Theoretical Studies of Non-Newtonian and Newtonian Fluid Flowthrough Porous Media
Wu, Y.S.
1990-02-01
A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: (1) development of numerical and analytical solutions; (2) theoretical studies of transient flow of non-Newtonian fluids in porous media; and (3) applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. Based on this solution, a graphic approach for evaluating non-Newtonian displacement efficiency has been developed. The Buckley-Leverett-Welge theory is extended to flow problems with non-Newtonian fluids. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. The results show that this kind of displacement is a complicated process and is determined by the rheological properties of the non-Newtonian fluids and the flow conditions, in addition to relative permeability data. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. For flow at a constant rate, non-Newtonian flow behavior in a fractured
Dynamic wetting with viscous Newtonian and non-Newtonian fluids.
Wei, Y; Rame, E; Walker, L M; Garoff, S
2009-11-18
We examine various aspects of dynamic wetting with viscous Newtonian and non-Newtonian fluids. Rather than concentrating on the mechanisms that relieve the classic contact line stress singularity, we focus on the behavior in the wedge flow near the contact line which has the dominant influence on wetting with these fluids. Our experiments show that a Newtonian polymer melt composed of highly flexible molecules exhibits dynamic wetting behavior described very well by hydrodynamic models that capture the critical properties of the Newtonian wedge flow near the contact line. We find that shear thinning has a strong impact on dynamic wetting, by reducing the drag of the solid on the fluid near the contact line, while the elasticity of a Boger fluid has a weaker impact on dynamic wetting. Finally, we find that other polymeric fluids, nominally Newtonian in rheometric measurements, exhibit deviations from Newtonian dynamic wetting behavior.
Electrokinetics of non-Newtonian fluids: a review.
Zhao, Cunlu; Yang, Chun
2013-12-01
This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted.
Undulatory swimming in non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Ardekani, Arezoo; Li, Gaojin
2015-11-01
Microorganisms often swim in complex fluids exhibiting both elasticity and shear-thinning viscosity. The motion of low Reynolds number swimmers in complex fluids is important for better understanding the migration of sperms and formation of bacterial biofilms. In this work, we numerically investigate the effects of non-Newtonian fluid properties, including shear-thinning and elasticity, on the undulatory locomotion. Our results show that elasticity hinders the swimming speed, but a shear-thinning viscosity in the absence of elasticity enhances the speed. The combination of the two effects hinders the swimming speed. The swimming boost in a shear-thinning fluid occurs even for an infinitely long flagellum. The swimming speed has a maximum, whose value depends on the flagellum oscillation amplitude and fluid rheological properties. The power consumption, on the other hand, follows a universal scaling law. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.
Pressure transient behavior of dilatant non-Newtonian/Newtonian fluid composite reservoirs
Okpobiri, G.A.; Ikoku, C.U.
1983-11-01
This study investigates pressure falloff testing in non-Newtonian/Newtonian fluid composite reservoirs. The non-Newtonian fluids of interest exhibit dilatant behavior. Initial water saturation is accounted for. Application of non-Newtonian well test analysis techniques and conventional Horner (Newtonian) techniques is investigated. The effects of different injection times before shut-in, external radii, flow behavior indexes and non-Newtonian fluid consistencies on the pressure transient behavior constitute the salient features of this work. It is shown that early time falloff pressure data can be analyzed by non-Newtonian techniques while the late shut-in data, under certain conditions, can be analyzed by the conventional Horner method. The time when the Newtonian fluid starts influencing the non-Newtonian falloff curves and the location of the non-Newtonian fluid front can be estimated by using the radius of investigation equation for power-law fluids and volumetric balance equation respectively. Rheological consideration is made to illustrate the pressure transient behavior.
Physical-based non-Newtonian fluid animation using SPH
NASA Astrophysics Data System (ADS)
Mao, Hai
Fluids are commonly seen in our daily lives. They exhibit a wide range of motions, which depend on their physical properties, and often result in amazing visual phenomena. Hence, fluid animation is a popular topic in computer graphics. The animation results not only enrich a computer-generated virtual world but have found applications in generating special effects in motion pictures and in computer games. The three-dimensional (3D) Navier-Stokes (NS) equation is a comprehensive mechanical description of the fluid motions. Smoothed Particle Hydrodynamics (SPH) is a popular particle-based fluid modeling formulation. In physical-based fluid animation, the fluid models are based on the 3D NS equation, which can be solved using SPH based methods. Non-Newtonian fluids form a rich class of fluids. Their physical behavior exhibits a strong and complex stress-strain relationship which falls outside the modeling range of Newtonian fluid mechanics. In physical-based fluid animation, most of the fluid models are based on Newtonian fluids, and hence they cannot realistically animate non-Newtonian fluid motions such as stretching, bending, and bouncing. Based on the 3D NS equation and SPH, three original contributions are presented in this dissertation, which address the following three aspects of fluid animation: (1) particle-based non-Newtonian fluids, (2) immiscible fluid-fluid collision, and (3) heating non-Newtonian fluids. Consequently, more varieties of non-Newtonian fluid motions can be animated, which include stretching, bending, and bouncing.
Hachmon, Guy; Mamet, Noam; Sasson, Sapir; Barkai, Tal; Hadar, Nomi; Abu-Horowitz, Almogit; Bachelet, Ido
2016-01-01
New types of robots inspired by biological principles of assembly, locomotion, and behavior have been recently described. In this work we explored the concept of robots that are based on more fundamental physical phenomena, such as fluid dynamics, and their potential capabilities. We report a robot made entirely of non-Newtonian fluid, driven by shear strains created by spatial patterns of audio waves. We demonstrate various robotic primitives such as locomotion and transport of metallic loads-up to 6-fold heavier than the robot itself-between points on a surface, splitting and merging, shapeshifting, percolation through gratings, and counting to 3. We also utilized interactions between multiple robots carrying chemical loads to drive a bulk chemical synthesis reaction. Free of constraints such as skin or obligatory structural integrity, fluid robots represent a radically different design that could adapt more easily to unfamiliar, hostile, or chaotic environments and carry out tasks that neither living organisms nor conventional machines are capable of.
Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra
ERIC Educational Resources Information Center
Knight, D. G.
2006-01-01
This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…
Theoretical studies of non-Newtonian and Newtonian fluid flow through porous media
Wu, Yu-Shu.
1990-02-01
A comprehensive theoretical study has been carried out on the flow behavior of both single and multiple phase non-Newtonian fluids in porous media. This work is divided into three parts: development of numerical and analytical solutions; theoretical studies of transient flow of non-Newtonian fluids in porous media; and applications of well test analysis and displacement efficiency evaluation to field problems. A fully implicit, integral finite difference model has been developed for simulation of non-Newtonian and Newtonian fluid flow through porous media. Several commonly-used rheological models of power-law and Bingham plastic non-Newtonian fluids have been incorporated in the simulator. A Buckley-Leverett type analytical solution for one-dimensional, immiscible displacement involving non-Newtonian fluids in porous media has been developed. An integral method is also presented for the study of transient flow of Bingham fluids in porous media. In addition, two well test analysis methods have been developed for analyzing pressure transient tests of power-law and Bingham fluids, respectively. Applications are included to demonstrate this new technology. The physical mechanisms involved in immiscible displacement with non-Newtonian fluids in porous media have been studied using the Buckley-Leverett type analytical solution. In another study, an idealized fracture model has been used to obtain some insights into the flow of a power-law fluid in a double-porosity medium. Transient flow of a general pseudoplastic fluid has been studied numerically. 125 refs., 91 figs., 12 tabs.
Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids.
Khair, Aditya S; Posluszny, Denise E; Walker, Lynn M
2012-01-01
We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal particles immersed in complex (non-Newtonian) fluids possessing shear-rate-dependent viscosities. We demonstrate that this non-Newtonian rheology leads to an explicit shape and size dependence of the electrophoretic velocity of a uniformly charged particle in the thin-Debye-layer regime, in contrast to electrophoresis in Newtonian fluids. This dependence is caused by non-Newtonian stresses in the bulk (electroneutral) fluid outside the Debye layer, whose magnitude is naturally characterized in an electrophoretic Deborah number.
The Rayleigh-Taylor instability of Newtonian and non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Doludenko, A. N.; Fortova, S. V.; Son, E. E.
2016-10-01
Along with Newtonian fluids (for example, water), fluids with non-Newtonian rheology are widespread in nature and industry. The characteristic feature of a non-Newtonian fluid is the non-linear dependence between the shear stress and shear rate tensors. The form of this relation defines the types of non-Newtonian behavior: viscoplastic, pseudoplastic, dilatant and viscoelastic. The present work is devoted to the study of the Rayleigh-Taylor instability in pseudoplastic fluids. The main aim of the work is to undertake a direct three-dimensional numerical simulation of the mixing of two media with various rheologies and obtain the width of the mixing layer and the kinetic energy spectra, depending on the basic properties of the shear thinning liquids and the Atwood number. A theoretical study is carried out on the basis of the Navier-Stokes equation system for weakly compressible media.
Transfer of Microparticles across Laminar Streams from Non-Newtonian to Newtonian Fluid.
Ha, Byunghang; Park, Jinsoo; Destgeer, Ghulam; Jung, Jin Ho; Sung, Hyung Jin
2016-04-19
Engineering inertial lift forces and elastic lift forces is explored to transfer microparticles across laminar streams from non-Newtonian to Newtonian fluid. A co-stream of non-Newtonian flow loaded with microparticles (9.9 and 2.0 μm in diameter) and a Newtonian carrier medium flow in a straight rectangular conduit is devised. The elastic lift forces present in the non-Newtonian fluid, undeterred by particle-particle interaction, successfully pass most of the larger (9.9 μm) particles over to the Newtonian fluid. The Newtonian fluid takes over the larger particles and focus them on the equilibrium position, separating the larger particles from the smaller particles. This mechanism enabled processing of densely suspended particle samples. The method offers dilution-free (for number densities up to 10,000 μL(-1)), high throughput (6700 beads/s), and highly efficient (>99% recovery rate, >97% purity) particle separation operated over a wide range of flow rate (2 orders of magnitude).
Lu, Gui; Wang, Xiao-Dong; Duan, Yuan-Yuan
2016-10-01
Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.
Spreading of Non-Newtonian and Newtonian Fluids on a Solid Substrate under Pressure
NASA Astrophysics Data System (ADS)
Dutta Choudhury, Moutushi; Chandra, Subrata; Nag, Soma; Das, Shantanu; Tarafdar, Sujata
2011-09-01
Strongly non-Newtonian fluids namely, aqueous gels of starch, are shown to exhibit visco-elastic behavior, when subjected to a load. We study arrowroot and potato starch gels. When a droplet of the fluid is sandwiched between two glass plates and compressed, the area of contact between the fluid and plates increases in an oscillatory manner. This is unlike Newtonian fluids, where the area increases monotonically in a similar situation. The periphery moreover, develops an instability, which looks similar to Saffman Taylor fingers. This is not normally seen under compression. The loading history is also found to affect the manner of spreading. We attempt to describe the non-Newtonian nature of the fluid through a visco-elastic model incorporating generalized calculus. This is shown to reproduce qualitatively the oscillatory variation in the surface strain.
Controlling and minimizing fingering instabilities in non-Newtonian fluids.
Fontana, João V; Dias, Eduardo O; Miranda, José A
2014-01-01
The development of the viscous fingering instability in Hele-Shaw cells has great practical and scientific importance. Recently, researchers have proposed different strategies to control the number of interfacial fingering structures, or to minimize as much as possible the amplitude of interfacial disturbances. Most existing studies address the situation in which an inviscid fluid displaces a viscous Newtonian fluid. In this work, we report on controlling and minimizing protocols considering the situation in which the displaced fluid is a non-Newtonian, power-law fluid. The necessary changes on the controlling schemes due to the shear-thinning and shear thickening nature of the displaced fluid are calculated analytically and discussed.
Dynamic characteristics of Non Newtonian fluid Squeeze film damper
NASA Astrophysics Data System (ADS)
Palaksha, C. P.; Shivaprakash, S.; Jagadish, H. P.
2016-09-01
The fluids which do not follow linear relationship between rate of strain and shear stress are termed as non-Newtonian fluid. The non-Newtonian fluids are usually categorized as those in which shear stress depends on the rates of shear only, fluids for which relation between shear stress and rate of shear depends on time and the visco inelastic fluids which possess both elastic and viscous properties. It is quite difficult to provide a single constitutive relation that can be used to define a non-Newtonian fluid due to a great diversity found in its physical structure. Non-Newtonian fluids can present a complex rheological behaviour involving shear-thinning, viscoelastic or thixotropic effects. The rheological characterization of complex fluids is an important issue in many areas. The paper analyses the damping and stiffness characteristics of non-Newtonian fluids (waxy crude oil) used in squeeze film dampers using the available literature for viscosity characterization. Damping and stiffness characteristic will be evaluated as a function of shear strain rate, temperature and percentage wax concentration etc.
Flow non-normality-induced transient growth in superposed Newtonian and non-Newtonian fluid layers.
Camporeale, C; Gatti, F; Ridolfi, L
2009-09-01
In recent years non-normality and transient growths have attracted much interest in fluid mechanics. Here, we investigate these topics with reference to the problem of interfacial instability in superposed Newtonian and non-Newtonian fluid layers. Under the hypothesis of the lubrication theory, we demonstrate the existence of significant transient growths in the parameter space region where the dynamical system is asymptotically stable, and show how they depend on the main physical parameters. In particular, the key role of the density ratio is highlighted.
Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C
2006-03-15
The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.
Electro-osmotic mobility of non-Newtonian fluids
Zhao, Cunlu; Yang, Chun
2011-01-01
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy–Chapman solution to the Poisson–Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases. PMID:21503161
Electro-osmotic mobility of non-Newtonian fluids.
Zhao, Cunlu; Yang, Chun
2011-03-23
Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy-Chapman solution to the Poisson-Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases.
Verification of vertically rotating flume using non-newtonian fluids
Huizinga, R.J.
1996-01-01
Three tests on non-Newtonian fluids were used to verify the use of a vertically rotating flume (VRF) for the study of the rheological properties of debris flow. The VRF is described and a procedure for the analysis of results of tests made with the VRF is presented. The major advantages of the VRF are a flow field consistent with that found in nature, a large particle-diameter threshold, inexpensive operation, and verification using several different materials; the major limitations are a lack of temperature control and a certain error incurred from the use of the Bingham plastic model to describe a more complex phenomenon. Because the VRF has been verified with non-Newtonian fluids as well as Newtonian fluids, it can be used to measure the rheological properties of coarse-grained debris-flow materials.
The chromatographic performance of flow-through particles: A computational fluid dynamics study.
Smits, Wim; Nakanishi, Kazuki; Desmet, Gert
2016-01-15
The performance of flow-through particles has been studied by computational fluid dynamics. Computational fluid dynamics simulations was used to calculate the flow behaviour around and inside the particles rather than estimate it. The obtained flow field has been used to accurately simulate plate heights generated by flow-through particles and compare them to standard fully porous particles. The effects of particle size, particle porosity and microparticle size on the intra-particle flow and plate heights is investigated. It is shown that the intra-particle flow generates mass transfer enhancement which lowers the total plate height. An empirical model is proposed for the mass transfer enhancement and it is compared to previously proposed models. Kinetic plots are constructed for the flow-through particles. Counter-intuitively, columns packed with flow-through particles have a higher flow resistance which counters the advantages of lower plate heights. Flow-through particles offer no significant gain in kinetic performance over fully porous particles.
Studies on heat transfer to Newtonian and non-Newtonian fluids in agitated vessel
NASA Astrophysics Data System (ADS)
Triveni, B.; Vishwanadham, B.; Venkateshwar, S.
2008-09-01
Heat transfer studies to Newtonian and non-Newtonian fluids are carried out in a stirred vessel fitted with anchor/turbine impeller and a coil for heating/cooling with an objective of determining experimentally the heat transfer coefficient of few industrially important systems namely castor oil and its methyl esters, soap solution, CMC and chalk slurries. The effect of impeller geometry, speed and aeration is investigated. Generalized Reynolds and Prandtl numbers are calculated using an apparent viscosity for non-Newtonian fluids. The data is correlated using a Sieder-Tate type equation. A trend of increase in heat transfer coefficient with RPM in presence and absence of solids has been observed. Relatively high values of Nusselt numbers are obtained for non-Newtonian fluids when aeration is coupled with agitation. The contribution of natural convection to heat transfer has been accounted for by incorporating the Grashof number. The correlations developed based on these studies are applied for design of commercial scale soponification reactor. Power per unit volume resulted in reliable design of a reactor.
Flow Curve Determination for Non-Newtonian Fluids.
ERIC Educational Resources Information Center
Tjahjadi, Mahari; Gupta, Santosh K.
1986-01-01
Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)
Laminar boundary-layer flow of non-Newtonian fluid
NASA Technical Reports Server (NTRS)
Lin, F. N.; Chern, S. Y.
1979-01-01
A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.
Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A
2015-01-01
Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.
Intermittent outgassing through a non-Newtonian fluid.
Divoux, Thibaut; Bertin, Eric; Vidal, Valérie; Géminard, Jean-Christophe
2009-05-01
We report an experimental study of the intermittent dynamics of a gas flowing through a column of a non-Newtonian fluid. In a given range of the imposed constant flow rate, the system spontaneously alternates between two regimes: bubbles emitted at the bottom either rise independently one from the other or merge to create a winding flue which then connects the bottom air entrance to the free surface. The observations are reminiscent of the spontaneous changes in the degassing regime observed on volcanoes and suggest that, in the nature, such a phenomenon is likely to be governed by the non-Newtonian properties of the magma. We focus on the statistical distribution of the lifespans of the bubbling and flue regimes in the intermittent steady state. The bubbling regime exhibits a characteristic time whereas, interestingly, the flue lifespan displays a decaying power-law distribution. The associated exponent, which is significantly smaller than the value 1.5 often reported experimentally and predicted in some standard intermittency scenarios, depends on the fluid properties and can be interpreted as the ratio of two characteristic times of the system.
Dynamics of magnetic nano-flake vortices in Newtonian fluids
NASA Astrophysics Data System (ADS)
Bazazzadeh, Nasim; Mohseni, Seyed Majid; Khavasi, Amin; Zibaii, Mohammad Ismail; Movahed, S. M. S.; Jafari, G. R.
2016-12-01
We study the rotational motion of nano-flake ferromagnetic disks suspended in a Newtonian fluid, as a potential material owing the vortex-like magnetic configuration. Using analytical expressions for hydrodynamic, magnetic and Brownian torques, the stochastic angular momentum equation is determined in the dilute limit conditions under applied magnetic field. Results are compared against experimental ones and excellent agreement is observed. We also estimate the uncertainty in the orientation of the disks due to the Brownian torque when an external magnetic field aligns them. Interestingly, this uncertainty is roughly proportional to the ratio of thermal energy of fluid to the magnetic energy stored in the disks. Our approach can be implemented in many practical applications including biotechnology and multi-functional fluidics.
Steady flow of a non-Newtonian fluid through a contraction
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Lumley, J. L.
1978-01-01
A steady-state analysis is conducted to examine the basic flow structure of a non-Newtonian fluid in a domain including an inflow region, a contraction region, and an outflow region. A Cartesian grid system is used throughout the entire flow domain, including the contraction region, thus creating an irregular grid cell structure adjacent to the curved boundary. At node points adjacent to the curved boundary symmetry conditions are derived for the different flow variables in order to solve the governing difference equations. Attention is given to the motion and non-Newtonian constitutive equations, the boundary conditions, the numerical modeling of the non-Newtonian equations, the stream function contour lines for the non-Newtonian fluid, the vorticity contour lines for the non-Newtonian fluid, the velocity profile across the contraction, and the shear stress contour lines for the non-Newtonian fluid.
Turbulent Entrainment into Non-Newtonian Fluid Mud Gravity Currents
NASA Astrophysics Data System (ADS)
Jacobson, Michael; Testik, Firat
2011-11-01
This study presents insights into turbulent entrainment of ambient water into fluid mud gravity currents. It is well established that fluid mud suspensions exhibit pseudo-plastic behavior. Gravity current laboratory experiments were conducted for constant-volume release configuration with different initial concentrations of fluid mud, representing different rheological properties (i.e. different Power-law model constants). A high quality data set of concentration and velocity profiles of fluid mud gravity currents was collected to calculate the entrainment velocity, we. The entrainment ratio (E =we / U , U - characteristic velocity) was calculated following the well-accepted Morton-Taylor-Turner entrainment hypothesis, which states that the inflow across the edge of a turbulent flow is proportional to some characteristic velocity. The entrainment ratio was further measured qualitatively using a light opaqueness technique. A semi-empirical parameterization for the entrainment ratio is proposed. The findings of this study are expected to be of significance for modeling various non-Newtonian gravity currents, in particular for modeling fluid mud gravity currents generated during dredge disposal operations in coastal waters. Contact Author.
Using ultrasonic Doppler velocimetry to investigate the mixing of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Patel, Dineshkumar; Ein-Mozaffari, Farhad; Mehrvar, Mehrab
2012-12-01
Mixing is a critical unit operation, which is widely used in chemical and allied industries. Mixing of non-Newtonian fluids is a challenging task due to the complex rheology exhibited by these fluids. Pseudoplastic fluids with yield stress are an important class of non-Newtonian fluids. In this study, we utilized ultrasonic Doppler velocimetry (UDV) to explore the flow field generated by different impellers in the agitation of xanthan gum solutions and pulp suspensions, which are yield-pseudoplastic fluids.
Dynamics and Control of Newtonian and Viscoelastic Fluids
NASA Astrophysics Data System (ADS)
Lieu, Binh K.
Transition to turbulence represents one of the most intriguing natural phenomena. Flows that are smooth and ordered may become complex and disordered as the flow strength increases. This process is known as transition to turbulence. In this dissertation, we develop theoretical and computational tools for analysis and control of transition and turbulence in shear flows of Newtonian, such as air and water, and complex viscoelastic fluids, such as polymers and molten plastics. Part I of the dissertation is devoted to the design and verification of sensor-free and feedback-based strategies for controlling the onset of turbulence in channel flows of Newtonian fluids. We use high fidelity simulations of the nonlinear flow dynamics to demonstrate the effectiveness of our model-based approach to flow control design. In Part II, we utilize systems theoretic tools to study transition and turbulence in channel flows of viscoelastic fluids. For flows with strong elastic forces, we demonstrate that flow fluctuations can experience significant amplification even in the absence of inertia. We use our theoretical developments to uncover the underlying physical mechanism that leads to this high amplification. For turbulent flows with polymer additives, we develop a model-based method for analyzing the influence of polymers on drag reduction. We demonstrate that our approach predicts drag reducing trends observed in full-scale numerical simulations. In Part III, we develop mathematical framework and computational tools for calculating frequency responses of spatially distributed systems. Using state-of-the-art automatic spectral collocation techniques and new integral formulation, we show that our approach yields more reliable and accurate solutions than currently available methods.
Generalized Newtonian fluid flow through fibrous porous media
NASA Astrophysics Data System (ADS)
Mierzwiczak, Magdalena; Kołodziej, Jan Adam; Grabski, Jakub Krzysztof
2016-06-01
The numerical calculations of the velocity field and the component of transverse permeability in the filtration equation for steady, incompressible flow of the generalized Newtonian fluid through the assemblages of cylindrical fibers are presented in this paper. The fibers are arranged regularly in arrays. Flow is transverse with respect to the fibers. The non-linear governing equation in the repeated element of the array is solved using iteration method. At each iteration step the method of fundamental solutions and the method of particular solutions are used. The bundle of fibers is treated as a porous media and on the base of velocity field the permeability coefficients are calculated as a function of porosity.
Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization
NASA Astrophysics Data System (ADS)
Abou Najm, Majdi; Atallah, Nabil; Selker, John; Roques, Clément; Stewart, Ryan; Rupp, David; Saad, George; El-Fadel, Mutasem
2016-04-01
Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization. We present a new method that transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). Those radii and weights are optimized in terms of flow and porosity to represent the functional hydraulic behavior of real porous media. The method also allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation revealed the ability of the proposed method to represent the water retention and functional infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media composed of different combinations of sizes and numbers of capillary tubes that the use of different non-Newtonian fluids enables the prediction of the pore structure. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil-root-plant continuum, carbon sequestration into geologic formations, soil remediation, petroleum reservoir engineering, oil exploration and groundwater modeling.
Effect of non-Newtonian fluid properties on bovine sperm motility.
Hyakutake, Toru; Suzuki, Hiroki; Yamamoto, Satoru
2015-09-18
The swimming process by which mammal spermatozoa progress towards an egg within the reproductive organs is important in achieving successful internal fertilization. The viscosity of oviductal mucus is more than two orders of magnitude greater than that of water, and oviductal mucus also has non-Newtonian properties. In this study, we experimentally observed sperm motion in fluids with various fluid rheological properties and investigated the influence of varying the viscosity and whether the fluid was Newtonian or non-Newtonian on the sperm motility. We selected polyvinylpyrrolidone and methylcellulose as solutes to create solutions with different rheological properties. We used the semen of Japanese cattle and investigated the following parameters: the sperm velocity, the straight-line velocity and the amplitude from the trajectory, and the beat frequency from the fragellar movement. In a Newtonian fluid environment, as the viscosity increased, the motility of the sperm decreased. However, in a non-Newtonian fluid, the straight-line velocity and beat frequency were significantly higher than in a Newtonian fluid with comparable viscosity. As a result, the linearity of the sperm movement increased. Additionally, increasing the viscosity brought about large changes in the sperm flagellar shape. At low viscosities, the entire flagellum moved in a curved flapping motion, whereas in the high-viscosity, only the tip of the flagellum flapped. These results suggest that the bovine sperm has evolved to swim toward the egg as quickly as possible in the actual oviduct fluid, which is a high-viscosity non-Newtonian fluid.
Viscoelastic fluid-structure interaction between a non-Newtonian fluid flow and flexible cylinder
NASA Astrophysics Data System (ADS)
Dey, Anita; Modarres-Sadeghi, Yahya; Rothstein, Jonathan
2016-11-01
It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. Unlike Newtonian fluids, the flow of viscoelastic fluids can become unstable at infinitesimal Reynolds numbers due to a purely elastic flow instability. In this talk, we will present a series of experiments investigating the response of a flexible cylinder placed in the cross flow of a viscoelastic fluid. The elastic flow instabilities occurring at high Weissenberg numbers can exert fluctuating forces on the flexible cylinder thus leading to nonlinear periodic oscillations of the flexible structure. These oscillations are found to be coupled to the time-dependent state of viscoelastic stresses in the wake of the flexible cylinder. The static and dynamic responses of the flexible cylinder will be presented over a range of flow velocities, along with measurements of velocity profiles and flow-induced birefringence, in order to quantify the time variation of the flow field and the state of stress in the fluid.
Rheology of cubic particles suspended in a Newtonian fluid.
Cwalina, Colin D; Harrison, Kelsey J; Wagner, Norman J
2016-05-18
Many real-world industrial processes involve non-spherical particles suspended in a fluid medium. Knowledge of the flow behavior of these suspensions is essential for optimizing their transport properties and designing processing equipment. In the present work, we explore and report on the rheology of concentrated suspensions of cubic-shaped colloidal particles under steady and dynamic shear flow. These suspensions exhibit a rich non-Newtonian rheology that includes shear thickening and normal stress differences at high shear stresses. Scalings are proposed to connect the material properties of these suspensions of cubic particle to those measured for suspensions of spherical particles. Negative first normal stress differences indicate that lubrication hydrodynamic forces dominate the stress in the shear-thickened state. Accounting for the increased lubrication hydrodynamic interactions between the flat surfaces of the cubic particles allows for a quantitative comparison of the deviatoric stress in the shear-thickened state to that of spherical particles. New semi-empirical models for the viscosity and normal stress difference coefficients are presented for the shear-thickened state. The results of this study indicate that cubic particles offer new and unique opportunities to formulate colloidal dispersions for field-responsive materials.
Effect of non-Newtonian viscosity on the fluid-dynamic characteristics in stenotic vessels
NASA Astrophysics Data System (ADS)
Huh, Hyung Kyu; Ha, Hojin; Lee, Sang Joon
2015-08-01
Although blood is known to have shear-thinning and viscoelastic properties, the effects of such properties on the hemodynamic characteristics in various vascular environments are not fully understood yet. For a quantitative hemodynamic analysis, the refractive index of a transparent blood analogue needs to be matched with that of the flowing conduit in order to minimize the errors according to the distortion of the light. In this study, three refractive index-matched blood analogue fluids with different viscosities are prepared—one Newtonian and two non-Newtonian analogues—which correspond to healthy blood with 45 % hematocrit (i.e., normal non-Newtonian) and obese blood with higher viscosity (i.e., abnormal non-Newtonian). The effects of the non-Newtonian rheological properties of the blood analogues on the hemodynamic characteristics in the post-stenosis region of an axisymmetric stenosis model are experimentally investigated using particle image velocimetry velocity field measurement technique and pathline flow visualization. As a result, the centerline jet flow from the stenosis apex is suppressed by the shear-thinning feature of the blood analogues when the Reynolds number is smaller than 500. The lengths of the recirculation zone for abnormal and normal non-Newtonian blood analogues are 3.67 and 1.72 times shorter than that for the Newtonian analogue at Reynolds numbers smaller than 200. The Reynolds number of the transition from laminar to turbulent flow for all blood analogues increases as the shear-thinning feature increases, and the maximum wall shear stresses in non-Newtonian fluids are five times greater than those in Newtonian fluids. However, the shear-thinning effect on the hemodynamic characteristics is not significant at Reynolds numbers higher than 1000. The findings of this study on refractive index-matched non-Newtonian blood analogues can be utilized in other in vitro experiments, where non-Newtonian features dominantly affect the flow
Hydrodynamics of Newtonian and power-law fluids in microchannel with superhydrophobic wall
NASA Astrophysics Data System (ADS)
Vagner, S. A.; Patlazhan, S. A.
2016-11-01
The flow peculiarities of the Newtonian and Carreau-Yasuda power-law fluids in a microchannel with the striped superhydrophobic wall is studied numerically. The driving forces leading to deviation of streamlines from the channel axis are analyzed.
Nandy, S; Tarbell, J M
1987-01-01
Wall shear stress has been measured by flush-mounted hot film anemometry distal to an Ionescu-Shiley tri-leaflet valve under pulsatile flow conditions. Both Newtonian (aqueous glycerol) and non-Newtonian (aqueous polyacrylamide) blood analog fluids were investigated. Significant differences in the axial distribution of wall shear stress between the two fluids are apparent in flows having nearly identical Reynolds numbers. The Newtonian fluid exhibits a (peak) wall shear rate which is maximized near the valve seat (30 mm) and then decays to a fully developed flow value (by 106 mm). In contrast, the shear rate of the non-Newtonian fluid at 30 mm is less than half that of the Newtonian fluid and at 106 mm is more than twice that of the Newtonian fluid. It is suggested that non-Newtonian rheology influences valve flow patterns either through alterations in valve opening associated with low shear separation zones behind valve leaflets, or because of variations in the rate of jet spreading. More detailed studies are required to clarify the mechanisms. The Newtonian wall shear stresses for this valve are low. The highest value observed anywhere in the aortic chamber was 2.85 N/m2 at a peak Reynolds number of 3694.
ERIC Educational Resources Information Center
Binous, Housam
2007-01-01
We study four non-Newtonian fluid mechanics problems using Mathematica[R]. Constitutive equations describing the behavior of power-law, Bingham and Carreau models are recalled. The velocity profile is obtained for the horizontal flow of power-law fluids in pipes and annuli. For the vertical laminar film flow of a Bingham fluid we determine the…
Secondary flow in a curved artery model with Newtonian and non-Newtonian blood-analog fluids
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-11-01
Steady and pulsatile flows of Newtonian and non-Newtonian fluids through a 180°-curved pipe were investigated using particle image velocimetry (PIV). The experiment was inspired by physiological pulsatile flow through large curved arteries, with a carotid artery flow rate imposed. Sodium iodide (NaI) and sodium thiocyanate (NaSCN) were added to the working fluids to match the refractive index (RI) of the test section to eliminate optical distortion. Rheological measurements revealed that adding NaI or NaSCN changes the viscoelastic properties of non-Newtonian solutions and reduces their shear-thinning property. Measured centerline velocity profiles in the upstream straight pipe agreed well with an analytical solution. In the pulsatile case, secondary flow structures, i.e. deformed-Dean, Dean, Wall and Lyne vortices, were observed in various cross sections along the curved pipe. Vortical structures at each cross section were detected using the d2 vortex identification method. Circulation analysis was performed on each vortex separately during the systolic deceleration phase, and showed that vortices split and rejoin. Secondary flow structures in steady flows were found to be morphologically similar to those in pulsatile flows for sufficiently high Dean number. supported by the George Washington University Center for Biomimetics and Bioinspired Engineering.
Gupta, Renu; Bansal, Ajay
2013-08-01
Axial dispersion is an important parameter in the performance of packed bed reactors. A lot of fluids exhibit non-Newtonian behaviour but the effect of rheological parameters on axial dispersion is not available in literature. The effect of rheology on axial dispersion has been analysed for viscoinelastic and viscoelastic non-Newtonian fluids. Aqueous solutions of carboxymethyl cellulose and polyacrylamide have been chosen to represent viscoinelastic and viscoelastic liquid-phases. Axial dispersion has been measured in terms of BoL number. The single parameter axial dispersion model has been applied to analyse RTD response curve. The BoL numbers were observed to increase with increase in liquid flow rate and consistency index 'K' for viscoinelastic as well as viscoelastic fluids. Bodenstein correlation for Newtonian fluids proposed has been modified to account for the effect of fluid rheology. Further, Weissenberg number is introduced to quantify the effect of viscoelasticity.
Helton, Kristen L; Yager, Paul
2007-11-01
As part of a project to develop an integrated microfluidic biosensor for the detection of small molecules in saliva, practical issues of extraction of analytes from non-Newtonian samples using an H-filter were explored. The H-filter can be used to rapidly and efficiently extract small molecules from a complex sample into a simpler buffer. The location of the interface between the sample and buffer streams is a critical parameter in the function of the H-filter, so fluorescence microscopy was employed to monitor the interface position; this revealed apparently anomalous fluorophore diffusion from the samples into the buffer solutions. Using confocal microscopy to understand the three-dimensional distribution of the fluorophore, it was found that the interface between the non-Newtonian sample and Newtonian buffer was both curved and unstable. The core of the non-Newtonian sample extended into the Newtonian buffer and its position was unstable, producing a fluorescence intensity profile that gave rise to the apparently anomalously fast fluorophore transport. These instabilities resulted from the pairing of rheologically dissimilar fluid streams and were flowrate dependent. We conclude that use of non-Newtonian fluids, such as saliva, in the H-filter necessitates pretreatment to reduce viscoelasticity. The interfacial variation in position, stability and shape caused by the non-Newtonian samples has substantial implications for the use of biological samples for quantitative analysis and analyte extraction in concurrent flow extraction devices.
NASA Astrophysics Data System (ADS)
Bae, Hyeong-Ohk; Wolf, Jörg
2017-02-01
We prove the local regularity of a weak solution {\\varvec{u}} to the equations of a generalized Newtonian fluid with power law 1< q ≤ 2 if {\\varvec{u}} belongs to a suitable Lebesgue space. This result extends the well-known Serrin condition for weak solutions of the Navier-Stokes equations to the shear-thinning fluids.
Learning about Non-Newtonian Fluids in a Student-Driven Classroom
ERIC Educational Resources Information Center
Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.
2013-01-01
We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science…
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro
2014-11-01
In this paper, the fluid dynamics induced by a rigid lamina undergoing harmonic oscillations in a non-Newtonian calm fluid is investigated. The fluid is modelled through the lattice Boltzmann method and the flow is assumed to be nearly incompressible. An iterative viscosity-correction based procedure is proposed to properly account for the non-Newtonian fluid feature and its accuracy is evaluated. In order to handle the mutual interaction between the lamina and the encompassing fluid, the Immersed Boundary method is adopted. A numerical campaign is performed. In particular, the effect of the non-Newtonian feature is highlighted by investigating the fluid forces acting on a harmonically oscillating lamina for different values of the Reynolds number. The findings prove that the non-Newtonian feature can drastically influence the behaviour of the fluid and, as a consequence, the forces acting upon the lamina. Several considerations are carried out on the time history of the drag coefficient and the results are used to compute the added mass through the hydrodynamic function. Moreover, the computational cost involved in the numerical simulations is discussed. Finally, two applications concerning water resources are investigated: the flow through an obstructed channel and the particle sedimentation. Present findings highlight a strong coupling between the body shape, the Reynolds number, and the flow behaviour index.
A comparison of numerical methods for non-Newtonian fluid flows in a sudden expansion
NASA Astrophysics Data System (ADS)
Ilio, G. Di; Chiappini, D.; Bella, G.
2016-06-01
A numerical study on incompressible laminar flow in symmetric channel with sudden expansion is conducted. In this work, Newtonian and non-Newtonian fluids are considered, where non-Newtonian fluids are described by the power-law model. Three different computational methods are employed, namely a semi-implicit Chorin projection method (SICPM), an explicit algorithm based on fourth-order Runge-Kutta method (ERKM) and a Lattice Boltzmann method (LBM). The aim of the work is to investigate on the capabilities of the LBM for the solution of complex flows through the comparison with traditional computational methods. In the range of Reynolds number investigated, excellent agreement with the literature results is found. In particular, the LBM is found to be accurate in the prediction of the fluid flow behavior for the problem under consideration.
Fingering instability in non-Newtonian fluids during squeeze flow in a Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Dutta Choudhury, M.; Tarafdar, S.
2015-05-01
Instability at the interface separating different fluids, may develop under different conditions, leading to increased roughness of the boundary. A difference in viscosity of the fluids is usually responsible for viscous fingering, this occurs when the pressure on the low viscosity side is higher. We report here a reverse effect when a non-Newtonian fluid is squeezed between two plane surfaces by applying a force. We observe that a wave-like irregularity develops on the interface, though the viscosity of the air surrounding the fluid is negligible compared to the apparent viscosity of the thick potato starch gel under study. Development of the wavelength of the undulations as a function of the fluid composition and other factors is studied. We suggest a qualitative explanation for this effect, which is observed only in non-Newtonian fluids.
Stretch flow of confined non-Newtonian fluids: nonlinear fingering dynamics.
Brandão, Rodolfo; Fontana, João V; Miranda, José A
2013-12-01
We employ a weakly nonlinear perturbative scheme to investigate the stretch flow of a non-Newtonian fluid confined in Hele-Shaw cell for which the upper plate is lifted. A generalized Darcy's law is utilized to model interfacial fingering formation in both the weak shear-thinning and weak shear-thickening limits. Within this context, we analyze how the interfacial finger shapes and the nonlinear competition dynamics among fingers are affected by the non-Newtonian nature of the stretched fluid.
FDA's nozzle numerical simulation challenge: non-Newtonian fluid effects and blood damage.
Trias, Miquel; Arbona, Antonio; Massó, Joan; Miñano, Borja; Bona, Carles
2014-01-01
Data from FDA's nozzle challenge-a study to assess the suitability of simulating fluid flow in an idealized medical device-is used to validate the simulations obtained from a numerical, finite-differences code. Various physiological indicators are computed and compared with experimental data from three different laboratories, getting a very good agreement. Special care is taken with the derivation of blood damage (hemolysis). The paper is focused on the laminar regime, in order to investigate non-Newtonian effects (non-constant fluid viscosity). The code can deal with these effects with just a small extra computational cost, improving Newtonian estimations up to a ten percent. The relevance of non-Newtonian effects for hemolysis parameters is discussed.
Numerical Solution of Hydrodynamics Lubrications with Non-Newtonian Fluid Flow
NASA Astrophysics Data System (ADS)
Osman, Kahar; Sheriff, Jamaluddin Md; Bahak, Mohd. Zubil; Bahari, Adli; Asral
2010-06-01
This paper focuses on solution of numerical model for fluid film lubrication problem related to hydrodynamics with non-Newtonian fluid. A programming code is developed to investigate the effect of bearing design parameter such as pressure. A physical problem is modeled by a contact point of sphere on a disc with certain assumption. A finite difference method with staggered grid is used to improve the accuracy. The results show that the fluid characteristics as defined by power law fluid have led to a difference in the fluid pressure profile. Therefore a lubricant with special viscosity can reduced the pressure near the contact area of bearing.
NASA Astrophysics Data System (ADS)
Golykh, R. N.
2016-06-01
Progress of technology and medicine dictates the ever-increasing requirements (heat resistance, corrosion resistance, strength properties, impregnating ability, etc.) for non-Newtonian fluids and materials produced on their basis (epoxy resin, coating materials, liquid crystals, etc.). Materials with improved properties obtaining is possible by modification of their physicochemical structure. One of the most promising approaches to the restructuring of non-Newtonian fluids is cavitation generated by high-frequency acoustic vibrations. The efficiency of cavitation in non-Newtonian fluid is determined by dynamics of gaseous bubble. Today, bubble dynamics in isotropic non-Newtonian fluids, in which cavitation bubble shape remains spherical, is most full investigated, because the problem reduces to ordinary differential equation for spherical bubble radius. However, gaseous bubble in anisotropic fluids which are most wide kind of non-Newtonian fluids (due to orientation of macromolecules) deviates from spherical shape due to viscosity dependence on shear rate direction. Therefore, the paper presents the mathematical model of gaseous bubble dynamics in anisotropic non-Newtonian fluids. The model is based on general equations for anisotropic non-Newtonian fluid flow. The equations are solved by asymptotic decomposition of fluid flow parameters. It allowed evaluating bubble size and shape evolution depending on rheological properties of liquid and acoustic field characteristics.
Vortex rings in non-Newtonian viscoelastic fluids play yo-yo
NASA Astrophysics Data System (ADS)
Albagnac, Julie; Laupsien, David; Anne-Archard, Dominique
2014-11-01
Vortex rings are coherent vortical structures widely presents in geophysical flows and engineering applications. Numerous applications imply industrial processes including food processing, or petrol industry. Those applications are very often confronted with non-Newtonian fluids. Nevertheless, to the best of our knowledge, only few studies dealing with vortex dynamics in non-Newtonian shear-thinning fluids exist, and none with viscoelastic ones. The aim for the present study is to characterize experimentally the dynamics of vortex rings generated thanks to a piston-cylinder apparatus in various viscoelastic fluids as a function of the generalized Reynolds number, the piston stroke and the final piston position relative to the cylinder exit. In particular, the elastic property of the fluid will be highlighted by the furling-unfurling of vortex rings.
Classical XY model with conserved angular momentum is an archetypal non-Newtonian fluid.
Evans, R M L; Hall, Craig A; Simha, R Aditi; Welsh, Tom S
2015-04-03
We find that the classical one-dimensional XY model, with angular-momentum-conserving Langevin dynamics, mimics the non-Newtonian flow regimes characteristic of soft matter when subjected to counterrotating boundaries. An elaborate steady-state phase diagram has continuous and first-order transitions between states of uniform flow, shear-banding, solid-fluid coexistence and slip planes. Results of numerical studies and a concise mean-field constitutive relation offer a paradigm for diverse nonequilibrium complex fluids.
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
CFD simulation of non-Newtonian fluid flow in anaerobic digesters.
Wu, Binxin; Chen, Shulin
2008-02-15
A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results.
Non-Newtonian fluid flow over a heterogeneously slippery surface
NASA Astrophysics Data System (ADS)
Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.
2015-11-01
The no-slip boundary condition does not always hold. In the past, we have investigated the influence of effective wall slip on interfacial transport for a bubble mattress - a superhydrophobic surface consisting of an array of transverse gas-filled grooves. We proved experimentally that the amount of effective wall slip depends on the bubble protrusion angle and the surface porosity (Karatay et al., PNAS 110, 2013), and predicted that mass transport can be enhanced significantly (Haase et al., Soft Matter 9, 2013). Both studies involve the flow of water. In practise, however, many liquids encountered are non-Newtonian, like blood and polymer solutions. This raises some interesting questions. How does interfacial transport depend on the rheological properties of the liquid? Does the time-scale of the experiment matter? A bubble mattress is a suitable platform to investigate this, due to local variations in shear rate. We predict that for shear-thinning liquids, compared to water, the amount of wall slip can be enhanced considerably, although this depends on the applied flow rate. Experiments are performed to proof this behaviour. Simulations are used to assess what will happen when the characteristic time-scale of the system matches the relaxation time of the visco-elastic liquid. R.G.H.L. acknowledges the European Research Council for the ERC starting grant 307342-TRAM.
EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS
Leishear, R; Michael Restivo, M
2008-06-26
The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.
Coalescence of drops and bubbles rising through a non-Newtonian fluid in a tube.
Al-Matroushi, Eisa; Borhan, Ali
2009-04-01
We conducted an experimental study of the interaction and coalescence of two drops (of the same fluid) or bubbles translating under the action of buoyancy in a cylindrical tube. The close approach of two Newtonian fluid particles of different size in a non-Newtonian continuous phase was examined using image analysis, and measurements of the coalescence time are reported for various particle size ratios, Bond numbers, and particle-to-suspending-fluid viscosity ratios. The flow disturbance behind the leading bubble and the viscoelastic nature of the continuous phase seemed to retard bubble coalescence. The time scale for coalescence of liquid drops in highly elastic continuous phase was influenced by the relative motion of the drops and their coalescence behavior.
Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology.
Min, Qi; Duan, Yuan-Yuan; Wang, Xiao-Dong; Liang, Zhan-Peng; Lee, Duu-Jong; Su, Ay
2010-08-01
Spreading non-Newtonian liquids with non-power-law rheology on completely wetting surfaces are seldom investigated. This study assessed the wetting behavior of polydimethylsiloxane (PDMS), a Newtonian fluid, two carboxymethylcellulose (CMC) sodium solutions, a PDMS+2%w/w silica nanoparticle suspension and three polyethylene glycol (PEG400)+5-10%w/w silica nanoparticle suspensions (non-power-law fluids) on a mica surface. The theta(D)-U and R-t data for spreading drops of the six tested, non-power-law fluids can be described by power-law wetting models. We propose that this behavior is attributable to a uniform shear rate (a few tens to a few hundreds of s(-1)) distributed over the thin-film regime that controls spreading dynamics. Estimated film thickness was below the resolution of an optical microscope for direct observation. Approximating a general non-Newtonian fluid spreading as a power-law fluid greatly simplifies theoretical analysis and data interpretation.
Squeeze film lubrication for non-Newtonian fluids with application to manual medicine.
Chaudhry, Hans; Bukiet, Bruce; Roman, Max; Stecco, Antonio; Findley, Thomas
2013-01-01
In this paper, we computed fluid pressure and force on fascia sheets during manual therapy treatments using Squeeze Film Lubrication theory for non-Newtonian fluids. For this purpose, we developed a model valid for three dimensional fluid flow of a non-Newtonian liquid. Previous models considered only one-dimensional flows in two dimensions. We applied this model to compare the one-dimensional flow of HA, considered as a lubricating fluid, around or within the fascia during sliding, vibration, and back-and-forth sliding manipulation treatment techniques. The fluid pressure of HA increases dramatically as fascia is deformed during manual therapies. The fluid force increases more during vertical vibratory manipulation treatment than in constant sliding, and back and forth motion. The variation of fluid pressure/force causes HA to flow near the edges of the fascial area under manipulation in sliding and back and forth motion which may result in greater lubrication. The fluid pressure generated in manual therapy techniques may improve sliding and permit muscles to work more efficiently.
Non-Newtonian fluid effects on surface reactions in a microfluidic flow cell
NASA Astrophysics Data System (ADS)
Akgül, M. Bahattin; Sarı, Gözde; Pakdemirli, Mehmet
2012-11-01
Mass transfer over a reactive surface in microfluidic flow cells plays a key role in understanding biomoleculer interactions and diagnosis of small molecules for biomedical and environmental applications. The effects of Non-Newtonian power law fluid on the binding reaction kinetic of immunoglobulin G in a flow cell are analyzed in this study. Governing equations for the fluid flow, mass transport and surface reaction are derived. The finite element method is employed to solve resulting equations. In addition, the effects of volumetric flow rate, fluid behavior index and reaction constants on the surface reaction are analyzed and presented graphically.
STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY
Wang, Xin; Szalay, Alex
2016-03-20
The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.
Heat transfer in a micropolar fluid over a stretching sheet with Newtonian heating.
Qasim, Muhammad; Khan, Ilyas; Shafie, Sharidan
2013-01-01
This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involved parameters on dimensionless velocity, microrotation and temperature is examined. An excellent agreement is found between the present and previous limiting results.
Nonvertical ascension or fall of a free sphere in a Newtonian fluid
NASA Astrophysics Data System (ADS)
Jenny, Mathieu; Bouchet, Gilles; Dušek, Jan
2003-01-01
It is shown that the system represented by a free sphere ascending or falling in a Newtonian fluid under the action of gravity buoyancy undergoes a regular, symmetry breaking bifurcation making the trajectory deviate from the vertical direction. The instability threshold expressed in terms of the asymptotic Reynolds number lies below that of a fixed sphere wake. The instability is shown to saturate and reach a fixed point corresponding to a straight oblique ascension (fall).
Non-Newtonian fluid model incorporated into elastohydrodynamic lubrication of rectangular contacts
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1984-01-01
A procedure is outlined for the numerical solution of the complete elastohydrodynamic lubrication of rectangular contacts incorporating a non-Newtonian fluid model. The approach uses a Newtonian model as long as the shear stress is less than a limiting shear stress. If the shear stress exceeds the limiting value, the shear stress is set equal to the limiting value. The numerical solution requires the coupled solution of the pressure, film shape, and fluid rheology equations from the inlet to the outlet. Isothermal and no-side-leakage assumptions were imposed in the analysis. The influence of dimensionless speed, load, materials, and sliding velocity and limiting-shear-strength proportionality constant on dimensionless minimum film thickness was investigated. Fourteen cases were used in obtaining the minimum-film-thickness equation for an elastohydrodynamically lubricated rectangular contact incorporating a non-Newtonian fluid model. Computer plots are also presented that indicate in detail pressure distribution, film shape, shear stress at the surfaces, and flow throughout the conjunction.
Non-Newtonian Fluid Model Incorporated into Elastohydrodynamic Lubrication of Rectangular Contacts
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1983-01-01
A procedure is outlined for the numerical solution of the complete elastohydrodynamic lubrication of rectangular contacts incorporating a non-Newtonian fluid model. The approach uses a Newtonian model as long as the shear stress is less than a limiting shear stress. If the shear stress exceeds the limiting value, the shear stress is set equal to the limiting value. The numerical solution requires the coupled solution of the pressure, film shape, and fluid rheology equations from the inlet to the outlet. Isothermal and no-side-leakage assumptions were imposed in the analysis. The influence of dimensionless speed, load, materials, and sliding velocity and limiting-shear-strength proportionality constant on dimensionless minimum film thickness was investigated. Fourteen cases were used in obtaining the minimum-film-thickness equation for an elastohydrodynamically lubricated rectangular contact incorporating a non-Newtonian fluid model. Computer plots are also presented that indicate in detail pressure distribution, film shape, shear stress at the surfaces, and flow throughout the conjunction.
Swimming sheet in a Newtonian fluid confined by a Brinkman medium
NASA Astrophysics Data System (ADS)
Mirbagheri, Seyed Amir; Fu, Henry
2015-11-01
Many microorganisms swim through complex materials such as viscoelastic mucus in their natural habitats. As microorganisms move through complex materials, they may induce spatial heterogeneity in the medium, which can affect swimming properties. For example, the rotating flagella of bacteria may deplete polymer concentration near the flagella, while H pylori can turn nearby mucin gel into sol by elevating the pH. Here we examine a simple model of swimming in such scenarios, by investigating Taylor's two-dimensional swimming sheet swimming in a layer of Newtonian fluid. The Newtonian fluid is bounded above by a Brinkman medium, which represents the complex material that has been locally depleted or dissolved near the swimmer. We analytically derive the velocity for a small amplitude wave of an infinite sheet using a perturbation series to second order in the wave amplitude. For a fixed swimmer geometry, we explore the dependence of the velocity on the thickness of the Newtonian fluid and the permeability and porosity of the Brinkman medium.
Walker, Andrew M; Johnston, Clifton R; Rival, David E
2012-11-01
Although deployed in the vasculature to expand vessel diameter and improve blood flow, protruding stent struts can create complex flow environments associated with flow separation and oscillating shear gradients. Given the association between magnitude and direction of wall shear stress (WSS) and endothelial phenotype expression, accurate representation of stent-induced flow patterns is critical if we are to predict sites susceptible to intimal hyperplasia. Despite the number of stents approved for clinical use, quantification on the alteration of hemodynamic flow parameters associated with the Gianturco Z-stent is limited in the literature. In using experimental and computational models to quantify strut-induced flow, the majority of past work has assumed blood or representative analogs to behave as Newtonian fluids. However, recent studies have challenged the validity of this assumption. We present here the experimental quantification of flow through a Gianturco Z-stent wire in representative Newtonian and non-Newtonian blood analog environments using particle image velocimetry (PIV). Fluid analogs were circulated through a closed flow loop at physiologically appropriate flow rates whereupon PIV snapshots were acquired downstream of the wire housed in an acrylic tube with a diameter characteristic of the carotid artery. Hemodynamic parameters including WSS, oscillatory shear index (OSI), and Reynolds shear stresses (RSS) were measured. Our findings show that the introduction of the stent wire altered downstream hemodynamic parameters through a reduction in WSS and increases in OSI and RSS from nonstented flow. The Newtonian analog solution of glycerol and water underestimated WSS while increasing the spatial coverage of flow reversal and oscillatory shear compared to a non-Newtonian fluid of glycerol, water, and xanthan gum. Peak RSS were increased with the Newtonian fluid, although peak values were similar upon a doubling of flow rate. The introduction of the
NASA Technical Reports Server (NTRS)
DiSalvo, Roberto; Deaconu, Stelu; Majumdar, Alok
2006-01-01
One of the goals of this program was to develop the experimental and analytical/computational tools required to predict the flow of non-Newtonian fluids through the various system components of a propulsion system: pipes, valves, pumps etc. To achieve this goal we selected to augment the capabilities of NASA's Generalized Fluid System Simulation Program (GFSSP) software. GFSSP is a general-purpose computer program designed to calculate steady state and transient pressure and flow distributions in a complex fluid network. While the current version of the GFSSP code is able to handle various systems components the implicit assumption in the code is that the fluids in the system are Newtonian. To extend the capability of the code to non-Newtonian fluids, such as silica gelled fuels and oxidizers, modifications to the momentum equations of the code have been performed. We have successfully implemented in GFSSP flow equations for fluids with power law behavior. The implementation of the power law fluid behavior into the GFSSP code depends on knowledge of the two fluid coefficients, n and K. The determination of these parameters for the silica gels used in this program was performed experimentally. The n and K parameters for silica water gels were determined experimentally at CFDRC's Special Projects Laboratory, with a constant shear rate capillary viscometer. Batches of 8:1 (by weight) water-silica gel were mixed using CFDRC s 10-gallon gelled propellant mixer. Prior to testing the gel was allowed to rest in the rheometer tank for at least twelve hours to ensure that the delicate structure of the gel had sufficient time to reform. During the tests silica gel was pressure fed and discharged through stainless steel pipes ranging from 1", to 36", in length and three diameters; 0.0237", 0.032", and 0.047". The data collected in these tests included pressure at tube entrance and volumetric flowrate. From these data the uncorrected shear rate, shear stress, residence time
Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa
2014-01-01
Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid.
Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa
2014-01-01
Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid. PMID:27437446
Acoustic waveform of continuous bubbling in a non-Newtonian fluid.
Vidal, Valérie; Ichihara, Mie; Ripepe, Maurizio; Kurita, Kei
2009-12-01
We study experimentally the acoustic signal associated with a continuous bubble bursting at the free surface of a non-Newtonian fluid. Due to the fluid rheological properties, the bubble shape is elongated, and, when bursting at the free surface, acts as a resonator. For a given fluid concentration, at constant flow rate, repetitive bubble bursting occurs at the surface. We report a modulation pattern of the acoustic waveform through time. Moreover, we point out the existence of a precursor acoustic signal, recorded on the microphone array, previous to each bursting. The time delay between this precursor and the bursting signal is well correlated with the bursting signal frequency content. Their joint modulation through time is driven by the fluid rheology, which strongly depends on the presence of small satellite bubbles trapped in the fluid due to the yield stress.
On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Hinke, Jessica A.; Bulusu, Kartik V.; Plesniak, Michael W.
2016-06-01
Four commonly used refractive-index (RI)-matched Newtonian blood-analog fluids are reviewed, and different non-Newtonian blood-analogs, with RI of 1.372-1.495, are investigated. Sodium iodide (NaI), sodium thiocyanate (NaSCN) and potassium thiocyanate are used to adjust the RI of blood-analogs to that of test sections for minimizing optical distortions in particle image velocimetry data, and xanthan gum (XG) is added to the fluids to give them non-Newtonian properties (shear thinning and viscoelasticity). Our results support the general belief that adding NaI to Newtonian fluids matches the RI without changing the kinematic viscosity. However, in contrast to claims made in a few studies that did not measure rheology, our investigation revealed that adding NaI or NaSCN to XG-based non-Newtonian fluids changes the viscosity of the fluids considerably and reduces the shear-thinning property. Therefore, the RI of non-Newtonian blood-analog fluids with XG cannot be adjusted easily by varying the concentration of NaI or NaSCN and needs more careful rheological study.
Lateral migration of particles in the Newtonian fluid
NASA Astrophysics Data System (ADS)
Makino, M.
2014-04-01
Studying of lateral migration of particles has a long history in fluid mechanics. In the Stokes approximation, noncharged rigid spherical particle in dilute solution does not migrate to a direction perpendicular to external field. For example, the spherical particle is placed in the vicinity of the wall. The particle doesn't move when a flow field, which is parallel to the wall, is applied. However, the lateral migrations are observed in dispersions of non-spherical and deformable particles. Blood is a multi-phase dispersion and is composed of red blood cells, leukocytes, platelets and so on dispersed in plasma. The leukocytes and the platelets move to the vicinity of the wall when the blood flows in tube. It is called `margination'. In this study, the migrations of binary droplet dispersion with different radii and surface tension coefficient are examined by computer simulations. The interaction among droplets causes a segregation of some kind of particles. The binary droplets dispersion system under Couette flow is simulated and the mean positions of the droplets are evaluated. The margination of small droplets is observed when the surface tension coefficient of the large droplets is small. On the other hand, the margination of large droplets is not observed when the large droplet is stiff.
Learning About Non-Newtonian Fluids in a Student-Driven Classroom
NASA Astrophysics Data System (ADS)
Dounas-Frazer, D. R.; Lynn, J.; Zaniewski, A. M.; Roth, N.
2013-01-01
We describe a simple, low-cost experiment and corresponding pedagogical strategies for studying fluids whose viscosities depend on shear rate, referred to as "non-Newtonian fluids." We developed these materials teaching for the Compass Project, an organization that fosters a creative, diverse, and collaborative community of science students at UC Berkeley. Incoming freshmen worked together in a week-long residential program to explore physical phenomena through a combination of conceptual model-building and hands-on experimentation. During the program, students were exposed to three major aspects of scientific discovery: developing a model, testing the model, and investigating deviations from the model.
Torralba, M; Castrejón-Pita, J R; Castrejón-Pita, A A; Huelsz, G; del Río, J A; Ortín, J
2005-07-01
We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl-NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic-fluid--pipe system. Three different optical measurement techniques have been employed. Laser Doppler anemometry has been used to measure the magnitude of the velocity at the center of the liquid column. Particle image velocimetry and optical deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid-air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behavior of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.
NASA Astrophysics Data System (ADS)
Sochi, Taha
2015-05-01
We continue our investigation to the use of the variational method to derive flow relations for generalized Newtonian fluids in confined geometries. While in the previous investigations we used the straight circular tube geometry with eight fluid rheological models to demonstrate and establish the variational method, the focus here is on the plane long thin slit geometry using those eight rheological models, namely: Newtonian, power law, Ree-Eyring, Carreau, Cross, Casson, Bingham and Herschel-Bulkley. We demonstrate how the variational principle based on minimizing the total stress in the flow conduit can be used to derive analytical expressions, which are previously derived by other methods, or used in conjunction with numerical procedures to obtain numerical solutions which are virtually identical to the solutions obtained previously from well established methods of fluid dynamics. In this regard, we use the method of Weissenberg-Rabinowitsch- Mooney-Schofield (WRMS), with our adaptation from the circular pipe geometry to the long thin slit geometry, to derive analytical formulae for the eight types of fluid where these derived formulae are used for comparison and validation of the variational formulae and numerical solutions. Although some examples may be of little value, the optimization principle which the variational method is based upon has a significant theoretical value as it reveals the tendency of the flow system to assume a configuration that minimizes the total stress. Our proposal also offers a new methodology to tackle common problems in fluid dynamics and rheology.
Non-newtonian fluid flow through three-dimensional disordered porous media.
Morais, Apiano F; Seybold, Hansjoerg; Herrmann, Hans J; Andrade, José S
2009-11-06
We investigate the flow of various non-newtonian fluids through three-dimensional disordered porous media by direct numerical simulation of momentum transport and continuity equations. Remarkably, our results for power-law (PL) fluids indicate that the flow, when quantified in terms of a properly modified permeability-like index and Reynolds number, can be successfully described by a single (universal) curve over a broad range of Reynolds conditions and power-law exponents. We also study the flow behavior of Bingham fluids described in terms of the Herschel-Bulkley model. In this case, our simulations reveal that the interplay of (i) the disordered geometry of the pore space, (ii) the fluid rheological properties, and (iii) the inertial effects on the flow is responsible for a substantial enhancement of the macroscopic hydraulic conductance of the system at intermediate Reynolds conditions.
A Numerical Study of Mesh Adaptivity in Multiphase Flows with Non-Newtonian Fluids
NASA Astrophysics Data System (ADS)
Percival, James; Pavlidis, Dimitrios; Xie, Zhihua; Alberini, Federico; Simmons, Mark; Pain, Christopher; Matar, Omar
2014-11-01
We present an investigation into the computational efficiency benefits of dynamic mesh adaptivity in the numerical simulation of transient multiphase fluid flow problems involving Non-Newtonian fluids. Such fluids appear in a range of industrial applications, from printing inks to toothpastes and introduce new challenges for mesh adaptivity due to the additional ``memory'' of viscoelastic fluids. Nevertheless, the multiscale nature of these flows implies huge potential benefits for a successful implementation. The study is performed using the open source package Fluidity, which couples an unstructured mesh control volume finite element solver for the multiphase Navier-Stokes equations to a dynamic anisotropic mesh adaptivity algorithm, based on estimated solution interpolation error criteria, and conservative mesh-to-mesh interpolation routine. The code is applied to problems involving rheologies ranging from simple Newtonian to shear-thinning to viscoelastic materials and verified against experimental data for various industrial and microfluidic flows. This work was undertaken as part of the EPSRC MEMPHIS programme grant EP/K003976/1.
CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters.
Wu, Binxin
2010-07-01
This paper presents an Eulerian multiphase flow model that characterizes gas mixing in anaerobic digesters. In the model development, liquid manure is assumed to be water or a non-Newtonian fluid that is dependent on total solids (TS) concentration. To establish the appropriate models for different TS levels, twelve turbulence models are evaluated by comparing the frictional pressure drops of gas and non-Newtonian fluid two-phase flow in a horizontal pipe obtained from computational fluid dynamics (CFD) with those from a correlation analysis. The commercial CFD software, Fluent12.0, is employed to simulate the multiphase flow in the digesters. The simulation results in a small-sized digester are validated against the experimental data from literature. Comparison of two gas mixing designs in a medium-sized digester demonstrates that mixing intensity is insensitive to the TS in confined gas mixing, whereas there are significant decreases with increases of TS in unconfined gas mixing. Moreover, comparison of three mixing methods indicates that gas mixing is more efficient than mixing by pumped circulation while it is less efficient than mechanical mixing.
Pullback Asymptotic Behavior of Solutions for a 2D Non-autonomous Non-Newtonian Fluid
NASA Astrophysics Data System (ADS)
Liu, Guowei
2016-10-01
This paper studies the pullback asymptotic behavior of solutions for the non-autonomous incompressible non-Newtonian fluid in 2D bounded domains. Firstly, with a little high regularity of the force, the semigroup method and ɛ -regularity method are used to establish the existence of compact pullback absorbing sets. Then, with a minimal regularity of the force, by verifying the flattening property also known as the "Condition (C)", the author proves the existence of pullback attractors for the universe of fixed bounded sets and for the another universe given by a tempered condition. Furthermore, the regularity of pullback attractors is given.
A note on the breathing mode of an elastic sphere in Newtonian and complex fluids
NASA Astrophysics Data System (ADS)
Galstyan, Vahe; Pak, On Shun; Stone, Howard A.
2015-03-01
Experiments on the acoustic vibrations of elastic nanostructures in fluid media have been used to study the mechanical properties of materials, as well as for mechanical and biological sensing. The medium surrounding the nanostructure is typically modeled as a Newtonian fluid. A recent experiment however suggested that high-frequency longitudinal vibration of bipyramidal nanoparticles could trigger a viscoelastic response in water-glycerol mixtures [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. Motivated by these experimental studies, we first revisit a classical continuum mechanics problem of the purely radial vibration of an elastic sphere, also called the breathing mode, in a compressible viscous fluid and then extend our analysis to a viscoelastic medium using the Maxwell fluid model. The effects of fluid compressibility and viscoelasticity are discussed. Although in the case of longitudinal vibration of bipyramidal nanoparticles, the effects of fluid compressibility were shown to be negligible, we demonstrate that it plays a significant role in the breathing mode of an elastic sphere. On the other hand, despite the different vibration modes, the breathing mode of a sphere triggers a viscoelastic response in water-glycerol mixtures similar to that triggered by the longitudinal vibration of bipyramidal nanoparticles. We also comment on the effect of fluid viscoelasticity on the idea of destroying virus particles by acoustic resonance.
Direct numerical simulation of solid-liquid flow of Newtonian and viscoelastic fluids
NASA Astrophysics Data System (ADS)
Zhu, Mingyu
The main theme of this work is to enhance the understanding on the behavior of solid particles in flows of Newtonian or viscoelastic fluids by using both two-dimensional and three-dimensional direct numerical simulations (DNS). A large-scale state-of-the-art software package PARTMOVER3D is developed based on an Arbitrary Lagrangian-Eulerian (ALE) technique and an Elastic-Viscous-Stress-Split (EVSS) scheme. Our numerical results are extensively compared with analytical, experimental and numerical ones in the literature. We studied the motion of spheres sedimenting in a cylindrical tube filled with a Newtonian fluid. The hydrodynamic drag and lift on the particle are investigated under various conditions. The effects of the tube wall, in terms of the blockage ratio and the eccentricity ratio, on the particle terminal velocity, migration and rotation are studied. We also investigated the interaction between pair particles released in tandem or side by side at different Reynolds numbers. The migration of particles in a pressure driven flow is the heart of vast number of industrial applications. Using 3-D direct numerical simulations, we systematically investigated the independent parameters controlling the particle migration, which are the blockage ratio, the flow Reynolds number, and the solid-liquid density ratio. During the particle migration, the mechanisms of the fluid inertia, the wall confinement, the local flow shear rate, the particle slip velocity, the particle size, and the particle rotation were extensively examined through the stress distribution on the particle surface under different flow conditions. In the presence of a shear flow, an initially deposited bed of heavy particles will be entrained into the bulk fluid and convected away with the flow. We investigated the mechanism of this particle resuspension by using 2-D direct numerical simulations. Various effects on the lift force on the particle was analyzed by examining the distribution of the stress
An efficient implicit unstructured finite volume solver for generalised Newtonian fluids
NASA Astrophysics Data System (ADS)
Jalali, Alireza; Sharbatdar, Mahkame; Ollivier-Gooch, Carl
2016-03-01
An implicit finite volume solver is developed for the steady-state solution of generalised Newtonian fluids on unstructured meshes in 2D. The pseudo-compressibility technique is employed to couple the continuity and momentum equations by transforming the governing equations into a hyperbolic system. A second-order accurate spatial discretisation is provided by performing a least-squares gradient reconstruction within each control volume of unstructured meshes. A central flux function is used for the convective terms and a solution jump term is added to the averaged component for the viscous terms. Global implicit time-stepping using successive evolution-relaxation is utilised to accelerate the convergence to steady-state solutions. The performance of our flow solver is examined for power-law and Carreau-Yasuda non-Newtonian fluids in different geometries. The effects of model parameters and Reynolds number are studied on the convergence rate and flow features. Our results verify second-order accuracy of the discretisation and also fast and efficient convergence to the steady-state solution for a wide range of flow variables.
Minale, Mario; Caserta, Sergio; Guido, Stefano
2010-01-05
In this work, the microconfined shear deformation of a droplet in an equiviscous non-Newtonian immiscible fluid is investigated by modeling and experiments. A phenomenological model based on the assumption of ellipsoidal shape and taking into account wall effects is proposed for systems made of non-Newtonian second-order fluids. The model, without any adjustable parameters, is tested by comparison with experiments under simple shear flow performed in a sliding plate apparatus, where the ratio between the distance between the confining walls and the droplet radius can be varied. The agreement between model predictions and experimental data is good both in steady state shear and in transient drop retraction upon cessation of flow. The results obtained in this work are relevant for microfluidics applications where non-Newtonian fluids are used.
Generalized multiscale finite element method for non-Newtonian fluid flow in perforated domain
NASA Astrophysics Data System (ADS)
Chung, E. T.; Iliev, O.; Vasilyeva, M. V.
2016-10-01
In this work, we consider a non-Newtonian fluid flow in perforated domains. Fluid flow in perforated domains have a multiscale nature and solution techniques for such problems require high resolution. In particular, the discretization needs to honor the irregular boundaries of perforations. This gives rise to a fine-scale problems with many degrees of freedom which can be very expensive to solve. In this work, we develop a multiscale approach that attempt to solve such problems on a coarse grid by constructing multiscale basis functions. We follow Generalized Multiscale Finite Element Method (GMsFEM) [1, 2] and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems [3, 4]. We show that with a few basis functions in each coarse block, one can accurately approximate the solution, where each coarse block can contain many small inclusions.
Dark Fluid: A Unified Framework for Modified Newtonian Dynamics, Dark Matter, and Dark Energy
NASA Astrophysics Data System (ADS)
Zhao, HongSheng; Li, Baojiu
2010-03-01
Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and νΛ theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.
DARK FLUID: A UNIFIED FRAMEWORK FOR MODIFIED NEWTONIAN DYNAMICS, DARK MATTER, AND DARK ENERGY
Zhao Hongsheng; Li Baojiu E-mail: b.li@damtp.cam.ac.u
2010-03-20
Empirical theories of dark matter (DM) like modified Newtonian dynamics (MOND) gravity and of dark energy (DE) like f(R) gravity were motivated by astronomical data. But could these theories be branches rooted from a more general and hence generic framework? Here we propose a very generic Lagrangian of such a framework based on simple dimensional analysis and covariant symmetry requirements, and explore various outcomes in a top-down fashion. The desired effects of quintessence plus cold DM particle fields or MOND-like scalar field(s) are shown to be largely achievable by one vector field only. Our framework preserves the covariant formulation of general relativity, but allows the expanding physical metric to be bent by a single new species of dark fluid flowing in spacetime. Its non-uniform stress tensor and current vector are simple functions of a vector field with variable norm, not coupled with the baryonic fluid and the four-vector potential of the photon fluid. The dark fluid framework generically branches into a continuous spectrum of theories with DE and DM effects, including the f(R) gravity, tensor-vector-scalar-like theories, Einstein-Aether, and nuLAMBDA theories as limiting cases. When the vector field degenerates into a pure scalar field, we obtain the physics for quintessence. Choices of parameters can be made to pass Big Bang nucleosynthesis, parameterized post-Newtonian, and causality constraints. In this broad setting we emphasize the non-constant dynamical field behind the cosmological constant effect, and highlight plausible corrections beyond the classical MOND predictions.
Depletion layer formation in suspensions of elastic capsules in Newtonian and viscoelastic fluids
NASA Astrophysics Data System (ADS)
Pranay, Pratik; Henríquez-Rivera, Rafael G.; Graham, Michael D.
2012-06-01
Motivated by observations of the effects of drag-reducing polymer additives on various aspects of blood flow, suspensions of fluid-filled elastic capsules in Newtonian fluids and dilute solutions of high molecular weight (drag-reducing) polymers are investigated during plane Couette flow in a slit geometry. A simple model is presented to describe the cross-stream distribution of capsules as a balance of shear-induced diffusion and wall-induced migration due to capsule deformability. The model provides a theoretical prediction of the dependence of capsule-depleted layer thickness on the capillary number. A computational approach is then used to directly study the motion of elastic capsules in a Newtonian fluid and in polymer solutions. Capsule membranes are modeled using a neo-Hookean constitutive model and polymer molecules are modeled as bead-spring chains with finitely extensible nonlinearly elastic springs, with parameters chosen to loosely approximate 4000 kDa poly(ethylene oxide). Simulations are performed with a Stokes flow formulation of the immersed boundary method for the capsules, combined with Brownian dynamics for the polymer molecules. Results for an isolated capsule near a wall indicate that the wall-induced migration depends on the capillary number and is strongly reduced by addition of polymer. Numerical simulations of suspensions of capsules in Newtonian fluid illustrate the formation of a capsule-depleted layer near the walls. The thickness of this layer is found to be strongly dependent on the capillary number. The shear-induced diffusivity of the capsules, on the other hand, shows only a weak dependence on capillary number. These results thus indicate that the mechanism of wall-induced migration is the primary source for determining the capillary number dependence of the depletion layer thickness. Both the wall-induced migration and the shear-induced diffusive motion of the capsules are attenuated under the influence of polymer; reduction of
A note on the breathing mode of an elastic sphere in Newtonian and complex fluids
NASA Astrophysics Data System (ADS)
Galstyan, Vahe; Pak, On Shun; Stone, Howard
2015-11-01
Experiments on the acoustic vibrations of elastic nanostructures in fluid media have been used to study the mechanical properties of materials. The medium surrounding the nanostructure is typically modeled as a Newtonian fluid. A recent experiment however suggested that high-frequency longitudinal vibration of bipyramidal nanoparticles could trigger a viscoelastic response in water-glycerol mixtures. Motivated by these experimental studies, we first revisit a classical continuum mechanics problem of the purely radial vibration of an elastic sphere in a compressible viscous fluid and then extend our analysis to a viscoelastic medium using the Maxwell fluid model. Although in the case of longitudinal vibration of bipyramidal nanoparticles, the effects of fluid compressibility were shown to be negligible, we demonstrate that it plays a significant role in the breathing mode of an elastic sphere. On the other hand, despite the different vibration modes, the breathing mode of a sphere triggers a viscoelastic response in water-glycerol mixtures similar to that triggered by the longitudinal vibration of bipyramidal nanoparticles.
Okahara, Shigeyuki; Zu Soh; Takahashi, Shinya; Sueda, Taijiro; Tsuji, Toshio
2016-08-01
We proposed a blood viscosity estimation method based on pressure-flow characteristics of oxygenators used during cardiopulmonary bypass (CPB) in a previous study that showed the estimated viscosity to correlate well with the measured viscosity. However, the determination of the parameters included in the method required the use of blood, thereby leading to high cost of calibration. Therefore, in this study we propose a new method to monitor blood viscosity, which approximates the pressure-flow characteristics of blood considered as a non-Newtonian fluid with characteristics of a Newtonian fluid by using the parameters derived from glycerin solution to enable ease of acquisition. Because parameters used in the estimation method are based on fluid types, bovine blood parameters were used to calculate estimated viscosity (ηe), and glycerin parameters were used to estimate deemed viscosity (ηdeem). Three samples of whole bovine blood with different hematocrit levels (21.8%, 31.0%, and 39.8%) were prepared and perfused into the oxygenator. As the temperature changed from 37 °C to 27 °C, the oxygenator mean inlet pressure and outlet pressure were recorded for flows of 2 L/min and 4 L/min, and the viscosity was estimated. The value of deemed viscosity calculated with the glycerin parameters was lower than estimated viscosity calculated with bovine blood parameters by 20-33% at 21.8% hematocrit, 12-27% at 31.0% hematocrit, and 10-15% at 39.8% hematocrit. Furthermore, deemed viscosity was lower than estimated viscosity by 10-30% at 2 L/min and 30-40% at 4 L/min. Nevertheless, estimated and deemed viscosities varied with a similar slope. Therefore, this shows that deemed viscosity achieved using glycerin parameters may be capable of successfully monitoring relative viscosity changes of blood in a perfusing oxygenator.
Validation of computational non-Newtonian fluid model for membrane bioreactor.
Sørensen, Lasse; Bentzen, Thomas Ruby; Skov, Kristian
2015-01-01
Membrane bioreactor (MBR) systems are often considered as the wastewater treatment method of the future due to their high effluent quality. One of the main problems with such systems is a relative large energy consumption, compared to conventional activated sludge (CAS) systems, which has led to further research in this specific area. A powerful tool for optimizing MBR-systems is computational fluid dynamics (CFD) modelling, which gives researchers the ability to describe the flow in the systems. A parameter which is often neglected in such models is the non-Newtonian properties of active sludge, which is of great importance for MBR systems since they operate at sludge concentrations up to a factor of 10 compared to CAS systems, resulting in strongly shear thinning liquids. A CFD-model is validated against measurements conducted in a system with rotating cross-flow membranes submerged in non-Newtonian liquids, where tangential velocities are measured with a Laser Doppler Anemometer (LDA). The CFD model is found to be capable of modelling the correct velocities in a range of setups, making CFD models a powerful tool for optimization of MBR systems.
Gravity driven instabilities in miscible non-Newtonian fluid displacements in porous media
NASA Astrophysics Data System (ADS)
Freytes, V. M.; D'Onofrio, A.; Rosen, M.; Allain, C.; Hulin, J. P.
2001-02-01
Gravity driven instabilities in model porous packings of 1 mm diameter spheres are studied by comparing the broadening of the displacement front between fluids of slightly different densities in stable and unstable configurations. Water, water-glycerol and water-polymer solutions are used to vary independently viscosity and molecular diffusion and study the influence of shear-thinning properties. Both injected and displaced solutions are identical but for a different concentration of NaNO 3 salt used as an ionic tracer and to introduce the density contrast. Dispersivity in stable configuration increases with polymer concentration - as already reported for double porosity packings of porous grains. Gravity-induced instabilities are shown to develop below a same threshold Péclet number Pe for water and water-glycerol solutions of different viscosities and result in considerable increases of the dispersivity. Measured threshold Pe values decrease markedly on the contrary with polymer concentration. The quantitative analysis demonstrates that the development of the instabilities is controlled by viscosity through a characteristic gravity number G (ratio between hydrostatic and viscous pressure gradients). A single threshold value of G accounts for results obtained on Newtonian and non-Newtonian solutions.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter.
NASA Astrophysics Data System (ADS)
Ilyasov, A. M.; Bulgakova, G. T.
2016-08-01
This paper describes a mathematical model of the main fracture isolation in porous media by water-based mature gels. While modeling injection, water infiltration from the gel pack through fracture walls is taking into account, due to which the polymer concentration changes and the residual water resistance factor changes as a consequence. The salutation predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for conditions of a non-deformable formation as well as a gel front trajectory in the fracture. The mathematical model of agent injection into the main fracture is based on the fundamental laws of continuum mechanics conservation describing the flow of non-Newtonian and Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The mathematical model is based on a one-dimensional isothermal approximation, with dynamic parameters pressure and velocity, averaged over the fracture section.
Hussanan, Abid; Zuki Salleh, Mohd; Tahar, Razman Mat; Khan, Ilyas
2014-01-01
In this paper, the heat transfer effect on the unsteady boundary layer flow of a Casson fluid past an infinite oscillating vertical plate with Newtonian heating is investigated. The governing equations are transformed to a systems of linear partial differential equations using appropriate non-dimensional variables. The resulting equations are solved analytically by using the Laplace transform method and the expressions for velocity and temperature are obtained. They satisfy all imposed initial and boundary conditions and reduce to some well-known solutions for Newtonian fluids. Numerical results for velocity, temperature, skin friction and Nusselt number are shown in various graphs and discussed for embedded flow parameters. It is found that velocity decreases as Casson parameters increases and thermal boundary layer thickness increases with increasing Newtonian heating parameter. PMID:25302782
Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
NASA Astrophysics Data System (ADS)
Allouche, M. H.; Millet, S.; Botton, V.; Henry, D.; Ben Hadid, H.; Rousset, F.
2015-12-01
Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.
Nonlinear wave evolution in pressure-driven stratified flow of Newtonian and Herschel-Bulkley fluids
NASA Astrophysics Data System (ADS)
Valluri, Prashant; Sahu, Kirti; Ding, Hang; Spelt, Peter; Matar, Omar; Lawrence, Chris
2007-11-01
Pressure-driven stratified channel flow of a Newtonian fluid flowing over a Herschel-Bulkley (HB) fluid is considered. The effects of yield stress and shear-thinning rheology on the nonlinear wave evolution are studied using numerical simulations; the HB rheology is regularized at low shear rates using a bi-viscosity formulation. Two different numerical methods were used to carry out the computations: a level-set method (based on that by Spelt, J. Comput. Phys. 2005) and a diffuse-interface method (based on that by Ding et al., J. Comput. Phys., in press). The simulations, which account for fluid inertia, surface tension and gravity are validated against linear theory predictions at early times. The results at later times show the spatio-temporal evolution into the nonlinear regime wherein waves are strongly deformed, leading to the onset of drop entrainment. It is shown that the apparent viscosity in the region of the HB fluid directly involved in the onset of entrainment is almost constant; unyielded regions are confined to wave troughs at late stages of the nonlinear evolution.
Uma, B; Ayyaswamy, P S; Radhakrishnan, R; Eckmann, D M
2012-06-01
The Brownian motion of a nanoparticle in an incompressible Newtonian fluid (quiescent or fully developed Poiseuille flow) has been investigated with an arbitrary Lagrangian-Eulerian based finite element method. Results for the motion in a compressible fluid medium are estimated. Thermal fluctuations from the fluid are implemented using a fluctuating hydrodynamics approach. The instantaneous flow around the particle and the particle motion are fully resolved. Carriers of two different sizes with three different densities have been investigated (nearly neutrally buoyant). The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively. Larger the particle, longer the time taken to attain this limit; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available.
Mathematical simulation of nonisothermal filling of plane channel with non-Newtonian fluid
NASA Astrophysics Data System (ADS)
Borzenko, E.; Ryltseva, K.; Frolov, O.; Shrager, G.
2016-10-01
In this paper, the fountain flow of a non-Newtonian fluid during the filling of a plane vertical channel with due account of dissipative heating is investigated. The rheological features of the medium are defined by Ostwald de Waele power-law with exponential temperature dependence of viscosity. The numerical solution of the problem is obtained using a finite-difference method, based on the SIMPLE algorithm, and the method of invariants for compliance with the natural boundary conditions on free surface. It was shown that the flow separates into a two-dimensional flow zone in the vicinity of the free surface and a onedimensional flow zone away from it. The parametrical investigations of kinematic and thermophysical properties of the flow and the dependence of the free surface behavior on the basic criteria and rheological parameters are implemented.
Similarity solution for unsteady gravity-driven dry patch in a non-Newtonian fluid flow
NASA Astrophysics Data System (ADS)
Abas, Siti Sabariah; Mohd Yatim, Yazariah
2013-04-01
We consider an unsteady thin-film flow of a non-Newtonian fluid around a dry patch subject to gravitational acceleration on an inclined plane. The general governing partial differential equation is transformed into the second-order ordinary differential equation using a unique travelling-wave similarity transformation. The analysis shows that the dry patch has a parabolic shape and the film thickness was found to increase monotonically away from the dry patch. Numerical solutions of the similarity equation are obtained for the velocity of the dry patch. These numerical solutions are also compared with the asymptotic solutions in the certain limits. The effects of power-law index on the behavior and patterns of the solutions are also discussed.
Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid
NASA Astrophysics Data System (ADS)
Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.
2017-02-01
This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.
Fast imaging technique to study drop impact dynamics of non-Newtonian fluids.
Xu, Qin; Peters, Ivo; Wilken, Sam; Brown, Eric; Jaeger, Heinrich
2014-03-05
In the field of fluid mechanics, many dynamical processes not only occur over a very short time interval but also require high spatial resolution for detailed observation, scenarios that make it challenging to observe with conventional imaging systems. One of these is the drop impact of liquids, which usually happens within one tenth of millisecond. To tackle this challenge, a fast imaging technique is introduced that combines a high-speed camera (capable of up to one million frames per second) with a macro lens with long working distance to bring the spatial resolution of the image down to 10 µm/pixel. The imaging technique enables precise measurement of relevant fluid dynamic quantities, such as the flow field, the spreading distance and the splashing speed, from analysis of the recorded video. To demonstrate the capabilities of this visualization system, the impact dynamics when droplets of non-Newtonian fluids impinge on a flat hard surface are characterized. Two situations are considered: for oxidized liquid metal droplets we focus on the spreading behavior, and for densely packed suspensions we determine the onset of splashing. More generally, the combination of high temporal and spatial imaging resolution introduced here offers advantages for studying fast dynamics across a wide range of microscale phenomena.
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet; Anthony, Christopher; Doshi, Pankaj; Harris, Michael; Basaran, Osman
2016-11-01
Rupture of thin liquid sheets (free films) is central to diverse industrial and natural phenomena, e.g. foam stability. Rupture of Newtonian films is analyzed under the competing influences of inertial, viscous, van der Waals, and capillary forces by solving numerically a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. As the dynamics close to the rupture singularity is self-similar, the dynamics is also analyzed by solving a set of ordinary differential equations in similarity space. For sheets with negligible inertia, the dominant balance of forces involves solely viscous and van der Waals forces. By contrast, for sheets of inviscid fluids, the dominant balance is between inertial, capillary, and van der Waals forces. For real fluids, the afore-mentioned viscous and inertial regimes are demonstrated to be transitory and hence can only describe the initial thinning of highly viscous and slightly viscous sheets. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a final inertial-viscous regime in which all forces except capillary force remains important, in accordance with Vaynblat, Lister, and Witelski (2001).
Morphological stability of an interface between two non-Newtonian fluids moving in a Hele-Shaw cell.
Martyushev, L M; Birzina, A I
2015-01-01
The problem of the morphological stability of an interface in the case of the displacement of one non-Newtonian fluid by another non-Newtonian fluid in a radial Hele-Shaw cell has been considered. Both fluids have been described by the two-parameter Ostwald-de Waele power-law model. The nonzero viscosity of the displacing fluid has been taken into account. A generalized Darcy's law for the system under consideration, as well as an equation for the determination of the critical size of morphological stability with respect to harmonic perturbations (linear analysis), has been derived. Morphological phase diagrams have been constructed, and the region of the parameters in which nonequilibrium reentrant morphological transitions are possible has been revealed.
Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.
Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran
2014-12-15
Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning.
Diagnosis at a glance of biological non-Newtonian fluids with Film Interference Flow Imaging (FIFI)
NASA Astrophysics Data System (ADS)
Hidema, R.; Yamada, N.; Furukawa, H.
2012-04-01
In the human body, full of biological non-Newtonian fluids exist. For example, synovial fluids exist in our joints, which contain full of biopolymers, such as hyaluronan and mucin. It is thought that these polymers play critical roles on the smooth motion of the joint. Indeed, luck of biopolymers in synovial fluid cause joint pain. Here we study the effects of polymer in thin liquid layer by using an original experimental method called Film Interference Flow Imaging (FIFI). A vertically flowing soap film containing polymers is made as two-dimensional flow to observe turbulence. The thickness of water layer is about 4 μm sandwiched between surfactant mono-layers. The interference pattern of the soap film is linearly related to the flow velocity in the water layer through the change in the thickness of the film. Thus the flow velocity is possibly analyzed by the single image analysis of the interference pattern, that is, FIFI. The grid turbulence was made in the flowing soap films containing the long flexible polymer polyethyleneoxide (PEO, Mw=3.5x106), and rigid polymer hydroxypropyl cellulose (HPC, Mw > 1.0 x106). The decaying process of the turbulence is affected by PEO and HPC at several concentrations. The effects of PEO are sharply seen even at low concentrations, while the effects of HPC are gradually occurred at much higher concentration compared to the PEO. It is assumed that such a difference between PEO and HPC is due to the polymer stretching or polymer orientation under turbulence, which is observed and analyzed by FIFI. We believe the FIFI will be applied in the future to examine biological fluids such as synovial fluids quickly and quantitatively.
Propagation of Gravity Currents of non-Newtonian Power-Law Fluids in Porous Media
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2014-12-01
A comprehensive analytical and experimental framework is presented to describe gravity-driven motions of rheologically complex fluids through porous media. These phenomena are relevant in geophysical, environmental, industrial and biological applications. The fluid is characterized by an Ostwald-DeWaele constitutive equation with behaviour index n. The flow is driven by the release of fluid at the origin of an infinite porous domain. In order to represent several possible spreading scenarios, we consider: i) different domain geometries: plane, radial, and channelized, with the channel shape parameterized by k; ii) instantaneous or continuous injection, depending on the time exponent of the volume of fluid in the current, α; iii) horizontal or inclined impermeable boundaries. Systematic heterogeneity along the streamwise and/or transverse direction is added to the conceptualization upon considering a power-law permeability variation governed by two additional parameters ω and β. Scalings for current length and thickness are derived in self similar form coupling the modified Darcy's law accounting for the fluid rheology with the mass balance equation. The length, thickness, and aspect ratio of the current are studied as functions of model parameters; several different critical values of α emerge and govern the type of dependency, as well as the tendency of the current to accelerate or decelerate and become thicker or thinner at a given point. The asymptotic validity of the solutions is limited to certain ranges of model parameters. Experimental validation is performed under constant volume, constant and variable flux regimes in tanks/channels filled with transparent glass beads of uniform or variable diameter, using shear-thinning suspensions and Newtonian mixtures. The experimental results for the length and profile of the current agree well with the self-similar solutions at intermediate and late times.
NASA Astrophysics Data System (ADS)
Tong, Dengke; Wang, Ruihe
2004-08-01
In this paper, fractional order derivative, fractal dimension and spectral dimension are introduced into the seepage flow mechanics to establish the relaxation models of non-Newtonian viscoelastic fluids with the fractional derivative in fractal reservoirs. A new type integral transform is introduced, and the flow characteristics of non-Newtonian viscoelastic fluids with the fractional order derivative through a fractal reservoir are studied by using the integral transform, the discrete Laplace transform of sequential fractional derivatives and the generalized Mittag-Leffler functions. Exact solutions are obtained for arbitrary fractional order derivative. The long-time and short-time asymptotic solutions for an infinite formation are also obtained. The pressure transient behavior of non-Newtonian viscoelastic fluids flow through an infinite fractal reservoir is studied by using the Stehfest's inversion method of the numerical Laplace transform. It is shown that the clearer the viscoelastic characteristics of the fluid, the more the fluid is sensitive to the order of the fractional derivative. The new type integral transform provides a new analytical tool for studying the seepage mechanics of fluid in fractal porous media.
Data on the mixing of non-Newtonian fluids by a Rushton turbine in a cylindrical tank.
Khapre, Akhilesh; Munshi, Basudeb
2016-09-01
The paper focuses on the data collected from the mixing of shear thinning non-Newtonian fluids in a cylindrical tank by a Rushton turbine. The data presented are obtained by using Computational Fluid Dynamics (CFD) simulation of fluid flow field in the entire tank volume. The CFD validation data for this study is reported in the research article 'Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank' (Khapre and Munshi, 2015) [1]. The tracer injection method is used for the prediction of mixing time and mixing efficiency of a Rushton turbine impeller.
Measurement of viscosity of highly viscous non-Newtonian fluids by means of ultrasonic guided waves.
Kazys, Rymantas; Mazeika, Liudas; Sliteris, Reimondas; Raisutis, Renaldas
2014-04-01
In order to perform monitoring of the polymerisation process, it is necessary to measure viscosity. However, in the case of non-Newtonian highly viscous fluids, viscosity starts to be dependent on the vibration or rotation frequency of the sensing element. Also, the sensing element must possess a sufficient mechanical strength. Some of these problems may be solved applying ultrasonic measurement methods, however until now most of the known investigations were devoted to measurements of relatively low viscosities (up to a few Pas) of Newtonian liquids. The objective of the presented work is to develop ultrasonic method for measurement of viscosity of high viscous substances during manufacturing process in extreme conditions. For this purpose the method based on application of guided Lamb waves possessing the predominant component of in-plane displacements (the S0 and the SH0 modes) and propagating in an aluminium planar waveguide immersed in a viscous liquid has been investigated. The simulations indicated that in the selected modes mainly in-plane displacements are dominating, therefore the attenuation of those modes propagating in a planar waveguide immersed in a viscous liquid is mainly caused by viscosity of the liquid. The simulation results were confirmed by experiments. All measurements were performed in the viscosity standard Cannon N2700000. Measurements with the S0 wave mode were performed at the frequency of 500kHz. The SH0 wave mode was exited and used for measurements at the frequency of 580kHz. It was demonstrated that by selecting the particular mode of guided waves (S0 or SH0), the operation frequency and dimensions of the aluminium waveguide it is possible to get the necessary viscosity measurement range and sensitivity. The experiments also revealed that the measured dynamic viscosity is strongly frequency dependent and as a characteristic feature of non-Newtonian liquids is much lower than indicated by the standards. Therefore, in order to get the
Khali, S; Nebbali, R; Ameziani, D E; Bouhadef, K
2013-05-01
In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Re(c) for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.
Widmer Soyka, René P; López, Alejandro; Persson, Cecilia; Cristofolini, Luca; Ferguson, Stephen J
2013-11-01
Fluids present or used in biology, medicine and (biomedical) engineering are often significantly non-Newtonian. Furthermore, they are chemically complex and can interact with the porous matrix through which they flow. The porous structures themselves display complex morphological inhomogeneities on a wide range of length scales. In vertebroplasty, a shear-thinning fluid, e.g. poly(methyl methacrylate) (PMMA), is injected into the cavities of vertebral trabecular bone for the stabilization of fractures and metastatic lesions. The main objective of this study was therefore to provide a protocol for numerically investigating the rheological properties of PMMA-based bone cements to predict its spreading behavior while flowing through vertebral trabecular bone. A numerical upscaling scheme based on a dimensionless formulation of the Navier-Stokes equation is proposed in order to relate the pore-scale rheological properties of the PMMA that were experimentally estimated using a plate rheometer, to the continuum-scale. On the pore length scale, a viscosity change on the order of one magnitude was observed whilst the shear-thinning properties caused a viscosity change on the order of only 10% on the continuum length scale and in a flow regime that is relevant for vertebroplasty. An experimental validation, performed on human cadaveric vertebrae (n=9), showed a significant improvement of the cement spreading prediction accuracy with a non-Newtonian formulation. A root mean square cement surface prediction error of 1.53mm (assuming a Newtonian fluid) and 1.37mm (assuming a shear-thinning fluid) was found. Our findings highlight the importance of incorporating the non-Newtonian fluids properties in computational models of porous media at the appropriate length scale.
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.
2016-09-01
Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance
Mass transport in a porous microchannel for non-Newtonian fluid with electrokinetic effects.
Mondal, Sourav; De, Sirshendu
2013-03-01
Quantification of mass transfer in porous microchannel is of paramount importance in several applications. Transport of neutral solute in presence of convective-diffusive EOF having non-Newtonian rheology, in a porous microchannel was presented in this article. The governing mass transfer equation coupled with velocity field was solved along with associated boundary conditions using a similarity solution method. An analytical solution of mass transfer coefficient and hence, Sherwood number were derived from first principles. The corresponding effects of assisting and opposing pressure-driven flow and EOF were also analyzed. The influence of wall permeation, double-layer thickness, rheology, etc. on the mass transfer was also investigated. Permeation at the wall enhanced the mass transfer coefficient more than five times compared to impervious conduit in case of pressure-driven flow assisting the EOF at higher values of κh. Shear thinning fluid exhibited more enhancement of Sherwood number in presence of permeation compared to shear thickening one. The phenomenon of stagnation was observed at a particular κh (∼2.5) in case of EOF opposing the pressure-driven flow. This study provided a direct quantification of transport of a neutral solute in case of transdermal drug delivery, transport of drugs from blood to target region, etc.
Analysis of the formation and evolution of vortex rings in non Newtonian fluids using 3D PTV
NASA Astrophysics Data System (ADS)
Bajpayee, Abhishek; Techet, Alexandra
2013-11-01
Formation and evolution of vortex rings have been studied for a long time but mostly only in Newtonian fluids. However, many fluids in nature and in the industry such as blood, crude oil, etc., exhibit non Newtonian characteristics. Palacios-Morales and Zenit recently studied the formation of vortex rings in shear thinning liquids for the first time using 2D PIV and compared experimental findings with theoretical predictions. The authors recently demonstrated the applicability of Light Field (LF) imaging to conduct 3D Particle Tracking Velocimetry (PTV) to study densely seeded flow fields and their evolution over time using synthetic data. LF based 3D PTV is now used to quantitatively study vortex rings created in Glycerin based on multiple parameters and the results are compared with previous findings. ONR (Grant #N00014-12-1-0787, Dr. Steven Russell), Naval Engineering Education Center.
Ali, N; Asghar, Z; Anwar Bég, O; Sajid, M
2016-05-21
Gliding bacteria are an assorted group of rod-shaped prokaryotes that adhere to and glide on certain layers of ooze slime attached to a substratum. Due to the absence of organelles of motility, such as flagella, the gliding motion is caused by the waves moving down the outer surface of these rod-shaped cells. In the present study we employ an undulating surface model to investigate the motility of bacteria on a layer of non-Newtonian slime. The rheological behavior of the slime is characterized by an appropriate constitutive equation, namely the Carreau model. Employing the balances of mass and momentum conservation, the hydrodynamic undulating surface model is transformed into a fourth-order nonlinear differential equation in terms of a stream function under the long wavelength assumption. A perturbation approach is adopted to obtain closed form expressions for stream function, pressure rise per wavelength, forces generated by the organism and power required for propulsion. A numerical technique based on an implicit finite difference scheme is also employed to investigate various features of the model for large values of the rheological parameters of the slime. Verification of the numerical solutions is achieved with a variational finite element method (FEM). The computations demonstrate that the speed of the glider decreases as the rheology of the slime changes from shear-thinning (pseudo-plastic) to shear-thickening (dilatant). Moreover, the viscoelastic nature of the slime tends to increase the swimming speed for the shear-thinning case. The fluid flow in the pumping (generated where the organism is not free to move but instead generates a net fluid flow beneath it) is also investigated in detail. The study is relevant to marine anti-bacterial fouling and medical hygiene biophysics.
NASA Astrophysics Data System (ADS)
Adam, Saad; Premnath, Kannan
2016-11-01
Fluid mechanics of non-Newtonian fluids, which arise in numerous settings, are characterized by non-linear constitutive models that pose certain unique challenges for computational methods. Here, we consider the lattice Boltzmann method (LBM), which offers some computational advantages due to its kinetic basis and its simpler stream-and-collide procedure enabling efficient simulations. However, further improvements are necessary to improve its numerical stability and accuracy for computations involving broader parameter ranges. Hence, in this study, we extend the cascaded LBM formulation by modifying its moment equilibria and relaxation parameters to handle a variety of non-Newtonian constitutive equations, including power-law and Bingham fluids, with improved stability. In addition, we include corrections to the moment equilibria to obtain an inertial frame invariant scheme without cubic-velocity defects. After preforming its validation study for various benchmark flows, we study the physics of non-Newtonian flow over pairs of circular and square cylinders in a tandem arrangement, especially the wake structure interactions and their effects on resulting forces in each cylinder, and elucidate the effect of the various characteristic parameters.
Castro, Marcelo A; Ahumada Olivares, María C; Putman, Christopher M; Cebral, Juan R
2014-10-01
The aim of this work was to determine whether or not Newtonian rheology assumption in image-based patient-specific computational fluid dynamics (CFD) cerebrovascular models harboring cerebral aneurysms may affect the hemodynamics characteristics, which have been previously associated with aneurysm progression and rupture. Ten patients with cerebral aneurysms with lobulations were considered. CFD models were reconstructed from 3DRA and 4DCTA images by means of region growing, deformable models, and an advancing front technique. Patient-specific FEM blood flow simulations were performed under Newtonian and Casson rheological models. Wall shear stress (WSS) maps were created and distributions were compared at the end diastole. Regions of lower WSS (lobulation) and higher WSS (neck) were identified. WSS changes in time were analyzed. Maximum, minimum and time-averaged values were calculated and statistically compared. WSS characterization remained unchanged. At high WSS regions, Casson rheology systematically produced higher WSS minimum, maximum and time-averaged values. However, those differences were not statistically significant. At low WSS regions, when averaging over all cases, the Casson model produced higher stresses, although in some cases the Newtonian model did. However, those differences were not significant either. There is no evidence that Newtonian model overestimates WSS. Differences are not statistically significant.
Bandopadhyay, Aditya; Chakraborty, Suman
2015-03-21
By considering an ion moving inside an imaginary sphere filled with a power-law fluid, we bring out the implications of the fluid rheology and the influence of the proximity of the other ions towards evaluating the conduction current in an ionic solution. We show that the variation of the conductivity as a function of the ionic concentration is both qualitatively and quantitatively similar to that predicted by the Kohlrausch law. We then utilize this consideration for estimating streaming potentials developed across narrow fluidic confinements as a consequence of the transport of ions in a convective medium constituting a power-law fluid. These estimates turn out to be in sharp contrast to the classical estimates of streaming potential for non-Newtonian fluids, in which the effect of rheology of the solvent is merely considered to affect the advection current, disregarding its contributions to the conduction current. Our results have potential implications of devising a new paradigm of consistent estimation of streaming potentials for non-Newtonian fluids, with combined considerations of the confinement effect and fluid rheology in the theoretical calculations.
Nam, Jeonghun; Lim, Hyunjung; Kim, Dookon; Jung, Hyunwook; Shin, Sehyun
2012-04-07
Pure separation and sorting of microparticles from complex fluids are essential for biochemical analyses and clinical diagnostics. However, conventional techniques require highly complex and expensive labeling processes for high purity separation. In this study, we present a simple and label-free method for separating microparticles with high purity using the elasto-inertial characteristic of a non-Newtonian fluid in microchannel flow. At the inlet, particle-containing sample flow was pushed toward the side walls by introducing sheath fluid from the center inlet. Particles of 1 μm and 5 μm in diameter, which were suspended in viscoelastic fluid, were successfully separated in the outlet channels: larger particles were notably focused on the centerline of the channel at the outlet, while smaller particles continued flowing along the side walls with minimal lateral migration towards the centerline. The same technique was further applied to separate platelets from diluted whole blood. Through cytometric analysis, we obtained a purity of collected platelets of close to 99.9%. Conclusively, our microparticle separation technique using elasto-inertial forces in non-Newtonian fluid is an effective method for separating and collecting microparticles on the basis of size differences with high purity.
Lee, S.R.; Irvine, T.F. Jr.; Greene, G.A.
1998-04-01
An implicit finite difference method was applied to analyze laminar natural convection in a vertical channel with a modified power law fluid. This fluid model was chosen because it describes the viscous properties of a pseudoplastic fluid over the entire shear rate range likely to be found in natural convection flows since it covers the shear rate range from Newtonian through transition to simple power law behavior. In addition, a dimensionless similarity parameter is identified which specifies in which of the three regions a particular system is operating. The results for the average channel velocity and average Nusselt number in the asymptotic Newtonian and power law regions are compared with numerical data in the literature. Also, graphical results are presented for the velocity and temperature fields and entrance lengths. The results of average channel velocity and Nusselt number are given in the three regions including developing and fully developed flows. As an example, a pseudoplastic fluid (carboxymethyl cellulose) was chosen to compare the different results of average channel velocity and Nusselt number between a modified power law fluid and the conventional power law model. The results show, depending upon the operating conditions, that if the correct model is not used, gross errors can result.
Characterising the rheology of non-Newtonian fluids using PFG-NMR and cumulant analysis.
Blythe, T W; Sederman, A J; Mitchell, J; Stitt, E H; York, A P E; Gladden, L F
2015-06-01
Conventional rheological characterisation using nuclear magnetic resonance (NMR) typically utilises spatially-resolved measurements of velocity. We propose a new approach to rheometry using pulsed field gradient (PFG) NMR which readily extends the application of MR rheometry to single-axis gradient hardware. The quantitative use of flow propagators in this application is challenging because of the introduction of artefacts during Fourier transform, which arise when realistic sampling strategies are limited by experimental and hardware constraints and when particular spatial and temporal resolution are required. The method outlined in this paper involves the cumulant analysis of the acquisition data directly, thereby preventing the introduction of artefacts and reducing data acquisition times. A model-dependent approach is developed to enable the pipe-flow characterisation of fluids demonstrating non-Newtonian power-law rheology, involving the use of an analytical expression describing the flow propagator in terms of the flow behaviour index. The sensitivity of this approach was investigated and found to be robust to the signal-to-noise ratio (SNR) and number of acquired data points, enabling an increase in temporal resolution defined by the SNR. Validation of the simulated results was provided by an experimental case study on shear-thinning aqueous xanthan gum solutions, whose rheology could be accurately characterised using a power-law model across the experimental shear rate range of 1-100 s(-1). The flow behaviour indices calculated using this approach were observed to be within 8% of those obtained using spatially-resolved velocity imaging and within 5% of conventional rheometry. Furthermore, it was shown that the number of points sampled could be reduced by a factor of 32, when compared to the acquisition of a volume-averaged flow propagator with 128 gradient increments, without negatively influencing the accuracy of the characterisation, reducing the
DeLaMarre, Michael F; Keyzer, Alec; Shippy, Scott A
2015-05-05
Viscosity is an easily measured macroscopic property that provides molecular information and is widely used across the sciences and engineering. Here we report a microfluidic capillary viscometer that forms droplets from aqueous samples in an immiscible carrier phase and encodes information about sample viscosity in the droplet spacing. The device shows exceptional calibration stability, with only a 0.6% drift in calibration factor from run to run, the ability to handle aqueous and nonaqueous samples, and the ability to operate with sample volumes as low as 38 nL. Operating range for aqueous sample viscosity was characterized, and was found to be 0.96-52 cP. Operating range for aqueous shear rate was found to depend on aqueous viscosity and varied from 1.9 × 10(1)-4.4 × 10(2) s(-1) for high viscosity samples to 4.1 × 10(2)-6.0 × 10(3) s(-1) for low viscosity samples. Accuracy was tested by comparing measured viscosities of several samples including crème de menthe peppermint liquor, human urine, and baby oil to viscosities of the same samples obtained with a U-tube viscometer. The device was found to be very accurate, with differences between methods as low as 0.1%. The viscometer presented requires only a basic T junction and can utilize off-chip fluorescence to measure viscosity, which could allow for easy addition of viscometric measurement capabilities to existing droplet platforms. Furthermore, the device is capable of performing measurements on Newtonian fluids without precise control over pressures or flow rates, which significantly simplifies device operation.
NASA Astrophysics Data System (ADS)
Sahebi, S. A. R.; Pourziaei, H.; Feizi, A. R.; Taheri, M. H.; Rostamiyan, Y.; Ganji, D. D.
2015-12-01
In this paper, natural convection of non-Newtonian bio-nanofluids flow between two vertical flat plates is investigated numerically. Sodium Alginate (SA) and Sodium Carboxymethyl Cellulose (SCMC) are considered as the base non-Newtonian fluid, and nanoparticles such as Titania ( TiO2 and Alumina ( Al2O3 were added to them. The effective thermal conductivity and viscosity of nanofluids are calculated through Maxwell-Garnetts (MG) and Brinkman models, respectively. A fourth-order Runge-Kutta numerical method (NUM) and three Weighted Residual Methods (WRMs), Collocation (CM), Galerkin (GM) and Least-Square Method (LSM) and Finite-Element Method (FEM), are used to solve the present problem. The influence of some physical parameters such as nanofluid volume friction on non-dimensional velocity and temperature profiles are discussed. The results show that SCMC- TiO2 has higher velocity and temperature values than other nanofluid structures.
Mathematical modeling of slope flows with entrainment as flows of non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Zayko, Julia; Eglit, Margarita
2015-04-01
Non-Newtonian fluids in which the shear stresses are nonlinear functions of the shear strain rates are used to model slope flows such as snow avalanches, mudflows, debris flows. The entrainment of bottom material is included into the model basing on the assumption that in entraining flows the bed friction is equal to the shear stress of the bottom material (Issler et al, 2011). Unsteady motion down long homogeneous slopes with constant inclines is studied numerically for different flow rheologies and different slope angles. Variation of the velocity profile, increase of the flow depth and velocity due to entrainment as well as the value of the entrainment rate is calculated. Asymptotic formulae for the entrainment rate are derived for unsteady flows of different rheological properties. REFERENCES Chowdhury M., Testik F., 2011. Laboratory testing of mathematical models for high-concentration fluid mud turbidity currents. Ocean Engineering 38, 256-270. Eglit, M.E., Demidov, K.S., 2005. Mathematical modeling of snow entrainment in avalanche motion. Cold Reg. Sci. Technol. 43 (1-2), 10-23. Eglit M. E., Yakubenko A. E., 2012, Mathematical Modeling of slope flows entraining bottom material. Eglit M. E., Yakubenko A. E., 2014, Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol. 108, 139-148. Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), pp.143-147 Kern M. A., Tiefenbacher F., McElwaine J., N., 2004. The rheology of snow in large chute flows. Cold Regions Science and Technology, 39, 181 -192. Naaim, M., Faug, T., Naaim-Bouvet, F., 2003. Dry granular flow modelling including erosion and deposition. Surv. Geophys. 24, 569-585. Naaim, M., Naaim-Bouvet, F., Faug, T., Bouchet, A., 2004. Dense snow avalanche modeling: flow, erosion, deposition and obstacle effects. Cold Reg. Sci. Technol. 39, 193-204. Rougier, J & Kern, M 2010, 'Predicting snow
Janečka, Adam Průša, Vít
2015-04-28
We discuss the benefits of using the so-called implicit type constitutive relations introduced by K. R. Rajagopal, J. Fluid Mech. 550, 243-249 (2006) and K. R. Rajagopal, Appl. Math. 48, 279-319 (2003) in the description of the behaviour of non-Newtonian fluids. In particular, we focus on the benefits of using the implicit type constitutive relations in the mathematical modelling of fluids in which the shear stress/shear rate dependence is given by an S-shaped curve, and in modelling of fluids that exhibit nonzero normal stress differences. We also discuss a thermodynamical framework that allows one to cope with the implicit type constitutive relations.
Akbarzadeh, Pooria
2016-04-01
In this paper, the unsteady pulsatile magneto-hydrodynamic blood flows through porous arteries concerning the influence of externally imposed periodic body acceleration and a periodic pressure gradient are numerically simulated. Blood is taken into account as the third-grade non-Newtonian fluid. Besides the numerical solution, for small Womersley parameter (such as blood flow through arterioles and capillaries), the analytical perturbation method is used to solve the nonlinear governing equations. Consequently, analytical expressions for the velocity profile, wall shear stress, and blood flow rate are obtained. Excellent agreement between the analytical and numerical predictions is evident. Also, the effects of body acceleration, magnetic field, third-grade non-Newtonian parameter, pressure gradient, and porosity on the flow behaviors are examined. Some important conclusions are that, when the Womersley parameter is low, viscous forces tend to dominate the flow, velocity profiles are parabolic in shape, and the center-line velocity oscillates in phase with the driving pressure gradient. In addition, by increasing the pressure gradient, the mean value of the velocity profile increases and the amplitude of the velocity remains constant. Also, when non-Newtonian effect increases, the amplitude of the velocity profile.
Hu, Bin; Kieweg, Sarah L
2012-07-15
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail.
NASA Astrophysics Data System (ADS)
M. El-Hawary, H.; Mostafa, A. A. Mahmoud; Reda, G. Abdel-Rahman; Abeer, S. Elfeshawey
2014-09-01
The theoretic transformation group approach is applied to address the problem of unsteady boundary layer flow of a non-Newtonian fluid near a stagnation point with variable viscosity and thermal conductivity. The application of a two-parameter group method reduces the number of independent variables by two, and consequently the governing partial differential equations with the boundary conditions transformed into a system of ordinary differential equations with the appropriate corresponding conditions. Two systems of ordinary differential equations have been solved numerically using a fourth-order Runge—Kutta algorithm with a shooting technique. The effects of various parameters governing the problem are investigated.
Hayat, Tasawar; Awais, Muhammad; Imtiaz, Amna
2016-01-01
This communication deals with the properties of heat source/sink in a magneto-hydrodynamic flow of a non-Newtonian fluid immersed in a porous medium. Shrinking phenomenon along with the permeability of the wall is considered. Mathematical modelling is performed to convert the considered physical process into set of coupled nonlinear mathematical equations. Suitable transformations are invoked to convert the set of partial differential equations into nonlinear ordinary differential equations which are tackled numerically for the solution computations. It is noted that dual solutions for various physical parameters exist which are analyzed in detail. PMID:27598314
NASA Astrophysics Data System (ADS)
Rabbi, Khan Md.; Rakib, Tawfiqur; Das, Sourav; Mojumder, Satyajit; Saha, Sourav
2016-07-01
This paper demonstrates magneto-hydrodynamic (MHD) mixed convection flow through a channel with a rectangular obstacle at the entrance region using non-Newtonian power law fluid. The obstacle is kept at uniformly high temperature whereas the inlet and top wall of the channel are maintained at a temperature lower than obstacle temperature. Poiseuille flow is implemented as the inlet velocity boundary condition. Grid independency test and code validation are performed to justify the computational accuracy before solving the present problem. Galerkin weighted residual method has been appointed to solve the continuity, momentum and energy equations. The problem has been solved for wide range of pertinent parameters like Richardson number (Ri = 0.1 - 10) at a constant Reynolds number (Re = 100), Hartmann number (Ha = 0 - 100), power index (n = 0.6 - 1.6). The flow and thermal field have been thoroughly discussed through streamline and isothermal lines respectively. The heat transfer performance of the given study has been illustrated by average Nusselt number plots. It is observed that increment of Hartmann number (Ha) tends to decrease the heat transfer rate up to a critical value (Ha = 20) and then let increase the heat transfer performance. Thus maximum heat transfer rate has been recorded for higher Hartmann number and Rayleigh number in case of pseudo-plastic (n = 0.6) non-Newtonian fluid flow.
NASA Astrophysics Data System (ADS)
Sahu, K. C.; Matar, O. K.
2010-11-01
The three-dimensional linear stability characteristics of pressure-driven two-layer channel flow are considered, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. We focus on the parameter ranges for which Squire's theorem for the two-layer Newtonian problem does not exist. The modified Orr-Sommerfeld and Squire equations in each layer are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilizing. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid non-Newtonian flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.
Yih, K.A.
1998-10-01
Convective heat transfer in a porous medium has a number of thermal engineering applications such as ceramic processing, nuclear reactor cooling system, crude oil drilling, chemical reactor design, ground water pollution and filtration processes. In this paper, the authors have investigated a boundary layer analysis for uniform lateral mass flux effect on natural convection of non-Newtonian power-law fluids along an isothermal or isoflux vertical cone embedded in a porous medium. Numerical results for the dimensionless temperature profiles as well as the local Nusselt number are presented for the mass flux parameter, viscosity index n and geometry shape parameter {lambda}. The local surface heat transfer increases for the case withdrawal of fluid, the increase of the value of {lambda}. The local Nusselt number is found to be significantly affected by the surface mass flux than the viscosity index.
Shaw, Sachin; Murthy, P V S N
2010-09-01
The present investigation deals with finding the trajectories of the drug dosed magnetic carrier particle in a microvessel with two-phase fluid model which is subjected to the external magnetic field. The radius of the microvessel is divided into the endothelial glycocalyx layer in which the blood is assumed to obey Newtonian character and a core and plug regions where the blood obeys the non-Newtonian Herschel-Bulkley character which is suitable for the microvessel of radius 50 microm. The carrier particles, bound with nanoparticles and drug molecules are injected into the vascular system upstream from malignant tissue, and captured at the tumor site using a local applied magnetic field. The applied magnetic field is produced by a cylindrical magnet positioned outside the body and near the tumor position. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel are considered in the present problem. An algorithm is given to solve the system of coupled equations for trajectories of the carrier particle in the invasive case. The trajectories of the carrier particle are found for both invasive and noninvasive targeting systems. A comparison is made between the trajectories in these cases. Also, the present results are compared with the data available for the impermeable microvessel with single-phase fluid flow. Also, a prediction of the capture of therapeutic magnetic nanoparticle in the impermeable microvasculature is made for different radii, distances and volume fractions in both the invasive and noninvasive cases.
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall.
Mukherjee, Swarnajay; Sarkar, Kausik
2014-10-01
Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet-arising purely from the drop shape-first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case.
Uma, B; Radhakrishnan, R; Eckmann, D M; Ayyaswamy, P S
2013-01-01
A hybrid scheme based on Markovian fluctuating hydrodynamics of the fluid and a non-Markovian Langevin dynamics with the Ornstein-Uhlenbeck noise perturbing the translational and rotational equations of motion of a nanoparticle is employed to study the thermal motion of a nearly neutrally buoyant nanoparticle in an incompressible Newtonian fluid medium. A direct numerical simulation adopting an arbitrary Lagrangian-Eulerian based finite element method is employed in simulating the thermal motion of the particle suspended in the fluid contained in a cylindrical vessel. The instantaneous flow around the particle and the particle motion are fully resolved. The numerical results show that (a) the calculated temperature of the nearly neutrally buoyant Brownian particle in a quiescent fluid satisfies the equipartition theorem; (b) the translational and rotational decay of the velocity autocorrelation functions result in algebraic tails, over long time; (c) the translational and rotational mean square displacements of the particle obeys Stokes-Einstein and Stokes-Einstein-Debye relations, respectively; and (d) the parallel and perpendicular diffusivities of the particle closer to the wall are consistent with the analytical results, where available. The study has important implications for designing nanocarriers for targeted drug delivery.
NASA Astrophysics Data System (ADS)
Andersson, N.; Comer, G. L.
2006-09-01
We develop a flux-conservative formalism for a Newtonian multi-fluid system, including dissipation and entrainment (i.e. allowing the momentum of one fluid to be a linear combination of the velocities of all fluids). Maximum use is made of mass, energy and linear and angular momentum conservation to specify the equations of motion. Also used extensively are insights gleaned from a convective variational action principle, the key being the distinction between each velocity and its canonically conjugate momentum (which is modified because of entrainment). Dissipation is incorporated to second order in the 'thermodynamic forces' via the approach pioneered by Onsager, which makes it transparent how to guarantee the law of increase of entropy. An immediate goal of the investigation is to understand better the number, and form, of independent dissipation terms required for a consistent set of equations of motion in the multi-fluid context. A significant, but seemingly innocuous detail is that one must be careful to isolate 'forces' that can be written as total gradients, otherwise errors can be made in relating the net internal force to the net externally applied force. Our long-range aim is to provide a formalism that can be used to model dynamical multi-fluid systems both perturbatively and via fully nonlinear 3D numerical evolutions. To elucidate the formalism we consider the standard model for a heat-conducting, superfluid neutron star, which is believed to be dominated by superfluid neutrons, superconducting protons and a highly degenerate, ultra-relativistic gas of normal fluid electrons. We determine that in this case there are, in principle, 19 dissipation coefficients in the final set of equations. A final reduction of the system is made by neglecting heat conduction. This leads to an extension of the standard two-fluid model for neutron star cores, which has been used in a number of previous applications, and illustrates how mutual friction is represented in
NASA Astrophysics Data System (ADS)
Farnoush, Somayeh; Manzari, Mehrdad T.
2014-12-01
Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a number of test cases it is shown that numerical results confirm the theoretical arguments presented in this paper.
A constitutive framework for the non-Newtonian pressure tensor of a simple fluid under planar flows.
Hartkamp, Remco; Todd, B D; Luding, Stefan
2013-06-28
Non-equilibrium molecular dynamics simulations of an atomic fluid under shear flow, planar elongational flow, and a combination of shear and elongational flow are unified consistently with a tensorial model over a wide range of strain rates. A model is presented that predicts the pressure tensor for a non-Newtonian bulk fluid under a homogeneous planar flow field. The model provides a quantitative description of the strain-thinning viscosity, pressure dilatancy, deviatoric viscoelastic lagging, and out-of-flow-plane pressure anisotropy. The non-equilibrium pressure tensor is completely described through these four quantities and can be calculated as a function of the equilibrium material constants and the velocity gradient. This constitutive framework in terms of invariants of the pressure tensor departs from the conventional description that deals with an orientation-dependent description of shear stresses and normal stresses. The present model makes it possible to predict the full pressure tensor for a simple fluid under various types of flows without having to produce these flow types explicitly in a simulation or experiment.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
Spreading dynamics and dynamic contact angle of non-Newtonian fluids.
Wang, X D; Lee, D J; Peng, X F; Lai, J Y
2007-07-17
The spreading dynamics of power-law fluids, both shear-thinning and shear-thickening fluids, that completely or partially wet solid substrate was investigated theoretically and experimentally. An evolution equation for liquid-film thickness was derived using a lubrication approximation, from which the dynamic contact angle versus the contact line moving velocity relationship was evaluated. In the capillary spreading regime, film thickness h is proportional to xi3/(n+2) (xi is the distance from the contact line), whereas in the gravitational regime, h is proportional to xi1/(n+2), relating to the rheological power exponent n. The derived model fit the experimental data well for a shear-thinning fluid (0.2% w/w xanthan solution) or a shear-thickening fluid (7.5% w/w 10 nm silica in polypropylene glycol) on a completely wetted substrate. The derived model was extended using Hoffmann's proposal for partially wetting fluids. Good agreement was also attained between model predictions and the shear-thinning fluid (1% w/w cmc solution) and shear-thickening fluid (10% w/w 15 nm silica) on partially wetted surfaces.
Lateral migration of a viscoelastic drop in a Newtonian fluid in a shear flow near a wall
Mukherjee, Swarnajay; Sarkar, Kausik
2014-01-01
Wall induced lateral migration of a viscoelastic (FENE-MCR) drop in a Newtonian fluid is investigated. Just like a Newtonian drop, a viscoelastic drop reaches a quasi-steady state where the lateral velocity only depends on the instantaneous distance from the wall. The drop migration velocity and the deformation scale inversely with the square and the cube of the distance from the wall, respectively. The migration velocity varies non-monotonically with increasing viscoelasticity (increasing Deborah number); initially increasing and then decreasing. An analytical explanation has been given of the effects by computing the migration velocity as arising from an image stresslet field due to the drop. The semi-analytical expression matches well with the simulated migration velocity away from the wall. It contains a viscoelastic stresslet component apart from those arising from interfacial tension and viscosity ratio. The migration dynamics is a result of the competition between the viscous (interfacial tension and viscosity ratio) and the viscoelastic effects. The viscoelastic stresslet contribution towards the migration velocity steadily increases. But the interfacial stresslet—arising purely from the drop shape—first increases and then decreases with rising Deborah number causing the migration velocity to be non-monotonic. The geometric effect of the interfacial stresslet is caused by a corresponding nonmonotonic variation of the drop inclination. High viscosity ratio is briefly considered to show that the drop viscoelasticity could stabilize a drop against breakup, and the increase in migration velocity due to viscoelasticity is larger compared to the viscosity-matched case. PMID:25378894
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2015-12-01
A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel
NASA Astrophysics Data System (ADS)
Faria, Cassio T.; Inman, Daniel J.
2014-04-01
When a mechanical and/or structural component is immersed in a fluid and it vibrates, the reasonable assumption is that part of the energy is transmitted to the adjacent media. For some engineering applications the energy transport between these two domains, i.e., structure and fluid, plays a central role. The work presented in this paper is focused on discussing the energy transport in beam-like structures as they can be used to represent flexible swimmers (fish-like pulsating mechanisms) in their simplest form. In order to expose the role of each of the fluid and beam properties effecting the energy transfer process, a simplified analytical fluid-structure interaction (FSI) model is derived. After analysis of the resulting coupled-systems' damping coefficient, a new energy transport component is added to the initial Euler-Bernoulli beam equation; a term associated with diffusion (fluid viscosity). In addition our modeling results in an added mass term, a characteristic consistent with previous literature. While deriving the model, an important assumption is made: beam mode shapes are not significantly affected by the domains' interaction. This hypothesis is experimentally tested in two different fluid media and confirmed to be reasonable for the first three vibration mode shapes.
Flow instabilities during annular displacement of one non-Newtonian fluid by another
NASA Astrophysics Data System (ADS)
Tehrani, M. A.; Bittleston, S. H.; Long, P. J. G.
1993-02-01
This paper describes an experimental setup for axial laminar flow of liquids in the annulus between two eccentered cylinders. The design uses a conductivity method for measuring peak axial velocities around the annulus, and for the determination of displacement efficiency when displacing one fluid by another (displacement efficiency being defined as the ratio of volume of displaced fluid removed from the annulus, to the volume of the annulus, after a given number of annular volumes have been pumped). In an eccentric annulus, lower axial velocity in the narrow side produces “channeling” of the displacing fluid in the wide side and reduces the displacement efficiency. A positive density contrast between the two fluids can increase the efficiency by promoting azimuthal flow of the (denser) displacing fluid towards the narrow side. In this paper we report that gravity driven azimuthal flow is prone to severe instabilities which accelerate the displacement process but may leave behind an immobile strip of the displaced fluid in the narrow side.
NASA Astrophysics Data System (ADS)
Stocchino, Alessandro; Repetto, Rodolfo; Cafferata, Chiara
2007-04-01
The dynamics of the vitreous body induced by eye rotations is studied experimentally. In particular, we consider the case in which the vitreous cavity is filled by a Newtonian fluid, either because the vitreous is liquefied or because it has been replaced, after vitrectomy, by a viscous fluid. We employ a rigid Perspex container which models, in a magnified scale, the vitreous cavity of the human eye. The shape of the cavity closely resembles that of the real vitreous chamber; in particular, the anterior part of the container is concave in order to model the presence of the eye lens. The container is filled with glycerol and is mounted on the shaft of a computer-controlled motor which rotates according to a periodic time law. PIV (particle image velocimetry) measurements are taken on the equatorial plane orthogonal to the axis of rotation. The experimental measurements show that the velocity field is strongly influenced by the deformed geometry of the domain. In particular, the formation of a vortex in the vicinity of the lens, which migrates in time towards the core of the domain, is invariably observed. The vortex path is tracked in time by means of a vortex identification technique and it is found that it is significantly influenced by the Womersley number of the flow. Particle trajectories are computed from the PIV measurements. Particles initially located at different positions on the equatorial horizontal plane (perpendicular to the axis of rotation) tend to concentrate in narrow regions adjacent to the lens, thus suggesting the existence, in such regions, of a vertical fluid ejection. Such a strong flow three-dimensionality, which is essentially induced by the irregular shape of the domain, may play a significant role in the mixing processes taking place inside the eye globe. The tangential stresses acting on the rigid boundary of the domain are also computed from the experimental measurements showing that regions subject to particularly intense stresses
Yang, Chun; Tang, Dalin; Yuan, Chun; Hatsukami, Thomas S; Zheng, Jie; Woodard, Pamela K
2007-01-01
It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic, isotropic, incompressible and homogeneous. Blood flow was assumed to be laminar, non-Newtonian, viscous and incompressible. In vivo/ex vivo MRI images were acquired using histologically-validated multi-spectral MRI protocols. The 3D FSI models were solved and results were compared with those from a Newtonian FSI model and wall-only/fluid-only models. A 145% difference in maximum principal stresses (Stress-P(1)) between the FSI and wall-only models and 40% difference in flow maximum shear stress (MSS) between the FSI and fluid-only models were found at the throat of the plaque using a severe plaque sample (70% severity by diameter). Flow maximum shear stress (MSS) from the rigid wall model is much higher (20-40% in maximum MSS values, 100-150% in stagnation region) than those from FSI models.
NASA Astrophysics Data System (ADS)
Başağaoğlu, Hakan; Harwell, John R.; Nguyen, Hoa; Succi, Sauro
2017-04-01
Significant improvements in the computational performance of the lattice-Boltzmann (LB) model, coded in FORTRAN90, were achieved through application of enhancement techniques. Applied techniques include optimization of array memory layouts, data structure simplification, random number generation outside the simulation thread(s), code parallelization via OpenMP, and intra- and inter-timestep task pipelining. Effectiveness of these optimization techniques was measured on three benchmark problems: (i) transient flow of multiple particles in a Newtonian fluid in a heterogeneous fractured porous domain, (ii) thermal fluctuation of the fluid at the sub-micron scale and the resultant Brownian motion of a particle, and (iii) non-Newtonian fluid flow in a smooth-walled channel. Application of the aforementioned optimization techniques resulted in an average 21 × performance improvement, which could significantly enhance practical uses of the LB models in diverse applications, focusing on the fate and transport of nano-size or micron-size particles in non-Newtonian fluids.
Study of blades inclination influence of gate impeller with a non-Newtonian fluid of Bingham
NASA Astrophysics Data System (ADS)
Rahmani, Lakhdar; Seghier, O.; Draoui, B.; Benachour, E.
2016-03-01
A large number of chemical operations, biochemical or petrochemical industry is very depending on the rheological fluids nature. In this work, we study the case of highly viscous of viscoplastic fluids in a classical system of agitation: a cylindrical tank with plate bottom without obstacles agitated by gate impeller agitator. We are interested to the laminar, incompressible and isothermal flows. We devote to a numerical approach carried out using an industrial code CFD Fluent 6.3.26 based on the method of finites volumes discretization of Navier - Stokes equations formulated in variables (U.V.P). The threshold of flow related to the viscoplastic behavior is modeled by a theoretical law of Bingham. The results obtained are used to compare between the five configurations suggested of power consumption. We study the influence of inertia by the variation of Reynolds number.
Analysis of flow parameters of a Newtonian fluid through a cylindrical collapsible tube.
Kanyiri, Caroline W; Kinyanjui, Mathew; Giterere, Kang'ethe
2014-01-01
In this research study, fluid flow through a cylindrical collapsible tube has been investigated. Of particular interest is the effect of flow parameters on the cross sectional area of a collapsible tube, flow velocity and internal pressure of the fluid. The flow parameters considered are longitudinal tension and volumetric flow rate. The tube is considered collapsible in the transverse direction, taken to be perpendicular to the main flow direction. Collapse happens when external pressure exceeds internal pressure and hence the tube results to a highly noncircular cross sectional area. The fluid flow in consideration is steady and incompressible. Equations governing the flow are non-linear and cannot be solved analytically. Therefore an approximate solution to the equations has been determined numerically. In this case, finite difference method has been used. A computer program has then been used to generate the results which are presented in form of graphs. The results show that the longitudinal tension is directly proportional to both the cross sectional area and internal pressure and inversely proportional to the flow velocity and that change in volumetric flow rate has no effect on the cross sectional area but it is directly proportional to the flow velocity and inversely proportional to the internal pressure.
Gilormini, P.; Teyssèdre, H.
2013-01-01
Measuring the relaxation time involved in the levelling of a free surface of a Newtonian fluid laid on a substrate can give access to material parameters. It is shown here how most favourable pattern geometries of the free surface and film thicknesses can be defined for the measures of viscosity and Navier slip length at the fluid–solid interface, respectively. Moreover, we put special emphasis on the conditions required to avoid shear thinning by controlling the maximum shear rate. For initially sinusoidal patterns with infinitesimal amplitudes, an analytical solution including slip at the fluid–solid interface is used, and numerical simulations based on the natural element method allow one to discuss the effect of finite amplitudes. This leads to the definition of a relevance domain for the analytical solution that avoids the need for numerical simulations in practical applications. It is also shown how these results can be applied to crenelated profiles, where Fourier series expansion can be used, but with caution. PMID:24353474
PFG NMR and Bayesian analysis to characterise non-Newtonian fluids
NASA Astrophysics Data System (ADS)
Blythe, Thomas W.; Sederman, Andrew J.; Stitt, E. Hugh; York, Andrew P. E.; Gladden, Lynn F.
2017-01-01
Many industrial flow processes are sensitive to changes in the rheological behaviour of process fluids, and there therefore exists a need for methods that provide online, or inline, rheological characterisation necessary for process control and optimisation over timescales of minutes or less. Nuclear magnetic resonance (NMR) offers a non-invasive technique for this application, without limitation on optical opacity. We present a Bayesian analysis approach using pulsed field gradient (PFG) NMR to enable estimation of the rheological parameters of Herschel-Bulkley fluids in a pipe flow geometry, characterised by a flow behaviour index n , yield stress τ0 , and consistency factor k , by analysis of the signal in q -space. This approach eliminates the need for velocity image acquisition and expensive gradient hardware. We investigate the robustness of the proposed Bayesian NMR approach to noisy data and reduced sampling using simulated NMR data and show that even with a signal-to-noise ratio (SNR) of 100, only 16 points are required to be sampled to provide rheological parameters accurate to within 2% of the ground truth. Experimental validation is provided through an experimental case study on Carbopol 940 solutions (model Herschel-Bulkley fluids) using PFG NMR at a 1H resonance frequency of 85.2 MHz; for SNR > 1000, only 8 points are required to be sampled. This corresponds to a total acquisition time of <60 s and represents an 88% reduction in acquisition time when compared to MR flow imaging. Comparison of the shear stress-shear rate relationship, quantified using Bayesian NMR, with non-Bayesian NMR methods demonstrates that the Bayesian NMR approach is in agreement with MR flow imaging to within the accuracy of the measurement. Furthermore, as we increase the concentration of Carbopol 940 we observe a change in rheological characteristics, probably due to shear history-dependent behaviour and the different geometries used. This behaviour highlights the need for
NASA Astrophysics Data System (ADS)
Gray, J. D.; Owen, I.; Escudier, M. P.
2007-10-01
Dimensional analysis has been applied to an unsteady pulsatile flow of a shear-thinning power-law non-Newtonian liquid. An experiment was then designed in which both Newtonian and non-Newtonian liquids were used to model blood flow through a large-scale (38.5 mm dia.), simplified, rigid arterial junction (a distal anastomosis of a femorodistal bypass). The flow field within the junction was obtained by Particle Imaging Velocimetry and near-wall velocities were used to calculate the wall shear stresses. Dimensionless wall shear stresses were obtained at different points in the cardiac cycle for two different but dynamically similar non-Newtonian fluids; the good agreement between the measured dimensionless wall shear stresses confirm the validity of the dimensional analysis. However, blood exhibits a constant viscosity at high-shear rates and to obtain complete dynamic similarity between large-scale experiments and life-scale flows, the high-shear viscosity also needs to be included in the analysis. How this might be done is discussed in the paper.
Chen, Kaihui; Wang, Yu; Xuan, Shouhu; Gong, Xinglong
2017-07-01
To investigate the microstructural evolution dependency on the apparent viscosity in shear-thickening fluids (STFs), a hybrid mesoscale model combined with stochastic rotation dynamics (SRD) and molecular dynamics (MD) is used. Muller-Plathe reverse perturbation method is adopted to analyze the viscosities of STFs in a two-dimensional model. The characteristic of microstructural evolution of the colloidal suspensions under different shear rate is studied. The effect of diameter of colloidal particles and the phase volume fraction on the shear thickening behavior is investigated. Under low shear rate, the two-atom structure is formed, because of the strong particle attractions in adjacent layers. At higher shear rate, the synergetic pair structure extends to layered structure along flow direction because of the increasing hydrodynamics action. As the shear rate rises continuously, the layered structure rotates and collides with other particles, then turned to be individual particles under extension or curve string structure under compression. Finally, at the highest shear rate, the strings curve more severely and get into two-dimensional cluster. The apparent viscosity of the system changes from shear-thinning behavior to the shear-thickening behavior. This work presents valuable information for further understanding the shear thickening mechanism.
Accelerated Sedimentation Velocity Assessment for Nanowires Stabilized in a Non-Newtonian Fluid.
Chang, Chia-Wei; Liao, Ying-Chih
2016-12-27
In this work, the long-term stability of titanium oxide nanowire suspensions was accessed by an accelerated sedimentation with centrifugal forces. Titanium oxide (TiO2) nanoparticle (NP) and nanowire (NW) dispersions were prepared, and their sizes were carefully characterized. To replace the time-consuming visual observation, sedimentation velocities of the TiO2 NP and NW suspensions were measured using an analytical centrifuge. For an aqueous TiO2 NP suspension, the measured sedimentation velocities were linearly dependent on the relative centrifugal forces (RCF), as predicted by the classical Stokes law. A similar linear relationship was also found in the case of TiO2 NW aqueous suspensions. However, NWs preferred to settle parallel to the centrifugal direction under high RCF because of the lower flow resistance along the long axis. Thus, the extrapolated sedimentation velocity under regular gravity can be overestimated. Finally, a stable TiO2 NW suspension was formulated with a shear thinning fluid and showed great stability for weeks using visual observation. A theoretical analysis was deduced with rheological shear-thinning parameters to describe the nonlinear power-law dependence between the measured sedimentation velocities and RCF. The good agreement between the theoretical predictions and measurements suggested that the sedimentation velocity can be properly extrapolated to regular gravity. In summary, this accelerated assessment on a theoretical basis can yield quantitative information about long-term stability within a short time (a few hours) and can be further extended to other suspension systems.
Asymptotic analysis of a newtonian fluid in a curved pipe with moving walls
NASA Astrophysics Data System (ADS)
Castiñeira, Gonzalo; Rodríguez, José M.
2016-06-01
This communication is devoted to the presentation of our recent results regarding the asymptotic analysis of a viscous flow in a tube with elastic walls. This study can be applied, for example, to the blood flow in an artery. With this aim, we consider the dynamic problem of the incompressible flow of a viscous fluid through a curved pipe with a smooth central curve. Our analysis leads to the obtention of an one dimensional model via singular perturbation of the Navier-Stokes system as ɛ, a non dimensional parameter related to the radius of cross-section of the tube, tends to zero. We allow the radius depend on tangential direction and time, so a coupling with an elastic or viscoelastic law on the wall of the pipe is possible. To perform the asymptotic analysis, we do a change of variable to a reference domain where we assume the existence of asymptotic expansions on ɛ for both velocity and pressure which, upon substitution on Navier-Stokes equations, leads to the characterization of various terms of the expansion. This allows us to obtain an approximation of the solution of the Navier-Stokes equations.
NASA Astrophysics Data System (ADS)
Zheng, L. C.; Zhang, X. X.; Boubaker, K.; Yücel, U.; Gargouri-Ellouze, E.; Yıldırım, A.
2011-08-01
In this paper, a new model is proposed for the heat transfer characteristics of power law non- Newtonian fluids. The effects of power law viscosity on temperature field were taken into account by assuming that the temperature field is similar to the velocity field with modified Fourier's law of heat conduction for power law fluid media. The solutions obtained by using Boubaker Polynomials Expansion Scheme (BPES) technique are compared with those of the recent related similarity method in the literature with good agreement to verify the protocol exactness.
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has
Etemad, S.G.
1997-11-01
Many important industrial fluids are non-Newtonian in their flow characteristics. These include food materials, soap and detergent slurries, polymer solutions and many others. In the most of the industries such as polymer, foods, petrochemical the heat exchanger is an especially important component of the processing equipment. In the design of heat exchanger, the prediction of the heat transfer coefficient plays a key role as a design factor. Here the Galerkin finite element is used to solve the three dimensional momentum and energy equations for laminar non-Newtonian flow in cross-shaped straight duct. Both flow and heat transfer develop simultaneously from the entrance of the channel. Uniform wall temperature (T) and also constant wall heat flux both axially and peripherally (H2) are used as thermal boundary conditions. The power-law model is chosen to characterize the non-Newtonian behavior of the fluid. The effect of power-law index and geometric parameter on the apparent friction factor as well as Nusselt number are presented and discussed.
Digilov, Rafael M
2008-12-02
The impact of non-Newtonian behavior and the dynamic contact angle on the rise dynamics of a power law liquid in a vertical capillary is studied theoretically and experimentally for quasi-steady-state flow. An analytical solution for the time evolution of the meniscus height is obtained in terms of a Gaussian hypergeometric function, which in the case of a Newtonian liquid reduces to the Lucas-Washburn equation modified by the dynamic contact angle correction. The validity of the solution is checked against experimental data on the rise dynamics of a shear-thinning cmc solution in a glass microcapillary, and excellent agreement is found.
NASA Astrophysics Data System (ADS)
Sahu, Kirti; Matar, Omar
2010-11-01
We investigate the three-dimensional linear characteristics of pressure-driven two-layer channel flow, focussing on the range of parameters for which Squire's theorem does not exist, wherein a Newtonian fluid layer overlies a layer of a Herschel-Bulkley fluid. The modified Orr-Sommerfeld and Squire equations in each layers are derived and solved using an efficient spectral collocation method. Our results demonstrate the presence of three-dimensional instabilities for situations where the square root of the viscosity ratio is larger than the thickness ratio of the two layers; these "interfacial" mode instabilities are also present when density stratification is destabilising. These results may be of particular interest to researchers studying the transient growth and nonlinear stability of two-fluid flows. We also show that the "shear" modes, which are present at sufficiently large Reynolds numbers, are most unstable to two-dimensional disturbances.
Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza
2015-09-18
Low-density lipoprotein (LDL), which is recognized as bad cholesterol, typically has been regarded as a main cause of atherosclerosis. LDL infiltration across arterial wall and subsequent formation of Ox-LDL could lead to atherogenesis. In the present study, combined effects of non-Newtonian fluid behavior and fluid-structure interaction (FSI) on LDL mass transfer inside an artery and through its multilayer arterial wall are examined numerically. Navier-Stokes equations for the blood flow inside the lumen and modified Darcy's model for the power-law fluid through the porous arterial wall are coupled with the equations of mass transfer to describe LDL distributions in various segments of the artery. In addition, the arterial wall is considered as a heterogeneous permeable elastic medium. Thus, elastodynamics equation is invoked to examine effects of different wall elasticity on LDL distribution in the artery. Findings suggest that non-Newtonian behavior of filtrated plasma within the wall enhances LDL accumulation meaningfully. Moreover, results demonstrate that at high blood pressure and due to the wall elasticity, endothelium pores expand, which cause significant variations on endothelium physiological properties in a way that lead to higher LDL accumulation. Additionally, results describe that under hypertension, by increasing angular strain, endothelial junctions especially at leaky sites expand more dramatic for the high elastic model, which in turn causes higher LDL accumulation across the intima layer and elevates atherogenesis risk.
Hatem, N.; Philippe, C.; Mbow, C.; Kabdi, Z.; Najoua, S.; Daguenet, M.
1996-03-01
The authors study numerically the steady state laminar mixed convection around a sphere heated by a nonuniform flux in a Newtonian fluid. The sphere rotates around its vertical axis. The governing transfer equations in this three-dimensional problem are solved by using the method of Cebeci-Keller. Three types of convection are considered: pure rotation, pure natural convection, and mixed convection. The profiles of the coefficients of heat transfer and local friction, as well as the profiles of temperature, will be determined for various distributions of a heat flux. In the case of a two-dimensional problem, the results agree with those in the literature.
NASA Astrophysics Data System (ADS)
Lemos, José P. S.; Luz, Paulo
2014-11-01
A wormhole solution in Newtonian gravitation, enhanced through an equation relating the Ricci scalar to the mass density, is presented. The wormhole inhabits a spherically symmetric curved space, with one throat and two asymptotically flat regions. Particle dynamics in this geometry is studied, and the three distinct dynamical radii, namely, the geodesic, circumferential, and curvature radii, appear naturally in the study of circular motion. Generic motion is also analysed. A limiting case, although inconclusive, suggests the possibility of having a Newtonian black hole in a region of finite (nonzero) size.
NASA Astrophysics Data System (ADS)
Ramachandra Prasad, V.; Gaffar, S. Abdul; Keshava Reddy, E.; Bég, O. Anwar
2014-07-01
Polymeric enrobing flows are important in industrial manufacturing technology and process systems. Such flows are non-Newtonian. Motivated by such applications, in this article we investigate the nonlinear steady state boundary layer flow, heat, and mass transfer of an incompressible Jefferys non-Newtonian fluid past a vertical porous plate in a non-Darcy porous medium. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a versatile, implicit, Keller-box finite-difference technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely Deborah number (De), Darcy number (Da), Prandtl number (Pr), ratio of relaxation to retardation times (λ), Schmidt number (Sc), Forchheimer parameter (Λ), and dimensionless tangential coordinate (ξ) on velocity, temperature, and concentration evolution in the boundary layer regime are examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate, mass transfer rate, and local skin friction are also investigated. It is found that the boundary layer flow is decelerated with increasing De and Forchheimer parameter, whereas temperature and concentration are elevated. Increasing λ and Da enhances the velocity but reduces the temperature and concentration. The heat transfer rate and mass transfer rates are found to be depressed with increasing De and enhanced with increasing λ. Local skin friction is found to be decreased with a rise in De, whereas it is elevated with increasing λ. An increasing Sc decreases the velocity and concentration but increases temperature.
Hayat, Tasawar; Ali, Shafqat; Farooq, Muhammad Asif; Alsaedi, Ahmad
2015-01-01
In this paper, we have investigated the combined effects of Newtonian heating and internal heat generation/absorption in the two-dimensional flow of Eyring-Powell fluid over a stretching surface. The governing non-linear analysis of partial differential equations is reduced into the ordinary differential equations using similarity transformations. The resulting problems are computed for both series and numerical solutions. Series solution is constructed using homotopy analysis method (HAM) whereas numerical solution is presented by two different techniques namely shooting method and bvp4c. A comparison of homotopy solution with numerical solution is also tabulated. Both solutions are found in an excellent agreement. Dimensionless velocity and temperature profiles are plotted and discussed for various emerging physical parameters.
NASA Astrophysics Data System (ADS)
Kishan, N.; Shashidar Reddy, B.
2013-06-01
The problem of a magneto-hydro dynamic flow and heat transfer to a non-Newtonian power-law fluid flow past a continuously moving flat porous plate in the presence of sucion/injection with heat flux by taking into consideration the viscous dissipation is analysed. The non-linear partial differential equations governing the flow and heat transfer are transformed into non-linear ordinary differential equations using appropriate transformations and then solved numerically by an implicit finite difference scheme. The solution is found to be dependent on various governing parameters including the magnetic field parameter M, power-law index n, suction/injection parameter ƒw, Prandtl number Pr and Eckert number Ec. A systematical study is carried out to illustrate the effects of these major parameters on the velocity profiles, temperature profile, skin friction coefficient and rate of heat transfer and the local Nusslet number.
Alkasasbeh, Hamzeh Taha Sarif, Norhafizah Md Salleh, Mohd Zuki; Tahar, Razman Mat; Nazar, Roslinda; Pop, Ioan
2015-02-03
In this paper, the effect of radiation on magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of nonlinear partial differential equations are solved numerically using an implicit finite difference scheme known as the Keller-box method. Numerical solutions are obtained for the local wall temperature and the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for various values of the Prandtl number Pr, micropolar parameter K, magnetic parameter M, radiation parameter N{sub R}, the conjugate parameter γ and the coordinate running along the surface of the sphere, x are analyzed and discussed.
Hayat, Tasawar; Ali, Shafqat; Farooq, Muhammad Asif; Alsaedi, Ahmad
2015-01-01
In this paper, we have investigated the combined effects of Newtonian heating and internal heat generation/absorption in the two-dimensional flow of Eyring-Powell fluid over a stretching surface. The governing non-linear analysis of partial differential equations is reduced into the ordinary differential equations using similarity transformations. The resulting problems are computed for both series and numerical solutions. Series solution is constructed using homotopy analysis method (HAM) whereas numerical solution is presented by two different techniques namely shooting method and bvp4c. A comparison of homotopy solution with numerical solution is also tabulated. Both solutions are found in an excellent agreement. Dimensionless velocity and temperature profiles are plotted and discussed for various emerging physical parameters. PMID:26402366
NASA Astrophysics Data System (ADS)
Najjari, Mohammad Reza; Plesniak, Michael W.
2016-06-01
Steady flow and physiological pulsatile flow in a rigid 180° curved tube are investigated using particle image velocimetry. A non-Newtonian blood-analog fluid is used, and in-plane primary and secondary velocity fields are measured. A vortex detection scheme ( d 2-method) is applied to distinguish vortical structures. In the pulsatile flow case, four different vortex types are observed in secondary flow: deformed-Dean, Dean, Wall and Lyne vortices. Investigation of secondary flow in multiple cross sections suggests the existence of vortex tubes. These structures split and merge over time during the deceleration phase and in space as flow progresses along the 180° curved tube. The primary velocity data for steady flow conditions reveal additional vortices rotating in a direction opposite to Dean vortices—similar to structures observed in pulsatile flow—if the Dean number is sufficiently high.
NASA Astrophysics Data System (ADS)
Hu, Bin; Kieweg, Sarah
2010-11-01
Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.
Exact solutions for the flow of non-Newtonian fluid with fractional derivative in an annular pipe
NASA Astrophysics Data System (ADS)
Tong, Dengke; Wang, Ruihe; Yang, Heshan
2005-08-01
This paper deals with some unsteady unidirectional transient flows of Oldroyd-B fluid in an annular pipe. The fractional calculus approach in the constitutive relationship model Oldroyd-B fluid is introduced and a generalized Jeffreys model with the fractional calculus has been built. Exact solutions of some unsteady flows of Oldroyd-B fluid in an annular pipe are obtained by using Hankel transform and Laplace transform for fractional calculus. The following four problems have been studied: (1) Poiseuille flow due to a constant pressure gradient; (2) axial Couette flow in an annulus; (3) axial Couette flow in an annulus due to a longitudinal constant shear; (4) Poiseuille flow due to a constant pressure gradient and a longitudinal constant shear. The well-known solutions for Navier-Stokes fluid, as well as those corresponding to a Maxwell fluid and a second grade one, appear as limited cases of our solutions.
NASA Astrophysics Data System (ADS)
Aranda, Alfredo; Amigo, Nicolás; Ihle, Christian; Tamburrino, Aldo
2016-06-01
A method based on digital image correlation (DIC) is implemented for measuring the height of the roll waves developed in a non-Newtonian fluid flowing on an inclined channel. A projector and a high-resolution digital camera, placed vertically above the fluid surface, are used to project and record a random speckle pattern located on the free liquid surface, where the pattern is deformed due to the developed roll waves. According to the experimental geometry, the height of the roll waves associated to the out-of-plane deformation of the dots is obtained through a quantitative relationship between the experimental parameters and the in-plane displacement field in the flow direction. In terms of this, the out-of-plane deformation is found using a DIC criterion based on the speckle comparison between a reference image without the deformed pattern and an image with a deformed pattern. The maximum height of the roll waves computed with this technique is compared with the height measured using a lateral camera, with both results differing by <10% over the set of experimental instances.
NASA Astrophysics Data System (ADS)
Welch, Kyle J.; Liebman-Peláez, Alexander; Corwin, Eric I.
2016-09-01
In conventional fluids, viscosity depends on temperature according to a strict relationship. To change this relationship, one must change the molecular nature of the fluid. Here, we create a metafluid whose properties are derived not from the properties of molecules but rather from chaotic waves excited on the surface of vertically agitated water. By making direct rheological measurements of the flow properties of our metafluid, we show that it has independently tunable viscosity and temperature, a quality that no conventional fluid possesses. We go on to show that the metafluid obeys the Einstein relation, which relates many-body response (viscosity) to single-particle dynamics (diffusion) and is a fundamental result in equilibrium thermal systems. Thus, our metafluid is wholly consistent with equilibrium thermal physics, despite being markedly nonequilibrium. Taken together, our results demonstrate a type of material that retains equilibrium physics while simultaneously allowing for direct programmatic control over material properties.
Welch, Kyle J.; Liebman-Peláez, Alexander; Corwin, Eric I.
2016-01-01
In conventional fluids, viscosity depends on temperature according to a strict relationship. To change this relationship, one must change the molecular nature of the fluid. Here, we create a metafluid whose properties are derived not from the properties of molecules but rather from chaotic waves excited on the surface of vertically agitated water. By making direct rheological measurements of the flow properties of our metafluid, we show that it has independently tunable viscosity and temperature, a quality that no conventional fluid possesses. We go on to show that the metafluid obeys the Einstein relation, which relates many-body response (viscosity) to single-particle dynamics (diffusion) and is a fundamental result in equilibrium thermal systems. Thus, our metafluid is wholly consistent with equilibrium thermal physics, despite being markedly nonequilibrium. Taken together, our results demonstrate a type of material that retains equilibrium physics while simultaneously allowing for direct programmatic control over material properties. PMID:27621467
NASA Astrophysics Data System (ADS)
Shaw, C. A.; Vogt, S.; Maneval, J. E.; Brox, T.; Skidmore, M. L.; Codd, S. L.; Seymour, J. D.
2010-12-01
Sandstone core samples were challenged with a supercritical CO2-saturated brine mixture in a laboratory flow-through core reactor system over a range of temperatures and brine strengths. Cores of quartz arenite from the Berea formation were selected to represent ideal ‘clean’ sandstone These laboratory experiments potentially provide an analog for the acidification of pore fluids near the brine/CO2 interface during CO2 flooding of depleted clastic hydrocarbon reservoirs for carbon sequestration. Flow in the reactor was perpendicular to bedding. Initial experiments were run at 50°C and 100°C with brine concentrations of 1g/L and 10g/L (TDS) to test effects of different temperatures and brine compositions. Real-time monitoring of fluid pH and conductivity provided a measure of reaction rates. Introduction of supercritical CO2 into the brine-saturated cores initiated a reduction in pH accompanied by an increase in conductivity. NMR images of fresh cores were compared with images of challenged cores using a protocol for pixel-by-pixel comparison to determine the effects on bulk pore volume and geometry. Two types of imaging experiments were conducted: multi-slice spin echo and 3-D spin echo images. Multi-slice experiments had a slice thickness of 1.5 mm and an in-plane resolution of 0.27 mm x 0.27 mm, and 3-D experiments had a resolution of 0.47 mm x 0.55 mm x 0.55mm. Imaging results reflected the observed changes in the physical and chemical structure post-challenge. Two-dimensional relaxation correlation experiments were also conducted to probe the pore sizes, connectivity and fluid saturation of the rock cores before and after challenging. Chemical analyses and microscopic examination of the challenged cores will provide a better understanding of alteration in the cores and the changes in the volume, geometry and connectivity of pore space.
NASA Astrophysics Data System (ADS)
Feng, J.; Hu, H. H.; Joseph, D. D.
1994-02-01
This paper reports the result of direct simulations of fluid-particle motions in two dimensions. We solve the initial value problem for the sedimentation of circular and elliptical particles in a vertical channel. The fluid motion is computed from the Navier-Stokes equations for moderate Reynolds numbers in the hundreds. The particles are moved according to the equations of motion of a rigid body under the action of gravity and hydrodynamic forces arising from the motion of the fluid. The solutions are as exact as our finite-element calculations will allow. As the Reynolds number is increased to 600, a circular particle can be said to experience five different regimes of motion: steady motion with and without overshoot and weak, strong and irregular oscillations. An elliptic particle always turn its long axis perpendicular to the fall, and drifts to the centreline of the channel during sedimentation. Steady drift, damped oscillation and periodic oscillation of the particle are observed for different ranges of the Reynolds number. For two particles which interact while settling, a steady staggered structure, a periodic wake-action regime and an active drafting-kissing-tumbling scenario are realized at increasing Reynolds numbers. The nonlinear effects of particle-fluid, particle-wall and interparticle interactions are analyzed, and the mechanisms controlling the simulated flows are shown to be lubrication, turning couples on long bodies, steady and unsteady wakes and wake interactions. The results are compared to experimental and theoretical results previously published.
Jin, L.; Chenevert, M.E. . Dept. of Petroleum Engineering)
1994-03-01
Aqueous solutions of different concentrations of three polymers: a synthetic high molecular weight polymer, partially hydrolyzed polyacrylamide (PHPA), a xanthan-type biopolymer (Xanvis), and a cellulose-type polymer (HEC) were investigated in this study. It was found that the steric arrangement of molecules or interactions between molecules can be detected by a systematically designed strain and frequency sweep measurement, and is reflected by the different relaxation times of the solutions. The degree of elasticity can be quantified by G[prime]/[vert bar]G*[vert bar] in linear viscoelastic range. The responses of the fluids to frequency sweeps are displayed in a normalized moduli versus normalized frequency pattern derived from the Maxwell model. Results show that within the tested concentration ranges, PHPA solutions are highly elastic with moderate relaxation times that are strain and concentration insensitive. Xanvis solutions are also highly elastic, but with high relaxation times that are both strain and concentration sensitive, indicating a different mechanism of elasticity compared to PHPA solutions. HEC (cellulose derivatives) are mostly viscous shear thinning fluids with weak elasticity and short relaxation times that are insensitive to strain, but sensitive to concentration.
Experimental flow-through study of artificial diagenesis in sandstones
Donahoe, R.J.; Leard, L.E.
1986-05-01
During petroleum reservoir development and production, various fluids are injected into well bores. Because these fluids differ compositionally from the reservoir rock pore fluids, induced fluid/rock interactions can range from none to extreme in their effect on reservoir rock properties. These induced reactions, considered artificial diagenesis, can be studied using a new low-temperature flow-through hydrothermal apparatus. The flow-through apparatus is presented as an alternative to conventional high-temperature, high-pressure permeameters for studying water/rock interactions. This equipment is designed to study water/rock interactions under variable fluid-flow rate (0.0005-10 ml/min), temperature (50/sup 0/-300/sup 0/C), and pressure (50-500 bar) conditions; to allow in-situ measurements of permeability; and to accommodate packed column or 1-in. diameter core samples. An experimental and computational study was conducted at 250/sup 0/C to investigate the effects of fluid flow rate, fluid composition, and sandstone mineralogy on disaggregated sandstone sample alteration mineralogy and permeability. Three series of flow-through experiments were conducted with the following variables: (1) sandstone composition (quartzarenite, 2 arkose); (2) fluid composition (distilled, deionized water and aqueous solutions of HF/HCl and NaOH); and (3) fluid-flow rate (0.001-1 ml/min). Preliminary results from these experiments are presented. The variables listed above are discussed in terms of their effect on sandstone alteration mineralogy and permeability. In addition, computer chemical-equilibrium programs used to model these man-made diagenetic systems are evaluated.
Muehlhausen, M-P; Janoske, U; Oertel, H
2015-03-01
Although image-based methods like MRI are well-developed, numerical simulation can help to understand human heart function. This function results from a complex interplay of biochemistry, structural mechanics, and blood flow. The complexity of the entire system often causes one of the three parts to be neglected, which limits the truth to reality of the reduced model. This paper focuses on the interaction of myocardial stress distribution and ventricular blood flow during diastole and systole in comparison to a simulation of the same patient-specific geometry with a given wall movement (Spiegel, Strömungsmechanischer Beitrag zur Planung von Herzoperationen, 2009). The orthotropic constitutive law proposed by Holzapfel et al. (Philos. Trans. R. Soc. Lond. Ser. A, 367:3445-3475, 2009) was implemented in a finite element package to model the passive behavior of the myocardium. Then, this law was modified for contraction. Via the ALE method, the structural model was coupled to a flow model which incorporates blood rheology and the circulatory system (Oertel, Prandtl-Essentials of Fluid Mechanics, 3rd edn, Springer Science + Business Media, 2010; Oertel et al., Modelling the Human Cardiac Fluid Mechanics, 3rd edn, Universitätsverlag Karlsruhe, 2009). Comparison reveals a good quantitative and qualitative agreement with respect to fluid flow. The motion of the myocardium is consistent with physiological observations. The calculated stresses and the distribution are within the physiological range and appear to be reasonable. The coupled model presented contains many features essential to cardiac function. It is possible to calculate wall stresses as well as the characteristic ventricular fluid flow. Based on the simulations we derive two characteristics to assess the health state quantitatively including solid and fluid mechanical aspects.
NASA Astrophysics Data System (ADS)
Pažanin, Igor; Siddheshwar, Pradeep G.
2017-03-01
In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.
Hydrodynamics and Thermodynamics of Newtonian Stars
NASA Astrophysics Data System (ADS)
Kwak, Ho-Young; Jun, Jung-Hwan
2003-01-01
We investigated spherically symmetric solution for nonrelativistic cosmological fluid equations and thermodynamic equation of state for Newtonian stars. It was shown that the assumption of a polytropic equation, , at the center of the star only suffices to integrate the equations explicitly. Our exact solution yields many fruitful results such as stellar stability, spherical oscillation and collapses of stars. Pressure, temperature, and density profiles inside stars were obtained. Central densities, pressures and temperatures of the Newtonian stars such as Sun, Jupiter and Saturn were also calculated. Collapse and expansion mechanism was explained by the heat transfer mechanism inside star. The upper bound value of white dwarf mass obtained by the Newtonian cosmological fluid equations turns out to be comparable to the static limit of Chandrasekhar one. Motion of the Universe was also discussed within the framework of Newtonian mechanics. Our calculation results without considering nuclear reactions inside stars may be applicable to the formation of protostars.
Method of Simulating Flow-Through Area of a Pressure Regulator
NASA Technical Reports Server (NTRS)
Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)
2011-01-01
The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1996-09-01
I show that if Newtonian gravity is formulated in geometrical language, then Newtonian cosmology is as rigorous as relativistic cosmology. In homogeneous and isotropic universes, the geodesic deviation equation in Newtonian cosmology is proven to be exactly the same as the geodesic deviation equation in relativistic Friedmann cosmologies. This equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: by generalizing the flat-space Newtonian gravity force law to Riemannian metrics, I show that ever-expanding and recollapsing universes are allowed in any homogeneous and isotropic spatial geometry.
NASA Astrophysics Data System (ADS)
Mezzasalma, Stefano A.
2000-08-01
A theory is presented to describe the apparent viscosity of thixotropic fluids as a function of the rate of shear. It represents the extension of a semiclassical approach that was previously formulated to deal with matter densification phenomena in solids starting from the state equation of the medium. In this context, the Debye expression for the Helmholtz free energy has been provided with a density of vibrational modes that accounts for atomic and microstructural changes occurring at the frequency scale of momentum transport (see diffusion). Working out the steady-state condition with respect to time gives an equation relating reduced apparent viscosity (η˜) and shear rate (γ˜) through the temperature value (θ*) that is energetically equivalent to the medium vibrations implied. Viscosity also turns out to depend on the Debye temperature θD (see φ˜θ*/θD) and an equivalent Gruneisen parameter (μ), defined with respect to viscosity variations. Increasing φ in pseudoplastic and dilatant media, respectively, increases and decreases η˜, which always increases with increasing μ. The analogy between dilatancy/sintering and pseudoplasticity/desintering is suggested, and a correspondence between matter and momentum transports is traced on the basis of the phononic spectrum properties. Application to experimental measurements are presented and discussed for aqueous monodispersions of polystyrene (PS) latex particles, aqueous glycerol solutions of partially hydrolyzed polyacrylamide (PHPAA) at different sodium chloride (NaCl) concentrations, polymethylmethacrylate (PMMA) suspensions in dioctylphthalate (DOP), and for a molecularly thin liquid film of octamethylciclotetrasiloxane (OMCTS). Best fit coefficients for φ and μ have been constrained to the Debye temperature and the effective low-shear viscosity (η0) according to their dependences upon the suspended volume fraction (φ), θD=θD(φ), and η0=η0(φ), and the agreement with experimental data is
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
1996-10-01
It is generally believed that it is not possible to rigorously analyze a homogeneous and isotropic cosmological model in Newtonian mechanics. I show on the contrary that if Newtonian gravity theory is rewritten in geometrical language in the manner outlined in 1923-1924 by Élie Cartan [Ann. Ecole Norm. Sup. 40, 325-412 (1923); 41, 1-25 (1924)], then Newtonian cosmology is as rigorous as Friedmann cosmology. In particular, I show that the equation of geodesic deviation in Newtonian cosmology is exactly the same as equation of geodesic deviation in the Friedmann universe, and that this equation can be integrated to yield a constraint equation formally identical to the Friedmann equation. However, Newtonian cosmology is more general than Friedmann cosmology: Ever-expanding and recollapsing universes are allowed in any noncompact homogeneous and isotropic spatial topology. I shall give a brief history of attempts to do cosmology in the framework of Newtonian mechanics.
Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.
Morales, Hernán G; Larrabide, Ignacio; Geers, Arjan J; Aguilar, Martha L; Frangi, Alejandro F
2013-09-03
Endovascular coiling aims to isolate the aneurysm from blood circulation by altering hemodynamics inside the aneurysm and triggering blood coagulation. Computational fluid dynamics (CFD) techniques have the potential to predict the post-operative hemodynamics and to investigate the complex interaction between blood flow and coils. The purpose of this work is to study the influence of blood viscosity on hemodynamics in coiled aneurysms. Three image-based aneurysm models were used. Each case was virtually coiled with a packing density of around 30%. CFD simulations were performed in coiled and untreated aneurysm geometries using a Newtonian and a Non-Newtonian fluid models. Newtonian fluid slightly overestimates the intra-aneurysmal velocity inside the aneurysm before and after coiling. There were numerical differences between fluid models on velocity magnitudes in coiled simulations. Moreover, the non-Newtonian fluid model produces high viscosity (>0.007 [Pas]) at aneurysm fundus after coiling. Nonetheless, these local differences and high-viscous regions were not sufficient to alter the main flow patterns and velocity magnitudes before and after coiling. To evaluate the influence of coiling on intra-aneurysmal hemodynamics, the assumption of a Newtonian fluid can be used.
Newtonian and Relativistic Cosmologies
NASA Astrophysics Data System (ADS)
Green, Stephen; Wald, Robert
2012-03-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the Friedmann equations, and also that a correspondence between Newtonian and relativistic dust cosmologies holds in linearized perturbation theory. Nevertheless, it is not obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology with significant nonlinear dynamical behavior at small scales. We investigate this issue in light of a perturbative framework that we have recently developed. We propose a straightforward dictionary---exact at the linearized level---that maps Newtonian dust cosmologies into GR dust cosmologies, and we use our ordering scheme to determine the degree to which the resulting metric and matter distribution solve Einstein's equation. We then find additional corrections needed to satisfy Einstein's equation to ``order 1'' at small scales and to ``order ɛ'' at large scales. We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations to describe GR cosmologies.
Choi, Hyo Won; Barakat, Abdul I
2005-01-01
Endothelial cell (EC) responsiveness to shear stress is essential for vasoregulation and plays a role in atherogenesis. Although blood is a non-Newtonian fluid, EC flow studies in vitro are typically performed using Newtonian fluids. The goal of the present study was to determine the impact of non-Newtonian behavior on the flow field within a model flow chamber capable of producing flow disturbance and whose dimensions permit Reynolds and Womersley numbers comparable to those present in vivo. We performed two-dimensional computational fluid dynamic simulations of steady and pulsatile laminar flow of Newtonian and non-Newtonian fluids over a backward facing step. In the non-Newtonian simulations, the fluid was modeled as a shear-thinning Carreau fluid. Steady flow results demonstrate that for Re in the range 50-400, the flow recirculation zone downstream of the step is 22-63% larger for the Newtonian fluid than for the non-Newtonian fluid, while spatial gradients of shear stress are larger for the non-Newtonian fluid. In pulsatile flow, the temporal gradients of shear stress within the flow recirculation zone are significantly larger for the Newtonian fluid than for the non-Newtonian fluid. These findings raise the possibility that in regions of flow disturbance, EC mechanotransduction pathways stimulated by Newtonian and non-Newtonian fluids may be different.
NASA Astrophysics Data System (ADS)
De Vita, F.; de Tullio, M. D.; Verzicco, R.
2016-04-01
This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells' membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.
Regan, John Frederick
2014-09-09
Removable cartridges are used on automated flow-through systems for the purpose of extracting and purifying genetic material from complex matrices. Different types of cartridges are paired with specific automated protocols to concentrate, extract, and purifying pathogenic or human genetic material. Their flow-through nature allows large quantities sample to be processed. Matrices may be filtered using size exclusion and/or affinity filters to concentrate the pathogen of interest. Lysed material is ultimately passed through a filter to remove the insoluble material before the soluble genetic material is delivered past a silica-like membrane that binds the genetic material, where it is washed, dried, and eluted. Cartridges are inserted into the housing areas of flow-through automated instruments, which are equipped with sensors to ensure proper placement and usage of the cartridges. Properly inserted cartridges create fluid- and air-tight seals with the flow lines of an automated instrument.
Physiological non-Newtonian blood flow through single stenosed artery
NASA Astrophysics Data System (ADS)
Mamun, Khairuzzaman; Rahman, Mohammad Matiur; Akhter, Most. Nasrin; Ali, Mohammad
2016-07-01
A numerical simulation to investigate the Non-Newtonian modelling effects on physiological flows in a three dimensional idealized artery with a single stenosis of 85% severity. The wall vessel is considered to be rigid. Oscillatory physiological and parabolic velocity profile has been imposed for inlet boundary condition. Where the physiological waveform is performed using a Fourier series with sixteen harmonics. The investigation has a Reynolds number range of 96 to 800. Low Reynolds number k - ω model is used as governing equation. The investigation has been carried out to characterize two Non-Newtonian constitutive equations of blood, namely, (i) Carreau and (ii) Cross models. The Newtonian model has also been investigated to study the physics of fluid. The results of Newtonian model are compared with the Non-Newtonian models. The numerical results are presented in terms of pressure, wall shear stress distributions and the streamlines contours. At early systole pressure differences between Newtonian and Non-Newtonian models are observed at pre-stenotic, throat and immediately after throat regions. In the case of wall shear stress, some differences between Newtonian and Non-Newtonian models are observed when the flows are minimum such as at early systole or diastole.
NASA Technical Reports Server (NTRS)
Van Den Berg, Arie P.; Yuen, David A.; Van Keken, Peter E.
1995-01-01
Numerical simulations of mantle convection with a composite temperature-dependent, Newtonian and non-Newtonian creep law have revealed a transition in the dominant creep mechanism with the increasing vigour of convection. Newtonian creep is found to dominate in the low Rayleigh number regime. With sufficiently high effective Rayleigh number, the overall creep mechanism in the convective flow becomes non-Newtonian. The transitional Rayleigh number increases strongly with the activation energy. These results would suggest a scenario that in the early epochs of Earth the flow in the mantle would have been governed by non-Newtonian rheology and would have exhibited both strong spatial and temporal fluctuations. With time the flow mechanism would behave like a Newtonian fluid and would have a different time-dependent character. In time-dependent Newtonian-dominated flows there are still localized features with distinctly non-Newtonian character. Our analysis of the relative contributions to the lateral viscosity field supports the idea that the inference of the nature of lateral viscosity heterogeneities by seismic tomography may be strongly contaminated by the dominant non-Newtonian contributions to the total lateral viscosity field.
NASA Astrophysics Data System (ADS)
Khojasteh, Danial; Mousavi, Seyed Mahmood; Kamali, Reza
2016-11-01
In the present study, the behaviors of Newtonian and shear-thinning non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces have been investigated numerically using Ansys-Fluent. In this context, the volume-of-fluid technique is applied to track the free-surface of the liquid, and variable time-step is also utilized to control the Courant number. Furthermore, we have considered the dependence of viscosity, density and surface tension on temperature during the simulation. The results are compared to available experimental data at the same conditions, such as boundary conditions. The results demonstrate that there is a good agreement between the obtained results and the experimental trends, concerning normalized diameter profiles at various Weber numbers. Therefore, the focus of the present study is an assessment of the effects of variations in Weber number, contact angle and surface temperature for Newtonian and non-Newtonian liquids on dynamics behavior of droplet in collision with hydrophobic and hydrophilic surfaces. The results represent that the behaviors of Newtonian and non-Newtonian droplets are totally different, indicating the droplet sensitivity to the working parameters.
Post-Newtonian reference ellipsoid for relativistic geodesy
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei; Han, Wenbiao; Mazurova, Elena
2016-02-01
We apply general relativity to construct the post-Newtonian background manifold that serves as a reference spacetime in relativistic geodesy for conducting a relativistic calculation of the geoid's undulation and the deflection of the plumb line from the vertical. We chose an axisymmetric ellipsoidal body made up of a perfect homogeneous fluid uniformly rotating around a fixed axis, as a source generating the reference geometry of the background manifold through Einstein's equations. We then reformulate and extend hydrodynamic calculations of rotating fluids done by a number of previous researchers for astrophysical applications to the realm of relativistic geodesy to set up algebraic equations defining the shape of the post-Newtonian reference ellipsoid. To complete this task, we explicitly perform all integrals characterizing gravitational field potentials inside the fluid body and represent them in terms of the elementary functions depending on the eccentricity of the ellipsoid. We fully explore the coordinate (gauge) freedom of the equations describing the post-Newtonian ellipsoid and demonstrate that the fractional deviation of the post-Newtonian level surface from the Maclaurin ellipsoid can be made much smaller than the previously anticipated estimate based on the astrophysical application of the coordinate gauge advocated by Bardeen and Chandrasekhar. We also derive the gauge-invariant relations of the post-Newtonian mass and the constant angular velocity of the rotating fluid with the parameters characterizing the shape of the post-Newtonian ellipsoid including its eccentricity, a semiminor axis, and a semimajor axis. We formulate the post-Newtonian theorems of Pizzetti and Clairaut that are used in geodesy to connect the geometric parameters of the reference ellipsoid to the physically measurable force of gravity at the pole and equator of the ellipsoid. Finally, we expand the post-Newtonian geodetic equations describing the post-Newtonian ellipsoid to
Newtonian and relativistic cosmologies
NASA Astrophysics Data System (ADS)
Green, Stephen R.; Wald, Robert M.
2012-03-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic Friedmann-Lemaître-Robinson-Walker cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed [S. R. Green and R. M. Wald, Phys. Rev. DPRVDAQ1550-7998 83, 084020 (2011).10.1103/PhysRevD.83.084020], which allows for such nonlinearity at small scales. We propose a relatively straightforward dictionary—which is exact at the linearized level—that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our “ordering scheme” to determine the degree to which the resulting metric and matter distribution solve Einstein’s equation. We find that, within our ordering scheme, Einstein’s equation fails to hold at “order 1” at small scales and at “order ɛ” at large scales. We then find the additional corrections to the metric and matter distribution needed to satisfy Einstein’s equation to these orders. While these corrections are of some interest in their own right, our main purpose in calculating them is that their smallness should provide a criterion for the validity of the original dictionary (as well as simplified versions of this dictionary). We expect that, in realistic Newtonian cosmologies, these additional corrections will be very small; if so, this should provide strong justification for the use of Newtonian simulations
Post-Newtonian cosmological dynamics in Lagrangian coordinates
NASA Astrophysics Data System (ADS)
Matarrese, Sabino; Terranova, David
1996-11-01
We study the non-linear dynamics of self-gravitating irrotational dust in a general relativistic framework, using synchronous and comoving (i.e. Lagrangian) coordinates. All the equations are written in terms of a single tensor variable, the metric tensor of the spatial sections orthogonal to the fluid flow. This treatment allows an unambiguous expansion in inverse (even) powers of the speed of light. To lowest order, the Newtonian approximation - in Lagrangian form - is derived and written in a transparent way; the corresponding Lagrangian Newtonian metric is obtained. Post-Newtonian corrections are then derived and their physical meaning clarified. A number of results are obtained: (i) the master equation of Lagrangian Newtonian dynamics, the Raychaudhuri equation, can be interpreted as an equation for the evolution of the Lagrangian-to-Eulerian Jacobian matrix, complemented by the irrotationality constraint; (ii) the Lagrangian spatial metric reduces, in the Newtonian limit, to that of Euclidean 3-space written in time-dependent curvilinear coordinates, with non-vanishing Christoffel symbols, but vanishing spatial curvature (a particular example of it is given within the Zel'dovich approximation); (iii) a Lagrangian version of the Bernoulli equation for the evolution of the `velocity potential' is obtained. (iv) The Newtonian and post-Newtonian content of the electric and magnetic parts of the Weyl tensor is clarified. (v) At the post-Newtonian level, an exact and general formula is derived for gravitational-wave emission from non-linear cosmological perturbations; (vi) a straightforward application to the anisotropic collapse of homogeneous ellipsoids shows that the ratio of these postNewtonian terms to the Newtonian ones tends to diverge at least like the mass density. (vii) It is argued that a stochastic gravitational wave background is produced by non-linear cosmic structures, with present-day closure density Ωgw ˜10-5-10-6 on 1-10 Mpc scales.
The extensional rheology of non-Newtonian materials
NASA Technical Reports Server (NTRS)
Spiegelberg, Stephen H.; Gaudet, Samuel; Mckinley, Gareth H.
1994-01-01
It has been proposed to measure the extensional viscosity function of a non-Newtonian polymer solution in a reduced gravity environment as part of the Advanced Fluid Module. In ground-based extensional measurements, the no-sip boundary condition at solid-fluid interfaces always result in appreciable shear gradients in the test fluid; however the removal of gravitational body forces permits controlled extensional deformation of containerless test samples and the first unambiguous measurements of this kind. Imperative to successful implementation of this experiment is the generation and subsequent deformation of a stable cylindrical column of test fluid. A study of the generation and deformation of liquid bridges demonstrates that Newtonian liquid bridges undergo capillary breakup as anticipated when stretched beyond a critical aspect ratio; non-Newtonian liquid bridges, however, are stabilized by the strain-hardening phenomenon exhibited by these materials. Numerical simulations of Newtonian breakup are compared with experimental results, and show that previous ground-based attempts at measuring the extensional viscosity of Newtonian fluids are of limited accuracy.
NASA Astrophysics Data System (ADS)
Bouteraa, Mondher; Nouar, Chérif
2015-12-01
Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Rac and the critical wave number kc decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value αc of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that αc increases with decreasing ξ . The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξc, below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015), 10.1017/jfm.2015.64]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξc. The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.
Bouteraa, Mondher; Nouar, Chérif
2015-12-01
Finite-amplitude thermal convection in a shear-thinning fluid layer between two horizontal plates of finite thermal conductivity is considered. Weakly nonlinear analysis is adopted as a first approach to investigate nonlinear effects. The rheological behavior of the fluid is described by the Carreau model. As a first step, the critical conditions for the onset of convection are computed as a function of the ratio ξ of the thermal conductivity of the plates to the thermal conductivity of the fluid. In agreement with the literature, the critical Rayleigh number Ra(c) and the critical wave number k(c) decrease from 1708 to 720 and from 3.11 to 0, when ξ decreases from infinity to zero. In the second step, the critical value α(c) of the shear-thinning degree above which the bifurcation becomes subcritical is determined. It is shown that α(c) increases with decreasing ξ. The stability of rolls and squares is then investigated as a function of ξ and the rheological parameters. The limit value ξ(c), below which squares are stable, decreases with increasing shear-thinning effects. This is related to the fact that shear-thinning effects increase the nonlinear interactions between sets of rolls that constitute the square patterns [M. Bouteraa et al., J. Fluid Mech. 767, 696 (2015)]. For a significant deviation from the critical conditions, nonlinear convection terms and nonlinear viscous terms become stronger, leading to a further diminution of ξ(c). The dependency of the heat transfer on ξ and the rheological parameters is reported. It is consistent with the maximum heat transfer principle. Finally, the flow structure and the viscosity field are represented for weakly and highly conducting plates.
ERIC Educational Resources Information Center
Collyer, A. A.
1973-01-01
Discusses theories underlying Newtonian and non-Newtonian fluids by explaining flow curves exhibited by plastic, shear-thining, and shear-thickening fluids and Bingham plastic materials. Indicates that the exact mechanism governing shear-thickening behaviors is a problem of further study. (CC)
MHD Casson nanofluid flow past a wedge with Newtonian heating
NASA Astrophysics Data System (ADS)
Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar
2017-02-01
The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.
Accuracy of non-Newtonian Lattice Boltzmann simulations
NASA Astrophysics Data System (ADS)
Conrad, Daniel; Schneider, Andreas; Böhle, Martin
2015-11-01
This work deals with the accuracy of non-Newtonian Lattice Boltzmann simulations. Previous work for Newtonian fluids indicate that, depending on the numerical value of the dimensionless collision frequency Ω, additional artificial viscosity is introduced, which negatively influences the accuracy. Since the non-Newtonian fluid behavior is incorporated through appropriate modeling of the dimensionless collision frequency, a Ω dependent error EΩ is introduced and its influence on the overall error is investigated. Here, simulations with the SRT and the MRT model are carried out for power-law fluids in order to numerically investigate the accuracy of non-Newtonian Lattice Boltzmann simulations. A goal of this accuracy analysis is to derive a recommendation for an optimal choice of the time step size and the simulation Mach number, respectively. For the non-Newtonian case, an error estimate for EΩ in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. With the help of the error functional, the prediction of the global error minimum of the velocity field is excellent in regions where the EΩ error is the dominant source of error. With an optimal simulation Mach number, the simulation is about one order of magnitude more accurate. Additionally, for both collision models a detailed study of the convergence behavior of the method in the non-Newtonian case is conducted. The results show that the simulation Mach number has a major impact on the convergence rate and second order accuracy is not preserved for every choice of the simulation Mach number.
Newtonian wormholes with spherical symmetry and tidal forces on test particles
NASA Astrophysics Data System (ADS)
Luz, Paulo; Lemos, José P. S.
2015-06-01
A spherically symmetric wormhole in Newtonian gravitation in curved space, enhanced with a connection between the mass density and the Ricci scalar, is presented. The wormhole, consisting of two connected asymptotically flat regions, inhabits a spherically symmetric curved space. The gravitational potential, gravitational field and the pressure that supports the fluid that permeates the Newtonian wormhole are computed. Particle dynamics and tidal effects in this geometry are studied. The possibility of having Newtonian black holes in this theory is sketched.
NASA Astrophysics Data System (ADS)
Amiri Delouei, A.; Nazari, M.; Kayhani, M. H.; Kang, S. K.; Succi, S.
2016-04-01
In the current study, a direct-forcing immersed boundary-non-Newtonian lattice Boltzmann method (IB-NLBM) is developed to investigate the sedimentation and interaction of particles in shear-thinning and shear-thickening fluids. In the proposed IB-NLBM, the non-linear mechanics of non-Newtonian particulate flows is detected by combination of the most desirable features of immersed boundary and lattice Boltzmann methods. The noticeable roles of non-Newtonian behavior on particle motion, settling velocity and generalized Reynolds number are investigated by simulating benchmark problem of one-particle sedimentation under the same generalized Archimedes number. The effects of extra force due to added accelerated mass are analyzed on the particle motion which have a significant impact on shear-thinning fluids. For the first time, the phenomena of interaction among the particles, such as Drafting, Kissing, and Tumbling in non-Newtonian fluids are investigated by simulation of two-particle sedimentation and twelve-particle sedimentation. The results show that increasing the shear-thickening behavior of fluid leads to a significant increase in the kissing time. Moreover, the transverse position of particles for shear-thinning fluids during the tumbling interval is different from Newtonian and the shear-thickening fluids. The present non-Newtonian particulate study can be applied in several industrial and scientific applications, like the non-Newtonian sedimentation behavior of particles in food industrial and biological fluids.
The Viscosity of Polymeric Fluids.
ERIC Educational Resources Information Center
Perrin, J. E.; Martin, G. C.
1983-01-01
To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…
Newtonian to non-Newtonian flow transition in lung surfactants
NASA Astrophysics Data System (ADS)
Sadoughi, Amir; Hirsa, Amir; Lopez, Juan
2010-11-01
The lining of normal lungs is covered by surfactants, because otherwise the surface tension of the aqueous layer would be too large to allow breathing. A lack of functioning surfactants can lead to respiratory distress syndrome, a potentially fatal condition in both premature infants and adults, and a major cause of death in the US and world-wide. We use a home-built Brewster angle microscope on an optically accessible deep channel viscometer to simultaneously observe the mesoscale structures of DPPC, the primary constituent of lung surfactant, on water surface and measure the interfacial velocity field. The measured interfacial velocity is compared to Navier-Stokes computations with the Boussinesq-Scriven surface model. Results show that DPPC monolayer behaves i) purely elastically at low surface pressures on water, ii) viscoelastically at modest surface pressures, exhibiting non-zero surface shear viscosity that is independent of the shear rate and flow inertia, and iii) at surface pressures approaching film collapse, DPPC loses its fluid characteristics, and a Newtonian surface model no longer captures its hydrodynamics.
NASA Technical Reports Server (NTRS)
King, Scott D.; Hager, Bradford H.
1990-01-01
The relationship between oceanic trench viscosity and oceanic plate velocity is studied using a Newtonian rheology by varying the viscosity at the trench. The plate velocity is a function of the trench viscosity for fixed Rayleigh number and plate/slab viscosity. Slab velocities for non-Newtonian rheology calculations are significantly different from slab velocities from Newtonian rheology calculations at the same effective Rayleigh number. Both models give reasonable strain rates for the slab when compared with estimates of seismic strain rate. Non-Newtonian rheology eliminates the need for imposed weak zones and provides a self-consistent fluid dynamical mechanism for subduction in numerical convection models.
Newtonian cosmology Newton would understand
Lemons, D.S.
1988-06-01
Isaac Newton envisioned a static, infinite, and initially uniform, zero field universe that was gravitationally unstable to local condensations of matter. By postulating the existence of such a universe and using it as a boundary condition on Newtonian gravity, a new field equation for gravity is derived, which differs from the classical one by a time-dependent cosmological term proportional to the average mass density of the universe. The new field equation not only makes Jeans' analysis of the gravitational instability of a Newtonian universe consistent, but also gives rise to a family of Newtonian evolutionary cosmologies parametrized by a time-invariant expansion velocity. This Newtonian cosmology contrasts with both 19th-century ones and with post general relativity Newtonian cosmology.
Analysis of non-Newtonian effects on Low-Density Lipoprotein accumulation in an artery.
Iasiello, Marcello; Vafai, Kambiz; Andreozzi, Assunta; Bianco, Nicola
2016-06-14
In this work, non-Newtonian effects on Low-Density Lipoprotein (LDL) transport across an artery are analyzed with a multi-layer model. Four rheological models (Carreau, Carreau-Yasuda, power-law and Newtonian) are used for the blood flow through the lumen. For the non-Newtonian cases, the arterial wall is modeled with a generalized momentum equation. Convection-diffusion equation is used for the LDL transport through the lumen, while Staverman-Kedem-Katchalsky, combined with porous media equations, are used for the LDL transport through the wall. Results are presented in terms of filtration velocity, Wall Shear Stresses (WSS) and concentration profiles. It is shown that non-Newtonian effects on mass transport are negligible for a healthy intramural pressure value. Non-Newtonian effects increase slightly with intramural pressure, but Newtonian assumption can still be considered reliable. Effects of arterial size are also analyzed, showing that Newtonian assumption can be considered valid for both medium and large arteries, in predicting LDL deposition. Finally, non-Newtonian effects are also analyzed for an aorta-common iliac bifurcation, showing that Newtonian assumption is valid for mass transport at low Reynolds numbers. At a high Reynolds number, it has been shown that a non-Newtonian fluid model can have more impact due to the presence of flow recirculation.
Edited by Guenther, Chris; Garg, Rahul
2013-08-19
The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.
Weddell, Jared C; Kwack, JaeHyuk; Imoukhuede, P I; Masud, Arif
2015-01-01
Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model.
Weddell, Jared C.; Kwack, JaeHyuk; Imoukhuede, P. I.; Masud, Arif
2015-01-01
Development of many conditions and disorders, such as atherosclerosis and stroke, are dependent upon hemodynamic forces. To accurately predict and prevent these conditions and disorders hemodynamic forces must be properly mapped. Here we compare a shear-rate dependent fluid (SDF) constitutive model, based on the works by Yasuda et al in 1981, against a Newtonian model of blood. We verify our stabilized finite element numerical method with the benchmark lid-driven cavity flow problem. Numerical simulations show that the Newtonian model gives similar velocity profiles in the 2-dimensional cavity given different height and width dimensions, given the same Reynolds number. Conversely, the SDF model gave dissimilar velocity profiles, differing from the Newtonian velocity profiles by up to 25% in velocity magnitudes. This difference can affect estimation in platelet distribution within blood vessels or magnetic nanoparticle delivery. Wall shear stress (WSS) is an important quantity involved in vascular remodeling through integrin and adhesion molecule mechanotransduction. The SDF model gave a 7.3-fold greater WSS than the Newtonian model at the top of the 3-dimensional cavity. The SDF model gave a 37.7-fold greater WSS than the Newtonian model at artery walls located immediately after bifurcations in the idealized femoral artery tree. The pressure drop across arteries reveals arterial sections highly resistive to flow which correlates with stenosis formation. Numerical simulations give the pressure drop across the idealized femoral artery tree with the SDF model which is approximately 2.3-fold higher than with the Newtonian model. In atherosclerotic lesion models, the SDF model gives over 1 Pa higher WSS than the Newtonian model, a difference correlated with over twice as many adherent monocytes to endothelial cells from the Newtonian model compared to the SDF model. PMID:25897758
Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
Sriyab, Somchai
2014-01-01
The flow of blood in narrow arteries with bell-shaped mild stenosis is investigated that treats blood as non-Newtonian fluid by using the K-L model. When skin friction and resistance of blood flow are normalized with respect to non-Newtonian blood in normal artery, the results present the effect of stenosis length. When skin friction and resistance of blood flow are normalized with respect to Newtonian blood in stenosis artery, the results present the effect of non-Newtonian blood. The effect of stenosis length and effect of non-Newtonian fluid on skin friction are consistent with the Casson model in which the skin friction increases with the increase of either stenosis length or the yield stress but the skin friction decreases with the increase of plasma viscosity coefficient. The effect of stenosis length and effect of non-Newtonian fluid on resistance of blood flow are contradictory. The resistance of blood flow (when normalized by non-Newtonian blood in normal artery) increases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length. The resistance of blood flow (when normalized by Newtonian blood in stenosis artery) decreases when either the plasma viscosity coefficient or the yield stress increases, but it decreases with the increase of stenosis length.
More problems for Newtonian cosmology
NASA Astrophysics Data System (ADS)
Wallace, David
2017-02-01
I point out a radical indeterminism in potential-based formulations of Newtonian gravity once we drop the condition that the potential vanishes at infinity (as is necessary, and indeed celebrated, in cosmological applications). This indeterminism, which is well known in theoretical cosmology but has received little attention in foundational discussions, can be removed only by specifying boundary conditions at all instants of time, which undermines the theory's claim to be fully cosmological, i.e., to apply to the Universe as a whole. A recent alternative formulation of Newtonian gravity due to Saunders (Philosophy of Science 80 (2013) pp. 22-48) provides a conceptually satisfactory cosmology but fails to reproduce the Newtonian limit of general relativity in homogenous but anisotropic universes. I conclude that Newtonian gravity lacks a fully satisfactory cosmological formulation.
Performance of flexible low-Re swimmers in Newtonian and viscoelastic liquids
NASA Astrophysics Data System (ADS)
Espinosa, J.; Zenit, R.; Lauga, E.
2011-11-01
We show experimental results of ``flexible tail'' swimmers in elastic fluids. A magnetic microswimmer powered by a frequency-controlled homogeneous magnetic field was built. Experiments were performed in a reference viscous Newtonian fluid and a glucose-based Boger fluid of the same shear viscosity. High definition video of the swimmer traveling along a channel was taken to measure its average swimming speed. We found that locomotion is enhanced in elastic fluids for most conditions. To further investigate the swimming performance, the flow field around the swimmer was visualized with a PIV (Particle Image Velocimetry) technique. The differences between Newtonian and Boger fluid will be presented and discussed.
Was Newtonian cosmology really inconsistent?
NASA Astrophysics Data System (ADS)
Vickers, Peter
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.
Low-Hysteresis Flow-Through Wind-Tunnel Balance
NASA Technical Reports Server (NTRS)
Kunz, N.; Luna, P. M.; Roberts, A. C.; Smith, R. C.; Horne, W. L.; Smith, K. M.
1992-01-01
Improved flow-through wind-tunnel balance includes features minimizing both spurious force readings caused by internal pressurized flow and mechanical hysteresis. Symmetrical forces caused by internal flow cancelled.
Aspects of non-Newtonian flow and displacement in porous media
Shah, C.; Yortsos, Y.C.
1993-02-01
The rheology of many heavy oils has been shown to be non-Newtonian, Bingham plastics being one manifestation of heavy oil flow. In EOR applications, non-Newtonian fluids such as low concentration polymer solutions, emulsions, gels etc. are simultaneously injected to increase the viscosity of driving agents that displace oil. Such rheologically complex fluids are used to improve sweep efficiencies, divert displacing fluids and block swept zones. The present study has been undertaken to understand the flow of non-Newtonian fluids through porous media. The work considered involves the numerical (pore network) modeling of both single and multiphase flow of power-law and Bingham plastic fluids in network-like porous media. We consider aspects of both single- and multi-phase flow and displacement. Section 2 describes elementary aspects of non-Newtonian flow and some simple models for porous media. Viscoelastic effects in the flow of non-Newtonian fluids are also discussed. The section includes a brief literature review on non-Newtonian flow in porous media. Section 3 describes single-phase flow.
Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models.
Mejia, Juan; Mongrain, Rosaire; Bertrand, Olivier F
2011-07-01
A significant amount of evidence linking wall shear stress to neointimal hyperplasia has been reported in the literature. As a result, numerical and experimental models have been created to study the influence of stent design on wall shear stress. Traditionally, blood has been assumed to behave as a Newtonian fluid, but recently that assumption has been challenged. The use of a linear model; however, can reduce computational cost, and allow the use of Newtonian fluids (e.g., glycerine and water) instead of a blood analog fluid in an experimental setup. Therefore, it is of interest whether a linear model can be used to accurately predict the wall shear stress caused by a non-Newtonian fluid such as blood within a stented arterial segment. The present work compares the resulting wall shear stress obtained using two linear and one nonlinear model under the same flow waveform. All numerical models are fully three-dimensional, transient, and incorporate a realistic stent geometry. It is shown that traditional linear models (based on blood's lowest viscosity limit, 3.5 Pa s) underestimate the wall shear stress within a stented arterial segment, which can lead to an overestimation of the risk of restenosis. The second linear model, which uses a characteristic viscosity (based on an average strain rate, 4.7 Pa s), results in higher wall shear stress levels, but which are still substantially below those of the nonlinear model. It is therefore shown that nonlinear models result in more accurate predictions of wall shear stress within a stented arterial segment.
Electro-hydrodynamic instability in a microchannel between a Newtonian and a non-Newtonian liquid
NASA Astrophysics Data System (ADS)
Ersoy, Gülsüm; Kerem Uguz, A.
2012-06-01
We perform linear stability analysis of the interface between a Newtonian fluid and a non-Newtonian fluid, assumed to obey the Upper Convective Maxwell model, flowing in a channel due to a pressure gradient subject to an electric field applied normal to the interface. The fluids are assumed to be immiscible, incompressible and leaky dielectric. A detailed parametric study of the effects of the system parameters, such as Weissenberg number, Reynolds number, applied potential and physical and electrical properties of the fluids, is conducted. It is found that increasing the applied voltage could be stabilizing or destabilizing depending on the electrical properties of the liquids, and increasing the Weissenberg number decreases the maximum growth rate without changing the corresponding wavenumber and increases the critical wavenumber. The effect of the height ratio of the liquids is analyzed through neutral curves for given electric numbers, i.e. applied potential. The critical wavenumber decreases with height ratio and converges to a value for all the electric numbers considered.
Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses.
Chen, Jie; Lu, Xi-Yun; Wang, Wen
2006-01-01
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.
NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Garcia, Joseph A.; Carter, Melissa B.; Deere, Karen A.; Tompkins, Daniel M.; Stremel, Paul M.
2016-01-01
Wind tunnel tests of a 5.75 scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14x22 and NASA Ames Research Center (ARC) 40x80 low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.
NASA Environmentally Responsible Aviation Hybrid Wing Body Flow-Through Nacelle Wind Tunnel CFD
NASA Technical Reports Server (NTRS)
Schuh, Michael J.; Garcia, Jospeh A.; Carter, Melissa B.; Deere, Karen A.; Stremel, Paul M.; Tompkins, Daniel M.
2016-01-01
Wind tunnel tests of a 5.75% scale model of the Boeing Hybrid Wing Body (HWB) configuration were conducted in the NASA Langley Research Center (LaRC) 14'x22' and NASA Ames Research Center (ARC) 40'x80' low speed wind tunnels as part of the NASA Environmentally Responsible Aviation (ERA) Project. Computational fluid dynamics (CFD) simulations of the flow-through nacelle (FTN) configuration of this model were performed before and after the testing. This paper presents a summary of the experimental and CFD results for the model in the cruise and landing configurations.
Cosmological dynamics: from the Eulerian to the Lagrangian frame. Part I. Newtonian approximation
Villa, Eleonora; Maino, Davide; Matarrese, Sabino E-mail: sabino.matarrese@pd.infn.it
2014-06-01
We analyse the non-linear gravitational dynamics of a pressure-less fluid in the Newtonian limit of General Relativity in both the Eulerian and Lagrangian pictures. Starting from the Newtonian metric in the Poisson gauge, we transform to the synchronous and comoving gauge and obtain the Lagrangian metric within the Newtonian approximation. Our approach is fully non-perturbative, which implies that if our quantities are expanded according to the rules of standard perturbation theory, all terms are exactly recovered at any order in perturbation theory, only provided they are Newtonian. We explicitly show this result up to second order and in both gauges. Our transformation clarifies the meaning of the change of spatial and time coordinates from the Eulerian to the Lagrangian frame in the Newtonian approximation.
Numerical simulation of the non-Newtonian mixing layer
NASA Technical Reports Server (NTRS)
Azaiez, Jalel; Homsy, G. M.
1993-01-01
This work is a continuing effort to advance our understanding of the effects of polymer additives on the structures of the mixing layer. In anticipation of full nonlinear simulations of the non-Newtonian mixing layer, we examined in a first stage the linear stability of the non-Newtonian mixing layer. The results of this study show that, for a fluid described by the Oldroyd-B model, viscoelasticity reduces the instability of the inviscid mixing layer in a special limit where the ratio (We/Re) is of order 1 where We is the Weissenberg number, a measure of the elasticity of the flow, and Re is the Reynolds number. In the present study, we pursue this project with numerical simulations of the non-Newtonian mixing layer. Our primary objective is to determine the effects of viscoelasticity on the roll-up structure. We also examine the origin of the numerical instabilities usually encountered in the simulations of non-Newtonian fluids.
Post-Newtonian quasirigid body
NASA Astrophysics Data System (ADS)
Xu, Chongming; Tao, Jin-He; Wu, Xuejun
2004-01-01
In this paper, we construct for the first time, in the first post-Newtonian (1PN) approximation, a complete model of a quasirigid body by means of a new constraint on the mass current density and mass density. In our 1PN quasirigid body model most of the relations, such as the spin vector proportional to the angular velocity, the definition of the moment of inertia tensor, the key relation between the mass quadrupole moment and the moment of inertia tensor, the rigid rotating formulas for the mass quadrupole moment, and the moment of inertia tensor, are just an extension of the main relations in the Newtonian rigid body model. When all of the 1/c2 terms are neglected, the 1PN quasirigid body model and the corresponding formulas reduce to the Newtonian version. A key relation is obtained in this paper for the first time, which might be very useful in future applications to problems in geodynamics and astronomy.
The Many Fates of Retracting Newtonian Filaments
NASA Astrophysics Data System (ADS)
Anthony, Christopher; Thete, Sumeet; Harris, Michael; Basaran, Osman
2016-11-01
The retraction of Newtonian filaments plays a central role in applications as diverse as inkjet printing and atomization where formation of satellite droplets is undesirable. In order to avoid satellite drop production, filaments formed after drop, jet, or sheet breakup should contract to spheres without undergoing further pinch-off. Therefore, it is important to understand all of the dynamical responses that can arise during filament recoil. To accomplish this goal, we use high accuracy simulations to analyze the retraction of Newtonian filaments in a passive ambient fluid. Previously, Notz and Basaran described the fate of low-viscosity filaments. More recent works by Hoepffner and Pare on intermediate viscosity filaments and by Lohse et al. on high viscosity filaments have greatly enhanced our understanding of filament recoil. Unfortunately, taking all of these works in aggregate does not provide a comprehensive picture of filament dynamics. Here, we overcome the deficiencies of these earlier studies to provide a comprehensive analysis of filament recoil and arrive at a complete phase diagram of the system response. While doing so, we also uncover a new mode of filament breakup that has been missed by earlier investigators.
Newtonian perturbations on models with matter creation
NASA Astrophysics Data System (ADS)
Jesus, J. F.; Oliveira, F. A.; Basilakos, S.; Lima, J. A. S.
2011-09-01
Creation of cold dark matter (CCDM) can macroscopically be described by a negative pressure, and, therefore, the mechanism is capable to accelerate the Universe, without the need of an additional dark energy component. In this framework, we discuss the evolution of perturbations by considering a Neo-Newtonian approach where, unlike in the standard Newtonian cosmology, the fluid pressure is taken into account even in the homogeneous and isotropic background equations (Lima, Zanchin, and Brandenberger, MNRAS 291, L1, 1997). The evolution of the density contrast is calculated in the linear approximation and compared to the one predicted by the ΛCDM model. The difference between the CCDM and ΛCDM predictions at the perturbative level is quantified by using three different statistical methods, namely: a simple χ2-analysis in the relevant space parameter, a Bayesian statistical inference, and, finally, a Kolmogorov-Smirnov test. We find that under certain circumstances, the CCDM scenario analyzed here predicts an overall dynamics (including Hubble flow and matter fluctuation field) which fully recovers that of the traditional cosmic concordance model. Our basic conclusion is that such a reduction of the dark sector provides a viable alternative description to the accelerating ΛCDM cosmology.
Podichetty, Jagdeep T; Dhane, Dhananjay V; Madihally, Sundararajan V
2012-07-01
In this study, transport characteristics in flow-through and parallel-flow bioreactors used in tissue engineering were simulated using computational fluid dynamics. To study nutrient distribution and consumption by smooth muscle cells colonizing the 100 mm diameter and 2-mm thick scaffold, effective diffusivity of glucose was experimentally determined using a two-chambered setup. Three different concentrations of chitosan-gelatin scaffolds were prepared by freezing at -80°C followed by lyophilization. Experiments were performed in both bioreactors to measure pressure drop at different flow rates. At low flow rates, experimental results were in agreement with the simulation results for both bioreactors. However, increase in flow rate beyond 5 mL/min in flow-through bioreactor showed channeling at the circumference resulting in lower pressure drop relative to simulation results. The Peclet number inside the scaffold indicated nutrient distribution within the flow-through bioreactor to be convection-dependent, whereas the parallel-flow bioreactor was diffusion-dependent. Three alternative design modifications to the parallel-flow were made by (i) introducing an additional inlet and an outlet, (ii) changing channel position, and (iii) changing the hold-up volume. Simulation studies were performed to assess the effect of scaffold thickness, cell densities, and permeability. These new designs improved nutrient distribution for 2 mm scaffolds; however, parallel-flow configuration was found to be unsuitable for scaffolds more than 4-mm thick, especially at low porosities as tissues regenerate. Furthermore, operable flow rate in flow-through bioreactors is constrained by the mechanical strength of the scaffold. In summary, this study showed limitations and differences between flow-through and parallel-flow bioreactors used in tissue engineering.
Chen, Jie; Lu, Xi-Yun
2004-12-01
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier-Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau-Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.
Physiochemical characterization of lignocellulosic biomass dissolution by flowthrough pretreatment
Yan, Lishi; Pu, Yunqiao; Bowden, Mark; ...
2015-11-24
In this study, comprehensive understanding of biomass solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of valorizing biomass to fermentable sugars and lignin for biofuels production. In this study, poplar wood was flowthrough pretreated by water-only or 0.05% (w/w) sulfuric acid at different temperatures (220–270 °C), flow rate (25 mL/min), and reaction times (8–90 min), resulting in significant disruption of the lignocellulosic biomass. Ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and solid state cross-polarization/magic angle spinning (CP/MAS) 13C nuclear magnetic resonance (NMR)more » spectroscopy were applied to characterize the pretreated biomass whole slurries in order to reveal depolymerization as well as solubilization mechanism and identify unique dissolution structural features during these pretreatments. Results showed temperature-dependent cellulose decrystallization in flowthrough pretreatment. Crystalline cellulose was completely disrupted, and mostly converted to amorphous cellulose and oligomers by water-only operation at 270 °C for 10 min and by 0.05 wt % H2SO4 flowthrough pretreatment at 220 °C for 12 min. Flowthrough pretreatment with 0.05% (w/w) H2SO4 led to a greater disruption of structures in pretreated poplar at a lower temperature compared to water-only pretreatment.« less
NASA Technical Reports Server (NTRS)
Smalley, L. L.
1975-01-01
The coordinate independence of gravitational radiation and the parameterized post-Newtonian approximation from which it is extended are described. The general consistency of the field equations with Bianchi identities, gauge conditions, and the Newtonian limit of the perfect fluid equations of hydrodynamics are studied. A technique of modification is indicated for application to vector-metric or double metric theories, as well as to scalar-tensor theories.
Flow-Through Assay for Detection of Antibodies Using Protein-A Colloidal Gold Conjugate as a Probe.
Chennuru, Sreedevi; Pavuluri, Panduranga Rao
2015-01-01
Flow-through assay (FTA) is a rapid, simple-to-perform, cost-effective, and user-friendly diagnostic test for monitoring infections in non-laboratory settings. It is mostly applied for antibody detection. FTA employing protein-A colloidal gold conjugate to detect antibodies against porcine cysticerci using cyst fluid and whole cyst antigens of Taenia solium metacestode is described here. Antibodies in the serum are captured by an antigen spotted onto a nitrocellulose membrane mounted on a flow-through device that serves as the antigen capture matrix. The bound antibodies are visualized by the addition of protein-A colloidal gold conjugate, which imparts a pink color. The test can be completed within 3 min at room temperature without any instrumentation. The sensitivity and specificity of the FTA are in agreement with ELISA.
Dynamics of Non-Newtonian Liquid Droplet Collision
NASA Astrophysics Data System (ADS)
Chen, Xiaodong; Yang, Vigor
2012-11-01
Collision of Newtonian liquid droplets has been extensively investigated both experimentally and numerically for decades. Limited information, however, is available about non-Newtonian droplet collision dynamics. In the present work, high-fidelity numerical simulations were performed to study the situation associated with shear-thinning non-Newtonian liquids. The formulation is based on a complete set of conservation equations for the liquid and the surrounding gas phases. An improved volume-of-fluid (VOF) method, combined with an innovative topology-oriented adaptive mesh refinement (TOAMR) technique, was developed and implemented to track the interfacial dynamics. The complex evolution of the droplet surface over a broad range of length scales was treated accurately and efficiently. In particular, the thin gas film between two approaching droplets and subsequent breakup of liquid threads were well-resolved. Various types of droplet collision were obtained, including coalescence, bouncing, and reflexive and stretching separations. A regime diagram was developed and compared with that for Newtonian liquids. Fundamental mechanisms and key parameters that dictate droplet behaviors were identified. In addition, collision-induced atomization was addressed. This work was sponsored by the U.S. Army Research Office under the Multi-University Research Initiative under contract No. W911NF-08-1-0124. The support and encouragement provided by Dr. Ralph Anthenien are gratefully acknowledged.
An energy-efficient self-regulating heater for flow-through applications.
Dasgupta, Purnendu K; Loree, Ellis L; Li, Jianzhong; Genfa, Zhang
2003-08-01
In many experiments, a flow-through heating arrangement is needed to reduce reaction time. Often the reaction conditions require inertness of the wetted material. Heated reactors based on polymeric tubing, notably PTFE, are the most common, and such reactors are typically used in a manner in which they are put in a heated bath or an otherwise thermally conductive potting in which a heater and a temperature sensor are embedded for heating and temperature control. Polymeric tubes are poor conductors of heat; as such, most reactors of this type have very poor energy utilization. We describe here heated flow-through reactors where a wire runs through the entire length of the tubular reactor and where the wire is directly electrically heated. The wire may or may not be electrically insulated. If the exterior of the tube is well insulated, the energy efficiency of such a reactor in heating the fluid of interest is nearly unity. This makes it most suitable for battery-powered applications. If an appropriate wire with a significant temperature coefficient of resistance is chosen, monitoring the current through the device at constant applied voltage indicates the effective mean temperature of the device and thus allows effective temperature control without an additional sensor/controller with essentially instantaneous response. Temperature control within +/- 0.4 degrees C at a mean temperature of 65 degrees C and within +/- 0.9 degrees C at 87 degrees C have been achieved.
Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices
Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino
2014-01-01
By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without requiring further preparation. The lysis chamber employs surface enhanced blocking electrodes which possess an etched micro-structured surface and a thin layer of dielectric metal oxide which provides a large effective area and blocks transmission of electrical current. The surface enhanced blocking electrodes enable simultaneous suppression of the rapid onset of electric field screening in the bulk of the cell suspension medium and avoidance of undesired electrochemical processes at the electrode-electrolyte interface. In addition the blocking layer ensures the robustness of the cell lysis device in applications involving prolonged flow-through processing of the microbial cells. PMID:25033080
Physiochemical characterization of lignocellulosic biomass dissolution by flowthrough pretreatment
Yan, Lishi; Pu, Yunqiao; Bowden, Mark; Ragauskas, Arthur J.; Yang, Bin
2015-11-24
In this study, comprehensive understanding of biomass solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of valorizing biomass to fermentable sugars and lignin for biofuels production. In this study, poplar wood was flowthrough pretreated by water-only or 0.05% (w/w) sulfuric acid at different temperatures (220–270 °C), flow rate (25 mL/min), and reaction times (8–90 min), resulting in significant disruption of the lignocellulosic biomass. Ion chromatography (IC), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, and solid state cross-polarization/magic angle spinning (CP/MAS) ^{13}C nuclear magnetic resonance (NMR) spectroscopy were applied to characterize the pretreated biomass whole slurries in order to reveal depolymerization as well as solubilization mechanism and identify unique dissolution structural features during these pretreatments. Results showed temperature-dependent cellulose decrystallization in flowthrough pretreatment. Crystalline cellulose was completely disrupted, and mostly converted to amorphous cellulose and oligomers by water-only operation at 270 °C for 10 min and by 0.05 wt % H_{2}SO_{4} flowthrough pretreatment at 220 °C for 12 min. Flowthrough pretreatment with 0.05% (w/w) H_{2}SO_{4} led to a greater disruption of structures in pretreated poplar at a lower temperature compared to water-only pretreatment.
Ren, Yong; Liu, Zhou; Shum, Ho Cheung
2015-01-07
The breakup dynamics in non-Newtonian multiphase microsystems is associated with a variety of industrial applications such as food production and biomedical engineering. In this study, we numerically and experimentally characterize the dripping-to-jetting transition under various flow conditions in a Newtonian/shear-thinning multiphase microsystem. Our work can help to predict the formation of undesirable satellite droplets, which is one of the challenges in dispensing non-Newtonian fluids. We also demonstrate the variations in breakup dynamics between shear-thinning and Newtonian fluids under the same flow conditions. For shear-thinning fluids, the droplet size increases when the capillary number is smaller than a critical value, while it decreases when the capillary number is beyond the critical value. The variations highlight the importance of rheological effects in flows with a non-Newtonian fluid. The viscosity of shear-thinning fluids significantly affects the control over the droplet size, therefore necessitating the manipulation of the shear rate through adjusting the flow rate and the dimensions of the nozzle. Consequently, the droplet size can be tuned in a controlled manner. Our findings can guide the design of novel microdevices for generating droplets of shear-thinning fluids with a predetermined droplet size. This enhances the ability to fabricate functional particles using an emulsion-templated approach. Moreover, elastic effects are also investigated experimentally using a model shear-thinning fluid that also exhibits elastic behaviors: droplets are increasingly deformed with increasing elasticity of the continuous phase. The overall understanding in the model multiphase microsystem will facilitate the use of a droplet-based approach for non-Newtonian multiphase applications ranging from energy to biomedical sciences.
Rapidly rotating superfluid neutron stars in Newtonian dynamics
NASA Astrophysics Data System (ADS)
Yoshida, Shijun; Eriguchi, Yoshiharu
2004-01-01
We develop a formulation for constructing and examining rapidly rotating Newtonian neutron star models that contain two superfluids, taking account of the effect of the rotation velocity difference between two superfluids. We assume neutron stars to be composed of the superfluid neutrons and a mixture of the superfluid protons and the normal fluid electrons. To describe Newtonian dynamics of the two superfluids, the Newtonian version of the so-called two-fluid formalism is employed. The effect of the rotation velocity difference on the structure of equilibrium state is treated as a small perturbation to rapidly rotating superfluid stars whose angular velocities of two superfluids are assumed to be exactly the same. We derive basic equations for the perturbed structures of rapidly rotating superfluid stars due to the rotation velocity difference between two superfluids. Assuming the superfluids to obey a simple analytical equation of state proposed by Prix, Comer and Andersson, we obtain numerical solutions for the perturbations and find that the density distributions of the superfluids are strongly dependent on the parameter σ, which appears in the analytical equation of state and characterizes the so-called symmetry energy. It is also found that if the analytical equation of state of Prix et al. is assumed, the perturbations can be represented in terms of the universal functions that are independent of the parameters of the equation of state.
Non-Newtonian bile flow in elastic cystic duct: one- and three-dimensional modeling.
Li, W G; Luo, X Y; Chin, S B; Hill, N A; Johnson, A G; Bird, N C
2008-11-01
Bile flow is thought to play an essential role in the pathophysiological genesis of cholelithiasis (gallstone formation) and in gallbladder pain. In this paper, we extend our previous study of the human biliary system (Li et al., 2007, J. Biomech. Eng., 129:164-173) to include two important factors: the non-Newtonian properties of bile, and elastic deformation of the cystic duct. A one-dimensional (1D) model is analyzed and compared with three-dimensional (3D) fluid-structure interaction simulations. It is found that non-Newtonian bile raises resistance to the flow of bile, which can be augmented significantly by the elastic deformation (collapse) of the cystic duct. We also show that the 1D model predicts the pressure drop of the cystic duct flow well for all cases considered (Newtonian or non-Newtonian flow, rigid or elastic ducts), when compared with the full 3D simulations.
Non-Newtonian perspectives on pulsatile blood-analog flows in a 180° curved artery model
NASA Astrophysics Data System (ADS)
van Wyk, Stevin; Prahl Wittberg, Lisa; Bulusu, Kartik V.; Fuchs, Laszlo; Plesniak, Michael W.
2015-07-01
Complex, unsteady fluid flow phenomena in the arteries arise due to the pulsations of the heart that intermittently pumps the blood to the extremities of the body. The many different flow waveform variations observed throughout the arterial network are a result of this process and a function of the vessel properties. Large scale secondary flow structures are generated throughout the aortic arch and larger branches of the arteries. An experimental 180° curved artery test section with physiological inflow conditions was used to validate the computational methods implemented in this study. Good agreement of the secondary flow structures is obtained between experimental and numerical studies of a Newtonian blood-analog fluid under steady-state and pulsatile, carotid artery flow rate waveforms. Multiple vortical structures, some of opposite rotational sense to Dean vortices, similar to Lyne-type vortices, were observed to form during the systolic portion of the pulse. Computational tools were used to assess the effect of blood-analog fluid rheology (i.e., Newtonian versus non-Newtonian). It is demonstrated that non-Newtonian, blood-analog fluid rheology results in shear layer instabilities that alter the formation of vortical structures during the systolic deceleration and onwards during diastole. Additional vortices not observed in the Newtonian cases appear at the inside and outside of the bend at various times during the pulsation. The influence of blood-analog shear-thinning viscosity decreases mean pressure losses in contrast to the Newtonian blood analog fluid.
Estimating Flow-Through Balance Momentum Tares with CFD
NASA Technical Reports Server (NTRS)
Melton, John E.; James, Kevin D.; Long, Kurtis R.; Flamm, Jeffrey D.
2016-01-01
This paper describes the process used for estimating flow-through balance momentum tares. The interaction of jet engine exhausts on the BOEINGERA Hybrid Wing Body (HWB) was simulated in the NFAC 40x80 wind tunnel at NASA Ames using a pair of turbine powered simulators (TPS). High-pressure air was passed through a flow-through balance and manifold before being delivered to the TPS units. The force and moment tares that result from the internal shear and pressure distribution were estimated using CFD. Validation of the CFD simulations for these complex internal flows is a challenge, given limited experimental data due to the complications of the internal geometry. Two CFD validation efforts are documented, and comparisons with experimental data from the final model installation are provided.
Porcine skin flow-through diffusion cell system.
Baynes, R E
2001-11-01
Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.
Integrated Microfluidic Flow-Through Microbial Fuel Cells.
Jiang, Huawei; Ali, Md Azahar; Xu, Zhen; Halverson, Larry J; Dong, Liang
2017-01-25
This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm(3) and a surface power density of 89.4 μW/cm(2) using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.
Comparison of laboratory batch and flow-through microcosm bioassays.
Clément, Bernard J P; Delhaye, Hélène L; Triffault-Bouchet, Gaëlle G
2014-10-01
Since 1997, we have been developing a protocol for ecotoxicological bioassays in 2-L laboratory microcosms and have applied it to the study of various pollutants and ecotoxicological risk assessment scenarios in the area of urban facilities and transport infrastructures. The effects on five different organisms (micro-algae, duckweeds, daphnids, amphipods, chironomids) are assessed using biological responses such as growth, emergence (chironomids), reproduction (daphnids) and survival, with a duration of exposure of 3 weeks. This bioassay has mainly been used as a batch bioassay, i.e., the water was not renewed during the test. A flow-through microcosm bioassay has been developed recently, with the assumption that conditions for the biota should be improved, variability reduced, and the range of exposure patterns enlarged (e.g., the possibility of maintaining constant exposure in the water column). This paper compares the results obtained in batch and flow-through microcosm bioassays, using cadmium as a model toxicant. As expected, the stabilization of physico-chemical parameters, increased organism fitness and reduced variability were observed in the flow-through microcosm bioassay.
Integrated Microfluidic Flow-Through Microbial Fuel Cells
NASA Astrophysics Data System (ADS)
Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang
2017-01-01
This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time.
Integrated Microfluidic Flow-Through Microbial Fuel Cells
Jiang, Huawei; Ali, Md. Azahar; Xu, Zhen; Halverson, Larry J.; Dong, Liang
2017-01-01
This paper reports on a miniaturized microbial fuel cell with a microfluidic flow-through configuration: a porous anolyte chamber is formed by filling a microfluidic chamber with three-dimensional graphene foam as anode, allowing nutritional medium to flow through the chamber to intimately interact with the colonized microbes on the scaffolds of the anode. No nutritional media flow over the anode. This allows sustaining high levels of nutrient utilization, minimizing consumption of nutritional substrates, and reducing response time of electricity generation owing to fast mass transport through pressure-driven flow and rapid diffusion of nutrients within the anode. The device provides a volume power density of 745 μW/cm3 and a surface power density of 89.4 μW/cm2 using Shewanella oneidensis as a model biocatalyst without any optimization of bacterial culture. The medium consumption and the response time of the flow-through device are reduced by 16.4 times and 4.2 times, respectively, compared to the non-flow-through counterpart with its freeway space volume six times the volume of graphene foam anode. The graphene foam enabled microfluidic flow-through approach will allow efficient microbial conversion of carbon-containing bioconvertible substrates to electricity with smaller space, less medium consumption, and shorter start-up time. PMID:28120875
Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm.
Marrero, Victor L; Tichy, John A; Sahni, Onkar; Jansen, Kenneth E
2014-10-01
It is well known that blood has non-Newtonian properties, but it is generally accepted that blood behaves as a Newtonian fluid at shear rates above 100 s-1. However, in transient conditions, there are times and locations where the shear rate is well below 100 s-1, and it is reasonable to infer that non-Newtonian effects could become important. In this study, purely viscous non-Newtonian (generalized Newtonian) properties of blood are incorporated into the simulation-based framework for cardiovascular surgery planning developed by Taylor et al. (1999, "Predictive Medicine: Computational Techniques in Therapeutic Decision Making," Comput. Aided Surg., 4, pp. 231-247; 1998, "Finite Element Modeling of Blood Flow in Arteries," Comput. Methods Appl. Mech. Eng., 158, pp. 155-196). Equations describing blood flow are solved in a patient-based abdominal aortic aneurysm model under steady and physiological flow conditions. Direct numerical simulation (DNS) is used, and the complex flow is found to be constantly transitioning between laminar and turbulent in both the spatial and temporal sense. It is found for the case simulated that using the non-Newtonian viscosity modifies the solution in subtle ways that yield a mesh-independent solution with fewer degrees of freedom than the Newtonian counterpart. It appears that in regions of separated flow, the lower shear rate produces higher viscosity with the non-Newtonian model, which reduces the associated resolution needs. When considering the real case of pulsatile flow, high shear layers lead to greater unsteadiness in the Newtonian case relative to the non-Newtonian case. This, in turn, results in a tendency for the non-Newtonian model to need fewer computational resources even though it has to perform additional calculations for the viscosity. It is also shown that both viscosity models predict comparable wall shear stress distribution. This work suggests that the use of a non-Newtonian viscosity models may be attractive
Parameterized post-Newtonian cosmology
NASA Astrophysics Data System (ADS)
Sanghai, Viraj A. A.; Clifton, Timothy
2017-03-01
Einstein’s theory of gravity has been extensively tested on solar system scales, and for isolated astrophysical systems, using the perturbative framework known as the parameterized post-Newtonian (PPN) formalism. This framework is designed for use in the weak-field and slow-motion limit of gravity, and can be used to constrain a large class of metric theories of gravity with data collected from the aforementioned systems. Given the potential of future surveys to probe cosmological scales to high precision, it is a topic of much contemporary interest to construct a similar framework to link Einstein’s theory of gravity and its alternatives to observations on cosmological scales. Our approach to this problem is to adapt and extend the existing PPN formalism for use in cosmology. We derive a set of equations that use the same parameters to consistently model both weak fields and cosmology. This allows us to parameterize a large class of modified theories of gravity and dark energy models on cosmological scales, using just four functions of time. These four functions can be directly linked to the background expansion of the universe, first-order cosmological perturbations, and the weak-field limit of the theory. They also reduce to the standard PPN parameters on solar system scales. We illustrate how dark energy models and scalar-tensor and vector-tensor theories of gravity fit into this framework, which we refer to as ‘parameterized post-Newtonian cosmology’ (PPNC).
Development of the Newtonian Gravity Concept Inventory
ERIC Educational Resources Information Center
Williamson, Kathryn E.; Willoughby, Shannon; Prather, Edward E.
2013-01-01
We introduce the Newtonian Gravity Concept Inventory (NGCI), a 26-item multiple-choice instrument to assess introductory general education college astronomy ("Astro 101") student understanding of Newtonian gravity. This paper describes the development of the NGCI through four phases: Planning, Construction, Quantitative Analysis, and…
Low-drag exact coherent states in Newtonian channel flow
NASA Astrophysics Data System (ADS)
Park, Jae Sung; Graham, Michael
2013-11-01
Exact coherent states have been known to nicely capture the main features of turbulent flows such as near-wall coherent structures and streak spacing. In this study, we numerically calculate new classes of exact coherent states, specifically nonlinear traveling wave solutions, for Newtonian channel flow, which display low-drag flow features such as weak streamwise vortices and nearly nonexistent streamwise variations like those observed in polymer solutions and in Newtonian hibernating turbulence. Traveling wave solutions with various symmetries are found. While some of the structures clearly display nonlinear critical layer dynamics, in others this connection is not as clear. Dynamical trajectories are computed and some of the solutions are shown to lie on the basin boundary between laminar and turbulent flows and are thus edge-states of the flow. Lastly, the dependence of Reynolds number for the solutions is investigated. We find one intriguing family whose mean velocity profile appears to approach the so-called maximum drag reduction asymptote found in polymer solutions, despite the fact that fluid studied here is Newtonian. Our results suggest that these traveling wave solutions may play a role as promising targets for turbulence control strategies for drag reduction. This work was supported by the Air Force Office of Scientific Research through grant FA9550-11-1-0094 (Flow Interactions and Control Program).
Mantle flow pressure and the angle of subduction - Non-Newtonian corner flows
NASA Technical Reports Server (NTRS)
Tovish, A.; Schubert, G.; Luyendyk, B. P.
1978-01-01
Corner flows of Newtonian and non-Newtonian fluids are used to model the flow in a subduction zone which is viscously driven by the motions of the converging plates and the descending slab. The pressures induced by the flow tend to lift the slab up beneath the overriding plate thereby offsetting the tendency of gravity to align the slab with the vertical. The low angles of subduction observed in Peru and Central Chile may be the result of strong dynamic pressures forcing the slab up against the overriding plate. Viscous coupling between the overriding plate and the downgoing slab is essential if the nonvertical dips of slabs are a consequence of the balance between gravitational and pressure torques. For a Newtonian mantle, shear stresses and pressures on the top of the slab are comparable. If the mantle is non-Newtonian, however, the pressures greatly exceed the shear stresses, for most acute dip angles. Thus frictional forces on the top and bottom surfaces of slabs are less important in resisting slab descent into a non-Newtonian mantle than they are in resisting penetration into a Newtonian mantle.
Post-Newtonian cosmological dynamics of plane-parallel perturbations and back-reaction
Villa, Eleonora; Maino, Davide; Matarrese, Sabino E-mail: sabino.matarrese@pd.infn.it
2011-08-01
We study the general relativistic non-linear dynamics of self-gravitating irrotational dust in a cosmological setting, adopting the comoving and synchronous gauge, where all the equations can be written in terms of the metric tensor of spatial hyper-surfaces orthogonal to the fluid flow. Performing an expansion in inverse powers of the speed of light, we obtain the post-Newtonian equations, which yield the lowest-order relativistic effects arising during the non-linear evolution. We then specialize our analysis to globally plane-parallel configurations, i.e. to the case where the initial perturbation field depends on a single coordinate. The leading order of our expansion, corresponding to the ''Newtonian background'', is the Zel'dovich approximation, which, for plane-parallel perturbations in the Newtonian limit, represents an exact solution. This allows us to find the exact analytical form for the post-Newtonian metric, thereby providing the post-Newtonian extension of the Zel'dovich solution: this accounts for some relativistic effects, such as the non-Gaussianity of primordial perturbations. An application of our solution in the context of the back-reaction proposal is eventually given, providing a post-Newtonian estimation of kinematical back-reaction, mean spatial curvature, average scale-factor and expansion rate.
NASA Astrophysics Data System (ADS)
Miklosovic, David Scott
Significant work has been done in the last 10 years to advance the technology of long-term mechanical circulatory assistance, particularly the left ventricular assist device (LVAD). Traditionally, rotary LVADs have been developed using conventional fluid dynamic design methods and Newtonian scaling laws, since non-Newtonian effects were previously assumed to be of second-order importance. To evaluate centrifugal pump performance scaling and flow patterns in a non-Newtonian fluid, the Large-Scale Rotor Testbed (LSRT) at The Ohio State University was developed to test two 9X-scale blood pump impellers in a baseline volute housing of the Innovative Ventricular Assist System (IVAS) designed by the Cleveland Clinic Foundation. Non-Newtonian fluids yielded pump performance deficits of first-order importance, or up to 11% of the Newtonian performance. Thus, the non-Newtonian effects were of the same magnitude as substantial variations in the impeller geometry. Moreover, the dimensionless pressure- and flow-coefficients showed that the non-Newtonian performance deviated from the similarity laws at critical Reynolds numbers that were 2.4--2.7 times higher than the Newtonian value of 71,000. Above the critical Reynolds number, the non-Newtonian fluids followed a similarity behavior, but it was different from the Newtonian case. The deviation increased with the magnitude of shear-thinning behavior as measured by the Weissenberg number. Shear-thinning xanthan gum solutions were used as non-Newtonian test fluids in concentrations from 0 to 1,200 ppm. Fluid samples were characterized in a Couette rheometer to determine viscosity behavior, biological degradation, and shear-induced polymer chain breakdown. The solutions proved to be stable and useful for a duration of up to two weeks of routine LSRT testing. Because the LSRT pump operates in a low-specific speed, low-flow regime, flow visualizations revealed a strong adverse pressure gradient and a prominent inverse Ekman layer in
NASA Technical Reports Server (NTRS)
Yuen, D. A.; Schubert, G.
1976-01-01
Stress is placed on the temperature dependence of both a linear Newtonian rheology and a nonlinear olivine rheology in accounting for narrow mantle flow structures. The boundary-layer theory developed incorporates an arbitrary temperature-dependent power-law rheology for the medium, in order to facilitate the study of mantle plume dynamics under real conditions. Thermal, kinematic, and dynamic structures of mantle plumes are modelled by a two-dimensional natural-convection boundary layer rising in a fluid with a temperature-dependent power-law relationship between shear stress and strain rate. An analytic similarity solution is arrived at for upwelling adjacent to a vertical isothermal stress-free plane. Newtonian creep as a deformation mechanism, thermal anomalies resulting from chemical heterogeneity, the behavior of plumes in non-Newtonian (olivine) mantles, and differences in the dynamics of wet and dry olivine are discussed.
Theory of creeping gravity currents of a non-Newtonian liquid
Gratton, Julio; Minotti, Fernando; Mahajan, Swadesh M.
1999-12-01
Recently several experiments on creeping gravity currents have been performed, using highly viscous silicone oils and putties. The interpretation of the experiments relies on the available theoretical results that were obtained by means of the lubrication approximation with the assumption of a Newtonian rheology. Since very viscous fluids are usually non-Newtonian, an extension of the theory to include non-Newtonian effects is needed. We derive the governing equations for unidirectional and axisymmetric creeping gravity currents of a non-Newtonian liquid with a power-law rheology, generalizing the usual lubrication approximation. The equations differ from those for Newtonian liquids, being nonlinear in the spatial derivative of the thickness of the current. Similarity solutions for currents whose volume varies as a power of time are obtained. For the spread of a constant volume of liquid, analytic solutions are found that are in good agreement with experiment. We also derive solutions of the waiting-time type, as well as those describing steady flows from a constant source to a sink. General traveling-wave solutions are given, and analytic formulas for a simple case are derived. A phase plane formalism that allows the systematic derivation of self-similar solutions is introduced. The application of the Boltzmann transform is briefly discussed. All the self-similar solutions obtained here have their counterparts in Newtonian flows, as should be expected because the power-law rheology involves a single-dimensional parameter as the Newtonian constitutive relation. Thus one finds similarity solutions whenever the analogous Newtonian problem is self-similar, but now the spreading relations are rheology-dependent. In most cases this dependence is weak but leads to significant differences easily detected in experiments. The present results may also be of interest for geophysics since the lithosphere deforms according to an average power-law rheology. (c) 1999 The American
Inelastic non-Newtonian flow over heterogeneously slippery surfaces.
Haase, A Sander; Wood, Jeffery A; Sprakel, Lisette M J; Lammertink, Rob G H
2017-02-01
In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n=0.4, the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.
Inelastic non-Newtonian flow over heterogeneously slippery surfaces
NASA Astrophysics Data System (ADS)
Haase, A. Sander; Wood, Jeffery A.; Sprakel, Lisette M. J.; Lammertink, Rob G. H.
2017-02-01
In this study, we investigated inelastic non-Newtonian fluid flow over heterogeneously slippery surfaces. First, we simulated the flow of aqueous xanthan gum solutions over a bubble mattress, which is a superhydrophobic surface consisting of transversely positioned no-slip walls and no-shear gas bubbles. The results reveal that for shear-thinning fluids wall slip can be increased significantly, provided that the system is operated in the shear-thinning regime. For a 0.2 wt% xanthan gum solution with a power-law index of n =0.4 , the numerical results indicate that wall slip can be enhanced 3.2 times when compared to a Newtonian liquid. This enhancement factor was also predicted from a theoretical analysis, which gave an expression for the maximum slip length that can be attained over flat, heterogeneously slippery surfaces. Although this equation was derived for a no-slip/no-shear unit length that is much larger than the typical size of the system, we found that it can also be used to predict the enhancement in the regime where the slip length is proportional to the size of the no-shear region or the bubble width. The results could be coupled to the hydrodynamic development or entrance length of the system, as maximum wall slip is only reached when the fluid flow can fully adapt to the no-slip and no-shear conditions at the wall.
Impinging jet spray formation using non-Newtonian liquids
NASA Astrophysics Data System (ADS)
Rodrigues, Neil S.
Over the past two decades there has been a heightened interest in implementing gelled propellants for rocket propulsion, especially for hypergolic bi-propellants such as monomethylhydrazine (MMH) and nitrogen tetroxide oxidizer (NTO). Due to the very high level of toxicity of hypergolic liquid rocket propellants, increasing safety is an important area of need for continued space exploration and defense operations. Gelled propellants provide an attractive solution to meeting the requirements for safety, while also potentially improving performance. A gelling agent can be added to liquid propellants exhibiting Newtonian behavior to transform the liquid into a non-Newtonian fluid with some solid-like behavior, i.e. a gel. Non-Newtonian jet impingement is very different from its Newtonian counterpart in terms of fluid flow, atomization, and combustion. This is due to the added agents changing physical properties such as the bulk rheology (viscosity) and interfacial rheology (surface tension). Spray characterization of jet impingement with Newtonian liquids has been studied extensively in existing literature. However, there is a scarcity in literature of studies that consider the spray characterization of jet impingement with gelled propellants. This is a rather critical void since a major tradeoff of utilizing gelled propellants is the difficulty with atomization due to the increased effective viscosity. However, this difficulty can be overcome by using gels that exhibit shear-thinning behavior---viscosity decreases with increasing strain rate. Shear-thinning fluids are ideal because they have the distinct advantage of only flowing easily upon pressure. Thereby, greatly reducing the amount of propellant that could be accidentally leaked during both critical functions such as liftoff or engagement in the battlefield and regular tasks like refilling propellant tanks. This experimental work seeks to help resolve the scarcity in existing literature by providing drop size
Continuous, flow-through immunomagnetic cell sorting in a quadrupole field.
Sun, L; Zborowski, M; Moore, L R; Chalmers, J J
1998-12-01
A flow-through quadrupole magnetic cell separator has been designed, built, and evaluated by using a cell model system of human peripheral T lymphocytes (CD4+, CD8+, and CD45+ cells). The immunomagnetic labeling was accomplished by using a sandwich of mouse anti-human monoclonal antibody conjugated to fluorescein isothiocyanate and rat anti-mouse polyclonal antibody conjugated to a colloidal magnetic nanoparticle. The feed and sorted fractions were analyzed by FACScan flow cytometry. The magnetically labeled cells were separated from nonlabeled ones in a flow-through cylindrical column within a quadrupole field, which exerted a radial, outward force on the magnetic cells. The flow rate of the cell samples was 0.1-0.75 ml/min, and the flow rate of sheath fluid was 1.5-33.3 times that of the sample flow rate. The maximum shear stress exerted on the cell was less than 1 dyne/cm2, which was well below the level that would threaten cell integrity and membrane disruption. The maximum magnetic field was 0.765 T at the channel wall, and the gradient was 0.174 T/mm. The highest purity of selected cells was 99.6% (CD8 cells, initial purity of 26%), and the highest recovery of selected cells was 79% (CD4 cells, initial purity of 20%). The maximum throughput of the quadrupole magnetic cell separator was 7,040 cells/s (CD45 cells, initial purity of 5%). Theoretical calculations showed that the throughput can be increased to 10(6) cells/s by a scale-up of the current prototype.
A Colorful Mixing Experiment in a Stirred Tank Using Non-Newtonian Blue Maize Flour Suspensions
ERIC Educational Resources Information Center
Trujilo-de Santiago, Grissel; Rojas-de Gante, Cecillia; García-Lara, Silverio; Ballesca´-Estrada, Adriana; Alvarez, Marion Moise´s
2014-01-01
A simple experiment designed to study mixing of a material of complex rheology in a stirred tank is described. Non-Newtonian suspensions of blue maize flour that naturally contain anthocyanins have been chosen as a model fluid. These anthocyanins act as a native, wide spectrum pH indicator exhibiting greenish colors in alkaline environments, blue…
Post-Newtonian celestial dynamics in cosmology: Field equations
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.; Petrov, Alexander N.
2013-02-01
Post-Newtonian celestial dynamics is a relativistic theory of motion of massive bodies and test particles under the influence of relatively weak gravitational forces. The standard approach for development of this theory relies upon the key concept of the isolated astronomical system supplemented by the assumption that the background spacetime is flat. The standard post-Newtonian theory of motion was instrumental in the explanation of the existing experimental data on binary pulsars, satellite, and lunar laser ranging, and in building precise ephemerides of planets in the Solar System. Recent studies of the formation of large-scale structures in our Universe indicate that the standard post-Newtonian mechanics fails to describe more subtle dynamical effects in motion of the bodies comprising the astronomical systems of larger size—galaxies and clusters of galaxies—where the Riemann curvature of the expanding Friedmann-Lemaître-Robertson-Walker universe interacts with the local gravitational field of the astronomical system and, as such, cannot be ignored. The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding Universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system (the Solar System, a binary star, a galaxy, and a cluster of galaxies). We postulate that the geometric properties of the background manifold are described by a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker metric governed by two primary components—the dark matter and the dark energy. The dark matter is treated as an ideal fluid with the Lagrangian taken in the form of pressure along with the scalar Clebsch potential as a dynamic variable. The dark energy is associated with a single scalar field with a potential which is hold unspecified as long as the theory permits. Both the Lagrangians of the dark matter and the scalar field are
Smoothed particle hydrodynamics non-Newtonian model for ice-sheet and ice-shelf dynamics
Pan, W.; Tartakovsky, A. M.; Monaghan, J. J.
2013-06-01
Mathematical modeling of ice sheets is complicated by the non-linearity of the governing equations and boundary conditions. Standard grid-based methods require complex front tracking techniques and have limited capability to handle large material deformations and abrupt changes in bottom topography. As a consequence, numerical methods are usually restricted to shallow ice sheet and ice shelf approximations. We propose a new smoothed particle hydrodynamics (SPH) non-Newtonian model for coupled ice sheet and ice shelf dynamics. SPH, a fully Lagrangian particle method, is highly scalable and its Lagrangian nature and meshless discretization are well suited to the simulation of free surface flows, large material deformation, and material fragmentation. In this paper, SPH is used to study 3D ice sheet/ice shelf behavior, and the dynamics of the grounding line. The steady state position of the grounding line obtained from SPH simulations is in good agreement with laboratory observations for a wide range of simulated bedrock slopes, and density ratios, similar to those of ice and sea water. The numerical accuracy of the SPH algorithm is verif;ed by simulating Poiseuille flow, plane shear flow with free surface and the propagation of a blob of ice along a horizontal surface. In the laboratory experiment, the ice was represented with a viscous Newtonian fluid. In the present work, however, the ice is modeled as both viscous Newtonian fluid and non-Newtonian fluid, such that the effect of non-Newtonian rheology on the dynamics of grounding line was examined. The non-Newtonian constitutive relation is prescribed to be Glen’s law for the creep of polycrystalline ice. A V-shaped bedrock ramp is further introduced to model the real geometry of bedrock slope.
Carbon Nanotube Based Flow-Through Electrochemical Cell for Electroanalysis.
Buffa, Andrea; Erel, Yigal; Mandler, Daniel
2016-11-15
A flow-through electrode made of a carbon nanotubes (CNT) film deposited on a polytetrafluoroethylene (PTFE) membrane was assembled and employed for the determination of low concentration of copper as a model system by linear sweep anodic stripping voltammetry (LSASV). CNT films with areal mass ranging from 0.12 to 0.72 mg cm(-2) were characterized by measurement of sheet resistance, water permeation flux and capacitance. Moreover, CNT with two different sizes and PTFE membrane with two different pore diameters (0.45 and 5.0 μm) were evaluated during the optimization of the electrode. Thick layers made of small CNT exhibited the lowest sheet resistance and the greatest analytical response, whereas thin layers of large CNT had the lowest capacitance and the highest permeation flux. Electrodes made of 0.12 mg cm(-2) of large CNT deposited on 5.0 μm PTFE enabled sufficiently high mass transfer and collection efficiency for detecting 64 ppt of Cu(II) within 5 min of deposition and 4.0 mL min(-1) flow rate. The analytical response was linear over 4 orders of magnitude (10(-9) to 10(-5) M) of Cu(II). The excellent performance of the flow-through CNT membrane integrated in a flow cell makes it an appealing approach not only for electroanalysis, but also for the electrochemical treatment of waters, such as the removal of low concentrations of heavy metals and organics.
Postglacial rebound with a non-Newtonian upper mantle and a Newtonian lower mantle rheology
NASA Technical Reports Server (NTRS)
Gasperini, Paolo; Yuen, David A.; Sabadini, Roberto
1992-01-01
A composite rheology is employed consisting of both linear and nonlinear creep mechanisms which are connected by a 'transition' stress. Background stress due to geodynamical processes is included. For models with a non-Newtonian upper-mantle overlying a Newtonian lower-mantle, the temporal responses of the displacements can reproduce those of Newtonian models. The average effective viscosity profile under the ice-load at the end of deglaciation turns out to be the crucial factor governing mantle relaxation. This can explain why simple Newtonian rheology has been successful in fitting the uplift data over formerly glaciated regions.
Newtonian normal shift in multidimensional Riemannian geometry
Sharipov, Ruslan A
2001-06-30
An explicit description of all Newtonian dynamical systems admitting normal shift in Riemannian manifolds of dimension n{>=}3 is obtained. On this basis the kinematics of the normal shift of hypersurfaces along trajectories of such dynamical systems is studied.
Theories of Newtonian gravity and empirical indistinguishability
NASA Astrophysics Data System (ADS)
Bain, Jonathan
2004-09-01
In this essay, I examine the curved spacetime formulation of Newtonian gravity known as Newton-Cartan gravity and compare it with flat spacetime formulations. Two versions of Newton-Cartan gravity can be identified in the physics literature-a "weak" version and a "strong" version. The strong version has a constrained Hamiltonian formulation and consequently a well-defined gauge structure, whereas the weak version does not (with some qualifications). Moreover, the strong version is best compared with the structure of what Earman (World enough and spacetime. Cambridge: MIT Press) has dubbed Maxwellian spacetime. This suggests that there are also two versions of Newtonian gravity in flat spacetime-a "weak" version in Maxwellian spacetime, and a "strong" version in Neo-Newtonian spacetime. I conclude by indicating how these alternative formulations of Newtonian gravity impact the notion of empirical indistinguishability and the debate over scientific realism.
Theory of non-Newtonian viscosity of red blood cell suspension: effect of red cell deformation.
Murata, T
1983-01-01
The effects of the deformation of red blood cells on non-Newtonian viscosity of a concentrated red cell suspension are investigated theoretically. To simplify the problem an elastic spherical shell filled with an incompressible Newtonian fluid is considered as a model of a normal red cell. The equation of the surface of the shell suspended in a steady simple shear flow is calculated on the assumption that the deformation from a spherical shape is very small. The relative viscosity of a concentrated suspension of such particles is obtained based on the "free surface cell" method proposed by Happel. It is shown that the relative viscosity decreases as the shear rate increases.
Chen, Jie; Lu, Xi-Yun
2006-01-01
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Interdisciplinary Research Programs in Geophysical Fluid Dynamics
2007-09-30
scientific disciplines that deal with the dynamics of stratified fluids, rotating fluids, fluid with phase changes and non-Newtonian fluids. To formulate...clearing-house for the mathematical, experimental and computational techniques which serve astrophysics, climate science, geodynamics, meteorology and... Zika , Physical Oceanography, University of New South Wales, “The stability of cascading flows”. RESULTS The Principal Lectures and Fellows
Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows
NASA Astrophysics Data System (ADS)
Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.
1988-02-01
An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a laser Doppler velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm (2 inches). Detailed flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are one micron or less. A non-Newtonian slurry from small particles could maintain large particles (100 micron size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems. Velocity profiles were acquired by the LDV in the laminar, transitional, and turbulent flow regimes. The velocity profile for laminar flow was in agreement with theory. The range of the transition region was 21 percent of the transition velocity in comparison to 50 percent for a Newtonian fluid.
Walker, Andrew M; Johnston, Clifton R; Rival, David E
2014-01-01
Particle image velocimetry (PIV) was used to investigate the influence of a non-Newtonian blood analog of aqueous xanthan gum on flow separation in laminar and transitional environments and in both steady and pulsatile flow. Initial steady pressure drop measurements in laminar and transitional flow for a Newtonian analog showed an extension of laminar behavior to Reynolds number (Re) ~ 2900 for the non-Newtonian case. On a macroscale level, this showed good agreement with porcine blood. Subsequently, PIV was used to measure flow patterns and turbulent statistics downstream of an axisymmetric stenosis in the aqueous xanthan gum solution and for a Newtonian analog at Re ~ 520 and Re ~ 1250. The recirculation length for the non-Newtonian case was reduced at Re ~ 520 resultant from increased viscosity at low shear strain rates. At Re ~ 1250, peak turbulent intensities and turbulent shear stresses were dampened by the non-Newtonian fluid in close proximity to the blockage outlet. Although the non-Newtonian case's recirculation length was increased at peak pulsatile flow, turbulent shear stress was found to be elevated for the Newtonian case downstream from the blockage, suggesting shear layer fragmentation and radial transport. Our findings conclude that the xanthan gum elastic polymer prolongs flow stabilization, which in turn emphasizes the importance of non-Newtonian blood characteristics on the resulting flow patterns in such cardiovascular environments.
Non-Newtonian Rheology of Calc-Alkaline Obsidian at High Stresses and Strain Rates
NASA Astrophysics Data System (ADS)
Dingwell, D. B.; Hess, K.; Lavallee, Y.; Cordonnier, B.; Mueller, S.
2005-12-01
The importance of the Non-Newtonian regime at high stress and strain rates has been reported for a variety of silicate melts subject to different tests but never for natural samples bearing their original contents of magmatic water and microlite content. Here, we used a unique high-load (<500 MPa), high-temperature (<1300°C) deformation apparatus for studying in situ the Non-Newtonian flow behaviour of magmas. A series of experiments were performed on calc-alkaline obsidian lavas from Lipari (Italy), Iceland, and Cougar Creek Dome, Yellowstone (USA), and compared to depolymerized melt (NIST 710). The samples were heated to relevant magmatic effusive temperatures that yielded similar relaxation timescales and were deformed under constant stress in the range of 100 to 200 MPa. The onset of the Non-Newtonian flow regime, registered by a decreasing viscosity with time (at fixed strain rate), occurred at 120 MPa for the depolymerized melt. The Non-Newtonian flow behavior was observed up to pressures as high as approx. 180 MPa, where the samples fragmented readily (hot cracking). In contrast, all three calc-alkaline rhyolitic melt remained in a Newtonian regime up to approx. 160 MPa. The window of Non-Newtonian behavior was, however, very narrow and most samples fragmented instantaneously in the attempt of pursuing the deformation. If this is not an experimental artefact, we conclude that modeling of the flow behaviour of a ascending crystal- and bubble-free calc-alkaline rhyolitic dome magma can be performed using a simple Newtonian fluid approximation. Thus the Non-Arrhenian model of Hess and Dingwell (1996) for the compositional and temperature dependence of viscosity could be applied.
Bentzen, T R; Ratkovich, N; Madsen, S; Jensen, J C; Bak, S N; Rasmussen, M R
2012-01-01
Fouling is the main bottleneck of the widespread use of MBR systems. One way to decrease and/or control fouling is by process hydrodynamics. This can be achieved by the increase of liquid cross-flow velocity. In rotational cross-flow MBR systems, this is attained by the spinning of, for example, impellers. Validation of the CFD (computational fluid dynamics) model was made against laser Doppler anemometry (LDA) tangential velocity measurements (error less than 8%) using water as a fluid. The shear stress over the membrane surface was inferred from the CFD simulations for water. However, activated sludge (AS) is a non-Newtonian liquid, for which the CFD model was modified incorporating the non-Newtonian behaviour of AS. Shear stress and area-weighted average shear stress relationships were made giving error less that 8% compared with the CFD results. An empirical relationship for the area-weighted average shear stress was developed for water and AS as a function of the angular velocity and the total suspended solids concentration. These relationships can be linked to the energy consumption of this type of systems.
General-relativistic rotation laws in rotating fluid bodies
NASA Astrophysics Data System (ADS)
Mach, Patryk; Malec, Edward
2015-06-01
We formulate new general-relativistic extensions of Newtonian rotation laws for self-gravitating stationary fluids. They have been used to rederive, in the first post-Newtonian approximation, the well-known geometric dragging of frames. We derive two other general-relativistic weak-field effects within rotating tori: the recently discovered dynamic antidragging and a new effect that measures the deviation from the Keplerian motion and/or the contribution of the fluids self-gravity. One can use the rotation laws to study the uniqueness and the convergence of the post-Newtonian approximations as well as the existence of the post-Newtonian limits.
Modeling breakup and relaxation of Newtonian droplets using the advected phase-field approach
NASA Astrophysics Data System (ADS)
Beaucourt, J.; Biben, T.; Leyrat, A.; Verdier, C.
2007-02-01
The relaxation and breakup of Newtonian droplets is considered using the advected field approach. This method allows one to follow the deformation of interfaces using an order parameter field [Biben , Europhys. Lett. 63, 623 (2003)] based on a Ginzburg-Landau equation. Using this method, it is possible to follow the breakup of droplets and stability curves can be obtained in both two- and three-dimensional shear and elongational flows. Finally, relaxation of a droplet is considered, following the application of an elongational flow. The results are compared with previous experimental data [Ha and Leal, Phys. Fluids 13, 1568 (2001)], and are found to be in satisfactory agreement. The method is general enough to be applied to other non-Newtonian fluids, such as Oldroyd-B fluids or viscoplastic materials.
Non-Newtonian Viscosity Modeling of Crude Oils—Comparison Among Models
NASA Astrophysics Data System (ADS)
Ramírez-González, Patsy V.; Aguayo, Juan Pablo; Quiñones-Cisneros, Sergio E.; Deiters, Ulrich K.
2009-04-01
The presence of precipitated wax or even just low temperatures may induce non-Newtonian rheological behavior in crude oils. Such behavior can be found at operating conditions, for instance, in reservoirs at deep-water conditions. Therefore, reliable rheological models for crude oils applicable over the wide range of conditions the fluid may encounter are essential for a large number of oil technology applications. Such models must also be composition dependent, as many applications require predicting the rheological behavior of the fluid under strong compositional changes, e.g., recovery applications such as vapor extraction (VAPEX) processes or blending of fluids for improved rheological characteristics for piping, among many other applications. In this study, a comparative analysis between some published models applicable to the description of the non-Newtonian behavior of crude oils is carried out. Emphasis is placed on the stability of the model predictions within the wide range of conditions that may be encountered.
Flow-through biological conversion of lignocellulosic biomass
Herring, Christopher D.; Liu, Chaogang; Bardsley, John
2014-07-01
The present invention is directed to a process for biologically converting carbohydrates from lignocellulosic biomass comprising the steps of: suspending lignocellulosic biomass in a flow-through reactor, passing a reaction solution into the reactor, wherein the solution is absorbed into the biomass substrate and at least a portion of the solution migrates through said biomass substrate to a liquid reservoir, recirculating the reaction solution in the liquid reservoir at least once to be absorbed into and migrate through the biomass substrate again. The biological converting of the may involve hydrolyzing cellulose, hemicellulose, or a combination thereof to form oligosaccharides, monomelic sugars, or a combination thereof; fermenting oligosaccharides, monomelic sugars, or a combination thereof to produce ethanol, or a combination thereof. The process can further comprise removing the reaction solution and processing the solution to separate the ethanol produced from non-fermented solids.
Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows.
Boi, S; Mazzino, A; Pralits, J O
2013-09-01
The emergence of fluid instabilities in the relevant limit of vanishing fluid inertia (i.e., arbitrarily close to zero Reynolds number) has been investigated for the well-known Kolmogorov flow. The finite-time shear-induced order-disorder transition of the non-Newtonian microstructure and the corresponding viscosity change from lower to higher values are the crucial ingredients for the instabilities to emerge. The finite-time low-to-high viscosity change for increasing shear characterizes the rheopectic fluids. The instability does not emerge in shear-thinning or -thickening fluids where viscosity adjustment to local shear occurs instantaneously. The lack of instabilities arbitrarily close to zero Reynolds number is also observed for thixotropic fluids, in spite of the fact that the viscosity adjustment time to shear is finite as in rheopectic fluids. Renormalized perturbative expansions (multiple-scale expansions), energy-based arguments (on the linearized equations of motion), and numerical results (of suitable eigenvalue problems from the linear stability analysis) are the main tools leading to our conclusions. Our findings may have important consequences in all situations where purely hydrodynamic fluid instabilities or mixing are inhibited due to negligible inertia, as in microfluidic applications. To trigger mixing in these situations, suitable (not necessarily viscoelastic) non-Newtonian fluid solutions appear as a valid answer. Our results open interesting questions and challenges in the field of smart (fluid) materials.
Uddin, Mohammed J; Khan, Waqar A; Ismail, Ahmed I
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Studying Mixing in Non-Newtonian Blue Maize Flour Suspensions Using Color Analysis
Trujillo-de Santiago, Grissel; Rojas-de Gante, Cecilia; García-Lara, Silverio; Ballescá-Estrada, Adriana; Alvarez, Mario Moisés
2014-01-01
Background Non-Newtonian fluids occur in many relevant flow and mixing scenarios at the lab and industrial scale. The addition of acid or basic solutions to a non-Newtonian fluid is not an infrequent operation, particularly in Biotechnology applications where the pH of Non-Newtonian culture broths is usually regulated using this strategy. Methodology and Findings We conducted mixing experiments in agitated vessels using Non-Newtonian blue maize flour suspensions. Acid or basic pulses were injected to reveal mixing patterns and flow structures and to follow their time evolution. No foreign pH indicator was used as blue maize flours naturally contain anthocyanins that act as a native, wide spectrum, pH indicator. We describe a novel method to quantitate mixedness and mixing evolution through Dynamic Color Analysis (DCA) in this system. Color readings corresponding to different times and locations within the mixing vessel were taken with a digital camera (or a colorimeter) and translated to the CIELab scale of colors. We use distances in the Lab space, a 3D color space, between a particular mixing state and the final mixing point to characterize segregation/mixing in the system. Conclusion and Relevance Blue maize suspensions represent an adequate and flexible model to study mixing (and fluid mechanics in general) in Non-Newtonian suspensions using acid/base tracer injections. Simple strategies based on the evaluation of color distances in the CIELab space (or other scales such as HSB) can be adapted to characterize mixedness and mixing evolution in experiments using blue maize suspensions. PMID:25401332
TRANSCRIPTIONAL PROFILING USING THE FLOWTHROUGH GENOSENSOR FINAL CRADA REPORT C/ORNL97-00472
Doktycz, M. J.; Yang, H.
1999-06-01
A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (Contractor) and Gene Logic, Inc., (Participant) was carried out to evaluate the technical feasibility study of the application of the flowthrough genosensor for gene expression (transcriptional) profiling, over the current industry practice of using flat surface hybridization arrays to monitor the relative abundance of individual mRNA species in a cell. Various parameters, including substrate preparation, flow rates, hybridization conditions and sample concentrations, were evaluated on the flowthrough genosensor. The superiority of the flowthrough genosensor, in terms of hybridization rate and sensitivity were established.
Flow-through immobilized enzyme reactors based on monoliths: II. Kinetics study and application.
Vlakh, Evgenia G; Tennikova, Tatiana B
2013-03-01
In the last decade, the application of monolithic materials has rapidly expanded to the realization of flow-through bioconversion processes. Up to these days, different classes of enzymes such as hydrolases, lyases, and oxidoreductases have been immobilized on organic, inorganic, or hybrid monolithic materials to prepare the effective flow-through enzymes reactors for application in proteomics, biotechnology, pharmaceutics, organic synthesis, and biosensoring. Current review describes the results of kinetic study and specialties of flow-through immobilized enzyme reactors based on the existing monolithic materials.
Sinking of spherical slablets through a non-Newtonian mantle
NASA Astrophysics Data System (ADS)
Stegman, D. R.; Crameri, F.; Petersen, R. I.; Tackley, P. J.
2013-12-01
The dominant driving force for plate tectonics is slab pull, in which sinking slabs pull the trailing plate. Forward plate velocities are typically similar in magnitude (7 cm/yr) as estimates for sinking velocities of slabs through the upper mantle. However, these estimates are based on data for slabs that are coherent into the transition zone as well as models that considered the upper mantle to be entirely Newtonian. Dislocation creep in the upper mantle can strongly influence mantle flow, and is likely activated for flow around vertically sinking slabs in the uppermost mantle. Thus, it is possible that in some scenarios, a non-Newtonian mantle will have an influence on plate motions but it is unclear to what degree. To address this question, we investigate how the non-Newtonian rheology modifies the sinking velocities of slablets (spherical, negatively buoyant and highly viscous blobs). The model set-up is similar to a Stokes sphere sinking, but is in 2-D cartesian with temperature-and stress-dependent rheology. For these numerical models, we use the StagYY code and also includes a pseudo-free surface (';sticky air') with a thin surface thermal boundary. The sinking blob is both highly viscous and compositionally dense, but is the same temperature as the background fluid which eliminates thermal diffusion and associated variations in thermal buoyancy. The model domain is 2x1 and allows enough distance to the sidewalls so that sinking velocites are not influenced by the boundary conditions. We compare our results with those previously obtained for salt diapirs rising through a power-law rheology mantle/crust (Weinberg, 1993; Weinberg and Podladchikov, 1994) which provided both numerical and analytic results. Previous results indicate a speed-up of an order of magnitude is possible. We then extend the models and analysis to mantle convection systems that include for single-sided subduction. Surface plate motions are driven by the subducting slabs to which they are
Newtonian cosmology with a quantum bounce
NASA Astrophysics Data System (ADS)
Bargueño, P.; Bravo Medina, S.; Nowakowski, M.; Batic, D.
2016-10-01
It has been known for some time that the cosmological Friedmann equation deduced from general relativity can also be obtained within the Newtonian framework under certain assumptions. We use this result together with quantum corrections to the Newtonian potentials to derive a set a of quantum corrected Friedmann equations. We examine the behavior of the solutions of these modified cosmological equations paying special attention to the sign of the quantum corrections. We find different quantum effects crucially depending on this sign. One such a solution displays a qualitative resemblance to other quantum models like Loop quantum gravity or non-commutative geometry.
Bleyer, J; Coussot, P
2014-06-01
We study the flow, through a model two-dimensional porous medium, of Newtonian fluids, power-law fluids, and viscoplastic fluids in the laminar regime and with moderate or dominant effects of the yielding term. A numerical technique able to take properly into account yielding effects in viscoplastic flows without any regularization is used to determine the detailed flow characteristics. We show that as soon as the distance between the disks forming the porous medium is sufficiently small, the velocity field and in particular the distribution function of the velocity of these different fluids in a wide range of flow regimes are similar. Moreover, the volume fraction of fluid at rest is negligible even at low flow rate. Thus the non-Newtonian character of a fluid flowing through such a complex geometry tends to be broken. We suggest that this is due to the fact that in a flow through a channel of rapidly varying cross section, the deformation, and thus the flow field, is imposed on the fluid, a situation that is encountered almost everywhere in a porous medium. These results make it possible to deduce a general expression for Darcy's law of these fluid types and estimate the parameters appearing in this expression.
Convective Instability in Ice I with Non-Newtonian Rheology: Application to the Galilean Satellites
NASA Technical Reports Server (NTRS)
Barr, A. C.; Zhong, S.; Pappalardo, R. T.
2004-01-01
At the temperatures and stresses associated with the onset of convection in an ice I shell of the Galilean satellites, ice behaves as a non-Newtonian fluid with a viscosity that depends on both temperature and strain rate. The convective stability of a non-Newtonian ice shell can be judged by comparing the Rayleigh number of the shell to a critical value. Previous studies suggest that the critical Rayleigh number for a non-Newtonian fluid depends on the initial conditions in the fluid layer, in addition to the thermal, rheological, and physical properties of the fluid. We seek to extend the existing definition of the critical Rayleigh number for a non-Newtonian, basally heated fluid by quantifying the conditions required to initiate convection in an ice I layer initially in conductive equilibrium. We find that the critical Rayleigh number for the onset of convection in ice I varies as a power (-0.6 to -0.5) of the amplitude of the initial temperature perturbation issued to the layer, when the amplitude of perturbation is less than the rheological temperature scale. For larger-amplitude perturbations, the critical Rayleigh number achieves a constant value. We characterize the critical Rayleigh number as a function of surface temperature of the satellite, melting temperature of ice, and rheological parameters so that our results may be extrapolated for use with other rheologies and for a generic large icy satellite. The values of critical Rayleigh number imply that triggering convection from a conductive equilibrium in a pure ice shell less than 100 km thick in Europa, Ganymede, or Callisto requires a large, localized temperature perturbation of a few kelvins to tens of kelvins to soften the ice and therefore may require tidal dissipation in the ice shell.
Collision Dynamics and Internal Mixing of Droplets of Non-Newtonian Liquids
NASA Astrophysics Data System (ADS)
Sun, Kai; Zhang, Peng; Law, Chung K.; Wang, Tianyou
2015-11-01
The efficient internal mixing of colliding droplets upon coalescence is critical to various technological processes such as color manipulation in ink-jet printing and the initiation of the liquid-phase reaction of gelled hypergolic propellants in rocket engines. Recognizing that such processes can be optimized by varying the impact inertia as well as employing fluids of non-Newtonian rheology, the head-on collision, coalescence, and internal mixing pattern between two impacting equal-sized droplets of non-Newtonian fluids is computationally investigated by using the lattice Boltzmann method. Results show that, with increasing non-Newtonian effects, droplet deformation and separation following coalescence is promoted for shear-thinning fluids, while permanent coalescence allowing an extended duration for mixing is promoted for shear-thickening fluids. Furthermore, large-scale internal mixing is promoted for the colliding droplets with larger shear-thinning disparity, while coalescence and mixing is synergistically facilitated for the collision between a shear-thinning droplet and a shear-thickening droplet. The individual and coupled influences of viscosity on the droplet deformation and impact inertia, internal motion, viscous loss, and merging of the colliding interfaces leading to the observed outcomes are mechanistically identified and described.
Dynamic viscosity measurement in non-Newtonian graphite nanofluids.
Duan, Fei; Wong, Ting Foong; Crivoi, Alexandru
2012-07-02
: The effective dynamic viscosity was measured in the graphite water-based nanofluids. The shear thinning non-Newtonian behavior is observed in the measurement. On the basis of the best fitting of the experimental data, the viscosity at zero shear rate or at infinite shear rate is determined for each of the fluids. It is found that increases of the particle volume concentration and the holding time period of the nanofluids result in an enhancement of the effective dynamic viscosity. The maximum enhancement of the effective dynamic viscosity at infinite rate of shear is more than 24 times in the nanofluids held for 3 days with the volume concentration of 4% in comparison with the base fluid. A transmission electron microscope is applied to reveal the morphology of aggregated nanoparticles qualitatively. The large and irregular aggregation of the particles is found in the 3-day fluids in the drying samples. The Raman spectra are extended to characterize the D and G peaks of the graphite structure in the nanofluids. The increasing intensity of the D peak indicates the nanoparticle aggregation growing with the higher concentration and the longer holding time of the nanofluids. The experimental results suggest that the increase on effective dynamic viscosity of nanofluids is related to the graphite nanoparticle aggregation in the fluids.
Investigating the impact of non-Newtonian blood models within a heart pump.
Al-Azawy, Mohammed G; Turan, A; Revell, A
2017-01-01
A detailed computational fluid dynamics (CFD) study of transient, turbulent blood flow through a positive displacement left ventricular assist device is performed. Two common models for non-Newtonian blood flow are compared to the Newtonian model to investigate their impact on predicted levels of shear rate and wall shear stress. Given that both parameters are directly relevant to the evaluation of risk from thrombus and haemolysis, there is a need to assess the sensitivity to modelling non-Newtonian flow effects within a pulsatile turbulent flow, in order to identify levels of uncertainly in CFD. To capture the effects of turbulence, the elliptic blending Reynolds stress model is used in the present study, on account of superior performance of second moment closure schemes previously identified by the present authors. The CFD configuration includes two cyclically rotating valves and a moving pusher plate to periodically vary the chamber volume. An overset mesh algorithm is used for each instance of mesh motion, and a zero gap technique was employed to ensure full valve closure. The left ventricular assist device was operated at a pumping rate of 86 BPM (beats per minute) and a systolic duration of 40% of the pumping cycle, in line with existing experimental data to which comparisons are made. The sensitivity of the variable viscosity models is investigated in terms of mean flow field, levels of turbulence and global shear rate, and a non-dimensional index is used to directly evaluate the impact of non-Newtonian effects. The clinical relevance of the results is reported along with a discussion of modelling uncertainties, observing that the turbulent kinetic energy is generally predicted to be higher in non-Newtonian flow than that observed in Newtonian flow. Copyright © 2016 John Wiley & Sons, Ltd.
Collective motion of microswimmers in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Li, Gaojin; Ardekani, Arezoo
2015-11-01
The dynamics of suspension of self-propelled microorganisms show fascinating hydrodynamic phenomena, such as, large scale swarming motion, locally correlated motion, enhanced particle diffusion, and enhanced fluid mixing. Even though many studies have been conducted in a Newtonian fluid, the collective motion of microorganisms in non-Newtonian fluids is less understood. The non-Newtonian fluid rheological properties, such as viscoelasticity and shear-dependent viscosity in saliva, mucus and biofilm, significantly affect the swimming properties and hydrodynamic interaction of microorganisms. In this work, we use direct numerical simulation to investigate the collective motion of rod-like swimmers in viscoelastic fluids. Two swimming types, pusher and puller, are investigated. The background viscoelastic fluid is modeled using an Oldroyd-B constitutive equation. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.
Pressurized fluid damping of nanoelectromechanical systems.
Svitelskiy, Oleksiy; Sauer, Vince; Liu, Ning; Cheng, Kar-Mun; Finley, Eric; Freeman, Mark R; Hiebert, Wayne K
2009-12-11
Interactions of nanoscale structures with fluids are of current interest both in the elucidation of fluid dynamics at these small scales, and in determining the ultimate performance of nanoelectromechanical systems outside of vacuum. We present a comprehensive study of nanomechanical damping in three gases (He, N2, CO2), and liquid CO2. Resonant dynamics in multiple devices of varying size and frequency is measured over 10 decades of pressure (1 mPa-20 MPa) using time-domain stroboscopic optical interferometry. The wide pressure range allows full exploration of the regions of validity of Newtonian and non-Newtonian flow damping models. Observing free molecular flow behavior extending above 1 atm, we find a fluid relaxation time model to be valid throughout, but not beyond, the non-Newtonian regime, and a Newtonian flow vibrating spheres model to be valid in the viscous limit.
Nonlinear drainage of some non-Newtonian free films
NASA Astrophysics Data System (ADS)
Tabakova, S.
2015-10-01
In the present work we apply the generalized lubrication approach (including inertial, viscous, capillary and van-der-Waals forces) to study the dynamics of a free thin film of a non-Newtonian fluid, whose viscosity is described by the Power law and Carreau models. For planar films with fully mobile surfaces, this approach leads to a system of two nonlinear PDE for the film thickness and lateral velocity. This system is solved numerically in the case of laterally bounded free films. The calculations of the film shape and velocity are presented using data of some real liquids: blood and aqueous solution of 0.5% hydroxyethylcellulose. It is shown that the Power law model predicts a very different viscosity to the Carreau model viscosity, although that the film profiles are not very different for all film wetting angles.
Inline Ultrasonic Rheometry of a Non-Newtonian Waste Simulant
Pfund, David M.; Pappas, Richard A.
2004-03-31
This is a discussion of non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure requires knowledge of the flow profile in and the pressure drop along the long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel which is often used as a Hanford waste simulant are presented. The operating parameters and limitations of the ultrasound based instrument will be discussed. The component parts of the instrument have been packaged into a unit for field use. The presentation also discusses the features and engineering optimizations done to enhance field usability of the instrument.
Effects of non Newtonian spiral blood flow through arterial stenosis
NASA Astrophysics Data System (ADS)
Hasan, Md. Mahmudul; Maruf, Mahbub Alam; Ali, Mohammad
2016-07-01
The spiral component of blood flow has both beneficial and detrimental effects in human circulatory system. A numerical investigation is carried out to analyze the effect of spiral blood flow through an axisymmetric three dimensional artery having 75% stenosis at the center. Blood is assumed as a Non-Newtonian fluid. Standard k-ω model is used for the simulation with the Reynolds number of 1000. A parabolic velocity profile with spiral flow is used as inlet boundary condition. The peak values of all velocity components are found just after stenosis. But total pressure gradually decreases at downstream. Spiral flow of blood has significant effects on tangential component of velocity. However, the effect is mild for radial and axial velocity components. The peak value of wall shear stress is at the stenosis zone and decreases rapidly in downstream. The effect of spiral flow is significant for turbulent kinetic energy. Detailed investigation and relevant pathological issues are delineated throughout the paper.
Modeling Nutrient Consumptions in Large Flow-Through Bioreactors for Tissue Engineering
Devarapalli, Mamatha; Lawrence, Benjamin J.; Madihally, Sundararajan V.
2009-01-01
Flow-through bioreactors are utilized in tissue regeneration to ensure complete nutrient distribution and apply defined hydrodynamic stresses. The fundamental concepts in designing these bioreactors for regenerating large high aspect ratio tissues (large surface area relative to the thickness of the matrix such as skin, bladder, and cartilage) are not well defined. Further, tissue regeneration is a dynamic process where the porous characteristics change due to proliferation of cells, de novo deposition of matrix components, and degradation of the porous architecture. These changes affect the transport characteristics and there is an imminent need to understand the influence of these factors. Using computational fluid dynamic tools, changes in the pressure drop, shear stress distribution and nutrient consumption patterns during tissue regeneration were assessed in rectangular and circular reactors described by Lawrence et al (Lawrence et al. 2008). Further, six new designs with different inlet and outlet shapes were analyzed. The fluid flow was defined by the Brinkman equation on the porous regions using the pore characteristics of 85 μm and 120 pores/mm2. The minimum flow requirements to satisfy nutrient (oxygen and glucose) requirements for three different cell types (SMCs, chondrocytes, and hepatocytes) was evaluated using convective diffusion equation. For consumption reaction, the Michaelis-Menten rate law was used, with constants (km and vm values) extracted from literature. Simulations were performed by varying the flow rate as well as the cell number. One of the circular reactors with semicircular inlet and outlet shape decreased (i) non-uniformity in hydrodynamic stress within the porous structure and (ii) non-uniform nutrient distribution. All cell types showed increased consumption of oxygen than glucose. Hepatocytes needed a very high flow rate relative to other cell types. Increase in cell number suggested a need for increasing the flow in circular
Stokesian locomotion in elastic fluids: Experiments
NASA Astrophysics Data System (ADS)
Zenit, Roberto; Lauga, Eric
2010-11-01
In many instances of biological relevance, self-propelled cells have to swim through non-Newtonian fluids. In order to provide fundamental understanding on the effect of such non-Newtonian stresses on locomotion, we have studied the motion an oscillating magnetic swimmer immersed in both Newtonian and non-Newtonian liquids at small Reynolds numbers. The swimmer is made with a small rare earth (Neodymium-Iron-Boron) magnetic rod (3 mm) to which a flexible tail was glued. This array was immersed in cylindrical container (50 mm diameter) in which the test fluid was contained. A nearly uniform oscillating magnetic field was created with a Helmholtz coil (R=200mm) and a AC power supply. For the Newtonian case, a 30,000 cSt silicon oil was used. In the non-Newtonian case, a fluid with nearly constant viscosity and large first normal stress difference (highly elastic) was used; this fluid was made with Corn syrup with a small amount of polyacrylamide. The swimming speed was measured, for different amplitudes and frequencies, using a digital image analysis. The objective of the present investigation is to determine whether the elastic effects of the fluid improve or not the swimming performance. Some preliminary results will be presented and discussed.
Flow-through fluorescence immunosensor for atrazine determination.
Turiel, E; Fernández, P; Pérez-Conde, C; Gutiérrez, A M; Cámara, C
1998-12-01
A new flow-through fluoroimmunosensor for atrazine determination based on the use of protein A immobilized on controlled pore glass as immunoreactor is reported. The support, placed in the optical path of the flow cell, allows the 'in situ' quantification of atrazine by on-line antigen-antibody binding upon successive injections of both substances. The immunosensor has a detection limit of 2.1 mug l(-1), a sample speed of about 10 samples per hour, and provides high reproducibility both within-day (3.2% for 5 mug l(-1) and 2.2% for 30 mug l(-1)) and between days. The optimum working concentration range was 2.1-50 mug l(-1). Possible interferences of other triazines like simazine, desethylatrazine (DEA) and desisopropylatrazine (DIA) were evaluated. Simazine and DIA were not cross-reactive; however, the cross-reactivity for DEA was CR=7.7%. The proposed immunosensor was successfully applied to the determination of atrazine in drinking water and citrus fruits.
Deposition Velocities of Newtonian and Non-Newtonian Slurries in Pipelines
Poloski, Adam P.; Adkins, Harold E.; Abrefah, John; Casella, Andrew M.; Hohimer, Ryan E.; Nigl, Franz; Minette, Michael J.; Toth, James J.; Tingey, Joel M.; Yokuda, Satoru T.
2009-03-01
correlation used in the WTP design guide has been shown to be inaccurate for Hanford waste feed materials. The use of the Thomas (1979) correlation in the design guide is not conservative—In cases where 100% of the particles are smaller than 74 μm or particles are considered to be homogeneous due to yield stress forces suspending the particles the homogeneous fraction of the slurry can be set to 100%. In such cases, the predicted critical velocity based on the conservative Oroskar and Turian (1980) correlation is reduced to zero and the design guide returns a value from the Thomas (1979) correlation. The measured data in this report show that the Thomas (1979) correlation predictions often fall below that measured experimental values. A non-Newtonian deposition velocity design guide should be developed for the WTP— Since the WTP design guide is limited to Newtonian fluids and the WTP expects to process large quantities of such materials, the existing design guide should be modified address such systems. A central experimental finding of this testing is that the flow velocity required to reach turbulent flow increases with slurry rheological properties due to viscous forces dampening the formation of turbulent eddies. The flow becomes dominated by viscous forces rather than turbulent eddies. Since the turbulent eddies necessary for particle transport are not present, the particles will settle when crossing this boundary called the transitional deposition boundary. This deposition mechanism should be expected and designed for in the WTP.
Squirming through shear thinning fluids
NASA Astrophysics Data System (ADS)
Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun
2015-11-01
Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.
NASA Astrophysics Data System (ADS)
Pnueli, David; Gutfinger, Chaim
1997-01-01
This text is intended for the study of fluid mechanics at an intermediate level. The presentation starts with basic concepts, in order to form a sound conceptual structure that can support engineering applications and encourage further learning. The presentation is exact, incorporating both the mathematics involved and the physics needed to understand the various phenomena in fluid mechanics. Where a didactical choice must be made between the two, the physics prevails. Throughout the book the authors have tried to reach a balance between exact presentation, intuitive grasp of new ideas, and creative applications of concepts. This approach is reflected in the examples presented in the text and in the exercises given at the end of each chapter. Subjects treated are hydrostatics, viscous flow, similitude and order of magnitude, creeping flow, potential flow, boundary layer flow, turbulent flow, compressible flow, and non-Newtonian flows. This book is ideal for advanced undergraduate students in mechanical, chemical, aerospace, and civil engineering. Solutions manual available.
Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel
NASA Astrophysics Data System (ADS)
Xiang, Hao; Chen, Bin
2015-02-01
The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We0.28Fr0.78 (We is the Weber number, Fr is the Froude number).
Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula?
Javid Mahmoudzadeh Akherat, S M; Cassel, Kevin; Boghosian, Michael; Dhar, Promila; Hammes, Mary
2017-04-01
Given the current emphasis on accurate computational fluid dynamics (CFD) modeling of cardiovascular flows, which incorporates realistic blood vessel geometries and cardiac waveforms, it is necessary to revisit the conventional wisdom regarding the influences of non-Newtonian effects. In this study, patient-specific reconstructed 3D geometries, whole blood viscosity data, and venous pulses postdialysis access surgery are used as the basis for the hemodynamic simulations of renal failure patients with native fistula access. Rheological analysis of the viscometry data initially suggested that the correct choice of constitutive relations to capture the non-Newtonian behavior of blood is important because the end-stage renal disease (ESRD) patient cohort under observation experience drastic variations in hematocrit (Hct) levels and whole blood viscosity throughout the hemodialysis treatment. For this purpose, various constitutive relations have been tested and implemented in CFD practice, namely Quemada and Casson. Because of the specific interest in neointimal hyperplasia and the onset of stenosis in this study, particular attention is placed on differences in nonhomeostatic wall shear stress (WSS) as that drives the venous adaptation process that leads to venous geometric evolution over time in ESRD patients. Surprisingly, the CFD results exhibit no major differences in the flow field and general flow characteristics of a non-Newtonian simulation and a corresponding identical Newtonian counterpart. It is found that the vein's geometric features and the dialysis-induced flow rate have far greater influence on the WSS distribution within the numerical domain.
Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.
Niu, Jun; Fu, Ceji; Tan, Wenchang
2012-01-01
The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.
NASA Astrophysics Data System (ADS)
Rampf, Cornelius; Villa, Eleonora; Bertacca, Daniele; Bruni, Marco
2016-10-01
We study the nonlinear gravitational dynamics of a universe filled with a pressureless fluid and a cosmological constant Λ in the context of Newtonian gravity, and in the relativistic post-Friedmann approach proposed in paper I [I. Milillo et al., Phys. Rev. D 92, 023519 (2015)]. The post-Friedmann approximation scheme is based on the 1 /c expansion of the space-time metric and the energy-momentum tensor, and includes nonlinear Newtonian cosmology. Here we establish the nonlinear post-Friedmann framework in the Lagrangian-coordinates approach for structure formation. For this we first identify a Lagrangian gauge which is suitable for incorporating nonzero vorticity. We analyze our results in two limits: at the leading order we recover the fully nonlinear Newtonian cosmological equations in the Lagrangian formulation, and we provide a space-time metric consistent from the perspective of general relativity. We then linearize our expressions and recover the relativistic results at first order in cosmological perturbation theory. Therefore, the introduced approximation scheme provides a unified treatment for the two leading-order regimes, from the small scales described by Newtonian gravity to the large linear scale, where first-order relativistic cosmological perturbation theory gives a very good description of structure formation.
Existence of families of spacetimes with a Newtonian limit
NASA Astrophysics Data System (ADS)
Oliynyk, Todd Andrew; Schmidt, Bernd
2009-09-01
Jürgen Ehlers developed frame theory to better understand the relationship between general relativity and Newtonian gravity. Frame theory contains a parameter λ, which can be thought of as 1/ c 2, where c is the speed of light. By construction, frame theory is equivalent to general relativity for λ > 0, and reduces to Newtonian gravity for λ = 0. Moreover, by setting {ɛ=sqrt{λ}} , frame theory provides a framework to study the Newtonian limit {ɛ searrow 0 (i.e. crightarrow infty)}. A number of ideas relating to frame theory that were introduced by Jürgen have subsequently found important applications to the rigorous study of both the Newtonian limit and post-Newtonian expansions. In this article, we review frame theory and discuss, in a non-technical fashion, some of the rigorous results on the Newtonian limit and post-Newtonian expansions that have followed from Jürgen’s work.
On the performance of finite journal bearings lubricated with micropolar fluids
NASA Technical Reports Server (NTRS)
Khonsari, M. M.; Brewe, D. E.
1988-01-01
A study of the performance parameters for a journal bearing of finite length lubricated with micropolar fluids is undertaken. Results indicate that a significantly higher load carrying capacity than the Newtonian fluids may result depending on the size of material characteristic length and the coupling number. It is also shown that although the frictional force associated with micropolar fluid is in general higher than that of a Newtonian fluid, the friction coefficient of micropolar fluids tends to be lower than that of the Newtonian.
NASA Technical Reports Server (NTRS)
Dallas, S. S.
1977-01-01
The equations of motion for rotating finite bodies are computed in the perfect fluid metric in the extended parametric post-Newtonian (PPN) formalism of Will and Nordtvedt (1972) and are used to build a model of the solar system consisting of N oblate, homogeneous, stationary, self-gravitating masses of rotating perfect fluid. These equations contain relativistic acceleration terms which are currently observable or may be observable in the future with improved radio and laser ranging techniques.
Reduced viscosity interpreted for fluid/gas mixtures
NASA Technical Reports Server (NTRS)
Lewis, D. H.
1981-01-01
Analysis predicts decrease in fluid viscosity by comparing pressure profile of fluid/gas mixture with that of power-law fluid. Fluid is taken to be viscous, non-Newtonian, and incompressible; the gas to be ideal; the flow to be inertia-free, isothermal, and one dimensional. Analysis assists in design of flow systems for petroleum, coal, polymers, and other materials.
Oscillation of boson star in Newtonian approximation
NASA Astrophysics Data System (ADS)
Jarwal, Bharti; Singh, S. Somorendro
2017-03-01
Boson star (BS) rotation is studied under Newtonian approximation. A Coulombian potential term is added as perturbation to the radial potential of the system without disturbing the angular momentum. The results of the stationary states of these ground state, first and second excited state are analyzed with the correction of Coulombian potential. It is found that the results with correction increased in the amplitude of oscillation of BS in comparison to potential without perturbation correction.
Dynamic flow-through approach to evaluate readily bioaccessible antioxidants in solid food samples.
Maia, Miguel A; Soares, Tânia R P; Mota, Ana I P; Rosende, María; Magalhães, Luís M; Miró, Manuel; Segundo, Marcela A
2017-05-01
Release of bioactive compounds from food matrices is regarded as the first step towards their human bioavailability. The objective of this work was the implementation of an affordable and robust flow-through device for expedient dynamic leaching experiments aiming at the assessment of readily bioaccessible antioxidant compounds in solid food commodities. A simple configuration is proposed using commercially available devices containing regenerated cellulose filters placed in polypropylene holders to entrap the solid sample, featuring a disposable, single use extraction chamber. The kinetic extraction profile of fast leachable antioxidants from different food matrices was evaluated using the ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)) assay, fitting a first-order reaction model for readily bioaccessible compounds (R>0.9). The leaching rate constant values associated to the fast leachable antioxidant compounds were 0.060-0.446min(-1) and 0.105-0.210min(-1) for water and ethanol/water (1:1, v/v) applied as extractants, respectively. Furthermore, no statistically significant differences were found between the estimated values of bioaccessible antioxidant compounds by the kinetic model and the values attained using conventional batch-wise extraction methodology, ranging from 3.37 to 60.3 µmol of Trolox ((±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid) per g of sample. Extension of the method using U. S. Pharmacopeia surrogate biological media (stomach (pH 1.2) and intestinal (pH 7.5) fluids without enzymes) to NIST-1570a spinach leaves provided gastrointestinal compartment-dependent kinetic leaching rates (0.120 and 0.198min(-1), respectively) and total antioxidant content (45.5 and 52.5µmol of Trolox per g of sample, respectively).
Intermittent Flow In Yield Stress Fluids Slows Down Chaotic Mixing
NASA Astrophysics Data System (ADS)
Boujlel, Jalila; Wendell, Dawn; Gouillart, Emmanuelle; Pigeonneau, Franck; Jop, Pierre; Laboratoire Surface du Verre et Interfaces Team
2013-11-01
Many mixing situations involve fluids with non-Newtonian properties: mixing of building materials such as concrete or mortar are based on fluids that have shear- thinning rheological properties. Lack of correct mixing can waste time and money, or lead to products with defects. When fluids are stirred and mixed together at low Reynolds number, the fluid particles should undergo chaotic trajectories to be well mixed by the so-called chaotic advection resulting from the flow. Previous work to characterize chaotic mixing in many different geometries has primarily focused on Newtonian fluids. First studies into non-Newtonian chaotic advection often utilize idealized mixing geometries such as cavity flows or journal bearing flows for numerical studies. Here, we present experimental results of chaotic mixing of yield stress fluids with non-Newtonian fluids using rod-stirring protocol with rotating vessel. We describe the various steps of the mixing and determine their dependence on the fluid rheology and speeds of rotation of the rods and the vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This result is confirmed via numerical simulations.
The numerical analysis of non-Newtonian blood flow in human patient-specific left ventricle.
Doost, Siamak N; Zhong, Liang; Su, Boyang; Morsi, Yosry S
2016-04-01
Recently, various non-invasive tools such as the magnetic resonance image (MRI), ultrasound imaging (USI), computed tomography (CT), and the computational fluid dynamics (CFD) have been widely utilized to enhance our current understanding of the physiological parameters that affect the initiation and the progression of the cardiovascular diseases (CVDs) associated with heart failure (HF). In particular, the hemodynamics of left ventricle (LV) has attracted the attention of the researchers due to its significant role in the heart functionality. In this study, CFD owing its capability of predicting detailed flow field was adopted to model the blood flow in images-based patient-specific LV over cardiac cycle. In most published studies, the blood is modeled as Newtonian that is not entirely accurate as the blood viscosity varies with the shear rate in non-linear manner. In this paper, we studied the effect of Newtonian assumption on the degree of accuracy of intraventricular hemodynamics. In doing so, various non-Newtonian models and Newtonian model are used in the analysis of the intraventricular flow and the viscosity of the blood. Initially, we used the cardiac MRI images to reconstruct the time-resolved geometry of the patient-specific LV. After the unstructured mesh generation, the simulations were conducted in the CFD commercial solver FLUENT to analyze the intraventricular hemodynamic parameters. The findings indicate that the Newtonian assumption cannot adequately simulate the flow dynamic within the LV over the cardiac cycle, which can be attributed to the pulsatile and recirculation nature of the flow and the low blood shear rate.
Basal entrainment by Newtonian gravity-driven flows
NASA Astrophysics Data System (ADS)
Bates, Belinda; Andreini, Nicolas; Ancey, Christophe
2016-04-01
Gravity-driven flows can erode the bed along which they descend and increase their mass by a factor of 10 or more. This process is called basal entrainment. Although documented by field observations and laboratory experiments, it remains poorly understood. We look into this issue by studying eroding dam-break waves. More specifically we would like to determine what happens when a viscous gravity-driven flow generated by releasing a fixed volume of incompressible Newtonian fluid encounters a stationary erodible layer (composed of fluid with the same density and viscosity). Models based on depth-averaged mass and momentum balance equations deal with bed-flow interfaces as shock waves. In contrast, we use an approach involving the long-wave approximation of the Navier-Stokes equations (lubrication theory), and in this context, bed-flow interfaces are acceleration waves that move quickly across thin stationary layers. The incoming flow digs down into the bed, pushing up downstream material, thus advancing the flow front. Extending the method used by Huppert [J. Fluid Mech. 121, 43--58 (1982)] for modelling viscous dam-break waves, we end up with a nonlinear diffusion equation for the flow depth, which is solved numerically. Theory is compared with experimental results. Excellent agreement is found in the limit of low Reynolds numbers (i.e., for flow Reynolds numbers lower than 20) for the front position over time and flow depth profile. The Newtonian model has sometimes been used to describe the flow behaviour of natural materials such as snow and debris suspensions, but the majority of existing approaches rely on more elaborate constitutive equations. So there is no direct application of the results presented here to real flow conditions. Yet, our study sheds light on the mechanisms involved in basal entrainment. We provide evidence that the whole layer of loose material is entrained quickly once the flow makes contact with the erodible layer. As this process occurs
Hippelheuser, James E; Lauric, Alexandra; Cohen, Alex D; Malek, Adel M
2014-11-28
Most computational fluid dynamic (CFD) simulations of aneurysm hemodynamics assume constant (Newtonian) viscosity, even though blood demonstrates shear-thinning (non-Newtonian) behavior. We sought to evaluate the effect of this simplifying assumption on hemodynamic forces within cerebral aneurysms, especially in regions of low wall shear stress, which are associated with rupture. CFD analysis was performed for both viscosity models using 3D rotational angiography volumes obtained for 26 sidewall aneurysms (12 with blebs, 12 ruptured), and parametric models incorporating blebs at different locations (inflow/outflow zone). Mean and lowest 5% values of time averaged wall shear stress (TAWSS) computed over the dome were compared using Wilcoxon rank-sum test. Newtonian modeling not only resulted in higher aneurysmal TAWSS, specifically in areas of low flow and blebs, but also showed no difference between aneurysms with or without blebs. In contrast, for non-Newtonian analysis, bleb-bearing aneurysms showed significantly lower 5% TAWSS compared to those without (p=0.005), despite no significant difference in mean dome TAWSS (p=0.32). Non-Newtonian modeling also accentuated the differences in dome TAWSS between ruptured and unruptured aneurysms (p<0.001). Parametric models further confirmed that realistic non-Newtonian viscosity resulted in lower bleb TAWSS and higher focal viscosity, especially when located in the outflow zone. The results show that adopting shear-thinning non-Newtonian blood viscosity in CFD simulations of intracranial aneurysms uncovered hemodynamic differences induced by bleb presence on aneurysmal surfaces, and significantly improved discriminant statistics used in risk stratification. These findings underline the possible implications of using a realistic model of blood viscosity in predictive computational hemodynamics.
Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang
2014-02-01
Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.
Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows
NASA Astrophysics Data System (ADS)
Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.
1988-05-01
An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a Laser Doppler Velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry. Flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are two microns or less. A non-Newtonian slurry from small particles could maintain large particles (one millimeter size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.
Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows
NASA Astrophysics Data System (ADS)
Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.
1987-10-01
An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a laser Doppler velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm (2 inches). Detailed flow measurements including turbulence quantities such as Reynolds stress will be taken with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are one micron or less. A non-Newtonian slurry from small particles could maintain large particles (100 micron size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.
NASA Astrophysics Data System (ADS)
Marrero, Victor; Sahni, Onkar; Jansen, Kenneth; Tichy, John; Taylor, Charles
2008-11-01
In recent years the methods of computational fluid dynamics (CFD) have been applied to the human cardiovascular system to better understand the relationship between arterial blood flow and the disease process, for example in an abdominal aortic aneurysm (AAA). Obviously, the technical challenges associated with such modeling are formidable. Among the many problems to be addressed, in this paper we add yet another complication -- the known non-Newtonian nature of blood. In this preliminary study, we used a patient-based AAA model with rigid walls. The pulsatile nature of the flow and the RCR outflow boundary condition are considered. We use the Carreau-Yasuda model to describe the non-Newtonian viscosity variation. Preliminary results for 200K, 2M, and 8M elements mesh are presented for the Newtonian and non-Newtonian cases. The broad fundamental issue we wish to eventually resolve is whether or not non-Newtonian effects in blood flow are sufficiently strong in unhealthy vessels that they must be addressed in meaningful simulations. Interesting differences during the flow cycle shed light on the problem, but further research is needed.
An active particle in a complex fluid
NASA Astrophysics Data System (ADS)
Datt, Charu; Natale, Giovanniantonio; Hatzikiriakos, Savvas G.; Elfring, Gwynn J.
2016-11-01
Active particles are self-driven units capable of converting stored or ambient free-energy into systematic movement. We discuss here the case when such particles move through non-Newtonian fluids. Neglecting inertial forces, we employ the reciprocal theorem to calculate the propulsion velocity of a single swimmer in a weakly non-Newtonian fluid with background flow. We also derive a general expression for the velocity of an active particle modelled as a squirmer in a second-order fluid. We then discuss how active colloids are affected by the medium rheology, namely viscoelasticity and shear-thinning.
Superresonance phenomenon from acoustic black holes in neo-Newtonian theory
NASA Astrophysics Data System (ADS)
Salako, I. G.; Jawad, Abdul
2016-03-01
We explore the possibility of the acoustic analogue of a super-radiance like phenomenon, i.e. the amplification of a sound wave by reflection from the ergo-region of a rotating acoustic black hole in the fluid draining bathtub model in the presence of the pressure to be amplified or reduced in agreement with the value of the parameter (γ = 1 + knρ0n-1 c2 ). We remark that the interval of frequencies depend upon the neo-Newtonian parameter γ (Ω¯H = 2 1+γΩH) and becomes narrow in this work. As a consequence, the tuning of the neo-Newtonian parameter (γ = 1 + knρ0n-1 c2 ) changes the rate of loss of the acoustic black hole mass.
A system for conducting flow-through toxicity tests with larval fish
Diamond, S.A.; Oris, J.T.; Guttman, S.I.
1995-08-01
Assessment of toxicological effects in aquatic systems commonly include larval fish 96-h LC50 determinations. The LC50 tests are conducted using static renewal as well as flow-through methods. However, in the case of chemicals with high vapor pressures or fugacity, static renewal methods may produce inconsistent results arising from the pulsed nature of exposure. In addition, in exposures involving these types of compounds, the fluctuation in concentration that can occur between renewals is unlike most exposure scenarios in nature. For these reasons, flow-through systems are often preferable. The authors report here on an inexpensive, easily constructed, flow-through system for toxicant exposure of small organisms. Data are presented to illustrate the capacity of the system to maintain uniform toxicant concentrations relative to static renewal methods.
Convection in ice I with non-Newtonian rheology: Application to the icy Galilean satellites
NASA Astrophysics Data System (ADS)
Barr, Amy Courtright
2004-12-01
Observations from the Galileo spacecraft suggest that the Jovian icy satellites Europa, Ganymede, and Callisto have liquid water oceans beneath their icy surfaces. The outer ice I shells of the satellites represent a barrier between their surfaces and their oceans and serve to decouple fluid motions in their deep interiors from their surfaces. Understanding heat and mass transport by convection within the outer ice I shells of the satellites is crucial to understanding their geophysical and astrobiological evolution. Recent laboratory experiments suggest that deformation in ice I is accommodated by several different creep mechanisms. Newtonian deformation creep accommodates strain in warm ice with small grain sizes. However, deformation in ice with larger grain sizes is controlled by grain-size-sensitive and dislocation creep, which are non-Newtonian. Previous studies of convection have not considered this complex rheological behavior. This thesis revisits basic geophysical questions regarding heat and mass transport in the ice I shells of the satellites using a composite Newtonian/ non-Newtonian rheology for ice I. The composite rheology is implemented in a numerical convection model developed for Earth's mantle to study the behavior of an ice I shell during the onset of convection and in the stagnant lid convection regime. The conditions required to trigger convection in a conductive ice I shell depend on the grain size of the ice, and the amplitude and wavelength of temperature perturbation issued to the ice shell. If convection occurs, the efficiency of heat and mass transport is dependent on the ice grain size as well. If convection occurs, fluid motions in the ice shells enhance the nutrient flux delivered to their oceans, and coupled with resurfacing events, may provide a sustainable biogeochemical cycle. The results of this thesis suggest that evolution of ice grain size in the satellites and the details of how tidal dissipation perturbs the ice shell to
Pseudo-Newtonian planar circular restricted 3-body problem
NASA Astrophysics Data System (ADS)
Dubeibe, F. L.; Lora-Clavijo, F. D.; González, Guillermo A.
2017-02-01
We study the dynamics of the planar circular restricted three-body problem in the context of a pseudo-Newtonian approximation. By using the Fodor-Hoenselaers-Perjés procedure, we perform an expansion in the mass potential of a static massive spherical source up to the first non-Newtonian term, giving place to a gravitational potential that includes first-order general relativistic effects. With this result, we model a system composed by two pseudo-Newtonian primaries describing circular orbits around their common center of mass, and a test particle orbiting the system in the equatorial plane. The dynamics of the new system of equations is studied in terms of the Poincaré section method and the Lyapunov exponents, where the introduction of a new parameter ɛ, allows us to observe the transition from the Newtonian to the pseudo-Newtonian regime. We show that when the Jacobian constant is fixed, a chaotic orbit in the Newtonian regime can be either chaotic or regular in the pseudo-Newtonian approach. As a general result, we find that most of the pseudo-Newtonian configurations are less stable than their Newtonian equivalent.
Fluid physics phenomena of resistojet thrusters
NASA Technical Reports Server (NTRS)
DeWitt, Kenneth J. (Principal Investigator)
1996-01-01
This final report includes a list of publications and part of an M.S. thesis titled 'Analyses in Theoretical and Experimental Fluid Flow', by Tony G. Howell. The thesis discusses analyses of momentum and heat transfer occurring in a laminar boundary layer of a non-Newtonian power-law fluid, and experiments completed in a simulated space thruster's plume for prediction comparison.
Breaking of non-Newtonian character in flows through a porous medium.
Chevalier, T; Rodts, S; Chateau, X; Chevalier, C; Coussot, P
2014-02-01
From NMR measurements we show that the velocity field of a yield stress fluid flowing through a disordered well-connected porous medium is very close to that for a Newtonian fluid. In particular, it is shown that no arrested regions exist even at very low velocities, for which the solid regime is expected to be dominant. This suggests that these results obtained for strongly nonlinear fluid can be extrapolated to any nonlinear fluid. We deduce a generalized form of Darcy's law for such materials and provide insight into the physical origin of the coefficients involved in this expression, which are shown to be moments of the second invariant of the strain rate tensor.
Newtonian Hydrodynamics with Arbitrary Volumetric Sources
Lowrie, Robert Byron
2015-11-12
In this note, we derive how to handle mass, momentum, and energy sources for Newtonian hydrodynamics. Much of this is classic, although we’re unaware of a reference that treats mass sources, necessary for certain physics and the method of manufactured solutions. In addition, we felt it important to emphasize that the integral form of the governing equations results in a straightforward treatment of the sources. With the integral form, we’ll demonstrate that there’s no ambiguity between the Lagrangian and Eulerian form of the equations, which is less clear with the differential forms.
Modernized Newtonian Cosmology in Secondary Schools
NASA Astrophysics Data System (ADS)
Sigurdsson, Thorir
2007-08-01
Modern cosmology is founded on general relativity. Therefore, it lies outside the syllabus of classical physics and mathematics in most secondary schools. Nevertheless, it is desirable to introduce its concepts, methods and results to interested students. This is possible by assuming modified principles of homogeneity and isotropy and applying Newtonian dynamics with an extra repulsive force including Einstein's cosmological constant. With suitable simplifications and approximations several cosmological models can be derived with basic calculus from the Friedmann-Lemaitre equation, e.g. today's accelerating universe. The derivation is supplemented by examples of hypothetical universes to illustrate the theory.
Helical propulsion in shear-thinning fluids
NASA Astrophysics Data System (ADS)
Gómez, Saúl; Godínez, Francisco A.; Lauga, Eric; Zenit, Roberto
2017-02-01
Swimming microorganisms often have to propel in complex, non-Newtonian fluids. We carry out experiments with self-propelling helical swimmers driven by an externally rotating magnetic field in shear-thinning, inelastic fluids. Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion speed which scales linearly with the rotation frequency of the swimmer, but with a prefactor which depends on the power index of the fluid. The fluid is seen to always increase the swimming speed of the helix, up to 50% faster and thus the strongest of such type reported to date. The maximum relative increase for a fluid power index of around 0.6. Using simple scalings, we argue that the speed increase is not due to the local decrease of the flow viscosity around the helical filament but hypothesise instead that it originates from confinement-like effect due to viscosity stratification around the swimmer.
Newtonian Flow in Bulk Amorphous Alloys
Wadsworth, J.; Nieh, T.G.
2000-09-27
Bulk amorphous alloys have many unique properties, e.g., superior strength and hardness, excellent corrosion resistance, reduced sliding friction and improved wear resistance, and easy formability in a viscous state. These properties, and particularly easy formability, are expected to lead to applications in the fields of near-net-shape fabrication of structural components. Whereas large tensile ductility has generally been observed in the supercooled liquid region in metallic glasses, the exact deformation mechanism, and in particular whether such alloys deform by Newtonian viscous flow, remains a controversial issue. In this paper, existing data are analyzed and an interpretation for the apparent controversy is offered. In addition, new results obtained from an amorphous alloy (composition: Zr-10Al-5TI-17.9Cu-14.6Ni, in at. %) are presented. Structural evolution during plastic deformation is particularly characterized. It is suggested that the appearance of non-Newtonian behavior is a result of the concurrent crystallization of the amorphous structure during deformation.
The Parametrized Post-Newtonian-Vainshteinian formalism
Avilez-Lopez, A.; Padilla, A.; Saffin, Paul M.; Skordis, C. E-mail: antonio.padilla@nottingham.ac.uk E-mail: skordis@ucy.ac.cy
2015-06-01
Light degrees of freedom that modify gravity on cosmological scales must be ''screened' on solar system scales in order to be compatible with data. The Vainshtein mechanism achieves this through a breakdown of classical perturbation theory, as large interactions involving new degrees of freedom become important below the so-called Vainshtein radius. We begin to develop an extension of the Parameterized Post-Newtonian (PPN) formalism that is able to handle Vainshteinian corrections. We argue that theories with a unique Vainshtein scale must be expanded using two small parameters. In this Parameterized Post-Newtonian-Vainshteinian (PPNV) expansion, the primary expansion parameter that controls the PPN order is, as usual, the velocity v. The secondary expansion parameter, α, controls the strength of the Vainshteinian correction and is a theory-specific combination of the Schwarzschild radius and the Vainshtein radius of the source that is independent of its mass. We present the general framework and apply it to Cubic Galileon theory both inside and outside the Vainshtein radius. The PPNV framework can be used to determine the compatibility of such theories with solar system and other strong-field data.
Scale-up from batch to flow-through wet milling process for injectable depot formulation.
Lehocký, Róbert; Pěček, Daniel; Štěpánek, František
2016-12-01
Injectable depot formulations are aimed at providing long-term sustained release of a drug into systemic circulation, thus reducing plasma level fluctuations and improving patient compliance. The particle size distribution of the formulation in the form of suspension is a key parameter that controls the release rate. In this work, the process of wet stirred media milling (ball milling) of a poorly water-soluble substance has been investigated with two main aims: (i) to determine the parametric sensitivity of milling kinetics; and (ii) to develop scale-up methodology for process transfer from batch to flow-through arrangement. Ball milling experiments were performed in two types of ball mills, a batch mill with a 30ml maximum working volume, and a flow-through mill with a 250ml maximum working volume. Milling parameters were investigated in detail by methodologies of QbD to map the parametric space. Specifically, the effects of ball size, ball fill level, and rpm on the particle breakage kinetics were systematically investigated at both mills, with an additional parameter (flow-rate) in the case of the flow-through mill. The breakage rate was found to follow power-law kinetics with respect to dimensionless time, with an asymptotic d50 particle size in the range of 200-300nm. In the case of the flow-through mill, the number of theoretical passes through the mill was found to be an important scale-up parameter.
Bistability in a simple fluid network due to viscosity contrast.
Geddes, John B; Storey, Brian D; Gardner, David; Carr, Russell T
2010-04-01
We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity-sucrose solution and water. Possible applications include blood flow, microfluidics, and other network flows governed by similar principles.
Electrorheological Fluids: Aerospace Applications
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Eftekhari, A.; Belvin, K. W.; Singh, J. J.
1996-01-01
Electrorheological fluids (ERF) are an intriguing class of non-Newtonian industrial fluids. They consist of fine dielectric particles suspended in liquids of low dielectric constants. The objectives of this research were to select a particulate system such that: (1) its density can be varied to match that of the selected liquid, and (2) the dielectric constant of the particles and the liquids should be such that the critical fields needed for asymptotic increase in viscosity are less than or equal to 10 KV/cm. Synthetic Zeolite particles were selected as the solute/suspensions. Octoil oil was selected as the solvent. The results are summarized here.
Microsphere interaction with non-Newtonian solid-supported films to model respiratory therapies
NASA Astrophysics Data System (ADS)
Lee, Nathan; Ally, Javed; Kappl, Michael; Butt, Hans-Jürgen
2012-10-01
Films used as lubricants and particle filters interact with microspheres. One example of a biological particle filter is the mucus lining the human respiratory system. In the conducting airways of the respiratory tract, a 10 μm thick layer of mucus sits on top of a periciliary layer. These cilia sweep the mucus towards the nose and mouth whereby debris, such as dust and bacteria that are trapped by the mucus layer, may be expelled from the body. Mucus, like other biofluids, can be modeled after a non-Newtonian fluid due to their viscoelastic properties. Interactions between particles and non-Newtonian thin films have not been widely characterized. Atomic force microscopy (AFM) is an ideal technique due to its ability to measure in the microNewtown and micrometer scale. The AFM setup also allows for calculation of the force from direct contact of the particle with the film. Data from these experiments may further the development aerosol-based respiratory therapies. Factors such as particle size and approach speed are necessary to determine improved parameters for drug deposition and retention. It is the goal of this study to analyze interaction forces between particles and non-Newtonian solid-supported films.
Ruiz-Medina, A; Fernández-de Córdova, M L; Molina-Díaz, A
2001-07-01
A flow-through optosensor with fluorimetric transduction has been prepared for the sensitive and selective determination of dipyridamole in aqueous solutions and biological fluids. The method is based on a monochannel flow-injection analysis system using Sephadex QAE A-25 resin, placed into a Hellma 176-QS fluorimetric flow-through cell, as an active sorbing substrate. The native fluorescence of dipyridamole fixed on the solid sorbent is continuously monitored at wavelengths of 305 and 490 nm for excitation and emission, respectively. After obtaining the maximum fluorescence intensity, the eluent solution (KH(2)PO(4)/NaOH buffer solution, c(T)=0.05 mol l(-1), pH 6.0) is allowed to reach the flow cell, the analyte is removed, and the resin support is regenerated. When an NaOH (10(-4) mol l(-1))/NaCl (0.1 mol l(-1)) solution is used as carrier solution, at a flow-rate of 1.56 ml min(-1), the sensor responds linearly in the measuring range of 10-500 microg l(-1) with a detection limit of 0.94 microg l(-1) and a throughput of 22 samples per hour (300 microl of sample volume). The relative standard deviation for ten independent determinations (200 microg l(-1)) is less than 0.82%. The method was satisfactorily applied to the determination of dipyridamole in pharmaceutical preparations and human plasma.
Lee, Pilhwa; Wolgemuth, Charles W.
2016-01-01
The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels. PMID:26858520
Comparison of viscous fingering patterns in polymer and newtonian solutions
NASA Astrophysics Data System (ADS)
Kawaguchi, Masami; Makino, Kyoko; Kato, Tadaya
1997-02-01
Viscous fingering patterns of aqueous glycerol and hydroxypropyl methyl cellulose (HPMC) solutions pushed by air in the Hele-Shaw cell were observed as a function of isopropyl alcohol. An increase in isopropyl alcohol led to a decrease in surface tension as well as an increase in viscosity of the respective solutions. For the glycerol solutions, namely Newtonian fluids, only the tip splitting pattern was observed, where the fingers were indeed narrower and the number of the fingers increased with increasing isopropyl alcohol content. These morphological changes in the patterns for the glycerol solutions were in agreement with the computer simulations based on the diffusion limited aggregation model. The finger tip velocity is proportional to the ratio of the injection pressure to viscosity according to Darcy's law prediction. In contrast, for HPMC solutions, which show shear-thinning, highly branched pattern only appeared when the injection pressure was changed. When isopropyl alcohol was added to HPMC solutions, a morphological transition from highly branched pattern to tip splitting one was observed. The transition in the pattern would be related to changes in both elastic properties and surface tension. The finger tip velocity of HPMC solutions is scaled with 1.5 power of the ratio of injection pressure to viscosity.
Curved non-relativistic spacetimes, Newtonian gravitation and massive matter
Geracie, Michael Prabhu, Kartik Roberts, Matthew M.
2015-10-15
There is significant recent work on coupling matter to Newton-Cartan spacetimes with the aim of investigating certain condensed matter phenomena. To this end, one needs to have a completely general spacetime consistent with local non-relativistic symmetries which supports massive matter fields. In particular, one cannot impose a priori restrictions on the geometric data if one wants to analyze matter response to a perturbed geometry. In this paper, we construct such a Bargmann spacetime in complete generality without any prior restrictions on the fields specifying the geometry. The resulting spacetime structure includes the familiar Newton-Cartan structure with an additional gauge field which couples to mass. We illustrate the matter coupling with a few examples. The general spacetime we construct also includes as a special case the covariant description of Newtonian gravity, which has been thoroughly investigated in previous works. We also show how our Bargmann spacetimes arise from a suitable non-relativistic limit of Lorentzian spacetimes. In a companion paper [M. Geracie et al., e-print http://arxiv.org/abs/1503.02680 ], we use this Bargmann spacetime structure to investigate the details of matter couplings, including the Noether-Ward identities, and transport phenomena and thermodynamics of non-relativistic fluids.
Newtonian Version of the Variable Mass Theory of Gravity
NASA Astrophysics Data System (ADS)
Carvalho, J. C.; Lima, J. A. S.
1990-11-01
RESUMEN. Se presenta una versi6n Newtoniana de los modelos cosmol6gicos espacialmente e isotr6picos con masa variable. La influencia de la variaci6n de masa en la evoluci6n de la funci6n de escala est establecida para el caso de un Universo lieno de polvo bajo Ia suposici6n de que esta variaci6n es un efecto estrictamente cosmol6jico. Se muestra que el hiperb6lico, parab6lico 0 el#ptico dcl movimiento de puede ser modificado a lo larjo de la expansi6n. ABSTRACT. This paper presents a Newtonian version of the spatially homojeneous and isotropic cosmolojical models with variable mass. The influence of the mass variation on the evolution of the scale function is established for the case of a dust-filled Universe under the assumption that this variation is a strict cosmolojical effect. It is shown that the hyperbolic, parabolic or elliptic character of the fluid motion can be modified alonj the expansion. Keq : COSMOLOGY
Unsteady Boundary-Layer Flow over Jerked Plate Moving in a Free Stream of Viscoelastic Fluid
Mehmood, Ahmer; Ali, Asif; Saleem, Najma
2014-01-01
This study aims to investigate the unsteady boundary-layer flow of a viscoelastic non-Newtonian fluid over a flat surface. The plate is suddenly jerked to move with uniform velocity in a uniform stream of non-Newtonian fluid. Purely analytic solution to governing nonlinear equation is obtained. The solution is highly accurate and valid for all values of the dimensionless time 0 ≤ τ < ∞. Flow properties of the viscoelastic fluid are discussed through graphs. PMID:24892060
Microgravity Fluids for Biology, Workshop
NASA Technical Reports Server (NTRS)
Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.
2013-01-01
Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.
Soulis, Johannes V.; Fytanidis, Dimitrios K.; Lampri, Olga P.; Giannoglou, George D.
2016-01-01
Background The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. Methods The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Results Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. Conclusions We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta. PMID:28197271
Non-Newtonian Liquid Flow through Small Diameter Piping Components: CFD Analysis
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Tarun Kanti; Das, Sudip Kumar
2016-10-01
Computational Fluid Dynamics (CFD) analysis have been carried out to evaluate the frictional pressure drop across the horizontal pipeline and different piping components, like elbows, orifices, gate and globe valves for non-Newtonian liquid through 0.0127 m pipe line. The mesh generation is done using GAMBIT 6.3 and FLUENT 6.3 is used for CFD analysis. The CFD results are verified with our earlier published experimental data. The CFD results show the very good agreement with the experimental values.
Weak solutions for a non-Newtonian diffuse interface model with different densities
NASA Astrophysics Data System (ADS)
Abels, Helmut; Breit, Dominic
2016-11-01
We consider weak solutions for a diffuse interface model of two non-Newtonian viscous, incompressible fluids of power-law type in the case of different densities in a bounded, sufficiently smooth domain. This leads to a coupled system of a nonhomogenouos generalized Navier-Stokes system and a Cahn-Hilliard equation. For the Cahn-Hilliard part a smooth free energy density and a constant, positive mobility is assumed. Using the {{L}∞} -truncation method we prove existence of weak solutions for a power-law exponent p>\\frac{2d+2}{d+2} , d = 2, 3.
Dynamics-dependent symmetries in Newtonian mechanics
NASA Astrophysics Data System (ADS)
Holland, Peter
2014-01-01
We exhibit two symmetries of one-dimensional Newtonian mechanics whereby a solution is built from the history of another solution via a generally nonlinear and complex potential-dependent transformation of the time. One symmetry intertwines the square roots of the kinetic and potential energies and connects solutions of the same dynamical problem (the potential is an invariant function). The other symmetry connects solutions of different dynamical problems (the potential is a scalar function). The existence of corresponding conserved quantities is examined using Noether's theorem and it is shown that the invariant-potential symmetry is correlated with energy conservation. In the Hamilton-Jacobi picture the invariant-potential transformation provides an example of a ‘field-dependent’ symmetry in point mechanics. It is shown that this transformation is not a symmetry of the Schrödinger equation.
Hartle formalism for rotating Newtonian configurations
NASA Astrophysics Data System (ADS)
Boshkayev, Kuantay; Quevedo, Hernando; Kalymova, Zhanerke; Zhami, Bakytzhan
2016-11-01
We apply the Hartle formalism to study equilibrium configurations in the framework of Newtonian gravity. This approach allows one to study in a simple manner the properties of the interior gravitational field in the case of static as well as stationary rotating stars in hydrostatic equilibrium. It is shown that the gravitational equilibrium conditions reduce to a system of ordinary differential equations which can be integrated numerically. We derive all the relevant equations up to the second order in the angular velocity. Moreover, we find explicitly the total mass, the moment of inertia, the quadrupole moment, the polar and equatorial radii, the eccentricity and the gravitational binding energy of the rotating body. We also present the procedure to calculate the gravitational Love number. We test the formalism in the case of white dwarfs and show its compatibility with the known results in the literature.
Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin
2015-12-01
In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
NASA Astrophysics Data System (ADS)
Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao
2016-03-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential phi is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+phi=Script O(phi2)—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+phi= [Script O(phi2),Script O(cs2phi δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to -1, where w and cs are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+phi=Script O(phi2) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to -1.
Perturbed Newtonian description of the Lemaître model with non-negligible pressure
Yamamoto, Kazuhiro; Marra, Valerio; Mukhanov, Viatcheslav; Sasaki, Misao E-mail: valerio.marra@me.com E-mail: misao@yukawa.kyoto-u.ac.jp
2016-03-01
We study the validity of the Newtonian description of cosmological perturbations using the Lemaître model, an exact spherically symmetric solution of Einstein's equation. This problem has been investigated in the past for the case of a dust fluid. Here, we extend the previous analysis to the more general case of a fluid with non-negligible pressure, and, for the numerical examples, we consider the case of radiation (P=ρ/3). We find that, even when the density contrast has a nonlinear amplitude, the Newtonian description of the cosmological perturbations using the gravitational potential ψ and the curvature potential φ is valid as long as we consider sub-horizon inhomogeneities. However, the relation ψ+φ=O(φ{sup 2})—which holds for the case of a dust fluid—is not valid for a relativistic fluid, and an effective anisotropic stress is generated. This demonstrates the usefulness of the Lemaître model which allows us to study in an exact nonlinear fashion the onset of anisotropic stress in fluids with non-negligible pressure. We show that this happens when the characteristic scale of the inhomogeneity is smaller than the sound horizon and that the deviation is caused by the nonlinear effect of the fluid's fast motion. We also find that ψ+φ= [O(φ{sup 2}),O(c{sub s}{sup 2φ} δ)] for an inhomogeneity with density contrast δ whose characteristic scale is smaller than the sound horizon, unless w is close to −1, where w and c{sub s} are the equation of state parameter and the sound speed of the fluid, respectively. On the other hand, we expect ψ+φ=O(φ{sup 2}) to hold for an inhomogeneity whose characteristic scale is larger than the sound horizon, unless the amplitude of the inhomogeneity is large and w is close to −1.
NASA Astrophysics Data System (ADS)
Deyranlou, Amin; Niazmand, Hamid; Sadeghi, Mahmood-Reza; Mesri, Yaser
2016-06-01
Blood non-Newtonian behavior on low-density lipoproteins (LDL) accumulation is analyzed numerically, while fluid-multilayered arteries are adopted for nonstenotic and 30%-60% symmetrical stenosed models. Present model considers non-Newtonian effects inside the lumen and within arterial layers simultaneously, which has not been examined in previous studies. Navier-Stokes equations are solved along with the mass transport convection-diffusion equations and Darcy’s model for species transport inside the luminal flow and across wall layers, respectively. Carreau model for the luminal flow and the modified Darcy equation for the power-law fluid within arterial layers are employed to model blood rheological characteristics, appropriately. Results indicate that in large arteries with relatively high Reynolds number Newtonian model estimates LDL concentration patterns well enough, however, this model seriously incompetent for regions with low WSS. Moreover, Newtonian model for plasma underestimates LDL concentration especially on luminal surface and across arterial wall. Therefore, applying non-Newtonian model seems essential for reaching to a more accurate estimation of LDL distribution in the artery. Finally, blood flow inside constricted arteries demonstrates that LDL concentration patterns along the stenoses inside the luminal flow and across arterial layers are strongly influenced as compared to the nonstenotic arteries. Additionally, among four stenosis severity grades, 40% stenosis is prone to more LDL accumulation along the post-stenotic regions.
Steady flow for shear thickening fluids in domains with unbounded sections
NASA Astrophysics Data System (ADS)
Dias, Gilberlandio J.
2017-02-01
We solve the stationary Stokes and Navier-Stokes equations for non-Newtonian incompressible fluids with shear dependent viscosity in domains with outlets containing unbounded cross sections, in the case of shear thickening viscosity. The flux assumes arbitrary given values and the growth of the cross sections are analyzed under different convergence hypotheses, inclusive the growth of Dirichlet's integral of the velocity field is deeply related the convergence hypotheses of such sections. We extend the results of the section 4 of [12, Ladyzhenskaya and Solonnikov] (for Newtonian fluids) to non-Newtonian fluids using the techniques found in [3, Dias and Santos].
NASA Technical Reports Server (NTRS)
Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.
1992-01-01
A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.
Sinking of spherical slablets through a non-Newtonian mantle
NASA Astrophysics Data System (ADS)
Crameri, Fabio; Stegman, Dave; Petersen, Robert; Tackley, Paul
2014-05-01
The dominant driving force for plate tectonics is slab pull, in which sinking slabs pull the trailing plate. Forward plate velocities are typically similar in magnitude (7 cm/yr) as estimates for sinking velocities of slabs through the upper mantle. However, these estimates are based on data for slabs that are coherent into the transition zone as well as models that considered the upper mantle to be entirely Newtonian. Dislocation creep in the upper mantle can strongly influence mantle flow, and is likely activated for flow around vertically sinking slabs in the uppermost mantle. Thus, it is possible that in some scenarios, a non-Newtonian mantle will have an influence on plate motions but it is unclear to what degree. To address this question, we investigate how the non-Newtonian rheology modifies the sinking velocities of slablets (spherical, negatively buoyant and highly viscous blobs). The model set-up is similar to a Stokes sphere sinking, but is in 2-D cartesian with temperature-and stress-dependent rheology. For these numerical models, we use the Stag-YY code (e.g., Tackley 2008) and apply a pseudo-free surface using the 'sticky-air' approach (Matsumoto and Tomoda 1983; Schmeling et al, 2008, Crameri et al., 2012). The sinking blob is both highly viscous and compositionally dense, but is the same temperature as the background fluid which eliminates thermal diffusion and associated variations in thermal buoyancy. The model domain is 2x1 or 4x1 and allows enough distance to the sidewalls so that sinking velocities are not influenced by the boundary conditions. We compare our results with those previously obtained for salt diapirs rising through a power-law rheology mantle/crust (Weinberg, 1993; Weinberg and Podladchikov, 1994), which provided both numerical and analytic results. Previous results indicate a speed-up of an order of magnitude is possible. Finally, we then extend the models and analysis to mantle convection systems that include for single
Relativistic interpretation of Newtonian simulations for cosmic structure formation
NASA Astrophysics Data System (ADS)
Fidler, Christian; Tram, Thomas; Rampf, Cornelius; Crittenden, Robert; Koyama, Kazuya; Wands, David
2016-09-01
The standard numerical tools for studying non-linear collapse of matter are Newtonian N-body simulations. Previous work has shown that these simulations are in accordance with General Relativity (GR) up to first order in perturbation theory, provided that the effects from radiation can be neglected. In this paper we show that the present day matter density receives more than 1% corrections from radiation on large scales if Newtonian simulations are initialised before z=50. We provide a relativistic framework in which unmodified Newtonian simulations are compatible with linear GR even in the presence of radiation. Our idea is to use GR perturbation theory to keep track of the evolution of relativistic species and the relativistic space-time consistent with the Newtonian trajectories computed in N-body simulations. If metric potentials are sufficiently small, they can be computed using a first-order Einstein-Boltzmann code such as CLASS. We make this idea rigorous by defining a class of GR gauges, the Newtonian motion gauges, which are defined such that matter particles follow Newtonian trajectories. We construct a simple example of a relativistic space-time within which unmodified Newtonian simulations can be interpreted.
NASA Astrophysics Data System (ADS)
Akbari, Omid Ali; Toghraie, Davood; Karimipour, Arash; Marzban, Ali; Ahmadi, Gholam Reza
2017-02-01
In this investigation, the behavior of non-Newtonian nanofluid hydrodynamic and heat transfer are simulated. In this study, we numerically simulated a laminar forced non-Newtonian nanofluid flow containing a 0.5 wt% carboxy methyl cellulose (CMC) solutionin water as the base fluid with alumina at volume fractions of 0.5 and 1.5 as the solid nanoparticle. Numerical solution was modelled in Cartesian coordinate system in a two-dimensional microchannel in Reynolds number range of 10≤Re≤1000. The analyzed geometrical space here was a rectangular part of whose upper and bottom walls was influenced by a constant temperature. The effect of volume fraction of the nanoparticles, Reynolds number and non-Newtonian nanofluids was studied. In this research, the changes pressure drop, the Nusselt number, dimensionless temperature and heat transfer coefficient, caused by the motion of non-Newtonian nanofluids are described. The results indicated that the increase of the volume fraction of the solid nanoparticles and a reduction in the diameter of the nanoparticles would improve heat transfer which is more significant in Reynolds number. The results of the introduced parameters in the form of graphs drawing and for different parameters are compared.
Intermittent flow in yield-stress fluids slows down chaotic mixing.
Wendell, D M; Pigeonneau, F; Gouillart, E; Jop, P
2013-08-01
We present experimental results of chaotic mixing of Newtonian fluids and yield-stress fluids using a rod-stirring protocol with a rotating vessel. We show how the mixing of yield-stress fluids by chaotic advection is reduced compared to the mixing of Newtonian fluids and explain our results, bringing to light the relevant mechanisms: the presence of fluid that only flows intermittently, a phenomenon enhanced by the yield stress, and the importance of the peripheral region. This finding is confirmed via numerical simulations. Anomalously slow mixing is observed when the synchronization of different stirring elements leads to the repetition of slow stretching for the same fluid particles.
A flow-through hydrothermal cell for in situ neutron diffraction studies of phase transformations
NASA Astrophysics Data System (ADS)
O'Neill, Brian; Tenailleau, Christophe; Nogthai, Yung; Studer, Andrew; Brugger, Joël; Pring, Allan
2006-11-01
A flow-through hydrothermal cell for the in situ neutron diffraction study of crystallisation and phase transitions has been developed. It can be used for kinetic studies on materials that exhibit structural transformations under hydrothermal conditions. It is specifically designed for use on the medium-resolution powder diffractometer (MRPD) at ANSTO, Lucas Heights, Sydney. But it is planned to adapt the design for the Polaris beamline at ISIS and the new high-intensity powder diffractometer (Wombat) at the new Australian reactor Opal. The cell will operate in a flow-through mode over the temperature range from 25-300 °C and up to pressures of 100 bar. The first results of a successful transformation of pentlandite (Fe,Ni) 9S 8 to violarite (Fe,Ni) 3S 4 under mild conditions (pH∼4) at 120 °C and 3 bar using in situ neutron diffraction measurements are presented.
Multicommuted flow-through fluorescence optosensor for determination of furosemide and triamterene.
Llorent-Martínez, E J; Ortega-Barrales, P; Molina-Díaz, A
2005-11-01
Multicommutation implemented with flow-through optosensors is a very promising area of research. This recent approach benefits from the advantages of both methods and results in high sensitivity, selectivity, and speed, and little waste generation. This paper reports the simultaneous determination of furosemide and triamterene, two widely used diuretics, by measurement of their native fluorescence. The system has been proved to be useful for determination of both analytes in pharmaceutical preparations and for determination of triamterene in human urine and serum. A minicolumn filled with Sephadex SPC-25 microbeads was used to achieve separation of both analytes before detection in a flow-through cell filled with the same resin. The sensor is linear in the range 50-1200 and 0.4-8 ng mL(-1) with detection limits of 15 and 0.1 ng mL(-1) for furosemide and triamterene, respectively.
Automated high-throughput flow-through real-time diagnostic system
Regan, John Frederick
2012-10-30
An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.
Development of a micro flow-through cell for high field NMR spectroscopy.
Alam, Todd Michael; McIntyre, Sarah K.
2011-05-01
A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.
Fabrication and characterization of a flow-through nanoporous gold nanowire/AAO composite membrane
NASA Astrophysics Data System (ADS)
Liu, L.; Lee, W.; Huang, Z.; Scholz, R.; Gösele, U.
2008-08-01
The fabrication of a composite membrane of nanoporous gold nanowires and anodic aluminum oxide (AAO) is demonstrated by the electrodeposition of Au-Ag alloy nanowires into an AAO membrane, followed by selective etching of silver from the alloy nanowires. This composite membrane is advantageous for flow-through type catalytic reactions. The morphology evolution of the nanoporous gold nanowires as a function of the diameter of the Au-Ag nanowire 'precursors' is also investigated.
Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test
NASA Technical Reports Server (NTRS)
Larkin, Michael J.; Schweiger, Paul S.
1992-01-01
A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.
Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout
Welsh, P.G.; Lipton, J.; Mebane, C.A.; Marr, J.C.A.
2008-01-01
We examined changes in water chemistry and copper (Cu) toxicity in three paired renewal and flow-through acute bioassays with rainbow trout (Oncorhynchus mykiss). Test exposure methodology influenced both exposure water chemistry and measured Cu toxicity. Ammonia and organic carbon concentrations were higher and the fraction of dissolved Cu lower in renewal tests than in paired flow-through tests. Cu toxicity was also lower in renewal tests; 96 h dissolved Cu LC50 values were 7-60% higher than LC50s from matching flow-through tests. LC50 values in both types of tests were related to dissolved organic carbon (DOC) concentrations in exposure tanks. Increases in organic carbon concentrations in renewal tests were associated with reduced Cu toxicity, likely as a result of the lower bioavailability of Cu-organic carbon complexes. The biotic ligand model of acute Cu toxicity tended to underpredict toxicity in the presence of DOC. Model fits between predicted and observed toxicity were improved by assuming that only 50% of the measured DOC was reactive, and that this reactive fraction was present as fulvic acid. ?? 2007 Elsevier Inc. All rights reserved.
Jedryczko, Dominika; Pohl, Pawel; Welna, Maja
2016-04-01
A simple and inexpensive method for chemical speciation of inorganic As in natural mineral drinking waters by using anodic stripping chronopotentiometry (ASCP) in an electrochemical flow-through cell with an Au wire as the working electrode was described in the present work. The presented method is an attractive alternative to laborious and time-consuming procedures requiring pre-separation of various forms of As before their detection by other flow-through and non flow-through stripping methods. The limits of detection were found to be 0.42 µg L(-1) for As(III) and 0.55 µg L(-1) for As(V), obtained at the deposition potentials of -350 mV and -1600 mV, respectively. The accuracy of the method was assessed by the spiking-and-recovery experiments for particular water samples and the recoveries found, being in range from 99% to 105% for As(III) and from 104% to 106% for As(V), respectively, were quantitative. The proposed method was successfully applied to speciation analysis of inorganic As in water samples with a high content of Cu.
The post-Newtonian treatment of an elastic deformable Earth
NASA Astrophysics Data System (ADS)
Xu, C.; Wu, X.; Soffel, M.
Here we deal with the problem of rotational motion of some deformable astronomical body such as the Earth. The Newtonian derivation of the dynamical equation of the displacement field is reviewed. Then the formalism of the displacement field in Einstein's theory of gravity is discussed. We have derived the post-Newtonian equations for the displacement field. Some important steps in the derivation are indicated. More details will be published elsewhere.
Newtonian limit of fully nonlinear cosmological perturbations in Einstein's gravity
Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr
2013-04-01
We prove that in the infinite speed-of-light limit (i.e., non-relativistic and subhorizon limits), the relativistic fully nonlinear cosmological perturbation equations in two gauge conditions, the zero-shear gauge and the uniform-expansion gauge, exactly reproduce the Newtonian hydrodynamic perturbation equations in the cosmological background; as a consequence, in the same two gauge conditions, the Newtonian hydrodynamic equations are exactly recovered in the Minkowsky background.
Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows
NASA Astrophysics Data System (ADS)
Mannheimer, R. J.; Grimley, T. A.; Park, J. T.; Morrow, T. B.
1987-04-01
The structure of non-Newtonian slurries in laminar, transitional, and turbulent flow regimes in pipes is studied. Experiments are conducted in a large-scale pipe slurry flow facility with an inside pipe diameter of 51 mm. Flow measurements including turbulence quantities such as Reynolds stress are taken with a two-component laser-Doppler velocimeter in a transparent test section with a transparent model slurry. Two transparent model slurries have been developed with non-Newtonian rheological properties. Silica gel particles with diameters on the order of one micron are suspended in two different hydrocarbon liquid mixtures with viscosities of 1.19 and 6.39 cS. In rheological measurements with a concentric cylinder viscometer, slurries from both liquid mixtures exhibited slip. From a linear regression analysis with a power-law model, slurries with the higher viscosity fluid had yield values of 80 and 30 dyn/sq cm for silica gel concentrations of 5.6 and 4.0% by weight, respectively, and the exponents were 0.584 and 0.763. The measured refractive index for the transparent slurries is 1.454 where the difference in refractive index between the fluid and silica gel is estimated to be less than 0.001. Bench scale tests with large diameter silica gel particles on the order of 100 microns have produced slurries with excessive turbidity. A silica gel manufactured by a different process which may form a less turbid slurry is currently under investigation.
Borehole measurement of the Newtonian gravitational constant
NASA Astrophysics Data System (ADS)
Hsui, Albert T.
1987-08-01
Gravimetric measurements in a borehole within the Michigan Basin, obtained in September 1983, were utilized to estimate the Newtonian gravitational constant. Gravitational constants are computed using gravity measurements from two stations along the same vertical and by knowing the total rock mass sandwiched between these two stations. The calculation of rock formation density using a gamma-gamma density log is described. The gravity values are analyzed in terms of reference surface values, and it is observed that the gravity increases with depth. Borehole measurement determined gravity constant values ranged from 6.6901 + or - 0.0668 x 10 to the -11th cu m/kg sec sq (at station separation 264.5 + or - 0.5 m) to 6.7000 + or - 0.0650 x 10 to the -11th cu m/kg sec sq (at 1163.5 + or - 0.5 m), which are higher than the laboratory value of Luther and Towler (1982) of 6.672 + or - 0.0004 x 10 to the -11th cu m/kg sec sq. It is noted that the data correlate well with the values of Stacey (1981).
The Newtonian potential of thin disks
NASA Astrophysics Data System (ADS)
Huré, J.-M.; Hersant, F.
2011-07-01
The one-dimensional, ordinary differential equation (ODE) that satisfies the midplane gravitational potential of truncated, flat power-law disks is extended to the whole physical space. It is shown that thickness effects (i.e. non-flatness) can be easily accounted for by implementing an appropriate "softening length" λ. The solution of this "softened ODE" has the following properties: i) it is regular at the edges (finite radial accelerations); ii) it possesses the correct long-range properties; iii) it matches the Newtonian potential of a geometrically thin disk very well; and iv) it tends continuously to the flat disk solution in the limit λ → 0. As illustrated by many examples, the ODE, subject to exact Dirichlet conditions, can be solved numerically with efficiency for any given colatitude at second-order from center to infinity using radial mapping. This approach is therefore particularly well-suited to generating grids of gravitational forces in order to study particles moving under the field of a gravitating disk as found in various contexts (active nuclei, stellar systems, young stellar objects). Extension to non-power-law surface density profiles is straightforward through superposition. Grids can be produced upon request.
Simulation of a pulsatile non-Newtonian flow past a stenosed 2D artery with atherosclerosis.
Tian, Fang-Bao; Zhu, Luoding; Fok, Pak-Wing; Lu, Xi-Yun
2013-09-01
Atherosclerotic plaque can cause severe stenosis in the artery lumen. Blood flow through a substantially narrowed artery may have different flow characteristics and produce different forces acting on the plaque surface and artery wall. The disturbed flow and force fields in the lumen may have serious implications on vascular endothelial cells, smooth muscle cells, and circulating blood cells. In this work a simplified model is used to simulate a pulsatile non-Newtonian blood flow past a stenosed artery caused by atherosclerotic plaques of different severity. The focus is on a systematic parameter study of the effects of plaque size/geometry, flow Reynolds number, shear-rate dependent viscosity and flow pulsatility on the fluid wall shear stress and its gradient, fluid wall normal stress, and flow shear rate. The computational results obtained from this idealized model may shed light on the flow and force characteristics of more realistic blood flow through an atherosclerotic vessel.
Sharifi, Alireza; Niazmand, Hamid
2015-10-01
Carotid siphon is known as one of the risky sites among the human intracranial arteries, which is prone to formation of atherosclerotic lesions. Indeed, scientists believe that accumulation of low density lipoprotein (LDL) inside the lumen is the major cause of atherosclerosis. To this aim, three types of internal carotid artery (ICA) siphon have been constructed to examine variations of hemodynamic parameters in different regions of the arteries. Providing real physiological conditions, blood considered as non-Newtonian fluid and real velocity and pressure waveforms have been employed as flow boundary conditions. Moreover, to have a better estimation of risky sites, the accumulation of LDL particles has been considered, which has been usually ignored in previous relevant studies. Governing equations have been discretized and solved via open source OpenFOAM software. A new solver has been built to meet essential parameters related to the flow and mass transfer phenomena. In contrast to the common belief regarding negligible effect of blood non-Newtonian behavior inside large arteries, current study suggests that the non-Newtonian blood behavior is notable, especially on the velocity field of the U-type model. In addition, it is concluded that neglecting non-Newtonian effects underestimates the LDL accumulation up to 3% in the U-type model at the inner side of both its bends. However, in the V and C type models, non-Newtonian effects become relatively small. Results also emphasize that the outer part of the second bend at the downstream is also at risk similar to the inner part of the carotid bends. Furthermore, from findings it can be implied that the risky sites strongly depend on the ICA shape since the extension of the risky sites are relatively larger for the V-type model, while the LDL concentrations are higher for the C-type model.
NASA Astrophysics Data System (ADS)
Kang, Jianhong; Xu, Mingyu
2009-04-01
The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.
Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; ...
2015-09-24
Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and non-equilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in a model, equilibrium soft material comprised of single-component polymer-tethered-nanoparticles. In these materials, polymer mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. Our experimental observations complement the current hypothesis that hyperdiffusive relaxations in soft materials require the material to exist in out–of–equilibrium states capable of driving structural rearrangements. Lastly, we propose alternatively that hyperdiffusive relaxations in our materials can arise naturally frommore » volume fluctuations brought about by equilibrium thermal forces.« less
Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; Koch, Donald L.; Narayanan, Suresh; Archer, Lynden A.
2015-09-24
Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and non-equilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in a model, equilibrium soft material comprised of single-component polymer-tethered-nanoparticles. In these materials, polymer mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. Our experimental observations complement the current hypothesis that hyperdiffusive relaxations in soft materials require the material to exist in out–of–equilibrium states capable of driving structural rearrangements. Lastly, we propose alternatively that hyperdiffusive relaxations in our materials can arise naturally from volume fluctuations brought about by equilibrium thermal forces.
Thermal convection of viscoelastic shear-thinning fluids
NASA Astrophysics Data System (ADS)
Albaalbaki, Bashar; Khayat, Roger E.; Ahmed, Zahir U.
2016-12-01
The Rayleigh-Bénard convection for non-Newtonian fluids possessing both viscoelastic and shear-thinning behaviours is examined. The Phan-Thien-Tanner (PTT) constitutive equation is implemented to model the non-Newtonian character of the fluid. It is found that while the shear-thinning and viscoelastic effects could annihilate one another for the steady roll flow, presence of both behaviours restricts the roll stability limit significantly compared to the cases when the fluid is either inelastic shear-thinning or purely viscoelastic with constant viscosity.
The fluid dynamics of the chocolate fountain
NASA Astrophysics Data System (ADS)
Townsend, Adam K.; Wilson, Helen J.
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.
Kabinejadian, Foad; Ghista, Dhanjoo N
2012-09-01
We have recently developed a novel design for coronary arterial bypass surgical grafting, consisting of coupled sequential side-to-side and end-to-side anastomoses. This design has been shown to have beneficial blood flow patterns and wall shear stress distributions which may improve the patency of the CABG, as compared to the conventional end-to-side anastomosis. In our preliminary computational simulation of blood flow of this coupled sequential anastomoses design, the graft and the artery were adopted to be rigid vessels and the blood was assumed to be a Newtonian fluid. Therefore, the present study has been carried out in order to (i) investigate the effects of wall compliance and non-Newtonian rheology on the local flow field and hemodynamic parameters distribution, and (ii) verify the advantages of the CABG coupled sequential anastomoses design over the conventional end-to-side configuration in a more realistic bio-mechanical condition. For this purpose, a two-way fluid-structure interaction analysis has been carried out. A finite volume method is applied to solve the three-dimensional, time-dependent, laminar flow of the incompressible, non-Newtonian fluid; the vessel wall is modeled as a linearly elastic, geometrically non-linear shell structure. In an iteratively coupled approach the transient shell equations and the governing fluid equations are solved numerically. The simulation results indicate a diameter variation ratio of up to 4% and 5% in the graft and the coronary artery, respectively. The velocity patterns and qualitative distribution of wall shear stress parameters in the distensible model do not change significantly compared to the rigid-wall model, despite quite large side-wall deformations in the anastomotic regions. However, less flow separation and reversed flow is observed in the distensible models. The wall compliance reduces the time-averaged wall shear stress up to 32% (on the heel of the conventional end-to-side model) and somewhat
Complex Fluids and Hydraulic Fracturing.
Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H
2016-06-07
Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.
Non-Newtonian Aspects of Artificial Intelligence
NASA Astrophysics Data System (ADS)
Zak, Michail
2016-05-01
The challenge of this work is to connect physics with the concept of intelligence. By intelligence we understand a capability to move from disorder to order without external resources, i.e., in violation of the second law of thermodynamics. The objective is to find such a mathematical object described by ODE that possesses such a capability. The proposed approach is based upon modification of the Madelung version of the Schrodinger equation by replacing the force following from quantum potential with non-conservative forces that link to the concept of information. A mathematical formalism suggests that a hypothetical intelligent particle, besides the capability to move against the second law of thermodynamics, acquires such properties like self-image, self-awareness, self-supervision, etc. that are typical for Livings. However since this particle being a quantum-classical hybrid acquires non-Newtonian and non-quantum properties, it does not belong to the physics matter as we know it: the modern physics should be complemented with the concept of the information force that represents a bridge to intelligent particle. As a follow-up of the proposed concept, the following question is addressed: can artificial intelligence (AI) system composed only of physical components compete with a human? The answer is proven to be negative if the AI system is based only on simulations, and positive if digital devices are included. It has been demonstrated that there exists such a quantum neural net that performs simulations combined with digital punctuations. The universality of this quantum-classical hybrid is in capability to violate the second law of thermodynamics by moving from disorder to order without external resources. This advanced capability is illustrated by examples. In conclusion, a mathematical machinery of the perception that is the fundamental part of a cognition process as well as intelligence is introduced and discussed.
Aerobreakup of Newtonian and Viscoelastic Liquids
NASA Astrophysics Data System (ADS)
Theofanous, T. G.
2011-01-01
In this review, we consider and unify all aspects of the dynamics of Newtonian and viscoelastic liquid drops in high-speed gas flows, including shock waves. The path to understanding is opened by novel, laser-induced fluorescence visualizations at spatial resolutions of up to 200 pixels for millimeter and exposure times as low as 5 ns. The central role of the competition between Rayleigh-Taylor and Kelvin-Helmholtz instabilities is assessed in the frame of rich aerodynamics, from low subsonic to supersonic, and the multitude of characteristic length scales and timescales at play with varying liquid properties. Acceleration and liquid redistribution (drop deformation) early in the evolution set the stage for this competition, and we insist on an interpretation of the drag coefficient that is physically meaningful. Two principal breakup regimes (patterns of bodily loss of coherence) are identified depending on whether the gas finds its way through the liquid mass, causing gross disintegration, or goes around to induce, through shear, a surface-layer peeling-and-ejection action. Corresponding criticalities are quantified in terms of key physics, consistent with experiments. This covers in a unified fashion all liquids, independent of viscosity and elasticity, and the potential role of direct numerical simulations in supporting further advances is forecast. The resulting particle-size distributions (in a final equilibrium cloud) depend crucially on the pattern of breakup, although in this respect the role of elasticity obtains a special significance in terms of the underlying entangled-polymer-chain dynamics. From a more general perspective, we explain the canonical significance of this fundamental problem and summarize the wide range of its practical relevance, including the recently renewed interest in predicting shock-induced fluidization (or high-speed, atmospheric dissemination) of large masses of liquid agents (so-called weapons of mass destruction).
Axially symmetric pseudo-Newtonian hydrodynamics code
NASA Astrophysics Data System (ADS)
Kim, Jinho; Kim, Hee Il; Choptuik, Matthew William; Lee, Hyung Mok
2012-08-01
We develop a numerical hydrodynamics code using a pseudo-Newtonian formulation that uses the weak-field approximation for the geometry, and a generalized source term for the Poisson equation that takes into account relativistic effects. The code was designed to treat moderately relativistic systems such as rapidly rotating neutron stars. The hydrodynamic equations are solved using a finite volume method with high-resolution shock-capturing techniques. We implement several different slope limiters for second-order reconstruction schemes and also investigate higher order reconstructions such as the piecewise parabolic method, essentially non-oscillatory method (ENO) and weighted ENO. We use the method of lines to convert the mixed spatial-time partial differential equations into ordinary differential equations (ODEs) that depend only on time. These ODEs are solved using second- and third-order Runge-Kutta methods. The Poisson equation for the gravitational potential is solved with a multigrid method, and to simplify the boundary condition, we use compactified coordinates which map spatial infinity to a finite computational coordinate using a tangent function. In order to confirm the validity of our code, we carry out four different tests including one- and two-dimensional shock tube tests, stationary star tests of both non-rotating and rotating models, and radial oscillation mode tests for spherical stars. In the shock tube tests, the code shows good agreement with analytic solutions which include shocks, rarefaction waves and contact discontinuities. The code is found to be stable and accurate: for example, when solving a stationary stellar model the fractional changes in the maximum density, total mass, and total angular momentum per dynamical time are found to be 3 × 10-6, 5 × 10-7 and 2 × 10-6, respectively. We also find that the frequencies of the radial modes obtained by the numerical simulation of the steady-state star agree very well with those obtained by
Gas-driven displacement of a non-Newtonian liquid in a radial Hele-Shaw cell
NASA Astrophysics Data System (ADS)
White, Andrew; Ward, Thomas
2012-11-01
The displacement of a non-Newtonian liquid by a less viscous fluid has applications in a number of industries such as lubricating oils, injection molding and cement placement in oil wells to name a few. A convenient geometry to study such a problem is that of the Hele-Shaw cell due to its ability to effectively reduce the flow to two dimensions when the gap spacing is much smaller than the other spatial dimensions. We will study the radial displacement of a finite drop of non-Newtonian shear-thinning and extensionally-thickening liquid by a gas at constant pressure in a Hele-Shaw cell with gap spacing O(10-100) microns. Different concentrations of a polymer in oil will be used to examine changes in the displacement rate, residual film thickness and resulting Saffman-Taylor instability as the viscoelastic time scale overtakes that of the bulk displacement.
Broniarz-Press, L; Sosnowski, T R; Matuszak, M; Ochowiak, M; Jabłczyńska, K
2015-05-15
The paper contains results of the experimental study on atomization process of aqueous solutions of glycerol and aqueous solutions of glycerol-polyacrylamide (Rokrysol WF1) in an ultrasonic inhaler. In experiments the different concentration aqueous solutions of glycerol and glycerol-polyacrylamide have been tested. The results have been obtained by the use of laser diffraction technique. The differences between characteristics of ultrasonic atomization for test liquids have been observed. The analysis of drop size histograms shows that the different sizes of drops have been formed during atomization process. The present study confirmed the previous reports which suggested that the drops size changes with the increase in viscosity of solution changes in spray characteristics were also observed. It has been shown that the shear and extensional viscosities affect the process of atomization.
On the tribological characteristics of dynamically loaded journal bearing with micropolar fluids
NASA Astrophysics Data System (ADS)
Wang, Xiaoli; Wang, Kongying; Zhu, Keqin
2004-01-01
The addition of the additives to the lubricant oil to enhance the characteristics of the lubricant will influence the performance of the bearings. Based on the theory of micropolar fluids, the tribological characteristics of a dynamically-loaded journal bearing are numerically studied. Comparisons are made between the Newtonian fluids and the micropolar fluids. It is shown that for a dynamically-loaded journal bearing, the micropolar fluids yield an increase not only in the friction force, but also in the friction coefficient. In addition, the oil film pressure and the oil film thickness are obviously higher than that of Newtonian fluids.
Current research in cavitating fluid films
NASA Technical Reports Server (NTRS)
Brewe, D. E. (Editor); Ball, J. H. (Editor); Khonsari, M. M. (Editor)
1990-01-01
A review of the current research of cavitation in fluid films is presented. Phenomena and experimental observations include gaseous cavitation, vapor cavitation, and gas entrainment. Cavitation in flooded, starved, and dynamically loaded journal bearings, as well as squeeze films are reviewed. Observations of cavitation damage in bearings and the possibility of cavitation between parallel plates with microasperities were discussed. The transcavity fluid transport process, meniscus motion and geometry or form of the film during rupture, and reformation were summarized. Performance effects were related to heat transfer models in the cavitated region and hysteresis influence on rotor dynamics coefficients. A number of cavitation algorithms was presented together with solution procedures using the finite difference and finite element methods. Although Newtonian fluids were assumed in most of the discussions, the effect of non-Newtonian fluids on cavitation was also discussed.
The stretching of an electrified non-Newtonian jet: A model for electrospinning
NASA Astrophysics Data System (ADS)
Feng, J. J.
2002-11-01
Electrospinning uses an external electrostatic field to accelerate and stretch a charged polymer jet, and may produce ultrafine "nanofibers." Many polymers have been successfully electrospun in the laboratory. Recently Hohman [et al.] [Phys. Fluids, 13, 2201 (2001)] proposed an electrohydrodynamic model for electrospinning Newtonian jets. A problem arises, however, with the boundary condition at the nozzle. Unless the initial surface charge density is zero or very small, the jet bulges out upon exiting the nozzle in a "ballooning instability," which never occurs in reality. In this paper, we will first describe a slightly different Newtonian model that avoids the instability. Well-behaved solutions are produced that are insensitive to the initial charge density, except inside a tiny "boundary layer" at the nozzle. Then a non-Newtonian viscosity function is introduced into the model and the effects of extension thinning and thickening are explored. Results show two distinct regimes of stretching. For a "mildly stretched" jet, the axial tensile force in the fiber resists stretching, so that extension thinning promotes stretching and thickening hinders stretching. For a "severely stretched" jet, on the other hand, the tensile force enhances stretching at the beginning of the jet and suppresses it farther downstream. The effects of extensional viscosity then depend on the competition between the upstream and downstream dynamics. Finally, we use an empirical correlation to simulate strain hardening typical of polymeric liquids. This generally steepens the axial gradient of the tensile stress. Stretching is more pronounced at the beginning but weakens later, and ultimately thicker fibers are produced because of strain hardening.
Wang, Lisen; Lu, Jente; Marchenko, Steven A; Monuki, Edwin S; Flanagan, Lisa A; Lee, Abraham P
2009-03-01
This paper presents a novel design and separation strategy for lateral flow-through separation of cells/particles in microfluidics by dual frequency coupled dielectrophoresis (DEP) forces enabled by vertical interdigitated electrodes embedded in the channel sidewalls. Unlike field-flow-fractionation-DEP separations in microfluidics, which utilize planar electrodes on the microchannel floor to generate a DEP force to balance the gravitational force and separate objects at different height locations, lateral separation is enabled by sidewall interdigitated electrodes that are used to generate non-uniform electric fields and balanced DEP forces along the width of the microchannel. In the current design, two separate AC electric fields are applied to two sets of independent interdigitated electrode arrays fabricated in the sidewalls of the microchannel to generate differential DEP forces that act on the cells/particles flowing through. Individual particles (cells or beads) will experience DEP forces differently due to the difference in their dielectric properties. The balance of the differential DEP forces from the electrode arrays will position dissimilar particles at distinct equilibrium planes across the width of the channel. When coupled with fluid flow, this results in lateral separation along the width of the microchannel and the separated particles can thus be automatically directed into branched channel outlets leading to different reservoirs for downstream processing. In this paper, we present the design and analysis of lateral separation enabled by dual frequency coupled DEP, and cell/bead and cell/cell separations are demonstrated with this lateral separation strategy. With vertical interdigitated electrodes on the sidewall, the height of the microchannel can be increased without losing the electric field strength in contrast to other multiple frequency DEP devices with planar electrodes. As a result, populations of cells can be separated simultaneously
Paprskářová, Alice; Možná, Petra; Oga, Enoche F; Elhissi, Abdelbary; Alhnan, Mohamed A
2016-10-01
Supersaturation and precipitation are common limitations encountered especially with poorly soluble basic drugs. The aims of this work were to explore the pattern of dissolution and precipitation of poorly soluble basic drugs using a United States Pharmacopoeia (USP) IV dissolution apparatus and to compare it to the widely used USP II dissolution apparatus. In order to investigate the influence of gastric emptying time on bioavailability, tables of two model drugs (dipyridamole 100 mg and cinnarizine 15 mg) were investigated and pH change from 1.2 to 6.8 were achieved after 10, 20 or 30 min using USP II or USP IV dissolution apparatuses. Using USP II, dipyridamole and cinnarizine concentrations dropped instantly as a result of drug precipitation with drug crystals evident in the dissolution vessel. At pH change times of 10, 20 and 30 min, the total amount of dissolved drug was dependent on pH change time. Using USP IV, at a flow rate of 8 ml/min, it was possible to have comparable release to agitation at 50 rpm using USP II suggesting that comparable hydrodynamic forces are possible. No drop in drug percentage occurs as the dissolved fraction was readily emptied from the flow cell, preventing drug accumulation in the dissolution medium. However, a negligible percentage of drug release took place following pH change. In conclusion, the use of the flow-through cell dissolution provided laminar flow, use of realistic fluid volumes and avoided precipitation of dissolved drug fraction in the gastric phase as it is discharged before pH change.
Zhang, Libing; Yan, Lishi; Wang, Zheming; ...
2015-12-01
In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change
Quantitative passive soil vapor sampling for VOCs--Part 4: Flow-through cell.
McAlary, Todd; Groenevelt, Hester; Seethapathy, Suresh; Sacco, Paolo; Crump, Derrick; Tuday, Michael; Schumacher, Brian; Hayes, Heidi; Johnson, Paul; Parker, Louise; Górecki, Tadeusz
2014-05-01
This paper presents a controlled experiment comparing several quantitative passive samplers for monitoring concentrations of volatile organic compound (VOC) vapors in soil gas using a flow-through cell. This application is simpler than conventional active sampling using adsorptive tubes because the flow rate does not need to be precisely measured and controlled, which is advantageous because the permeability of subsurface materials affects the flow rate and the permeability of geologic materials is highly variable. Using passive samplers in a flow-through cell, the flow rate may not need to be known exactly, as long as it is sufficient to purge the cell in a reasonable time and minimize any negative bias attributable to the starvation effect. An experiment was performed in a 500 mL flow-through cell using a two-factor, one-half fraction fractional factorial test design with flow rates of 80, 670 and 930 mL min(-1) and sample durations of 10, 15 and 20 minutes for each of five different passive samplers (passive Automatic Thermal Desorption Tube, Radiello®, SKC Ultra, Waterloo Membrane Sampler™ and 3M™ OVM 3500). A Summa canister was collected coincident with each passive sampler and analyzed by EPA Method TO-15 to provide a baseline for comparison of the passive sampler concentrations. The passive sampler concentrations were within a factor of 2 of the Summa canister concentrations in 32 of 35 cases. Passive samples collected at the low flow rate and short duration showed low concentrations, which is likely attributable to insufficient purging of the cell after sampler placement.
NASA Astrophysics Data System (ADS)
Kim, Chang-Beom; Lim, Jaeho; Hong, Hyobong; Kresh, J. Yasha; Wootton, David M.
2015-07-01
Detailed knowledge of the blood velocity distribution over the cross-sectional area of a microvessel is important for several reasons: (1) Information about the flow field velocity gradients can suggest an adequate description of blood flow. (2) Transport of blood components is determined by the velocity profiles and the concentration of the cells over the cross-sectional area. (3) The velocity profile is required to investigate volume flow rate as well as wall shear rate and shear stress which are important parameters in describing the interaction between blood cells and the vessel wall. The present study shows the accurate measurement of non-Newtonian blood velocity profiles at different shear rates in a microchannel using a novel translating-stage optical method. Newtonian fluid velocity profile has been well known to be a parabola, but blood is a non-Newtonian fluid which has a plug flow region at the centerline due to yield shear stress and has different viscosities depending on shear rates. The experimental results were compared at the same flow conditions with the theoretical flow equations derived from Casson non-Newtonian viscosity model in a rectangular capillary tube. And accurate wall shear rate and shear stress were estimated for different flow rates based on these velocity profiles. Also the velocity profiles were modeled and compared with parabolic profiles, concluding that the wall shear rates were at least 1.46-3.94 times higher than parabolic distribution for the same volume flow rate.
Investor Behavior and Flow-through Capability in the US Stock Market
Cano, Carlos; Jareño, Francisco; Tolentino, Marta
2016-01-01
This paper analyzes investor behavior depending on the flow-through capability (FTC) in the US stock market, because investors seek protection from inflation rate changes, and the FTC (a firm's ability to transmit inflation shocks to the prices of its products and services) is a key factor in investment decisions. Our estimates of the FTC of firms listed on the US stock exchange at the sector level are significantly different among industries, and we demonstrate a direct relationship between changes in stock prices (at the sector level) and FTC. These results would be relevant because they have important implications on investor behavior. PMID:27242585
Investor Behavior and Flow-through Capability in the US Stock Market.
Cano, Carlos; Jareño, Francisco; Tolentino, Marta
2016-01-01
This paper analyzes investor behavior depending on the flow-through capability (FTC) in the US stock market, because investors seek protection from inflation rate changes, and the FTC (a firm's ability to transmit inflation shocks to the prices of its products and services) is a key factor in investment decisions. Our estimates of the FTC of firms listed on the US stock exchange at the sector level are significantly different among industries, and we demonstrate a direct relationship between changes in stock prices (at the sector level) and FTC. These results would be relevant because they have important implications on investor behavior.
Turbulence modeling based on non-Newtonian constitutive laws
NASA Astrophysics Data System (ADS)
Mompean, G.; Qiu, X.; Schmitt, F. G.; Thompson, R.
2011-12-01
This work revisits the analogy between Newtonian turbulence and non-Newtonian laminar flows. Several direct numerical simulations (DNS) data of a plane channel flow, for a large range of Reynolds numbers (180 <= Reτ <= 2000) were explored. The profiles of mean velocity and second moment quantities were used to extract viscometric functions in the non-Newtonian modeling framework. The Reynolds stress tensor is expressed in terms of a set of basis kinematic tensors based on a projection of a nonlinear framework. The coefficients of the model are given as functions of the intensity of the mean strain tensor. The apparent eddy turbulent viscosity, the first and second normal stress differences are presented as function of the shear rate. One of the advantages of the new algebraic nonlinear power law constitutive equation derived in the paper, is that is only dependent on the mean velocity gradient and can be integrated up to the wall.
Post-Newtonian approximation in Maxwell-like form
Kaplan, Jeffrey D.; Nichols, David A.; Thorne, Kip S.
2009-12-15
The equations of the linearized first post-Newtonian approximation to general relativity are often written in 'gravitoelectromagnetic' Maxwell-like form, since that facilitates physical intuition. Damour, Soffel, and Xu (DSX) (as a side issue in their complex but elegant papers on relativistic celestial mechanics) have expressed the first post-Newtonian approximation, including all nonlinearities, in Maxwell-like form. This paper summarizes that DSX Maxwell-like formalism (which is not easily extracted from their celestial mechanics papers), and then extends it to include the post-Newtonian (Landau-Lifshitz-based) gravitational momentum density, momentum flux (i.e. gravitational stress tensor), and law of momentum conservation in Maxwell-like form. The authors and their colleagues have found these Maxwell-like momentum tools useful for developing physical intuition into numerical-relativity simulations of compact binaries with spin.
Fluid Dynamics of Bottle Filling
NASA Astrophysics Data System (ADS)
McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman
2011-11-01
Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.
NASA Astrophysics Data System (ADS)
Kuchumov, Alex G.; Gilev, Valeriy; Popov, Vitaliy; Samartsev, Vladimir; Gavrilov, Vasiliy
2014-02-01
The paper presents an experimental study of pathological human bile taken from the gallbladder and bile ducts. The flow dependences were obtained for different types of bile from patients with the same pathology, but of different age and sex. The parameters of the Casson's and Carreau's equations were found for bile samples. Results on the hysteretic bile behavior at loading-unloading tests are also presented, which proved that the pathologic bile is a non-Newtonian thixotropic liquid. The viscosity of the gallbladder bile was shown to be higher compared to the duct bile. It was found that at higher shear stress the pathological bile behaves like Newtonian fluid, which is explained by reorientation of structural components. Moreover, some pathological bile flow in the biliary system CFD simulations were performed. The velocity and pressure distributions as well as flow rates in the biliary segments during the gallbladder refilling and emptying phases are obtained. The results of CFD simulations can be used for surgeons to assess the patient's condition and choose an adequate treatment.
Non-Newtonian Crystal- and Bubble-Rich Lava Rheology in Compression
NASA Astrophysics Data System (ADS)
Lavallee, Y.; Hess, K.; Cordonnier, B.; Dingwell, D. B.
2006-12-01
Volcanic eruption models are still hampered by the lack of multiphase magmatic rheology laws. Fortunately, the lack of sufficient rheological data for lavas bearing crystals and vesicles is now being systematically experimentally addressed. Most rheological models consider suspension rheology according to the Einstein- Roscoe equation or a modification of it. This approach does not contain a Non-Newtonian description (strain- rate dependence). Here, experiments using high-load, high-temperature uniaxial apparatus were carried out to simulate multiphase lava deformation under stresses ranging from 1 to 70 MPa. Samples from Unzen, Colima, Anak Krakatau and Bezymianny (containing 30, 50, 70 and 80 % phenocrysts, and 5, 8, 23 and 9 % vesicles, respectively) were chosen for this study. Obtained results reveal that multiphase lavas behave as pseudo-plastic fluids exhibiting an important component of shear thinning. The viscosity of all lavas decreases exponentially by ca. 1.5 log units between the strain rates of 10-6 and 10-3 s-1; point at which viscous heating and micro-cracking begin to be detected. The strong exponential dependence of the viscosity on strain rate holds the promise of yielding a Non-Newtonian rheology law and consequentially challenges the completeness of the Einstein-Roscoe equation to treat suspension rheology in volcanic eruption models.
Theory and applications of drilling fluid hydraulics
Whittaker, A.
1985-01-01
A reference on drilling fluid hydraulics, this text provides information, nomenclature and equations. Chapter 1 introduces the basic principles of fluid properties. Chapter 2 discusses the general principles, models and measurements related to fluid flow. Newtonian, Bingham, Power Law, Casson, Robertson-Stiff and Herschel-Bulkley models are all discussed. Chapters 3 through 10 analyze hydraulic problems specific to drilling fluids and the drilling process including: viscometric measurements, pressure losses, swab and surge pressures, cuttings transport, and hydraulics optimization. Each chapter concludes with a bibliography. For consistency, nomenclature remains constant and SI units are used throughout the text. All key equations using oilfield units are listed in the appendices.
Power-law rheology and flow behavior of low-invasion coring fluids
McGuire, P.L.
1981-08-01
An improved pressure coring system has been developed in which an extremely viscous polymer mud is extruded by the core and is used to seal and protect the core from flushing by drilling fluids. The polymer mud must be extremely viscous to minimize invasion, yet must be extruded through a long, narrow annular gap with a minimum of pressure buildup. A highly non-Newtonian shear-thinning polymer is utilized in the low invasion coring fluid. This paper describes the measurement and modeling of non-Newtonian rheology from rotary viscometer data in detail since the simplified equations which are generally used with these instruments can be grossly in error. The development of both an approximate analytical solution and an exact numerical solution of the non-Newtonian extrusion process is presented. These solutions were used to optimize the non-Newtonian rheology of the low-invasion fluid which will be used in actual coring operations.
Model-independent constraints on possible modifications of Newtonian gravity
NASA Technical Reports Server (NTRS)
Talmadge, C.; Berthias, J.-P.; Hellings, R. W.; Standish, E. M.
1988-01-01
New model-independent constraints on possible modifications of Newtonian gravity over solar-system distance scales are presented, and their implications discussed. The constraints arise from the analysis of various planetary astrometric data sets. The results of the model-independent analysis are then applied to set limits on a variation in the l/r-squared behavior of gravity, on possible Yukawa-type interactions with ranges of the order of planetary distance scales, and on a deviation from Newtonian gravity of the type discussed by Milgrom (1983).
Amiri Delouei, A; Nazari, M; Kayhani, M H; Succi, S
2014-05-01
In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity and temperature between the boundary and computational grid points. The lattice Boltzmann equation with split-forcing term is applied to consider the effects of the discrete lattice and the body force to the momentum flux, simultaneously. A method for calculating the Nusselt number based on diffuse interface schemes is developed. The rheological and thermal properties of non-Newtonian fluids are investigated under the different power-law indices and Reynolds numbers. The effect of numerical parameters on the accuracy of the proposed method has been investigated in detail. Results show that the rheological and thermal properties of non-Newtonian fluids in the presence of a heated immersed body can be suitably captured using the immersed boundary thermal lattice Boltzmann method.
Modelling non-dust fluids in cosmology
Christopherson, Adam J.; Hidalgo, Juan Carlos; Malik, Karim A. E-mail: juan.hidalgo@port.ac.uk
2013-01-01
Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or 'dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes.
... up in the body. This is called fluid overload (volume overload). This can lead to edema (excess fluid in ... Water imbalance; Fluid imbalance - dehydration; Fluid buildup; Fluid overload; Volume overload; Loss of fluids; Edema - fluid imbalance; ...
Coating Of Model Rheological Fluids In Microchannels
NASA Astrophysics Data System (ADS)
Koelling, Kurt; Boehm, Michael
2008-07-01
Researchers have strived to understand and quantify the dynamics within the myriad micro/nano-devices proposed and developed within the last decade. Concepts such as fluid flow, mass transfer, molecule manipulation, and reaction kinetics must be understood in order to intelligently design and operate these devices. In addition to general engineering principles, intelligent design should also focus on material properties (e.g. density, viscosity, conductivity). One key property, viscosity, will play a large part of any fluidic device, including biomedical devices, because the fluids used will, most likely, be non-Newtonian and therefore highly dependent upon the shear rate. Be it a biomedical or macromolecule separation device, or simply the processing of polymeric material, select model polymers and simple flow schemes can be used to investigate the dynamics within micro-devices. Here, we present results for the processing of Newtonian and non-Newtonian polymeric fluids in micro-channels during two-phase penetrating flow. The system investigated is a circular capillary 100 microns in diameter, which is pre-filled with a polymeric liquid. The polymeric liquid is either of Newtonian viscosity, or the same liquid with dispersed high molecular weight polystyrene, which exhibits viscoelastic behavior. A second, immiscible phase, silicone oil of low Newtonian viscosity, is pumped into the system and subsequently cores the polymeric liquid. The dynamics of bubble flow (e.g. bubble velocity and bubble shape) as well as the influence of rheology on coating will be investigated. By studying these model systems, we will learn how complex fluids behave on progressively smaller size scales.
Separation of a binary mixture of pesticides in fruits using a flow-through optosensor.
Llorent-Martínez, E J; Delgado-Blanca, I; Ruiz-Medina, A; Ortega-Barrales, P
2013-10-15
A flow-through optosensor is here proposed for the determination of mixtures of two widely used pesticides, carbendazim and o-phenylphenol, in fruits. The pesticides are separated on-line using an additional amount of solid support, C18 silica gel, in the flow-through cell. The resolution is performed due to the different retention/desorption kinetics of the analytes when interacting with the C18 microbeads. Therefore, both separation and determination are integrated in the same cell, considerably simplifying the system. In addition, the use of Sequential Injection Analysis provides a high degree of automation and minimum wastes generation. After the analytes are separated, their native fluorescence is measured, obtaining linearity in the 2.0-30 and 1.1-20 mg kg(-1) ranges for carbendazim and o-phenylphenol. The detection limits are 0.60 and 0.33 mg kg(-1) for carbendazim and o-phenylphenol respectively. The proposed method fulfills the maximum residue limits (MRLs) established in Europe and USA for these pesticides in cherries, pineapple, and mango: 5-10 mg kg(-1). In order to demonstrate the suitability of the method, several samples have been analyzed and the obtained results compared with a chromatographic method.
Olmos, Antonio; Bertolini, Edson; Cambra, Mariano
2007-01-01
A nucleic acid sequence-based amplification method coupled with rapid flow-through hybridisation (NASBA-FH) was developed for diagnosis of Plum pox virus (PPV). The sensitivity level achieved by NASBA-FH was 10 times higher than that obtained by Co-PCR and 1000 times higher than the sensitivity afforded by RT-PCR. In addition, samples from 262 stone-fruit trees collected during winter and spring seasons were analysed. These samples were tested using methods recommended by the European and Mediterranean Plant Protection Organization to detect PPV (DASI-ELISA, RT-PCR and Co-PCR) and by NASBA-FH. Winter PPV diagnostic results by ELISA and NASBA-FH coincided in 90.8%, while ELISA and PCR-based methods coincided in 91.6% and PCR-based methods with NASBA-FH agreed in 95.4%. In spring, diagnostic results were similar with all the molecular techniques, which agreed with ELISA results for 98.8% of the trees. NASBA-FH was able to detect more positive infections in winter, which were later confirmed in spring. These results indicate that NASBA-FH is a suitable molecular method for routine PPV detection in the winter and spring. This user-friendly isothermal RNA amplification coupled with a very fast flow-through hybridisation (15 min) opens up new possibilities for rapid and reliable diagnosis of a variety of pathogens.
A Flow-Through Ultrasonic Lysis System for the Disruption of Bacterial Spores
Warner, Cynthia L.; Bruckner-Lea, Cindy J.; Grate, Jay W.; Straub, Tim M.; Posakony, Gerald J.; Valentine, Nancy B.; Ozanich, Richard M.; Bond, Leonard J.; Matzke, Melissa M.; Dockendorff, Brian P.; Valdez, Catherine O.; Valdez, Patrick LJ; Owsley, Stanley L.
2009-10-01
An automated, flow-through spore lysis instrument that is capable of rapidly disrupting bacterial spores is described. The system utilizes a flow-through chamber that allows for direct injection of the sample without the need for a chemical or enzymatic pre-treatment step to soften the spore coat prior to lysis. Lysis of Bacillus subtilis spores, a benign simulant of Bacillus anthracis, is achieved by flowing the sample through a tube whose axis is parallel to the faces of two transducers that deliver 10 W cm-2 to the surface of the tube at 1.4 MHz frequency. Increases in amplifiable DNA were assessed by real-time PCR analysis, which showed at least a 25-fold increase in amplifiable DNA following ultrasonic treatment, and dilution-to-extinction PCR, which suggests up to a 100-1000-fold increase. The modular design of the ultrasonic system and integrated fluidics allow it to be incorporated into multi-step sample treatment and detection systems.
Flow-Through Stream Modeling with MODFLOW and MT3D: Certainties and Limitations.
Ben Simon, Rose; Bernard, Stéphane; Meurville, Charles; Rebour, Vincent
2015-01-01
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow-through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream-aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow-through streams.
Penn, Chad; Bowen, James; McGrath, Joshua; Nairn, Robert; Fox, Garey; Brown, Glenn; Wilson, Stuart; Gill, Clinton
2016-05-01
Phosphorus (P) removal structures have been shown to decrease dissolved P loss from agricultural and urban areas which may reduce the threat of eutrophication. In order to design or quantify performance of these structures, the relationship between discrete and cumulative removal with cumulative P loading must be determined, either by individual flow-through experiments or model prediction. A model was previously developed for predicting P removal with P sorption materials (PSMs) under flow-through conditions, as a function of inflow P concentration, retention time (RT), and PSM characteristics. The objective of this study was to compare model results to measured P removal data from several PSM under a range of conditions (P concentrations and RT) and scales ranging from laboratory to field. Materials tested included acid mine drainage residuals (AMDRs), treated and non-treated electric arc furnace (EAF) steel slag at different size fractions, and flue gas desulfurization (FGD) gypsum. Equations for P removal curves and cumulative P removed were not significantly different between predicted and actual values for any of the 23 scenarios examined. However, the model did tend to slightly over-predict cumulative P removal for calcium-based PSMs. The ability of the model to predict P removal for various materials, RTs, and P concentrations in both controlled settings and field structures validate its use in design and quantification of these structures. This ability to predict P removal without constant monitoring is vital to widespread adoption of P removal structures, especially for meeting discharge regulations and nutrient trading programs.
Measurements of fluid viscosity using a miniature ball drop device.
Tang, Jay X
2016-05-01
This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.
Measurements of fluid viscosity using a miniature ball drop device
NASA Astrophysics Data System (ADS)
Tang, Jay X.
2016-05-01
This paper describes measurement of fluid viscosity using a small ball drop device. It requires as little as 100 μl of fluid. Each measurement can be performed in seconds. The experiment is designed to yield reliable viscosity values by operating at properly chosen tilt angles and with calibration using well-characterized Newtonian fluids such as mixtures of glycerol and water. It also yields dynamical viscosity of non-Newtonian fluids at moderate shear rates. The device is easy to assemble and it allows for the measurement of viscosity even when the fluid samples are too small to measure using most commercial viscometers or rheometers. Therefore, the technique is particularly useful in characterizing biological fluids such as solutions of proteins, DNA, and polymers frequently used in biomaterial applications.
Radiative flow of Carreau liquid in presence of Newtonian heating and chemical reaction
NASA Astrophysics Data System (ADS)
Hayat, T.; Ullah, Ikram; Ahmad, B.; Alsaedi, A.
Objective of this article is to investigate the magnetohydrodynamic (MHD) boundary layer stretched flow of Carreau fluid in the presence of Newtonian heating. Sheet is presumed permeable. Analysis is studied in the presence of chemical reaction and thermal radiation. Mathematical formulation is established by using the boundary layer approximations. The resultant nonlinear flow analysis is computed for the convergent solutions. Interval of convergence via numerical data and plots are obtained and verified. Impact of numerous pertinent variables on the velocity, temperature and concentration is outlined. Numerical data for surface drag coefficient, surface heat transfer (local Nusselt number) and mass transfer (local Sherwood number) is executed and inspected. Comparison of skin friction coefficient in limiting case is made for the verification of current derived solutions.
Non-Newtonian Characteristics of Gochujang and Chogochujang at Different Temperatures
Choi, Ji Eun; Lee, Jun Ho
2017-01-01
This study was conducted to determine the rheological properties of gochujang and chogochujang at different temperatures (25, 35, and 45°C). Rheological properties of the samples were determined using a rotational rheometer at a shear range of 1 to 40 s−1. Gochujang and chogochujang were found to be non-Newtonian fluids according to the Herschel-Bulkley model. Yield stress and consistency coefficient of gochujang at different temperatures were higher than those of chogochujang, whereas the opposite was observed for flow behavior index. Moreover, all rheological properties of gochujang and chogochujang decreased with increasing temperature. The consistency coefficient was related to temperature using an Arrhenius-type relationship. Gochujang (14.48 kJ/mol) had slightly higher activation energy than chogochujang (14.03 kJ/mol).
Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids
2011-01-01
The rheological behaviour of ethylene glycol-based nanofluids containing hexagonal scalenohedral-shaped α-Fe2O3 (hematite) nanoparticles at 303.15 K and particle weight concentrations up to 25% has been carried out using a cone-plate Physica MCR rheometer. The tests performed show that the studied nanofluids present non-Newtonian shear-thinning behaviour. In addition, the viscosity at a given shear rate is time dependent, i.e. the fluid is thixotropic. Finally, using strain sweep and frequency sweep tests, the storage modulus G', loss modulus G″ and damping factor were determined as a function of the frequency showing viscoelastic behaviour for all samples. PMID:22027018
NASA Astrophysics Data System (ADS)
Lee, Pilhwa; Wolgemuth, Charles
2016-11-01
While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.
A canonical dynamics view of the Newtonian limit of general relativity
NASA Astrophysics Data System (ADS)
Schäfer, Gerhard
2009-09-01
The Newtonian limit of general relativity was Jürgen Ehlers favourite model for limit relations between theories of physics. In this contribution, for the case of isolated systems, the Newtonian limit of general relativity will be illuminated from a canonical dynamics point of view. The canonical dynamics approach naturally supplies a post-Newtonian expansion of general relativity.
Reconciling intuitive physics and Newtonian mechanics for colliding objects.
Sanborn, Adam N; Mansinghka, Vikash K; Griffiths, Thomas L
2013-04-01
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to integrate them into a unified model that can explain human judgments across a wide range of physical reasoning tasks. We propose an alternative framework, in which people's judgments are based on optimal statistical inference over a Newtonian physical model that incorporates sensory noise and intrinsic uncertainty about the physical properties of the objects being viewed. This noisy Newton framework can be applied to a multitude of judgments, with people's answers determined by the uncertainty they have for physical variables and the constraints of Newtonian mechanics. We investigate a range of effects in mass judgments that have been taken as strong evidence for heuristic use and show that they are well explained by the interplay between Newtonian constraints and sensory uncertainty. We also consider an extended model that handles causality judgments, and obtain good quantitative agreement with human judgments across tasks that involve different judgment types with a single consistent set of parameters.
Reconciling Intuitive Physics and Newtonian Mechanics for Colliding Objects
ERIC Educational Resources Information Center
Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L.
2013-01-01
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…
NASA Astrophysics Data System (ADS)
Castro, Marcelo A.; Ahumada Olivares, María. C.; Putman, Christopher M.; Cebral, Juan R.
2014-03-01
The optimal management of unruptured aneurysms is controversial, and current decision making is mainly based on aneurysm size and location. Incidentally detected unruptured aneurysms less than 5mm in diameter should be treated conservatively. However, small unruptured aneurysms also bleed. Risk factors based on the hemodynamic forces exerted over the arterial wall have been investigated using image-based computational fluid dynamic (CFD) methodologies during the last decade. Accurate estimation of wall shear stress (WSS) is required to properly study associations between flow features and aneurysm processes. Previous works showed that Newtonian and non-Newtonian (Casson) models produce similar WSS distributions and characterization, with no significant differences. Other authors showed that the WSS distribution computed from time-averaged velocity fields is significantly higher for the Newtonian model where WSS is low. In this work we reconstructed ten patient-specific CFD models from angiography images to investigate the time evolution of WSS at selected locations such as aneurysm blebs (low WSS), and the parent artery close to the aneurysm neck (high WSS). When averaging all cases it is seen that the estimation of the time-averaged WSS, the peak WSS and the minimum WSS value before the systolic peak were all higher when the Casson rheology was considered. However, none of them showed statistically significant differences. At the afferent artery Casson rheology systematically predicted higher WSS values. On the other hand, at the selected blebs either Newtonian or Casson WSS estimations are higher in some phases of the cardiac cycle. Those observations differ among individual cases.
NASA Astrophysics Data System (ADS)
Bleibel, J.; Dietrich, S.; Domínguez, A.; Oettel, M.
2011-09-01
Using Brownian dynamics simulations, density functional theory, and analytical perturbation theory we study the collapse of a patch of interfacially trapped, micrometer-sized colloidal particles, driven by long-ranged capillary attraction. This attraction is formally analogous to two-dimensional (2D) screened Newtonian gravity with the capillary length λ^ as the screening length. Whereas the limit λ^→∞ corresponds to the global collapse of a self-gravitating fluid, for finite λ^ we predict theoretically and observe in simulations a ringlike density peak at the outer rim of a disclike patch, moving as an inbound shock wave. Possible experimental realizations are discussed.
NASA Astrophysics Data System (ADS)
Ashraf, M.; Narahari, Marneni; Muthuvalu, Mohana Sundaram
2016-11-01
Time independent mixed convective boundary layer flow of a viscous fluid over a porous stretching wedge is investigated analytically. The porous wedge is subjected to Newtonian heating in the existence of heat generation /absorption. Employing non-dimensional transformations the governing PDE's converted to nonlinear ODE's which are further solved by using homotopy analysis method. The convergence of the solution is properly checked and the effects of various involved parameters on velocity and temperature distributions are illustrated through graphs. The reliability and effectiveness of HAM have been verified by comparing the present analytical results with existing numerical results for skin-friction coefficient. The results are found to be in good agreement.
Engineering Fracking Fluids with Computer Simulation
NASA Astrophysics Data System (ADS)
Shaqfeh, Eric
2015-11-01
There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.
Curious Fluid Flows: From Complex Fluid Breakup to Helium Wetting
NASA Astrophysics Data System (ADS)
Huisman, Fawn Mitsu
This work encompasses three projects; pinch-off dynamics in non-Newtonian fluids; helium wetting on alkali metals; and the investigation of quartz tuning forks as cryogenic pressure transducers. Chapter 1 discusses the breakup of a non-Newtonian yield stress fluid bridge. We measured the minimum neck radius, hmin, as a function of time and fit it to a power law with exponent n 1. We then compare n1 to exponent n2, obtained from a rotational rheometer using a Herschel-Bulkley model. We confirm n1=n2 for the widest variety of non-Newtonian fluids to date. When these fluids are diluted with a Newtonian fluid n1 does not equal n2. No current models predict that behavior, identifying a new class of fluid breakup. Chapter 2 presents the first chemical potential-temperature phase diagram of helium on lithium, sodium and gold, using a novel pressure measurement system. The growth and superfluid transition of a helium film on these substrates is measured via an oscillator for isotherms (fixed temperature, varying amount of helium gas), and quenches (fixed amount of helium gas, varying temperature). The chemical potential-temperature plot is similar for gold, lithium and sodium despite the large difference in the substrate binding energies. No signs of a 2-D liquid-vapor transition were seen. Chapter 3 discusses the creation of a 32.768 kHz quartz tuning fork in situ pressure transducer. Tuning forks are used to measure pressure at room temperature, but no work addresses their potential as cryogenic pressure transducers. We mapped out the behavior of a tuning fork as a function of pressure at 298, 7.0, 2.5, 1.6, 1.0 and 0.7 K by measuring the quality factor. The fork is sensitive to pressures above 0.1 mTorr, limiting its use as a pressure gauge at 0.6 K and below. The experimental curves were compared to a theoretical Q(P, T) function that was refined using the 298 K data. At cryogenic temperatures the formula breaks down in the viscous region and becomes inaccurate. The
Experimental investigation of non-Newtonian/Newtonian liquid-liquid flow in microchannel
NASA Astrophysics Data System (ADS)
Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Chinaud, Maxime; Angeli, Panagiota; Lyes Kahouadji Collaboration; Omar. K. Matar Collaboration
2015-11-01
Plug flow of an organic phase and an aqueous non-Newtonian solution was investigated experimentally in a quartz microchannel with I.D. 200 μm. The aqueous phase was a glycerol solution where 1000 and 2000 ppm of xanthan gum was added while the organic phase was silicon oil with 155 and 5 cSt viscosity. The two phases were brought together in a T-junction and their flowrates varied from 0.3 to 6 ml/hr. High speed imaging was used to study the characteristics of the plugs and the effect of the liquid properties on the flow patterns while a two-colour micro-PIV technique was used to investigate velocity profiles and circulation patterns within the plugs. The experimental results revealed that plug length was affected by both flowrate and viscosity. In all cases investigated, a film of the continuous phase always surrounded the plugs and its thickness was compared with existing literature models. Circulation patterns inside plugs were obtained by subtracting the plug velocity and found to be depended on the plug length and the amount of xanthan gum in the aqueous phase. Finally, the dimensionless circulation time was calculated and plotted as a function of the plug length. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.
Non-newtonian Effects in Viscous Flows
NASA Technical Reports Server (NTRS)
Zak, Michail; Meyers, Ronald E.
1996-01-01
Revision of the mathematical formalism of fluid dynamics suggests that some physical inconsistencies (infinite time of approaching equilibrium and fully deterministic solutions to the Navier-Stokes equations) can be removed by relaxing the Lipschitz conditions, i.e., the boundedness of the derivatives, in the constitutive equations. Physically such a modification can be interpreted as an incorporation of an infinitesimal static friction in the constitutive law. A modified version of the Navier-Stokes equations is introduced, discussed, and illustrated by examples. It is demonstrated that all the new effects in the modified model emerge within vanishingly small neighborhoods of equilibrium states which are the only domains where the governing equations are different from classical.
One-heater flow-through polymerase chain reaction device by heat pipes cooling
Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming
2015-01-01
This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into
One-heater flow-through polymerase chain reaction device by heat pipes cooling.
Chen, Jyh Jian; Liao, Ming Huei; Li, Kun Tze; Shen, Chia Ming
2015-01-01
This study describes a novel microfluidic reactor capable of flow-through polymerase chain reactions (PCR). For one-heater PCR devices in previous studies, comprehensive simulations and experiments for the chip geometry and the heater arrangement were usually needed before the fabrication of the device. In order to improve the flexibility of the one-heater PCR device, two heat pipes with one fan are used to create the requisite temperature regions in our device. With the integration of one heater onto the chip, the high temperature required for the denaturation stage can be generated at the chip center. By arranging the heat pipes on the opposite sides of the chip, the low temperature needed for the annealing stage is easy to regulate. Numerical calculations and thermal measurements have shown that the temperature distribution in the five-temperature-region PCR chip would be suitable for DNA amplification. In order to ensure temperature uniformity at specific reaction regions, the Re of the sample flow is less than 1. When the microchannel width increases and then decreases gradually between the denaturation and annealing regions, the extension region located in the enlarged part of the channel can be observed numerically and experimentally. From the simulations, the residence time at the extension region with the enlarged channel is 4.25 times longer than that without an enlarged channel at a flow rate of 2 μl/min. The treated surfaces of the flow-through microchannel are characterized using the water contact angle, while the effects of the hydrophilicity of the treated polydimethylsiloxane (PDMS) microchannels on PCR efficiency are determined using gel electrophoresis. By increasing the hydrophilicity of the channel surface after immersing the PDMS substrates into Tween 20 (20%) or BSA (1 mg/ml) solutions, efficient amplifications of DNA segments were proved to occur in our chip device. To our knowledge, our group is the first to introduce heat pipes into
Hayat, T; Hussain, Zakir; Alsaedi, A; Farooq, M
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ-perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears.
Hayat, T.; Hussain, Zakir; Alsaedi, A.; Farooq, M.
2016-01-01
This article examines the effects of homogeneous-heterogeneous reactions and Newtonian heating in magnetohydrodynamic (MHD) flow of Powell-Eyring fluid by a stretching cylinder. The nonlinear partial differential equations of momentum, energy and concentration are reduced to the nonlinear ordinary differential equations. Convergent solutions of momentum, energy and reaction equations are developed by using homotopy analysis method (HAM). This method is very efficient for development of series solutions of highly nonlinear differential equations. It does not depend on any small or large parameter like the other methods i. e., perturbation method, δ—perturbation expansion method etc. We get more accurate result as we increase the order of approximations. Effects of different parameters on the velocity, temperature and concentration distributions are sketched and discussed. Comparison of present study with the previous published work is also made in the limiting sense. Numerical values of skin friction coefficient and Nusselt number are also computed and analyzed. It is noticed that the flow accelerates for large values of Powell-Eyring fluid parameter. Further temperature profile decreases and concentration profile increases when Powell-Eyring fluid parameter enhances. Concentration distribution is decreasing function of homogeneous reaction parameter while opposite influence of heterogeneous reaction parameter appears. PMID:27280883
Kayano, Shuji; Fujiki, Masahide; Chuman, Hirokazu; Kawai, Akira; Sakuraba, Minoru
2014-01-01
Background: Prolonged bed rest and elevation have traditionally been considered necessary after free-flap transfer to the lower extremities. In this retrospective study, we tried to mobilize patients early after free-flap transfer to the lower extremity by means of flow-through anastomosis for both arteries and veins. Methods: This study included 13 consecutive patients who underwent immediate free-flap transfer after wide resection of soft-tissue tumors of the lower extremity from March 2012 through July 2013. The defects were above the knee in 5 patients and below the knee in 8 patients. In all patients, flow-through anastomosis was used for both arteries and veins. The patients were mobilized starting on the first postoperative day, and their activities of daily life were gradually expanded, depending on the wound conditions. Postoperative complications and the progression of their activities of daily life were investigated retrospectively. Results: No anastomotic failure or take back occurred. Partial flap necrosis occurred in 1 patient because of a poor perforator but was unrelated to early mobilization. All patients could move to wheelchairs on the first postoperative day. Within 1 week, 12 of 13 patients could start dangling and 10 of 13 patients could start ambulating. Conclusions: This study demonstrates that early mobilization after free-flap transfer to the lower extremity is made possible by flow-through anastomosis for both arteries and veins. Flow-through flaps have stable circulation from the acute phase and can tolerate early dangling and ambulation. PMID:25289320
Pumping by flapping in a viscoelastic fluid.
Pak, On Shun; Normand, Thibaud; Lauga, Eric
2010-03-01
In a world without inertia, Purcell's scallop theorem states that in a Newtonian fluid a time-reversible motion cannot produce any net force or net flow. Here we consider the extent to which the nonlinear rheological behavior of viscoelastic fluids can be exploited to break the constraints of the scallop theorem in the context of fluid pumping. By building on previous work focusing on force generation, we consider a simple, biologically inspired geometrical example of a flapper in a polymeric (Oldroyd-B) fluid, and calculate asymptotically the time-average net fluid flow produced by the reciprocal flapping motion. The net flow occurs at fourth order in the flapping amplitude, and suggests the possibility of transporting polymeric fluids using reciprocal motion in simple geometries even in the absence of inertia. The induced flow field and pumping performance are characterized and optimized analytically. Our results may be useful in the design of micropumps handling complex fluids.
NASA Astrophysics Data System (ADS)
Will, Clifford M.
2005-04-01
Using post-Newtonian equations of motion for fluid bodies that include radiation-reaction terms at 2.5 and 3.5 post-Newtonian (PN) order (O[(v/c)5] and O[(v/c)7] beyond Newtonian order), we derive the equations of motion for binary systems with spinning bodies. In particular we determine the effects of radiation reaction coupled to spin-orbit effects on the two-body equations of motion, and on the evolution of the spins. For a suitable definition of spin, we reproduce the standard equations of motion and spin-precession at the first post-Newtonian order. At 3.5 PN order, we determine the spin-orbit induced reaction effects on the orbital motion, but we find that radiation damping has no effect on either the magnitude or the direction of the spins. Using the equations of motion, we find that the loss of total energy and total angular momentum induced by spin-orbit effects precisely balances the radiative flux of those quantities calculated by Kidder et al. The equations of motion may be useful for evolving inspiraling orbits of compact spinning binaries.
Flowthrough fecundity test with Nitocra spinipes (Harpacticoidea Crustacea) for aquatic toxicity
Bengtsson, B.E.; Bergstroem, B.
1987-12-01
A sublethal flowthrough fecundity test with the euryhaline harpacticoid copepod, Nitocra spinipes, has been developed as a complement to the acute toxicity test (for 48 or 96 hr LC50) with the same species. Bacterial suspension as feed and test water are continuously fed by a peristaltic pump to the system. Newly fertilized females with ovigerous bands are harvested from laboratory cultures and put into the test vessels at the start of the experiment. They are then exposed to a series of concentrations of chemicals or industrial effluents for 13 days. The amount of live offspring (metanauplia and copepodids) are recorded and an EC50 for fecundity is calculated. The report gives a detailed technical description of the test system and presents the results from 11 tests with pure chemicals (Zn, Cd, As, and pentachlorophenate) and six industrial effluents (pulp industry, textile industry, and refinery) in salinities ranging from 3 to 25%.
Preparation of ultrafine catalyst powders using a flow-through hydrothermal process
Matson, D.W.; Linehan, J.C.; Darab, J.G.
1993-03-01
The rapid thermal decomposition of solutes (RTDS) process was used to produce ultrafine iron-bearing oxide and hydroxide powders for use as coal liquefaction catalysts. The RTDS process subjects aqueous solutions containing dissolved metal salts to elevated temperatures and pressures in a flow-through apparatus. Particle formation is initiated during brief exposure of the solution to a heated region, then is quenched by abruptly cooling and depressurizing the suspension. Powders having individual crystallites on the nanometer to tens-of-nanometer size scale are readily produced by the RTDS method. Variations in RTDS processing parameters (e.g., solute concentration, flow rate, processing temperature) affect the crystallinity, morphology, and size of particles produced. Powders generated using the RTDS process were characterized using XRD, EXAFS, electron microscopy, Mossbauer spectroscopy, and BET surface area analysis.
Enhanced nanoscale catalyst precursor powders generated using a flow-through hydrothermal process
Darab, J.G.; Linehan, J.C.; Matson, D.W.
1994-08-01
A novel flow-through hydrothermal process, termed the Rapid Thermal Decomposition of precursors in Solution (RTDS), has been used to generate large quantities of ultra-fine, nano-crystalline hematite ({alpha}-Fe{sub 2}O{sub 3}), 6-line ferrihydrite (5Fe{sub 2}O{sub 3}{center_dot}9H{sub 2}O) and ferric oxyhydroxysulfate powders. The heterogeneous catalytic activity of these powders towards C-C bond scission in the model compound naphthyl bibenzylmethane and in the first-stage liquefaction of Blind Canyon seam coal was investigated. The effects of the crystalline phase and the agglomerate size of these powders on their catalytic activity are reported.
Aerodynamics of the Large-Volume, Flow-Through Detector System. Final report
Reed, H.; Saric, W.; Laananen, D.; Martinez, C.; Carrillo, R.; Myers, J.; Clevenger, D.
1996-03-01
The Large-Volume Flow-Through Detector System (LVFTDS) was designed to monitor alpha radiation from Pu, U, and Am in mixed-waste incinerator offgases; however, it can be adapted to other important monitoring uses that span a number of potential markets, including site remediation, indoor air quality, radon testing, and mine shaft monitoring. Goal of this effort was to provide mechanical design information for installation of LVFTDS in an incinerator, with emphasis on ability to withstand the high temperatures and high flow rates expected. The work was successfully carried out in three stages: calculation of pressure drop through the system, materials testing to determine surrogate materials for wind-tunnel testing, and wind-tunnel testing of an actual configuration.
Study of flow rate induced measurement error in flow-through nano-hole plasmonic sensor
Tu, Long; Huang, Liang; Wang, Tianyi; Wang, Wenhui
2015-01-01
Flow-through gold film perforated with periodically arrayed sub-wavelength nano-holes can cause extraordinary optical transmission (EOT), which has recently emerged as a label-free surface plasmon resonance sensor in biochemical detection by measuring the transmission spectral shift. This paper describes a systematic study of the effect of microfluidic field on the spectrum of EOT associated with the porous gold film. To detect biochemical molecules, the sub-micron-thick film is free-standing in a microfluidic field and thus subject to hydrodynamic deformation. The film deformation alone may cause spectral shift as measurement error, which is coupled with the spectral shift as real signal associated with the molecules. However, this microfluid-induced measurement error has long been overlooked in the field and needs to be identified in order to improve the measurement accuracy. Therefore, we have conducted simulation and analytic analysis to investigate how the microfluidic flow rate affects the EOT spectrum and verified the effect through experiment with a sandwiched device combining Au/Cr/Si3N4 nano-hole film and polydimethylsiloxane microchannels. We found significant spectral blue shift associated with even small flow rates, for example, 12.60 nm for 4.2 μl/min. This measurement error corresponds to 90 times the optical resolution of the current state-of-the-art commercially available spectrometer or 8400 times the limit of detection. This really severe measurement error suggests that we should pay attention to the microfluidic parameter setting for EOT-based flow-through nano-hole sensors and adopt right scheme to improve the measurement accuracy. PMID:26649131
Percutaneous malathion absorption by anuran skin in flow-through diffusion cells.
Willens, Scott; Stoskopf, Michael K; Baynes, Ronald E; Lewbart, Gregory A; Taylor, Sharon K; Kennedy-Stoskopf, Suzanne
2006-11-01
There is increased concern about the sublethal effects of organophosphorous (OP) compounds on human and animal health, including the potential role of OP compounds in the global decline of amphibian populations. Malathion is one of the most widely used OP pesticides with numerous agricultural and therapeutic applications, and exposure to environmentally applied malathion can lead to adverse systemic effects in anurans. Cutaneous absorption is considered a potentially important route of environmental exposure to OP compounds for amphibians, especially in aquatic environments. One in vitro system commonly used to determine the absorption kinetics of xenobiotics across the skin is the two-compartment Teflon flow-through diffusion cell system. To establish cutaneous absorption kinetics of malathion, six full thickness skin samples taken from both the dorsal and ventral surfaces of each of three bullfrogs (Rana catesbeiana) and three marine toads (Bufo marinus) were placed into two-compartment Teflon flow-through diffusion cells perfused with modified amphibian Ringer's solution. A 26μg/cm(2) dose of malathion-2,3-(14)C diluted in 100% ethanol was applied to each sample (0.44-0.45μCi). Perfusate was collected at intervals over a 6h period and analyzed for (14)C in a scintillation counter. At the end of 6h, surface swabs, tape strips, biopsy punches of the dosed area of skin, and peripheral samples were oxidized and analyzed for residue effects. Malathion absorption was greater across the ventral skin compared to dorsal skin in both bullfrogs and marine toads.
Copper Sediment Toxicity and Partitioning during Oxidation in a Flow-Through Flume.
Costello, David M; Hammerschmidt, Chad R; Burton, G Allen
2015-06-02
The bioavailability of transition metals in sediments often depends on redox conditions in the sediment. We explored how the physicochemistry and toxicity of anoxic Cu-amended sediments changed as they aged (i.e., naturally oxidized) in a flow-through flume. We amended two sediments (Dow and Ocoee) with Cu, incubated the sediments in a flow-through flume, and measured sediment physicochemistry and toxicity over 213 days. As sediments aged, oxygen penetrated sediment to a greater depth, the relative abundance of Fe oxides increased in surface and deep sediments, and the concentration of acid volatile sulfide declined in Ocoee surface sediments. The total pool of Cu in sediments did not change during aging, but porewater Cu, and Cu bound to amorphous Fe oxides decreased while Cu associated with crystalline Fe oxides increased. The dose-response of the epibenthic amphipod Hyalella azteca to sediment total Cu changed over time, with older sediments being less toxic than freshly spiked sediments. We observed a strong dose-response relationship between porewater Cu and H. azteca growth across all sampling periods, and measurable declines in relative growth rates were observed at concentrations below interstitial water criteria established by the U.S. EPA. Further, solid-phase bioavailability models based on AVS and organic carbon were overprotective and poorly predicted toxicity in aged sediments. We suggest that sediment quality criteria for Cu is best established from measurement of Cu in pore water rather than estimating bioavailable Cu from the various solid-phase ligands, which vary temporally and spatially.
Bulk optode sensors for batch and flow-through determinations of lead ion in water samples.
Bualom, Chantana; Ngeontae, Wittaya; Nitiyanontakit, Sira; Ngamukot, Passapol; Imyim, Apichat; Tuntulani, Thawatchai; Aeungmaitrepirom, Wanlapa
2010-07-15
A sensitive optode consisting of highly lead-selective ionophore (Lead IV), proton-selective chromoionophore (ETH 5294) and lipophilic anionic sites (KTpClPB) in plasticized polyvinyl chloride (PVC) membrane was fabricated. The optode membranes were used for determination of Pb(2+) by absorption spectrophotometry in batch and flow-through systems. The influence parameters such as pH, type of buffer solution, response time and concentration of regenerating solution were optimized. The membrane responded to Pb(2+) by changing its color from blue to pinkish purple in Tris buffer containing different concentration of Pb(2+) at pH 7.0. The optode provided the response range of 3.16x10(-8) to 5.00x10(-5) mol L(-1) Pb(2+) with the detection limit of 2.49x10(-8) mol L(-1) in the batch system within the response time of 30 min. The dynamic range of 1.26x10(-8) to 3.16x10(-5) mol L(-1) Pb(2+) with detection limit of 8.97x10(-9) mol L(-1) were obtained in the flow-through system within the response time of 15 min. Moreover, the proposed optode sensors showed good selectivity towards Pb(2+) over Na(+), K(+), Mg(2+), Cd(2+), Hg(2+) and Ag(+). It was successfully applied to determine Pb(2+) in real water samples and the results were compared with well-established inductively coupled plasma optical emission spectrometry (ICP-OES). No significant different value (t(critical)=4.30>t(exp)=1.00-3.42, n=3 at 95% of confidence level) was found.
Ediage, E Njumbe; Di Mavungu, J Diana; Goryacheva, I Y; Van Peteghem, C; De Saeger, S
2012-04-01
Two multi-analyte flow-through immunoassay formats for rapid detection of mycotoxins in a variety of food matrices (peanut cake, maize, and cassava flour) were developed and evaluated. The selected food matrices are typical staple foods and export products for most low-income communities around the world. The assay formats included gel-based and membrane-based flow-through assays and were based on the principle of indirect enzyme-linked immunosorbent assay. Using the same immunoreagents, the performance characteristics of both assays were compared. To the best of our knowledge, this is the first report on such a comparison. The gel-based format was developed to screen for ochratoxin A, fumonisin B(1), deoxynivalenol, and zearalenone detection at cut-off values of 3, 1,250, 1,000, and 200 μg kg(-1), respectively, while the membrane-based format can be used to screen ochratoxin A, aflatoxin B(1,) deoxynivalenol, and zearalenone at the following cut-offs: 3, 5, 700, and 175 μg kg(-1), respectively. The applicability of these assay formats was demonstrated by evaluating the performance characteristics of both tests through performing multiple experiments on different days. Both assays were further evaluated by analyzing naturally contaminated samples in the laboratory and also in the field under tropical conditions (Cameroon, West Africa). The false-negative rate with both formats was less than 5%, which is in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes.
NASA Astrophysics Data System (ADS)
Di Federico, V.; Ciriello, V.
2011-12-01
Non-Newtonian fluid flow in porous media is of considerable interest in hydrology, chemical and petroleum engineering, and biofluid mechanics. We consider an infinite porous domain of plane (d=1), cylindrical (d=2) or semi-spherical geometry (d=3), having uniform permeability k and porosity Φ, initially at uniform pressure and saturated by a weakly compressible non-Newtonian fluid, and analyze the dynamics of the pressure variation generated within the domain by an instantaneous mass injection m0 in its origin. The fluid is described by a rheological power-law model of given consistency index H and flow behavior index n; the flow law is a modified Darcy's law depending on H, Φ, n. Coupling flow law and mass balance equations yields the nonlinear partial differential equation governing the pressure field; an analytical solution is derived in space r and time t as a function of a self-similar variable η=r/tβ(n). We revisit and expand the work in previous papers by providing a dimensionless general formulation and solution to the problem for d=1,2,3. When a shear-thinning fluid (n<1) is considered, the analytical solution exhibits traveling wave characteristics, in variance with Newtonian fluids; the front velocity is proportional to t(n-2)/2 in plane geometry, t(2n-3)/(3-n) in cylindrical geometry, and t(3n-4)/(4-2n) in semi-spherical geometry. The front position is a markedly increasing function of n and is inversely dependent on d; the pressure front advances at a slower rate for larger values of compressibility, higher injected mass and lower porosity. When pressure is considered, it is seen that an increase in d from 1 to 3 brings about an order of magnitude reduction. An increase in compressibility implies a significant decrease in pressure, especially at early times. To reflect the uncertainty inherent in values of the problem parameters, we then consider selected properties of fluid (flow behavior index n) and porous domain (permeability k, porosity
Group invariant solution for a pre-existing fracture driven by a power-law fluid in permeable rock
NASA Astrophysics Data System (ADS)
Fareo, A. G.; Mason, D. P.
2016-06-01
Group invariant analytical and numerical solutions for the evolution of a two-dimensional fracture with nonzero initial length in permeable rock and driven by an incompressible non-Newtonian fluid of power-law rheology are obtained. The effect of fluid leak-off on the evolution of the power-law fluid fracture is investigated.
Flow of a Giesekus Fluid in a Planar Channel due to Peristalsis
NASA Astrophysics Data System (ADS)
Ali, Nasir; Javed, Tariq
2013-09-01
An attempt is made to investigate the peristaltic motion of a Giesekus fluid in a planar channel under long wavelength and low Reynolds number approximations. Under these assumptions, the flow problem is modelled as a second-order nonlinear ordinary differential equation. Both approximate and exact solution of this equation are presented. The validity of the approximate solution is examined by comparing it with the exact solution. A parametric study is performed to analyze the effects of non-dimensional parameters associated with the Giesekus fluid model (a and We) on flow velocity, pressure rise per wavelength, and trapping phenomenon. It is found that the behaviour of longitudinal velocity and pattern of streamlines for a Giesekus fluid deviate from their counterparts for a Newtonian fluid by changing the parameters a and We. In fact, the magnitude of the longitudinal velocity at the center of the channel for a Giesekus fluid is less than that for a Newtonian fluid. It is also observed that the pressure rise per wavelength decreases in going form Newtonian to Giesekus fluid. Moreover, the size of trapped bolus is large and it circulates faster for a Newtonian fluid in comparison to a Giesekus fluid.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
A GENERALIZED FAMILY OF POST-NEWTONIAN DEDEKIND ELLIPSOIDS
Gürlebeck, Norman; Petroff, David E-mail: david.petroff@zks.uni-leipzig.de
2013-11-01
We derive a family of post-Newtonian (PN) Dedekind ellipsoids to first order. They describe non-axially symmetric, homogeneous, and rotating figures of equilibrium. The sequence of the Newtonian Dedekind ellipsoids allows for an axially symmetric limit in which a uniformly rotating Maclaurin spheroid is recovered. However, the approach taken by Chandrasekhar and Elbert to find the PN Dedekind ellipsoids excludes such a limit. In a previous work, we considered an extension to their work that permits a limit of 1 PN Maclaurin ellipsoids. Here we further detail the sequence and demonstrate that a choice of parameters exists with which the singularity formerly found by Chandrasekhar and Elbert along the sequence of PN Dedekind ellipsoids is removed.
Post-Newtonian celestial mechanics in scalar-tensor cosmology
NASA Astrophysics Data System (ADS)
Galiautdinov, Andrei; Kopeikin, Sergei M.
2016-08-01
Applying the recently developed dynamical perturbation formalism on cosmological background to scalar-tensor theory, we provide a solid theoretical basis and a rigorous justification for phenomenological models of orbital dynamics that are currently used to interpret experimental measurements of the time-dependent gravitational constant. We derive the field equations for the scalar-tensor perturbations and study their gauge freedom associated with the cosmological expansion. We find a new gauge eliminating a prohibitive number of gauge modes in the field equations and significantly simplifying post-Newtonian equations of motion for localized astronomical systems in the universe with a time-dependent gravitational constant. We identify several new post-Newtonian terms and calculate their effect on secular cosmological evolution of the osculating orbital elements.
Test of modified Newtonian dynamics with recent Boomerang data
Slosar, Anze; Melchiorri, Alessandro; Silk, Joseph I.
2005-11-15
Purely baryonic dark matter dominated models like modified Newtonian dynamics (MOND) based on modification of Newtonian gravity have been successful in reproducing some dynamical properties of galaxies. More recently, a relativistic formulation of MOND proposed by Bekenstein seems to agree with cosmological large scale structure formation. In this work, we revise the agreement of MOND with observations in light of the new results on the cosmic microwave anisotropies provided by the 2003 flight of Boomerang. The measurements of the height of the third acoustic peak, provided by several small scale CMB experiments have reached enough sensitivity to severely constrain models without cold dark matter. Assuming that acoustic peak structure in the CMB is unchanged and that local measurements of the Hubble constant can be applied, we find that the cold dark matter is strongly favored with Bayesian probability ratio of about one in two hundred.
CCD photometry using a wide-field Newtonian telescope.
NASA Astrophysics Data System (ADS)
Menako, C. R.; Henson, G. D.; Castelaz, M. A.; Powell, H. D.
1996-01-01
The paper demonstrates the utility of a CCD electronic-imaging camera at the focus of a wide-field Newtonian telescope as an efficient system for astronomical photometry. The CCD camera coupled to the wide-field telescope images one square degree of the sky, allowing for simultaneous light flux measurement of multiple stars without instrument repositioning. Photometric data acquired from the variable star W UMa using this system is compared to published values.
Newtonian perturbations and the Einstein Yang Mills-dilaton equations
NASA Astrophysics Data System (ADS)
Oliynyk, Todd A.
2005-06-01
In this paper, we show that the problem of proving the existence of a countable number of solutions to the static spherically symmetric SU(2) Einstein Yang Mills-dilaton (EYMd) equations can be reduced to proving the non-existence of solutions to the linearized Yang Mills-dilaton equations (lYMd) satisfying certain asymptotic conditions. The reduction from a nonlinear to a linear problem is achieved using a Newtonian perturbation-type argument.
Quantum Newtonian cosmology and the biconfluent Heun functions
Vieira, H. S.; Bezerra, V. B.
2015-09-15
We obtain the exact solution of the Schrödinger equation for a particle (galaxy) moving in a Newtonian universe with a cosmological constant, which is given in terms of the biconfluent Heun functions. The first six Heun polynomials of the biconfluent function are written explicitly. The energy spectrum which resembles the one corresponding to the isotropic harmonic oscillator is also obtained. The wave functions as well as the energy levels codify the role played by the cosmological constant.
Precision Measurement of the Newtonian Gravitational Constant by Atom Interferometry
NASA Astrophysics Data System (ADS)
Rosi, G.; D'Amico, G.; Tino, G. M.; Cacciapuoti, L.; Prevedelli, M.; Sorrentino, F.
We report on the latest determination of the Newtonian gravitational constant G using our atom interferometry gravity gradiometer. After a short introduction on the G measurement issue we will provide a description of the experimental method employed, followed by a discussion of the experimental results in terms of sensitivity and systematic effects. Finally, prospects for future cold atom-based experiments devoted to the measurement of this fundamental constant are reported.
GUP parameter from quantum corrections to the Newtonian potential
NASA Astrophysics Data System (ADS)
Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias C.
2017-04-01
We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
Tidal interaction of black holes and Newtonian viscous bodies
Poisson, Eric
2009-09-15
The tidal interaction of a (rotating or nonrotating) black hole with nearby bodies produces changes in its mass, angular momentum, and surface area. Similarly, tidal forces acting on a Newtonian, viscous body do work on the body, change its angular momentum, and part of the transferred gravitational energy is dissipated into heat. The equations that describe the rate of change of the black-hole mass, angular momentum, and surface area as a result of the tidal interaction are compared with the equations that describe how the tidal forces do work, torque, and produce heat in the Newtonian body. The equations are strikingly similar, and unexpectedly, the correspondence between the Newtonian-body and black-hole results is revealed to hold in near-quantitative detail. The correspondence involves the combination k{sub 2}{tau} of 'Love quantities' that incorporate the details of the body's internal structure; k{sub 2} is the tidal Love number, and {tau} is the viscosity-produced delay between the action of the tidal forces and the body's reaction. The combination k{sub 2}{tau} is of order GM/c{sup 3} for a black hole of mass M; it does not vanish, in spite of the fact that k{sub 2} is known to vanish individually for a nonrotating black hole.
Actual Romanian research in post-newtonian dynamics
NASA Astrophysics Data System (ADS)
Mioc, V.; Stavinschi, M.
2007-05-01
We survey the recent Romanian results in the study of the two-body problem in post-Newtonian fields. Such a field is characterized, in general, by a potential of the form U(q)=|q|^{-1}+ something (small, but not compulsorily). We distinguish some classes of post-Newtonian models: relativistic (Schwarzschild, Fock, Einstein PN, Reissner-Nordström, Schwarzschild - de Sitter, etc.) and nonrelativistic (Manev, Mücket-Treder, Seeliger, gravito-elastic, etc.). Generalized models (the zonal-satellite problem, quasihomogeneous fields), as well as special cases (anisotropic Manev-type and Schwarzschild-type models, Popovici or Popovici-Manev photogravitational problem), were also tackled. The methods used in such studies are various: analytical (using mainly the theory of perturbations, but also other theories: functions of complex variable, variational calculus, etc.), geometric (qualitative approach of the theory of dynamical systems), and numerical (especially using the Poincaré-section technique). The areas of interest and the general results obtained focus on: exact or approximate analytical solutions; characteristics of local flows (especially at limit situations: collision and escape); quasiperiodic and periodic orbits; equilibria; symmetries; chaoticity; geometric description of the global flow (and physical interpretation of the phase-space structure). We emphasize some special features, which cannot be met within the Newtonian framework: black-hole effect, oscillatory collisions, radial librations, bounded orbits for nonnegative energy, existence of unstable circular motion (or unstable rest), symmetric periodic orbits within anisotropic models, etc.
Viscosity measurement of Newtonian liquids using the complex reflection coefficient.
Franco, Ediguer E; Adamowski, Julio C; Higuti, Ricardo T; Buiochi, Flávio
2008-10-01
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Analytical solution of two-fluid electro-osmotic flows of viscoelastic fluids.
Afonso, A M; Alves, M A; Pinho, F T
2013-04-01
This paper presents an analytical model that describes a two-fluid electro-osmotic flow of stratified fluids with Newtonian or viscoelastic rheological behavior. This is the principle of operation of an electro-osmotic two-fluid pump as proposed by Brask et al. [Tech. Proc. Nanotech., 1, 190-193, 2003], in which an electrically non-conducting fluid is transported by the interfacial dragging viscous force of a conducting fluid that is driven by electro-osmosis. The electric potential in the conducting fluid and the analytical steady flow solution of the two-fluid electro-osmotic stratified flow in a planar microchannel are presented by assuming a planar interface between the two immiscible fluids with Newtonian or viscoelastic rheological behavior. The effects of fluid rheology, shear viscosity ratio, holdup and interfacial zeta potential are analyzed to show the viability of this technique, where an enhancement of the flow rate is observed as the shear-thinning effects are increased.
Cantrell, Kirk J.; Carroll, Kenneth C.; Buck, Edgar C.; Neiner, Doinita; Geiszler, Keith N.
2013-01-01
Contaminant release models are required to evaluate and predict long-term environmental impacts of even residual amounts of high-level radioactive waste after cleanup and closure of radioactively contaminated sites such as the DOE’s Hanford Site. More realistic and representative models have been developed for release of uranium, technetium, and chromium from Hanford Site tanks C-202, C-203, and C-103 residual wastes using data collected with a single-pass flow-through test (SPFT) method. These revised models indicate that contaminant release concentrations from these residual wastes will be considerably lower than previous estimates based on batch experiments. For uranium, a thermodynamic solubility model provides an effective description of uranium release, which can account for differences in pore fluid chemistry contacting the waste that could occur through time and as a result of different closure scenarios. Under certain circumstances in the SPFT experiments various calcium rich precipitates (calcium phosphates and calcite) form on the surfaces of the waste particles, inhibiting dissolution of the underlying uranium phases in the waste. This behavior was not observed in previous batch experiments. For both technetium and chromium, empirical release models were developed. In the case of technetium, release from all three wastes was modeled using an equilibrium Kd model. For chromium release, a constant concentration model was applied for all three wastes.
Pulsatile flow of blood using a modified second-grade fluid model
Massoudi, Mehrdad; Tran, P.X.
2008-07-01
We study the unsteady pulsatile flow of blood in an artery, where the effects of body acceleration are included. The blood is modeled as a modified second-grade fluid where the viscosity and the normal stress coefficients depend on the shear rate. It is assumed that the blood near the wall behaves as a Newtonian fluid, and in the core as a non-Newtonian fluid. This phenomenon is also known as the Fahraeus–Lindqvist effect. The equations are made dimensionless and solved numerically.
Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel
NASA Astrophysics Data System (ADS)
Shawky, Hameda Mohammed
2009-08-01
The flow due to the pulsatile pressure gradient of dusty non-Newtonian fluid with heat transfer in a channel is considered. The system is stressed by an external magnetic field. The non-Newtonian fluid under consideration is obeying the rheological equation of state due to Ree-Eyring’s stress-strain relation. The equations of momentum and energy have been solved by using Lightill method. The velocity and temperature distributions of the two phase of the dusty fluid are obtained. The effects of various physical parameters of distributions the problem on these distributions are discussed and illustrated graphically through a set of figure.
Locomotion by tangential deformation in a polymeric fluid
NASA Astrophysics Data System (ADS)
Zhu, Lailai; Do-Quang, Minh; Lauga, Eric; Brandt, Luca
2011-01-01
In several biologically relevant situations, cell locomotion occurs in polymeric fluids with Weissenberg number larger than 1. Here we present results of three-dimensional numerical simulations for the steady locomotion of a self-propelled body in a model polymeric (Giesekus) fluid at low Reynolds number. Locomotion is driven by steady tangential deformation at the surface of the body (the so-called squirming motion). In the case of a spherical squirmer, we show that the swimming velocity is systematically less than that in a Newtonian fluid, with a minimum occurring for Weissenberg numbers of order 1. The rate of work done by the swimmer always goes up compared to that occurring in the Newtonian solvent alone but is always lower than the power necessary to swim in a Newtonian fluid with the same viscosity. The swimming efficiency, defined as the ratio between the rate of work necessary to pull the body at the swimming speed in the same fluid and the rate of work done by swimming, is found to always be increased in a polymeric fluid. Further analysis reveals that polymeric stresses break the Newtonian front-back symmetry in the flow profile around the body. In particular, a strong negative elastic wake is present behind the swimmer, which correlates with strong polymer stretching, and its intensity increases with Weissenberg number and viscosity contrasts. The velocity induced by the squirmer is found to decay in space faster than in a Newtonian flow, with a strong dependence on the polymer relaxation time and viscosity. Our computational results are also extended to prolate spheroidal swimmers and smaller polymer stretching are obtained for slender shapes compared to bluff swimmers. The swimmer with an aspect ratio of two is found to be the most hydrodynamically efficient.
Khan, M O; Steinman, D A; Valen-Sendstad, K
2016-10-01
Computational fluid dynamics (CFD) shows promise for informing treatment planning and rupture risk assessment for intracranial aneurysms. Much attention has been paid to the impact on predicted hemodynamics of various modelling assumptions and uncertainties, including the need for modelling the non-Newtonian, shear-thinning rheology of blood, with equivocal results. Our study clarifies this issue by contextualizing the impact of rheology model against the recently demonstrated impact of CFD solution strategy on the prediction of aneurysm flow instabilities. Three aneurysm cases were considered, spanning a range of stable to unstable flows. Simulations were performed using a high-resolution/accuracy solution strategy with Newtonian and modified-Cross rheology models and compared against results from a so-called normal-resolution strategy. Time-averaged and instantaneous wall shear stress (WSS) distributions, as well as frequency content of flow instabilities and dome-averaged WSS metrics, were minimally affected by the rheology model, whereas numerical solution strategy had a demonstrably more marked impact when the rheology model was fixed. We show that point-wise normalization of non-Newtonian by Newtonian WSS values tended to artificially amplify small differences in WSS of questionable physiological relevance in already-low WSS regions, which might help to explain the disparity of opinions in the aneurysm CFD literature regarding the impact of non-Newtonian rheology. Toward the goal of more patient-specific aneurysm CFD, we conclude that attention seems better spent on solution strategy and other likely "first-order" effects (eg, lumen segmentation and choice of flow rates), as opposed to "second-order" effects such as rheology.
Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids
NASA Technical Reports Server (NTRS)
Trachman, E. G.; Cheng, H. S.
1973-01-01
The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.
NASA Astrophysics Data System (ADS)
Afify, Ahmed A.; El-Aziz, Mohamed Abd
2017-02-01
The steady two-dimensional flow and heat transfer of a non-Newtonian power-law nanofluid over a stretching surface under convective boundary conditions and temperature-dependent fluid viscosity has been numerically investigated. The power-law rheology is adopted to describe non-Newtonian characteristics of the flow. Four different types of nanoparticles, namely copper (Cu), silver (Ag), alumina (Al 2 O 3) and titanium oxide (TiO 2) are considered by using sodium alginate (SA) as the base non-Newtonian fluid. Lie symmetry group transformations are used to convert the boundary layer equations into non-linear ordinary differential equations. The transformed equations are solved numerically by using a shooting method with fourth-order Runge-Kutta integration scheme. The results show that the effect of viscosity on the heat transfer rate is remarkable only for relatively strong convective heating. Moreover, the skin friction coefficient and the rate of heat transfer increase with an increase in Biot number.
NASA Astrophysics Data System (ADS)
Sharif-Kashani, Pooria; Juan, Tingting; Hubschman, Jean-Pierre; Eldredge, Jeff D.; Pirouz Kavehpour, H.
2011-11-01
Vitrectomy is a microsurgical technique to remove the vitreous gel from the vitreous cavity. Due to the viscoelastic nature of the vitreous gel, its complex fluidic behavior during vitrectomy affects the outcome of the procedure. Therefore, the knowledge of such behavior is essential for better designing the vitrectomy devices, such as vitreous cutters, and tuning the system settings such as port and shaft diameters, infusion, vacuum, and cutting rate. We studied the viscoelastic properties of porcine vitreous humor using a stressed-control shear rheometer and obtained its relaxation time, retardation time, and shear-zero viscosity. We performed a computational study of the flow in a vitreous cutter using the viscoelastic parameters obtained from the rheology experiments. We found significant differences between the modeled vitreous gel and a Newtonian surrogate fluid in the flow behavior and performance of the vitreous cutter. Our results will help in understanding of the vitreous behavior during vitrectomy and providing guidelines for new vitreous cutter design.
Hatami, M; Hatami, J; Ganji, D D
2014-02-01
In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect.
Mondal, Sourav; De, Sirshendu
2013-01-01
Mass transport of a neutral solute for a power law fluid in a porous microtube under electro-osmotic flow regime is characterized in this study. Combined electro-osmotic and pressure driven flow is conducted herein. An analytical solution of concentration profile within mass transfer boundary layer is derived from the first principle. The solute transport through the porous wall is also coupled with the electro-osmotic flow to predict the solute concentration in the permeate stream. The effects of non-Newtonian rheology and the operating conditions on the permeation rate and permeate solute concentration are analyzed in detail. Both cases of assisting (electro-osmotic and poiseulle flow are in same direction) and opposing flow (the individual flows are in opposite direction) cases are taken care of. Enhancement of Sherwood due to electro-osmotic flow for a non-porous conduit is also quantified. Effects if non-Newtonian rheology on Sherwood number enhancement are observed. PMID:24404046
Flow-through synthesis on Teflon-patterned paper to produce peptide arrays for cell-based assays.
Deiss, Frédérique; Matochko, Wadim L; Govindasamy, Natasha; Lin, Edith Y; Derda, Ratmir
2014-06-16
A simple method is described for the patterned deposition of Teflon on paper to create an integrated platform for parallel organic synthesis and cell-based assays. Solvent-repelling barriers made of Teflon-impregnated paper confine organic solvents to specific zones of the patterned array and allow for 96 parallel flow-through syntheses on paper. The confinement and flow-through mixing significantly improves the peptide yield and simplifies the automation of this synthesis. The synthesis of 100 peptides ranging from 7 to 14 amino acids in length gave over 60% purity for the majority of the peptides (>95% yield per coupling/deprotection cycle). The resulting peptide arrays were used in cell-based screening to identify 14 potent bioactive peptides that support the adhesion or proliferation of breast cancer cells in a 3D environment. In the future, this technology could be used for the screening of more complex phenotypic responses, such as cell migration or differentiation.
Velocity and shear rate estimates of some non-Newtonian oscillatory flows in tubes
NASA Astrophysics Data System (ADS)
Kutev, N.; Tabakova, S.; Radev, S.
2016-10-01
The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.
Hou, Yi; Yang, Jiantao; Yang, Yi; Qin, Bengang; Fu, Guo; Li, Xiangming; Gu, Liqiang; Liu, Xiaolin; Zhu, Qingtang; Qi, Jian
2015-01-01
OBJECTIVE: In gracilis functioning free muscle transplantation, the limited caliber of the dominant vascular pedicle increases the complexity of the anastomosis and the risk of vascular compromise. The purpose of this study was to characterize the results of using a T-shaped vascular pedicle for flow-through anastomosis in gracilis functioning free muscle transplantation for brachial plexus injury. METHODS: The outcomes of patients with brachial plexus injury who received gracilis functioning free muscle transplantation with either conventional end-to-end anastomosis or flow-through anastomosis from 2005 to 2013 were retrospectively compared. In the flow-through group, the pedicle comprised a segment of the profunda femoris and the nutrient artery of the gracilis. The recipient artery was interposed by the T-shaped pedicle. RESULTS: A total of 46 patients received flow-through anastomosis, and 25 patients received conventional end-to-end anastomosis. The surgical time was similar between the groups. The diameter of the arterial anastomosis in the flow-through group was significantly larger than that in the end-to-end group (3.87 mm vs. 2.06 mm, respectively, p<0.001), and there were significantly fewer cases of vascular compromise in the flow-through group (2 [4.35%] vs. 6 [24%], respectively, p=0.019). All flaps in the flow-through group survived, whereas 2 in the end-to-end group failed. Minimal donor-site morbidity was noted in both groups. CONCLUSIONS: Flow-through anastomosis in gracilis functioning free muscle transplantation for brachial plexus injury can decrease the complexity of anastomosis, reduce the risk of flap loss, and allow for more variation in muscle placement. PMID:26247666
Optical monitoring for power law fluids during spin coating.
Jardim, P L G; Michels, A F; Horowitz, F
2012-01-30
Optical monitoring is applied, in situ and in real time, to non-newtonian, power law fluids in the spin coating process. An analytical exact solution is presented for thickness evolution that well fits to most measurement data. As result, typical rheological parameters are obtained for several CMC (carboximetilcelullose) concentrations and rotation speeds. Optical monitoring thus precisely indicates applicability of the model to power law fluids under spin coating.
Integrability of particle system around a ring source as the Newtonian limit of a black ring
NASA Astrophysics Data System (ADS)
Igata, Takahisa; Ishihara, Hideki; Yoshino, Hirotaka
2015-04-01
The geodesic equation in the five-dimensional singly rotating black ring is nonintegrable, unlike the case of the Myers-Perry black hole. In the Newtonian limit of the black ring, its geodesic equation agrees with the equation of motion of a particle in the Newtonian potential due to a homogeneous ring gravitational source. In this paper, we show that the Newtonian equation of motion allows the separation of variables in the spheroidal coordinates, providing a nontrivial constant of motion quadratic in momenta. This shows that the Newtonian limit of a black ring recovers the symmetry of its geodesic system, and the geodesic chaos is caused by relativistic effects.
The electrocatalytic hydrogenation of glucose; 2: Raney nickel powder flow-through reactor model
Anantharaman, V.; Pintauro, P.N. . Dept. of Chemical Engineering)
1994-10-01
A computer model which simulates the operation of a flow-through Raney nickel powder electrocatalytic hydrogenation reactor for the synthesis of sorbitol from glucose with simultaneous H[sub 2] evolution has been developed. The model utilizes porous electrode theory, considers both mass-transfer and surface kinetics effects, and contains no adjustable parameters. Hydrogen evolution on Raney nickel is described by a Volmer-Heyrovsky rate expression. The rate equation for glucose hydrogenation is identical to that for the chemical catalytic synthesis of sorbitol with pressurized H[sub 2] gas. For constant-current reactor operation, computed sorbitol current efficiencies match well with experimental data for a range of current densities (0.0053 to 0.021 A/cm[sup 2]) and glucose feed concentrations (0.4 to 1.6M), with an average error of 8.8%. Calculations show that a large fraction of adsorbed hydrogen on the nickel cathode surface is produced by the oxidation of electrogenerated H[sub 2] via the backward Heyrovsky reaction. According to the model, significantly higher sorbitol current efficiencies can be achieved by pulsing the current to the reactor.
Zhang, Libing; Pu, Yunqiao; Univ. of Tennessee, Knoxville, TN; ...
2016-10-03
To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 °C and a flow rate of 25 mL/min with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood ligninmore » remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C–C5). As a result, effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.« less
Zhang, Libing; Pu, Yunqiao; Cort, John R.; Ragauskas, Arthur J.; Yang, Bin
2016-10-03
To understand better the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g., poplar wood) and softwood (e.g., lodgepole pine wood) were investigated at temperatures of 200 to 270 °C and a flow rate of 25 mL/min with 0.05% (w/w) H_{2}SO_{4}. Results suggested that the softwood cellulose was more readily degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C–C5). As a result, effects of molecular structural features (i.e., lignin molecular weight, cellulose crystallinity, and condensed lignin structures) on the recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.
Electro-driven extraction across a polymer inclusion membrane in a flow-through cell.
See, Hong Heng; Stratz, Simone; Hauser, Peter C
2013-07-26
A flow-through arrangement for electrodriven extraction across a polymer inclusion membrane was developed. Sample introduction into the donor chamber was continuous, while the acceptor solution was stagnant. By adjustment of the total volume of the donor solution pumped through the cell the best compromise between enrichment factor and extraction time can be set. The enriched extract was analyzed by capillary electrophoresis with contactless conductivity detection. Membranes of 20μm thickness were employed which consisted of 60% cellulose triacetate as base polymer, 20% o-nitrophenyl octyl ether as plasticizer, and 20% Aliquat 336. By passing through 10mL of sample at a flow rate of 1mL/min the model analytes glyphosate (a common herbicide) and its major metabolite aminomethylphosphonic acid could be transported from the aqueous donor solution to the aqueous acceptor solution with efficiencies >87% in 10min at an applied voltage of 1500V. Enrichment factors of 87 and 95 and limits of detection down to 43 and 64pg/mL were obtained for glyphosate and aminomethylphosphonic acid, respectively. The intra- and interday reproducibilities for the extraction of the two compounds from spiked river water were about 6 and 7% respectively when new membranes were used for each experiment. For consecutive extractions of batches of river water with a single piece of membrane a deterioration of recovery by about 16% (after 20 runs) was noted, an effect not observed with purely aqueous standards.
A flow-through fluorescent sensor to determine Fe(III) and total inorganic iron.
Pulido-Tofiño, P; Moreno, J M; Pérez-Conde, M C
2000-03-06
A flow-through fluorescent sensor for the consecutive determination of Fe(III) and total iron is described. The reactive phase of the proposed sensor, which has a high affinity for complexed Fe(III), consists of pyoverdin immobilized on controlled pore glass (CPG) by covalent bonding. This pigment selectively reacts with Fe(III) decreasing its fluorescence emission. Total inorganic iron is determined as Fe(III) after on-line oxidation in a mini-column containing persulphate immobilized on an ion exchange resin. The developed method allows the determination of Fe(III) in the 3-200 (g l(-1) range. The relative standard deviations of 10 determinations of 60 (g l(-1) of Fe(III) and 20 (g l(-1) of Fe(III)+Fe(II) are 3 and 5%, respectively. The sensor has been satisfactorily applied to speciate iron in synthetic, tap and well waters and wines. There were no significant differences for total inorganic iron determination between this new method and the atomic absorption spectroscopy reference method at the 95% confidence level. The sensor allows the concentration of Fe(II) to be calculated as the difference between total inorganic iron and Fe(III). The lifetime of the sensor is at least 3 months in continuous use or the equivalent of 1000 determinations.
Fernández, P; Durand, J S; Pérez-Conde, C; Paniagua, G
2003-04-01
This paper reports a new flow-through fluoroimmunosensor, the function of which is based on antibodies immobilized on an inmunoreactor of controlled-pore glass (CPG), for determination of digoxin, used in the treatment of congestive heart failure and artery disease. The immunosensor has a detection limit of 1.20 microg L(-1) and provides high reproducibility (RSD=4.5% for a concentration of 0.0025 mg L(-1), and RSD=6.7% for 0.01 mg L(-1)). The optimum working concentration range was found to be 1.2 x 10(-3)-4.0 x 10(-2) mg L(-1). The lifetime of the immunosensor was about 50 immunoassays; if stored unused its lifetime can be extended to three months. A sample speed of about 10-12 samples per hour can be attained. Possible interference from substances with structures similar to digoxin (morphine, heroin, tebaine, codeine, pentazocine and narcotine) was investigated. No cross-reactivity was seen at the highest digoxin: interferent ratio studied (1:100). The proposed fluoroimmunosensor was successfully used to determine digoxin concentrations in human serum samples.
NASA Technical Reports Server (NTRS)
Hong, M. S.; Carmichael, G. R.
1983-01-01
A flow-through chemical reactor model is developed to describe the mass transfer and chemical processes that atmospheric gases undergo in clouds. The model includes the simultaneous absorption of SO2, NH3, O3, NO(x), HNO3, CO2 and H2O2, the accompanying dissociation and oxidation reactions in cloud water, considers electrical neutrality, and includes qualitative parameterization of cloud microphysics. The model is used to assess the importance of the oxidation reactions H2O2-S(IV), O3-S(IV), and S(IV)-Mn(2+) catalysis, and the effects of cloud parameters such as drop size, rain intensity, liquid water content, and updraft velocity. Both precipitating and nonprecipitating clouds are studied. Model results predict sulfate production rates varying from 3 percent/hr to 230 percent/hr. The actual rate is highly dependent on the chemical composition of the uptake air and the physical conditions of the cloud. Model results also show that both the H2O2 and the O3 oxidation reactions can be significant.
Flow and transport simulation models for prediction of chlorine contact tank flow-through curves.
Wang, Hong; Shao, Xuejun; Falconer, Roger A
2003-01-01
Turbulent flow, solute transport, and chemical and biological decay are some of the basic processes encountered in water treatment plants. This paper presents recent developments in the numerical simulation of turbulent flow and disinfection processes in disinfection contact tanks. Simulation runs have been conducted for various tank design alternatives and in different grid resolutions. The accuracy of simulated contact tank flow and the disinfection process depends largely on calculations of the hydrodynamic and solute transport characteristics in the tanks. A key factor of this is the accuracy of advection and shear stress term computations, which can be affected by the use of different hydrodynamic submodels and numerical schemes. The performance of a simulation model relies to a great extent on the right combination of such submodels and numerical schemes. In this study, a number of simulation models were tested against realistic tank configurations and measurements to evaluate the various combinations of turbulence models and difference schemes by analyzing predicted flow and solute transport patterns, as well as the corresponding flow-through curves. Models for disinfection tank simulations are recommended based on comparisons of simulation results with measurements. These models may also be applied to other water treatment processes such as wastewater treatment.
Gélis, Christelle; Mavon, Alain; Delverdier, Maxence; Paillous, Nicole; Vicendo, Patricia
2002-06-01
The effect of solar irradiation on ex vivo dermatomed hairless rat skin samples maintained in culture on flow-through diffusion cells for at least 24 h was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and by histological observations. Transepidermal water loss (TEWL) measurements and kinetic analysis of the permeation of both tritiated water and 14C caffeine through the skin were performed after full-spectrum solar exposure involving the use of a xenon arc solar simulator. After a UV exposure of less than 420 mJ/cm2, skin integrity and permeation of both water and caffeine did not change significantly. In contrast, after a 420 mJ/cm2 UV exposure, the epidermis appeared more contracted, associated with an increase of 55% of TEWL and 220% of the skin permeation of tritiated water after 6 h. The data suggested a dramatic alteration of the skin barrier integrity. Moreover, the flux of 14C caffeine increased rapidly by 338% of the absorption of water 12 h after irradiation. These results reveal the presence of a threshold UV exposure that would not modify skin penetration.
LeBlanc, Lawrence A; Gulnick, Jeanne D; Brownawell, Bruce J; Taylor, Gordon T
2006-03-01
The effect of sediment resuspension on the mineralization of phenanthrene was examined in microcosms and sediment slurries. In computer-controlled, flow-through microcosms, 14C-phenanthrene-amended sediments were resuspended into overlying oxic water at frequencies of 12, 4, 1, 0.25 and 0 d(-1). In slurry bottle experiments 14C-phenanthrene-amended sediments were continuously resuspended under oxic (excess air headspace) and anoxic (N2 headspace) conditions and mineralization was measured at periods from 2 h to 7 days. Our main findings were: (1) mineralization rate constants from the microcosms ranged from 0.001 to 0.01 d(-1) and increased with frequency of resuspension, (2) these rates fell between those measured in oxic and anoxic slurries and were predicted within a factor of 2.5 by a model in which mineralization depended on the degree of oxygen exposure, and (3) the phenanthrene-degrading bacterial community was more active in resuspended sediments incubated in the microcosms than in sediments which were not resuspended, or which were stored under refrigeration. We conclude from these experiments that the effects of sediment resuspension on phenanthrene degradation are consistent with a primary role of average oxygen exposure, and also an alteration in the PAH-degrading activity of microbial populations.
Zhang, Libing; Pu, Yunqiao; Cort, John R.; Ragauskas, Arthur J.; Yang, Bin
2016-12-05
To better understand the intrinsic recalcitrance of lignocellulosic biomass, the main hurdle to its efficient deconstruction, the effects of dilute acid flowthrough pretreatment on the dissolution chemistry of hemicellulose, cellulose, and lignin for both hardwood (e.g. poplar wood) and softwood (e.g. lodgepole pine wood) were investigated at temperatures of 200 °C to 270 °C and a flow rate of 25 mL/minute with 0.05% (w/w) H2SO4. Results suggested that the softwood cellulose was more readily to be degraded into monomeric sugars than that of hardwood under same pretreatment conditions. However, while the hardwood lignin was completely removed into hydrolysate, ~30% of the softwood lignin remained as solid residues under identical conditions, which was plausibly caused by vigorous C5-active recondensation reactions (C-C5). Unique molecular structural features that pronounced the specific recalcitrance of hardwood and softwood to dilute acid pretreatment were identified for the first time in this study, providing important insights to establish the effective biomass pretreatment.
Ultra-rapid flow-through polymerase chain reaction microfluidics using vapor pressure.
Fuchiwaki, Yusuke; Nagai, Hidenori; Saito, Masato; Tamiya, Eiichi
2011-09-15
A novel flow-through polymerase chain reaction (PCR) microfluidic system using vapor pressure was developed that can achieve ultra-rapid, small-volume DNA amplification on a chip. The 40-cycle amplification can be completed in as little as 120 s, making this device the fastest PCR system in the world. The chip device is made of a pressure-sensitive polyolefin (PSP) film and cyclo-olefin polymer (COP) substrate which was processed by cutting-work to fabricate the microchannel. The enclosed structure of the microchannel was fabricated solely by weighing the PSP film on the COP substrate, resulting in superior practical application. The vapor pressure in the denaturation zone of the destabilizing flow source was applied to the flow force, and ultra-rapid, efficient amplification was accomplished with a minimal amount of PCR reagents for detection. The flowing rhythm created by vapor pressure minimized the residual PCR products, leading to highly efficient amplification. For field test analysis, airborne dust was collected from a public place and tested for the presence of anthrax. The PCR chip had sufficient sensitivity for anthrax identification. The fastest time from aerosol sampling to detection was theoretically estimated as 8 min.
Sensitive HPV Genotyping Based on the Flow-Through Hybridization and Gene Chip
Tao, Pingping; Zheng, Weiping; Wang, Yungen; Bian, Mei-lu
2012-01-01
Persistent infection of high-risk human papillomavirus (HPV) has been recognized as the direct cause of cervical carcinoma. Therefore, detection and genotyping of HPV are important to cervical-cancer screening. In this study, we have evaluated the efficacy of flow-through hybridization and gene chip (HybriMax) on HPV genotyping through comparison of the results with Hybrid Capture II (HC-II) and in situ hybridization (ISH). 591 women were classified into 6 groups according to their histological diagnoses. The overall accordance rate on 13 types of HPV genotypes between HybriMax and HC-II were 92.5% and 100% in the cancer group. The overall accordance was excellent with the Kappa index (KI) of 0.814. The value of KI in each group was 0.750 (normal cytological diagnosis), 0.781 (chronic cervicitis), 0.80 (condyloma acuminatum), 0.755 (cervical intraepithelial neoplasia (CIN) I), 0.723 (CIN II), and 0.547 (CIN III) (0.75 > KI > 0.4, good; KI ≥ 0.75, excellent). The 10 most common HPV subtype detected by HybriMax were 16, 52/58, 18, 33, 31, 81, 53, 68, and 66 in patients, and 16, 68, 18, 52, 58, 11, 53, 31/39, and 33 in normal controls. In conclusion, HybriMax is an efficient method for HPV genotyping and more suitable for clinical use. PMID:23193367
Sensitive HPV genotyping based on the flow-through hybridization and gene chip.
Tao, Pingping; Zheng, Weiping; Wang, Yungen; Bian, Mei-Lu
2012-01-01
Persistent infection of high-risk human papillomavirus (HPV) has been recognized as the direct cause of cervical carcinoma. Therefore, detection and genotyping of HPV are important to cervical-cancer screening. In this study, we have evaluated the efficacy of flow-through hybridization and gene chip (HybriMax) on HPV genotyping through comparison of the results with Hybrid Capture II (HC-II) and in situ hybridization (ISH). 591 women were classified into 6 groups according to their histological diagnoses. The overall accordance rate on 13 types of HPV genotypes between HybriMax and HC-II were 92.5% and 100% in the cancer group. The overall accordance was excellent with the Kappa index (KI) of 0.814. The value of KI in each group was 0.750 (normal cytological diagnosis), 0.781 (chronic cervicitis), 0.80 (condyloma acuminatum), 0.755 (cervical intraepithelial neoplasia (CIN) I), 0.723 (CIN II), and 0.547 (CIN III) (0.75 > KI > 0.4, good; KI ≥ 0.75, excellent). The 10 most common HPV subtype detected by HybriMax were 16, 52/58, 18, 33, 31, 81, 53, 68, and 66 in patients, and 16, 68, 18, 52, 58, 11, 53, 31/39, and 33 in normal controls. In conclusion, HybriMax is an efficient method for HPV genotyping and more suitable for clinical use.
A flow-through chromatography process for influenza A and B virus purification.
Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo
2014-10-01
Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines.
Laboratory experiments to determine if crayfish can communicate chemically in a flow-through system
Itagaki, H.; Thorp, J.H.
1981-01-01
The importance of chemical cues for transmitting information concerning sexual identity, agonistic state, and stress-related condition in the crayfish Procambarus clarkii (Girard) was examined in a flow-through system. Experiments tested the effects of conditioned water from stimulus tanks on the behavior of solitary male or female crayfish. Twenty males and 20 females were subjected to a random sequence of five treatments: unconditioned water (control), conditioned water flowing through tanks containing a solitary male or female, and conditioned water from tanks holding either two males or two females. Durations of the following behaviors were recorded: chelae up, chela(e) in baffle hole, chela waving, climbing, digging, grooming, gross body movement, and meral spread. Results indicated that crayfish chemically detected another animal within 0.25 m without additional visual or tactile stimuli; however, crayfish apparently did not communicate information on sexual identity, agonistic state, or stress condition, nor does this detection necessarily imply discrimination between stimuli from crayfish and other taxa (e.g., fish). Our conclusions are contrasted with the two previous reports on chemical communication in crayfish in which experimental animals were tested in static systems. We suggest that a temporal separation of molting and copulation and a long reproductive receptivity period for females (which would allow abundant intersexual encounters) could account for a lack of selective pressure to evolve long-distance sex pheromones.
Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin
2009-01-01
An exoelectrogenic, biofilm-forming microbial consortium was enriched in an acetate-fed microbial fuel cell (MFC) using a flow-through anode coupled to an air-cathode. Multiple parameters known to improve MFC performance were integrated in one design including electrode spacing, specific electrode surface area, flow-through design, minimization of dead volume within anode chamber, and control of external resistance. In addition, continuous feeding of carbon source was employed and the MFC was operated at intermittent high flows to enable removal of non-biofilm forming organisms over a period of six months. The consortium enriched using the modified design and operating conditions resulted in a power density of 345 W m-3 of net anode volume (3650 mW m-2), when coupled to a ferricyanide cathode. The enriched consortium included -, -, -Proteobacteria, Bacteroidetes and Firmicutes. Members of the order Rhodocyclaceae and Burkholderiaceae (Azospira spp. (49%), Acidovorax spp. (11%) and Comamonas spp. (7%)), dominated the microbial consortium. Denaturing gradient gel electrophoresis (DGGE) analysis based on primers selective for Archaea suggested a very low abundance of methanogens. Limiting the delivery of the carbon source via continuous feeding corresponding to the maximum cathodic oxidation rates permitted in the flow-through, air-cathode MFC resulted in coulombic efficiencies reaching 88 5.7%.
NASA Astrophysics Data System (ADS)
Ogilvie, Gordon I.
2016-06-01
> These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.