional calculations for SMO2 molecules (M = Cr, Mo, W).

    PubMed

    Wang, Xuefeng; Andrews, Lester

    2009-08-06

    Infrared absorptions of the matrix isolated SMO2 (M = Cr, Mo, W) molecules were observed following laser-ablated metal atom reactions with SO2 during condensation in solid argon and neon. The symmetric and antisymmetric M-O stretching mode assignments were confirmed by appropriate S18O2 and S(16,18)O2 isotopic shifts. The much weaker Cr-S stretching mode was identified through its 34S shift. Density functional (B3LYP and BPW91) calculations were performed to obtain molecular structures and to reproduce the infrared spectra. Computed pyramidal structures for the SMO2 molecules are very similar to those for the analogous trioxides and this functional group in [MO2S(bdt)]2- complexes. Additional weaker absorptions are assigned to the (SO2)(SMO2) adducts, which are stabilized by a four-membered ring.

  10. The Cross-Sectional Investigation of Oxide Scale FeCr Alloys and Commercial Ferritic Steel Implanted with Lanthanum and Titanium Dopants after Oxidation Test at 900°C

    NASA Astrophysics Data System (ADS)

    Saryanto, Hendi; Sebayang, Darwin; Untoro, Pudji; Sujitno, Tjipto

    2018-03-01

    The cross-sectional examinations of oxide scales formed by oxidation on the surface of FeCr alloys and Ferritic Steel that implanted with lanthanum and titanium dopants were observed and investigated. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) has been used to study the cross-sectional oxides produced by specimens after oxidation process. X-ray diffraction (XRD) analysis was used to strengthen the analysis of the oxide scale morphology, oxide phases and oxidation products. Cross-sectional observations show the effectiveness of La implantation for improving thinner and stronger scale/substrate interface during oxidation process. The result shows that the thickness of oxide scales formed on the surface of La implanted FeCr alloy and ferritic steel was found less than 3 μm and 300 μm, respectively. The oxide scale formed on the surface of La implanted specimens consisted roughly of Cr2O3 with a small amount of FeO mixture, which indicates that lanthanum implantation can improve the adherence, reduce the growth of the oxide scale as well as reduce the Cr evaporation. On the other side, the oxide scale formed on the surface of FeCr alloys and ferritic steel that implanted with titanium dopant was thicker, indicating that significant increase in oxidation mass gain. It can be noticed that titanium implantation ineffectively promotes Cr rich oxide. At the same time, the amount of Fe increased and diffused outwards, which caused the formation and rapid growth of FeO.

  11. Thermal conductivity of fresh and irradiated U-Mo fuels

    NASA Astrophysics Data System (ADS)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.; Casella, Amanda J.; Casella, Andrew M.; Elgeti, Stefan; Reiter, Christian; Robinson, Adam. B.; Smith, Frances. N.; Wachs, Daniel. M.; Petry, Winfried

    2018-05-01

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, thermal conductivity of fresh dispersion fuel at a temperature of 150 °C decreased from 59 W/m·K to 18 W/m·K at a burn-up of 4.9·1021 f/cc and further to 9 W/m·K at a burn-up of 6.1·1021 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep than for dispersion fuel. For a burn-up of 3.5·1021 f/cc of monolithic fuel, a thermal conductivity of 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. (2015). The difference of decrease for both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increased burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice also affect both dispersion and monolithic fuel.

  12. Thermal conductivity of fresh and irradiated U-Mo fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Tanja K.; Breitkreutz, Harald; Burkes, Douglas E.

    The thermal conductivity of fresh and irradiated U-Mo dispersion and monolithic fuel has been investigated experimentally and compared to theoretical models. During in-pile irradiation, the thermal conductivity of fresh dispersion fuel at a temperature of 150°C decreases from 59 W/m ·K down to 18  W/m ·K at a burn-up of 4.9 ·10 21 f/cc and further down to 9 W/m·K at a burn-up of 6.1·10 21 f/cc. Fresh monolithic fuel has a considerably lower thermal conductivity of 15 W/m·K at a temperature of 150 °C and consequently its decrease during in-pile irradiation is less steep as for the dispersion fuel. For a burn-up ofmore » 3.5·10 21 f /cc of monolithic fuel 11 W/m·K at a temperature of 150 °C has been measured by Burkes et al. The difference of the decrease of both fuels originates from effects in the matrix that occur during irradiation, like for dispersion fuel the gradual disappearance of the Al matrix with increasing burn-up and the subsequent growth of an interaction layer (IDL) between the U-Mo fuel particle and Al matrix and subsequent matrix hardening. The growth of fission gas bubbles and the decomposition of the U-Mo crystal lattice affects both dispersion and monolithic fuel.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Univ. of Wisconsin, Madison, WI; Miller, Brandon D.

    Ferritic/Martensitic (F/M) steels with high Cr content posses the high temperature strength and low swelling rates required for advanced nuclear reactor designs. Radiation induced segregation (RIS) occurs in F/M steels due to solute atoms preferentially coupling to point defect fluxes which migrate to defect sinks, such as grain boundaries (GBs). The RIS response of F/M steels and austenitic steels has been shown to be dependent on the local structure of GBs where low energy structures have suppressed RIS responses. This relationship between local GB structure and RIS has been demonstrated primarily in ion-irradiated specimens. A 9 wt.% Cr model alloymore » steel was irradiated to 3 dpa using neutrons at the Advanced Test Reactor (ATR) to determine the effect of a neutron radiation environment on the RIS response at different GB structures. This investigation found the relationship between GB structure and RIS is also active for F/M steels irradiated using neutrons. The data generated from the neutron irradiation is also compared to RIS data generated using proton irradiations on the same heat of model alloy.« less

  14. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Sridharan, Kumar

    The development and understanding of the mechanical properties of neutron-irradiated FeCrAl alloys is increasingly a critical need as these alloys continue to become more mature for nuclear reactor applications. This study focuses on the mechanical properties of model FeCrAl alloys and of a commercial FeCrAl alloy neutron-irradiated to up to 13.8 displacements per atom (dpa) at irradiation temperatures between 320 and 382 °C. Tensile tests were completed at room temperature and at 320 °C, and a subset of fractured tensile specimens was examined by scanning electron microscopy. Results showed typical radiation hardening and embrittlement indicative of high chromium ferritic alloysmore » with strong chromium composition dependencies at lower doses. At and above 7.0 dpa, the mechanical properties saturated for both the commercial and model FeCrAl alloys, although brittle cleavage fracture was observed at the highest dose in the model FeCrAl alloy with the highest chromium content (18 wt %). Finally, the results suggest the composition and microstructure of FeCrAl alloys plays a critical role in the mechanical response of FeCrAl alloys irradiated near temperatures relevant to light water reactors.« less

  16. Characterization of neutron flux spectra in the irradiation sites of a 37 GBq 241Am-Be isotopic source

    NASA Astrophysics Data System (ADS)

    Yücel, Haluk; Budak, Mustafa Guray; Karadag, Mustafa; Yüksel, Alptuğ Özer

    2014-11-01

    For the applicability of instrumental neutron activation analysis (NAA) technique, an irradiation unit with a 37 GBq 241Am-Be neutron source was installed at Institute of Nuclear Sciences of Ankara University. Design and configuration properties of the irradiation unit are described. It has two different sample irradiation positions, one is called site #1 having a pneumatic sample transfer system and the other is site #2 having a location for manual use. In order to characterize neutron flux spectra in the irradiation sites, the measurement results were obtained for thermal (Vth) and epithermal neutron fluxes (Vepi), thermal to epithermal flux ratio (f) and epithermal spectrum shaping factors (α) by employing cadmium ratios of gold (Au) and molybdenum (Mo) monitors. The activities produced in these foils were measured by using a p-type, 44.8% relative efficiency HPGe well detector. For the measured γ-rays, self-absorption and true coincidence summing effects were taken into account. Additionally, thermal neutron self-shielding and resonance neutron self-shielding effects were taken into account in the measured results. For characterization of site #1, the required parameters were found to be Vth = (2.11 ± 0.05) × 103 n cm-2 s-1, Vepi = (3.32 ± 0.17) × 101 n cm-2 s-1, f = 63.6 ± 1.5, α = 0.045 ± 0.009, respectively. Similarly, those parameters were measured in site #2 as Vth = (1.49 ± 0.04) × 103 n cm-2 s-1, Vepi = (2.93 ± 0.15) × 101 n cm-2 s-1, f = 50.9 ± 1.3 and α = 0.038 ± 0.008. The results for f-values indicate that good thermalization of fast neutrons on the order of 98% was achieved in both sample irradiation sites. This is because an optimum combination of water and paraffin moderator is used in the present configuration. In addition, the shielding requirements are met by using natural boron oxide powder (5.5 cm) and boron loaded paraffin layers against neutrons, and a 15 cm thick lead bricks against gamma-rays from source and its

  17. Focusing mirrors for enhanced neutron radiography with thermal neutrons and application for irradiated nuclear fuel

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Abir, Muhammad; Wu, Huarui; Khaykovich, Boris; Moncton, David E.

    2018-01-01

    Neutron radiography is a powerful method of probing the structure of materials based on attenuation of neutrons. This method is most suitable for materials containing heavy metals, which are not transparent to X-rays, for example irradiated nuclear fuel and other nuclear materials. Neutron radiography is one of the first non-distractive post-irradiated examination methods, which is applied to gain an overview of the integrity of irradiated nuclear fuel and other nuclear materials. However, very powerful gamma radiation emitted by the samples is damaging to the electronics of digital imaging detectors and has so far precluded the use of modern detectors. Here we describe a design of a neutron microscope based on focusing mirrors suitable for thermal neutrons. As in optical microscopes, the sample is separated from the detector, decreasing the effect of gamma radiation. In addition, the application of mirrors would result in a thirty-fold gain in flux and a resolution of better than 40 μm for a field-of-view of about 2.5 cm. Such a thermal neutron microscope can be useful for other applications of neutron radiography, where thermal neutrons are advantageous.

  18. Microstructure and Mechanical Properties of Highly Alloyed FeCrMoVC Steel Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae

    2018-05-01

    In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.

  19. 1300 K Compressive Properties of Directionally Solidified Ni-33Al-33Cr-1Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, Ivan E.

    2000-01-01

    The Ni-33Al-33Cr-1Mo eutectic has been directionally solidified by a modified Bridgeman technique at growth rates ranging from 7.6 to 508 mm/h to produce grain/cellular microstructures, containing alternating plates of NiAl and Cr alloyed with Mo. The grains had sharp boundaries for slower growth rates (< 12.7 mm/h), while faster growth rates (> 25.4 mm/h) lead to cells bounded by intercellular regions. Compressive testing at 1300 K indicated that alloys DS'ed at rates between 25.4 to 254 mm/h possessed the best strengths which exceed that for the as-cast alloy.

  20. Fracture toughness testing on ferritic alloys using the electropotential technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, F.H.; Wire, G.L.

    1981-06-11

    Fracture toughness measurements as done conventionally require large specimens (5 x 5 x 2.5 cm) which would be prohibitively expensive to irradiate over the fluence and temperature ranges required for first wall design. To overcome this difficulty a single specimen technique for J intergral fracture toughness measurements on miniature specimens (1.6 cm OD x 0.25 cm thick) was developed. Comparisons with specimens three times as thick show that the derived J/sub 1c/ is constant, validating the specimen for first wall applications. The electropotential technique was used to obtain continuous crack extension measurements, allowing a ductile fracture resistence curve to bemore » constructed from a single specimen. The irradiation test volume required for fracture toughness measurements using both miniature specimens and single specimen J measurements was reduced a factor of 320, making it possible to perform a systematic exploration of irradiation temperature and dose variables as required for qualification of HT-9 and 9Cr-1Mo base metal and welds for first wall application. Fracture toughness test results for HT-9 and 9Cr-1Mo from 25 to 539/sup 0/C are presented to illustrate the single specimen technique.« less

  1. INTRAPUPAL TEMPERATURE VARIATION DURING ER,CR:YSGG ENAMEL IRRADIATION ON CARIES PREVENTION

    PubMed Central

    de Freitas, Patrícia Moreira; Soares-Geraldo, Débora; Biella-Silva, Ana Cristina; Silva, Amanda Verna; da Silveira, Bruno Lopes; Eduardo, Carlos de Paula

    2008-01-01

    Studies have shown the cariostatic effect of Er,Cr:YSGG (2.78 μm) laser irradiation on human enamel and have suggested its use on caries prevention. However there are still no reports on the intrapulpal temperature increase during enamel irradiation using parameters for caries prevention. The aim of this in vitro study was to evaluate the temperature variation in the pulp chamber during human enamel irradiation with Er,Cr:YSGG laser at different energy densities. Fifteen enamel blocks obtained from third molars (3 x 3 x 3 mm) were randomly assigned to 3 groups (n=5): G1 – Er,Cr:YSGG laser 0.25 W, 20 Hz, 2.84 J/cm2, G2 – Er,Cr:YSGG laser 0.50 W, 20 Hz, 5.68 J/cm2, G3 – Er,Cr:YSGG laser 0.75 W, 20 Hz, 8.52 J/cm2. During enamel irradiation, two thermocouples were fixed in the inner surface of the specimens and a thermal conducting paste was used. One-way ANOVA did not show statistically significant difference among the experimental groups (α=0.05). There was intrapulpal temperature variation ≤0.1°C for all irradiation parameters. In conclusion, under the tested conditions, the use of Er,Cr:YSGG laser with parameters set for caries prevention lead to an acceptable temperature increase in the pulp chamber. PMID:19089198

  2. Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.

    PubMed

    Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine

    2018-01-01

    Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.

  3. Fracture toughness and Charpy impact properties of several RAFMS before and after irradiation in HFIR

    NASA Astrophysics Data System (ADS)

    Sokolov, M. A.; Tanigawa, H.; Odette, G. R.; Shiba, K.; Klueh, R. L.

    2007-08-01

    As part of the development of candidate reduced-activation ferritic steels for fusion applications, several steels, namely F82H, 9Cr-2WVTa steels and F82H weld metal, are being investigated in the joint DOE-JAEA collaboration program. Within this program, three capsules containing a variety of specimen designs were irradiated at two design temperatures in the ORNL High Flux Isotope Reactor (HFIR). Two capsules, RB-11J and RB-12J, were irradiated in the HFIR removable beryllium positions with europium oxide (Eu 2O 3) thermal neutron shields in place. Specimens were irradiated up to 5 dpa. Capsule JP25 was irradiated in the HFIR target position to 20 dpa. The design temperatures were 300 °C and 500 °C. Precracked third-sized V-notch Charpy (3.3 × 3.3 × 25.4 mm) and 0.18 T DC(T) specimens were tested to determine transition and ductile shelf fracture toughness before and after irradiation. The master curve methodology was applied to evaluate the fracture toughness transition temperature, T0. Irradiation induced shifts of T0 and reductions of JQ were compared with Charpy V-notch impact properties. Fracture toughness and Charpy shifts were also compared to hardening results.

  4. Load partitioning between ferrite/martensite and dispersed nanoparticles of a 9Cr ferritic/martensitic (F/M) ODS steel at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guangming; Mo, Kun; Miao, Yinbin

    2015-06-18

    In this study, a high-energy synchrotron radiation X-ray technique was used to investigate the tensile deformation processes of a 9Cr-ODS ferritic/martensitic (F/M) steel at different temperatures. Two minor phases within the 9Cr-ODS F/M steel matrix were identified as Y2Ti2O7 and TiN by the high-energy X-ray diffraction, and confirmed by the analysis using energy dispersive X-ray spectroscopy (EDS) of scanning transmission electron microscope (STEM). The lattice strains of the matrix and particles were measured through the entire tensile deformation process. During the tensile tests, the lattice strains of the ferrite/martensite and the particles (TiN and Y2Ti2O7) showed a strong temperature dependence,more » decreasing with increasing temperature. Analysis of the internal stress at three temperatures showed that the load partitioning between the ferrite/martensite and the particles (TiN and Y2Ti2O7) was initiated during sample yielding and reached to a peak during sample necking. At three studied temperatures, the internal stress of minor phases (Y2Ti2O7 and TiN) was about 2 times that of F/M matrix at yielding position, while the internal stress of Y2Ti2O7 and TiN reached about 4.5-6 times and 3-3.5 times that of the F/M matrix at necking position, respectively. It indicates that the strengthening of the matrix is due to minor phases (Y2Ti2O7 and TiN), especially Y2Ti2O7 particles. Although the internal stresses of all phases decreased with increasing temperature from RT to 600 degrees C, the ratio of internal stresses of each phase at necking position stayed in a stable range (internal stresses of Y2Ti2O7 and TiN were about 4.5-6 times and 3-3.5 times of that of F/M matrix, respectively). The difference between internal stress of the F/M matrix and the applied stress at 600 degrees C is slightly lower than those at RI and 300 degrees C, indicating that the nanoparticles still have good strengthening effect at 600 degrees C. (C) 2015 Elsevier B.V. All rights

  5. Raman shifts in electron-irradiated monolayer MoS 2

    DOE PAGES

    Parkin, William M.; Balan, Adrian; Liang, Liangbo; ...

    2016-03-21

    Here, we report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the in situ transmission-electron microscopy (TEM) two-terminal conductivity of monolayer MoS 2 under electron irradiation. We observe a redshift in the E Raman peak and a less pronounced blueshift in the A' 1 peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy (EDS), we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %), which is confirmed by first-principles density functional theory calculations. Inmore » situ device current measurements show exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS 2-based transport channels.« less

  6. Mechanical properties of welded joints of the reduced-activation ferritic steel: 8% Cr-2% W-0.2% V-0.04% Ta-Fe

    NASA Astrophysics Data System (ADS)

    Hayakawa, H.; Yoshitake, A.; Tamura, M.; Natsume, S.; Gotoh, A.; Hishinuma, A.

    1991-03-01

    A reduced-activation ferritic steel, 8Cr-2W-0.2V-0.04Ta-Fe (F-82H) has been developed by JAERI and NKK to improve creep properties and toughness as compared with HT9. The mechanical properties and phase stability of the steel were reported at the previous conferences, ICFRM-2 and 3. This paper is concerned with the mechanical properties of weld metal and welded joints using a newly-developed filler wire of F-82H which contains less C and Ta than the base metal. The design concept of chemical composition of the filler wire was based on as much reduction of activity after irradiation as possible and considerations of the hardenability and toughness of the weld metal. Mechanical properties, such as tensile strength and toughness, of the weld metal and welded joints produced by GTAW after stress-relieving heat treatment were investigated. The results showed that this welding material has almost the same properties as the base metal.

  7. Effect of ion-beam treatment on structure and fracture resistance of 12Cr1MoV steel under static, cyclic and dynamic loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panin, S. V., E-mail: svp@ispms.tsc.ru; Vlasov, I. V., E-mail: good0@yandex.ru; Sergeev, V. P., E-mail: retc@ispms.tsc.ru

    2015-10-27

    Features of the structure and properties modification of 12Cr1MoV steel subjected to irradiation by zirconium ion beam have been investigated with the use of optical and electron microscopy as well as microhardness measurement. It has been shown that upon treatment the structure modification occurred across the entire cross-section of specimens with the thickness of 1 mm. Changes in the mechanical properties of these specimens under static, cyclic and impact loading are interpreted in terms of identified structure changes.

  8. Fission-Produced 99Mo Without a Nuclear Reactor.

    PubMed

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J. P.; Holden, N. E.; Reciniello, R. N.

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; includingmore » (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D 2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4 - 7

  10. Dosimetry in Thermal Neutron Irradiation Facility at BMRR

    NASA Astrophysics Data System (ADS)

    Hu, J.-P.; Holden, N. E.; Reciniello, R. N.

    2016-02-01

    Radiation dosimetry for Neutron Capture Therapy (NCT) has been performed since 1959 at Thermal Neutron Irradiation Facility (TNIF) of the three-megawatt light-water cooled Brookhaven Medical Research Reactor (BMRR). In the early 1990s when more effective drug carriers were developed for NCT, in which the eye melanoma and brain tumors in rats were irradiated in situ, extensive clinical trials of small animals began using a focused thermal neutron beam. To improve the dosimetry at irradiation facility, a series of innovative designs and major modifications made to enhance the beam intensity and to ease the experimental sampling at BMRR were performed; including (1) in-core fuel addition to increase source strength and balance flux of neutrons towards two ports, (2) out of core moderator remodeling, done by replacing thicker D2O tanks at graphite-shutter interfacial areas, to expedite neutron thermalization, (3) beam shutter upgrade to reduce strayed neutrons and gamma dose, (4) beam collimator redesign to optimize the beam flux versus dose for animal treatment, (5) beam port shielding installation around the shutter opening area (lithium-6 enriched polyester-resin in boxes, attached with polyethylene plates) to reduce prompt gamma and fast neutron doses, (6) sample holder repositioning to optimize angle versus distance for a single organ or whole body irradiation, and (7) holder wall buildup with neutron reflector materials to increase dose and dose rate from scattered thermal neutrons. During the facility upgrade, reactor dosimetry was conducted using thermoluminescent dosimeters TLD for gamma dose estimate, using ion chambers to confirm fast neutron and gamma dose rate, and by the activation of gold-foils with and without cadmium-covers, for fast and thermal neutron flux determination. Based on the combined effect from the size and depth of tumor cells and the location and geometry of dosimeters, the measured flux from cadmium-difference method was 4-7% lower than

  11. Synthesis of ferrites obtained from heavy metal solutions using wet method.

    PubMed

    Yang, Ji; Peng, Juan; Liu, Kaicheng; Guo, Rui; Xu, Dianliang; Jia, Jinping

    2007-05-08

    Wet method was employed to the treatment of heavy metal-contaminated wastewater, and Zn(x)Fe(3-x)O(4), Ni(x)Fe(3-x)O(4) and Cr(x)Fe(3-x)O(4) (0ferrite products synthesized is 0.1-0.4 microm. Thermostability of the products was characterized by differential thermal analysis (DTA) and thermal gravimetric analysis (TGA). It was found that when the doped ferrite is qualified, the highest content of doped ion (Zn(2+), Ni(2+) and Cr(3+)) that could enter ferrite lattice is: 0.08, 0.049 and 0.02, respectively. At low concentration the capability of doped ions entering ferrite product is Ni(2+) approximately Zn(2+)>Cr(3+) and the influence of the three ions on sample thermostability is Zn(2+)>Ni(2+)>Cr(3+).

  12. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James; Heuser, Brent; Hosemann, Peter

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study.more » Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe ++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (≥10 dpa) can be carried out to compare with ion-irradiated A709. The radiation

  13. 14 MeV Neutron Irradiation Effect on Superconducting Magnet Materials for Fusion Device

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Hishinuma, Y.; Seo, K.; Tanaka, T.; Muroga, T.; Nishijima, S.; Katagiri, K.; Takeuchi, T.; Shindo, Y.; Ochiai, K.; Nishitani, T.; Okuno, K.

    2006-03-01

    As a large-scale plasma experimental device is planned and designed, the importance of investigations on irradiation effect of 14 MeV neutron increases and an experimental database is desired to be piled up. Recently, intense streaming of fast neutron from ports are reported and degradation of superconducting magnet performance is anticipated. To investigate the pure neutron effect on superconducting magnet materials, a cryogenic target system was newly developed and installed at Fusion Neutronics Source in Japan Atomic Energy Research Institute. Although production rate of 14 MeV neutron is not large, only 14 MeV neutron can be supplied to irradiation test without gamma ray. Copper wires, superconducting wires, glass fiber reinforced composites are irradiated and the irradiation effects are characterized. At the same time, sensors for measuring temperature and magnetic field are irradiated and their performance was investigated after irradiation. This paper presents outline of the cryogenic target system and some irradiation test results.

  14. Plasma deposition of amorphous silicon carbide thin films irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Huran, J.; Bohacek, P.; Kucera, M.; Kleinova, A.; Sasinkova, V.; IEE SAS, Bratislava, Slovakia Team; Polymer Institute, SAS, Bratislava, Slovakia Team; Institute of Chemistry, SAS, Bratislava, Slovakia Team

    2015-09-01

    Amorphous silicon carbide and N-doped silicon carbide thin films were deposited on P-type Si(100) wafer by plasma enhanced chemical vapor deposition (PECVD) technology using silane, methane, ammonium and argon gases. The concentration of elements in the films was determined by RBS and ERDA method. Chemical compositions were analyzed by FTIR spectroscopy. Photoluminescence properties were studied by photoluminescence spectroscopy (PL). Irradiation of samples with various neutron fluencies was performed at room temperature. The films contain silicon, carbon, hydrogen, nitrogen and small amount of oxygen. From the IR spectra, the films contained Si-C, Si-H, C-H, Si-N, N-H and Si-O bonds. No significance effect on the IR spectra after neutron irradiation was observed. PL spectroscopy results of films showed decreasing PL intensity after neutron irradiation and PL intensity decreased with increased neutron fluencies. The measured current of the prepared structures increased after irradiation with neutrons and rise up with neutron fluencies.

  15. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  16. Observation of oscillatory radiation induced segregation profiles at grain boundaries in neutron irradiated 316 stainless steel using atom probe tomography

    NASA Astrophysics Data System (ADS)

    Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.

    2018-06-01

    Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.

  17. Adsorption of phenol and hydrazine upon pristine and X-decorated (X = Sc, Ti, Cr and Mn) MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu

    2018-05-01

    Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.

  18. Physical evaluations of Co-Cr-Mo parts processed using different additive manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Ghani, Saiful Anwar Che; Mohamed, Siti Rohaida; Harun, Wan Sharuzi Wan; Noar, Nor Aida Zuraimi Md

    2017-12-01

    In recent years, additive manufacturing with highly design customization has gained an important technique for fabrication in aerospace and medical fields. Despite the ability of the process to produce complex components with highly controlled architecture geometrical features, maintaining the part's accuracy, ability to fabricate fully functional high density components and inferior surfaces quality are the major obstacles in producing final parts using additive manufacturing for any selected application. This study aims to evaluate the physical properties of cobalt chrome molybdenum (Co-Cr-Mo) alloys parts fabricated by different additive manufacturing techniques. The full dense Co-Cr-Mo parts were produced by Selective Laser Melting (SLM) and Direct Metal Laser Sintering (DMLS) with default process parameters. The density and relative density of samples were calculated using Archimedes' principle while the surface roughness on the top and side surface was measured using surface profiler. The roughness average (Ra) for top surface for SLM produced parts is 3.4 µm while 2.83 µm for DMLS produced parts. The Ra for side surfaces for SLM produced parts is 4.57 µm while 9.0 µm for DMLS produced parts. The higher Ra values on side surfaces compared to the top faces for both manufacturing techniques was due to the balling effect phenomenon. The yield relative density for both Co-Cr-Mo parts produced by SLM and DMLS are 99.3%. Higher energy density has influence the higher density of produced samples by SLM and DMLS processes. The findings of this work demonstrated that SLM and DMLS process with default process parameters have effectively produced full dense parts of Co-Cr-Mo with high density, good agreement of geometrical accuracy and better surface finish. Despite of both manufacturing process yield that produced components with higher density, the current finding shows that SLM technique could produce components with smoother surface quality compared to DMLS

  19. Strengthening of biomedical Ni-free Co-Cr-Mo alloy by multipass "low-strain-per-pass" thermomechanical processing.

    PubMed

    Mori, Manami; Yamanaka, Kenta; Sato, Shigeo; Tsubaki, Shinki; Satoh, Kozue; Kumagai, Masayoshi; Imafuku, Muneyuki; Shobu, Takahisa; Chiba, Akihiko

    2015-12-01

    Further strengthening of biomedical Co-Cr-Mo alloys is desired, owing to the demand for improvements to their durability in applications such as artificial hip joints, spinal rods, bone plates, and screws. Here, we present a strategy-multipass "low-strain-per-pass" thermomechanical processing-for achieving high-strength biomedical Co-Cr-Mo alloys with sufficient ductility. The process primarily consists of multipass hot deformation, which involves repeated introduction of relatively small amounts of strain to the alloy at elevated temperatures. The concept was verified by performing hot rolling of a Co-28 Cr-6 Mo-0.13N (mass%) alloy and its strengthening mechanisms were examined. Strength increased monotonically with hot-rolling reduction, eventually reaching 1,400 MPa in 0.2% proof stress, an exceptionally high value. Synchrotron X-ray diffraction (XRD) line-profile analysis revealed a drastic increase in the dislocation density with an increase in hot-rolling reduction and proposed that the significant strengthening was primarily driven by the increased dislocation density, while the contributions of grain refinement were minor. In addition, extra strengthening, which originates from contributions of planar defects (stacking faults/deformation twins), became apparent for greater hot-rolling reductions. The results obtained in this work help in reconsidering the existing strengthening strategy for the alloys, and thus, a novel feasible manufacturing route using conventional hot deformation processing, such as forging, rolling, swaging, and drawing, is realized. The results obtained in this work suggested a novel microstructural design concept/feasible manufacturing route of high-strength Co-Cr-Mo alloys using conventional hot deformation processing. The present strategy focuses on the strengthening due to the introduction of a high density of lattice defects rather than grain refinement using dynamic recrystallization (DRX). The hot-rolled samples obtained by our

  20. New series of triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) with framework structures and mobile silver ion sublattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotova, Irina Yu.; Buryat State University, Smolin St. 24a, Ulan-Ude 670000, Buryat Republic; Solodovnikov, Sergey F.

    Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized and single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown. In their structures, the MoO{sub 4} tetrahedra, pairs and trimers of edge-shared (Mg, R)O{sub 6} octahedra are connected by common vertices to form a 3D framework. Large framework cavities involve Ag{sup +} cations disordered on three nearby positions with CN=3+1 or 4+1. Alternating (Mg, R)O{sub 6} octahedra and MoO{sub 4} tetrahedra in the framework form quadrangular windows penetrable for Ag{sup +} at elevated temperatures.more » Above 653–673 K, the newly obtained molybdates demonstrate abrupt reduction of the activation energy to 0.4–0.6 eV. At 773 K, AgMg{sub 3}Al(MoO{sub 4}){sub 5} shows electric conductivity 2.5·10{sup −2} S/cm and E{sub a}=0.39 eV compatible with characteristics of the best ionic conductors of the NASICON type. - Graphical abstract: Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized, AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were structurally characterized, ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} were measured. Display Omitted - Highlights: • Triple molybdates AgA{sub 3}R(MoO{sub 4}){sub 5} (A=Mg, R=Cr, Fe; A=Mn, R=Al, Cr, Fe, Sc, In) of the NaMg{sub 3}In(MoO{sub 4}){sub 5} type were synthesized. • Single crystals of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) were grown and their crystal structures were determined. • Disordering Ag{sup +} ions and penetrable framework structures of AgMg{sub 3}R(MoO{sub 4}){sub 5} (R=Cr, Fe) suggest 2D-character of silver-ion mobility. • Measured ion-conductive properties of AgMg{sub 3}Al(MoO{sub 4}){sub 5} are compatible with characteristics of the best ionic conductors of the NASICON type.« less

  1. Modelling study on the three-dimensional neutron depolarisation response of the evolving ferrite particle size distribution during the austenite-ferrite phase transformation in steels

    NASA Astrophysics Data System (ADS)

    Fang, H.; van der Zwaag, S.; van Dijk, N. H.

    2018-07-01

    The magnetic configuration of a ferromagnetic system with mono-disperse and poly-disperse distribution of magnetic particles with inter-particle interactions has been computed. The analysis is general in nature and applies to all systems containing magnetically interacting particles in a non-magnetic matrix, but has been applied to steel microstructures, consisting of a paramagnetic austenite phase and a ferromagnetic ferrite phase, as formed during the austenite-to-ferrite phase transformation in low-alloyed steels. The characteristics of the computational microstructures are linked to the correlation function and determinant of depolarisation matrix, which can be experimentally obtained in three-dimensional neutron depolarisation (3DND). By tuning the parameters in the model used to generate the microstructure, we studied the effect of the (magnetic) particle size distribution on the 3DND parameters. It is found that the magnetic particle size derived from 3DND data matches the microstructural grain size over a wide range of volume fractions and grain size distributions. A relationship between the correlation function and the relative width of the particle size distribution was proposed to accurately account for the width of the size distribution. This evaluation shows that 3DND experiments can provide unique in situ information on the austenite-to-ferrite phase transformation in steels.

  2. Effects of the Tempering and High-Pressure Torsion Temperatures on Microstructure of Ferritic/Martensitic Steel Grade 91

    PubMed Central

    Ganeev, Artur; Nikitina, Marina; Sitdikov, Vil; Islamgaliev, Rinat; Hoffman, Andrew; Wen, Haiming

    2018-01-01

    Grade 91 (9Cr-1Mo) steel was subjected to various heat treatments and then to high-pressure torsion (HPT) at different temperatures. Its microstructure was studied using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Effects of the tempering temperature and the HPT temperature on the microstructural features and microhardness in the ultrafine-grained (UFG) Grade 91 steel were researched. The study of the UFG structure formation takes into account two different microstructures observed: before HPT in both samples containing martensite and in fully ferritic samples. PMID:29671761

  3. THERMAL NEUTRON INTENSITIES IN SOILS IRRADIATED BY FAST NEUTRONS FROM POINT SOURCES. (R825549C054)

    EPA Science Inventory

    Thermal-neutron fluences in soil are reported for selected fast-neutron sources, selected soil types, and selected irradiation geometries. Sources include 14 MeV neutrons from accelerators, neutrons from spontaneously fissioning 252Cf, and neutrons produced from alp...

  4. Microstructural evolution of neutron irradiated 3C-SiC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  5. Microstructural evolution of neutron irradiated 3C-SiC

    DOE PAGES

    Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...

    2017-03-18

    The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.

  6. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  7. Metallurgical causes for the occurrence of creep damage in longitudinally seam-welded Cr-Mo high-energy piping

    NASA Astrophysics Data System (ADS)

    Zhou, Gang

    A continuous occurrence of catastrophic failures, leaks and cracks of the Cr-Mo steam piping has created widespread utility concern for the integrity and serviceability of the seam-welded piping systems in power plants across USA. Cr-Mo steels are the materials widely used for elevated temperature service in fossil-fired generating stations. A large percentage of the power plant units with the Cr-Mo seam-welded steam piping have been in operation for a long duration such that the critical components of the units have been employed beyond the design life (30 or 40 years). This percentage will increase even more significantly in the near future. There is a strong desire to extend and thus there is a need to assess the remaining life of these units. Thus, understanding of the metallurgical causes for the failures and damage in the Cr-Mo seam-welded piping plays a major role in estimating possible life-extension and decision making on whether to operate, repair or replace. In this study, an optical metallographic method and a Cryo-Crack fractographic method have been developed for characterization and quantification of the damage in seam-welded steam piping. More than 500 metallographic assessments, from more than 25 power plants, have been accomplished using the optical metallographic method, and more than 200 fractographic specimens from 10 power plants have been evaluated using the "Cryo-Crack" fractographic technique. For comparison, "virgin" SA welds were fabricated using the Mohave welding procedure with re-N&T Mohave base metal with both "acid" and "basic" fluxes. The damage mechanism, damage distribution pattern, damage classification, correlation of the damage with the microstructural features of these SA welds and the impurity segregation patterns have been determined. A physical model for cavitation (leading to failure) in Cr-Mo SA weld metals and evaluation methodologies for high energy piping are proposed.

  8. Estimation of excess energies and activity coefficients for the penternary Ni-Cr-Co-Al-Mo system and its subsystems

    NASA Astrophysics Data System (ADS)

    Dogan, A.; Arslan, H.; Dogan, T.

    2015-06-01

    Using different prediction methods, such as the General Solution Model of Kohler and Muggianu, the excess energy and activities of molybdenum for the sections of the phase diagram for the penternary Ni-Cr-Co-Al-Mo system with mole ratios xNi/ xMo = 1, xCr/ xMo = 1, xCo/ xMo = 1, and xAl/ xMo = r = 0.5 and 1, were thermodynamically investigated at a temperature of 2000 K, whereas the excess energy and activities of Bi for the section corresponding to the ternary Bi-Ga-Sb system with mole ratio xGa/ xSb = 1/9 were thermodynamically investigated at a temperature of 1073 K. In the case of r = 0.5 and 1 in the alloys Ni-Cr-Co-Al-Mo, a positive deviation in the activity coefficient was revealed, as molybdenum content increased. Moreover, in the calculations performed in Chou's GSM model, the obtained values for excess Gibbs energies are negative in the whole concentration range of bismuth at 1073 K and exhibit the minimum of about -2.2 kJ/mol at the mole ratio xGa/ xSb = 1/9 in the alloy Bi-Ga-Sb.

  9. The Tribological Difference between Biomedical Steels and CoCrMo-Alloys

    PubMed Central

    Fischer, Alfons; Weiß, Sabine; Wimmer, Markus A.

    2012-01-01

    In orthopedic surgery different self-mating metal couples are used for sliding wear applications. Despite the fact that in mechanical engineering self-mating austenitic alloys often lead to adhesion and seizure in biomedical engineering the different grades of Co-base alloys show good clinical results e.g. as hip joints. The reason stems from the fact that they generate a so-called tribomaterial during articulation, which consists of a mixture of nanometer small metallic grains and organic substances from the interfacial medium, which act as boundary lubricant. Even though stainless steels also generate such a tribomaterial they were ruled out from the beginning already in the 1950 as “inappropriate”. On the basis of materials with a clinical track record this contribution shows that the cyclic creep characteristics within the shear zone underneath the tribomaterial are another important criterion for a sufficient wear behavior. By means of sliding wear and torsional fatigue tests followed by electron microscopy it is shown, that austenitic materials generate wear particles of either nano- or of microsize. The latter are produced by crack initiation and propagation within the shear fatigue zone which is related to the formation of subsurface dislocation cells and, therefore, by the fact that a Ni-containing CrNiMo solid solution allows for wavy-slip. In contrast to this a Ni-free CrMnMo solid solution with further additions of C and N only shows planar slip. This leads to the formation of nanosize wear particles and distinctly improves the wear behavior. Still the latter does not fully achieve that of CoCrMo, which also shows solely planar-slip behavior. This explains why for metallurgical reasons the Ni-containing 316L-type of steels had to fail in such boundary lubricated sliding wear tribosystems. PMID:22498283

  10. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE PAGES

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; ...

    2016-07-02

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  11. Neutron energy spectrum influence on irradiation hardening and microstructural development of tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki

    We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less

  12. Quantitative analysis of microstructure deformation in creep fenomena of ferritic SA-213 T22 and austenitic SA-213 TP304H material

    NASA Astrophysics Data System (ADS)

    Mulyana, Cukup; Taufik, Ahmad; Gunawan, Agus Yodi; Siregar, Rustam Efendi

    2013-09-01

    The failure of critical component of fossil fired power plant that operated in creep range (high stress, high temperature and in the long term) depends on its microstructure characteristics. Ferritic low carbon steel (2.25Cr-1Mo) and Austenitic stainless alloy (18Cr-8Ni) are used as a boiler tube in the secondary superheater outlet header to deliver steam before entering the turbin. The tube failure is occurred in a form of rupture, resulting trip that disrupts the continuity of the electrical generation. The research in quantification of the microstructure deformation has been done in predicting the remaining life of the tube through interrupted accelerated creep test. For Austenitic Stainless Alloy (18Cr-8Ni), creep test was done in 550°C with the stress 424.5 MPa and for Ferritic Low Carbon Steel (2.25Cr-1Mo) in 570°C with the stress 189 MPa. The interrupted accelerated creep test was done by stopping the observation in condition 60%, 70%, 80% and 90% of remaining life, the creep test fracture was done before. Then the micro hardness test, photo micro, SEM and EDS were obtained from those samples. Refer to ASTM E122, microstructure parameters were calculated. The results indicated that there are a consistency of decreasing their grain diameters, increasing their grain size numbers, micro hardness, and the length of crack or void number per unit area with the decreasing of remaining life. While morphology of grain (stated in parameter α=LV/LH) relatively constant for austenitic. However, for ferritic the change of morphology revealed significantly. Fracture mode propagation of ferritic material is growth with voids transgranular and intergranular crack, and for austenitic material the fracture growth with intergranular creep fracture void and wedge crack. In this research, it was proposed a formulation of mathematical model for creep behavior corresponding their curve fitting resulted for the primary, secondary and tertiary in accelerated creep test. In

  13. Direct In Vivo Inflammatory Cell-Induced Corrosion of CoCrMo Alloy Orthopedic Implant Surfaces

    PubMed Central

    Gilbert, Jeremy L.; Sivan, Shiril; Liu, Yangping; Kocagöz, Sevi; Arnholt, Christina; Kurtz, Steven M.

    2014-01-01

    Cobalt-chromium-molybdenum alloy, used for over four decades in orthopedic implants, may corrode and release wear debris into the body during use. These degradation products may stimulate immune and inflammatory responses in vivo. We report here on evidence of direct inflammatory cell-induced corrosion of human implanted and retrieved CoCrMo implant surfaces. Corrosion morphology on CoCrMo implant surfaces, in unique and characteristic patterns, and the presence of cellular remnants and biological materials intimately entwined with the corrosion indicates direct cellular attack under the cell membrane region of adhered and/or migrating inflammatory cells. Evidence supports a Fenton-like reaction mechanism driving corrosion in which reactive oxygen species are the major driver of corrosion. Using in vitro tests, large increases in corrosion susceptibility of CoCrMo were seen (40 to 100 fold) when immersed in phosphate buffered saline solutions modified with hydrogen peroxide and HCl to represent the chemistry under inflammatory cells. This discovery raises significant new questions about the clinical consequences of such corrosion interactions, the role of patient inflammatory reactions, and the detailed mechanisms at play. PMID:24619511

  14. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    NASA Astrophysics Data System (ADS)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  15. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  16. Response of 9Cr-ODS Steel to Proton Irradiation at 400 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianchao He; Farong Wan; Kumar Sridharan

    2014-09-01

    The stability of Y–Ti–O nanoclusters, dislocation structure, and grain boundary segregation in 9Cr-ODS steels has been investigated following proton irradiation at 400 °C with damage levels up to 3.7 dpa. A slight coarsening and a decrease in number density of nanoclusters were observed as a result of irradiation. The composition of nanoclusters was also observed to change with a slight increase of Y and Cr concentration in the nanoclusters following irradiation. Size, density, and composition of the nanoclusters were investigated as a function of nanocluster size, specifically classified to three groups. In addition to the changes in nanoclusters, dislocation loopsmore » were observed after irradiation. Finally, radiation-induced enrichment of Cr and depletion of W were observed at grain boundaries after irradiation.« less

  17. [The design of Co-Cr-Mo alloy combining the framework with porcelain fused to metal restorations and determination of the mechanical properties].

    PubMed

    Chao, Yong-lie; Lui, Chang-hong; Li, Ning; Yang, Xiao-yu

    2005-02-01

    To investigate a kind of Co-Cr-Mo alloys used for both porcelain fused to metal (PFM) restorations and casting framework of removable partial dentures. The Co-Cr-Mo alloy underwent the design for elementary compositions of the alloys and the production from the raw materials by means of a vacuum melt furnace. The strength, hardness, plasticity and casting ability of the alloy were examined with metal tensile test. Vickers hardness test and grid casting were examined respectively. The microstructure of the Co-Cr-Mo alloy was also inspected by scanning electron microscope and X-ray diffraction analysis. The elementary composition of DA9-4 alloy mainly consisted of Co 54%-67%, Cr 21%-26%, Mo 5%-8%, W 5%-8%, Si 1%-3%, Mn 0.1%-0.25% and trace elements. The yield strength of the alloy was 584 MPa, while the tensile strength was 736 MPa. The coefficient of expansion was 15.0%, the Vickers hardness reached 322, and the casting ratio exibited 100%. The DA9-4 Co-Cr-Mo alloy used for PFM and framework shown in this paper can meet the clinical demands and have reached the objects of the experiment plan.

  18. Investigation of a Modified 9Cr-1Mo (P91) Pipe Failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klueh, Ronald L; Shingledecker, John P

    2006-04-01

    A modified 9Cr-1Mo feedwater (condensate) line at an Eastman Chemical Company plant failed in January 2005. The line was in continuous service since start-up December 2001 until failure. The Plant Superintendent estimated there were three thermal cycles since start-up, although there may have been as many as 25 thermal cycles during commissioning. Normal operating temperature was 325 F (163 C) and pressure was 1762 psig. The line was steam traced with the tracing activated only when ambient outdoor temperature dropped to 40 F (5 C). A modified 9Cr-1Mo steel (P91) pipe failure in a feedwater line in a chemical plantmore » was investigated. The failure occurred in the vicinity of an elbow produced with socket welds of the pipe to the elbow. Based on metallography and hardness measurements, it was concluded that failure occurred because of an improper post-weld heat treatment of the socket weldment.« less

  19. Synthesis, photoelectrochemical properties and solar light-induced photocatalytic activity of bismuth ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Pattnaik, Sambhu Prasad; Behera, Arjun; Martha, Satyabadi; Acharya, Rashmi; Parida, Kulamani

    2018-01-01

    Bismuth ferrite (BFO) nanoparticles prepared by solid state reaction route were characterized by various characterization techniques such as XRD, FESEM, HRTEM, UV-Vis DRS, PL etc., and their photocatalytic activities were evaluated by decolorization of aqueous solution of Congo red (CR) under solar light. The photocatalytic activity of BFO was increased by increasing the preparation temperature from 350 to 500 °C and then decreased with rise in temperature. The results of electrochemical measurements such as linear sweep voltammetry (LSV), electrochemical impedence (EIS), and Mott-Schottky analysis of BFO nanoparticles corroborated the findings of their photocatalytic activity. The enhanced photocatalytic response of the sample prepared at 500 °C is attributed to its smallest band gap, minimum crystallite size (30 nm), efficient separation, and lowest possible recombination of photo-generated charge carriers. The effects of amount of nano-BFO, irradiation time, initial CR concentration, and BFO calcination temperature on the decolorization of CR were examined. It was observed that 1 g/L nano-BFO calcined at 500 °C can decolorize up to 77% a 10-ppm CR dye solution under solar irradiation for 60 min. The studies included scavenger tests for identification of reactive species and a possible mechanism of dye decolorization.

  20. High Temperature Properties Test and Research of 9Cr1Mo (P9) Seamless Pipe Used in Petrochemical Industry

    NASA Astrophysics Data System (ADS)

    Wang, Qijiang; Zhou, Yedong; Zhang, Qinglian

    Production technical process of BaoSteel-produced 9Cr1Mo (P9) seamless pipe is presented, and creep property of isothermal annealed state of that steel is studied under the temperatures of 550 °C, 600 °C, 650 °C, 700 °C. Also, isothermal extrapolation method and Larson-Miller method are employed to extrapolate creep rupture strength of the steel at the creep time of 20000h, 40000h, 60000h and 100000h. The results show that high temperature properties of BaoSteel-produced 9Cr1Mo (P9) seamless pipe meets the API 530 standard of USA and the SH/T3037 standard of China's petrochemical industry, and the steel can be used in large scale petroleum cracking equipment. Meantime, the comparison of creep properties at 650 °C and transient elevated temperature properties at different temperatures between isothermal annealed state and normalized + tempered state of 9Cr1Mo (P9) seamless pipe as well as the microstructure analysis show that the normalized + tempered 9Cr1Mo (P9) seamless pipe presents better high temperature properties.

  1. Theoretical study of the magnetic exchange coupling behavior substituting Cr(III) with Mo(III) in cyano-bridged transition metal complexes

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-Quan; Luo, Cheng-Lin

    Molecular magnetism in a series of cyano-bridged first and second transition metal complexes has been investigated using density functional theory (DFT) combined with the broken-symmetry (BS) approach. Several exchange-correlation (XC) functionals in the ADF package were used to investigate complexes I [-(Me3tacn)2(cyclam)NiMo2(CN)6]2+, II [-(Me3tacn)2(cyclam)Ni-Cr2(CN)6]2+, III [(Me3tacn)6MnMo6(CN)18]2+, and IV [(Me3tacn)6MnCr6(CN)18]2+ (Me3tacn = N,N?,N‴-trimethyl-1,4,7-triazacyclononane). For models A (the molded structure of complex I) and B (the modeled structure of complex II), all the XCs given qualitatively reasonable results and predict ferromagnetic coupling character between M (M = MoIII for A or CrIII for B) and NiII in coincidence with the experimental results (see Tables and ). The calculated using Operdew, OPBE, O3LYP, and B3LYP functionals and experimental J values show that substituting CrIII with MoIII will enhance the ferromagnetic exchange coupling interactions. But VWN, PW91, PBE, VSXC, and tau-HCTH functionals have no way to differentiate the relative strength of the intramolecular magnetic exchange coupling interactions of A and B correctly. For models C (the modeled structure of complex III) and D (the modeled structure of complex IV), all the XCs in ADF and B3LYP in Gaussian 03 with several basis sets show that substituting CrIII with MoIII will enhance the antiferromagnetic exchange coupling interactions. From the above calculations, the substitution of CrIII by MoIII will enhance the magnetic coupling interactions, whether the magnetic coupling interactions are ferro- or antiferromagnetic. Moreover, Kahn's model was applied to investigate the above facts.

  2. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high-power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  3. Neutron and gamma irradiation effects on power semiconductor switches

    NASA Technical Reports Server (NTRS)

    Schwarze, G. E.; Frasca, A. J.

    1990-01-01

    The performance characteristics of high power semiconductor switches subjected to high levels of neutron fluence and gamma dose must be known by the designer of the power conditioning, control and transmission subsystem of space nuclear power systems. Location and the allowable shielding mass budget will determine the level of radiation tolerance required by the switches to meet performance and reliability requirements. Neutron and gamma ray interactions with semiconductor materials and how these interactions affect the electrical and switching characteristics of solid state power switches is discussed. The experimental measurement system and radiation facilities are described. Experimental data showing the effects of neutron and gamma irradiation on the performance characteristics are given for power-type NPN Bipolar Junction Transistors (BJTs), and Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). BJTs show a rapid decrease in gain, blocking voltage, and storage time for neutron irradiation, and MOSFETs show a rapid decrease in the gate threshold voltage for gamma irradiation.

  4. Quality of Metal Deposited Flux Cored Wire With the System Fe-C-Si-Mn-Cr-Mo-Ni-V-Co

    NASA Astrophysics Data System (ADS)

    Gusev, Aleksander I.; Kozyrev, Nikolay A.; Osetkovskiy, Ivan V.; Kryukov, Roman E.; Kozyreva, Olga A.

    2017-10-01

    Studied the effect of the introduction of vanadium and cobalt into the charge powder fused wire system Fe-C-Si-Mn-Cr-Ni-Mo-V, used in cladding assemblies and equipment parts and mechanisms operating under abrasive and abrasive shock loads. the cored wires samples were manufactured in the laboratory conditions and using appropriate powder materials and as a carbonfluoride contained material were used the dust from gas purification of aluminum production, with the following components composition, %: Al2O3 = 21-46.23; F = 18-27; Na2O = 8-15; K2O = 0.4-6; CaO = 0.7-2.3; Si2O = 0.5-2.48; Fe2O3 = 2.1-3.27; C = 12.5-30.2; MnO = 0.07-0.9; MgO = 0.06-0.9; S = 0.09-0.19; P = 0.1-0.18. Surfacing was produced on the St3 metal plates in 6 layers under the AN-26C flux by welding truck ASAW-1250. Cutting and preparation of samples for research had been implemented. The chemical composition and the hydrogen content of the weld metal were determined by modern methods. The hardness and abrasion rate of weld metal had been measured. Conducted metallographic studies of weld metal: estimated microstructure, grain size, contamination of oxide non-metallic inclusions. Metallographic studies showed that the microstructure of the surfaced layer by cored wire system Fe-C-Si-Mn-Cr-Mo-Ni-V-Co is uniform, thin dendrite branches are observed. The microstructure consists of martensite, which is formed inside the borders of the former austenite grain retained austenite present in small amounts in the form of separate islands, and thin layers of δ-ferrite, which is located on the borders of the former austenite grains. Carried out an assessment the effect of the chemical composition of the deposited metal on the hardness and wear and hydrogen content. In consequence of multivariate correlation analysis, it was determined dependence to the hardness of the deposited layer and the wear resistance of the mass fraction of the elements included in the flux-cored wires of the system Fe-C-Si-Mn-Cr-Mo

  5. Processability evaluation of a Mo-containing FeCrAl alloy for seamless thin-wall tube fabrication

    DOE PAGES

    Sun, Zhiqian; Yamamoto, Yukinori

    2017-06-10

    The processability of a Mo-containing FeCrAl alloy (Fe-13Cr-5.2Al-2Mo base, in wt%), developed for accident-tolerant nuclear fuel claddings, was evaluated through a stepwise rolling process at 400 °C under two different inter-pass annealing conditions (i.e., 650 °C for 1 h and at 870 °C for 30 min). The inter-pass annealing at 870 °C easily softened the FeCrAl alloy; however, it led to the formation of coarse grains of ~200 µm. On the other hand, the FeCrAl alloy maintained elongated, deformed grains with the inter-pass annealing at 650 °C, but the annealed samples showed relatively high deformation resistance and strong texture. Importantmore » aspects concerning the processability and microstructural control of FeCrAl alloys, such as deformation inhomogeneity, texture development, and grain coarsening, were discussed. Optimized processing conditions were recommended, based on the results, to achieve desirable microstructures with balanced processability and mechanical properties.« less

  6. Fusion neutron irradiation of Ni-Si alloys at high temperature*1

    NASA Astrophysics Data System (ADS)

    Huang, J. S.; Guinan, M. W.; Hahn, P. A.

    1988-07-01

    Two Ni-4% Si alloys, with different cold work levels, have been irradiated with 14-MeV fusion neutrons at 623 K, and their Curie temperatures have been monitored during irradiation. The results are compared to those of an identical alloy irradiated by 2-MeV electrons. The results show that increasing dislocation density increases the Curie temperature change rate. At the same damage rate, the Curie temperature change rate for the alloy irradiated by 14-MeV fusion neutrons is only 6-7% of that for an identical alloy irradiated by 2-MeV electrons. It is well known that the migration of radiation induced defects contributes to segregation of silicon atoms at sinks in this alloy, causing the Curie temperature changes. The current results imply that the relative free defect production efficiency decreases from one for the electron irradiated sample to 6-7% for the fusion neutron irradiated sample.

  7. CoCrMo alloy vs. UHMWPE Particulate Implant Debris Induces Sex Dependent Aseptic Osteolysis Responses In Vivo using a Murine Model

    PubMed Central

    Landgraeber, Stefan; Samelko, Lauryn; McAllister, Kyron; Putz, Sebastian; Jacobs, Joshua.J.; Hallab, Nadim James

    2018-01-01

    Background: The rate of revision for some designs of total hip replacements due to idiopathic aseptic loosening has been reported as higher for women. However, whether this is environmental or inherently sex-related is not clear. Objective: Can particle induced osteolysis be sex dependent? And if so, is this dependent on the type of implant debris (e.g. metal vs polymer)? The objective of this study was to test for material dependent inflammatory osteolysis that may be linked to sex using CoCrMo and implant grade conventional polyethylene (UHMWPE), using an in vivo murine calvaria model. Methods: Healthy 12 week old female and male C57BL/6J mice were treated with UHMWPE (1.0um ECD) or CoCrMo particles (0.9um ECD) or received sham surgery. Bone resorption was assessed by micro-computed tomography, histology and histomorphometry on day 12 post challenge. Results: Female mice that received CoCrMo particles showed significantly more inflammatory osteolysis and bone destruction compared to the females who received UHMWPE implant debris. Moreover, females challenged with CoCrMo particles exhibited 120% more inflammatory bone loss compared to males (p<0.01) challenged with CoCrMo implant debris (but this was not the case for UHMWPE particles). Conclusion: We demonstrated sex-specific differences in the amount of osteolysis resulting from CoCrMo particle challenge. This suggests osteo-immune responses to metal debris are preferentially higher in female compared to male mice, and supports the contention that there may be inherent sex related susceptibility to some types of implant debris. PMID:29785221

  8. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    NASA Astrophysics Data System (ADS)

    Edmondson, P. D.; Miller, M. K.; Powers, K. A.; Nanstad, R. K.

    2016-03-01

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 1023 n.m-2 (E > 1 MeV), and inlet temperatures of ∼289 °C (∼552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluence of 1.7 × 1023 n.m-3, this copper level was below the solubility limit. A number density of 2 × 1022 m-3 of Ni-, Mn- Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 1023 n.m-3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 1023 n.m-3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface of a grain boundary in the low fluence

  9. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein.

    PubMed

    Simoes, Thiago A; Bryant, Michael G; Brown, Andy P; Milne, Steven J; Ryan, Mary; Neville, Anne; Brydson, Rik

    2016-11-01

    We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and

  10. Exploring the Cr{sup 2+} doping effect on structural, vibrational and dielectric properties of Mn-Zn ferrites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Pankaj; Dar, M. A.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: ty.ru123@gmail.com

    2016-05-23

    A series of Cr doped Mn-Zn ferrites with compositional formula Mn{sub 0.5}Zn{sub 0.5-x}Cr{sub x}Fe{sub 2}O{sub 4} (x = 0, 0.3, 0.5) were prepared by solid-state reaction route. X-ray diffraction (XRD) analysis reveals that the samples prepared are polycrystalline cubic spinel in structure (Fd3m) with some secondary phase of α–Fe{sub 2}O{sub 3}. Slight variation in the lattice parameter of Cr doped Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} has been observed due to difference in ionic radii of cations. Small shift in Raman modes towards higher wave number has been observed. Further the line width decreases with the doping ions. A giant dielectricmore » constant ~10{sup 4} is observed for parent Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} which is found to decrease with increase in Cr{sup 2+} doping. Low dielectric loss is observed for Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} and improves with Cr{sup 2+} doping at Zn{sup 2+} site.« less

  11. Opto-chemical response of CR-39 and polystyrene to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Singh, Lakhwant; Singh Samra, Kawaljeet; Singh, Ravinder

    2007-02-01

    The samples of CR-39 and polystyrene (PS) polymers have been irradiated with 64Cu 9+ (120 MeV) and 12C 5+ (70 MeV) ion beams having fluence ranging from 1 × 10 11 to 1 × 10 13 ions/cm -2. UV spectra of irradiated samples reveal that the optical band gap decreases from 5.50 to 2.75 eV in CR-39 and from 4.36 to 1.73 eV in PS. The correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39. FTIR spectra reveal that there is the formation of hydroxyl, alkene, alkyne and carboxylic groups in the Cu-ion irradiated PS. In CR-39, changes in the intensity of the bands on irradiation relative to pristine samples without appearance of any new band have been observed and discussed.

  12. Temperature-dependent elastic anisotropy and mesoscale deformation in a nanostructured ferritic alloy

    DOE PAGES

    Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...

    2014-10-10

    Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less

  13. Investigation of Cr substitution in Co ferrite (CoCrxFe2-xO4) using Mossbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Krieble, K.; Lo, C. C. H.; Melikhov, Y.; Snyder, J. E.

    2006-04-01

    Substitution of other metals for Fe in cobalt ferrite has been proposed as a method to tailor the magnetic and magnetoelastic properties for sensor and actuator applications [H. Zheng et al., Science 303, 661 (2004)]. However, to understand the effect of Cr substitution, one needs atomic-level information on the local environments and interactions of the transition-metal ions. In this study, Mossbauer spectroscopy was used to investigate the local environments of the Fe atoms in these materials. A series of five powder samples with compositions CoCrxFe2-xO4 (x=0.0 to 0.8) was investigated using transmission geometry. Results show two distinct six-line hyperfine patterns, indicating Fe in A and B spinel sites. Increasing Cr concentration is seen to decrease the hyperfine field strength for both A and B sites, as well as increasing the width of those distributions. Results for Cr substitution show generally similar behavior to a prior study using Mn; however, Cr substitution has more pronounced effects: the hyperfine fields decrease and distribution widths increase at greater rates for Cr substitution, and the differences between A and B site behavior are more pronounced. Results are consistent with a model in which Cr has an even stronger B-site preference than Mn, and displaces more of the Co from the B to the A sites.

  14. Effects of asymmetric rolling process on ridging resistance of ultra-purified 17%Cr ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Lu, Cheng-zhuang; Li, Jing-yuan; Fang, Zhi

    2018-02-01

    In ferritic stainless steels, a significant non-uniform recrystallization orientation and a substantial texture gradient usually occur, which can degrade the ridging resistance of the final sheets. To improve the homogeneity of the recrystallization orientation and reduce the texture gradient in ultra-purified 17%Cr ferritic stainless steel, in this work, we performed conventional and asymmetric rolling processes and conducted macro and micro-texture analyses to investigate texture evolution under different cold-rolling conditions. In the conventional rolling specimens, we observed that the deformation was not uniform in the thickness direction, whereas there was homogeneous shear deformation in the asymmetric rolling specimens as well as the formation of uniform recrystallized grains and random orientation grains in the final annealing sheets. As such, the ridging resistance of the final sheets was significantly improved by employing the asymmetric rolling process. This result indicates with certainty that the texture gradient and orientation inhomogeneity can be attributed to non-uniform deformation, whereas the uniform orientation gradient in the thickness direction is explained by the increased number of shear bands obtained in the asymmetric rolling process.

  15. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  16. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  17. Thermal transport properties, magnetic susceptibility and neutron diffraction studies of the (Cr100-xAlx)95Mo5 alloy system

    NASA Astrophysics Data System (ADS)

    Muchono, B.; Sheppard, C. J.; Venter, A. M.; Prinsloo, A. R. E.

    2018-05-01

    The Seebeck coefficient has been used to investigate QCB in Cr alloys [8,9]. Plots of d S /d T (in the limit T → 2 K) as function of concentration for the (Cr97.8Si2.2)100-yMoy [8] and the (Cr84Re16)100-zVz [9] alloy systems depicted anomalies at the QCP. The possibility of QCB in the (Cr100-xAlx)95Mo5 alloy system is explored by analysing the S(T) data of Fig. 1 by performing a linear-least-squares fit through the 2 K < T < 6.5 K data points. The gradient was taken as dS / dT|T → 2K . Fig. 8 shows dS / dT|T → 2K for concentrations in the range 0.5 ≤ x ≤ 8.6. It increases rapidly to a maximum at x = 1.0, then decreases on further Al addition and displays a minimum just above x = 1.4. This is the concentration where magnetism is seen to disappear on the TN(x) magnetic phase diagram. dS / dT|T → 2K shows a second minimum just above x = 4.4, i.e. corresponding to the concentration where magnetism reappears on the TN(x) magnetic phase diagram (see Fig. 17). Similar minima were also observed at the QCP in the (Cr84Re16)100-zVz [9] and (Cr86Ru14)100-rVr [13] alloy systems. The relatively large error bars in Fig. 8 originate from the large errors in the fitting routine due to a significant scatter in the original Seebeck coefficient data at low temperatures. The solid line through the dS / dT|T → 2K data points is a guide to the eye, while the dotted vertical lines indicate the boundaries between the ISDW, P and CSDW phases. The minima observed in the dS / dT|T → 2K curve correlate to these boundaries.

  18. Pressure effects on structural, electronic, elastic and lattice dynamical properties of XSi2 (X = Cr, Mo, W) from first principles

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Shi, Liwei; Li, Shuaiqi; Zhang, Shaobo; Xia, Wangsuo

    2018-04-01

    First-principles calculations have been performed to study the structure, elastic and lattice dynamical properties of C40 XSi2 (X=Cr, Mo, W) under hydrostatic pressure. The obtained structural parameters are in line with existing experimental and theoretical data. The evolutions of fundamental bandgap energies, elastic moduli, IR absorption spectra with pressure have been investigated in detail. Our results indicate that the energy gaps of XSi2 (X=Cr, Mo, W) show different trends as the pressure increases. Larger BH/GH ratio and Poisson’s ratio are achieved with pressure, suggesting an improved ductility for XSi2 (X=Cr, Mo, W). Moreover, a large elastic anisotropy under pressure is exhibited in Young’s anisotropic factors. The infrared-active phonon frequencies exhibit substantial blueshifts under pressure.

  19. Variation in band gap energy and electrical analysis of double doped cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The Ca and Cr doped cobalt ferrite nanoparticles (Co0.9Ca0.1) (Fe0.8 Cr0.2)2O4 were synthesized by microwave gel combustion method. Microstructural studies were carried out by XRD and SEM. Structural studies suggest that the crystal system remains spinal even with the doping of calcium and chromium. The SEM image shows the spherical morphology of surface of the sample. Optical properties of Ca and Cr doped cobalt ferrite were studied by UV-visible technique in the range of 400-600 nm. The electrical conductivity of pure and doped cobalt ferrite were studied as a function of frequency and were explained on the basis of electron hopping.

  20. Ablation and cone formation mechanism on CR-39 by ArF laser irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir

    In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less

  1. Formation of Ultrafine Metal Particles by Gas-Evaporation VI. Bcc Metals, Fe, V, Nb, Ta, Cr, Mo and W

    NASA Astrophysics Data System (ADS)

    Saito, Yahachi; Mihama, Kazuhiro; Uyeda, Ryozi

    1980-09-01

    The crystal structures and habits of bcc metal particles have been investigated systematically by electron microscopy. The habits for the bcc structure are rhombic dodecahedra truncated by six {100} faces with various degrees of truncation from 0 to 100%. The truncation degree for Fe and V particles grown in the intermediate zone of a metal smoke is in good agreement with that for the Wulff polyhedron expected from the surface energies calculated for {110} and {100} faces. Particles of Cr, Mo and W have the A-15 type structure besides the ordinary bcc structure. The present results support the hypothesis that the A-15 type structure is stable when the particle size is small. The habits for the A-15 type structure are rhombic dodecahedra (Cr), {211} icositetrahedra (Cr and Mo) and rounded cubes (Mo and W).

  2. Influence of combined thermomechanical treatment on impurity segregation in ferritic-martensitic and austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Ilyin, A. M.; Neustroev, V. S.; Shamardin, V. K.; Shestakov, V. P.; Tazhibaeva, I. L.; Krivchenkoa, V. A.

    2000-12-01

    In this study 13Cr2MoVNb ferritic-martensitic steel (FMS) and 16Cr15Ni3MoNb austenitic stainless steel (ASS) tensile specimens were subjected to standard heat treatments and divided into two groups. Specimens in group 1 (FMS only) were aged at 400°C in a stress free and in an elastically stressed state with a tensile load (100 MPa) then doped with hydrogen in an electrolytic cell. Specimens in group 2 were subjected to cold work (up to 10%) and exposed to short-time heating at 500° for 0.5 h. All specimens were fractured at room temperature in an Auger spectrometer and Auger analysis of the fracture surfaces was performed in situ after fracturing. A noticeable increase of N and P segregation levels and a widening of the depth distribution on the grain boundary facets were observed in the FMS after aging in the stressed state. Cold-worked FMS and ASS showed a ductile dimple mode of fracture, but relatively high levels of S, P and N were observed on the dimple surfaces. We consider the origin of such effects in terms of the stressed state and plastic-deformation-enhanced segregation.

  3. γ-ray decay from neutron-bound and unbound states in 95Mo and a novel technique for spin determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedeking, M.; Krticka, M.; Bernstein, L. A.

    2016-02-01

    The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levelsmore » with high spins populated in the (d,p) reaction above the neutron separation energy. As a result, spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.« less

  4. Graphene coating on the surface of CoCrMo alloy enhances the adhesion and proliferation of bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Qi; Li, Kewen; Yan, Jinhong; Wang, Zhuo; Wu, Qi; Bi, Long; Yang, Min; Han, Yisheng

    2018-03-18

    The objective was to investigate whether a graphene coating could improve the surface bioactivity of a cobalt-chromium-molybdenum-based alloy (CoCrMo). Graphene was produced by chemical vapor deposition and transferred to the surface of the CoCrMo alloy using an improved wet transfer approach. The morphology of the samples was observed, and the adhesion force and stabilization of graphene coating were analyzed by a nanoscratch test and ultrasonication test. In an in vitro study, the adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs) cultured on the samples were quantified via an Alamar Blue assay and cell counting kit-8 (CCK-8) assay. The results showed that it is feasible to apply graphene to modify the surface of a CoCrMo alloy, and the enhancement of the adhesion and proliferation of BMSCs was also shown in the present study. In conclusion, graphene exhibits considerable potential for enhancing the surface bioactivity of CoCrMo alloy. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    PubMed

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 99Mo Yield Using Large Sample Mass of MoO3 for Sustainable Production of 99Mo

    NASA Astrophysics Data System (ADS)

    Tsukada, Kazuaki; Nagai, Yasuki; Hashimoto, Kazuyuki; Kawabata, Masako; Minato, Futoshi; Saeki, Hideya; Motoishi, Shoji; Itoh, Masatoshi

    2018-04-01

    A neutron source from the C(d,n) reaction has the unique capability of producing medical radioisotopes such as 99Mo with a minimum level of radioactive waste. Precise data on the neutron flux are crucial to determine the best conditions for obtaining the maximum yield of 99Mo. The measured yield of 99Mo produced by the 100Mo(n,2n)99Mo reaction from a large sample mass of MoO3 agrees well with the numerical result estimated with the latest neutron data, which are a factor of two larger than the other existing data. This result establishes an important finding for the domestic production of 99Mo: approximately 50% of the demand for 99Mo in Japan could be met using a 100 g 100MoO3 sample mass with a single accelerator of 40 MeV, 2 mA deuteron beams.

  7. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    PubMed

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  8. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  9. Trehalose Dimycolate Enhances Survival of Fission Neutron-Irradiated Mice and Klebsiella pneumoniae-Challenged Irradiated Mice

    DTIC Science & Technology

    1990-01-01

    SR90-5 Trehalose Dimycolate Enhances Survival of Fission Neutron-Irradiated Mice and Kiebsiella pneumoniae-Challenged Irradiated Mice 1’ 2 D. (. M...doses kines and immunomodulators of nonspecific resistance to of fission neutron radiation is increased when trehalose dimycol- infection might have... trehalose day before exposure to radiation. TDM in an emulsion of squa- dimycolate (TDM) have been shown to be effective in in- lene. Tween 80, and saline

  10. Porous p-NiO/n-Nb2O5 nanocomposites prepared by an EISA route with enhanced photocatalytic activity in simultaneous Cr(VI) reduction and methyl orange decolorization under visible light irradiation.

    PubMed

    Hashemzadeh, Fatemeh; Gaffarinejad, Ali; Rahimi, Rahmatollah

    2015-04-09

    Porous NiO/Nb2O5 nanocomposites with Ni/Nb molar ratio of 0.4, 0.8 and 1.2 have been obtained via the EISA route using P123 copolymer as organic template, and are assigned as NiNb0.4, NiNb0.8 and NiNb1.2, respectively. For comparison, pure Nb2O5 sample assigned as NiNb0.0 was also synthesized by the same method. Structural and textural features of the as prepared samples were investigated by XRD, FTIR, FE-SEM, EDX, UV-vis DRS and BET techniques. The results indicated that the porous p-NiO/n-Nb2O5 junction nanocomposites were formed and coupling of NiO with Nb2O5 resulted a remarkable red shift in the optical response of the nanocomposite samples. The photocatalytic properties of the nanocomposite samples, and also synthesized pure Nb2O5 (NiNb0.0) and commercial Nb2O5 as reference catalysts were evaluated for the first time by simultaneous Cr(VI) reduction and MO decolorization in aqueous suspension under visible light irradiation at pH 2. NiNb0.4 was found to be the most active photocatalyst, which might be attributed to the extended absorption in the visible light region and the effective photogenerated electron-hole separation by the photosynergistic effects of the p-NiO/n-Nb2O5 composite powder. The photocatalytic efficiency of the most active photocatalyst, NiNb0.4, was found to be rather low for either single Cr(VI) solution or single MO solution. However, the photocatalytic reduction of Cr(VI) and photocatalytic decolorization of MO proceed more rapidly for the coexistence system of Cr(VI) and MO than for the single process, showing synergetic effect between the reduction and decolorization reactions. The effects of initial concentration of Cr(VI), MO and the initial pH value on the rate of simultaneous photoreactions over NiNb0.4 sample, were also investigated. The Cr(VI) and MO removal rates were further enhanced by increasing MO and Cr (VI) concentration to an optimal value, respectively, and/or decreasing solution pH. Copyright © 2014 Elsevier B.V. All

  11. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization of the neutron irradiation system for use in the Low-Dose-Rate Irradiation Facility at Sandia National Laboratories.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco, Manuel

    The objective of this work was to characterize the neutron irradiation system consisting of americium-241 beryllium (241AmBe) neutron sources placed in a polyethylene shielding for use at Sandia National Laboratories (SNL) Low Dose Rate Irradiation Facility (LDRIF). With a total activity of 0.3 TBq (9 Ci), the source consisted of three recycled 241AmBe sources of different activities that had been combined into a single source. The source in its polyethylene shielding will be used in neutron irradiation testing of components. The characterization of the source-shielding system was necessary to evaluate the radiation environment for future experiments. Characterization of the sourcemore » was also necessary because the documentation for the three component sources and their relative alignment within the Special Form Capsule (SFC) was inadequate. The system consisting of the source and shielding was modeled using Monte Carlo N-Particle transport code (MCNP). The model was validated by benchmarking it against measurements using multiple techniques. To characterize the radiation fields over the full spatial geometry of the irradiation system, it was necessary to use a number of instruments of varying sensitivities. First, the computed photon radiography assisted in determining orientation of the component sources. With the capsule properly oriented inside the shielding, the neutron spectra were measured using a variety of techniques. A N-probe Microspec and a neutron Bubble Dosimeter Spectrometer (BDS) set were used to characterize the neutron spectra/field in several locations. In the third technique, neutron foil activation was used to ascertain the neutron spectra. A high purity germanium (HPGe) detector was used to characterize the photon spectrum. The experimentally measured spectra and the MCNP results compared well. Once the MCNP model was validated to an adequate level of confidence, parametric analyses was performed on the model to optimize for potential

  13. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, J.; Miller, B. D.; Keiser, D. D.

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (< 20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. This paper discusses the TEM results of the U-10Mo/Zr/Al6061 monolithic fuel plate (Plate ID: L1P09T, ~ 59% U-235 enrichment) irradiated in Advancedmore » Test Reactor at Idaho National Laboratory as part of RERTR-9B irradiation campaign with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 C, respectively. A total of 5 TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (> 1 µm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ~ 30 at% and ~ 7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.« less

  14. The deuterium depth profile in neutron-irradiated tungsten exposed to plasma

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Cao, G.; Hatano, Y.; Oda, T.; Oya, Y.; Hara, M.; Calderoni, P.

    2011-12-01

    Tungsten samples (99.99% purity from A.L.M.T. Corp., 6 mm in diameter, 0.2 mm in thickness) were irradiated by high-flux neutrons at 50 °C to 0.025 dpa in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Subsequently, the neutron-irradiated tungsten samples were exposed to high-flux deuterium plasmas (ion flux: 1021-1022 m-2 s-1, ion fluence: 1025-1026 m-2) in the Tritium Plasma Experiment at Idaho National Laboratory. This paper reports the results of deuterium depth profiling in neutron-irradiated tungsten exposed to plasmas at 100, 200 and 500 °C via nuclear reaction analysis (NRA). The NRA measurements show that a significant amount of deuterium (>0.1 at.% D/W) remains trapped in the bulk material (up to 5 μm) at 500 °C. Tritium Migration Analysis Program simulation results using the NRA profiles indicate that different trapping mechanisms exist for neutron-irradiated and unirradiated tungsten.

  15. Reaction of Unalloyed and Cr-Mo Alloyed Steels with Nitrogen from the Sintering Atmosphere

    NASA Astrophysics Data System (ADS)

    Dlapka, Magdalena; Gierl-Mayer, Christian; Calderon, Raquel de Oro; Danninger, Herbert; Bengtsson, Sven; Dudrova, Eva

    2016-12-01

    Nitrogen is usually regarded as an inert sintering atmosphere for PM steels; however, this cannot be taken for granted in particular for steels alloyed with nitride forming elements. Among those elements, chromium has become more and more important as an alloying element in sintered low alloy structural steels in the last decade due to the moderate alloying cost and the excellent mechanical properties obtainable, in particular when sinter hardening is applied. The high affinity of Cr to oxygen and the possible ways to overcome related problems have been the subject of numerous studies, while the fact that chromium is also a fairly strong nitride forming element has largely been neglected at least for low alloy steel grades, although frequently used materials like steels from Cr and Cr-Mo prealloyed powders are commonly sintered in atmospheres consisting mainly of nitrogen. In the present study, nitrogen pickup during sintering at different temperatures and for varying times has been studied for Cr-Mo prealloyed steel grades as well as for unalloyed carbon steel. Also the effect of the cooling rate and its influence on the properties, of the microstructure and the composition have been investigated. It showed that the main nitrogen uptake occurs not during isothermal sintering but rather during cooling. It could be demonstrated that a critical temperature range exists within which the investigated CrM-based steel is particularly sensitive to nitrogen pickup.

  16. Radiation Damage Study in Natural Zircon Using Neutrons Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu

    2011-03-30

    Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emissionmore » of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.« less

  17. ATF Neutron Irradiation Program Technical Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geringer, J. W.; Katoh, Yutai

    The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less

  18. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    NASA Astrophysics Data System (ADS)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  19. Reciprocal-space and real-space neutron investigation of nanostructured Mo 2C and WC

    NASA Astrophysics Data System (ADS)

    Page, Katharine; Li, Jun; Savinelli, Robert; Szumila, Holly N.; Zhang, Jinping; Stalick, Judith K.; Proffen, Thomas; Scott, Susannah L.; Seshadri, Ram

    2008-11-01

    As possible substitute materials for platinum group metal heterogeneous catalysts, high surface area carbides of the early transition metals Mo and W are of great interest. Here we report nanostructured, high surface area Mo 2C and WC prepared by decomposing and carburizing ammonium paramolybdate [(NH 4) 6Mo 7O 24·4H 2O] and ammonium paratungstate [(NH 4) 10W 12O 41·5H 2O] in flowing 50%CH 4/50%H 2. Surface areas as high as 52 m 2/g for Mo 2C and 24 m 2/g for WC were obtained, with both structures crystallizing in structures appropriate for catalytic activity. We have studied these materials using a combination of neutron diffraction Rietveld refinement, X-ray photoelectron spectroscopy, surface area measurements, and scanning transmission electron microscopy. In addition, we have used pair-distribution function (PDF) analysis of the neutron total scattering data as a means of establishing the presence of graphitic carbon in the as-prepared materials.

  20. Microstructural defect evolution in neutron - Irradiated 12Cr18Ni9Ti stainless steel during subsequent isochronous annealing

    NASA Astrophysics Data System (ADS)

    Tsay, K. V.; Maksimkin, O. P.; Turubarova, L. G.; Rofman, O. V.; Garner, F. A.

    2013-08-01

    Transmission electron microscopy and microhardness measurements were used to examine changes in microstructure and associated strengthening induced in austenitic stainless steel 12Cr18Ni9Ti irradiated to ˜0.001 and ˜5 dpa in the WWR-K reactor before and after being subjected to post-irradiation isochronal annealing. The relatively low values of irradiation temperature and dpa rate (˜80 °C and ˜1.2 × 10-8 dpa/s) experienced by this steel allowed characterization of defect microstructures over a wide range of defect ensembles, all at constant composition, produced first by irradiation and then by annealing at temperatures between 450 and 1050 °C. It was shown that the dispersed barrier hardening model with commonly accepted physical properties successfully predicted the observed hardening. It was also observed that when TiC precipitates form at higher annealing temperatures, the alloy does not change in hardness, reflecting a balance between precipitate-hardening and matrix-softening due to removal of solute-strengthening elements titanium and carbon. Such matrix-softening is not often considered in other studies, especially where the contribution of precipitates to hardening is a second-order effect.

  1. Analysis of strain-induced crystallinity in neutron-irradiated amorphous PET fiber

    NASA Astrophysics Data System (ADS)

    Mallick, B.

    2015-05-01

    Polyethylene terephthalate (PET) fiber of 2.2 denier per filament has been irradiated with 4.44-MeV fast neutron beam at different low doses: 0.58-2,513.5 mGy. The variation of crystallinity because of neutron irradiation straining in PET filaments has been investigated. Study of the effects of irradiation by using X-ray diffraction and differential scanning calorimetry technique confirms the radiation-induced microstrain-dependent crystallinity of PET fiber.

  2. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  3. Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyu; Guo, Hongxia; Luo, Yinhong; Zhang, Fengqi; Ding, Lili

    2018-03-01

    In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM’s MCU sensitivity. After the neutron experiment, we test the devices’ function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices’ MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.

  4. Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density

    NASA Astrophysics Data System (ADS)

    Gan, J.; Miller, B. D.; Keiser, D. D.; Jue, J. F.; Madden, J. W.; Robinson, A. B.; Ozaltun, H.; Moore, G.; Meyer, M. K.

    2017-08-01

    Monolithic U-10Mo alloy fuel plates with Al-6061 cladding are being developed for use in research and test reactors as low enrichment fuel (<20% U-235 enrichment) as a result of its high uranium loading capacity compared to that of U-7Mo dispersion fuel. These fuel plates contain a Zr diffusion barrier between the U-10Mo fuel and Al-6061 cladding that suppresses the interaction between the U-Mo fuel foil and Al alloy cladding that is known to be problematic under irradiation. Different methods have been employed to fabricate monolithic fuel plates, including hot-rolling with no cold-rolling. L1P09T is a hot-rolled fuel plate irradiated to high fission density in the RERTR-9B experiment. This paper discusses the TEM characterization results for this U-10Mo/Zr/Al6061 monolithic fuel plate (∼59% U-235 enrichment) irradiated in Advanced Test Reactor at Idaho National Laboratory with an unprecedented high local fission density of 9.8E+21 fissions/cm3. The calculated fuel foil centerline temperature at the beginning of life and the end of life is 141 and 194 °C, respectively. TEM lamellas were prepared using focus ion beam lift-out technique. The estimated U-Mo fuel swelling, based on the fuel foil thickness change from SEM, is approximately 76%. Large bubbles (>1 μm) are distributed evenly in U-Mo and interlink of these bubbles is evident. The average size of subdivided grains at this fission density appears similar to that at 5.2E+21 fissions/cm3. The measured average Mo and Zr content in the fuel matrix is ∼30 at% and ∼7 at%, respectively, in general agreement with the calculated Mo and Zr from fission density.

  5. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  6. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications

    NASA Technical Reports Server (NTRS)

    Jiles, David C. (Inventor); Paulsen, Jason A. (Inventor); Snyder, John E. (Inventor); Lo, Chester C. H. (Inventor); Ring, Andrew P. (Inventor); Bormann, Keith A. (Inventor)

    2008-01-01

    Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.

  7. Note: Fast neutron efficiency in CR-39 nuclear track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavallaro, S.

    2015-03-15

    CR-39 samples are commonly employed for fast neutron detection in fusion reactors and in inertial confinement fusion experiments. The literature reported efficiencies are strongly depending on experimental conditions and, in some cases, highly dispersed. The present note analyses the dependence of efficiency as a function of various parameters and experimental conditions in both the radiator-assisted and the stand-alone CR-39 configurations. Comparisons of literature experimental data with Monte Carlo calculations and optimized efficiency values are shown and discussed.

  8. Corrosion Behavior of Active Screen Plasma Nitrided 38CrMoAl Steel under Marine Environment

    NASA Astrophysics Data System (ADS)

    Yang, Li; He, Yongyong; Mao, JunYuan; Zhang, Lei

    2017-10-01

    The 38CrMoAl steels were nitrided at different temperatures for 7 h using active screen plasma discharge. The analysis showed that the thick compound layer composed of ɛ-Fe2-3N and γ‧-Fe4N was formed on the surface. The corrosion behavior was evaluated by measuring the anodic polarization curves in natural sea water (similar 3.5% NaCl solution), and observation of corroded surface were conducted. The electromechanical measurements indicated that the corrosion potential of the nitrided specimens shifted to a nobler value compared to that of untreated specimens. Passive regions were also observed in the polarization curves for all the nitrided specimens. These results indicate that active screen plasma nitriding can enhance the corrosion resistance of the 38CrMoAl steel under marine environment.

  9. A nondestructive method for estimation of the fracture toughness of CrMoV rotor steels based on ultrasonic nonlinearity.

    PubMed

    Jeong, Hyunjo; Nahm, Seung-Hoon; Jhang, Kyung-Young; Nam, Young-Hyun

    2003-09-01

    The objective of this paper is to develop a nondestructive method for estimating the fracture toughness (K(IC)) of CrMoV steels used as the rotor material of steam turbines in power plants. To achieve this objective, a number of CrMoV steel samples were heat-treated, and the fracture appearance transition temperature (FATT) was determined as a function of aging time. Nonlinear ultrasonics was employed as the theoretical basis to explain the harmonic generation in a damaged material, and the nonlinearity parameter of the second harmonic wave was the experimental measure used to be correlated to the fracture toughness of the rotor steel. The nondestructive procedure for estimating the K(IC) consists of two steps. First, the correlations between the nonlinearity parameter and the FATT are sought. The FATT values are then used to estimate K(IC) using the K(IC) versus excess temperature (i.e., T-FATT) correlation that is available in the literature for CrMoV rotor steel.

  10. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    NASA Astrophysics Data System (ADS)

    Susmikanti, Mike; Dewayatna, Winter; Sulistyo, Yos

    2014-09-01

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo99 used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 106 cm-1) in a tube, their delta reactivities are the still

  11. Effects of Electron Beam Irradiation and Thiol Molecule Treatment on the Properties of MoS2 Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Choi, Barbara Yuri; Cho, Kyungjune; Pak, Jinsu; Kim, Tae-Young; Kim, Jae-Keun; Shin, Jiwon; Seo, Junseok; Chung, Seungjun; Lee, Takhee

    2018-05-01

    We investigated the effects of the structural defects intentionally created by electron-beam irradiation with an energy of 30 keV on the electrical properties of monolayer MoS2 field effect transistors (FETs). We observed that the created defects by electron beam irradiation on the MoS2 surface working as trap sites deteriorated the carrier mobility and carrier concentration with increasing the subthreshold swing value and shifting the threshold voltage in MoS2 FETs. The electrical properties of electron-beam irradiated MoS2 FETs were slightly improved by treating the devices with thiol-terminated molecules which presumably passivated the structural defects of MoS2. The results of this study may enhance the understanding of the electrical properties of MoS2 FETs in terms of creating and passivating defect sites.

  12. Antiradiation Vaccine: Technology Development Of Prophylaxis, Prevention And Treatment Of Biological Consequences And Complications After Neutron Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Neutrons irradiation produce a unique biological effectiveness compare to different types of radiation because their ability to create a denser trail of ionized atoms in biological living tissues[Straume 1982; Latif et al.2010; Katz 1978; Bogatyrev 1982]. The efficacy of an Anti-Radiation Vaccine for the prophylaxis, prevention and therapy of acute radiation pathology was studied in a neutron exposure facility. The biological effects of fast neutrons include damage of central nervous system and cardiovascular system with development of Acute Cerebrovascular and Cardiovascular forms of acute radiation pathology. After irradiation by high doses of fast neutron, formation of neurotoxins, hematotoxins,cytotoxins forming from cell's or tissue structures. High doses of Neutron Irradiation generate general and specific toxicity, inflammation reactions. Current Acute Medical Management and Methods of Radiation Protection are not effective against moderate and high doses of neutron irradiation. Our experiments demonstrate that Antiradiation Vaccine is the most effective radioprotectant against high doses of neutron-radiation. Radiation Toxins(biological substances with radio-mimetic properties) isolated from central lymph of gamma-irradiated animals could be working substance with specific antigenic properties for vaccination against neutron irradiation. Methods: Antiradiation Vaccine preparation standard - mixture of a toxoid form of Radiation Toxins - include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins were isolated from the central lymph of gamma-irradiated animals with different forms of Acute Radiation Syndromes - Cerebrovascular, Cardiovascular, Gastrointestinal, Hematopoietic forms. Devices for Y-radiation were "Panorama","Puma". Neutron exposure was accomplished at the Department of Research Institute of Nuclear Physics, Dubna, Russia. The neutrons

  13. Corrosion behavior of oxide dispersion strengthened ferritic steels in supercritical water

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Guo, Xianglong; Shen, Zhao; Zhang, Lefu

    2017-04-01

    The corrosion resistance of three different Cr content oxide dispersion strengthened (ODS) ferritic steels in supercritical water (SCW) and their passive films formed on the surface have been investigated. The results show that the dissolved oxygen (DO) and chemical composition have significant influence on the corrosion behavior of the ODS ferritic steels. In 2000 ppb DO SCW at 650 °C, the 14Cr-4Al ODS steel forms a tri-layer oxide film and the surface morphologies have experienced four structures. For the tri-layer oxide film, the middle layer is mainly Fe-Cr spinel and the Al is gradually enriched in the inner layer.

  14. Acute Lethality after Fast-Neutron and X-Irradiation of Tribolium confusum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenn, Norman D.; Ducoff, Howard S.

    1976-01-01

    The acute lethal effects of fast neutrons and of X-rays on adults and larvae of T. confusum are compared. The time course of mortality of adults of the Oklahoma strain was the same after midlethal doses of neutrons and X-rays, although the neutrons were about twice as effective as X-rays in producing lethality, based on LD 50(35). The neutron RBE for adults of the Ebony mutant strain was also about 2, but that for Oklahoma larvae was about 3.85. Larvae surviving midlethal doses of neutrons showed a tendency toward wing abnormalities and delayed pupation. Dose-fractionation recovery with neutron doses inmore » the midlethal range was not detectable in the adults or in the larvae. A considerable sparing effect of dose fractionation was found in X-irradiated adults. Finally, also presented are techniques for using a beam port of a Triga research reactor for fast-neutron irradiation and a method of neutron and gamma dosimetry.« less

  15. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    DOE PAGES

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.; ...

    2015-12-29

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 10 23 n.m –2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluencemore » of 1.7 × 10 23 n.m –3, this copper level was below the solubility limit. A number density of 2 × 10 22 m –3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 10 23 n.m –3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 10 23 n.m –3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface

  16. Atom probe tomography characterization of neutron irradiated surveillance samples from the R. E. Ginna reactor pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmondson, Philip D.; Miller, Michael K.; Powers, Kathy A.

    Surveillance samples of a low copper (nominally 0.05 wt.% Cu) forging and a higher copper (0.23 wt.% Cu) submerged arc weld from the R. E. Ginna reactor pressure vessel have been characterized by atom probe tomography (APT) after exposure to three levels of neutron irradiation, i.e., fluences of 1.7, 3.6 and 5.8 × 10 23 n.m –2 (E > 1 MeV), and inlet temperatures of ~289 °C (~552 °F). As no copper-enriched precipitates were observed in the low copper forging, and the measured copper content in the ferrite matrix was 0.04± <0.01 at.% Cu, after neutron irradiation to a fluencemore » of 1.7 × 10 23 n.m –3, this copper level was below the solubility limit. A number density of 2 × 10 22 m –3 of Ni–, Mn– Si-enriched precipitates with an equivalent radius of gyration of 1.7 ± 0.4 nm were detected in the sample. However, Cu-, Ni-, Mn-enriched precipitates were observed in specimens cut from different surveillance specimens from the same forging material in which the overall measured copper level was 0.08± <0.01 at.% (fluence of 3.6 × 10 23 n.m –3) and 0.09± <0.01 at.% Cu (fluence of 5.8 × 10 23 n.m –3). Therefore, these slightly higher copper contents were above the solubility limit of Cu under these irradiation conditions. A best fit of all the composition data indicated that the size and number density of the Cu-enriched precipitates increased slightly in both size and number density by additional exposure to neutron irradiation. High number densities of Cu-enriched precipitates were observed in the higher Cu submerged arc weld for all irradiated conditions. The size and number density of the precipitates in the welds were higher than in the same fluence forgings. Some Cu-enriched precipitates were found to have Ni-, Mn- Si-, and P-enriched regions on their surfaces suggesting a preferential nucleation site. Furthermore, atom maps revealed P, Ni, and Mn segregation to, and preferential precipitation of, Cu-enriched precipitates over the surface

  17. Radiological risks from irradiation of cargo contents with EURITRACK neutron inspection systems

    NASA Astrophysics Data System (ADS)

    Giroletti, E.; Bonomi, G.; Donzella, A.; Viesti, G.; Zenoni, A.

    2012-07-01

    The radiological risk for the population related to the neutron irradiation of cargo containers with a tagged neutron inspection system has been studied. Two possible effects on the public health have been assessed: the modification of the nutritional and organoleptic properties of the irradiated materials, in particular foodstuff, and the neutron activation of consumer products (i.e. food and pharmaceuticals). The result of this study is that irradiation of food and foodstuff, pharmaceutical and medical devices in container cargoes would neither modify the properties of the irradiated material nor produce effective doses of concern for public health. Furthermore, the dose received by possible stowaways present inside the container during the inspection is less than the annual effective dose limit defined by European Legislation for the public.

  18. Tribological behavior of CrN-coated Cr-Mo-V steels used as die materials

    NASA Astrophysics Data System (ADS)

    Çelik, Gülşah Aktaş; Polat, Şeyda; Atapek, Ş. Hakan

    2017-12-01

    DIN 1.2343 and 1.2367 steels are commonly used as die materials in aluminum extrusion, and single/duplex/multi-coatings enhance their surface properties. The design of an appropriate substrate/coating system is important for improving the tribological performance of these steels under service conditions because the load-carrying capacity of the system can be increased by decreasing the plastic deformation of the substrate. In this study, the tribological behavior of CrN-coated Cr-Mo-V steels (DIN 1.2343, 1.2367, and 1.2999 grades) was investigated using different setups and tribological pairs at room and elevated temperatures. The aim of this study was to reveal the wear resistance of a suggested system (1.2999/CrN) not yet studied and to understand both the wear and the failure characteristics of coated systems. The results showed that (i) among the steels studied, the DIN 1.2999 grade steel exhibited the lowest friction coefficient because it had the highest load-carrying capacity as a result of secondary hardening at elevated temperatures; (ii) at room temperature, both abrasive tracks and adhesive layers were observed on the worn surfaces; and (iii) a combination of chemical reactions and progressive oxidation caused aluminum adhesion on the worn surface, and the detachment of droplets and microcracking were the characteristic damage mechanisms at high temperatures.

  19. Texture evolution and mechanical anisotropy of biomedical hot-rolled Co-Cr-Mo alloy.

    PubMed

    Mori, Manami; Yamanaka, Kenta; Sato, Shigeo; Chiba, Akihiko

    2015-11-01

    Crystallographic textures and their effect on the mechanical anisotropy of a hot-rolled biomedical Co-Cr-Mo alloy were investigated. The hot-rolled Co-28Cr-6Mo-0.13N (mass%) alloy examined here exhibited a monotonic strength increment following hot-rolling reduction, eventually reaching a 0.2% proof stress of 1400 MPa while maintaining acceptable ductility (>10%). The dominant hot-rolling texture was a brass-type component, which is characterized by the alloy's peculiarly low stacking fault energy (SFE) even at hot rolling temperatures, although the minor peaks of the near copper component were also identified. However, because of the onset of dynamic recrystallization (DRX) during the hot rolling process, the texture intensity was relatively weak even after 90% hot rolling, although the grain refinement originating from the DRX was not significant (the "less active DRX" condition increased the strain accumulation during the process, resulting in high-strength samples). The weakened texture development resulted in negligible in-plane anisotropy for the hot-rolled specimen strength, when the specimens were tensile strained in the rolling direction (RD) and transverse direction (TD). The elongation-to-failure, however, exhibited a difference with respect to the tensile loading axis. It is suggested that the ductility anisotropy is closely related to a strain-induced γ (fcc) → ε (hcp) martensitic transformation during tensile loading, resulting in a difference in the proportion of quasi-cleavage fracture surfaces. The obtained results will be helpful in the development of high-strength Co-Cr-Mo alloy plates and sheets, and have implications regarding plastic deformation and texture evolution during the hot rolling of non-conventional metallic materials with low SFE at elevated temperatures, where planar dislocation slips of Shockley partial dislocations and thermally activated process interplay. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Lanthana-bearing nanostructured ferritic steels via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Wu, Yaqiao; Burns, Jatuporn; Allahar, Kerry N.; Butt, Darryl P.; Cole, James I.; Alsagabi, Sultan F.

    2016-03-01

    A lanthana-containing nanostructured ferritic steel (NFS) was processed via mechanical alloying (MA) of Fe-14Cr-1Ti-0.3Mo-0.5La2O3 (wt.%) and consolidated via spark plasma sintering (SPS). In order to study the consolidation behavior via SPS, sintering temperature and dwell time were correlated with microstructure, density, microhardness and shear yield strength of the sintered specimens. A bimodal grain size distribution including both micron-sized and nano-sized grains was observed in the microstructure of specimens sintered at 850, 950 and1050 °C for 45 min. Significant densification occurred at temperatures greater than 950 °C with a relative density higher than 98%. A variety of nanoparticles, some enriched in Fe and Cr oxides and copious nanoparticles smaller than 10 nm with faceted morphology and enriched in La and Ti oxides were observed. After SPS at 950 °C, the number density of Cr-Ti-La-O-enriched nanoclusters with an average radius of 1.5 nm was estimated to be 1.2 × 1024 m-3. The La + Ti:O ratio was close to 1 after SPS at 950 and 1050 °C; however, the number density of nanoclusters decreased at 1050 °C. With SPS above 950 °C, the density improved but the microhardness and shear yield strength decreased due to partial coarsening of the grains and nanoparticles.

  1. Microstructure and Shear Strength in Brazing Joint of Mo-Cu Composite with 304 Stainless Steel by Ni-Cr-P Filler Metal

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Wang, Jiteng; Li, Yajiang; Zheng, Deshuang

    2015-07-01

    The brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni3P in the braze seam. Ni-Cu(Mo) and Ni-Fe solid solution are at the interface beside Mo-Cu composite and 304 stainless steel, respectively. Shear fracture exhibits mixed ductile-brittle fracture feature with trans-granular fracture, ductile dimples and tearing edges. Fracture originates from the interface between brazing seam and Mo-Cu composite and it propagates to the braze seam due to the formation of brittle Ni5P2 and Cr3P precipitation.

  2. The effects of Cr, Co, Al, Mo and Ta on the cyclic oxidation behavior of a prototype cast Ni-base superalloy based on a 2(5) composite statistically designed experiment

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1984-01-01

    A series of cast Ni-base superalloys were systematically varied at selected levels of Co, Cr, Mo, Ta, and Al. The elemental levels varied were Mo, 0 to 4 percent; Cr, 6 to 18 percent; Co, 0 to 20 percent, Ta, 0 to 8 percent; and Al, 3.25 to 6.25 percent. The cyclic oxidation resistance was determined from specific weight change data as a function of time for 1 hr cycles in static air at 1100 C. The significant terms in decreasing order of their importance were Al, Ta, Cr2, Al-Cr, Cr-Co, Co2, Al-Mo, Cr-Mo, Al-Al, and Mo-Ta. The Al term alone accounted for close to 82 percent of the explained variability. The estimating equation showed that the Al level was the most important and should be at its 6.25 wt % maximum value. The Mo and Ta levels should also be at their maximum 4 and 8 wt % respectively. The cobalt composition should be as low as possible, i.e., 0 wt%. The Cr level optimum varies depending on the other 4 levels. The X-ray diffaction results indicate the most protective scales are alumina/aluminate spinel stabilizized with a tri-rutile oxide high in Ta and Mo.

  3. Magnetic and neutron diffraction study on quaternary oxides MTeMoO6 (M = Mn and Zn)

    NASA Astrophysics Data System (ADS)

    Doi, Yoshihiro; Suzuki, Ryo; Hinatsu, Yukio; Ohoyama, Kenji

    2009-01-01

    Crystal structures and magnetic properties of quaternary oxides MTeMoO6 (M = Mn and Zn) were investigated. From the Rietveld analyses for the powder x-ray and neutron diffraction measurements, their detailed structures have been determined. Both compounds have orthorhombic structure with space group P 21212 and a charge configuration of M2+Te4+Mo6+O6. ZnTeMoO6 shows diamagnetic behavior. In this structure, M ions are arranged in a square-planar manner. The temperature dependence of the magnetic susceptibility for MnTeMoO6 shows a broad peak at ~33 K, which is due to a two-dimensional characteristic of the magnetic interaction. In addition, this compound shows an antiferromagnetic transition at 20 K. The magnetic structure was determined by the powder neutron diffraction measurement at 3.3 K. The magnetic moments of Mn2+ ions (4.45 μB) order in a collinear antiferromagnetic arrangement along the b axis.

  4. Multi-source irradiation facility with improved space configuration for neutron activation analysis: Design optimization.

    PubMed

    Kotb, N A; Solieman, Ahmed H M; El-Zakla, T; Amer, T Z; Elmeniawi, S; Comsan, M N H

    2018-05-01

    A neutron irradiation facility consisting of six 241 Am-Be neutron sources of 30 Ci total activity and 6.6 × 10 7 n/s total neutron yield is designed. The sources are embedded in a cubic paraffin wax, which plays a dual role as both moderator and reflector. The sample passage and irradiation channel are represented by a cylindrical path of 5 cm diameter passing through the facility core. The proposed design yields a high degree of space symmetry and thermal neutron homogeneity within 98% of flux distribution throughout the irradiated spherical sample of 5 cm diameter. The obtained thermal neutron flux is 8.0 × 10 4 n/cm 2 .s over the sample volume, with thermal-to-fast and thermal-to-epithermal ratios of 1.20 and 3.35, respectively. The design is optimized for maximizing the thermal neutron flux at sample position using the MCNP-5 code. The irradiation facility is supposed to be employed principally for neutron activation analysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Structural and optical properties improvements of PVP/gelatin blends induced by neutron irradiation

    NASA Astrophysics Data System (ADS)

    Basha, Mohammad Ahmad-Fouad; Hassan, Mohamed Ahmed

    2018-05-01

    Blends of polyvinylpyrrolidone and gelatin were prepared in three different concentrations to study the modifications in their structural and optical properties induced by neutron irradiations with different neutron fluence values from 108 up to 1011 neutron/cm2. X-ray spectroscopy revealed that the irradiation has induced a recrystallization phenomenon in the studied blends and the crystallinity index increased by increasing the neutron fluence due to the breaking of the crystallites. Fourier-transform infrared spectroscopy came to confirm the existence of interactions between interchain groups and a higher compatibility for the irradiated blends. The irradiation induced defects inside the material were responsible for the change in their optical and structural properties. The creation of free radicals or ions inside the conduction bands has led to the increase in the number of carriers on localized states; this has caused the increase in optical conductivity of the irradiated blends as a result of decreasing the energy gaps by increasing the neutron fluence. Results may widen the applications of the gelatin based blends to include optoelectronic devices, organic light emitting devices, solar selective and anti-reflectance bio-coatings, optical organic glass and lenses.

  6. Determination of neutron flux distribution in an Am-Be irradiator using the MCNP.

    PubMed

    Shtejer-Diaz, K; Zamboni, C B; Zahn, G S; Zevallos-Chávez, J Y

    2003-10-01

    A neutron irradiator has been assembled at IPEN facilities to perform qualitative-quantitative analysis of many materials using thermal and fast neutrons outside the nuclear reactor premises. To establish the prototype specifications, the neutron flux distribution and the absorbed dose rates were calculated using the MCNP computer code. These theoretical predictions then allow one to discuss the optimum irradiator design and its performance.

  7. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  8. Investigations on neutron irradiated 3D carbon fibre reinforced carbon composite material

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Alur, V. D.; Patra, A. K.; Acharya, R.; Srivastava, D.

    2018-04-01

    As against conventional graphite materials carbon-carbon (C/C) composite materials are now being contemplated as the promising candidate materials for the high temperature and fusion reactor owing to their high thermal conductivity and high thermal resistance, better mechanical/thermal properties and irradiation stability. The current need is for focused research on novel carbon materials for future new generation nuclear reactors. The advantage of carbon-carbon composite is that the microstructure and the properties can be tailor made. The present study encompasses the irradiation of 3D carbon composite prepared by reinforcement using PAN carbon fibers for nuclear application. The carbon fiber reinforced composite was subjected to neutron irradiation in the research reactor DHRUVA. The irradiated samples were characterized by Differential Scanning Calorimetry (DSC), small angle neutron scattering (SANS), XRD and Raman spectroscopy. The DSC scans were taken in argon atmosphere under a linear heating program. The scanning was carried out at temperature range from 30 °C to 700 °C at different heating rates in argon atmosphere along with reference as unirradiated carbon composite. The Wigner energy spectrum of irradiated composite showed two peaks corresponding to 200 °C and 600 °C. The stored energy data for the samples were in the range 110-170 J/g for temperature ranging from 30 °C to 700 °C. The Wigner energy spectrum of irradiated carbon composite did not indicate spontaneous temperature rise during thermal annealing. Small angle neutron scattering (SANS) experiments have been carried out to investigate neutron irradiation induced changes in porosity of the composite samples. SANS data were recorded in the scattering wave vector range of 0.17 nm-1 to 3.5 nm-1. Comparison of SANS profiles of irradiated and unirradiated samples indicates significant change in pore morphology. Pore size distributions of the samples follow power law size distribution with

  9. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE PAGES

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; ...

    2017-06-09

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  10. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.; Kimura, A.; Lindau, R.; Odette, G. R.; Rieth, M.; Tan, L.; Tanigawa, H.

    2017-09-01

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniques to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. Material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.

  11. Development of next generation tempered and ODS reduced activation ferritic/martensitic steels for fusion energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkle, S. J.; Boutard, J. L.; Hoelzer, D. T.

    Reduced activation ferritic/martensitic steels are currently the most technologically mature option for the structural material of proposed fusion energy reactors. Advanced next-generation higher performance steels offer the opportunity for improvements in fusion reactor operational lifetime and reliability, superior neutron radiation damage resistance, higher thermodynamic efficiency, and reduced construction costs. The two main strategies for developing improved steels for fusion energy applications are based on (1) an evolutionary pathway using computational thermodynamics modelling and modified thermomechanical treatments (TMT) to produce higher performance reduced activation ferritic/martensitic (RAFM) steels and (2) a higher risk, potentially higher payoff approach based on powder metallurgy techniquesmore » to produce very high strength oxide dispersion strengthened (ODS) steels capable of operation to very high temperatures and with potentially very high resistance to fusion neutron-induced property degradation. The current development status of these next-generation high performance steels is summarized, and research and development challenges for the successful development of these materials are outlined. In conclusion, material properties including temperature-dependent uniaxial yield strengths, tensile elongations, high-temperature thermal creep, Charpy impact ductile to brittle transient temperature (DBTT) and fracture toughness behaviour, and neutron irradiation-induced low-temperature hardening and embrittlement and intermediate-temperature volumetric void swelling (including effects associated with fusion-relevant helium and hydrogen generation) are described for research heats of the new steels.« less

  12. Fracture mechanism maps in unirradiated and irradiated metals and alloys

    NASA Astrophysics Data System (ADS)

    Li, Meimei; Zinkle, S. J.

    2007-04-01

    This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.

  13. Progress on performance assessment of ITER enhanced heat flux first wall technology after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bao, L.; Barabash, V.; Chappuis, Ph; Eaton, R.; Escourbiac, F.; Giqcuel, S.; Merola, M.; Mitteau, R.; Raffray, R.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Wirtz, M.; Boomstra, D.; Magielsen, A.; Chen, J.; Wang, P.; Gervash, A.; Safronov, V.

    2016-02-01

    ITER first wall (FW) panels are irradiated by energetic neutrons during the nuclear phase. Thus, an irradiation and high heat flux testing programme is undertaken by the ITER organization in order to evaluate the effects of neutron irradiation on the performance of enhanced heat flux (EHF) FW components. The test campaign includes neutron irradiation (up to 0.6-0.8 dpa at 200 °C-250 °C) of mock-ups that are representative of the final EHF FW panel design, followed by thermal fatigue tests (up to 4.7 MW m-2). Mock-ups were manufactured by the same manufacturing process as proposed for the series production. After a pre-irradiation thermal screening, eight mock-ups will be selected for the irradiation campaigns. This paper reports the preparatory work of HHF tests and neutron irradiation, assessment results as well as a brief description of mock-up manufacturing and inspection routes.

  14. Nonstoichiometry and phase stability of Al and Cr substituted Mg ferrite nanoparticles synthesized by citrate method

    NASA Astrophysics Data System (ADS)

    Ateia, Ebtesam. E.; Mohamed, Amira. T.

    2017-03-01

    The spinel ferrite Mg0.7Cr0.3Fe2O4, and Mg0.7Al0.3Fe2O4 were prepared by the citrate technique. All samples were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Micrographs (HRTEM), Energy Dispersive X ray Spectroscopy (EDAX) and Atomic Force Microscope (AFM). XRD confirmed the formation of cubic spinel structure of the investigated samples. The average crystallite sizes were found to be between 24.7 and 27.5 nm for Al3+ and Mg2+ respectively. The substitution of Cr3+/Al3+ in place of Mg2+ ion initiates a crystalline anisotropy due to large size mismatch between Cr /Al and Mg2+, which creates strain inside the crystal volume. According to VSM results, by adding Al3+ or Cr3+ ions at the expense of Mg2+, the saturation magnetization increased. The narrow hysteresis loop of the samples indicates that the amount of dissipated energy is small, which is desirable for soft magnetic applications. Magnetic dynamics of the samples were studied by measuring magnetic susceptibility versus temperature at different magnetic fields. The band gap energy, which was calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function, decreases with increasing the particle size. Furthermore, the band gaps were quite narrow (1.5-1.7 eV), hence the investigated samples could act as visible light driven photo catalysts. To sum up the addition of trivalent Al3+, and Cr3+ ions enhanced the optical, magnetic and structure properties of the samples. Mg0.7 Cr0.3Fe2O4 sample will be a better candidate for the optical applications and will also be a guaranteeing hopeful for technological applications.

  15. Deconvolution of trace element (As, Cr, Mo, Th, U) sources and pathways to surface waters of a gold mining-influenced watershed.

    PubMed

    Grosbois, C; Schäfer, J; Bril, H; Blanc, G; Bossy, A

    2009-03-01

    The Upper Isle River (SW France) drains the second most productive gold-mining district of France. A high resolution survey during one hydrological year of As, Cl(-), Cr, Fe, Mn, Mo, SO(4)(2-), Th and U dissolved concentrations in surface water aimed to better understand pathways of trace element export to the river system downstream from the mining district. Dissolved concentrations of As (up to 35000 ng/L) and Mo (up to 292 ng/L) were about 3-fold higher than the regional dissolved background and showed a negative logarithmic relation with discharge. Dissolved concentrations of Cr (up to 483 ng/L), Th (up to 48 ng/L) and U (up to 184 ng/L) increased with discharge. Geochemical relationships between molar ratios in surface water, geochemical background as well as rain- and groundwater data were combined. The contrasting behavior of distinct element groups was explained by a scenario involving three seasonal components: (i) The high flow component is poorly concentrated in As and Mo but highly concentrated in Cr, Th, U. This has been attributed to diffuse sources such as water-soil interactions, atmospheric inputs, bedrock and bed sediment weathering. Although this component probably also includes a contribution by weathering of sulfide veins, this signal is masked by dilution. (ii) One low flow component presents high SO(4)(2-), Fe, As and Mo and moderate Cr, Th and U concentrations. This component has been attributed to point sources such as mine gallery effluents, mining waste weathering and groundwater inputs from natural and/or mining-induced sulfide oxidation in the ore deposit. (iii) A second low flow component showing high As plus Mo concentrations associated with very low SO(4)(2-), Fe, Cr, Th and U concentrations, probably reflects trace element scavenging by ferric oxyhydroxide formation in the adjacent aquifer. This is supported by the decrease of Fe, Cr, Th and U in surface waters. Flux estimates suggest contrasting element-specific impacts on annual

  16. Defect-mediated transport and electronic irradiation effect in individual domains of CVD-grown monolayer MoS 2

    DOE PAGES

    Durand, Corentin; Zhang, Xiaoguang; Fowlkes, Jason; ...

    2015-01-16

    We study the electrical transport properties of atomically thin individual crystalline grains of MoS 2 with four-probe scanning tunneling microscopy. The monolayer MoS 2 domains are synthesized by chemical vapor deposition on SiO 2/Si substrate. Temperature dependent measurements on conductance and mobility show that transport is dominated by an electron charge trapping and thermal release process with very low carrier density and mobility. The effects of electronic irradiation are examined by exposing the film to electron beam in the scanning electron microscope in an ultrahigh vacuum environment. The irradiation process is found to significantly affect the mobility and the carriermore » density of the material, with the conductance showing a peculiar time-dependent relaxation behavior. It is suggested that the presence of defects in active MoS 2 layer and dielectric layer create charge trapping sites, and a multiple trapping and thermal release process dictates the transport and mobility characteristics. The electron beam irradiation promotes the formation of defects and impact the electrical properties of MoS 2. Finally, our study reveals the important roles of defects and the electron beam irradiation effects in the electronic properties of atomic layers of MoS 2.« less

  17. Cascades in model steels: The effect of cementite (Fe3C) and Cr23C6 particles on short-term crystal damage

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.

    2015-06-01

    Ferritic stainless steel can be modeled as an iron matrix containing precipitates of cementite (Fe3C) and Cr23C6. When used in nuclear power production the steels in the vicinity of the core start to accumulate damage due to neutrons. The role of the afore-mentioned carbides in this process is not well understood. In order to clarify the situation bulk cascades created by primary recoils in model steels have been carried out in the present work. Investigated configurations consisted of bulk ferrite containing spherical particles (diameter of 4 nm) of either (1) Fe3C or (2) Cr23C6. Primary recoils were initiated at different distances from the inclusions, with recoil energies varying between 100 eV and 1 keV. Results for the number of point defects such as vacancies and antisites are presented. These findings indicate that defects are also remaining when cascades are started outside the carbide inclusions. The work uses a recently developed Abell-Brenner-Tersoff potential for the Fe-Cr-C system.

  18. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  19. Further Charpy impact test results of low activation ferritic alloys, irradiated at 430{degrees}C to 67 dpa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, L.E.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    Miniature CVN specimens of four ferritic alloys, GA3X, F82H, GA4X and HT9, have been impact tested following irradiation at 430{degrees}C to 67 dpa. Comparison of the results with those of the previously tested lower dose irradiation condition indicates that the GA3X and F82H alloys, two primary candidate low activation alloys, exhibit virtually identical behavior following irradiation at 430{degrees}C to {approximately}67 dpa and at 370{degrees}C to {approximately}15 dpa. Very little shift is observed in either DBTT or USE relative to the unirradiated condition. The shifts in DBTT and USE observed in both GA4X and HT9 were smaller after irradiation at 430{degrees}Cmore » to {approximately}67 dpa than after irradiation at 370{degrees}C to {approximately}15 dpa.« less

  20. Thermomechanical treatment for improved neutron irradiation resistance of austenitic alloy (Fe-21Cr-32Ni)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. Tan; J. T. Busby; H. J. M. Chichester

    2013-06-01

    An optimized thermomechanical treatment (TMT) applied to austenitic alloy 800H (Fe-21Cr-32Ni) had shown significant improvements in corrosion resistance and basic mechanical properties. This study examined its effect on radiation resistance by irradiating both the solution-annealed (SA) and TMT samples at 500 degrees C for 3 dpa. Microstructural characterization using transmission electron microscopy revealed that the radiation-induced Frank loops, voids, and y'-Ni3(Ti,Al) precipitates had similar sizes between the SA and TMT samples. The amounts of radiation-induced defects and more significantly y' precipitates, however, were reduced in the TMT samples. These reductions would approximately reduce by 40.9% the radiation hardening compared tomore » the SA samples. This study indicates that optimized-TMT is an economical approach for effective overall property improvements.« less

  1. Tantalum modified ferritic iron base alloys

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.; Blankenship, C. P. (Inventor)

    1977-01-01

    Strong ferritic alloys of the Fe-CR-Al type containing 0.4% to 2% tantalum were developed. These alloys have improved fabricability without sacrificing high temperature strength and oxidation resistance in the 800 C (1475 F) to 1040 C (1900 F) range.

  2. Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.

    PubMed

    Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P

    2010-10-01

    We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.

  3. In vitro biocorrosion of Co-Cr-Mo implant alloy by macrophage cells.

    PubMed

    Lin, Hsin-Yi; Bumgardner, Joel D

    2004-11-01

    We hypothesized that macrophage cells and their released reactive chemical species (RCS) affect Co-Cr-Mo alloy's corrosion properties and that alloy corrosion products change macrophage cell behavior. A custom cell culture corrosion cell was used to evaluate how culture medium, cells, and RCS altered alloy corrosion in 3-day tests. Corrosion was evaluated by measuring total charge transfer at a constant potential using a potentiostat and metal ion release by atomic emission spectroscopy. Viability, proliferation, and NO (nitric oxide) and IL-1beta (interlukin-1beta) release were used to assess cellular response to alloy corrosion products. In the presence of activated cells, total charge transfers and Co ion release were the lowest (p < 0.05). This was attributed to an enhancement of the surface oxide by RCS. Cr and Mo release were not different between cells and activated cells. Low levels of metal ions did not affect cell viability, proliferation, or NO release, though IL-1beta released from the activated cells was higher on the alloy compared to the controls. These data support the hypothesis that macrophage cells and their RCS affect alloy corrosion. Changes in alloy corrosion by cells may be important to the development of host responses to the alloy and its corrosion products.

  4. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model

    PubMed Central

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-01-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10−9 MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal–ventral, ventral–dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. PMID:26661852

  5. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, James M.

    1981-01-01

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015-0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  6. Delta ferrite-containing austenitic stainless steel resistant to the formation of undesirable phases upon aging

    DOEpatents

    Leitnaker, J.M.

    Austenitic stainless steel alloys containing delta ferrite, such as are used as weld deposits, are protected against the transformation of delta ferrite to sigma phase during aging by the presence of carbon plus nitrogen in a weight percent 0.015 to 0.030 times the volume percent ferrite present in the alloy. The formation of chi phase upon aging is controlled by controlling the Mo content.

  7. Development of a small specimen test machine to evaluate irradiation embrittlement of fusion reactor materials

    NASA Astrophysics Data System (ADS)

    Ishii, T.; Ohmi, M.; Saito, J.; Hoshiya, T.; Ooka, N.; Jitsukawa, S.; Eto, M.

    2000-12-01

    Small specimen test techniques (SSTT) are essential to use an accelerator-driven deuterium-lithium stripping reaction neutron source for the study of fusion reactor materials because of the limitation of the available irradiation volume. A remote-controlled small punch (SP) test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). This report describes the SP test method and machine for use in a hot cell, and test results on irradiated ferritic steels. The specimen was either a coupon 10×10×0.25 mm 3 or a TEM disk 3 mm in diameter by 0.25 mm in thickness. Tests can be performed at temperatures ranging from 93 to 1123 K in a vacuum or in an inert gas environment. The ductile to brittle transition temperature of the irradiated ferritic steel as determined by the SP test is also evaluated.

  8. Oxidation behavior and electrical property of ferritic stainless steel interconnects with a Cr-La alloying layer by high-energy micro-arc alloying process

    NASA Astrophysics Data System (ADS)

    Feng, Z. J.; Zeng, C. L.

    Chromium volatility, poisoning of the cathode material and rapidly decreasing electrical conductivity are the major problems associated with the application of ferritic stainless steel interconnects of solid oxide fuel cells operated at intermediate temperatures. Recently, a novel and simple high-energy micro-arc alloying (HEMAA) process is proposed to prepare LaCrO 3-based coatings for the type 430 stainless steel interconnects using a LaCrO 3-Ni rod as deposition electrode. In this work, a Cr-La alloying layer is firstly obtained on the alloy surface by HEMAA using Cr and La as deposition electrode, respectively, followed by oxidation treatment at 850 °C in air to form a thermally grown LaCrO 3 coating. With the formation of a protective scale composed of a thick LaCrO 3 outer layer incorporated with small amounts of Cr-rich oxides and a thin Cr 2O 3-rich sub-layer, the oxidation rate of the coated steel is reduced remarkably. A low and stable electrical contact resistance is achieved with the application of LaCrO 3-based coatings, with a value less than 40 mΩ cm 2 during exposure at 850 °C in air for up to 500 h.

  9. Defects-tolerant Co-Cr-Mo dental alloys prepared by selective laser melting.

    PubMed

    Qian, B; Saeidi, K; Kvetková, L; Lofaj, F; Xiao, C; Shen, Z

    2015-12-01

    CrCoMo alloy specimens were successfully fabricated using selective laser melting (SLM). The aim of this study was to carefully investigate microstructure of the SLM specimens in order to understand the influence of their structural features inter-grown on different length scales ranging from nano- to macro-levels on their mechanical properties. Two different sets of processing parameters developed for building the inner part (core) and the surface (skin) of dental prostheses were tested. Microstructures were characterized by SEM, EBSD and XRD analysis. The elemental distribution was assessed by EDS line profile analysis under TEM. The mechanical properties of the specimens were measured. The microstructures of both specimens were characterized showing formation of grains comprised of columnar sub-grains with Mo-enrichment at the sub-grain boundaries. Clusters of columnar sub-grains grew coherently along one common crystallographic direction forming much larger single crystal grains which are intercrossing in different directions forming an overall dendrite-like microstructure. Three types of microstructural defects were occasionally observed; small voids (<10 μm), fine cracks at grain boundaries (<10 μm) and cracks at weld line boundaries (>10 μm). Despite the presence of these defects, the yield and the ultimate tensile strength (UTS) were 870 and 430MPa and 1300MPa and 1160MPa, respectively, for the skin and core specimens which are higher than casted dental alloy. Although the formation of microstructural defects is hard to be avoided during the SLM process, the SLM CoCrMo alloys can achieve improved mechanical properties than their casted counterparts, implying they are "defect-tolerant". Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Impact of N-plasma and Ga-irradiation on MoS2 layer in molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Mishra, Pawan; Tangi, Malleswararao; Ng, Tien Khee; Hedhili, Mohamed Nejib; Anjum, Dalaver H.; Alias, Mohd Sharizal; Tseng, Chien-Chih; Li, Lain-Jong; Ooi, Boon S.

    2017-01-01

    Recent interest in two-dimensional materials has resulted in ultra-thin devices based on the transfer of transition metal dichalcogenides (TMDs) onto other TMDs or III-nitride materials. In this investigation, we realized p-type monolayer (ML) MoS2, and intrinsic GaN/p-type MoS2 heterojunction by the GaN overgrowth on ML-MoS2/c-sapphire using the plasma-assisted molecular beam epitaxy. A systematic nitrogen plasma ( N2 * ) and gallium (Ga) irradiation studies are employed to understand the individual effect on the doping levels of ML-MoS2, which is evaluated by micro-Raman and high-resolution X-Ray photoelectron spectroscopy (HRXPS) measurements. With both methods, p-type doping was attained and was verified by softening and strengthening of characteristics phonon modes E2 g 1 and A 1 g from Raman spectroscopy. With adequate N2 * -irradiation (3 min), respective shift of 1.79 cm-1 for A 1 g and 1.11 cm-1 for E2 g 1 are obtained while short term Ga-irradiated (30 s) exhibits the shift of 1.51 cm-1 for A 1 g and 0.93 cm-1 for E2 g 1 . Moreover, in HRXPS valence band spectra analysis, the position of valence band maximum measured with respect to the Fermi level is determined to evaluate the type of doping levels in ML-MoS2. The observed values of valance band maximum are reduced to 0.5, and 0.2 eV from the intrinsic value of ≈1.0 eV for N2 * - and Ga-irradiated MoS2 layers, which confirms the p-type doping of ML-MoS2. Further p-type doping is verified by Hall effect measurements. Thus, by GaN overgrowth, we attained the building block of intrinsic GaN/p-type MoS2 heterojunction. Through this work, we have provided the platform for the realization of dissimilar heterostructure via monolithic approach.

  11. In-situ determination of austenite and martensite formation in 13Cr6Ni2Mo supermartensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojack, A., E-mail: a.bojack@tudelft.nl; Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft; Zhao, L.

    2012-09-15

    In-situ analysis of the phase transformations in a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) was carried out using a thermo-magnetic technique, dilatometry and high temperature X-ray diffractometry (HT-XRD). A combination of the results obtained by the three applied techniques gives a valuable insight in the phase transformations during the austenitization treatment, including subsequent cooling, of the 13Cr6Ni2Mo supermartensitic stainless steel, where the magnetic technique offers a high accuracy in monitoring the austenite fraction. It was found by dilatometry that the austenite formation during heating takes place in two stages, most likely caused by partitioning of Ni into austenite. The in-situ evolutionmore » of the austenite fraction is monitored by high-temperature XRD and dilatometry. The progress of martensite formation during cooling was described with a Koistinen-Marburger relation for the results obtained from the magnetic and dilatometer experiments. Enhanced martensite formation at the sample surface was detected by X-ray diffraction, which is assumed to be due to relaxation of transformation stresses at the sample surface. Due to the high alloy content and high thermodynamic stability of austenite at room temperature, 4 vol.% of austenite was found to be stable at room temperature after the austenitization treatment. - Highlights: Black-Right-Pointing-Pointer We in-situ analyzed phase transformations and fractions of a 13Cr6Ni2Mo SMSS. Black-Right-Pointing-Pointer Higher accuracy of the austenite fraction was obtained from magnetic technique. Black-Right-Pointing-Pointer Austenite formation during heating takes place in two stages. Black-Right-Pointing-Pointer Enhanced martensite formation at the sample surface detected by X-ray diffraction.« less

  12. Hidroxyapatite Coating on CoCrMo Alloy Titanium Nitride Coated Using Biomimetic Method

    NASA Astrophysics Data System (ADS)

    Charlena; Sukaryo, S. G.; Fajar, M.

    2016-11-01

    Bone implants is a way to cure broken bones which is being developed. The implants can be made of metals, ceramics and polymers. Metallic materials commonly used are titanium (Ti), stainless steel, and metal alloys. This study used Co-based alloys, i.e. CoCrMo coated with titanium nitride (TiN) which was then coated on hidroxyapatite (HAp). The HAp coating on the surface of CoCrMo alloy was done by biomimetic methods, first by soaking the metal alloys in simulated body fluid (SBF) solution for 18, 24, and 36 hours. The immersion in the SBF solution produced white coat on the surface of the metal alloy. The layers formed were analyzed by scanning electron microscope (SEM) and characterized by x-ray diffractometer (XRD). Based on the SEM results of 36 hours treatment, the morphology of apatite crystal formed fine grains. According to XRD result, there were HAp peaks at angles 2θ 31.86, 32.25, dan 39.48. However, there were also CaCO3 peaks at angles 2θ 29.46, 36.04, and 46.79. It indicated the pure HAp is not yet formed.

  13. Irradiation-induced microchemical changes in highly irradiated 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Fukuya, K.

    2016-02-01

    Cold-worked 316 stainless steel specimens irradiated to 74 dpa in a pressurized water reactor (PWR) were analyzed by atom probe tomography (APT) to extend knowledge of solute clusters and segregation at higher doses. The analyses confirmed that those clusters mainly enriched in Ni-Si or Ni-Si-Mn were formed at high number density. The clusters were divided into three types based on their size and Mn content; small Ni-Si clusters (3-4 nm in diameter), and large Ni-Si and Ni-Si-Mn clusters (8-10 nm in diameter). The total cluster number density was 7.7 × 1023 m-3. The fraction of large clusters was almost 1/10 of the total density. The average composition (in at%) for small clusters was: Fe, 54; Cr, 12; Mn, 1; Ni, 22; Si, 11; Mo, 1, and for large clusters it was: Fe, 44; Cr, 9; Mn, 2; Ni, 29; Si, 14; Mo,1. It was likely that some of the Ni-Si clusters correspond to γ‧ phase precipitates while the Ni-Si-Mn clusters were precursors of G phase precipitates. The APT analyses at grain boundaries confirmed enrichment of Ni, Si, P and Cu and depletion of Fe, Cr, Mo and Mn. The segregation behavior was consistent with previous knowledge of radiation induced segregation.

  14. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  15. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  16. Evaluation on the Effect of Composition on Radiation Hardening and Embrittlement in Model FeCrAl Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip

    2015-09-18

    This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scatteringmore » (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre

  17. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-04-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  18. Effect of Heat Treatment on the Properties of CoCrMo Alloy Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Guoqing, Zhang; Junxin, Li; Xiaoyu, Zhou; Jin, Li; Anmin, Wang

    2018-05-01

    To obtain medical implants with better mechanical properties, it is necessary to conduct studies on the heat treatment process of the selective laser melting (SLM) manufacturing parts. The differential scanning calorimetry method was used to study the heat treatment process of the phase transition of SLM CoCrMo alloy parts. The tensile properties were tested with a tensile test machine, the quantity of carbide precipitated after heat treatment was measured by energy-dispersive x-ray spectroscopy, and the tensile fracture morphology of the parts was investigated using SEM. The obtained results were: Mechanical properties in terms of elongation and tensile strength of CoCrMo alloy manufactured by SLM that had been heat-treated at 1200 °C for 2 h followed by cooling with water were not only higher than the national standard but also higher than the experimental results of the same batch of castings. The mechanism of fracture of parts manufactured by SLM without heat treatment was brittle fracture, whereas parts which had been heat-treated at 1200 °C for 2 h combined with water cooling and at 1200 °C for 1 h with furnace cooling suffered ductile fracture. This study provides the basis for defining the applications for which CoCrMo alloys manufactured by SLM are suitable within the field of medical implants.

  19. Effect of the environment on wear ranking and corrosion of biomedical CoCrMo alloys.

    PubMed

    Muñoz, A Igual; Mischler, S

    2011-03-01

    The corrosion behaviour and the wear ranking of biomedical high carbon (HC) and low carbon (LC) CoCrMo alloys sliding against an alumina ball in four different simulated body fluids [NaCl and phosphate buffered solutions (PBS) with and without albumin] has been analyzed by tribocorrosion and electrochemical techniques. The effects of alloy and of albumin on corrosion depend on the base electrolyte: differences between LC and HC alloy were only observed in NaCl solutions but not in PBS. Albumin increased significantly corrosion of both alloys in PBS solutions while its effect in NaCl was smaller. The wear ranking of the HC and LC alloys also depends on the environment. In the present study, HC CoCrMo alloy had lower wear resistance in NaCl and PBS + albumin than the LC alloy, while no differences between both alloys were found in the other solutions. This was attributed to surface chemical effects affecting third body behaviour.

  20. Lithium target for accelerator based BNCT neutron source: Influence by the proton irradiation on lithium

    NASA Astrophysics Data System (ADS)

    Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.

    2012-12-01

    The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.

  1. The 14 MeV Neutron Irradiation Facility in MARIA Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopowicz, R.; Pytel, K.; Dorosz, M.

    2015-07-01

    The MARIA reactor with thermal neutron flux density up to 3x10{sup 14} cm{sup -2} s{sup -1} and a number of vertical channels is well suited to material testing by thermal neutron treatment. Beside of that some fast neutron irradiation facilities are operated in MARIA reactor as well. One of them is thermal to 14 MeV neutron converter launched in 2014. It is especially devoted to fusion devices material testing irradiation. The ITER and DEMO research thermonuclear facilities are to be run using the deuterium - tritium fusion reaction. Fast neutrons (of energy approximately 14 MeV) resulting from the reaction aremore » essential to carry away the released thermonuclear energy and to breed tritium. However, constructional materials of which thermonuclear reactors are to be built must be specially selected to survive intense fluxes of fast neutrons. Strong sources of 14 MeV neutrons are needed if research on resistance of candidate materials to such fluxes is to be carried out effectively. Nuclear reactor-based converter capable to convert thermal neutrons into 14 MeV fast neutrons may be used to that purpose. The converter based on two stage nuclear reaction on lithium-6 and deuterium compounds leading to 14 MeV neutron production. The reaction chain is begun by thermal neutron capture by lithium-6 nucleus resulted in triton release. The neutron and triton transport calculations have been therefore carried-out to estimate the thermal to 14 MeV neutron conversion efficiency and optimize converter construction. The usable irradiation space of ca. 60 cm{sup 3} has been obtained. The released energy have been calculated. Heat transport has been asses to ensure proper device cooling. A set of thermocouples has been installed in converter to monitor its temperature distribution on-line. Influence of converter on reactor operation has been studied. Safety analyses of steady states and transients have been done. Performed calculations and analyses allow designing the

  2. Heat treatment for improvement in lower temperature mechanical properties of 0.40 pct C-Cr-Mo ultrahigh strength steel

    NASA Astrophysics Data System (ADS)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1983-11-01

    In the previous paper, it was reported that isothermal heat treatment of a commercial Japanese 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel (AISI 4340 type) at 593 K for a short time followed by water quenching, in which a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite is produced, results in the improvement of low temperature mechanical properties (287 to 123 K). The purpose of this paper is to study whether above new heat treatment will still be effective in commercial practice for improving low temperature mechanical properties of the ultrahigh strength steel when applied to a commercial Japanese 0.40 pct C-Cr-Mo ultrahigh strength steel which is economical because it lacks the expensive nickel component (AISI 4140 type). At and above 203 K this new heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved the strength, tensile ductility, and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel. At and above 203 K the new heat treatment also produced superior fracture ductility and notch toughness results at similar strength levels as compared to those obtained by using γ α' repetitive heat treatment for the same steel. However, the new heat treatment remarkably decreased fracture ductility and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel below 203 K, and thus no significant improvement in the mechanical properties was noticeable as compared with the properties produced by the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment. This contrasts with the fact that the new heat treatment, as compared with the conventional 1133 K direct water quenching treatment and the γ α' repetitive heat treatment, dramatically improved the notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel, providing a better combination of strength and ductility throughout the 287 to 123 K temperature range. The difference

  3. Structural investigation of chemically synthesized ferrite magnetic nanomaterials

    NASA Astrophysics Data System (ADS)

    Uyanga, E.; Sangaa, D.; Hirazawa, H.; Tsogbadrakh, N.; Jargalan, N.; Bobrikov, I. A.; Balagurov, A. M.

    2018-05-01

    In recent times, interest in ferrite magnetic nanomaterials has considerably grown, mainly due to their highly promising medical and biological applications. Spinel ferrite powder samples, with high heat generation abilities in AC magnetic fields, were studied for their application to the hyperthermia treatment of cancer tumors. These properties of ferrites strongly depend on their chemical composition, ion distribution between crystallographic positions, magnetic structure and method of preparation. In this study, crystal and magnetic structures of several magnetic spinels were investigated by neutron diffraction. The explanation of the mechanism triggering the heat generation ability in the magnetic materials, and the electronic and magnetic states of ferrite-spinel type structures, were theoretically defined by a first-principles method. Ferrites with the composition of CuxMg1-xFe2O4 have been investigated as a heat generating magnetic nanomaterial. Atomic fraction of copper in ferrite was varied between 0 and 100% (that is, x between 0 and 1.0 with 0.2 steps), with the copper dope limit corresponding to appear a tetragonal phase.

  4. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  5. Biospectroscopy for studying the influences of anti-diabetic metals (V, Cr, Mo, and W) to the insulin signaling pathway

    NASA Astrophysics Data System (ADS)

    Safitri, Anna; Levina, Aviva; Lee, Joonsup; Carter, Elizabeth A.; Lay, Peter A.

    2017-03-01

    The prevalence of diabetes, particularly with respect to type 2 diabetes, has reached epidemic proportions and continues to grow worldwide. One of the potential therapeutic targets in the treatment of type 2 diabetes involves the role of protein tyrosine phosphatases in the negative regulation of insulin signaling. The complexes of V(V/IV), Cr(III), W(VI), and Mo(VI), have all been proposed as possible drugs in the treatment of diabetes mellitus. Anti-diabetic activities of V(V/IV), Cr(III), Mo(VI), and W(VI) compounds are likely to be based on similar mechanisms, which involve phosphorylation/dephosphorylation reactions in the glucose uptake and metabolism. In order to clearly understand biological activities and phosphorylation/dephosphorylation reactions involved in anti-diabetic actions of Cr(III), V(V/IV), Mo(VI), and W(VI) complexes, the current research involves the use of cultured insulin-sensitive cells treated with these compounds. These reactions were investigated through vibrational spectroscopy. Protein phosphorylation/dephosphorylation induced conformational changes in secondary protein structure from α-helix to β-sheet, and these changes were detected by the IR spectra, which showed changes in the wavenumber and intensities of signals within the composite protein amide I band.

  6. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  7. Model calculation of Cr dissolution behavior of ODS ferritic steel in high-temperature flowing sodium environment

    NASA Astrophysics Data System (ADS)

    Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji

    2018-07-01

    A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.

  8. Neutronic and thermal-hydraulic analysis of fission molybdenum-99 production at Tehran Research Reactor using LEU plate targets.

    PubMed

    Abedi, Ebrahim; Ebrahimkhani, Marzieh; Davari, Amin; Mirvakili, Seyed Mohammad; Tabasi, Mohsen; Maragheh, Mohammad Ghannadi

    2016-12-01

    Efficient and safe production of molybdenum-99 ( 99 Mo) radiopharmaceutical at Tehran Research Reactor (TRR) via fission of LEU targets is studied. Neutronic calculations are performed to evaluate produced 99 Mo activity, core neutronic safety parameters and also the power deposition values in target plates during a 7 days irradiation interval. Thermal-hydraulic analysis has been also carried out to obtain thermal behavior of these plates. Using Thermal-hydraulic analysis, it can be concluded that the safety parameters are satisfied in the current study. Consequently, the present neutronic and thermal-hydraulic calculations show efficient 99 Mo production is accessible at significant activity values in TRR current core configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Measurement and Estimation of the 99Mo Production Yield by 100Mo(n,2n)99Mo

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi; Watanabe, Satoshi; Saeki, Hideya; Kawabata, Masako; Hashimoto, Shintaro; Nagai, Yasuki

    2017-11-01

    We, for the first time, measured the yield of 99Mo, the mother nuclide of 99mTc used in nuclear medicine diagnostic procedures, produced by the 100Mo(n,2n)99Mo reaction with accelerator neutrons. The neutrons with a continuous energy spectrum from the thermal energy up to about 40 MeV were provided by the C(d,n) reaction with 40 MeV deuteron beams. It was proved that the 99Mo yield agrees with that estimated by using the latest data on neutrons from the C(d,n) reaction and the evaluated cross section of the 100Mo(n,2n)99Mo reaction given in the Japanese Evaluated Nuclear Data Library. On the basis of the agreement, a systematic calculation was carried out to search for an optimum condition that enables us to produce as much 99Mo as possible with a good 99Mo/100Mo value from an economical point of view. The calculated 99Mo yield from a 150 g 100MoO3 sample indicated that about 30% of the demand for 99Mo in Japan can be met with a single accelerator capable of 40 MeV, 2 mA deuteron beams. Here, by referring to an existing 18F-fluorodeoxyglucose (FDG) distribution system we assumed that 99mTc radiopharmaceuticals formed after separating 99mTc from 99Mo can be delivered to hospitals from a radiopharmaceutical company within 6 h. The elution of 99mTc from 99Mo twice a day would meet about 50% of the demand for 99Mo.

  10. Structural, magnetic and transport properties of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} (−1≤x≤1/3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, H.F.; School of Mathematics and Physics, University of Science and Technology, Beijing 100083; Cao, L.P.

    Pb{sub 2}Cr{sub 1+x}Mo{sub 1-x}O{sub 6} (−1≤x≤1/3) samples were synthesized via a high pressure and high temperature route. X-ray diffraction results suggest the samples crystallize in a disordered double perovskite structure (Pm-3m). X-ray photoemission spectroscopy results confirm the presence of Mo{sup 4+} for x=−1 and Mo{sup 6+} for x=1/3. The measured magnetic and electrical properties exhibit systematic change with increasing x. - Highlights: • A series of Pb{sub 2}Cr{sub 1+x}Mo{sub 1−x}O{sub 6} samples were synthesized under high pressure. • Magnetic and electrical properties of the series samples were investigated. • Valence states of Cr and Mo were determined through the analysesmore » of XRD and XPS results. • Ground state of PbMoO{sub 3} were determined through the transport study and first-principles calculations.« less

  11. Heat-affected zone microstructure and mechanical properties evolution for laser remanufacturing 35CrMoA axle steel

    NASA Astrophysics Data System (ADS)

    Feng, Xiangyi; Dong, Shiyun; Yan, Shixing; Liu, Xiaoting; Xu, Binshi; Pan, Fusheng

    2018-03-01

    In this article, by using orthogonal test the technological test was conducted and the optimum processing of the remanufacturing35CrMoA axle were obtained. The evolution of microstructure and mechanical property of HAZ were investigated. The microstructure of HAZ was characterized by means of OM and SEM. Meanwhile hardness distribution in HAZ and tensile property of cladding-HAZ-substrate samples were measured. The microstructure of cladding and HAZ were observed. The microsturcture evoltion and the mechanism of harden in the HAZ was discussed and revealed. The results indicated that the remanufacturing part has excellent strength due to grain refining and dispersive distribution of nanoscale cementite. The remanufacturing part will have uniform microstructure and hardness matching with that of 35CrMoA axle by using stress-relieving annealing at 580°.

  12. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  13. Kinetics of Cr/Mo-rich precipitates formation for 25Cr-6.9Ni-3.8Mo-0.3N super duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Byun, Sang-Ho; Kang, Namhyun; Lee, Tae-Ho; Ahn, Sang-Kon; Lee, Hae Woo; Chang, Woong-Seong; Cho, Kyung-Mox

    2012-04-01

    The amount and composition of Cr-rich (σ) and Mo-rich (χ) precipitates in super duplex stainless steels was analyzed. An isothermal heat treatment was conducted at temperatures ranging from 700 °C to 1000 °C for up to 10 days. A time-temperature transformation (TTT) diagram was constructed for the mixture of σ and χ phases. The mixture of the σ and χ phases exhibited the fastest rate of formation at approximately 900 °C. Minor phases, such as Cr2N, M23C6, and M7C3, were also detected using a transmission electron microscopy (TEM). Also, a continuous cooling transformation (CCT) diagram was constructed for the mixture of σ and χ phases using the Johnson-Mehl-Avrami equation. Compared with the known CCT diagram of the σ phase, this study revealed faster kinetics with an order of magnitude difference and a new CCT diagram was also developed for a mixture of σ and χ phases. The calculated fraction of σ and χ phases obtained at a cooling speed of 0.5 °C/s was in good agreement with the experimental data.

  14. Microstructural characterization of as-cast biocompatible Co-Cr-Mo alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giacchi, J.V., E-mail: jgiacchi@exa.unicen.edu.ar; Instituto de Fisica de Materiales Tandil; Morando, C.N.

    2011-01-15

    The microstructure of a cobalt-base alloy (Co-Cr-Mo) obtained by the investment casting process was studied. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. This work focuses on the resulting microstructures arising from samples poured under industrial environment conditions, of three different Co-Cr-Mo alloys. For this purpose, we used: 1) an alloy built up from commercial purity constituents, 2) a remelted alloy and 3) a certified alloy for comparison. The characterization of the samples was achieved by using opticalmore » microscopy (OM) with a colorant etchant to identify the present phases and scanning electron microscopy (SE-SEM) and energy dispersion spectrometry (EDS) techniques for a better identification. In general the as-cast microstructure is a Co-fcc dendritic matrix with the presence of a secondary phase, such as the M{sub 23}C{sub 6} carbides precipitated at grain boundaries and interdendritic zones. These precipitates are the main strengthening mechanism in this type of alloys. Other minority phases were also reported and their presence could be linked to the cooling rate and the manufacturing process variables and environment. - Research Highlights: {yields}The solidification microstructure of an ASTM-F75 type alloy were studied. {yields}The alloys were poured under an industrial environment. {yields}Carbides and sigma phase identified by color metallography and scanning microscopy (SEM and EDS). {yields}Two carbide morphologies were detected 'blocky type' and 'pearlite type'. {yields}Minority phases were also detected.« less

  15. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  16. Effect of post-irradiation annealing on the irradiated microstructure of neutron-irradiated 304L stainless steel

    NASA Astrophysics Data System (ADS)

    Jiao, Z.; Hesterberg, J.; Was, G. S.

    2018-03-01

    Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.

  17. Nanoindentation of ion-irradiated reactor pressure vessel steels - model-based interpretation and comparison with neutron irradiation

    NASA Astrophysics Data System (ADS)

    Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.

    2018-04-01

    Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.

  18. RERTR-12 Insertion 2 Irradiation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez; G. S. Chang; D. M. Wachs

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-12 was designed to provide comprehensive information on the performance of uranium-molybdenum (U-Mo) based monolithic fuels for research reactor applications.1 RERTR-12 insertion 2 includes the capsules irradiated during the last three irradiation cycles. These capsules include Z, Y1, Y2 and Y3 type capsules. The following report summarizes the life of the RERTR-12 insertion 2 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  19. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Abou Taleb, W. M.; Madi, N. K.; Kassem, M. E.; El-Khatib, A. M.

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 × 10 9 n/cm 2. The optical energy gap Eop exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure Cp showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected.

  20. Neutron Spectrum Measurements from Irradiations at NCERC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackman, Kevin Richard; Mosby, Michelle A.; Bredeweg, Todd Allen

    2015-04-15

    Several irradiations have been conducted on assemblies (COMET/ZEUS and Flattop) at the National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS). Configurations of the assemblies and irradiated materials changed between experiments. Different metallic foils were analyzed using the radioactivation method by gamma-ray spectrometry to understand/characterize the neutron spectra. Results of MCNP calculations are shown. It was concluded that MCNP simulated spectra agree with experimental measurements, with the caveats that some data are limited by statistics at low-energies and some activation foils have low activities.

  1. Microstructural Characteristics of Plasma Nitrided Layer on Hot-Rolled 304 Stainless Steel with a Small Amount of α-Ferrite

    NASA Astrophysics Data System (ADS)

    Xu, Xiaolei; Yu, Zhiwei; Cui, Liying; Niu, Xinjun; Cai, Tao

    2016-02-01

    The hot-rolled 304 stainless steel with γ-austenite and approximately 5 pct α-ferrite elongated along the rolling direction was plasma-nitrided at a low temperature of 693 K (420 °C). X-ray diffraction results revealed that the nitrided layer was mainly composed of the supersaturated solid solution of nitrogen in austenite ( γ N). Transmission electron microscopy (TEM) observations showed that the microstructure of the γ N phase exhibited "fracture factor contrast" reflective of the occurrence of fine pre-precipitations in γ N by the continuous precipitation. The occurrence of a diffuse scattering effect on the electron diffraction spots of γ N indicated that the pre-precipitation took place in γ N in the form of strongly bonded Cr-N clusters or pairs due to a strong attractive interaction of nitrogen with chromium. Scanning electron microscopy and TEM observations indicated that the discontinuous precipitation initiated from the γ/ α interfaces and grew from the austenite boundaries into austenite grains to form a lamellar structure consisting of CrN and ferrite. The orientation relationship between CrN and ferrite corresponded to a Baker-Nutting relationship: (100)CrN//(100) α ; [011]CrN//[001] α . A zigzag boundary line following the banded structure of alternating γ-austenite and elongated α-ferrite was presented between the nitrided layer and the substrate to form a continuous varying layer thickness, which resulted from the difference in diffusivities of nitrogen in α-ferrite and γ-austenite, along the γ/ α interfaces and through the lattice. Microstructural features similar to the γ N were also revealed in the ferrite of the nitrided layer by TEM. It was not excluded that a supersaturated solid solution of nitrogen in ferrite ( α N) formed in the nitrided layer.

  2. Theoretical study of the electron affinities of MF6 and MF - 6 (M=Cr, Mo, and W) using a model potential method

    NASA Astrophysics Data System (ADS)

    Sakai, Yoshiko; Miyoshi, Eisaku

    1987-09-01

    Electronic structures of MF6, MF-6, and MF2-6 (M=Cr, Mo, and W) were calculated using a model potential method in the Hartree-Fock-Roothaan scheme. Major relativistic effects were taken into account for the calculations on MoFq6 and WFq6 (q=0, -1, and -2). It is shown that the calculated electron affinities (EAs) are extremely high for all the MF6 molecules, and that the CrF-6 and MoF-6 anions also have positive EAs, whereas the WF-6 anion has a slightly negative EA. The behaviors of the EAs are interpreted with reference to the electronic structures of the MFq6 systems.

  3. Determining organ dose conversion coefficients for external neutron irradiation by using a voxel mouse model.

    PubMed

    Zhang, Xiaomin; Xie, Xiangdong; Qu, Decheng; Ning, Jing; Zhou, Hongmei; Pan, Jie; Yang, Guoshan

    2016-03-01

    A set of fluence-to-dose conversion coefficients has been calculated for neutrons with energies <20 MeV using a developed voxel mouse model and Monte Carlo N-particle code (MCNP), for the purpose of neutron radiation effect evaluation. The calculation used 37 monodirectional monoenergetic neutron beams in the energy range 10(-9) MeV to 20 MeV, under five different source irradiation configurations: left lateral, right lateral, dorsal-ventral, ventral-dorsal, and isotropic. Neutron fluence-to-dose conversion coefficients for selected organs of the body were presented in the paper, and the effect of irradiation geometry conditions, neutron energy and the organ location on the organ dose was discussed. The results indicated that neutron dose conversion coefficients clearly show sensitivity to irradiation geometry at neutron energy below 1 MeV. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  4. Effects of Neutron Irradiation and Post-irradiation Annealing on the Microstructure of HT-UPS Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chi; Chen, Wei-Ying; Zhang, Xuan

    Microstructural changes resulted from neutron irradiation and post-irradiation annealing in a high-temperature ultra-fine precipitate strengthened (HT-UPS) stainless steel were characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Three HT-UPS samples were neutron-irradiated to 3 dpa at 500 °C, and after irradiation, two of them were annealed for 1 h at 600 °C and 700 °C, respectively. Frank dislocation loops were the dominant defect structure in both the as-irradiated and 600 °C post-irradiation-annealed (PIAed) samples, and the loop sizes and densities were similar in these two samples. Unfaulted dislocation loops were observed in the 700 °C PIAed sample, and the loop density was greatly reducedmore » in comparison with that in the as-irradiated sample. Nano-sized MX precipitates were observed under TEM in the 700 °C PIAed sample, but not in the 600 °C PIAed or the as-irradiated samples. The titanium-rich clusters were identified in all three samples using APT. The post-irradiation annealing (PIA) caused the growth of the Ti-rich clusters with a stronger effect at 700 °C than at 600 °C. The irradiation caused elemental segregations at the grain boundary and the grain interior, and the grain boundary segregation behavior is consistent with observations in other irradiated austenitic steels. APT results showed that PIA reduced the magnitude of irradiation induced segregations.« less

  5. [Use of powder metallurgy for development of implants of Co-Cr-Mo alloy powder].

    PubMed

    Dabrowski, J R

    2001-04-01

    This paper discusses the application of powder metallurgy for the development of porous implantation materials. Powders obtained from Co-Cr-Mo alloy with different carbon content by water spraying and grinding, have been investigated. Cold pressing and rotary re-pressing methods were used for compressing the powder. It was found that the sintered materials obtained from water spraying have the most advantageous properties.

  6. Evaluation Of Shielding Efficacy Of A Ferrite Containing Ceramic Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verst, C.

    2015-10-12

    The shielding evaluation of the ferrite based Mitsuishi ceramic material has produced for several radiation sources and possible shielding sizes comparative dose attenuation measurements and simulated projections. High resolution gamma spectroscopy provided uncollided and scattered photon spectra at three energies, confirming theoretical estimates of the ceramic’s mass attenuation coefficient, μ/ρ. High level irradiation experiments were performed using Co-60, Cs-137, and Cf-252 sources to measure penetrating dose rates through steel, lead, concrete, and the provided ceramic slabs. The results were used to validate the radiation transport code MCNP6 which was then used to generate dose rate attenuation curves as a functionmore » of shielding material, thickness, and mass for photons and neutrons ranging in energy from 200 keV to 2 MeV.« less

  7. Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel

    NASA Astrophysics Data System (ADS)

    Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.

    2017-09-01

    The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½<111> and <100> types were detected by imaging using different diffraction conditions.

  8. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  9. Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions.

    PubMed

    Badwar, Sylvia; Ghosh, Reetuparna; Lawriniang, Bioletty M; Vansola, Vibha; Sheela, Y S; Naik, Haladhara; Naik, Yeshwant; Suryanarayana, Saraswatula V; Jyrwa, Betylda; Ganesan, Srinivasan

    2017-11-01

    The formation cross-section of medical isotope 99 Mo from the 98 Mo(n,γ) reaction at the neutron energy of 0.025eV and from the 100 Mo(n,2n) reaction at the neutron energies of 11.9 and 15.75MeV have been determined by using activation and off-line γ-ray spectrometric technique. The thermal neutron energy of 0.025eV was used from the reactor critical facility at BARC, Mumbai, whereas the average neutron energies of 11.9 and 15.75MeV were generated using 7 Li(p,n) reaction in the Pelletron facility at TIFR, Mumbai. The experimentally determined cross-sections were compared with the evaluated nuclear data libraries of ENDF/B-VII.1, CENDL-3.1, JENDL-4.0 and JEFF-3.2 and are found to be in close agreement. The 100 Mo(n,2n) 99 Mo reaction cross-sections were also calculated theoretically by using TALYS-1.8 and EMPIRE-3.2 computer codes and compared with the experimental data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Long-term strength and allowable stresses of grade 10Kh9MFB and X10CrMoVNb9-1 (T91/P91) chromium heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.

    2015-04-01

    Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.

  11. Corrosion behavior of steels in liquid lead bismuth with low oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Kurata, Yuji; Futakawa, Masatoshi; Saito, Shigeru

    2008-02-01

    Corrosion tests in pots were conducted to elucidate corrosion behavior of various steels in liquid lead-bismuth for 3000 h under the condition of an oxygen concentration of 5 × 10 -8 wt% at 450 °C and an oxygen concentration of 3 × 10 -9 wt% at 550 °C, respectively. Significant corrosion was not observed at 450 °C for ferritic/martensitic steels, F82H, Mod.9Cr-1Mo steel, 410SS, 430SS except 2.25Cr-1Mo steel. Pb-Bi penetration into steels and dissolution of elements into Pb-Bi were severe at 550 °C even for ferritic/martensitic steels. Typical dissolution attack occurred for pure iron both at 550 °C without surface Fe 3O 4 and at 450 °C with a thin Fe 3O 4 film. Ferritization due to dissolution of Ni and Cr, and Pb-Bi penetration were recognized for austenitic stainless steels, 316SS and 14Cr-16Ni-2Mo steel at both temperatures of 450 °C and 550 °C. The phenomena were mitigated for 18Cr-20Ni-5Si steel. In some cases oxide films could not be a corrosion barrier in liquid lead-bismuth.

  12. First-principles investigation of neutron-irradiation-induced point defects in B4C, a neutron absorber for sodium-cooled fast nuclear reactors

    NASA Astrophysics Data System (ADS)

    You, Yan; Yoshida, Katsumi; Yano, Toyohiko

    2018-05-01

    Boron carbide (B4C) is a leading candidate neutron absorber material for sodium-cooled fast nuclear reactors owing to its excellent neutron-capture capability. The formation and migration energies of the neutron-irradiation-induced defects, including vacancies, neutron-capture reaction products, and knocked-out atoms were studied by density functional theory calculations. The vacancy-type defects tend to migrate to the C–B–C chains of B4C, which indicates that the icosahedral cage structures of B4C have strong resistance to neutron irradiation. We found that lithium and helium atoms had significantly lower migration barriers along the rhombohedral (111) plane of B4C than perpendicular to this plane. This implies that the helium and lithium interstitials tended to follow a two-dimensional diffusion regime in B4C at low temperatures which explains the formation of flat disk like helium bubbles experimentally observed in B4C pellets after neutron irradiation. The knocked-out atoms are considered to be annihilated by the recombination of the close pairs of self-interstitials and vacancies.

  13. Tribological and corrosion properties of plasma nitrided and nitrocarburized 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kusmic, D.; Van Thanh, D.

    2017-02-01

    This article deals with tribological and corrosion resistance comparison of plasma nitrided and nitrocarburized 42CrMo4 steel used for breech mechanism in the armament production. Increasing of materials demands (like wear resistance, surface hardness, running-in properties and corrosion resistance) used for armament production and in other industrial application leads in the field of surface treatment. Experimental steel samples were plasma nitrided under different nitriding gas ratio at 500 °C for 15h and nitrocarburized for 45 min at temperature 590°C and consequently post-oxidized for 10 min at 430°C. Individual 42CrMo4 steel samples were subsequently metallographically evaluated and characterized by hardness and microhardness measuring. The wear test “ball on disc” was realized for measuring of adhesive wear and coefficient of friction during unlubricated sliding. NSS corrosion tests were realized for corrosion resistance evaluation and expressed by corroded area and calculated corrosion rate. The corrosion resistance evaluation is by the surface corrosion-free surfaces evaluation supplemented using the laser confocal microscopy. Due to different surface treatment and plasma nitriding conditions, there are wear resistance and corrosion resistance differences evident between the plasma nitrided steel samples as well.

  14. Intergranular diffusion and embrittlement of a Ni-16Mo-7Cr alloy in Te vapor environment

    NASA Astrophysics Data System (ADS)

    Cheng, Hongwei; Li, Zhijun; Leng, Bin; Zhang, Wenzhu; Han, Fenfen; Jia, Yanyan; Zhou, Xingtai

    2015-12-01

    Nickel and some nickel-base alloys are extremely sensitive to intergranular embrittlement and tellurium (Te) enhanced cracking, which should be concerned during their serving in molten salt reactors. Here, a systematic study about the effects of its temperature on the reaction products at its surface, the intergranular diffusion of Te in its body and its embrittlement for a Ni-16Mo-7Cr alloy contacting Te is reported. For exposed to Te vapor at high temperature (823-1073 K), the reaction products formed on the surface of the alloy were Ni3Te2, CrTe, and MoTe2, and the most serious embrittlement was observed at 1073 K. The kinetic measurement in terms of Te penetration depth in the alloy samples gives an activation energy of 204 kJ/mol. Electron probe microanalysis confirmed the local enrichment of Te at grain boundaries. And clearly, the embrittlement was results from the intergranular diffusion and segregation of element Te.

  15. Effect of neutron irradiation on the thermoelectric properties of SiGe alloys

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Mccormack, Joe; Zoltan, Andy; Farmer, John

    1990-01-01

    Zone-leveled and hot-pressed n- and p-type Si80Ge20 alloys were irradiated with neutrons to a fluence of 4 x 1018 n/sq cm and to a fluence of 5.4 x 1019 n/sq cm at a temperature of approximately 200-300 C. The effect of neutron irradiation on the thermoelectric properties of these alloys was evaluated. The carrier concentration and mobility (and hence the resistivity) were measured at room temperature while the thermal diffusivity was measured at 177-192 C both before and after the irradiation and after each subsequent 2-h heat treatment at 350 C, 600, and 1000 C. The irradiation increased the resistivity significantly, but the thermal conductivity decreased only by about 10-15 percent. This tends to indicate that the radiation produced only small defects (single pairs and small vacancy chains). The samples all returned to almost exactly their preirradiation state after the 1000 C anneal. This indicates that SiGe alloys can be operated in this neutron fluence at high temperatures without a degradation of thermoelectric properties.

  16. NEAMS-ATF M3 Milestone Report: Literature Review of Modeling of Radiation-Induced Swelling in Fe-Cr-Al Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xianming; Biner, Suleyman Bulent; Jiang, Chao

    2015-12-01

    Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behaviormore » of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.« less

  17. Influence of Ni-Cr substitution on the magnetic and electric properties of magnesium ferrite nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Muhammad Javed, E-mail: mjiqauchem@yahoo.com; Ahmad, Zahoor; Meydan, Turgut

    2012-02-15

    contents. Moreover, the results of the present study provide sufficient evidence to show that the electric and magnetic properties of Mg-ferrite have been improved significantly by substituting low contents of Ni-Cr.« less

  18. The design of a multisource americium-beryllium (Am-Be) neutron irradiation facility using MCNP for the neutronic performance calculation.

    PubMed

    Sogbadji, R B M; Abrefah, R G; Nyarko, B J B; Akaho, E H K; Odoi, H C; Attakorah-Birinkorang, S

    2014-08-01

    The americium-beryllium neutron irradiation facility at the National Nuclear Research Institute (NNRI), Ghana, was re-designed with four 20 Ci sources using Monte Carlo N-Particle (MCNP) code to investigate the maximum amount of flux that is produced by the combined sources. The results were compared with a single source Am-Be irradiation facility. The main objective was to enable us to harness the maximum amount of flux for the optimization of neutron activation analysis and to enable smaller sample sized samples to be irradiated. Using MCNP for the design construction and neutronic performance calculation, it was realized that the single-source Am-Be design produced a thermal neutron flux of (1.8±0.0007)×10(6) n/cm(2)s and the four-source Am-Be design produced a thermal neutron flux of (5.4±0.0007)×10(6) n/cm(2)s which is a factor of 3.5 fold increase compared to the single-source Am-Be design. The criticality effective, k(eff), of the single-source and the four-source Am-Be designs were found to be 0.00115±0.0008 and 0.00143±0.0008, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  20. Methodology for Estimating Thermal and Neutron Embrittlement of Cast Austenitic Stainless Steels During Service in Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chopra, O. K.; Rao, A. S.

    2016-04-28

    Cast austenitic stainless steel (CASS) materials, which have a duplex structure consisting of austenite and ferrite phases, are susceptible to thermal embrittlement during reactor service. In addition, the prolonged exposure of these materials, which are used in reactor core internals, to neutron irradiation changes their microstructure and microchemistry, and these changes degrade their fracture properties even further. This paper presents a revision of the procedure and correlations presented in NUREG/CR-4513, Rev. 1 (Aug. 1994) for predicting the change in fracture toughness and tensile properties of CASS components due to thermal aging during service in light water reactors (LWRs) at 280–330more » °C (535–625 °F). The methodology is applicable to CF-3, CF-3M, CF-8, and CF-8M materials with a ferrite content of up to 40%. The fracture toughness, tensile strength, and Charpy-impact energy of aged CASS materials are estimated from known material information. Embrittlement is characterized in terms of room-temperature (RT) Charpy-impact energy. The extent or degree of thermal embrittlement at “saturation” (i.e., the minimum impact energy that can be achieved for a material after long-term aging) is determined from the chemical composition of the material. Charpy-impact energy as a function of the time and temperature of reactor service is estimated from the kinetics of thermal embrittlement, which are also determined from the chemical composition. The fracture toughness J-R curve for the aged material is then obtained by correlating RT Charpy-impact energy with fracture toughness parameters. A common “predicted lower-bound” J-R curve for CASS materials of unknown chemical composition is also defined for a given grade of material, range of ferrite content, and temperature. In addition, guidance is provided for evaluating the combined effects of thermal and neutron embrittlement of CASS materials used in the reactor core internal components. The

  1. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  2. First result of deuterium retention in neutron-irradiated tungsten exposed to high flux plasma in TPE

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Hatano, Y.; Calderoni, P.; Oda, T.; Oya, Y.; Sokolov, M.; Zhang, K.; Cao, G.; Kolasinski, R.; Sharpe, J. P.

    2011-08-01

    With the Japan-US joint research project Tritium, Irradiations, and Thermofluids for America and Nippon (TITAN), an initial set of tungsten samples (99.99% purity, A.L.M.T. Co.) were irradiated by high flux neutrons at 323 K to 0.025 dpa in High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Subsequently, one of the neutron-irradiated tungsten samples was exposed to a high-flux deuterium plasma (ion flux: 5 × 1021 m-2 s-1, ion fluence: 4 × 1025 m-2) in the Tritium Plasma Experiment (TPE) at Idaho National Laboratory (INL). The deuterium retention in the neutron-irradiated tungsten was 40% higher in comparison to the unirradiated tungsten. The observed broad desorption spectrum from neutron-irradiated tungsten and associated TMAP modeling of the deuterium release suggest that trapping occurs in the bulk material at more than three different energy sites.

  3. Shear Punch Testing on ATR Irradiated MA956 FeCrAl Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Tarik A.; Quintana, Matthew Estevan; Romero, Tobias J.

    2017-06-13

    The shear punch testing of irradiated and control MA956 (FeCrAl) Alloy from the NSUF-ATR-UCSB irradiation is presented. This is the first data taken on a new shear punch fixture design to test three 1.5mm punches from each 8mm x 0.5mm Disc Multipurpose Coupon (DMC). Samples were irradiated to 6.1dpa at a temperature of 315°C and 6.2 dpa at 400°C.

  4. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE PAGES

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...

    2017-04-13

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  5. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun

    Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less

  6. Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai

    2017-07-01

    Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.

  7. Effect of load ratio and saltwater corrosive environment on the initiation life of fatigue of 10Ni5CrMoV steel

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun

    2017-09-01

    Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.

  8. Detection of chemical changes in bone after irradiation with Er,Cr:YSGG laser

    NASA Astrophysics Data System (ADS)

    Benetti, Carolina; Santos, Moises O.; Rabelo, Jose S.; Ana, Patrícia A.; Correa, Paulo R.; Zezell, Denise M.

    2011-03-01

    The use of laser for bone cutting can be more advantageous than the use of drill. However, for a safe clinical application, it is necessary to know the effects of laser irradiation on bone tissues. In this study, the Fourier Transform Infrared spectroscopy (FTIR) was used to verify the molecular and compositional changes promoted by laser irradiation on bone tissue. Bone slabs were obtained from rabbit's tibia and analyzed using ATR-FTIR. After the initial analysis, the samples were irradiated using a pulsed Er,Cr:YSGG laser (2780nm), and analyzed one more time. In order to verify changes due to laser irradiation, the area under phosphate (1300-900cm-1), amides (1680-1200cm-1), water (3600-2400cm-1), and carbonate (around 870cm-1 and between 1600-1300cm-1) bands were calculated, and normalized by phosphate band area (1300-900cm-1). It was observed that Er,Cr:YSGG irradiation promoted a significant decrease in the content of water and amides I and III at irradiated bone, evidencing that laser procedure caused an evaporation of the organic content and changed the collagen structure, suggesting that these changes may interfere with the healing process. In this way, these changes should be considered in a clinical application of laser irradiation in surgeries.

  9. Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.

    2009-04-01

    An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.

  10. Irradiation creep and precipitation in a ferritic ODS steel under helium implantation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Pouchon, M. A.; Rebac, T.; Hoffelner, W.

    2008-02-01

    Ferritic oxide dispersion strengthened (ODS) steel, PM2000, has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to maximum doses of about 0.75 dpa (3000 ppm He) with displacement damage rates of 5.5 × 10 -6 dpa/s at temperatures of 573, 673 and 773 K. Straining of a miniaturized dog-bone specimen under helium implantation was monitored by linear variable displacement transformer (LVDT) and meanwhile by their resistance also measured by four-pole technique. Creep compliance was almost constant at 5.7 × 10 -6 dpa -1 MPa -1 for temperatures below 673 K and increased to 18 × 10 -6 dpa -1 MPa -1 at 773 K. The resistivity of PM2000 samples decreased with dose and showed a tendency to saturation. Subsequent transmission electron microscopy observations indicated the formation of ordered Fe 3- xCr xAl precipitates during implantation. Correlations between the microstructure and resistivity are discussed.

  11. Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the National Ignition Facility and OMEGA.

    PubMed

    Manuel, M J-E; Rosenberg, M J; Sinenian, N; Rinderknecht, H; Zylstra, A B; Séguin, F H; Frenje, J; Li, C K; Petrasso, R D

    2011-09-01

    When used at facilities like OMEGA and the NIF, CR-39 is exposed to high vacuum environments before and after irradiation by charged particles and neutrons. Using an electrostatic linear accelerator at MIT, studies have been conducted to investigate the effects of high vacuum exposure on the sensitivity of CR-39 to fusion protons in the ~1-9 MeV energy range. High vacuum conditions, of order 10(-5) Torr, experienced by CR-39 samples at these facilities were emulated. It is shown that vacuum exposure times longer than ~16 h before proton irradiation result in a decrease in proton sensitivity, whereas no effect was observed for up to 67 h of vacuum exposure after proton irradiation. CR-39 sensitivity curves are presented for samples with prolonged exposure to high vacuum before and after proton irradiation. © 2011 American Institute of Physics

  12. Effect of high fluence neutron irradiation on transport properties of thermoelectrics

    NASA Astrophysics Data System (ADS)

    Wang, H.; Leonard, K. J.

    2017-07-01

    Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.

  13. Status Report on Irradiation Capsules Containing Welded FeCrAl Specimens for Radiation Tolerance Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Howard, Richard H.

    2016-02-26

    This status report provides the background and current status of a series of irradiation capsules, or “rabbits”, that were designed and built to test the contributions of microstructure, composition, damage dose, and irradiation temperature on the radiation tolerance of candidate FeCrAl alloys being developed to have enhanced weldability and radiation tolerance. These rabbits will also test the validity of using an ultra-miniature tensile specimen to assess the mechanical properties of irradiated FeCrAl base metal and weldments. All rabbits are to be irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) to damage doses up tomore » ≥15 dpa at temperatures between 200-550°C.« less

  14. Single-layer 1T‧-MoS2 under electron irradiation from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Pizzochero, Michele; Yazyev, Oleg V.

    2018-04-01

    Irradiation with high-energy particles has recently emerged as an effective tool for tailoring the properties of two-dimensional transition metal dichalcogenides. In order to carry out an atomically-precise manipulation of the lattice, a detailed understanding of the beam-induced events occurring at the atomic scale is necessary. Here, we investigate the response of 1T' -MoS2 to the electron irradiation by ab initio molecular dynamics means. Our simulations suggest that an electron beam with energy smaller than 75 keV does not result in any knock-on damage. The displacement threshold energies are different for the two nonequivalent sulfur atoms in 1T' -MoS2 and strongly depend on whether the top or bottom chalcogen layer is considered. As a result, a careful tuning of the beam energy can promote the formation of ordered defects in the sample. We further discuss the effect of the electron irradiation in the neighborhood of a defective site, the mobility of the sulfur vacancies created and their tendency to aggregate. Overall, our work provides useful guidelines for the imaging and the defect engineering of 1T' -MoS2 using electron microscopy.

  15. Effect of Pipe Body Alloy on Weldability of X80 Steel

    NASA Astrophysics Data System (ADS)

    Kong, Xianglei; Huang, Guojian; Fu, Kuijun; Liu, Fangfang; Huang, Minghao; Zhang, Yinghui

    Effect of Mo, Ni, and Cr on impact property of pipe seam and heat-affected zone (HAZ) of X80 steel was investigated by thermal simulation test and butt welding test. The results showed that, there was an obvious relationship between strip's composition and the toughness of weld and HAZ, the more content of Mo, Ni and less of Cr in the strip matrix, the better of impact toughness of weld and HAZ. Metallographic microscope was used to compare microstructures of welding specimens, every welded seam microstructure was mainly acicular ferrite (AF) and a little volume of proeutectoid ferrite (PF), and with some granular precipitations on original austenite grain boundary, the difference was that there were more PF and less precipitations of the specimen with more content of Mo, Ni and less of Cr in the strip matrix. Because of the high price of Mo and Ni, alloy design must be considered comprehensively with the cost and property requirements in the production.

  16. Microstructural characterization of weld joints of 9Cr reduced activation ferritic martensitic steel fabricated by different joining methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Paul, V.; Saroja, S.; Albert, S.K.

    This paper presents a detailed electron microscopy study on the microstructure of various regions of weldment fabricated by three welding methods namely tungsten inert gas welding, electron beam welding and laser beam welding in an indigenously developed 9Cr reduced activation ferritic/martensitic steel. Electron back scatter diffraction studies showed a random micro-texture in all the three welds. Microstructural changes during thermal exposures were studied and corroborated with hardness and optimized conditions for the post weld heat treatment have been identified for this steel. Hollomon–Jaffe parameter has been used to estimate the extent of tempering. The activation energy for the tempering processmore » has been evaluated and found to be corresponding to interstitial diffusion of carbon in ferrite matrix. The type and microchemistry of secondary phases in different regions of the weldment have been identified by analytical transmission electron microscopy. - Highlights: • Comparison of microstructural parameters in TIG, electron beam and laser welds of RAFM steel • EBSD studies to illustrate the absence of preferred orientation and identification of prior austenite grain size using phase identification map • Optimization of PWHT conditions for indigenous RAFM steel • Study of kinetics of tempering and estimation of apparent activation energy of the process.« less

  17. Corrosion and degradation of a polyurethane/Co-Ni-Cr-Mo pacemaker lead

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, P.; Fraker, A.C.

    1987-12-01

    An investigation to study changes in the metal surfaces and the polyurethane insulation of heart pacemaker leads under controlled in vitro conditions was conducted. A polyurethane (Pellethane 2363-80A)/Co-Ni-Cr-Mo (MP35N) wire lead was exposed in Hanks' physiological saline solution for 14 months and then analyzed using scanning electron microscopy, x-ray energy dispersive analysis, and small angle x-ray scattering. Results showed that some leakage of solution into the lead had occurred and changes were present on both the metal and the polyurethane surfaces.

  18. Effects of neutron irradiation at 70-200 °C in beryllium

    NASA Astrophysics Data System (ADS)

    Chakin, V. P.; Kazakov, V. A.; Melder, R. R.; Goncharenko, Yu. D.; Kupriyanov, I. B.

    2002-12-01

    At present beryllium is considered one of the metals to be used as a plasma facing and blanket material. This paper presents the investigations of several Russian beryllium grades fabricated by HE and HIP technologies. Beryllium specimens were irradiated in the SM reactor at 70-200 °C up to a neutron fluence (0.6-3.9)×10 22 cm -2 ( E>0.1 MeV). It is shown that the relative mass decrease of beryllium specimens that were in contact with the water coolant during irradiation achieved the value >1.5% at the maximum dose. Swelling was in the range of 0.2-1.5% and monotonically increasing with the neutron dose. During mechanical tensile and compression tests one could observe the absolute brittle destruction of the irradiated specimens at the reduced strength level in comparison to the initial state. A comparatively higher level of brittle strength was observed on beryllium specimens irradiated at 200 °C. The basic type of destruction of the irradiated beryllium specimens is brittle and intergranular with some fraction of transgranular chip.

  19. Stress Corrosion Cracking of Ferritic Materials for Fossil Power Generation Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawel, Steven J; Siefert, John A.

    2014-01-01

    Creep strength enhanced ferritic (CSEF) steels Grades 23, 24, 91, and 92 have been widely implemented in the fossil fired industry for over two decades. The stress corrosion cracking (SCC) behavior of these materials with respect to mainstay Cr-Mo steels (such as Grades 11, 12 and 22) has not been properly assessed, particularly in consideration of recent reported issues of SCC in CSEF steels. This report details the results of Jones test exposures of a wide range of materials (Grades 11, 22, 23, 24, and 92), material conditions (as-received, improper heat treatments, normalized, weldments) and environments (salt fog; tube cleaningmore » environments including decreasing, scale removal, and passivation; and high temperature water) to compare the susceptibility to cracking of these steels. In the as-received (normalized and tempered) condition, none of these materials are susceptible to SCC in the environments examined. However, in the hardened condition, certain combinations of environment and alloy reveal substantial SCC susceptibility.« less

  20. New Insights into Hard Phases of CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Y.; Pourzal, R.; Stemmer, P.; Wimmer, M.A.; Jacobs, J.J.; Fischer, A.; Marks, L. D.

    2012-01-01

    The microstructural and mechanical properties of the hard phases in CoCrMo prosthetic alloys in both cast and wrought conditions were examined using transmission electron microscopy and nanoindentation. Besides the known carbides of M23C6-type (M=Cr, Mo, Co) and M6C-type which are formed by either eutectic solidification or precipitation, a new mixed-phase hard constituent has been found in the cast alloys, which is composed of ~100 nm fine grains. The nanosized grains were identified to be mostly of M23C6 type using nano-beam precession electron diffraction, and the chemical composition varied from grain to grain being either Cr- or Co-rich. In contrast, the carbides within the wrought alloy having the same M23C6 structure were homogeneous, which can be attributed to the repeated heating and deformation steps. Nanoindentation measurements showed that the hardness of the hard phase mixture in the cast specimen was ~15.7 GPa, while the M23C6 carbides in the wrought alloy were twice as hard (~30.7 GPa). The origin of the nanostructured hard phase mixture was found to be related to slow cooling during casting. Mixed hard phases were produced at a cooling rate of 0.2 °C/s, whereas single phase carbides were formed at a cooling rate of 50 °C/s. This is consistent with sluggish kinetics and rationalizes different and partly conflicting microstructural results in the literature, and could be a source of variations in the performance of prosthetic devices in-vivo. PMID:22659365

  1. Comparison of the corrosion behavior of austenitic and ferritic/martensitic steels exposed to static liquid Pb Bi at 450 and 550 °C

    NASA Astrophysics Data System (ADS)

    Kurata, Y.; Futakawa, M.; Saito, S.

    2005-08-01

    Static corrosion tests of various steels were conducted in oxygen-saturated liquid Pb-Bi eutectic at 450 °C and 550 °C for 3000 h to study the effects of temperature and alloying elements on corrosion behavior in liquid Pb-Bi. Corrosion depth decreases at 450 °C with increasing Cr content in steels regardless of ferritic/martensitic steels or austenitic steels. Appreciable dissolution of Ni and Cr does not occur in the three austenitic steels at 450 °C. Corrosion depth of ferritic/martensitic steels also decreases at 550 °C with increasing Cr content in steels whereas corrosion depth of austenitic steels, JPCA and 316SS becomes larger due to ferritization caused by dissolution of Ni at 550 °C than that of ferritic/martensitic steels. An austenitic stainless steel containing about 5%Si exhibits fine corrosion resistance at 550 °C because the protective Si oxide film is formed and prevents dissolution of Ni and Cr.

  2. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds

    PubMed Central

    Liu, Xuesong; Berto, Filippo

    2018-01-01

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140

  3. Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.

    PubMed

    Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J

    2018-04-24

    The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.

  4. Perspectives for online analysis of raw material by pulsed neutron irradiation

    NASA Astrophysics Data System (ADS)

    Bach, Pierre; Le Tourneur, P.; Poumarede, B.

    1997-02-01

    On-line analysis by pulsed neutron irradiation is an example of an advanced technology application of nuclear techniques, concerning real problems in the cement, mineral and coal industries. The most significant of these nuclear techniques is their capability of continuous measurement without contact and without sampling, which can lead to improved control of processes and resultant large financial savings. Compared to Californium neutron sources, the use of electrical pulsed neutron generators allows to obtain a higher signal/noise ratio for a more sensitive measurement, and allows to overcome a number of safety problems concerning transportation, installation and maintenance. An experiment related to a possible new on-line raw material analyzer is described, using a pulsed neutron generator. The key factors contributing to an accurate measurement are related to a suitable generator, to a high count rate gamma ray spectroscopy electronics, and to computational tools. Calculation and results for the optimization of the neutron irradiation time diagram are reported. One of the operational characteristics of such an equipment is related to neutron flux available: it is possible to adjust it to the requested accuracy, i.e. for a high accuracy during a few hours/day and for a lower accuracy the rest of the time. This feature allows to operate the neutron tube during a longer time, and then to reduce the cost of analysis.

  5. Effects of Static Recrystallization and Precipitation on Mechanical Properties of 00Cr12 Ferritic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Shao, Yi; Liu, Chenxi; Yue, Tengxiao; Liu, Yongchang; Yan, Zesheng; Li, Huijun

    2018-05-01

    The 00Cr12 ferritic stainless steel samples were isothermally held at different temperatures in the range of 700 °C to 1000 °C to investigate the effect of static recrystallization and precipitation on mechanical properties, such as microhardness, tensile strength, and yield strength. The results show that the formation of the fine recrystallized grain, as well as precipitation, coarsening, and dissolution of the second-phase particles, influences the mechanical properties remarkably. The fine recrystallized grain can provide a positive grain boundary-strengthening effect in the sample under a relatively high holding temperature. Coarsening and dissolution of M23C6 result in partial depletion of precipitate hardening. In contrast, the size and number density of MX particles are almost constant, regardless of the holding temperature; therefore, it can provide a better precipitation-hardening effect.

  6. Characterization of fission gas bubbles in irradiated U-10Mo fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casella, Andrew M.; Burkes, Douglas E.; MacFarlan, Paul J.

    2017-09-01

    Irradiated U-10Mo fuel samples were prepared with traditional mechanical potting and polishing methods with in a hot cell. They were then removed and imaged with an SEM located outside of a hot cell. The images were then processed with basic imaging techniques from 3 separate software packages. The results were compared and a baseline method for characterization of fission gas bubbles in the samples is proposed. It is hoped that through adoption of or comparison to this baseline method that sample characterization can be somewhat standardized across the field of post irradiated examination of metal fuels.

  7. Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less

  8. Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix

    NASA Astrophysics Data System (ADS)

    Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.

    2012-06-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.

  9. Corrosion Behavior of Yttria-Stabilized Zirconia-Coated 9Cr-1Mo Steel in Molten UCl3-LiCl-KCl Salt

    NASA Astrophysics Data System (ADS)

    Jagadeeswara Rao, Ch.; Venkatesh, P.; Prabhakara Reddy, B.; Ningshen, S.; Mallika, C.; Kamachi Mudali, U.

    2017-02-01

    For the electrorefining step in the pyrochemical reprocessing of spent metallic fuels of future sodium cooled fast breeder reactors, 9Cr-1Mo steel has been proposed as the container material. The electrorefining process is carried out using 5-6 wt.% UCl3 in LiCl-KCl molten salt as the electrolyte at 500 °C under argon atmosphere. In the present study, to protect the container vessel from hot corrosion by the molten salt, 8-9% yttria-stabilized zirconia (YSZ) ceramic coating was deposited on 9Cr-1Mo steel by atmospheric plasma spray process. The hot corrosion behavior of YSZ-coated 9Cr-1Mo steel specimen was investigated in molten UCl3-LiCl-KCl salt at 600 °C for 100-, 500-, 1000- and 2000-h duration. The results revealed that the weight change in the YSZ-coated specimen was insignificant even after exposure to molten salt for 2000 h, and delamination of coating did not occur. SEM examination showed the lamellar morphology of the YSZ coating after the corrosion test with occluded molten salt. The XRD analysis confirmed the presence of tetragonal and cubic phases of ZrO2, without any phase change. Formation of UO2 in some regions of the samples was evident from XRD results.

  10. Effects of fibers and fabrication processes on mechanical properties of neutron irradiated SiC/SiC composites

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Katoh, Y.; Kohyama, A.

    2002-12-01

    Radiation effects on flexural properties of SiC/SiC composites fabricated by forced thermal gradient chemical vapor infiltration (F-CVI) process, reaction sintered (RS) process and polymer impregnation and pyrolysis (PIP) process were investigated. In this study, neutron irradiation at 1073 K up to 0.4×10 25 n/m 2 ( E>0.1 MeV) was performed. For F-CVI and RS SiC/SiC, due to the irradiation damage of interphase like pyrolytic carbon and boron nitride, which were sensitive to neutron irradiation, composite stiffness was slightly decreased. On the contrary, for PIP SiC/SiC, there was no significant change in stiffness before and after irradiation. Composite strength, however, was nearly stable against high-temperature irradiation with such a low fluence, except for RS SiC/SiC, since mechanical characteristics of fiber and matrix themselves were still stable to neutron irradiation. However RS SiC/SiC had a slight reduction of flexural strength due to the severe degradation of the interface by neutron irradiation.

  11. Simulating irradiation hardening in tungsten under fast neutron irradiation including Re production by transmutation

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime

    2018-02-01

    Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.

  12. Effect of heat history on the corrosion of ferritic stainless steels used for dental magnetic attachments.

    PubMed

    Takada, Yukyo; Okuno, Osamu

    2005-09-01

    This study investigated the effect of heat history on the corrosion of keepers used for dental magnetic attachments. Ferritic stainless steels of SUS 444 and 447J1 were prepared with heat treatments in the temperature range of 550-850 degrees C for 1-5 hours. The stainless steels were electrochemically and metallurgically examined by anodic polarization curves in a 0.9% NaCl solution and by microstructural observation using an electron probe microanalyzer with WDS. Heating both kinds of stainless steel at 650-750 degrees C for two hours or more led to the deterioration of their corrosion resistance. For example, there was evidence of a reduction in the breakdown potentials and an increase in the current densities of the anodic polarization curves. These phenomena were attributed mainly to the precipitation of the sigma (FeCr) or chi (Fe18Cr6Mo5) phase, which sometimes resulted in intergranular corrosion. When dental alloys are cast in investment molds embedding the keepers, the heat time required for thermal expansion of the molds should be kept under one hour.

  13. Nano-domain states of strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ancharova, Uliana V., E-mail: ancharova@gmail.com; Cherepanova, Svetlana V., E-mail: svch@catalysis.ru; Novosibirsk State University, Pirogova st., 2, Novosibirsk 630090

    Series of the oxygen-deficient strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2) substituted with high-charged cations have been investigated by HRTEM and synchrotron radiation XRD. For artificial lowering of x, all the compounds were treated and quenched in vacuum from 950 °C, which led to the formation of the vacancy-ordered brownmillerite phase at local order. Depending on y, the substituted strontium ferrites have three differently disordered nano-domain states. At y≤0.03 there are twinned lamellar 1D nano-domain structures. At 0.04≤y≤0.05 and 0.06≤y≤0.08 the intergrown 3D nano-domain structures with two different types of disorder are formed. The higher the y,more » the lower the domain size. Disordering phenomena of the 3D nano-domain states were examined with local structure simulations followed by the Debye calculation of XRD patterns. - Graphical abstract: Evolution of nano-domain structure with an increase in the substitution degree y in strontium ferrites SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo; y≤0.1; x≤0.2): an increase in y decreases the average size of domains and increases the degree of disorder, thus producing the lamellar (1D) or 3D nano-domains. - Highlights: • Two major nanodomain states were found for SrFe{sub 1−y}M{sub y}O{sub 2.5+x} (M=V, Mo, y<0.1; x<0.2). • Both contain vacancy-ordered orthorhombic domains intergrown with cubic matrix. • First (y≤0.03) shows orthorhombic and second (0.04≤y≤0.08) – cubic XRD patterns. • First contains 1D twinned lamellar domains with low-angle boundaries and deformations. • Second contains intergrown isotropic in 3D domains perpendicular oriented in matrix.« less

  14. Alteration of sensitivity of intratumor quiescent and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound.

    PubMed

    Masunaga, S; Ono, K; Suzuki, M; Sakurai, Y; Kobayashi, T; Takagaki, M; Kinashi, Y; Akaboshi, M

    2000-02-01

    Changes in the sensitivity of intratumor quiescent (Q) and total cells to gamma-rays following thermal neutron irradiation with or without 10B-compound were examined. 5-Bromo-2'-deoxyuridine (BrdU) was injected to SCC VII tumor-bearing mice intraperitoneally 10 times to label all the proliferating (P) tumor cells. As priming irradiation, thermal neutrons alone or thermal neutrons with 10B-labeled sodium borocaptate (BSH) or dl-p-boronophenylalanine (BPA) were administered. The tumor-bearing mice then received a series of gamma-ray radiation doses, 0 through 24 h after the priming irradiation. During this period, no BrdU was administered. Immediately after the second irradiation, the tumors were excised, minced, and trypsinized. Following incubation of tumor cells with cytokinesis blocker, the micronucleus (MN) frequency in cells without BrdU labeling (= Q cells at the time of priming irradiation) was determined using immunofluorescence staining for BrdU. The MN frequency in the total (P + Q) tumor cells was determined from the tumors that were not pretreated with BrdU before the priming irradiation. To determine the BrdU-labeled cell ratios in the tumors at the time of the second irradiation, each group also included mice that were continuously administered BrdU until just before the second irradiation using mini-osmotic pumps which had been implanted subcutaneously 5 days before the priming irradiation. In total cells, during the interval between the two irradiations, the tumor sensitivity to gamma-rays relative to that immediately after priming irradiation decreased with the priming irradiation ranking in the following order: thermal neutrons only > thermal neutrons with BSH > thermal neutrons with BPA. In contrast, in Q cells, during that time the sensitivity increased in the following order: thermal neutrons only < thermal neutrons with BSH < thermal neutrons with BPA. The longer the interval between the two irradiations, the higher was the BrdU-labeled cell

  15. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE PAGES

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.; ...

    2018-01-01

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  16. Effect of Molybdenum on the Corrosion Behavior of High-Entropy Alloys CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 under Sodium Chloride Aqueous Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Alvaro A.; Tylczak, Joseph H.; Gao, Michael C.

    The corrosion behavior of high-entropy alloys (HEAs) CoCrFeNi 2 and CoCrFeNi 2 Mo 0.25 was investigated in 3.5 wt. percent sodium chloride (NaCl) at 25°C by electrochemical methods. Their corrosion parameters were compared to those of HASTELLOY® C-276 (UNS N10276) and stainless steel 316L (UNS 31600) to assess the suitability of HEAs for potential industrial applications in NaCl simulating seawater type environments. The corrosion rates were calculated using corrosion current determined from electrochemical experiments for each of the alloys. In addition, potentiodynamic polarization measurements can indicate active, passive, and transpassive behavior of the metal as well as potential susceptibility to pittingmore » corrosion. Cyclic voltammetry (CV) can confirm the alloy susceptibility to pitting corrosion. Electrochemical impedance spectroscopy (EIS) elucidates the corrosion mechanism under studied conditions. The results of the electrochemical experiments and scanning electron microscopy (SEM) analyses of the corroded surfaces revealed general corrosion on alloy CoCrFeNi 2 Mo 0.25 and HASTELLOY C-276 and pitting corrosion on alloy CoCrFeNi 2 and stainless steel 316L.« less

  17. Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction technique.

    PubMed

    Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K

    2015-06-01

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Microstructure and mechanical properties of heat-resistant 12% Cr ferritic-martensitic steel EK-181 after thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Polekhina, N. A.; Litovchenko, I. Yu.; Tyumentsev, A. N.; Astafurova, E. G.; Chernov, V. M.; Leontyeva-Smirnova, M. V.

    2015-10-01

    The effect of high-temperature thermomechanical treatment (TMT) with the deformation in the austenitic region on the features of microstructure, phase transformations and mechanical properties of low-activation 12% Cr ferritic-martensitic steel EK-181 is investigated. It is established, that directly after thermomechanical treatment (without tempering) the sizes and density of V(CN) particles are comparable with those after a traditional heat treatment (air quenching and tempering at 720°C, 3 h), where these particles are formed only during tempering. It causes the increasing of the yield strength of the steel up to ≈1450 MPa at room temperature and up to ≈430 MPa at the test temperature T = 650°C. The potential of microstructure modification by this treatment aimed at improving heat resistance of steel is discussed.

  19. Electronic structure calculations on multiply charged anions containing M bond S bonds (M = Cr, Mo, W) and their heterobimetallic cluster complexes

    NASA Astrophysics Data System (ADS)

    Gili, Pedro; Tsipis, Athanassios C.

    Molecular and electronic structures of multiply charged mononuclear [CrS4]2-/3-, [MoOxS4-x]2-/3- (x = 0-4) and [WS4]2-/3- anionic species, and their heterobimetallic dinuclear and trinuclear clusters formulated as [MoOS3(CuCl)]2-, [WOS3(CuCl)]2-, [MoS4{Cu(CN)}]2-, [(CN)Cu(?-CrS4)Cu(CN)]2-, [(CN)Cu(?-MoS4)Cu(CN)]2-, [ClCu(?-MoS4)CuCl]2-, [Cl2Fe(?-MoS4)CuCl2]2-, and [(CN)Cu(?-WS4)Cu(CN)]2- have been investigated using electronic structure calculation (HF, MP4SDQ and DFT) methods. For the discrete mononuclear anions HF/lanl2dz(M)?6-31+G*(S,O) method provided the best description of their molecular structures, while for the heterobimetallic dinuclear and trinuclear clusters the B3LYP/lanl2dz(M)?6-31+G* method gave equilibrium geometries closely resembling the experimental ones. Electronic and spectroscopic (IR, UV-Vis) properties of the thiometalates are discussed in relation to their structures, while the bonding mechanism was analyzed in the framework of the natural bond orbital (NBO) approach. The nature of the highest occupied molecular orbitals (HOMOs) of all thiometalates indicated their ability to act as ligands coordinated with metal centers and forming clusters of higher nuclearity. The lowest-lying vertical one-electron detachment processes from the ground state of the [CrS4]2/3-, [MoOxS4-x]2/3- (x = 0-4) and [WS4]2/3- anions have been calculated using the outer valence Green's function (OVGF) method. Interestingly, in the heterobimetallic dinuclear and trinuclear clusters intemetallic M?M? interactions exist corresponding to d10 ? d0 dative bonding. Finally, the complete energetic and geometric profile of the successive acid-catalyzed formation reactions:and the reverse hydrolysis reactions have been delineated and details of the mechanism have been furnished.

  20. Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian

    The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less