Science.gov

Sample records for next-generation microlensing surveys

  1. Detection of planets in extremely weak central perturbation microlensing events via next-generation ground-based surveys

    SciTech Connect

    Chung, Sun-Ju; Lee, Chung-Uk; Koo, Jae-Rim E-mail: leecu@kasi.re.kr

    2014-04-20

    Even though the recently discovered high-magnification event MOA-2010-BLG-311 had complete coverage over its peak, confident planet detection did not happen due to extremely weak central perturbations (EWCPs, fractional deviations of ≲ 2%). For confident detection of planets in EWCP events, it is necessary to have both high cadence monitoring and high photometric accuracy better than those of current follow-up observation systems. The next-generation ground-based observation project, Korea Microlensing Telescope Network (KMTNet), satisfies these conditions. We estimate the probability of occurrence of EWCP events with fractional deviations of ≤2% in high-magnification events and the efficiency of detecting planets in the EWCP events using the KMTNet. From this study, we find that the EWCP events occur with a frequency of >50% in the case of ≲ 100 M {sub E} planets with separations of 0.2 AU ≲ d ≲ 20 AU. We find that for main-sequence and sub-giant source stars, ≳ 1 M {sub E} planets in EWCP events with deviations ≤2% can be detected with frequency >50% in a certain range that changes with the planet mass. However, it is difficult to detect planets in EWCP events of bright stars like giant stars because it is easy for KMTNet to be saturated around the peak of the events because of its constant exposure time. EWCP events are caused by close, intermediate, and wide planetary systems with low-mass planets and close and wide planetary systems with massive planets. Therefore, we expect that a much greater variety of planetary systems than those already detected, which are mostly intermediate planetary systems, regardless of the planet mass, will be significantly detected in the near future.

  2. The Next Generation Microlensing Search: SuperMacho

    SciTech Connect

    Drake, A; Cook, K; Hiriart, R; Keller, S; Miknaitis, G; Nilolaev, S; Olsen, K; Prochter, G; Rest, A; Schmidt, B; Smith, C; Stubbs, C; Suntzeff, N; Welch, D; Becker, A; Clocchiati, A; Covarrubias, R

    2003-10-27

    Past microlensing experiments such as the MACHO project have discovered the presence of a larger than expected number of microlensing events toward the Large Magellanic Cloud (LMC). These events could represent a large fraction of the dark matter in the halo of our Galaxy, if they are indeed due to halo lenses. However the locations of most of the lenses are poorly defined. The SuperMacho project will detect and follow up {approx}60 microlensing events exhibiting special properties due to binarity, etc., will allow us to better determine the location and nature of the lenses causing the LMC microlensing events.

  3. The Next Generation Transit Survey (NGTS)

    NASA Astrophysics Data System (ADS)

    Wheatley, Peter J.; Pollacco, Don L.; Queloz, Didier; Rauer, Heike; Watson, Christopher A.; West, Richard G.; Chazelas, Bruno; Louden, Tom M.; Walker, Simon; Bannister, Nigel; Bento, Joao; Burleigh, Matthew; Cabrera, Juan; Eigmüller, Philipp; Erikson, Anders; Genolet, Ludovic; Goad, Michael; Grange, Andrew; Jordán, Andrés; Lawrie, Katherine; McCormac, James; Neveu, Marion

    2013-04-01

    The Next Generation Transit Survey (NGTS) is a new ground-based sky survey designed to find transiting Neptunes and super-Earths. By covering at least sixteen times the sky area of Kepler, we will find small planets around stars that are sufficiently bright for radial velocity confirmation, mass determination and atmospheric characterisation. The NGTS instrument will consist of an array of twelve independently pointed 20 cm telescopes fitted with red-sensitive CCD cameras. It will be constructed at the ESO Paranal Observatory, thereby benefiting from the very best photometric conditions as well as follow up synergy with the VLT and E-ELT. Our design has been verified through the operation of two prototype instruments, demonstrating white noise characteristics to sub-mmag photometric precision. Detailed simulations show that about thirty bright super-Earths and up to two hundred Neptunes could be discovered. Our science operations are due to begin in 2014.

  4. The Next Generation Virgo Cluster Survey

    NASA Astrophysics Data System (ADS)

    Mei, Simona; Ferrarese, L.; Balkowski, C.; Balogh, M.; Blakeslee, J.; Boissier, S.; Boselli, A.; Bournaud, F.; Carignan, C.; Carlberg, R.; Chapman, S.; Cote, P.; Courteau, S.; Cuillandre, J.; Davidge, T.; Davidge, T.; Demers, S.; Duc, P.; Durrell, P.; Emsellem, E.; Gavazzi, G.; Gavazzi, R.; Gwyn, S.; Hoekstra, H.; Hudelot, P.; Ilbert, O.; Jordan, A.; Kavelaars, J.; Lancon, A.; McConnachie, A.; McLaughin, D.; Mellier, Y.; Mihos, C.; Peng, C.; Peng, E.; Puzia, T.; Sawicki, M.; Schade, D.; Simard, L.; Taylor, J.; Tonry, J.; Tully, B.; Wim, V.; Ludovic, V.; Vollmer, B.; Wilson, C.

    2010-01-01

    The Next Generation Virgo Cluster Survey (NGVS) is a CFHT MegaPrime large program to survey the Virgo Cluster from its core to virial radius, for a total coverage of 104 square degrees. Over the next four years, the survey will perform deep imaging (10 sigma detection for point sources of 25.7 mag in the g-band) in five band-passes (u*,g',r',i',z'), thereby superceding all optical studies of this uniquely important system. The program's main scientific objectives are: the characterization of the faint-end shape of the galaxy luminosity function, the characterization of galaxy scaling relations over a factor 107 in mass, the cluster/intracluster medium/galaxy connection, the role of environmental effects in galaxy evolution,and the fossil record of star formation and chemical enrichment in dense environments. Numerous ancillary projects - from a survey of the Galactic halo to a cosmic shear measurement of the matter power spectrum on large scales - will also be enabled. Details about the survey can be found at http://astrowww.phys.uvic.ca/ lff/NGVS.html

  5. The Next Generation Virgo Cluster Survey

    NASA Astrophysics Data System (ADS)

    Mei, S.; Ferrarese, L.; Balkowski, C.; Boissier, S.; Boselli, A.; Bournaud, F.; Duc, P. A.; Emsellem, E.; Gavazzi, R.; Hudelot, P.; Ilbert, O.; Lancon, A.; Mellier, Y.; van Driel, W.; Vollmer, B.; Ngvs Collaboration

    2009-11-01

    The Next Generation Virgo Cluster Survey (NGVS) is a large program on the Canada France Hawaii Telescope to survey the Virgo Cluster (PI: Laura Ferrarese, http://astrowww.phys.uvic.ca/~lff/NGVS.html). The survey will perform deep imaging of the central region of the cluster up to its virial radius and in five band--passes (u*,g',r',i',z'). The total exposure time will be 771 hours over 4 semesters from Spring 2009 to Spring 2012, with a French exposure time contribution of 325 hours. Because of its depth and extension, the survey will be the main optical reference for all future studies of the Virgo cluster in the coming decades. The program's main scientific objectives are: the characterization of the faint-end shape of the luminosity function, galaxy scaling relations, globular cluster populations, the role of environmental effects in galaxy evolution, the role of nuclear star clusters and black holes in galaxy evolution, star formation and chemical enrichment in the cluster environment.

  6. A Next-Generation NEO Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy; Grav, Tommy; Bauer, James; Cutri, Roc Michael; Masiero, Joseph; Wright, Edward

    2015-08-01

    NASA's NEOWISE project has demonstrated the feasibility of using a space-based infrared telescope to discover minor planets and characterize their physical properties such as diameter and albedo. NEOWISE has detected >160,000 minor planets to date at thermal infrared wavelengths, including nearly 1000 near-Earth objects (NEOs; Mainzer et al. 2011, Wright et al. 2010). While NEOWISE serves as a valuable proof of concept, the number of NEOs it can discover is intrinsically limited by expendable cryogens, its field of view, and the relatively narrow range of solar elongations it can view. To make substantial rapid progress toward discovering >90% of the NEO population larger than 140 m in diameter (the goal set to NASA by Congress in 2005), a dedicated survey is needed. The Near-Earth Object Camera (NEOCam) is a proposed space-based IR survey telescope that will discover and deliver thermal IR images at 4 and 8 microns of millions of minor planets. NEOCam was funded for technology development in the 2011 Discovery competition to mature the long-wavelength IR detector arrays needed to support a mission that is cooled purely passively, without the use of cryogens or cryocoolers. That development was successful and has resulted in the production of chips that exceed NEOCam's requirements (McMurtry et al. 2013, Girard et al. 2014). Detailed survey simulations have been carried out using a realistic survey cadence that will result in linkable detections of NEO candidates. The results of the simulation show that stationing NEOCam in a Sun-Earth L1 Lagrange point halo orbit provides the optimal environment for surveying the NEO population (Mainzer et al. 2015).

  7. The Next Generation Transit Survey Becomes Operational at Paranal

    NASA Astrophysics Data System (ADS)

    West, R. G.; Pollacco, D.; Wheatley, P.; Goad, M.; Queloz, D.; Rauer, H.; Watson, C.; Udry, S.; Bannister, N.; Bayliss, D.; Bouchy, F.; Burleigh, M.; Cabrera, J.; Chaushev, A.; Chazelas, B.; Crausaz, M.; Csizmadia, S.; Eigmüller, P.; Erikson, A.; Genolet, L.; Gillen, E.; Grange, A.; Günther, M.; Hodgkin, S.; Kirk, J.; Lambert, G.; Louden, T.; McCormac, J.; Metrailler, L.; Neveu, M.; Smith, A.; Thompson, A.; Raddi, R.; Walker, S. R.; Jenkins, J.; Jordán, A.

    2016-09-01

    A new facility dedicated to the discovery of exoplanets has commenced science operations at Paranal. The Next-Generation Transit Survey (NGTS) will deliver photometry at a precision unprecedented for a ground-based wide-field survey, enabling the discovery of dozens of transiting exoplanets of the size of Neptune or smaller around bright stars. NGTS is briefly described and the survey prospects are outlined.

  8. Next-generation X-ray cluster surveys

    NASA Astrophysics Data System (ADS)

    Slack, N. W.; Ponman, T. J.

    2014-03-01

    Contemporary X-ray surveys have permitted rich galaxy clusters to be detected out to redshifts z > 1, but studies with next-generation instruments will allow this work to be extended to both higher redshift and lower cluster masses. Such studies have the potential to provide powerful constraints on the evolution of baryonic processes such as cooling and feedback within developing cosmic structures, provided that observational selection effects can be controlled. To explore this, we generate simulated surveys using the Wide Field Imager (WFI) instrument on International X-ray Observatory (IXO), studied in 2010 by NASA and ESA as a major next-generation X-ray observatory. A sample of observed groups and clusters is assembled and used to derive relationships between temperature and four cluster properties: M500, L500, core radius and β. These are coupled with an evolving population of dark matter haloes drawn from the Millennium Simulation to construct an evolving set of X-ray clusters which are cast into a lightcone and imaged using the main instrumental characteristics of the IXO WFI. State-of-the-art techniques are then employed for source detection and extension testing, to generate a simulated survey cluster catalogue. These simulations are used to explore the dependence of a next-generation survey on the evolution of cluster scaling relations, survey strategy (wide versus deep) and instrument point spread function (PSF). We find that a 1.8 Ms IXO survey gives a cluster sample three to five times larger for a wide survey compared to a deep survey. In both surveys, the strongest discrimination between different LX-T evolutionary models derives from galaxy groups, with T ˜ 1-2 keV. Deep surveys can be affected by cosmic variance within this temperature range, whilst wide surveys suffer from incompleteness, and hence are more vulnerable to biases arising from incomplete knowledge of the survey selection function. Degrading the telescope PSF is found to most

  9. The (obscene) Challenges of Next-Generation Pulsar Surveys

    NASA Astrophysics Data System (ADS)

    Ransom, Scott M.

    2014-04-01

    In the last decade, large-scale surveys for new radio pulsars have made incredible progress, particularly in their ability to find important binary and millisecond pulsars. The reason for this progress has been Moore's Law, the same reason behind our current efforts and plans to build fantastic next-generation radio facilities. These new facilities, though, especially the radio arrays, will make pulsar searching incredibly difficult due to the (obscene) data rates that will be generated. Dealing with data rates that we cannot record will demand new ways of thinking about and processing our pulsar data. And unfortunately these challenges apply not only to the SKA in some distant future, but are with us already today in the arrays we have in operation or under construction.

  10. The Next Generation Virgo Cluster Survey: status and first results

    NASA Astrophysics Data System (ADS)

    Mei, S.; Ferrarese, L.; Boselli, A.; Boissier, S.; Bournaud, F.; Cuillandre, J. C.; Duc, P.-A.; Ferrière, E.; Gavazzi, R.; Gwyn, S. D. J.; Hudelot, P.; Ilbert, O.; Lançon, A.; Huertas-Company, M.; Mellier, Y.; Milkeraitis, M.; Muñoz, R.; Puzia, T. H.; van Waerbeke, L.; Vollmer, B.; Woods, D.; Balkowski, C.; Balogh, M. L.; Ball, N.; Blakeslee, J. P.; Carignan, C.; Carlberg, R. G.; Chapman, S. G.; Côté, P.; Courteau, S.; Davidge, T. J.; Demers, S.; Durrell, P. R.; Erben, T.; Emsellem, E.; Gavazzi, G.; Hoekstra, H.; Jordán, A.; Kavelaars, J. J.; MacArthur, L.; McConnachie, A. W.; McLaughlin, D.; Mihos, J. C.; Peng, C.; Peng, E. W.; Sawicki, M.; Schade, D.; Simard, L.; Taylor, J. E.; Tonry, J. L.; Tully, R. B.; van Driel, W.; Wilson, C. D.

    2011-12-01

    We present recent results from the Next Generation Virgo Cluster Survey (NGVS). NGVS is a CFHT MegaCam large program to observe the Virgo Cluster from its core to virial radius, for a total coverage of 104 square degrees. The survey is performing deep imaging (10 sigma detection for point sources of 25.9 mag in the g-band) in five band-passes (u*,g',r',i',z') and will reach a depth never attained before in optical studies of the Virgo cluster. The program's main scientific objectives are: the characterization of the faint-end of the galaxy luminosity function, the characterization of galaxy scaling relations from low to high masses, the cluster/intracluster medium/galaxy connection, the role of environmental effects in galaxy evolution,and the fossil record of star formation and chemical enrichment in dense environments. Numerous ancillary projects --- from a survey of the Galactic halo to a cosmic shear measurement of the matter power spectrum on large scales --- are also under way. We present the status of the survey and multi--wavelength projects, and results on recently detected high--redshift galaxy clusters.

  11. Launching the Next Generation IODP Site Survey Data Bank

    NASA Astrophysics Data System (ADS)

    Miller, S. P.; Helly, J.; Clark, D.; Eakins, B.; Sutton, D.; Weatherford, J.; Thatch, G.; Miville, B.; Zelt, B.

    2005-12-01

    The next generation all-digital Site Survey Data Bank (SSDB) became operational on August 15, 2005 as an online resource for Integrated Ocean Drilling Program (IODP) proponents, reviewers, panels and operations, worldwide. There are currently 123 active proposals for drilling at sites distributed across the globe, involving nearly 1000 proponents from more than 40 countries. The goal is to provide an authoritative, persistent, secure, password-controlled and easily-used home for contributed data objects, as proposals evolve through their life cycle from preliminary phases to planned drilling expeditions. Proposal status can be monitored graphically by proposal number, data type or date. A Java SSDBviewer allows discovery of all proposal data objects, displayed over a basemap of global topography, crustal age or other custom maps. Data can be viewed or downloaded under password control. Webform interfaces assist with the uploading of data and metadata. Thirty four different standard data types are currently supported. The system was designed as a fully functioning digital library, not just a database or a web archive, drawing upon the resources of the SIOExplorer Digital Library project. Blocks of metadata are organized to support discovery and use, as appropriate for each data type. The SSDB has been developed by a UCSD team of researchers and computer scientists at the Scripps Institution of Oceanography and the San Diego Supercomputer Center, under contract with IODP Management International Inc., supported by NSF OCE 0432224.

  12. Faint detection of exoplanets in microlensing surveys

    SciTech Connect

    Brown, Robert A.

    2014-06-20

    We propose a new approach to discovering faint microlensing signals below traditional thresholds, and for estimating the binary-lens mass ratio and the apparent separation from such signals. The events found will be helpful in accurately estimating the true distribution of planetary semimajor axes, which is an important goal of space microlensing surveys.

  13. Testing LMC Microlensing Scenarios: The Discrimination Power of the SuperMACHO Microlensing Survey

    SciTech Connect

    Rest, A; Stubbs, C; Becker, A C; Miknaitis, G A; Miceli, A; Covarrubias, R; Hawley, S L; Smith, C; Suntzeff, N B; Olsen, K; Prieto, J; Hiriart, R; Welch, D L; Cook, K; Nikolaev, S; Proctor, G; Clocchiatti, A; Minniti, D; Garg, A; Challis, P; Keller, S C; Scmidt, B P

    2004-05-27

    Characterizing the nature and spatial distribution of the lensing objects that produce the observed microlensing optical depth toward the Large Magellanic Cloud (LMC) remains an open problem. They present an appraisal of the ability of the SuperMACHO Project, a next-generation microlensing survey pointed toward the LMC, to discriminate between various proposed lensing populations. they consider two scenarios: lensing by a uniform foreground screen of objects and self-lensing of LMC stars. The optical depth for ''screen-lensing'' is essentially constant across the face of the LMC; whereas, the optical depth for self-lensing shows a strong spatial dependence. they have carried out extensive simulations, based upon actual data obtained during the first year of the project, to assess the SuperMACHO survey's ability to discriminate between these two scenarios. In the simulations they predict the expected number of observed microlensing events for each of their fields by adding artificial stars to the images and estimating the spatial and temporal efficiency of detecting microlensing events using Monte-Carlo methods. They find that the event rate itself shows significant sensitivity to the choice of the LMC luminosity function shape and other parameters, limiting the conclusions which can be drawn from the absolute rate. By instead determining the differential event rate across the LMC, they can decrease the impact of these systematic uncertainties rendering the conclusions more robust. With this approach the SuperMACHO Project should be able to distinguish between the two categories of lens populations and provide important constraints on the nature of the lensing objects.

  14. Discovering Extrasolar Planets with Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Wambsganss, J.

    2016-06-01

    An astronomical survey is commonly understood as a mapping of a large region of the sky, either photometrically (possibly in various filters/wavelength ranges) or spectroscopically. Often, catalogs of objects are produced/provided as the main product or a by-product. However, with the advent of large CCD cameras and dedicated telescopes with wide-field imaging capabilities, it became possible in the early 1990s, to map the same region of the sky over and over again. In principle, such data sets could be combined to get very deep stacked images of the regions of interest. However, I will report on a completely different use of such repeated maps: Exploring the time domain for particular kinds of stellar variability, namely microlens-induced magnifications in search of exoplanets. Such a time-domain microlensing survey was originally proposed by Bohdan Paczynski in 1986 in order to search for dark matter objects in the Galactic halo. Only a few years later three teams started this endeavour. I will report on the history and current state of gravitational microlensing surveys. By now, routinely 100 million stars in the Galactic Bulge are monitored a few times per week by so-called survey teams. All stars with constant apparent brightness and those following known variability patterns are filtered out in order to detect the roughly 2000 microlensing events per year which are produced by stellar lenses. These microlensing events are identified "online" while still in their early phases and then monitored with much higher cadence by so-called follow-up teams. The most interesting of such events are those produced by a star-plus-planet lens. By now of order 30 exoplanets have been discovered by these combined microlensing surveys. Microlensing searches for extrasolar planets are complementary to other exoplanet search techniques. There are two particular advantages: The microlensing method is sensitive down to Earth-mass planets even with ground-based telecopes, and it

  15. Next generation cosmology: constraints from the Euclid galaxy cluster survey

    NASA Astrophysics Data System (ADS)

    Sartoris, B.; Biviano, A.; Fedeli, C.; Bartlett, J. G.; Borgani, S.; Costanzi, M.; Giocoli, C.; Moscardini, L.; Weller, J.; Ascaso, B.; Bardelli, S.; Maurogordato, S.; Viana, P. T. P.

    2016-06-01

    We study the characteristics of the galaxy cluster samples expected from the European Space Agency's Euclid satellite and forecast constraints on parameters describing a variety of cosmological models. In this paper we use the same method of analysis already adopted in the Euclid Red Book, which is based on the Fisher matrix approach. Based on our analytical estimate of the cluster selection function in the photometric Euclid survey, we forecast the constraints on cosmological parameters corresponding to different extensions of the standard Λ cold dark matter model. Using only Euclid clusters, we find that the amplitude of the matter power spectrum will be constrained to Δσ8 = 0.0014 and the mass density parameter to ΔΩm = 0.0011. The dynamical evolution of dark energy will be constrained to Δw0 = 0.03 and Δwa = 0.2 with free curvature Ωk, resulting in a (w0, wa) figure of merit (FoM) of 291. In combination with Planck cosmic microwave background (CMB) constraints, the amplitude of primordial non-Gaussianity will be constrained to ΔfNL ≃ 6.6 for the local shape scenario. The growth factor parameter γ, which signals deviations from general relativity, will be constrained to Δγ = 0.02, and the neutrino density parameter to ΔΩν = 0.0013 (or Δ∑mν = 0.01). Including the Planck CMB covariance matrix improves dark energy constraints to Δw0 = 0.02, Δwa = 0.07, and a FoM = 802. Knowledge of the observable-cluster mass scaling relation is crucial to reach these accuracies. Imaging and spectroscopic capabilities of Euclid will enable internal mass calibration from weak lensing and the dynamics of cluster galaxies, supported by external cluster surveys.

  16. Microlensing Surveys and Long Period Variables

    NASA Astrophysics Data System (ADS)

    Mennessier, Marie-Odile

    After briefly recalling how microlensing surveys can greatly help research on Long Period Variable stars (LPVs), I present examples from two research projects, Etude et Recherche d'Objets Sombres (EROS) and DUO, and give some examples of preliminary data. This paper is essentially based on the theses of P. Grison (Institute d'Astrophysique [IAP], Paris), J.P. Beaulieu (IAP, Paris), C. Alard (Centre d'Analyse d'Images, Paris), and on the Diplome d'Etudes Approfondies of Y. Audior (IAP, Paris).

  17. THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). I. INTRODUCTION TO THE SURVEY

    SciTech Connect

    Ferrarese, Laura; Cote, Patrick; Gwyn, S. D. J.; MacArthur, Lauren A.; McConnachie, Alan W.; Blakeslee, John P.; Cuillandre, Jean-Charles; Peng, Eric W.; Duc, Pierre-Alain; Mei, Simona; Erben, Thomas; Durrell, Patrick R.; Christopher Mihos, J.; Jordan, Andres; Puzia, Thomas H.; Lancon, Ariane; Emsellem, Eric; Balogh, Michael L.; Van Waerbeke, Ludovic; and others

    2012-05-01

    The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg{sup 2} MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius-covering a total area of 104 deg{sup 2}-in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g Almost-Equal-To 25.9 mag (10{sigma}) and a surface brightness limit of {mu}{sub g} {approx} 29 mag arcsec{sup -2} (2{sigma} above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with 'foreground' and 'background' science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events.

  18. The Next Generation Virgo Cluster Survey (NGVS). I. Introduction to the Survey

    NASA Astrophysics Data System (ADS)

    Ferrarese, Laura; Côté, Patrick; Cuillandre, Jean-Charles; Gwyn, S. D. J.; Peng, Eric W.; MacArthur, Lauren A.; Duc, Pierre-Alain; Boselli, A.; Mei, Simona; Erben, Thomas; McConnachie, Alan W.; Durrell, Patrick R.; Mihos, J. Christopher; Jordán, Andrés; Lançon, Ariane; Puzia, Thomas H.; Emsellem, Eric; Balogh, Michael L.; Blakeslee, John P.; van Waerbeke, Ludovic; Gavazzi, Raphaël; Vollmer, Bernd; Kavelaars, J. J.; Woods, David; Ball, Nicholas M.; Boissier, S.; Courteau, Stéphane; Ferriere, E.; Gavazzi, G.; Hildebrandt, Hendrik; Hudelot, P.; Huertas-Company, M.; Liu, Chengze; McLaughlin, Dean; Mellier, Y.; Milkeraitis, Martha; Schade, David; Balkowski, Chantal; Bournaud, Frédéric; Carlberg, R. G.; Chapman, S. C.; Hoekstra, Henk; Peng, Chien; Sawicki, Marcin; Simard, Luc; Taylor, James E.; Tully, R. Brent; van Driel, Wim; Wilson, Christine D.; Burdullis, Todd; Mahoney, Billy; Manset, Nadine

    2012-05-01

    The Next Generation Virgo Cluster Survey (NGVS) is a program that uses the 1 deg2 MegaCam instrument on the Canada-France-Hawaii Telescope to carry out a comprehensive optical imaging survey of the Virgo cluster, from its core to its virial radius—covering a total area of 104 deg2—in the u*griz bandpasses. Thanks to a dedicated data acquisition strategy and processing pipeline, the NGVS reaches a point-source depth of g ≈ 25.9 mag (10σ) and a surface brightness limit of μ g ~ 29 mag arcsec-2 (2σ above the mean sky level), thus superseding all previous optical studies of this benchmark galaxy cluster. In this paper, we give an overview of the technical aspects of the survey, such as areal coverage, field placement, choice of filters, limiting magnitudes, observing strategies, data processing and calibration pipelines, survey timeline, and data products. We also describe the primary scientific topics of the NGVS, which include: the galaxy luminosity and mass functions; the color-magnitude relation; galaxy scaling relations; compact stellar systems; galactic nuclei; the extragalactic distance scale; the large-scale environment of the cluster and its relationship to the Local Supercluster; diffuse light and the intracluster medium; galaxy interactions and evolutionary processes; and extragalactic star clusters. In addition, we describe a number of ancillary programs dealing with "foreground" and "background" science topics, including the study of high-inclination trans-Neptunian objects; the structure of the Galactic halo in the direction of the Virgo Overdensity and Sagittarius Stream; the measurement of cosmic shear, galaxy-galaxy, and cluster lensing; and the identification of distant galaxy clusters, and strong-lensing events. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National

  19. Detection Rates for Surveys for Fast Transients with Next Generation Radio Arrays

    NASA Astrophysics Data System (ADS)

    Macquart, Jean-Pierre

    2011-06-01

    We relate the underlying properties of a population of fast radio-emitting transient events to its expected detection rate in a survey of finite sensitivity. The distribution of the distances of the detected events is determined in terms of the population luminosity distribution and survey parameters, for both extragalactic and Galactic populations. The detection rate as a function of Galactic position is examined to identify regions that optimize survey efficiency in a survey whose field of view is limited. The impact of temporal smearing caused by scattering in the interstellar medium has a large and direction-dependent bearing on the detection of impulsive signals, and we present a model for the effects of scattering on the detection rate. We show that the detection rate scales as ΩS -3/2 + δ 0, where Ω is the field of view, S 0 is the minimum detectable flux density, and 0 < δ <= 3/2 for a survey of Galactic transients in which interstellar scattering or the finite volume of the Galaxy is important. We derive formal conditions on the optimal survey strategy to adopt under different circumstances for fast transient surveys on next generation large-element, wide-field arrays, such as ASKAP, LOFAR, the MWA, and the SKA, and show how interstellar scattering and the finite spatial extent of a Galactic population modify the choice of optimal strategy.

  20. The Near-Earth Object Camera: A Next-Generation Minor Planet Survey

    NASA Astrophysics Data System (ADS)

    Mainzer, Amy K.; Wright, Edward L.; Bauer, James; Grav, Tommy; Cutri, Roc M.; Masiero, Joseph; Nugent, Carolyn R.

    2015-11-01

    The Near-Earth Object Camera (NEOCam) is a next-generation asteroid and comet survey designed to discover, characterize, and track large numbers of minor planets using a 50 cm infrared telescope located at the Sun-Earth L1 Lagrange point. Proposed to NASA's Discovery program, NEOCam is designed to carry out a comprehensive inventory of the small bodies in the inner regions of our solar system. It address three themes: 1) quantify the potential hazard that near-Earth objects may pose to Earth; 2) study the origins and evolution of our solar system as revealed by its small body populations; and 3) identify the best destinations for future robotic and human exploration. With a dual channel infrared imager that observes at 4-5 and 6-10 micron bands simultaneously through the use of a beamsplitter, NEOCam enables measurements of asteroid diameters and thermal inertia. NEOCam complements existing and planned visible light surveys in terms of orbital element phase space and wavelengths, since albedos can be determined for objects with both visible and infrared flux measurements. NEOCam was awarded technology development funding in 2011 to mature the necessary megapixel infrared detectors.

  1. A survey of tools for variant analysis of next-generation genome sequencing data

    PubMed Central

    Pabinger, Stephan; Dander, Andreas; Fischer, Maria; Snajder, Rene; Sperk, Michael; Efremova, Mirjana; Krabichler, Birgit; Speicher, Michael R.; Zschocke, Johannes

    2014-01-01

    Recent advances in genome sequencing technologies provide unprecedented opportunities to characterize individual genomic landscapes and identify mutations relevant for diagnosis and therapy. Specifically, whole-exome sequencing using next-generation sequencing (NGS) technologies is gaining popularity in the human genetics community due to the moderate costs, manageable data amounts and straightforward interpretation of analysis results. While whole-exome and, in the near future, whole-genome sequencing are becoming commodities, data analysis still poses significant challenges and led to the development of a plethora of tools supporting specific parts of the analysis workflow or providing a complete solution. Here, we surveyed 205 tools for whole-genome/whole-exome sequencing data analysis supporting five distinct analytical steps: quality assessment, alignment, variant identification, variant annotation and visualization. We report an overview of the functionality, features and specific requirements of the individual tools. We then selected 32 programs for variant identification, variant annotation and visualization, which were subjected to hands-on evaluation using four data sets: one set of exome data from two patients with a rare disease for testing identification of germline mutations, two cancer data sets for testing variant callers for somatic mutations, copy number variations and structural variations, and one semi-synthetic data set for testing identification of copy number variations. Our comprehensive survey and evaluation of NGS tools provides a valuable guideline for human geneticists working on Mendelian disorders, complex diseases and cancers. PMID:23341494

  2. The Next Generation Sky Survey and the Quest for Cooler Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy

    2003-06-01

    The Next Generation Sky Survey (NGSS) is a proposed NASA MIDEX mission to map the entire sky in four infrared bandpasses -- 3.5, 4.7, 12, and 23 μm. The seven-month mission will use a 50-cm telescope and four-channel imager to survey the sky from a circular orbit above the Earth. Expected sensitivities will be half a million times that of COBE/DIRBE at 3.5 and 4.7 μm and a thousand times that of IRAS at 12 and 23 μm. NGSS will be particularly sensitive to brown dwarfs cooler than those presently known. Deep absorption in the methane fundamental band at 3.3 μm and a predicted 5-μm overluminosity will produce uniquely red 3.5-to-4.7 μm colors for such objects. For a limiting volume of 25 pc, NGSS will completely inventory the Solar Neighborhood for brown dwarfs as cool as Gl 229B. At 10 pc, the census will be complete to 500 K. Assuming a field mass function with α = 1, there could be one or more brown dwarfs warmer than 150 K lying closer to the Sun than Proxima Centauri and detectable primarily at NGSS wavelengths. NGSS will enable estimates of the brown dwarf mass and luminosity functions to very cool temperatures and will provide both astrometric references and science targets for NGST.

  3. II. Apples to apples A2: cluster selection functions for next-generation surveys

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Mei, S.; Bartlett, J. G.; Benítez, N.

    2016-10-01

    We present the cluster selection function for three of the largest next-generation stage-IV surveys in the optical and infrared: Euclid-Optimistic, Euclid-Pessimistic and the Large Synoptic Survey Telescope (LSST). To simulate these surveys, we use the realistic mock catalogues introduced in the first paper of this series. We detected galaxy clusters using the Bayesian Cluster Finder (BCF) in the mock catalogues. We then modeled and calibrated the total cluster stellar mass observable-theoretical mass (M^*_CL-M_h) relation using a power law model, including a possible redshift evolution term. We find a moderate scatter of σ _{M^*_CL | M_h} of 0.124, 0.135 and 0.136 dex for Euclid-Optimistic, Euclid-Pessimistic and LSST, respectively, comparable to other work over more limited ranges of redshift. Moreover, the three datasets are consistent with negligible evolution with redshift, in agreement with observational and simulation results in the literature. We find that Euclid-Optimistic will be able to detect clusters with >80% completeness and purity down to 8 × 1013h-1M⊙ up to z < 1. At higher redshifts, the same completeness and purity are obtained with the larger mass threshold of 2 × 1014h-1M⊙ up to z = 2. The Euclid-Pessimistic selection function has a similar shape with ˜10% higher mass limit. LSST shows ˜5% higher mass limit than Euclid-Optimistic up to z < 0.7 and increases afterwards, reaching values of 2 × 1014h-1M⊙ at z = 1.4. Similar selection functions with only 80% completeness threshold have been also computed. The complementarity of these results with selection functions for surveys in other bands is discussed.

  4. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Guhathakurta, P.; and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  5. The Next Generation Virgo Cluster Survey. XIX. Tomography of Milky Way Substructures in the NGVS Footprint

    NASA Astrophysics Data System (ADS)

    Lokhorst, Deborah; Starkenburg, Else; McConnachie, Alan W.; Navarro, Julio F.; Ferrarese, Laura; Côté, Patrick; Liu, Chengze; Peng, Eric W.; Gwyn, Stephen D. J.; Cuillandre, Jean-Charles; Guhathakurta, Puragra

    2016-03-01

    The Next Generation Virgo Cluster Survey (NGVS) is a deep u*giz survey targeting the Virgo Cluster of galaxies at 16.5 Mpc. This survey provides high-quality photometry over an ˜100 deg2 region straddling the constellations of Virgo and Coma Berenices. This sightline through the Milky Way is noteworthy in that it intersects two of the most prominent substructures in the Galactic halo: the Virgo overdensity (VOD) and Sagittarius stellar stream (close to its bifurcation point). In this paper, we use deep u*gi imaging from the NGVS to perform tomography of the VOD and Sagittarius stream using main-sequence turnoff (MSTO) stars as a halo tracer population. The VOD, whose centroid is known to lie at somewhat lower declinations (α ˜ 190°, δ ˜ -5°) than is covered by the NGVS, is nevertheless clearly detected in the NGVS footprint at distances between ˜8 and 25 kpc. By contrast, the Sagittarius stream is found to slice directly across the NGVS field at distances between 25 and 40 kpc, with a density maximum at ≃35 kpc. No evidence is found for new substructures beyond the Sagittarius stream, at least out to a distance of ˜90 kpc—the largest distance to which we can reliably trace the halo using MSTO stars. We find clear evidence for a distance gradient in the Sagittarius stream across the ˜30° of sky covered by the NGVS and its flanking fields. We compare our distance measurements along the stream with those predicted by leading stream models.

  6. The Next Generation Virgo Cluster Survey. XX. RedGOLD Background Galaxy Cluster Detections

    NASA Astrophysics Data System (ADS)

    Licitra, Rossella; Mei, Simona; Raichoor, Anand; Erben, Thomas; Hildebrandt, Hendrik; Muñoz, Roberto P.; Van Waerbeke, Ludovic; Côté, Patrick; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Huertas-Company, Marc; Lançon, Ariane; Parroni, Carolina; Puzia, Thomas H.

    2016-09-01

    We build a background cluster candidate catalog from the Next Generation Virgo Cluster Survey (NGVS) using our detection algorithm RedGOLD. The NGVS covers 104 deg2 of the Virgo cluster in the {u}* ,g,r,i,z-bandpasses to a depth of g ˜ 25.7 mag (5σ). Part of the survey was not covered or has shallow observations in the r band. We build two cluster catalogs: one using all bandpasses, for the fields with deep r-band observations (˜20 deg2), and the other using four bandpasses ({u}* ,g,i,z) for the entire NGVS area. Based on our previous Canada-France-Hawaii Telescope Legacy Survey W1 studies, we estimate that both of our catalogs are ˜100% (˜70%) complete and ˜80% pure, at z ≤ 0.6 (z ≲ 1), for galaxy clusters with masses of M ≳ 1014 M ⊙. We show that when using four bandpasses, though the photometric redshift accuracy is lower, RedGOLD detects massive galaxy clusters up to z ˜ 1 with completeness and purity similar to the five-band case. This is achieved when taking into account the bias in the richness estimation, which is ˜40% lower at 0.5 ≤ z < 0.6 and ˜20% higher at 0.6 < z < 0.8, with respect to the five-band case. RedGOLD recovers all the X-ray clusters in the area with mass M 500 > 1.4 × 1014 M ⊙ and 0.08 < z < 0.5. Because of our different cluster richness limits and the NGVS depth, our catalogs reach lower masses than the published redMaPPer cluster catalog over the area, and we recover ˜90%-100% of its detections.

  7. Unveiling a Rich System of Faint Dwarf Galaxies in the Next Generation Fornax Survey

    NASA Astrophysics Data System (ADS)

    Muñoz, Roberto P.; Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Alamo-Martínez, Karla; Ribbeck, Karen X.; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Hempel, Maren; Hilker, Michael; Jordán, Andrés; Lançon, Ariane; Mieske, Steffen; Paolillo, Maurizio; Richtler, Tom; Sánchez-Janssen, Ruben; Zhang, Hongxin

    2015-11-01

    We report the discovery of 158 previously undetected dwarf galaxies in the Fornax cluster central regions using a deep coadded u-, g-, and i-band image obtained with the Dark Energy Camera wide-field camera mounted on the 4-m Blanco telescope at the Cerro Tololo Interamerican Observatory as part of the Next Generation Fornax Survey (NGFS). The new dwarf galaxies have quasi-exponential light profiles, effective radii 0.1 < re < 2.8 kpc, and average effective surface brightness values 22.0 < μi < 28.0 mag arcsec-2. We confirm the existence of ultra-diffuse galaxies (UDGs) in the Fornax core regions that resemble counterparts recently discovered in the Virgo and Coma galaxy clusters. We also find extremely low surface brightness NGFS dwarfs, which are several magnitudes fainter than the classical UDGs. The faintest dwarf candidate in our NGFS sample has an absolute magnitude of Mi = -8.0 mag. The nucleation fraction of the NGFS dwarf galaxy sample appears to decrease as a function of their total luminosity, reaching from a nucleation fraction of >75% at luminosities brighter than Mi ≃ -15.0 mag to 0% at luminosities fainter than Mi ≃ -10.0 mag. The two-point correlation function analysis of the NGFS dwarf sample shows an excess on length scales below ˜100 kpc, pointing to the clustering of dwarf galaxies in the Fornax cluster core.

  8. Microlensing Surveys of M31 in the Wide Field Imaging ERA

    SciTech Connect

    Baltz, E.

    2004-10-27

    The Andromeda Galaxy (M31) is the closest large galaxy to the Milky Way, thus it is an important laboratory for studying massive dark objects in galactic halos (MACHOs) by gravitational microlensing. Such studies strongly complement the studies of the Milky Way halo using the Large and Small Magellanic Clouds. We consider the possibilities for microlensing surveys of M31 using the next generation of wide field imaging telescopes with fields of view in the square degree range. We consider proposals for such imagers both on the ground and in space. For concreteness, we specialize to the SNAP proposal for a space telescope and the LSST proposal for a ground based telescope. We find that a modest space-based survey of 50 visits of one hour each is considerably better than current ground based surveys covering 5 years. Crucially, systematic effects can be considerably better controlled with a space telescope because of both the infrared sensitivity and the angular resolution. To be competitive, 8 meter class wide-field ground based imagers must take exposures of several hundred seconds with several day cadence.

  9. THE NEXT GENERATION VIRGO CLUSTER SURVEY. IV. NGC 4216: A BOMBARDED SPIRAL IN THE VIRGO CLUSTER

    SciTech Connect

    Paudel, Sanjaya; Duc, Pierre-Alain; Ferriere, Etienne; Cuillandre, Jean-Charles; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; Michel-Dansac, Leo; Mei, Simona; Van Driel, Wim

    2013-04-20

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a

  10. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  11. The Next Generation Virgo Cluster Survey. IV. NGC 4216: A Bombarded Spiral in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Paudel, Sanjaya; Duc, Pierre-Alain; Côté, Patrick; Cuillandre, Jean-Charles; Ferrarese, Laura; Ferriere, Etienne; Gwyn, Stephen D. J.; Mihos, J. Christopher; Vollmer, Bernd; Balogh, Michael L.; Carlberg, Ray G.; Boissier, Samuel; Boselli, Alessandro; Durrell, Patrick R.; Emsellem, Eric; MacArthur, Lauren A.; Mei, Simona; Michel-Dansac, Leo; van Driel, Wim

    2013-04-01

    The final stages of mass assembly of present-day massive galaxies are expected to occur through the accretion of multiple satellites. Cosmological simulations thus predict a high frequency of stellar streams resulting from this mass accretion around the massive galaxies in the Local Volume. Such tidal streams are difficult to observe, especially in dense cluster environments, where they are readily destroyed. We present an investigation into the origins of a series of interlaced narrow filamentary stellar structures, loops and plumes in the vicinity of the Virgo Cluster, edge-on spiral galaxy, NGC 4216 that were previously identified by the Blackbird telescope. Using the deeper, higher-resolution, and precisely calibrated optical CFHT/MegaCam images obtained as part of the Next Generation Virgo Cluster Survey (NGVS), we confirm the previously identified features and identify a few additional structures. The NGVS data allowed us to make a physical study of these low surface brightness features and investigate their origin. The likely progenitors of the structures were identified as either already cataloged Virgo Cluster Catalog dwarfs or newly discovered satellites caught in the act of being destroyed. They have the same g - i color index and likely contain similar stellar populations. The alignment of three dwarfs along an apparently single stream is intriguing, and we cannot totally exclude that these are second-generation dwarf galaxies being born inside the filament from the debris of an original dwarf. The observed complex structures, including in particular a stream apparently emanating from a satellite of a satellite, point to a high rate of ongoing dwarf destruction/accretion in the region of the Virgo Cluster where NGC 4216 is located. We discuss the age of the interactions and whether they occurred in a group that is just falling into the cluster and shows signs of the so-called pre-processing before it gets affected by the cluster environment, or in a

  12. Determination of Microlensing Selection Criteria for the SuperMACHO Survey

    SciTech Connect

    Garg, A

    2008-10-10

    The SuperMACHO project is a 5 year survey to determine the nature of the lens population responsible for the excess microlensing rate toward the Large Magellanic Cloud observed by the MACHO project [1]. The survey probes deeper than earlier surveys unveiling many more extragalactic contaminants, particularly type Ia supernovae and active galactic nuclei. Using {approx}10{sup 7} simulated light curves of both microlensing events and type Ia supernovae we determine selection criteria optimized to maximize the microlensing detection efficiency while minimizing the contamination rate from non-microlensing events. We discuss these simulations and the selection criteria.

  13. The Exoplanet Microlensing Survey by the Proposed WFIRST Observatory

    NASA Technical Reports Server (NTRS)

    Barry, Richard; Kruk, Jeffrey; Anderson, Jay; Beaulieu, Jean-Philippe; Bennett, David P.; Catanzarite, Joseph; Cheng, Ed; Gaudi, Scott; Gehrels, Neil; Kane, Stephen; Lunine, Jonathan; Sumi, Takahiro; Tanner, Angelle; Traub, Wesley

    2012-01-01

    The New Worlds, New Horizons report released by the Astronomy and Astrophysics Decadal Survey Board in 2010 listed the Wide Field Infrared Survey Telescope (WFIRST) as the highest-priority large space mission for the . coming decade. This observatory will provide wide-field imaging and slitless spectroscopy at near infrared wavelengths. The scientific goals are to obtain a statistical census of exoplanets using gravitational microlensing. measure the expansion history of and the growth of structure in the Universe by multiple methods, and perform other astronomical surveys to be selected through a guest observer program. A Science Definition Team has been established to assist NASA in the development of a Design Reference Mission that accomplishes this diverse array of science programs with a single observatory. In this paper we present the current WFIRST payload concept and the expected capabilities for planet detection. The observatory. with science goals that are complimentary to the Kepler exoplanet transit mission, is designed to complete the statistical census of planetary systems in the Galaxy, from habitable Earth-mass planets to free floating planets, including analogs to all of the planets in our Solar System except Mercury. The exoplanet microlensing survey will observe for 500 days spanning 5 years. This long temporal baseline will enable the determination of the masses for most detected exoplanets down to 0.1 Earth masses.

  14. Gravitational Microlensing

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Ł.; Moniez, M.; Horne, K.; Street, R.

    2012-04-01

    Gravitational microlensing is a well established and unique field of time-domain astrophysics. For two decades microlensing surveys have been regularly observing millions of stars to detect elusive events that follow a characteristic Paczyński lightcurve. This workshop reviewed the current state of the field, and covered the major topics related to microlensing: searches for extrasolar planets, and studies of dark matter. There were also discussions of issues relating to the organisation of follow-up observations for microlensing, as well as serendipitous scientific outcomes resulting from extensive microlensing data.

  15. Next-generation computers

    SciTech Connect

    Torrero, E.A.

    1985-01-01

    Developments related to tomorrow's computers are discussed, taking into account advances toward the fifth generation in Japan, the challenge to U.S. supercomputers, plans concerning the creation of supersmart computers for the U.S. military, a U.S. industry response to the Japanese challenge, a survey of U.S. and European research, Great Britain, the European Common Market, codifying human knowledge for machine reading, software engineering, the next-generation softwave, plans for obtaining the million-transistor chip, and fabrication issues for next-generation circuits. Other topics explored are related to a status report regarding artificial intelligence, an assessment of the technical challenges, aspects of sociotechnology, and defense advanced research projects. Attention is also given to expert systems, speech recognition, computer vision, function-level programming and automated programming, computing at the speed limit, VLSI, and superpower computers.

  16. Domestic and foreign trends in the prevalence of heart failure and the necessity of next-generation artificial hearts: a survey by the Working Group on Establishment of Assessment Guidelines for Next-Generation Artificial Heart Systems.

    PubMed

    Tatsumi, Eisuke; Nakatani, Takeshi; Imachi, Kou; Umezu, Mitsuo; Kyo, Shun-Ei; Sase, Kazuhiro; Takatani, Setsuo; Matsuda, Hikaru

    2007-01-01

    A series of guidelines for development and assessment of next-generation medical devices has been drafted under an interagency collaborative project by the Ministry of Health, Labor and Welfare and the Ministry of Economy, Trade and Industry. The working group for assessment guidelines of next-generation artificial hearts reviewed the trend in the prevalence of heart failure and examined the potential usefulness of such devices in Japan and in other countries as a fundamental part of the process of establishing appropriate guidelines. At present, more than 23 million people suffer from heart failure in developed countries, including Japan. Although Japan currently has the lowest mortality from heart failure among those countries, the number of patients is gradually increasing as our lifestyle becomes more Westernized; the associated medical expenses are rapidly growing. The number of heart transplantations, however, is limited due to the overwhelming shortage of donor hearts, not only in Japan but worldwide. Meanwhile, clinical studies and surveys have revealed that the major causes of death in patients undergoing long-term use of ventricular assist devices (VADs) were infection, thrombosis, and mechanical failure, all of which are typical of VADs. It is therefore of urgent and universal necessity to develop next-generation artificial hearts that have excellent durability to provide at least 2 years of event-free operation with a superior quality of life and that can be used for destination therapy to save patients with irreversible heart failure. It is also very important to ensure that an environment that facilitates the development, testing, and approval evaluation processes of next-generation artificial hearts be established as soon as possible.

  17. Next-generation environmental diversity surveys of foraminifera: preparing the future.

    PubMed

    Pawlowski, J; Lejzerowicz, F; Esling, P

    2014-10-01

    Foraminifera are commonly defined as marine testate protists, and their diversity is mainly assessed on the basis of the morphology of their agglutinated or mineralized tests. Diversity surveys based on environmental DNA (eDNA) have dramatically changed this view by revealing an unexpected diversity of naked and organic-walled lineages as well as detecting foraminiferal lineages in soil and freshwater environments. Moreover, single-cell analyses have allowed discrimination among genetically distinctive types within almost every described morphospecies. In view of these studies, the foraminiferal diversity appeared to be largely underestimated, but its accurate estimation was impeded by the low speed and coverage of a cloning-based eDNA approach. With the advent of high-throughput sequencing (HTS) technologies, these limitations disappeared in favor of exhaustive descriptions of foraminiferal diversity in numerous samples. Yet, the biases and errors identified in early HTS studies raised some questions about the accuracy of HTS data and their biological interpretation. Among the most controversial issues affecting the reliability of HTS diversity estimates are (1) the impact of technical and biological biases, (2) the sensitivity and specificity of taxonomic sequence assignment, (3) the ability to distinguish rare species, and (4) the quantitative interpretation of HTS data. Here, we document the lessons learned from previous HTS surveys and present the current advances and applications focusing on foraminiferal eDNA. We discuss the problems associated with HTS approaches and predict the future trends and avenues that hold promises for surveying foraminiferal diversity accurately and efficiently.

  18. BULK FLOWS FROM GALAXY LUMINOSITIES: APPLICATION TO 2MASS REDSHIFT SURVEY AND FORECAST FOR NEXT-GENERATION DATA SETS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2011-07-10

    We present a simple method for measuring cosmological bulk flows from large redshift surveys, based on the apparent dimming or brightening of galaxies due to their peculiar motion. It is aimed at estimating bulk flows of cosmological volumes containing large numbers of galaxies. Constraints on the bulk flow are obtained by minimizing systematic variations in galaxy luminosities with respect to a reference luminosity function measured from the whole survey. This method offers two advantages over more popular bulk flow estimators: it is independent of error-prone distance indicators and of the poorly known galaxy bias. We apply the method to the Two Micron All Sky Survey redshift survey to measure the local bulk flows of spherical shells centered on the Milky Way (MW). The result is consistent with that obtained by Nusser and Davis using the SFI++ catalogue of Tully-Fisher distance indicators. We also make an assessment of the ability of the method to constrain bulk flows at larger redshifts (z = 0.1-0.5) from next-generation data sets. As a case study we consider the planned EUCLID survey. Using this method we will be able to measure a bulk motion of {approx}200 km s{sup -1} of 10{sup 6} galaxies with photometric redshifts, at the 3{sigma} level for both z {approx} 0.15 and z {approx} 0.5. Thus, the method will allow us to put strong constraints on dark energy models as well as alternative theories for structure formation.

  19. A survey of tools and resources for the next generation analyst

    NASA Astrophysics Data System (ADS)

    Hall, David L.; Graham, Jake; Catherman, Emily

    2015-05-01

    We have previously argued that a combination of trends in information technology (IT) and changing habits of people using IT provide opportunities for the emergence of a new generation of analysts that can perform effective intelligence, surveillance and reconnaissance (ISR) on a "do it yourself" (DIY) or "armchair" approach (see D.L. Hall and J. Llinas (2014)). Key technology advances include: i) new sensing capabilities including the use of micro-scale sensors and ad hoc deployment platforms such as commercial drones, ii) advanced computing capabilities in mobile devices that allow advanced signal and image processing and modeling, iii) intelligent interconnections due to advances in "web N" capabilities, and iv) global interconnectivity and increasing bandwidth. In addition, the changing habits of the digital natives reflect new ways of collecting and reporting information, sharing information, and collaborating in dynamic teams. This paper provides a survey and assessment of tools and resources to support this emerging analysis approach. The tools range from large-scale commercial tools such as IBM i2 Analyst Notebook, Palantir, and GeoSuite to emerging open source tools such as GeoViz and DECIDE from university research centers. The tools include geospatial visualization tools, social network analysis tools and decision aids. A summary of tools is provided along with links to web sites for tool access.

  20. Creation of next generation U.S. Geological Survey topographic maps

    USGS Publications Warehouse

    Craun, Kari J.

    2010-01-01

    The U.S. Geological Survey (USGS) is 2 years into a 3-year cycle to create new digital topographic map products for the conterminous United States from data acquired and maintained as part of The National Map databases. These products are in the traditional, USGS topographic quadrangle, 7.5-minute (latitude and longitude) cell format. The 3-year cycle was conceived to follow the acquisition of National Aerial Imagery Program (NAIP) orthorectified imagery, a key layer in the new product. In fiscal year (FY) 2009 (ending September 30, 2009), the first year of the 3-year cycle, the USGS produced 13,200 products. These initial products of the “Digital MapBeta” series had limited feature content, including only the NAIP image, some roads, geographic names, and grid and collar information. The products were created in layered georegistered Portable Document Format (PDF) files, allowing users with freely available Adobe® Reader® software to view, print, and perform simple Geographic Information System-like functions. In FY 2010 (ending September 30, 2010), the USGS produced 20,380 products. These products of the “US Topo” series added hydrography (surface water features), contours, and some boundaries. In FY 2011 (ending September 30, 2011), the USGS will complete the initial coverage with US Topo products and will add additional feature content to the maps. The design, development, and production associated with the US Topo products provide management and technical challenges for the USGS and its public and private sector partners. One challenge is the acquisition and maintenance of nationally consistent base map data from multiple sources. Another is the use of these data to create a consistent, current series of cartographic products that can be used by the broad spectrum of traditional topographic map users. Although the USGS and its partners have overcome many of these challenges, many, such as establishing and funding a sustainable base data

  1. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. I. Methodology

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    Motivated by the order of magnitude difference in the frequency of giant planets orbiting M dwarfs inferred by microlensing and radial velocity (RV) surveys, we present a method for comparing the statistical constraints on exoplanet demographics inferred from these methods. We first derive the mapping from the observable parameters of a microlensing-detected planet to those of an analogous planet orbiting an RV-monitored star. Using this mapping, we predict the distribution of RV observables for the planet population inferred from microlensing surveys, taking care to adopt reasonable priors for, and properly marginalize over, the unknown physical parameters of microlensing-detected systems. Finally, we use simple estimates of the detection limits for a fiducial RV survey to predict the number and properties of analogs of the microlensing planet population such an RV survey should detect. We find that RV and microlensing surveys have some overlap, specifically for super-Jupiter mass planets (m{sub p} ≳ 1 M {sub Jup}) with periods between ∼3-10 yr. However, the steeply falling planetary mass function inferred from microlensing implies that, in this region of overlap, RV surveys should infer a much smaller frequency than the overall giant planet frequency (m{sub p} ≳ 0.1 M {sub Jup}) inferred by microlensing. Our analysis demonstrates that it is possible to statistically compare and synthesize data sets from multiple exoplanet detection techniques in order to infer exoplanet demographics over wider regions of parameter space than are accessible to individual methods. In a companion paper, we apply our methodology to several representative microlensing and RV surveys to derive the frequency of planets around M dwarfs with orbits of ≲ 30 yr.

  2. DISCOVERY OF A NEW MEMBER OF THE INNER OORT CLOUD FROM THE NEXT GENERATION VIRGO CLUSTER SURVEY

    SciTech Connect

    Chen, Ying-Tung; Ip, Wing-Huen; Kavelaars, J. J.; Gwyn, Stephen; Ferrarese, Laura; Côté, Patrick; Jordán, Andrés; Suc, Vincent; Cuillandre, Jean-Charles

    2013-09-20

    We report the discovery of 2010 GB{sub 174}, a likely new member of the Inner Oort Cloud (IOC). 2010 GB{sub 174} is 1 of 91 trans-Neptunian objects and Centaurs discovered in a 76 deg{sup 2} contiguous region imaged as part of the Next Generation Virgo Cluster Survey (NGVS)—a moderate ecliptic latitude survey reaching a mean limiting magnitude of g' ≅ 25.5—using MegaPrime on the 3.6 m Canada-France-Hawaii Telescope. 2010 GB{sub 174} is found to have an orbit with a semi-major axis of a ≅ 350.8 AU, an inclination of i ≅ 21.°6, and a pericenter of q ∼ 48.5 AU. This is the second largest perihelion distance among known solar system objects. Based on the sky coverage and depth of the NGVS, we estimate the number of IOC members with sizes larger than 300 km (H{sub V} ≤ 6.2 mag) to be ≅ 11, 000. A comparison of the detection rate from the NGVS and the PDSSS (a characterized survey that 'rediscovered' the IOC object Sedna) gives, for an assumed a power-law luminosity function for IOC objects, a slope of α ≅ 0.7 ± 0.2. With only two detections in this region this slope estimate is highly uncertain.

  3. Apples to apples A2 - I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Mei, S.; Benítez, N.

    2015-11-01

    We present new mock catalogues for two of the largest Stage IV next-generation surveys in the optical and infrared: Large Synoptic Sky Telescope (LSST) and Euclid, based on an N-body simulation+semi-analytical cone with a posterior modification with PHOTREAL. This technique modifies the original photometry by using an empirical library of spectral templates to make it more realistic. The reliability of the catalogues is confirmed by comparing the obtained colour-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. Consistent comparisons between the expected photometric redshifts for different surveys are also provided. Very deep near-infrared surveys such as Euclid will provide very good performance (Δz/(1 + z) ˜ 0.025-0.053) down to H ˜ 24 AB mag and up to z ˜ 3 depending on the optical observations available from the ground, whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution (Δz/(1 + z) ˜ 0.045) down to i ˜ 27.5 AB mag, being considerably improved (Δz/(1 + z) ˜ 0.035) if we restrict the sample down to i ˜ 24 AB mag. Those numbers can be substantially upgraded by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy. This is the first of a series of papers where we set a framework for comparability between mock catalogues and observations with a particular focus on cluster surveys. The Euclid and LSST mocks are made publicly available.

  4. Genome survey sequencing and genetic background characterization of Gracilariopsis lemaneiformis (Rhodophyta) based on next-generation sequencing.

    PubMed

    Zhou, Wei; Hu, Yiyi; Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon.

  5. Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing

    PubMed Central

    Sui, Zhenghong; Fu, Feng; Wang, Jinguo; Chang, Lianpeng; Guo, Weihua; Li, Binbin

    2013-01-01

    Gracilariopsis lemaneiformis has a high economic value and is one of the most important aquaculture species in China. Despite it is economic importance, it has remained largely unstudied at the genomic level. In this study, we conducted a genome survey of Gp. lemaneiformis using next-generation sequencing (NGS) technologies. In total, 18.70 Gb of high-quality sequence data with an estimated genome size of 97 Mb were obtained by HiSeq 2000 sequencing for Gp. lemaneiformis. These reads were assembled into 160,390 contigs with a N50 length of 3.64 kb, which were further assembled into 125,685 scaffolds with a total length of 81.17 Mb. Genome analysis predicted 3490 genes and a GC% content of 48%. The identified genes have an average transcript length of 1,429 bp, an average coding sequence size of 1,369 bp, 1.36 exons per gene, exon length of 1,008 bp, and intron length of 191 bp. From the initial assembled scaffold, transposable elements constituted 54.64% (44.35 Mb) of the genome, and 7737 simple sequence repeats (SSRs) were identified. Among these SSRs, the trinucleotide repeat type was the most abundant (up to 73.20% of total SSRs), followed by the di- (17.41%), tetra- (5.49%), hexa- (2.90%), and penta- (1.00%) nucleotide repeat type. These characteristics suggest that Gp. lemaneiformis is a model organism for genetic study. This is the first report of genome-wide characterization within this taxon. PMID:23875008

  6. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect

    Durrell, Patrick R.; Accetta, Katharine; Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen; Peng, Eric W.; Zhang, Hongxin; Mihos, J. Christopher; Puzia, Thomas H.; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Cuillandre, Jean-Charles; Boissier, Samuel; Boselli, Alessandro; Courteau, Stéphane; Duc, Pierre-Alain; and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values

  7. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  8. The Next Generation Virgo Cluster Survey. V. modeling the dynamics of M87 with the made-to-measure method

    SciTech Connect

    Zhu, Ling; Long, R. J.; Mao, Shude; Peng, Eric W.; Li, Biao; Liu, Chengze; Caldwell, Nelson; Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Gwyn, Stephen; Cuillandre, Jean-Charles; Durrell, Patrick; Emsellem, Eric; Jordán, Andrés; Muñoz, Roberto; Puzia, Thomas; Lançon, Ariane; Mei, Simona

    2014-09-01

    We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalog of 922 globular cluster line-of-sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. There are 263 globular clusters, mainly located beyond 40 kpc, newly observed by the Next Generation Virgo Survey. For the M2M modeling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modeled as a logarithmic potential. Our best-fit dynamical model returns a stellar mass-to-light ratio in the I band of M/L{sub I} = 6.0 ± 0.3 M{sub ⊙} L{sub ⊙}{sup −1} with a dark matter potential scale velocity of 591 ± 50 km s{sup –1} and scale radius of 42 ± 10 kpc. We determine the total mass of M87 within 180 kpc to be (1.5 ± 0.2) × 10{sup 13} M {sub ☉}. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond ∼45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derive is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy β parameter for the globular clusters in M87 is small, varying from –0.2 at the center to 0.2 at ∼40 kpc, and gradually decreasing to zero at ∼120 kpc.

  9. The Next Generation Virgo Cluster Survey. V. Modeling the Dynamics of M87 with the Made-to-measure Method

    NASA Astrophysics Data System (ADS)

    Zhu, Ling; Long, R. J.; Mao, Shude; Peng, Eric W.; Liu, Chengze; Caldwell, Nelson; Li, Biao; Blakeslee, John P.; Côté, Patrick; Cuillandre, Jean-Charles; Durrell, Patrick; Emsellem, Eric; Ferrarese, Laura; Gwyn, Stephen; Jordán, Andrés; Lançon, Ariane; Mei, Simona; Muñoz, Roberto; Puzia, Thomas

    2014-09-01

    We study the dynamics of the giant elliptical galaxy M87 from the central to the outermost regions with the made-to-measure (M2M) method. We use a new catalog of 922 globular cluster line-of-sight velocities extending to a projected radius of 180 kpc (equivalent to 25 M87 effective radii), and SAURON integral field unit data within the central 2.4 kpc. There are 263 globular clusters, mainly located beyond 40 kpc, newly observed by the Next Generation Virgo Survey. For the M2M modeling, the gravitational potential is taken as a combination of a luminous matter potential with a constant stellar mass-to-light ratio and a dark matter potential modeled as a logarithmic potential. Our best-fit dynamical model returns a stellar mass-to-light ratio in the I band of M/LI = 6.0 ± 0.3 M⊙ L⊙ -1 with a dark matter potential scale velocity of 591 ± 50 km s-1 and scale radius of 42 ± 10 kpc. We determine the total mass of M87 within 180 kpc to be (1.5 ± 0.2) × 1013 M ⊙. The mass within 40 kpc is smaller than previous estimates determined using globular cluster kinematics that did not extend beyond ~45 kpc. With our new globular cluster velocities at much larger radii, we see that globular clusters around 40 kpc show an anomalously large velocity dispersion which affected previous results. The mass we derive is in good agreement with that inferred from ROSAT X-ray observation out to 180 kpc. Within 30 kpc our mass is also consistent with that inferred from Chandra and XMM-Newton X-ray observations, while within 120 kpc it is about 20% smaller. The model velocity dispersion anisotropy β parameter for the globular clusters in M87 is small, varying from -0.2 at the center to 0.2 at ~40 kpc, and gradually decreasing to zero at ~120 kpc.

  10. Next Generation Internet Overview

    NASA Technical Reports Server (NTRS)

    desJardins, R.

    1998-01-01

    Various issues associated with next generation Internet are presented in viewgraph form. Specific topics include: 1) Internet architecture; 2) NASA's advanced networking; 3) Internet capability, capacity and applications; and 4) Systems engineering.

  11. VSX: The Next Generation

    NASA Astrophysics Data System (ADS)

    Watson, C. L.

    2012-06-01

    (Abstract only) The AAVSO International Variable Star Index (VSX), the most comprehensive and up-to-date assemblage of publicly-maintained variable star data on the planet, will be undergoing a major overhaul in the coming year to greatly improve the database design, as well as the Web-based user interface. Five years after its official launch, VSX has evolved into an essential component of the AAVSO enterprise information architecture, tightly integrated with many of the technical organization’s other mission-critical processes. However, its unique configuration and functionality are largely based on decades-old data formats and outmoded Web methodologies which will generally not scale well under the anticipated deluge of data from large-scale synoptic surveys. Here, we present the justifications and vision for VSX 2.0, the next generation of this indispensable research tool, including overviews of the creation of a brand new, fully-normalized, database schema, and the ground-up redesign of the front-end Web interface.

  12. Preparing for the WFIRST Microlensing Survey: Simulations, Requirements, Survey Strategies, and Precursor Observations

    NASA Astrophysics Data System (ADS)

    Gaudi, Bernard

    As one of the four primary investigations of the Wide Field Infrared Survey Telescope (WFIRST) mission, the microlensing survey will monitor several square degrees of the Galactic bulge for a total of roughly one year. Its primary science goal is to "Complete the statistical census of planetary systems in the Galaxy, from the outer habitable zone to free floating planets, including analogs of all of the planets in our Solar System with the mass of Mars or greater.'' WFIRST will therefore (a) measure the mass function of cold bound planets with masses greater than that of roughly twice the mass of the moon, including providing an estimate of the frequency of sub-Mars-mass embryos, (b) determine the frequency of free-floating planets with masses down to the Earth and below, (c) inform the frequency and habitability of potentially habitable worlds, and (d) revolutionize our understanding of the demographics of cold planets with its exquisite sensitivity to, and large expected yield of, planets in a broad and unexplored region of parameter space. In order for the microlensing survey to be successful, we must develop a plan to go from actual survey observations obtained by the WFIRST telescope and hardware to the final science products. This plan will involve many steps, the development of software, data reduction, and analysis tools at each step, and a list of requirements for each of these components. The overarching goal of this proposal is thus to develop a complete flowdown from the science goals of the microlensing survey to the mission design and hardware components. We have assembled a team of scientists with the breadth of expertise to achieve this primary goal. Our specific subgoals are as follows. Goal 1: We will refine the input Galactic models in order to provide improved microlensing event rates in the WFIRST fields. Goal 2: We will use the improved event rate estimates, along with improvements in our simulation methodology, to provide higher

  13. What do firefighters desire from the next generation of personal protective equipment? Outcomes from an international survey

    PubMed Central

    LEE, Joo-Young; PARK, Joonhee; PARK, Huiju; COCA, Aitor; KIM, Jung-Hyun; TAYLOR, Nigel A.S.; SON, Su-Young; TOCHIHARA, Yutaka

    2015-01-01

    The purpose of this study was to investigate smart features required for the next generation of personal protective equipment (PPE) for firefighters in Australia, Korea, Japan, and the USA. Questionnaire responses were obtained from 167 Australian, 351 Japanese, 413 Korean, and 763 U.S. firefighters (1,611 males and 61 females). Preferences concerning smart features varied among countries, with 27% of Korean and 30% of U.S. firefighters identifying ‘a location monitoring system’ as the most important element. On the other hand, 43% of Japanese firefighters preferred ‘an automatic body cooling system’ while 21% of the Australian firefighters selected equally ‘an automatic body cooling system’ and ‘a wireless communication system’. When asked to rank these elements in descending priority, responses across these countries were very similar with the following items ranked highest: ‘a location monitoring system’, ‘an automatic body cooling system’, ‘a wireless communication system’, and ‘a vision support system’. The least preferred elements were ‘an automatic body warming system’ and ‘a voice recording system’. No preferential relationship was apparent for age, work experience, gender or anthropometric characteristics. These results have implications for the development of the next generation of PPE along with the international standardisation of the smart PPE. PMID:26027710

  14. What do firefighters desire from the next generation of personal protective equipment? Outcomes from an international survey.

    PubMed

    Lee, Joo-Young; Park, Joonhee; Park, Huiju; Coca, Aitor; Kim, Jung-Hyun; Taylor, Nigel A S; Son, Su-Young; Tochihara, Yutaka

    2015-01-01

    The purpose of this study was to investigate smart features required for the next generation of personal protective equipment (PPE) for firefighters in Australia, Korea, Japan, and the USA. Questionnaire responses were obtained from 167 Australian, 351 Japanese, 413 Korean, and 763 U.S. firefighters (1,611 males and 61 females). Preferences concerning smart features varied among countries, with 27% of Korean and 30% of U.S. firefighters identifying 'a location monitoring system' as the most important element. On the other hand, 43% of Japanese firefighters preferred 'an automatic body cooling system' while 21% of the Australian firefighters selected equally 'an automatic body cooling system' and 'a wireless communication system'. When asked to rank these elements in descending priority, responses across these countries were very similar with the following items ranked highest: 'a location monitoring system', 'an automatic body cooling system', 'a wireless communication system', and 'a vision support system'. The least preferred elements were 'an automatic body warming system' and 'a voice recording system'. No preferential relationship was apparent for age, work experience, gender or anthropometric characteristics. These results have implications for the development of the next generation of PPE along with the international standardisation of the smart PPE. PMID:26027710

  15. MOA-2011-BLG-322Lb: a `second generation survey' microlensing planet

    NASA Astrophysics Data System (ADS)

    Shvartzvald, Y.; Maoz, D.; Kaspi, S.; Sumi, T.; Udalski, A.; Gould, A.; Bennett, D. P.; Han, C.; Abe, F.; Bond, I. A.; Botzler, C. S.; Freeman, M.; Fukui, A.; Fukunaga, D.; Itow, Y.; Koshimoto, N.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Namba, S.; Ohnishi, K.; Rattenbury, N. J.; Saito, To.; Sullivan, D. J.; Sweatman, W. L.; Suzuki, D.; Tristram, P. J.; Wada, K.; Yock, P. C. M.; Skowron, J.; Kozłowski, S.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Wyrzykowski, Ł.; Poleski, R.; Pietrukowicz, P.

    2014-03-01

    Global `second-generation' microlensing surveys aim to discover and characterize extrasolar planets and their frequency, by means of round-the-clock high-cadence monitoring of a large area of the Galactic bulge, in a controlled experiment. We report the discovery of a giant planet in microlensing event MOA-2011-BLG-322. This moderate-magnification event, which displays a clear anomaly induced by a second lensing mass, was inside the footprint of our second-generation microlensing survey, involving MOA, OGLE and the Wise Observatory. The event was observed by the survey groups, without prompting alerts that could have led to dedicated follow-up observations. Fitting a microlensing model to the data, we find that the time-scale of the event was tE = 23.2 ± 0.8 d, and the mass ratio between the lens star and its companion is q = 0.028 ± 0.001. Finite-source effects are marginally detected, and upper limits on them help break some of the degeneracy in the system parameters. Using a Bayesian analysis that incorporates a Galactic structure model, we estimate the mass of the lens at 0.39^{+0.45}_{-0.19} M_{⊙}, at a distance of 7.56 ± 0.91 kpc. Thus, the companion is likely a planet of mass 11.6^{+13.4}_{-5.6} M_J, at a projected separation of 4.3^{+1.5}_{-1.2} AU, rather far beyond the snow line. This is the first pure-survey planet reported from a second-generation microlensing survey, and shows that survey data alone can be sufficient to characterize a planetary model. With the detection of additional survey-only planets, we will be able to constrain the frequency of extrasolar planets near their systems' snow lines.

  16. Next generation initiation techniques

    NASA Technical Reports Server (NTRS)

    Warner, Tom; Derber, John; Zupanski, Milija; Cohn, Steve; Verlinde, Hans

    1993-01-01

    Four-dimensional data assimilation strategies can generally be classified as either current or next generation, depending upon whether they are used operationally or not. Current-generation data-assimilation techniques are those that are presently used routinely in operational-forecasting or research applications. They can be classified into the following categories: intermittent assimilation, Newtonian relaxation, and physical initialization. It should be noted that these techniques are the subject of continued research, and their improvement will parallel the development of next generation techniques described by the other speakers. Next generation assimilation techniques are those that are under development but are not yet used operationally. Most of these procedures are derived from control theory or variational methods and primarily represent continuous assimilation approaches, in which the data and model dynamics are 'fitted' to each other in an optimal way. Another 'next generation' category is the initialization of convective-scale models. Intermittent assimilation systems use an objective analysis to combine all observations within a time window that is centered on the analysis time. Continuous first-generation assimilation systems are usually based on the Newtonian-relaxation or 'nudging' techniques. Physical initialization procedures generally involve the use of standard or nonstandard data to force some physical process in the model during an assimilation period. Under the topic of next-generation assimilation techniques, variational approaches are currently being actively developed. Variational approaches seek to minimize a cost or penalty function which measures a model's fit to observations, background fields and other imposed constraints. Alternatively, the Kalman filter technique, which is also under investigation as a data assimilation procedure for numerical weather prediction, can yield acceptable initial conditions for mesoscale models. The

  17. Identifying Microlenses In Large, Non-uniformly Sampled Surveys: The Case Of PTF

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agúeros, M.; Fournier, A.; Ofek, E.; Street, R.

    2012-05-01

    Many current photometric, time-domain surveys are driven by specific goals, such as supernova searches, transiting exoplanet discoveries, or stellar variability studies, which set the cadence with which individual fields get re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to an extremely non-uniform sampling gradient over the survey footprint of nearly 20,000 deg^2: while the typical 7.26 deg^2 PTF field has been imaged 15 times, 1000 deg^2 of the survey has been observed more than 150 times. We use the existing PTF data to study the trade-off between a large survey footprint and irregular sampling when searching for microlensing events, and to examine the probability that such events can be recovered in these data. We conduct Monte Carlo simulations to evaluate our detection efficiency in a hypothetical survey field as a function of both the baseline and number of observations. We also apply variability statistics to systematically differentiate between periodic, transient, and flat light curves. Preliminary results suggest that both recovery and discovery of microlensing events are possible with a careful consideration of photometric systematics. This work can help inform predictions about the observability of microlensing signals in future wide-field time-domain surveys such as that of LSST.

  18. Next generation vaccines.

    PubMed

    Riedmann, Eva M

    2011-07-01

    In February this year, about 100 delegates gathered for three days in Vienna (Austria) for the Next Generation Vaccines conference. The meeting held in the Vienna Hilton Hotel from 23rd-25th February 2011 had a strong focus on biotech and industry. The conference organizer Jacob Fleming managed to put together a versatile program ranging from the future generation of vaccines to manufacturing, vaccine distribution and delivery, to regulatory and public health issues. Carefully selected top industry experts presented first-hand experience and shared solutions for overcoming the latest challenges in the field of vaccinology. The program also included several case study presentations on novel vaccine candidates in different stages of development. An interactive pre-conference workshop as well as interactive panel discussions during the meeting allowed all delegates to gain new knowledge and become involved in lively discussions on timely, interesting and sometimes controversial topics related to vaccines. PMID:22002157

  19. Analysis of Photometric Uncertainties in the OGLE-IV Galactic Bulge Microlensing Survey Data

    NASA Astrophysics Data System (ADS)

    Skowron, J.; Udalski, A.; Kozłowski, S.; Szymański, M. K.; Mróz, P.; Wyrzykowski, Ł.; Poleski, R.; Pietrukowicz, P.; Ulaczyk, K.; Pawlak, M.; Soszyński, I.

    2016-01-01

    We present a statistical assessment of both, observed and reported, photometric uncertainties in the OGLE-IV Galactic bulge microlensing survey data. This dataset is widely used for the detection of variable stars, transient objects, discovery of microlensing events, and characterization of the exo-planetary systems. Large collections of RR Lyr stars and Cepheids discovered by the OGLE project toward the Galactic bulge provide light curves based on this dataset. We describe the method of analysis, and provide the procedure, which can be used to update preliminary photometric uncertainties, provided with the light curves, to the ones reflecting the actual observed scatter at a given magnitude and for a given CCD detector of the OGLE-IV camera. This is of key importance for data modeling, in particular, for the correct estimation of the goodness of fit.

  20. The POINT-AGAPE survey: comparing automated searches of microlensing events towards M31

    NASA Astrophysics Data System (ADS)

    Tsapras, Y.; Carr, B. J.; Weston, M. J.; Kerins, E.; Baillon, P.; Gould, A.; Paulin-Henriksson, S.

    2010-05-01

    Searching for microlensing in M31 using automated superpixel surveys raises a number of difficulties which are not present in more conventional techniques. Here we focus on the problem that the list of microlensing candidates is sensitive to the selection criteria or `cuts' imposed, and some subjectivity is involved in this. Weakening the cuts will generate a longer list of microlensing candidates but with a greater fraction of spurious ones; strengthening the cuts will produce a shorter list but may exclude some genuine events. We illustrate this by comparing three analyses of the same data set obtained from a 3 yr observing run on the Isaac Newton Telescope in La Palma. The results of two of these analyses have been already reported: Belokurov et al. obtained between three and 22 candidates, depending on the strength of their cuts, while Calchi Novati et al. obtained six candidates. The third analysis is presented here for the first time and reports 10 microlensing candidates, seven of which are new. Only two of the candidates are common to all three analyses. In order to understand why these analyses produce different candidate lists, a comparison is made of the cuts used by the three groups. Particularly crucial are the method employed to distinguish between a microlensing event and a variable star, and the extent to which one encodes theoretical prejudices into the cuts. Another factor is that the superpixel technique requires the masking of resolved stars and bad pixels. Belokurov et al. and the present analysis use the same input catalogue and the same masks but Calchi Novati et al. use different ones and a somewhat less automated procedure. Because of these considerations, one expects the lists of candidates to vary and it is not possible to pronounce a candidate a definite microlensing event. Indeed we accept that several of our new candidates, especially the long time-scale ones, may not be genuine. This uncertainty also impinges on one of the most

  1. Microlensing by Kuiper, Oort, and Free-Floating Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    2016-08-01

    Microlensing is generally thought to probe planetary systems only out to a few Einstein radii. Microlensing events generated by bound planets beyond about 10 Einstein radii generally do not yield any trace of their hosts, and so would be classified as free floating planets (FFPs). I show that it is already possible, using adaptive optics (AO), to constrain the presence of potential hosts to FFP candidates at separations comparable to the Oort Cloud. With next-generation telescopes, planets at Kuiper-Belt separations can be probed. Next generation telescopes will also permit routine vetting for all FFP candidates, simply by obtaining second epochs 4-8 years after the event.At present, the search for such hosts is restricted to within the ``confusion limit'' of θ_\\confus ˜ 0.25'' but future WFIRST (Wide Field Infrared Survey Telescope) observations will allow one to probe beyond this confusion limit as well.

  2. Are we preparing the next generation of fisheries professionals to succeed in their careers?: A survey of AFS members

    USGS Publications Warehouse

    McMullin, Steve L.; DiCenzo, Vic; Essig, Ron; Bonds, Craig; DeBruyne, Robin L.; Kaemingk, Mark A.; Mather, Martha E.; Myrick, Christopher A.; Phelps, Quinton; Sutton, Trent M.; Triplett, James

    2016-01-01

    Natural resource professionals have frequently criticized universities for poorly preparing graduates to succeed in their jobs. We surveyed members of the American Fisheries Society to determine which job skills and knowledge of academic topics employers, students, and university faculty members deemed most important to early-career success of fisheries professionals. Respondents also rated proficiency of recently hired, entry-level professionals (employers) on how well their programs prepared them for career success (students and faculty) in those same job skills and academic topics. Critical thinking and written and oral communication skills topped the list of important skills and academic topics. Employers perceived recent entry-level hires to be less well-prepared to succeed in their careers than either university faculty or students. Entry-level hires with post-graduate degrees rated higher in proficiency for highly important skills and knowledge than those with bachelor's degrees. We conclude that although universities have the primary responsibility for developing critical thinking and basic communication skills of students, employers have equal or greater responsibility for enhancing skills of employees in teamwork, field techniques, and communicating with stakeholders. The American Fisheries Society can significantly contribute to the preparation of young fisheries professionals by providing opportunities for continuing education and networking with peers at professional conferences.

  3. Next Generation Virtual Observatories

    NASA Astrophysics Data System (ADS)

    Fox, P.; McGuinness, D. L.

    2008-12-01

    Virtual Observatories (VO) are now being established in a variety of geoscience disciplines beyond their origins in Astronomy and Solar Physics. Implementations range from hydrology and environmental sciences to solid earth sciences. Among the goals of VOs are to provide search/ query, access and use of distributed, heterogeneous data resources. With many of these goals being met and usage increasing, new demands and requirements are arising. In particular there are two of immediate and pressing interest. The first is use of VOs by non-specialists, especially for information products that go beyond the usual data, or data products that are sought for scientific research. The second area is citation and attribution of artifacts that are being generated by VOs. In some sense VOs are re-publishing (re-packaging, or generating new synthetic) data and information products. At present only a few VOs address this need and it is clear that a comprehensive solution that includes publishers is required. Our work in VOs and related semantic data framework and integration areas has lead to a view of the next generation of virtual observatories which the two above-mentioned needs as well as others that are emerging. Both of the needs highlight a semantic gap, i.e. that the meaning and use for a user or users beyond the original design intention is very often difficult or impossible to bridge. For example, VOs created for experts with complex, arcane or jargon vocabularies are not accessible to the non-specialist and further, information products the non-specialist may use are not created or considered for creation. In the second case, use of a (possibly virtual) data or information product (e.g. an image or map) as an intellectual artifact that can be accessed as part of the scientific publication and review procedure also introduces terminology gaps, as well as services that VOs may need to provide. Our supposition is that formalized methods in semantics and semantic web

  4. Next-Generation Pathology.

    PubMed

    Caie, Peter D; Harrison, David J

    2016-01-01

    The field of pathology is rapidly transforming from a semiquantitative and empirical science toward a big data discipline. Large data sets from across multiple omics fields may now be extracted from a patient's tissue sample. Tissue is, however, complex, heterogeneous, and prone to artifact. A reductionist view of tissue and disease progression, which does not take this complexity into account, may lead to single biomarkers failing in clinical trials. The integration of standardized multi-omics big data and the retention of valuable information on spatial heterogeneity are imperative to model complex disease mechanisms. Mathematical modeling through systems pathology approaches is the ideal medium to distill the significant information from these large, multi-parametric, and hierarchical data sets. Systems pathology may also predict the dynamical response of disease progression or response to therapy regimens from a static tissue sample. Next-generation pathology will incorporate big data with systems medicine in order to personalize clinical practice for both prognostic and predictive patient care.

  5. Next Generation Wiring

    NASA Technical Reports Server (NTRS)

    Medelius, Petro; Jolley, Scott; Fitzpatrick, Lilliana; Vinje, Rubiela; Williams, Martha; Clayton, LaNetra; Roberson, Luke; Smith, Trent; Santiago-Maldonado, Edgardo

    2007-01-01

    Wiring is a major operational component on aerospace hardware that accounts for substantial weight and volumetric space. Over time wire insulation can age and fail, often leading to catastrophic events such as system failure or fire. The next generation of wiring must be reliable and sustainable over long periods of time. These features will be achieved by the development of a wire insulation capable of autonomous self-healing that mitigates failure before it reaches a catastrophic level. In order to develop a self-healing insulation material, three steps must occur. First, methods of bonding similar materials must be developed that are capable of being initiated autonomously. This process will lead to the development of a manual repair system for polyimide wire insulation. Second, ways to initiate these bonding methods that lead to materials that are similar to the primary insulation must be developed. Finally, steps one and two must be integrated to produce a material that has no residues from the process that degrades the insulating properties of the final repaired insulation. The self-healing technology, teamed with the ability to identify and locate damage, will greatly improve reliability and safety of electrical wiring of critical systems. This paper will address these topics, discuss the results of preliminary testing, and remaining development issues related to self-healing wire insulation.

  6. The Next Generation EMR.

    PubMed

    Keshavjee, Karim; Mirza, Kashif; Martin, Ken

    2015-01-01

    Electronic medical/health record (EMR) usage in North America has increased significantly in the last half decade. But there is widespread dissatisfaction with the technologies that are currently available in the market place. Our hypothesis is that EMR vendors and the market place alone cannot solve the issue of poor technology. We propose an architecture for the next generation of electronic records that solves current concerns of end users and addresses the needs of additional stakeholders, including health system funders, patients, researchers and guideline implementers. By including additional stakeholders, we believe that additional resources, competencies and functionality can be unleashed to solve the larger problems of the current generation of EMRs. The architecture also addresses future requirements that are likely to arise from technological developments such as mobile apps and PHRs and from innovations in medicine, including genomics, artificial intelligence and personalized medicine. The paper makes a call to action for informatics researchers to play a greater role in R&D on EMRs. PMID:25676975

  7. Next Generation Summer School

    NASA Astrophysics Data System (ADS)

    Eugenia, Marcu

    2013-04-01

    On 21.06.2010 the "Next Generation" Summer School has opened the doors for its first students. They were introduced in the astronomy world by astronomical observations, astronomy and radio-astronomy lectures, laboratory projects meant to initiate them into modern radio astronomy and radio communications. The didactic programme was structure as fallowing: 1) Astronomical elements from the visible spectrum (lectures + practical projects) 2) Radio astronomy elements (lectures + practical projects) 3) Radio communication base (didactic- recreative games) The students and professors accommodation was at the Agroturistic Pension "Popasul Iancului" situated at 800m from the Marisel Observatory. First day (summer solstice day) began with a practical activity: determination of the meridian by measurements of the shadow (the direction of one vertical alignment, when it has the smallest length). The experiment is very instructive and interesting because combines notions of physics, spatial geometry and basic astronomy elements. Next day the activities took place in four stages: the students processed the experimental data obtained on first day (on sheets of millimetre paper they represented the length of the shadow alignments according the time), each team realised its own sun quadrant, point were given considering the design and functionality of these quadrant, the four teams had to mimic important constellations on carton boards with phosphorescent sticky stars and the students, accompanied by the professors took a hiking trip to the surroundings, marking the interest point coordinates, using a GPS to establish the geographical coronations and at the end of the day the students realised a small map of central Marisel area based on the GPS data. On the third day, the students were introduced to basic notions of radio astronomy, the principal categories of artificial Earth satellites: low orbit satellites (LEO), Medium orbit satellites (MEO) and geostationary satellites (GEO

  8. Next Generation Wind Turbine

    SciTech Connect

    Cheraghi, S. Hossein; Madden, Frank

    2012-09-01

    The goal of this collaborative effort between Western New England University's College of Engineering and FloDesign Wind Turbine (FDWT) Corporation to wok on a novel areodynamic concept that could potentially lead to the next generation of wind turbines. Analytical studies and early scale model tests of FDWT's Mixer/Ejector Wind Turbine (MEWT) concept, which exploits jet-age advanced fluid dynamics, indicate that the concept has the potential to significantly reduce the cost of electricity over conventional Horizontal Axis Wind Turbines while reducing land usage. This project involved the design, fabrication, and wind tunnel testing of components of MEWT to provide the research and engineering data necessary to validate the design iterations and optimize system performance. Based on these tests, a scale model prototype called Briza was designed, fabricated, installed and tested on a portable tower to investigate and improve the design system in real world conditions. The results of these scale prototype efforts were very promising and have contributed significantly to FDWT's ongoing development of a product scale wind turbine for deployment in multiple locations around the U.S. This research was mutually beneficial to Western New England University, FDWT, and the DOE by utilizing over 30 student interns and a number of faculty in all efforts. It brought real-world wind turbine experience into the classroom to further enhance the Green Engineering Program at WNEU. It also provided on-the-job training to many students, improving their future employment opportunities, while also providing valuable information to further advance FDWT's mixer-ejector wind turbine technology, creating opportunities for future project innovation and job creation.

  9. Next generation PON evolution

    NASA Astrophysics Data System (ADS)

    Srivastava, Anand

    2013-01-01

    Passive optical network (PON) features a point-to-multi-point (P2MP) architecture to provide broadband access. The P2MP architecture has become the most popular solution for FTTx deployment among operators. PON-based FTTx has been widely deployed ever since 2004 when ITU-T Study Group 15Q2 completed recommendations that defined GPON system [ITU-T seriesG.984]. As full services are provisioned by the massive deployment of PON networks worldwide, operators expect more from PONs. These include improved bandwidths and service support capabilities as well as enhanced performance of access nodes and supportive equipment over their existing PON networks. The direction of PON evolution is a key issue for the telecom industry. Full Service Access Network (FSAN) and ITU-T are the PON interest group and standard organization, respectively. In their view, the next-generation PONs are divided into two phases: NG-PON1 and NG-PON2. Mid-term upgrades in PON networks are defined as NG-PON1, while NG-PON2 is a long-term solution in PON evolution. Major requirements of NG-PON1 are the coexistence with the deployed GPON systems and the reuse of outside plant. Optical Distribution Networks (ODNs) account for 70% of the total investments in deploying PONs. Therefore, it is crucial for the NGPON evolution to be compatible with the deployed networks. With the specification of system coexistence and ODN reuse, the only hold-up of the migration from GPON to NG-PON1 is the maturity of the industry chain. Unlike NG-PON1 that has clear goals and emerging developments, there are many candidate technologies for NG-PON2. The selection of NG-PON2 is under discussion. However, one thing is clear, NG-PON2 technology must outperform NG-PON1 technologies in terms of ODN compatibility, bandwidth, capacity, and cost-efficiency.

  10. Next generation information systems

    SciTech Connect

    Limback, Nathan P; Medina, Melanie A; Silva, Michelle E

    2010-01-01

    The Information Systems Analysis and Development (ISAD) Team of the Safeguards Systems Group at Los Alamos National Laboratory (LANL) has been developing web based information and knowledge management systems for sixteen years. Our vision is to rapidly and cost effectively provide knowledge management solutions in the form of interactive information systems that help customers organize, archive, post and retrieve nonproliferation and safeguards knowledge and information vital to their success. The team has developed several comprehensive information systems that assist users in the betterment and growth of their organizations and programs. Through our information systems, users are able to streamline operations, increase productivity, and share and access information from diverse geographic locations. The ISAD team is also producing interactive visual models. Interactive visual models provide many benefits to customers beyond the scope of traditional full-scale modeling. We have the ability to simulate a vision that a customer may propose, without the time constraints of traditional engineering modeling tools. Our interactive visual models can be used to access specialized training areas, controlled areas, and highly radioactive areas, as well as review site-specific training for complex facilities, and asset management. Like the information systems that the ISAD team develops, these models can be shared and accessed from any location with access to the internet. The purpose of this paper is to elaborate on the capabilities of information systems and interactive visual models as well as consider the possibility of combining the two capabilities to provide the next generation of infonnation systems. The collection, processing, and integration of data in new ways can contribute to the security of the nation by providing indicators and information for timely action to decrease the traditional and new nuclear threats. Modeling and simulation tied to comprehensive

  11. A GRAPHICS PROCESSING UNIT-ENABLED, HIGH-RESOLUTION COSMOLOGICAL MICROLENSING PARAMETER SURVEY

    SciTech Connect

    Bate, N. F.; Fluke, C. J.

    2012-01-10

    In the era of synoptic surveys, the number of known gravitationally lensed quasars is set to increase by over an order of magnitude. These new discoveries will enable a move from single-quasar studies to investigations of statistical samples, presenting new opportunities to test theoretical models for the structure of quasar accretion disks and broad emission line regions (BELRs). As one crucial step in preparing for this influx of new lensed systems, a large-scale exploration of microlensing convergence-shear parameter space is warranted, requiring the computation of O(10{sup 5}) high-resolution magnification maps. Based on properties of known lensed quasars, and expectations from accretion disk/BELR modeling, we identify regions of convergence-shear parameter space, map sizes, smooth matter fractions, and pixel resolutions that should be covered. We describe how the computationally time-consuming task of producing {approx}290,000 magnification maps with sufficient resolution (10,000{sup 2} pixel map{sup -1}) to probe scales from the inner edge of the accretion disk to the BELR can be achieved in {approx}400 days on a 100 teraflop s{sup -1} high-performance computing facility, where the processing performance is achieved with graphics processing units. We illustrate a use-case for the parameter survey by investigating the effects of varying the lens macro-model on accretion disk constraints in the lensed quasar Q2237+0305. We find that although all constraints are consistent within their current error bars, models with more densely packed microlenses tend to predict shallower accretion disk radial temperature profiles. With a large parameter survey such as the one described here, such systematics on microlensing measurements could be fully explored.

  12. The Next Generation Photoinjector

    SciTech Connect

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a

  13. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply

  14. The Next Generation Virgo Cluster Survey-Infrared (NGVS-IR). I. A New Near-Ultraviolet, Optical, and Near-Infrared Globular Cluster Selection Tool

    NASA Astrophysics Data System (ADS)

    Muñoz, Roberto P.; Puzia, Thomas H.; Lançon, Ariane; Peng, Eric W.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Mei, Simona; Cuillandre, Jean-Charles; Hudelot, Patrick; Courteau, Stéphane; Duc, Pierre-Alain; Balogh, Michael L.; Boselli, Alessandro; Bournaud, Frédéric; Carlberg, Raymond G.; Chapman, Scott C.; Durrell, Patrick; Eigenthaler, Paul; Emsellem, Eric; Gavazzi, Giuseppe; Gwyn, Stephen; Huertas-Company, Marc; Ilbert, Olivier; Jordán, Andrés; Läsker, Ronald; Licitra, Rossella; Liu, Chengze; MacArthur, Lauren; McConnachie, Alan; McCracken, Henry Joy; Mellier, Yannick; Peng, Chien Y.; Raichoor, Anand; Taylor, Matthew A.; Tonry, John L.; Tully, R. Brent; Zhang, Hongxin

    2014-01-01

    The NGVS-IR project (Next Generation Virgo Cluster Survey-Infrared) is a contiguous, near-infrared imaging survey of the Virgo cluster of galaxies. It complements the optical wide-field survey of Virgo (NGVS). In its current state, NGVS-IR consists of Ks -band imaging of 4 deg2 centered on M87 and J- and Ks -band imaging of ~16 deg2 covering the region between M49 and M87. We present observations of the central 4 deg2 centered on Virgo's core region. The data were acquired with WIRCam on the Canada-France-Hawaii Telescope, and the total integration time was 41 hr distributed over 34 contiguous tiles. A survey-specific strategy was designed to account for extended galaxies while still measuring accurate sky brightness within the survey area. The average 5σ limiting magnitude is Ks = 24.4 AB mag, and the 50% completeness limit is Ks = 23.75 AB mag for point-source detections, when using only images with better than 0.''7 seeing (median seeing 0.''54). Star clusters are marginally resolved in these image stacks, and Virgo galaxies with \\mu _{K_s} \\simeq 24.4 AB mag arcsec-2 are detected. Combining the Ks data with optical and ultraviolet data, we build the uiKs color-color diagram, which allows a very clean color-based selection of globular clusters in Virgo. This diagnostic plot will provide reliable globular cluster candidates for spectroscopic follow-up campaigns, needed to continue the exploration of Virgo's photometric and kinematic substructures, and will help the design of future searches for globular clusters in extragalactic systems. We show that the new uiKs diagram displays significantly clearer substructure in the distribution of stars, globular clusters, and galaxies than the gzKs diagram—the NGVS + NGVS-IR equivalent of the BzK diagram that is widely used in cosmological surveys. Equipped with this powerful new tool, future NGVS-IR investigations based on the uiKs diagram will address the mapping and analysis of extended structures and compact

  15. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  16. Identifying Microlensing Events in Large, Non-Uniformly Sampled Surveys: The Case of the Palomar Transient Factory

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agueros, M. A.; Fournier, A.; Street, R.; Ofek, E.; Levitan, D. B.; PTF Collaboration

    2013-01-01

    Many current photometric, time-domain surveys are driven by specific goals such as searches for supernovae or transiting exoplanets, or studies of stellar variability. These goals in turn set the cadence with which individual fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several such sub-surveys are being conducted in parallel, leading to extremely non-uniform sampling over the survey's nearly 20,000 sq. deg. footprint. While the typical 7.26 sq. deg. PTF field has been imaged 20 times in R-band, ~2300 sq. deg. have been observed more than 100 times. We use the existing PTF data 6.4x107 light curves) to study the trade-off that occurs when searching for microlensing events when one has access to a large survey footprint with irregular sampling. To examine the probability that microlensing events can be recovered in these data, we also test previous statistics used on uniformly sampled data to identify variables and transients. We find that one such statistic, the von Neumann ratio, performs best for identifying simulated microlensing events. We develop a selection method using this statistic and apply it to data from all PTF fields with >100 observations to uncover a number of interesting candidate events. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large datasets, both of which will be useful to future wide-field, time-domain surveys such as the LSST.

  17. THE NEXT GENERATION VIRGO CLUSTER SURVEY. X. PROPERTIES OF ULTRA-COMPACT DWARFS IN THE M87, M49, AND M60 REGIONS

    SciTech Connect

    Liu, Chengze; Peng, Eric W.; Zhang, Hong-Xin; Côté, Patrick; Ferrarese, Laura; Gwyn, Stephen; Blakeslee, John P.; Jordán, Andrés; Muñoz, Roberto P.; Puzia, Thomas H.; Mihos, J. Christopher; Lançon, Ariane; Cuillandre, Jean-Charles; Durrell, Patrick R. E-mail: peng@pku.edu.cn; and others

    2015-10-10

    We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive red-sequence galaxies M87, M49, and M60. We show how UCDs can be selected with high completeness using a combination of half-light radius and location in color–color diagrams (u*iK{sub s} or u*gz). Although the central galaxies in each of these sub-clusters have nearly identical luminosities and stellar masses, we find large differences in the sizes of their UCD populations, with M87 containing ∼3.5 and 7.8 times more UCDs than M49 and M60, respectively. The relative abundance of UCDs in the three regions scales in proportion to sub-cluster mass, as traced by X-ray gas mass, total gravitating mass, number of globular clusters (GCs), and number of nearby galaxies. We find that the UCDs are predominantly blue in color, with ∼85% of the UCDs having colors similar to blue GCs and stellar nuclei of dwarf galaxies. We present evidence that UCDs surrounding M87 and M49 may follow a morphological sequence ordered by the prominence of their outer, low surface brightness envelope, ultimately merging with the sequence of nucleated low-mass galaxies, and that envelope prominence correlates with distance from either galaxy. Our analysis provides evidence that tidal stripping of nucleated galaxies is an important process in the formation of UCDs.

  18. Impact of Next Generation Sequencing on the Organization and Funding of Returning Research Results: Survey of Canadian Research Ethics Boards Members

    PubMed Central

    Godard, Beatrice

    2016-01-01

    Research Ethics Boards (REBs) are expected to evaluate protocols planning the use of Next Generation Sequencing technologies (NGS), assuring that any genomic finding will be properly managed. As Canadian REBs play a central role in the disclosure of such results, we deemed it important to examine the views and experience of REB members on the return of aggregated research results, individual research results (IRRs) and incidental findings (IFs) in current genomic research. With this intent, we carried out a web-based survey, which showed that 59.7% of respondents viewed the change from traditional sequencing to NGS as more than a technical substitution, and that 77% of respondents agreed on the importance of returning aggregated research results, the most compelling reasons being the recognition of participants’ contribution and increasing the awareness of scientific progress. As for IRRs specifically, 50% of respondents were in favour of conveying such information, even when they only indicated the probability that a condition may develop. Current regulations and risk to participants were considered equally important, and much more than financial costs, when considering the return of IRRs and IFs. Respondents indicated that the financial aspect of offering genetic counseling was the least important matter when assessing it as a requisite. Granting agencies were named as mainly responsible for funding, while the organizing and returning of IRRs and IFs belonged to researchers. However, views in these matters differ according to respondents’ experience. Our results draw attention to the need for improved guidance when considering the organizational and financial aspects of returning genetic research results, so as to better fulfill the ethical and moral principles that are to guide such undertakings. PMID:27167380

  19. The Next Generation Virgo Cluster Survey. X. Properties of Ultra-compact Dwarfs in the M87, M49, and M60 Regions.

    NASA Astrophysics Data System (ADS)

    Liu, Chengze; Peng, Eric W.; Côté, Patrick; Ferrarese, Laura; Jordán, Andrés; Mihos, J. Christopher; Zhang, Hong-Xin; Muñoz, Roberto P.; Puzia, Thomas H.; Lançon, Ariane; Gwyn, Stephen; Cuillandre, Jean-Charles; Blakeslee, John P.; Boselli, Alessandro; Durrell, Patrick R.; Duc, Pierre-Alain; Guhathakurta, Puragra; MacArthur, Lauren A.; Mei, Simona; Sánchez-Janssen, Rubén; Xu, Haiguang

    2015-10-01

    We use imaging from the Next Generation Virgo cluster Survey (NGVS) to present a comparative study of ultra-compact dwarf (UCD) galaxies associated with three prominent Virgo sub-clusters: those centered on the massive red-sequence galaxies M87, M49, and M60. We show how UCDs can be selected with high completeness using a combination of half-light radius and location in color-color diagrams (u*iKs or u*gz). Although the central galaxies in each of these sub-clusters have nearly identical luminosities and stellar masses, we find large differences in the sizes of their UCD populations, with M87 containing ˜3.5 and 7.8 times more UCDs than M49 and M60, respectively. The relative abundance of UCDs in the three regions scales in proportion to sub-cluster mass, as traced by X-ray gas mass, total gravitating mass, number of globular clusters (GCs), and number of nearby galaxies. We find that the UCDs are predominantly blue in color, with ˜85% of the UCDs having colors similar to blue GCs and stellar nuclei of dwarf galaxies. We present evidence that UCDs surrounding M87 and M49 may follow a morphological sequence ordered by the prominence of their outer, low surface brightness envelope, ultimately merging with the sequence of nucleated low-mass galaxies, and that envelope prominence correlates with distance from either galaxy. Our analysis provides evidence that tidal stripping of nucleated galaxies is an important process in the formation of UCDs.

  20. Impact of Next Generation Sequencing on the Organization and Funding of Returning Research Results: Survey of Canadian Research Ethics Boards Members.

    PubMed

    Jaitovich Groisman, Iris; Godard, Beatrice

    2016-01-01

    Research Ethics Boards (REBs) are expected to evaluate protocols planning the use of Next Generation Sequencing technologies (NGS), assuring that any genomic finding will be properly managed. As Canadian REBs play a central role in the disclosure of such results, we deemed it important to examine the views and experience of REB members on the return of aggregated research results, individual research results (IRRs) and incidental findings (IFs) in current genomic research. With this intent, we carried out a web-based survey, which showed that 59.7% of respondents viewed the change from traditional sequencing to NGS as more than a technical substitution, and that 77% of respondents agreed on the importance of returning aggregated research results, the most compelling reasons being the recognition of participants' contribution and increasing the awareness of scientific progress. As for IRRs specifically, 50% of respondents were in favour of conveying such information, even when they only indicated the probability that a condition may develop. Current regulations and risk to participants were considered equally important, and much more than financial costs, when considering the return of IRRs and IFs. Respondents indicated that the financial aspect of offering genetic counseling was the least important matter when assessing it as a requisite. Granting agencies were named as mainly responsible for funding, while the organizing and returning of IRRs and IFs belonged to researchers. However, views in these matters differ according to respondents' experience. Our results draw attention to the need for improved guidance when considering the organizational and financial aspects of returning genetic research results, so as to better fulfill the ethical and moral principles that are to guide such undertakings. PMID:27167380

  1. Next Generation Virgo Survey Photometry and Keck/DEIMOS Spectroscopy of Globular Cluster Satellites of Dwarf Elliptical Galaxies in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Guhathakurta, Puragra; Toloba, Elisa; Peng, Eric W.; Li, Biao; Gwyn, Stephen; Ferrarese, Laura; Cote, Patrick; Chu, Jason; Sparkman, Lea; Chen, Stephanie; Yagati, Samyukta; Muller, Meredith; Next Generation Virgo Survey Collaboration

    2015-01-01

    We present results from an ongoing study of globular cluster (GC) satellites of low-luminosity dwarf elliptical (dE) galaxies in the Virgo cluster. Our 21 dE targets and candidate GC satellites around them in the apparent magnitude range g ~ 20-24 were selected from the Next Generation Virgo Survey (NGVS) and followed up with medium-resolution Keck/DEIMOS spectroscopy (resolving power: R ~ 2000; wavelength coverage: 4800-9500 Angstrom). In addition, the remaining space available on the nine DEIMOS multi-slit masks were populated with "filler" targets in the form of distant Milky Way halo star candidates in a comparable apparent magnitude range. A combination of radial velocity information (measured from the Keck/DEIMOS spectra), color-color information (from four-band NGVS photometry), and sky position information was used to sort the sample into the following categories: (1) GC satellites of dEs, (2) other non-satellite GCs in the Virgo cluster (we dub them "orphan" GCs), (3) foreground Milky Way stars that are members of the Sagittarius stream, the Virgo overdensity, or the field halo population, and (4) distant background galaxies. We stack the GC satellite population across all 21 host dEs and carry out dynamical modeling of the stacked sample in order to constrain the average mass of dark matter halos that these dEs are embedded in. We study rotation in the system of GC satellites of dEs in the handful of more populated systems in our sample - i.e., those that contain 10 or more GC satellites per dE. A companion AAS poster presented at this meeting (Chu, J. et al. 2015) presents chemical composition and age constraints for these GC satellites relative to the nuclei of the host dEs based on absorption line strengths in co-added spectra. The orphan GCs are likely to be intergalactic GCs within the Virgo cluster (or, equivalently, GCs in the remote outer envelope of the cluster's central galaxy, the giant elliptical M87).This project is funded in part by the

  2. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  3. Next-Generation Telemetry Workstation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A next-generation telemetry workstation has been developed to replace the one currently used to test and control Range Safety systems. Improving upon the performance of the original system, the new telemetry workstation uses dual-channel telemetry boards for better synchronization of the two uplink telemetry streams. The new workstation also includes an Interrange Instrumentation Group/Global Positioning System (IRIG/GPS) time code receiver board for independent, local time stamping of return-link data. The next-generation system will also record and play back return-link data for postlaunch analysis.

  4. The Angstrom Project: a microlensing survey of the structure and composition of the bulge of the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Kerins, E.; Darnley, M. J.; Duke, J. P.; Gould, A.; Han, C.; Jeon, Y.-B.; Newsam, A.; Park, B.-G.

    2006-02-01

    The Andromeda Galaxy Stellar Robotic Microlensing Project (The Angstrom Project) aims to use stellar microlensing events to trace the structure and composition of the inner regions of the Andromeda Galaxy (M31). We present microlensing rate and time-scale predictions and spatial distributions for stellar and sub-stellar lens populations in combined disc and barred bulge models of M31. We show that at least half of the stellar microlenses in and around the bulge are expected to have characteristic durations between 1 and 10 d, rising to as much as 80 per cent for brown-dwarf dominated mass functions. These short-duration events are mostly missed by current microlensing surveys that are looking for Macho candidates in the M31 dark matter halo. Our models predict that an intensive monitoring survey programme, such as Angstrom, which will be able to detect events of durations upwards of a day, could detect around 30 events per season within ~5 arcmin of the M31 centre due to ordinary low-mass stars and remnants. This yield increases to more than 60 events for brown-dwarf dominated mass functions. The overall number of events and their average duration are sensitive diagnostics of the bulge mass, in particular the contribution of low-mass stars and brown dwarfs. The combination of an inclined disc, an offset bar-like bulge, and differences in the bulge and disc luminosity functions results in a four-way asymmetry in the number of events expected in each quadrant defined by the M31 disc axes. The asymmetry is sensitive to the bar prolongation, orientation and mass.

  5. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    SciTech Connect

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  6. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; Pavlis, E. C.; Pearlman, M. R.; Stowers, D. A.; Webb, F. H.

    2012-01-01

    survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA's contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  7. NASA's Next Generation Space Geodesy Program

    NASA Technical Reports Server (NTRS)

    Pearlman, M. R.; Frey, H. V.; Gross, R. S.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Merkowitz, S. M.; Noll, C. E.; Pavilis, E. C.; Stowers, D. A.; Webb, F. H.; Zagwodski, T. W.

    2012-01-01

    survey system to measure inter-technique vectors for co-location; and (5) Develop an Implementation Plan to build, deploy and operate a next-generation integrated NASA SGN that will serve as NASA s contribution to the international global geodetic network. An envisioned Phase 2 (which is not currently funded) would include the replication of up to ten such stations to be deployed either as integrated units or as a complement to already in-place components provided by other organizations. This talk will give an update on the activities underway and the plans for completion.

  8. Next-generation air monitoring

    EPA Science Inventory

    Air pollution measurement technology is advancing rapidly towards smaller-scale and wireless devices, with a potential to significantly change the landscape of air pollution monitoring. EPA is evaluating and developing a range of next-generation air monitoring (NGAM) technologie...

  9. Shared Governance: The Next Generation.

    ERIC Educational Resources Information Center

    Lovas, John C.; And Others

    This document contains three papers which present information from various perspectives on aspects of shared governance at De Anza College, in Cupertino, California. First, "Shared Governance: The Next Generation," by John C. Lovas, provides a brief history of governance in the Foothill-De Anza Community College District, and suggests some of the…

  10. Resists for next generation lithography

    SciTech Connect

    Brainard, Robert L.; Barclay, George G.; Anderson, Erik H.; Ocola, Leonidas E.

    2001-10-03

    Four Next Generation Lithographic options (EUV, x-ray, EPL, IPL) are compared against four current optical technologies (i-line, DUV, 193 nm, 157 nm) for resolution capabilities based on wavelength. As the wavelength of the incident radiation decreases, the nature of the interaction with the resist changes. At high energies, optical density is less sensitive to molecular structure then at 157 nm.

  11. The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Ferrarese, Laura; Côté, Patrick; Sánchez-Janssen, Rúben; Roediger, Joel; McConnachie, Alan W.; Durrell, Patrick R.; MacArthur, Lauren A.; Blakeslee, John P.; Duc, Pierre-Alain; Boissier, S.; Boselli, Alessandro; Courteau, Stéphane; Cuillandre, Jean-Charles; Emsellem, Eric; Gwyn, S. D. J.; Guhathakurta, Puragra; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Mei, Simona; Mihos, J. Christopher; Navarro, Julio F.; Peng, Eric W.; Puzia, Thomas H.; Taylor, James E.; Toloba, Elisa; Zhang, Hongxin

    2016-06-01

    We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg2 (0.3 Mpc2) area in the core of the Virgo Cluster, based on {u}\\ast griz data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample—which consists of 352 objects brighter than M g = ‑9.13 mag, the 50% completeness limit of the survey—reaches 2.2 mag deeper than the widely used Virgo Cluster Catalog and at least 1.2 mag deeper than any sample previously used to measure the luminosity function in Virgo. Using a Bayesian analysis, we find a best-fit faint-end slope of α = ‑1.33 ± 0.02 for the g-band luminosity function; consistent results are found for the stellar mass function and the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultracompact dwarfs (UCDs)—previously compiled by the NGVS in this region—to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, M g = ‑9.6 mag) increases dramatically, up to α = ‑1.60 ± 0.06 when correcting for the expected number of disrupted non-nucleated galaxies. We also calculate the total number of UCDs and globular clusters that may have been deposited in the core of Virgo owing to the disruption of satellites, both nucleated and non-nucleated. We estimate that ˜150 objects with M g ≲ ‑9.6 mag and that are currently classified as globular clusters might, in fact, be the nuclei of disrupted galaxies. We further estimate that as many as 40% of the (mostly blue) globular clusters in the Virgo core might once have belonged to such satellites; these same disrupted satellites might have contributed ˜40% of the total luminosity in galaxies observed in the core region today. Finally, we use an updated Local Group galaxy catalog to provide a new measurement of the luminosity function of Local Group

  12. The Next Generation Virgo Cluster Survey (NGVS). XIII. The Luminosity and Mass Function of Galaxies in the Core of the Virgo Cluster and the Contribution from Disrupted Satellites

    NASA Astrophysics Data System (ADS)

    Ferrarese, Laura; Côté, Patrick; Sánchez-Janssen, Rúben; Roediger, Joel; McConnachie, Alan W.; Durrell, Patrick R.; MacArthur, Lauren A.; Blakeslee, John P.; Duc, Pierre-Alain; Boissier, S.; Boselli, Alessandro; Courteau, Stéphane; Cuillandre, Jean-Charles; Emsellem, Eric; Gwyn, S. D. J.; Guhathakurta, Puragra; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Mei, Simona; Mihos, J. Christopher; Navarro, Julio F.; Peng, Eric W.; Puzia, Thomas H.; Taylor, James E.; Toloba, Elisa; Zhang, Hongxin

    2016-06-01

    We present measurements of the galaxy luminosity and stellar mass function in a 3.71 deg2 (0.3 Mpc2) area in the core of the Virgo Cluster, based on {u}\\ast griz data from the Next Generation Virgo Cluster Survey (NGVS). The galaxy sample—which consists of 352 objects brighter than M g = -9.13 mag, the 50% completeness limit of the survey—reaches 2.2 mag deeper than the widely used Virgo Cluster Catalog and at least 1.2 mag deeper than any sample previously used to measure the luminosity function in Virgo. Using a Bayesian analysis, we find a best-fit faint-end slope of α = -1.33 ± 0.02 for the g-band luminosity function; consistent results are found for the stellar mass function and the luminosity function in the other four NGVS bandpasses. We discuss the implications for the faint-end slope of adding 92 ultracompact dwarfs (UCDs)—previously compiled by the NGVS in this region—to the galaxy sample, assuming that UCDs are the stripped remnants of nucleated dwarf galaxies. Under this assumption, the slope of the luminosity function (down to the UCD faint magnitude limit, M g = -9.6 mag) increases dramatically, up to α = -1.60 ± 0.06 when correcting for the expected number of disrupted non-nucleated galaxies. We also calculate the total number of UCDs and globular clusters that may have been deposited in the core of Virgo owing to the disruption of satellites, both nucleated and non-nucleated. We estimate that ˜150 objects with M g ≲ -9.6 mag and that are currently classified as globular clusters might, in fact, be the nuclei of disrupted galaxies. We further estimate that as many as 40% of the (mostly blue) globular clusters in the Virgo core might once have belonged to such satellites; these same disrupted satellites might have contributed ˜40% of the total luminosity in galaxies observed in the core region today. Finally, we use an updated Local Group galaxy catalog to provide a new measurement of the luminosity function of Local Group satellites

  13. Statistical searches for microlensing events in large, non-uniformly sampled time-domain surveys: A test using palomar transient factory data

    SciTech Connect

    Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Sesar, Branimir; Laher, Russ R.; Surace, Jason

    2014-01-20

    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ∼20,000 deg{sup 2} footprint. While the median 7.26 deg{sup 2} PTF field has been imaged ∼40 times in the R band, ∼2300 deg{sup 2} have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 10{sup 9} light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

  14. Statistical Searches for Microlensing Events in Large, Non-uniformly Sampled Time-Domain Surveys: A Test Using Palomar Transient Factory Data

    NASA Astrophysics Data System (ADS)

    Price-Whelan, Adrian M.; Agüeros, Marcel A.; Fournier, Amanda P.; Street, Rachel; Ofek, Eran O.; Covey, Kevin R.; Levitan, David; Laher, Russ R.; Sesar, Branimir; Surace, Jason

    2014-01-01

    Many photometric time-domain surveys are driven by specific goals, such as searches for supernovae or transiting exoplanets, which set the cadence with which fields are re-imaged. In the case of the Palomar Transient Factory (PTF), several sub-surveys are conducted in parallel, leading to non-uniform sampling over its ~20,000 deg2 footprint. While the median 7.26 deg2 PTF field has been imaged ~40 times in the R band, ~2300 deg2 have been observed >100 times. We use PTF data to study the trade off between searching for microlensing events in a survey whose footprint is much larger than that of typical microlensing searches, but with far-from-optimal time sampling. To examine the probability that microlensing events can be recovered in these data, we test statistics used on uniformly sampled data to identify variables and transients. We find that the von Neumann ratio performs best for identifying simulated microlensing events in our data. We develop a selection method using this statistic and apply it to data from fields with >10 R-band observations, 1.1 × 109 light curves, uncovering three candidate microlensing events. We lack simultaneous, multi-color photometry to confirm these as microlensing events. However, their number is consistent with predictions for the event rate in the PTF footprint over the survey's three years of operations, as estimated from near-field microlensing models. This work can help constrain all-sky event rate predictions and tests microlensing signal recovery in large data sets, which will be useful to future time-domain surveys, such as that planned with the Large Synoptic Survey Telescope.

  15. The Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Bely, Pierre-Yves (Editor); Burrows,, Christopher J. (Editor); Illingworth,, Garth D.

    1989-01-01

    In Space Science in the Twenty-First Century, the Space Science Board of the National Research Council identified high-resolution-interferometry and high-throughput instruments as the imperative new initiatives for NASA in astronomy for the two decades spanning 1995 to 2015. In the optical range, the study recommended an 8 to 16-meter space telescope, destined to be the successor of the Hubble Space Telescope (HST), and to complement the ground-based 8 to 10-meter-class telescopes presently under construction. It might seem too early to start planning for a successor to HST. In fact, we are late. The lead time for such major missions is typically 25 years, and HST has been in the making even longer with its inception dating back to the early 1960s. The maturity of space technology and a more substantial technological base may lead to a shorter time scale for the development of the Next Generation Space Telescope (NGST). Optimistically, one could therefore anticipate that NGST be flown as early as 2010. On the other hand, the planned lifetime of HST is 15 years. So, even under the best circumstances, there will be a five year gap between the end of HST and the start of NGST. The purpose of this first workshop dedicated to NGST was to survey its scientific potential and technical challenges. The three-day meeting brought together 130 astronomers and engineers from government, industry and universities. Participants explored the technologies needed for building and operating the observatory, reviewed the current status and future prospects for astronomical instrumentation, and discussed the launch and space support capabilities likely to be available in the next decade. To focus discussion, the invited speakers were asked to base their presentations on two nominal concepts, a 10-meter telescope in space in high earth orbit, and a 16-meter telescope on the moon. The workshop closed with a panel discussion focused mainly on the scientific case, siting, and the

  16. NASA's Next Generation Space Geodesy Network

    NASA Technical Reports Server (NTRS)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; Pavlis, E. C.; Pearlman, M. R.; Stowers, D. A.; Webb, F. H.

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  17. Quasar microlensing

    NASA Astrophysics Data System (ADS)

    Schmidt, R. W.; Wambsganss, J.

    2010-09-01

    Quasar microlensing deals with the effect of compact objects along the line of sight on the apparent brightness of the background quasars. Due to the relative motion between quasar, lenses and observer, the microlensing magnification changes with time which results in uncorrelated brightness variations in the various images of multiple quasar systems. The amplitudes of the signal can be more than a magnitude with time scales of weeks to months to years. The effect is due to the “granular” nature of the gravitational microlenses—stars or other compact objects in the stellar mass range. Quasar microlensing allows to study the quasar accretion disk with a resolution of tens of microarcseconds, hence quasar microlensing can be used to explore an astrophysical field that is hardly accessible by any other means. Quasar microlensing can also be used to study the lensing objects in a statistical sense, their nature (compact or smoothly distributed, normal stars or dark matter) as well as transverse velocities. Quasar microlensing light curves are now being obtained from monitoring programs across the electromagnetic spectrum from the radio through the infrared and optical range to the X-ray regime. Recently, spectroscopic microlensing was successfully applied, it provides quantitative comparisons with quasar/accretion disk models. There are now more than a handful of systems with several-year long light curves and significant microlensing signal, lending to detailed analysis. This review summarizes the current state of the art of quasar microlensing and shows that at this point in time, observational monitoring programs and complementary intense simulations provide a scenario where some of the early promises of quasar microlensing can be quantitatively applied. It has been shown, e.g., that smaller sources display more violent microlensing variability, first quantitative comparison with accretion disk models has been achieved, and quasar microlensing has been used to

  18. Shuttle II - The next generation

    NASA Astrophysics Data System (ADS)

    Eldred, C. H.

    1986-01-01

    A comparative evaluation is conducted for next-generation Space Shuttle-type system configurations, in light of mission and design goals, performance and operational requirements, and technology development needs and opportunities. Cargo vehicle options presently entertained are an unmanned Shuttle Derivative Vehicle and a Heavy Lift Launch Vehicle. Two high priority manned vehicle options are small (35,000-lb payload) and large (150,000-lb payload) fully reusable vehicles. Attention is given to single stage vs. two-stage 'Shuttle II' system performance and economic projections.

  19. Next Generation Remote Agent Planner

    NASA Technical Reports Server (NTRS)

    Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna

    1999-01-01

    In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.

  20. The Next Generation Nuclear Plant

    SciTech Connect

    Dr. David A. Petti

    2009-01-01

    The Next Generation Nuclear Plant (NGNP) will be a demonstration of the technical, licensing, operational, and commercial viability of High Temperature Gas-Cooled Reactor (HTGR) technology for the production of process heat, electricity, and hydrogen. This nuclear- based technology can provide high-temperature process heat (up to 950°C) that can be used as a substitute for the burning of fossil fuels for a wide range of commercial applications (see Figure 1). The substitution of the HTGR for burning fossil fuels conserves these hydrocarbon resources for other uses, reduces uncertainty in the cost and supply of natural gas and oil, and eliminates the emissions of greenhouse gases attendant with the burning of these fuels. The HTGR is a passively safe nuclear reactor concept with an easily understood safety basis that permits substantially reduced emergency planning requirements and improved siting flexibility compared to other nuclear technologies.

  1. Next-Generation Sequencing Platforms

    NASA Astrophysics Data System (ADS)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  2. Next generation oil reservoir simulations

    SciTech Connect

    Joubert, W.

    1996-04-01

    This paper describes a collaborative effort between Amoco Production Company, Los Alamos National Laboratory and Cray Research Inc. to develop a next-generation massively parallel oil reservoir simulation code. The simulator, code-named Falcon, enables highly detailed simulations to be performed on a range of platforms such as the Cray T3D and T3E. The code is currently being used by Amoco to perform a sophisticated field study using multiple geostatistical realizations on a scale of 2-5 million grid blocks and 1000-2000 wells. In this paper we discuss the nature of this collaborative effort, the software design and engineering aspects of the code, parallelization experiences, and performance studies. The code will be marketed to the oil industry by a third-party independent software vendor in mid-1996.

  3. Microlensing Planets

    NASA Astrophysics Data System (ADS)

    Gould, Andrew

    The theory and practice of microlensing planet searches is developed in a systematic way, from an elementary treatment of the deflection of light by a massive body to a thorough discussion of the most recent results. The main concepts of planetary microlensing, including microlensing events, finite-source effects, and microlens parallax, are first introduced within the simpler context of point-lens events. These ideas are then applied to binary (and hence planetary) lenses and are integrated with concepts specific to binaries, including caustic topologies, orbital motion, and degeneracies, with an emphasis on analytic understanding. The most important results from microlensing planet searches are then reviewed, with emphasis both on understanding the historical process of discovery and the means by which scientific conclusions were drawn from light-curve analysis. Finally, the future prospects of microlensing planets searches are critically evaluated. Citations to original works provide the reader with multiple entry points into the literature.

  4. Next Generation NASA Initiative for Space Geodesy

    NASA Technical Reports Server (NTRS)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; Pavlis, E. C.; Pearlman, M. R.; Stowers, D. A.; Webb, F. H.

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  5. Next Generation Geothermal Power Plants

    SciTech Connect

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  6. Next-generation Digital Earth

    PubMed Central

    Goodchild, Michael F.; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J.; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of “big data” has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public’s access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation. PMID:22723346

  7. Next-generation Digital Earth.

    PubMed

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  8. Next-generation photonic networks

    NASA Astrophysics Data System (ADS)

    Katagiri, Yoshitada

    2002-10-01

    Novel network architecture and key device technology are described for next-generation photonic networks enabling high-performance data communications. To accomplish full-mesh links for efficient data transportaion, time-shared wavelength-division multiplexing is the most promising under the limitation imposed on the total wavelength number available at network nodes. Optical add/drop multipelxing (OADM) using wavelngth-tunable devices is essential for temporal data link fomraiotn. Wavelength managemetn based on absolute wavelength calibraiotn is a key to OADM operations. A simple wavelength dscriminating device using a disk-shaped tunable optical bandpass filter under the synchro-scanned operation is useful for managing the laser wavelengths. High-speed data transmissions of greater than 40 Gbps necessary for efficient operation of the networks are also described. A key is photonic downconversion which enables phase deteciton for optical data streams at above the electrical limitation of around 50 GHz. This technique is applied not only to a phase-locked loop for synchronizing mode-locked pulses to an electrical signal in the much lower frequency range of around 10 GHz, but to timing extraction from 100-Gbps data streams.

  9. Planetary Caustic Perturbations of a Close-separation Planet on Microlensing

    NASA Astrophysics Data System (ADS)

    Ryu, Yoon-Hyun; Kim, Han-Seek; Chung, Sun-Ju; Kim, Dong-Jin

    2016-09-01

    Most planetary events discovered up to date by the planetary caustic of close-separation planets have low-mass ratios. In next-generation microlensing experiments with a wider field of view and a higher cadence, it is possible to obtain densely covered planetary signals induced by the planetary caustic of close-separation planets without missing events. Therefore, the planetary caustic perturbation of close-separation planets would be the more important channel to detect low-mass exoplanets in the next generation of microlensing surveys. In this paper, we investigate the theoretical properties and detection conditions for the planetary caustic perturbation of close-separation planets. To find the properties of the planetary caustic perturbation, we construct deviation maps by subtracting the single-lensing magnification of the lens star from the planetary lensing magnification for various lensing parameters. We find that each deviation area of the positive and negative perturbations disappears at the same normalized source radius according to a given deviation threshold regardless of mass ratio but disappears at a different normalized source radius according to the separation. We also estimate the upper limit of the normalized source radius to detect the planetary caustic perturbation. We find simple relations between the upper limit of the normalized source radius and the lensing parameters. From the relations, we obtain an analytic condition for the theoretical detection limit of the planet, which shows that we can sufficiently discover a planet with a sub-Earth-mass for typical microlensing events. Therefore, we conclude that our planet-detection condition of can be used as an important criteria for maximal planet detections, considering the source type and the photometric accuracy and expect that a number of low-mass planets will be added from the next-generation microlensing experiments.

  10. Next Generation National Security Leaders

    SciTech Connect

    Mahy, Heidi A.; Fankhauser, Jana G.; Stein, Steven L.; Toomey, Christopher

    2012-07-19

    It is generally accepted that the international security community faces an impending challenge in its changing leadership demographics. The workforce that currently addresses nonproliferation, arms control, and verification is moving toward retirement and there is a perceived need for programs to train a new set of experts for both technical- and policy-related functions to replace the retiring generation. Despite the perceived need, there are also indicators that there are not sufficient jobs for individuals we are currently training. If we had “right-sized” the training programs, there would not be a shortage of jobs. The extent and scope of the human resource crisis is unclear, and information about training programs and how they meet existing needs is minimal. This paper seeks to achieve two objectives: 1) Clarify the major human resource problem and potential consequences; and 2) Propose how to characterize the requirement with sufficient granularity to enable key stakeholders to link programs aimed at developing the next generations of experts with employment needs. In order to accomplish both these goals, this paper recommends establishing a forum comprised of key stakeholders of this issue (including universities, public and private sectors), and conducting a study of the human resources and resource needs of the global security community. If there is indeed a human resource crisis in the global security field, we cannot address the problem if we are uninformed. The solution may lie in training more (or fewer) young professions to work in this community – or it may lie in more effectively using our existing resources and training programs.

  11. Next-Generation Tumbleweed Rover

    NASA Technical Reports Server (NTRS)

    Nosanov, Jeffrey P.

    2012-01-01

    A document describes a next-generation tumbleweed rover that involves a split balloon system that is made up of two half-spherical air bladders with a disc between them. This disc contains all the electronics and instruments. By deflating only the bottom balloon, the rover can sit, bringing the surface probe into contact with the ground. The bottom balloon has a channel passing through it, allowing the surface probe to reach the surface through the balloon. Once the sample has been gathered and analyzed, the rover can re-inflate the lower air bladder and continue rolling. The rover will use a small set of instruments and electronics situated at the center of its inflatable spherical hull. The current version is a large beach-ball-like construction, about 1.8 m in diameter and weighing roughly 15 kg. The rover comprises two major parts, an outer spherical hull (split in half at the central disc) and an inner, disc-shaped cylindrical section. The balloons are attached to the bottom and top of the disc. Inside the disc, there are temperature and pressure sensors to keep track of the inner and outer conditions of the rover. A system of pumps and valves is responsible for independently inflating and deflating the balloons as necessary. There are also accelerometers to record the movement, together with a GPS receiver. The data are then sent through a modem to a control station. This work builds upon the project Tumbleweed rover for planetary exploration, described in the Technical Support Package.

  12. A Survey on Next-Generation Mixed Line Rate (MLR) and Energy-Driven Wavelength-Division Multiplexed (WDM) Optical Networks

    NASA Astrophysics Data System (ADS)

    Iyer, Sridhar

    2015-06-01

    With the ever-increasing traffic demands, infrastructure of the current 10 Gbps optical network needs to be enhanced. Further, since the energy crisis is gaining increasing concerns, new research topics need to be devised and technological solutions for energy conservation need to be investigated. In all-optical mixed line rate (MLR) network, feasibility of a lightpath is determined by the physical layer impairment (PLI) accumulation. Contrary to PLI-aware routing and wavelength assignment (PLIA-RWA) algorithm applicable for a 10 Gbps wavelength-division multiplexed (WDM) network, a new Routing, Wavelength, Modulation format assignment (RWMFA) algorithm is required for the MLR optical network. With the rapid growth of energy consumption in Information and Communication Technologies (ICT), recently, lot of attention is being devoted toward "green" ICT solutions. This article presents a review of different RWMFA (PLIA-RWA) algorithms for MLR networks, and surveys the most relevant research activities aimed at minimizing energy consumption in optical networks. In essence, this article presents a comprehensive and timely survey on a growing field of research, as it covers most aspects of MLR and energy-driven optical networks. Hence, the author aims at providing a comprehensive reference for the growing base of researchers who will work on MLR and energy-driven optical networks in the upcoming years. Finally, the article also identifies several open problems for future research.

  13. Optimal Survey Strategies and Predicted Planet Yields for the Korean Microlensing Telescope Network

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Gaudi, B. Scott; Han, Cheongho; Skowron, Jan; Penny, Matthew T.; Nataf, David; Gould, Andrew P.

    2014-10-01

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg2 field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t exp = 120 s, leading to the detection of ~2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 <= Mp /M ⊕ <= 1000 and 0.4 <= a/AU <= 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 <= Mp /M ⊕ <= 1000 and will detect ~20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 <= Mp /M ⊕ < 5, we predict KMTNet will detect ~10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ~1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  14. Optimal survey strategies and predicted planet yields for the Korean microlensing telescope network

    SciTech Connect

    Henderson, Calen B.; Gaudi, B. Scott; Skowron, Jan; Penny, Matthew T.; Gould, Andrew P.; Han, Cheongho; Nataf, David

    2014-10-10

    The Korean Microlensing Telescope Network (KMTNet) will consist of three 1.6 m telescopes each with a 4 deg{sup 2} field of view (FoV) and will be dedicated to monitoring the Galactic Bulge to detect exoplanets via gravitational microlensing. KMTNet's combination of aperture size, FoV, cadence, and longitudinal coverage will provide a unique opportunity to probe exoplanet demographics in an unbiased way. Here we present simulations that optimize the observing strategy for and predict the planetary yields of KMTNet. We find preferences for four target fields located in the central Bulge and an exposure time of t {sub exp} = 120 s, leading to the detection of ∼2200 microlensing events per year. We estimate the planet detection rates for planets with mass and separation across the ranges 0.1 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and 0.4 ≤ a/AU ≤ 16, respectively. Normalizing these rates to the cool-planet mass function of Cassan et al., we predict KMTNet will be approximately uniformly sensitive to planets with mass 5 ≤ M{sub p} /M {sub ⊕} ≤ 1000 and will detect ∼20 planets per year per dex in mass across that range. For lower-mass planets with mass 0.1 ≤ M{sub p} /M {sub ⊕} < 5, we predict KMTNet will detect ∼10 planets per year. We also compute the yields KMTNet will obtain for free-floating planets (FFPs) and predict KMTNet will detect ∼1 Earth-mass FFP per year, assuming an underlying population of one such planet per star in the Galaxy. Lastly, we investigate the dependence of these detection rates on the number of observatories, the photometric precision limit, and optimistic assumptions regarding seeing, throughput, and flux measurement uncertainties.

  15. Next generation vertical electrode cells

    NASA Astrophysics Data System (ADS)

    Brown, Craig

    2001-05-01

    The concept of the vertical electrode cell (VEC) for aluminum electrowinning is presented with reference to current research. Low-temperature electrolysis allows nonconsumable metal-alloy anodes to show ongoing promise in laboratory tests. The economic and environmental advantages of the VEC are surveyed. The unique challenges of bringing VEC technology into practice are discussed. The current status of laboratory research is summarized. New results presented show that commercial purity aluminum can be produced with promisingly high current efficiency.

  16. Technology Needs for the Next Generation of NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Anderson, David J.

    2013-01-01

    In-Space propulsion technologies relevant to Mars presentation is for the 14.03 Emerging Technologies for Mars Exploration panel. The talk will address propulsion technology needs for future Mars science missions, and will address electric propulsion, Earth entry vehicles, light weight propellant tanks, and the Mars ascent vehicle. The second panel presentation is Technology Needs for the Next Generation of NASA Science Missions. This talk is for 14.02 Technology Needs for the Next Generation of NASA Science Missions panel. The talk will summarize the technology needs identified in the NAC's Planetary Science Decadal Survey, and will set the stage for the talks for the 4 other panelist.

  17. On the Feasibility of Characterizing Free-floating Planets with Current and Future Space-based Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Shvartzvald, Yossi

    2016-10-01

    Simultaneous space- and ground-based microlensing surveys, such as K2's Campaign 9 (K2C9) and WFIRST, facilitate measuring the masses and distances of free-floating planet (FFP) candidates, which are identified as single-lens events with timescales that are of the order of 1 day. Measuring the mass and distance of an FFP lens requires determining the size of the source star ρ, measuring the microlens parallax {π }{{E}}, and using high-resolution imaging to search for the lens flux {F}{\\ell } from a possible host star. Here we investigate the accessible parameter space for each of these components considering different satellites for a range of FFP masses, Galactic distances, and source star properties. We find that at the beginning of K2C9, when its projected separation {D}\\perp from the Earth is ≲0.2 au, it will be able to measure {π }{{E}} for Jupiter-mass FFP candidates at distances larger than ∼2 kpc and to Earth-mass lenses at ∼8 kpc. At the end of K2C9, when {D}\\perp = 0.81 au, it is sensitive to planetary-mass lenses for distances ≳3.5 kpc, and even then only to those with mass ≳M Jup. From lens flux constraints we find that it will be possible to exclude hosts down to the deuterium-burning limit for events within ∼2 kpc. This indicates that the ability to characterize FFPs detected during K2C9 is optimized for events occurring toward the beginning of the campaign. WFIRST, on the other hand, will be able to detect and characterize FFP masses down to or below super-Earths throughout the Galaxy during its entire microlensing survey.

  18. Microlensing towards the Small Magellanic Cloud EROS 2 first year survey

    NASA Astrophysics Data System (ADS)

    Palanque-Delabrouille, N.; Afonso, C.; Albert, J. N.; Andersen, J.; Ansari, R.; Aubourg, E.; Bareyre, P.; Bauer, F.; Beaulieu, J. P.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Derue, F.; Ferlet, R.; Glicenstein, J. F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamilton, J. C.; Hardin, D.; de Kat, J.; Lesquoy, E.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J. B.; Maurice, E.; Milsztajn, A.; Moniez, M.; Perdereau, O.; Prevot, L.; Renault, C.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.; EROS Collaboration

    1998-04-01

    We present here an analysis of the light curves of 5.3 million stars in the Small Magellanic Cloud observed by EROS (Experience de Recherche d'Objets Sombres). One star exhibits a variation that is best interpreted as due to gravitational microlensing by an unseen object. This candidate was also reported by the MACHO collaboration. Once corrected for blending, the Einstein radius crossing time is 123 days, corresponding to lensing by a Halo object of 2.6(+8.2}_{-2.3) ;Msun. The maximum magnification is a factor of 2.6. The light curve also displays a periodic modulation with a 2.5% amplitude and a period of 5.1 days. Parallax analysis of the candidate indicates that a Halo lens would need to have a mass of at least 0.3 ; Msun, although a lens in the SMC could have a mass as low as 0.07 ; Msun. We estimate the optical depth for microlensing towards the SMC due to this event to be ~ 3.3 x 10(-7) , with an uncertainty dominated by Poisson statistics. We show that this optical depth corresponds to about half that expected for a spherical isothermal Galactic Halo comprised solely of such objects, and that it is consistent with SMC self-lensing if the SMC is elongated along the line-of-sight by at least 5 kpc. Based on observations made at the European Southern Observatory, La Silla, Chile.

  19. Next-generation sequencing discoveries in lymphoma.

    PubMed

    Slack, Graham W; Gascoyne, Randy D

    2013-03-01

    Since the mapping of the human genome and the advent of next-generation sequencing technology thorough examination of the cancer genome has become a reality. Over the last few years several studies have used next-generation sequencing technology to investigate the genetic landscape of Hodgkin and non-Hodgkin lymphomas, identifying novel genetic mutations and gene rearrangements that have shed new light on the underlying tumor biology in these diseases as well as identifying possible targets for directed therapy. This review covers the major discoveries in lymphoma using next-generation sequencing technology.

  20. Analysis of Next Generation TCP

    SciTech Connect

    Halliday, K; Hurst, A; Nelson, J

    2004-12-13

    The Transmission Control Protocol (TCP) has been around for around 30 years, and in that time computer networks have increased in speed and reliability many times over. TCP has done very well to maintain stability and avoid collapse from congestion in the Internet with this incredible increase in speed. But as the speed of networks continues to increase, some assumptions about the underlying network that influenced the design of TCP may no longer hold valid. Additionally, modern networks often span many different types of links. For example, one end-to-end transmission may traverse both an optical link (high-bandwidth, low-loss) and a wireless network (low-bandwidth, high loss). TCP does not perform well in these situations. This survey will examine some of the reasons for this, focusing on high-bandwidth networks, and offer some solutions that have been proposed to fix these problems. This paper assumes basic knowledge of the TCP protocol.

  1. The Next Generation of Space Communications

    NASA Video Gallery

    NASA is looking for the next generation of space communications technology and Laser Comm may be the answer. Optical communications provide higher bandwidth, which allows for faster data flow and e...

  2. Enabling America's Next Generation of Aviation Vehicles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Viewgraphs o America's Next Generation of Aviation Vehicles are presented. The topics include: 1) UAV's- Unlimited Applications; 2) Global Challenges; 3) UAV/CNS Overview; 4) Communications; 5) Navigation; and 6) Surveillance.

  3. Next Generation Spacecraft, Crew Exploration Vehicle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This special bibliography includes research on reusable launch vehicles, aerospace planes, shuttle replacement, crew/cargo transfer vehicle, related X-craft, orbital space plane, and next generation launch technology.

  4. Tetrahedral Rovers: The Next Generation

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Curtis, S. A.; Rilee, M. L.; Wesenberg, R.; Cheug, C. Y.; Dorband, J.; Brown, G.; Sams, J.

    2006-09-01

    Addressable, reconfigurable rover architectures capable of real time transformation in size, shape, and gait will be essential for accessing those `hard to reach’ places where evidence for activity, geological or biological, might be hiding on planetary surfaces. We have designed and field tested simple tetrahedral rovers and are about to finish our third generation prototype, a human-sized 12tetrahedral rover capable of rolling, crawling, and climbing gaits. Our first prototype (1tet) walked a steep, slaggy slope at meteor crater. The performance of the new prototype will be evaluated in a variety of field environments using metrics which will allow comparison to wheeled rover performance in analogous terrains. Extreme mobililty is based on the capability for rapid reconfiguation of addressable struts interconnected at nodes (forming the space-filling tetrahedra) combined with rapid and low bandwidth position determination, communication and navigation/maneuvering systems. These latter capabilities are already under development elsewhere. We are designing a payload node which will allow lightweight sensors to remain upright for operation. Power generation requiring peak power for locomotion will be via a tetrahedrally deployable solar cell/rechargeable battery system. A variety of electrostatic dust control methods are being investigated. Basic gaits, developed for prevailing terrain conditions, are adjustable with movement across terrain approaching `real time’ for a human explorer.`Falling’ (except over a cliff) is not possible. Such a rover provides complimentary capabilities to a wheeled rover, which has the most efficient locomotion on terrain relatively smooth and flat on the scale of the wheels, and is thus capable of acting as an equipment base. The tetrahedral rover, acting as a scout, could provide reconnaissance, surveying, in situ sensing/sampling, and monitoring on what would be `slippery slopes’ for wheels.

  5. Synthesizing exoplanet demographics from radial velocity and microlensing surveys. II. The frequency of planets orbiting M dwarfs

    SciTech Connect

    Clanton, Christian; Gaudi, B. Scott

    2014-08-20

    In contrast to radial velocity (RV) surveys, results from microlensing surveys indicate that giant planets with masses greater than the critical mass for core accretion (∼0.1 M {sub Jup}) are relatively common around low-mass stars. Using the methodology developed in the first paper, we predict the sensitivity of M-dwarf RV surveys to analogs of the population of planets inferred by microlensing. We find that RV surveys should detect a handful of super-Jovian (>M {sub Jup}) planets at the longest periods being probed. These planets are indeed found by RV surveys, implying that the demographic constraints inferred from these two methods are consistent. Finally, we combine the results from both methods to estimate planet frequencies spanning wide regions of parameter space. We find that the frequency of Jupiters and super-Jupiters (1 ≲ m{sub p} sin i/M {sub Jup} ≲ 13) with periods 1 ≤ P/days ≤ 10{sup 4} is f{sub J}=0.029{sub −0.015}{sup +0.013}, a median factor of 4.3 (1.5-14 at 95% confidence) smaller than the inferred frequency of such planets around FGK stars of 0.11 ± 0.02. However, we find the frequency of all giant planets with 30 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub G}=0.15{sub −0.07}{sup +0.06}, only a median factor of 2.2 (0.73-5.9 at 95% confidence) smaller than the inferred frequency of such planets orbiting FGK stars of 0.31 ± 0.07. For a more conservative definition of giant planets (50 ≲ m{sub p} sin i/M {sub ⊕} ≲ 10{sup 4}), we find f{sub G{sup ′}}=0.11±0.05, a median factor of 2.2 (0.73-6.7 at 95% confidence) smaller than that inferred for FGK stars of 0.25 ± 0.05. Finally, we find the frequency of all planets with 1 ≤ m{sub p} sin i/M {sub ⊕} ≤ 10{sup 4} and 1 ≤ P/days ≤ 10{sup 4} to be f{sub p} = 1.9 ± 0.5.

  6. Observation of microlensing toward the galactic spiral arms. EROS II 3 year survey

    NASA Astrophysics Data System (ADS)

    Derue, F.; Afonso, C.; Alard, C.; Albert, J.-N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J.-P.; Blanc, G.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Ferlet, R.; Fouqué, P.; Glicenstein, J.-F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haïssinski, J.; Hamilton, J.-C.; Hardin, D.; de Kat, J.; Kim, A.; Lasserre, T.; Le Guillou, L.; Lesquoy, É.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J.-B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.

    2001-07-01

    We present an analysis of the light curves of 9.1 million stars observed during three seasons by EROS (Expérience de Recherche d'Objets Sombres), in the Galactic plane away from the bulge. Seven stars exhibit luminosity variations compatible with gravitational microlensing effects due to unseen objects. The corresponding optical depth, averaged over four directions, is bar tau = 0.43 +/- 0.2\\ x\\ 10-6. While this value is compatible with expectations from simple Galactic models under reasonable assumptions on the target star distances, we find an excess of events with short timescales toward the direction closest to the Galactic centre. We discuss a possible interpretation involving the contribution of an elongated bar. This work is based on observations made with the MARLY telescope at the European Southern Observatory, La Silla, Chile.

  7. Performance comparison of Next Generation sequencing platforms.

    PubMed

    Erguner, Bekir; Ustek, Duran; Sagiroglu, Mahmut S

    2015-01-01

    Next Generation DNA Sequencing technologies offer ultra high sequencing throughput for very low prices. The increase in throughput and diminished costs open up new research areas. Moreover, number of clinicians utilizing DNA sequencing keeps growing. One of the main concern for researchers and clinicians who are adopting these platforms is their sequencing accuracy. We compared three of the most commonly used Next Generation Sequencing platforms; Ion Torrent from Life Technologies, GS FLX+ from Roche and HiSeq 2000 from Illumina.

  8. Observation of microlensing towards the galactic spiral arms. EROS II. 2 year survey

    NASA Astrophysics Data System (ADS)

    EROS Collaboration; Derue, F.; Afonso, C.; Alard, C.; Albert, J.-N.; Amadon, A.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Bauer, F.; Beaulieu, J.-P.; Bouquet, A.; Char, S.; Charlot, X.; Couchot, F.; Coutures, C.; Ferlet, R.; Glicenstein, J.-F.; Goldman, B.; Gould, A.; Graff, D.; Gros, M.; Haissinski, J.; Hamilton, J.-C.; Hardin, D.; de Kat, J.; Kim, A.; Lasserre, T.; Lesquoy, É.; Loup, C.; Magneville, C.; Mansoux, B.; Marquette, J.-B.; Maurice, É.; Milsztajn, A.; Moniez, M.; Palanque-Delabrouille, N.; Perdereau, O.; Prévot, L.; Regnault, N.; Rich, J.; Spiro, M.; Vidal-Madjar, A.; Vigroux, L.; Zylberajch, S.

    1999-11-01

    We present the analysis of the light curves of 8.5 million stars observed during two seasons by EROS (Expérience de Recherche d'Objets Sombres), in the Galactic plane away from the bulge. Three stars have been found that exhibit luminosity variations compatible with gravitational microlensing effects due to unseen objects. The corresponding optical depth, averaged over four directions, is bar tau = 0.38+0.53_-0.15 x 10-6. All three candidates have long Einstein radius crossing times ( ~ 70 to 100 days). For one of them, the lack of evidence for a parallax or a source size effect enabled us to constrain the lens-source configuration. Another candidate displays a modulation of the magnification, which is compatible with the lensing of a binary source. The interpretation of the optical depths inferred from these observations is hindered by the imperfect knowledge of the distance to the target stars. Our measurements are compatible with expectations from simple galactic models under reasonable assumptions on the target distances. This work is based on observations made at the European Southern Observatory, La Silla, Chile.

  9. Proceedings of the Next Generation Exploration Conference

    NASA Technical Reports Server (NTRS)

    Schingler, Robbie (Editor); Lynch, Kennda

    2006-01-01

    The Next Generation Exploration Conference (NGEC) brought together the emerging next generation of space leaders over three intensive days of collaboration and planning. The participants extended the ongoing work of national space agencies to draft a common strategic framework for lunar exploration, to include other destinations in the solar system. NGEC is the first conference to bring together emerging leaders to comment on and contribute to these activities. The majority of the three-day conference looked beyond the moon and focused on the "next destination": Asteroids, Cis-Lunar, Earth 3.0, Mars Science and Exploration, Mars Settlement and Society, and Virtual Worlds and Virtual Exploration.

  10. Next Generation Solar Collectors for CSP

    SciTech Connect

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  11. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  12. 78 FR 64404 - Next Generation 911; Text-to-911; Next Generation 911 Applications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... COMMISSION 47 CFR Part 20 Next Generation 911; Text-to-911; Next Generation 911 Applications AGENCY: Federal... (Commission) amends the text-to-911 ``bounce-back'' requirement as it applies to Commercial Mobile Radio... Commission required all CMRS providers and providers of interconnected text messaging services to provide...

  13. Designing the next generation of robotic controllers

    NASA Technical Reports Server (NTRS)

    Goldstein, David G.

    1994-01-01

    The use of scenario-based, object-oriented software engineering methodologies in the next generation of robotic controllers is discussed. The controllers are intended to supplant the decades old technology currently embraced by the manufacturing industry of the United States.

  14. Implementing the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Penuel, William R.; Harris, Christopher J.; DeBarger, Angela Haydel

    2015-01-01

    The Next Generation Science Standards embody a new vision for science education grounded in the idea that science is both a body of knowledge and a set of linked practices for developing knowledge. The authors describe strategies that they suggest school and district leaders consider when designing strategies to support NGSS implementation.

  15. Panel Moves toward "Next Generation" Science Standards

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2010-01-01

    As part of a national effort to produce "next generation" science standards for K-12 education, a panel of experts convened by the National Research Council (NRC) has issued a draft of a conceptual framework designed to guide the standards and "move science education toward a more coherent vision." One key goal of the effort is to focus science…

  16. Next Generation Drivetrain Development and Test Program

    SciTech Connect

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  17. Data Analysis and Next Generation Assessments

    ERIC Educational Resources Information Center

    Pon, Kathy

    2013-01-01

    For the last decade, much of the work of California school administrators has been shaped by the accountability of the No Child Left Behind Act. Now as they stand at the precipice of Common Core Standards and next generation assessments, it is important to reflect on the proficiency educators have attained in using data to improve instruction and…

  18. The Next Generation Virgo Cluster Survey. VII. The Intrinsic Shapes of Low-luminosity Galaxies in the Core of the Virgo Cluster, and a Comparison with the Local Group

    NASA Astrophysics Data System (ADS)

    Sánchez-Janssen, Rubén; Ferrarese, Laura; MacArthur, Lauren A.; Côté, Patrick; Blakeslee, John P.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Durrell, Patrick; Gwyn, Stephen; McConnacchie, Alan W.; Boselli, Alessandro; Courteau, Stéphane; Emsellem, Eric; Mei, Simona; Peng, Eric; Puzia, Thomas H.; Roediger, Joel; Simard, Luc; Boyer, Fred; Santos, Matthew

    2016-03-01

    We investigate the intrinsic shapes of low-luminosity galaxies in the central 300 kpc of the Virgo Cluster using deep imaging obtained as part of the Next Generation Virgo Cluster Survey (NGVS). We build a sample of nearly 300 red-sequence cluster members in the yet-unexplored -14 < Mg < -8 mag range, and we measure their apparent axis ratios, q, through Sérsic fits to their two-dimensional light distribution, which is well described by a constant ellipticity parameter. The resulting distribution of apparent axis ratios is then fit by families of triaxial models with normally distributed intrinsic ellipticities, E = 1 - C/A, and triaxialities, T = (A2 - B2)/(A2 - C2). We develop a Bayesian framework to explore the posterior distribution of the model parameters, which allows us to work directly on discrete data, and to account for individual, surface-brightness-dependent axis ratio uncertainties. For this population we infer a mean intrinsic ellipticity \\bar{E} = {0.43}-0.02+0.02 and a mean triaxiality \\bar{T} = {0.16}-0.06+0.07. This implies that faint Virgo galaxies are best described as a family of thick, nearly oblate spheroids with mean intrinsic axis ratios 1:0.94:0.57. The core of Virgo lacks highly elongated low-luminosity galaxies, with 95% of the population having q > 0.45. We additionally attempt a study of the intrinsic shapes of Local Group (LG) satellites of similar luminosities. For the LG population we infer a slightly larger mean intrinsic ellipticity \\bar{E} = {0.51}-0.06+0.07, and the paucity of objects with round apparent shapes translates into more triaxial mean shapes, 1:0.76:0.49. Numerical studies that follow the tidal evolution of satellites within LG-sized halos are in good agreement with the inferred shape distributions, but the mismatch for faint galaxies in Virgo highlights the need for more adequate simulations of this population in the cluster environment. We finally compare the intrinsic shapes of NGVS low-mass galaxies with

  19. Stellar Rotation Effects in Polarimetric Microlensing

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe

    2016-07-01

    It is well known that the polarization signal in microlensing events of hot stars is larger than that of main-sequence stars. Most hot stars rotate rapidly around their stellar axes. The stellar rotation creates ellipticity and gravity-darkening effects that break the spherical symmetry of the source's shape and the circular symmetry of the source's surface brightness respectively. Hence, it causes a net polarization signal for the source star. This polarization signal should be considered in polarimetric microlensing of fast rotating stars. For moderately rotating stars, lensing can magnify or even characterize small polarization signals due to the stellar rotation through polarimetric observations. The gravity-darkening effect due to a rotating source star creates asymmetric perturbations in polarimetric and photometric microlensing curves whose maximum occurs when the lens trajectory crosses the projected position of the rotation pole on the sky plane. The stellar ellipticity creates a time shift (i) in the position of the second peak of the polarimetric curves in transit microlensing events and (ii) in the peak position of the polarimetric curves with respect to the photometric peak position in bypass microlensing events. By measuring this time shift via polarimetric observations of microlensing events, we can evaluate the ellipticity of the projected source surface on the sky plane. Given the characterizations of the FOcal Reducer and low dispersion Spectrograph (FORS2) polarimeter at the Very Large Telescope, the probability of observing this time shift is very small. The more accurate polarimeters of the next generation may well measure these time shifts and evaluate the ellipticity of microlensing source stars.

  20. Mesaba next-generation IGCC plant

    SciTech Connect

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  1. Next-generation emergency response robots

    NASA Astrophysics Data System (ADS)

    Buzan, Forrest; Paul, George; Dunten, Seth; Kennedy, William; Dietsch, Jeanne A.

    2004-09-01

    As reported by Blitch, current Search and Rescue robots have proven inadequate in the field. Shortfalls in mobility include: inadequate relationship between traction and drag, inadequate self-righting, inadequate sensor protection and too many protrusions to snag. Because autonomous navigation is often impossible but tele-operation may be difficult, sliding autonomy is critical. In addition, next generation SR robots need plug-n-play sensor options and modular cargo holds to deliver daughter-bots or other specialized rescue equipment. Finally, dust and smoke have caused both sensors and robots to fail in the field. Many of the needs of Search and Rescue teams are shared by all Emergency Response robots: EOD, SWAT, HazMat and other law enforcement officers. We discuss how next-generation designs solve many of the problems currently facing ER robots.

  2. Next Generation Multimedia Distributed Data Base Systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Stuart E.

    1997-01-01

    The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.

  3. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  4. Interferometric observation of microlensing events

    NASA Astrophysics Data System (ADS)

    Cassan, Arnaud; Ranc, Clément

    2016-05-01

    Interferometric observations of microlensing events have the potential to provide unique constraints on the physical properties of the lensing systems. In this work, we first present a formalism that closely combines interferometric and microlensing observable quantities, which lead us to define an original microlensing (u, v) plane. We run simulations of long-baseline interferometric observations and photometric light curves to decide which observational strategy is required to obtain a precise measurement on vector Einstein radius. We finally perform a detailed analysis of the expected number of targets in the light of new microlensing surveys (2011+) which currently deliver 2000 alerts per year. We find that a few events are already at reach of long-baseline interferometers (CHARA, VLTI), and a rate of about six events per year is expected with a limiting magnitude of K ≃ 10. This number would increase by an order of magnitude by raising it to K ≃ 11. We thus expect that a new route for characterizing microlensing events will be opened by the upcoming generations of interferometers.

  5. Fiber to the home: next generation network

    NASA Astrophysics Data System (ADS)

    Yang, Chengxin; Guo, Baoping

    2006-07-01

    Next generation networks capable of carrying converged telephone, television (TV), very high-speed internet, and very high-speed bi-directional data services (like video-on-demand (VOD), Game etc.) strategy for Fiber To The Home (FTTH) is presented. The potential market is analyzed. The barriers and some proper strategy are also discussed. Several technical problems like various powering methods, optical fiber cables, and different network architecture are discussed too.

  6. Liquid as template for next generation micro devices

    NASA Astrophysics Data System (ADS)

    Charmet, Jérôme; Haquette, Henri; Laux, Edith; Gorodyska, Ganna; Textor, Marcus; Spinola Durante, Guido; Portuondo-Campa, Erwin; Knapp, Helmut; Bitterli, Roland; Noell, Wilfried; Keppner, Herbert

    2009-08-01

    structures and their potential to deliver next generation micro devices.

  7. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  8. Next generation science standards available for comment

    NASA Astrophysics Data System (ADS)

    Asher, Pranoti

    2012-05-01

    The first public draft of the Next Generation Science Standards (NGSS) is now available for public comment. Feedback on the standards is sought from people who have a stake in science education, including individuals in the K-12, higher education, business, and research communities. Development of NGSS is a state-led effort to define the content and practices students need to learn from kindergarten through high school. NGSS will be based on the U.S. National Research Council's reportFramework for K-12 Science Education.

  9. Next-Generation Sequencing in Intellectual Disability.

    PubMed

    Carvill, Gemma L; Mefford, Heather C

    2015-09-01

    Next-generation sequencing technologies have revolutionized gene discovery in patients with intellectual disability (ID) and led to an unprecedented expansion in the number of genes implicated in this disorder. We discuss the strategies that have been used to identify these novel genes for both syndromic and nonsyndromic ID and highlight the phenotypic and genetic heterogeneity that underpin this condition. Finally, we discuss the future of defining the genetic etiology of ID, including the role of whole-genome sequencing, mosaicism, and the importance of diagnostic testing in ID. PMID:27617123

  10. Security Profile Inspector (SPI): The next generation

    SciTech Connect

    Bartoletti, T.; Fisher, J.

    1995-03-01

    The current Security Profile Inspector (SPI) conducts analysis of UNIX and VMS based operating system configurations to help system managers maintain secure operating environments. A broad horizontal range of security tests with a vertical array of usage options supports the needs of both novice and experienced system administrators. Its modular structure was designed to provide a foundation for distributed operation and network-wide inspection conducted from a central command host. The {open_quotes}Next Generation{close_quotes} SPI outlined should serve to promote cost-effective computer security for many years.

  11. Next generation neonatal health informatics with Artemis.

    PubMed

    McGregor, Carolyn; Catley, Christina; James, Andrew; Padbury, James

    2011-01-01

    This paper describes the deployment of a platform to enable processing of currently uncharted high frequency, high fidelity, synchronous data from medical devices. Such a platform would support the next generation of informatics solutions for neonatal intensive care. We present Artemis, a platform for real-time enactment of clinical knowledge as it relates to multidimensional data analysis and clinical research. Through specific deployment examples at two different neonatal intensive care units, we demonstrate that Artemis supports: 1) instantiation of clinical rules; 2) multidimensional analysis; 3) distribution of services for critical care via cloud computing; and 4) accomplishing 1 through 3 using current technology without a negative impact on patient care. PMID:21893725

  12. Beamstrahlung spectra in next generation linear colliders

    SciTech Connect

    Barklow, T.; Chen, P. ); Kozanecki, W. )

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  13. Next-Generation Sequencing in Intellectual Disability

    PubMed Central

    Carvill, Gemma L.; Mefford, Heather C.

    2015-01-01

    Next-generation sequencing technologies have revolutionized gene discovery in patients with intellectual disability (ID) and led to an unprecedented expansion in the number of genes implicated in this disorder. We discuss the strategies that have been used to identify these novel genes for both syndromic and nonsyndromic ID and highlight the phenotypic and genetic heterogeneity that underpin this condition. Finally, we discuss the future of defining the genetic etiology of ID, including the role of whole-genome sequencing, mosaicism, and the importance of diagnostic testing in ID. PMID:27617123

  14. Synchronization System for Next Generation Light Sources

    SciTech Connect

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique – one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  15. From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes

    NASA Astrophysics Data System (ADS)

    Heap, S. R.; Lindler, D.

    2016-05-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.

  16. Formal Verification for a Next-Generation Space Shuttle

    NASA Technical Reports Server (NTRS)

    Nelson, Stacy D.; Pecheur, Charles; Koga, Dennis (Technical Monitor)

    2002-01-01

    This paper discusses the verification and validation (V&2) of advanced software used for integrated vehicle health monitoring (IVHM), in the context of NASA's next-generation space shuttle. We survey the current VBCV practice and standards used in selected NASA projects, review applicable formal verification techniques, and discuss their integration info existing development practice and standards. We also describe two verification tools, JMPL2SMV and Livingstone PathFinder, that can be used to thoroughly verify diagnosis applications that use model-based reasoning, such as the Livingstone system.

  17. Next generation distributed computing for cancer research.

    PubMed

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.

  18. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  19. Genome Walking by Next Generation Sequencing Approaches

    PubMed Central

    Volpicella, Mariateresa; Leoni, Claudia; Costanza, Alessandra; Fanizza, Immacolata; Placido, Antonio; Ceci, Luigi R.

    2012-01-01

    Genome Walking (GW) comprises a number of PCR-based methods for the identification of nucleotide sequences flanking known regions. The different methods have been used for several purposes: from de novo sequencing, useful for the identification of unknown regions, to the characterization of insertion sites for viruses and transposons. In the latter cases Genome Walking methods have been recently boosted by coupling to Next Generation Sequencing technologies. This review will focus on the development of several protocols for the application of Next Generation Sequencing (NGS) technologies to GW, which have been developed in the course of analysis of insertional libraries. These analyses find broad application in protocols for functional genomics and gene therapy. Thanks to the application of NGS technologies, the original vision of GW as a procedure for walking along an unknown genome is now changing into the possibility of observing the parallel marching of hundreds of thousands of primers across the borders of inserted DNA molecules in host genomes. PMID:24832505

  20. Next generation distributed computing for cancer research.

    PubMed

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  1. Next Generation Distributed Computing for Cancer Research

    PubMed Central

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  2. Next-generation mapping of Arabidopsis genes.

    PubMed

    Austin, Ryan S; Vidaurre, Danielle; Stamatiou, George; Breit, Robert; Provart, Nicholas J; Bonetta, Dario; Zhang, Jianfeng; Fung, Pauline; Gong, Yunchen; Wang, Pauline W; McCourt, Peter; Guttman, David S

    2011-08-01

    Next-generation genomic sequencing technologies have made it possible to directly map mutations responsible for phenotypes of interest via direct sequencing. However, most mapping strategies proposed to date require some prior genetic analysis, which can be very time-consuming even in genetically tractable organisms. Here we present a de novo method for rapidly and robustly mapping the physical location of EMS mutations by sequencing a small pooled F₂ population. This method, called Next Generation Mapping (NGM), uses a chastity statistic to quantify the relative contribution of the parental mutant and mapping lines to each SNP in the pooled F₂ population. It then uses this information to objectively localize the candidate mutation based on its exclusive segregation with the mutant parental line. A user-friendly, web-based tool for performing NGM analysis is available at http://bar.utoronto.ca/NGM. We used NGM to identify three genes involved in cell-wall biology in Arabidopsis thaliana, and, in a power analysis, demonstrate success in test mappings using as few as ten F₂ lines and a single channel of Illumina Genome Analyzer data. This strategy can easily be applied to other model organisms, and we expect that it will also have utility in crops and any other eukaryote with a completed genome sequence.

  3. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems.

  4. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems. PMID:23604071

  5. [Innovation and the next generation radiotherapy system].

    PubMed

    Tanabe, Eiji

    2013-01-01

    Innovation is the key to future success for Japan that is slowly falling behind. Industries targeted by the "Abenomics" growth strategy include healthcare and medicine. Since cancer is the leading cause of death in Japan, the development of a system that can detect and treat early stage cancers will be very valuable for patient QOL and reducing health care costs. Although the effectiveness of radiation therapy for treating early stage cancer is widely recognized, there has been no system to treat small, moving tumors with sub millimeter accuracy. A project supported by NEDO develops a "Next-Generation Radiation Therapy System" that uses high energy, narrow X-rays beams that can be accurately pinpointed deep inside the body. Performance testing of a prototype system is currently underway at the National Center for Global Health and Medicine in Tokyo. PMID:24893448

  6. The Next Generation of Planetary Atmospheric Probes

    NASA Technical Reports Server (NTRS)

    Houben, Howard

    2005-01-01

    Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).

  7. Clinical Integration of Next Generation Sequencing Technology

    PubMed Central

    Gullapalli, R.R.; Lyons-Weiler, M.; Petrosko, P.; Dhir, R.; Becich, M.J.; LaFramboise, W.A.

    2012-01-01

    Abstract/Synopsis Recent technological advances in Next Generation Sequencing (NGS) methods have substantially reduced cost and operational complexity leading to the production of bench top sequencers and commercial software solutions for implementation in small research and clinical laboratories. This chapter summarizes requirements and hurdles to the successful implementation of these systems including 1) calibration, validation and optimization of the instrumentation, experimental paradigm and primary readout, 2) secure transfer, storage and secondary processing of the data, 3) implementation of software tools for targeted analysis, and 4) training of research and clinical personnel to evaluate data fidelity and interpret the molecular significance of the genomic output. In light of the commercial and technological impetus to bring NGS technology into the clinical domain, it is critical that novel tests incorporate rigid protocols with built-in calibration standards and that data transfer and processing occur under exacting security measures for interpretation by clinicians with specialized training in molecular diagnostics. PMID:23078661

  8. Next Generation Flight Controller Trainer System

    NASA Technical Reports Server (NTRS)

    Arnold, Scott; Barry, Matthew R.; Benton, Isaac; Bishop, Michael M.; Evans, Steven; Harvey, Jason; King, Timothy; Martin, Jacob; Mercier, Al; Miller, Walt; Payne, Dan L.; Phu, Hanh; Thompson, James C.; Aadsen, Ron

    2008-01-01

    The Next Generation Flight Controller Trainer (NGFCT) is a relatively inexpensive system of hardware and software that provides high-fidelity training for spaceshuttle flight controllers. NGFCT provides simulations into which are integrated the behaviors of emulated space-shuttle vehicle onboard general-purpose computers (GPCs), mission-control center (MCC) displays, and space-shuttle systems as represented by high-fidelity shuttle mission simulator (SMS) mathematical models. The emulated GPC computers enable the execution of onboard binary flight-specific software. The SMS models include representations of system malfunctions that can be easily invoked. The NGFCT software has a flexible design that enables independent updating of its GPC, SMS, and MCC components.

  9. Aeras: A next generation global atmosphere model

    DOE PAGES

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  10. Aeras: A next generation global atmosphere model

    SciTech Connect

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  11. Next generation and biosimilar monoclonal antibodies

    PubMed Central

    2011-01-01

    The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235

  12. Radiology: "killer app" for next generation networks?

    PubMed

    McNeill, Kevin M

    2004-03-01

    The core principles of digital radiology were well developed by the end of the 1980 s. During the following decade tremendous improvements in computer technology enabled realization of those principles at an affordable cost. In this decade work can focus on highly distributed radiology in the context of the integrated health care enterprise. Over the same period computer networking has evolved from a relatively obscure field used by a small number of researchers across low-speed serial links to a pervasive technology that affects nearly all facets of society. Development directions in network technology will ultimately provide end-to-end data paths with speeds that match or exceed the speeds of data paths within the local network and even within workstations. This article describes key developments in Next Generation Networks, potential obstacles, and scenarios in which digital radiology can become a "killer app" that helps to drive deployment of new network infrastructure. PMID:15255516

  13. Insulating Material for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    White, Susan; Johnson, Sylvia; Salerno, Louis; Kittel, Peter; Roach, Pat; Helvensteijn, Ben; Kashani, Ali

    2006-01-01

    A report discusses the development of a flexible thermal-insulation material for cryogenic tanks in next-generation spacecraft. This material is denoted Advanced Reusable All-temperature Multimode Insulation System (ARAMIS). The report begins by describing the need for ARAMIS and the technological challenges of developing a single material that is useable throughout the temperature range from storage of liquid hydrogen (20 K) to atmospheric-reentry heating (>2,000 K), has the requisite low thermal conductivity, resists condensation of moisture without need for a gas purge, and withstands reentry heating for a 400-mission lifetime. The report then discusses laboratory apparatuses for testing materials that have been and will be considered as candidates for the development of ARAMIS.

  14. Next Generation CAD/CAM/CAE Systems

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1997-01-01

    This document contains presentations from the joint UVA/NASA Workshop on Next Generation CAD/CAM/CAE Systems held at NASA Langley Research Center in Hampton, Virginia on March 18-19, 1997. The presentations focused on current capabilities and future directions of CAD/CAM/CAE systems, aerospace industry projects, and university activities related to simulation-based design. Workshop attendees represented NASA, commercial software developers, the aerospace industry, government labs, and academia. The workshop objectives were to assess the potential of emerging CAD/CAM/CAE technology for use in intelligent simulation-based design and to provide guidelines for focused future research leading to effective use of CAE systems for simulating the entire life cycle of aerospace systems.

  15. Social Intelligence: Next Generation Business Intelligence

    SciTech Connect

    Troy Hiltbrand

    2010-09-01

    In order for Business Intelligence to truly move beyond where it is today, a shift in approach must occur. Currently, much of what is accomplished in the realm of Business Intelligence relies on reports and dashboards to summarize and deliver information to end users. As we move into the future, we need to get beyond these reports and dashboards to a point where we break out the individual metrics that are embedded in these reports and interact with these components independently. Breaking these pieces of information out of the confines of reports and dashboards will allow them to be dynamically assembled for delivery in the way that makes most sense to each consumer. With this change in ideology, Business Intelligence will move from the concept of collections of objects, or reports and dashboards, to individual objects, or information components. The Next Generation Business Intelligence suite will translate concepts popularized in Facebook, Flickr, and Digg into enterprise worthy communication vehicles.

  16. Integrated control of next generation power system

    SciTech Connect

    None, None

    2010-02-28

    The multi-agent system (MAS) approach has been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future as developed by Southern California Edison. These next generation power system results include better ability to reconfigure the circuit as well as the increased capability to improve the protection and enhance the reliability of the circuit. There were four main tasks in this project. The specific results for each of these four tasks and their related topics are presented in main sections of this report. Also, there were seven deliverables for this project. The main conclusions for these deliverables are summarized in the identified subtask section of this report. The specific details for each of these deliverables are included in the “Project Deliverables” section at the end of this Final Report.

  17. Next generation sequencing technology: Advances and applications.

    PubMed

    Buermans, H P J; den Dunnen, J T

    2014-10-01

    Impressive progress has been made in the field of Next Generation Sequencing (NGS). Through advancements in the fields of molecular biology and technical engineering, parallelization of the sequencing reaction has profoundly increased the total number of produced sequence reads per run. Current sequencing platforms allow for a previously unprecedented view into complex mixtures of RNA and DNA samples. NGS is currently evolving into a molecular microscope finding its way into virtually every fields of biomedical research. In this chapter we review the technical background of the different commercially available NGS platforms with respect to template generation and the sequencing reaction and take a small step towards what the upcoming NGS technologies will bring. We close with an overview of different implementations of NGS into biomedical research. This article is part of a Special Issue entitled: From Genome to Function.

  18. Next Generation Sequencing in Endocrine Practice

    PubMed Central

    Forlenza, Gregory P.; Calhoun, Amy; Beckman, Kenneth B.; Halvorsen, Tanya; Hamdoun, Elwaseila; Zierhut, Heather; Sarafoglou, Kyriakie; Polgreen, Lynda E.; Miller, Bradley S.; Nathan, Brandon; Petryk, Anna

    2016-01-01

    With the completion of the Human Genome Project and advances in genomic sequencing technologies, the use of clinical molecular diagnostics has grown tremendously over the last decade. Next-generation sequencing (NGS) has overcome many of the practical roadblocks that had slowed the adoption of molecular testing for routine clinical diagnosis. In endocrinology, targeted NGS now complements biochemical testing and imaging studies. The goal of this review is to provide clinicians with a guide to the application of NGS to genetic testing for endocrine conditions, by compiling a list of established gene mutations detectable by NGS, and highlighting key phenotypic features of these disorders. As we outline in this review, the clinical utility of NGS-based molecular testing for endocrine disorders is very high. Identifying an exact genetic etiology improves understanding of the disease, provides clear explanation to families about the cause, and guides decisions about screening, prevention and/or treatment. PMID:25958132

  19. Comparison of next-generation sequencing systems.

    PubMed

    Liu, Lin; Li, Yinhu; Li, Siliang; Hu, Ni; He, Yimin; Pong, Ray; Lin, Danni; Lu, Lihua; Law, Maggie

    2012-01-01

    With fast development and wide applications of next-generation sequencing (NGS) technologies, genomic sequence information is within reach to aid the achievement of goals to decode life mysteries, make better crops, detect pathogens, and improve life qualities. NGS systems are typically represented by SOLiD/Ion Torrent PGM from Life Sciences, Genome Analyzer/HiSeq 2000/MiSeq from Illumina, and GS FLX Titanium/GS Junior from Roche. Beijing Genomics Institute (BGI), which possesses the world's biggest sequencing capacity, has multiple NGS systems including 137 HiSeq 2000, 27 SOLiD, one Ion Torrent PGM, one MiSeq, and one 454 sequencer. We have accumulated extensive experience in sample handling, sequencing, and bioinformatics analysis. In this paper, technologies of these systems are reviewed, and first-hand data from extensive experience is summarized and analyzed to discuss the advantages and specifics associated with each sequencing system. At last, applications of NGS are summarized.

  20. Microstructural Characterization of Next Generation Nuclear Graphites

    SciTech Connect

    Karthik Chinnathambi; Joshua Kane; Darryl P. Butt; William E. Windes; Rick Ubic

    2012-04-01

    This article reports the microstructural characteristics of various petroleum and pitch based nuclear graphites (IG-110, NBG-18, and PCEA) that are of interest to the next generation nuclear plant program. Bright-field transmission electron microscopy imaging was used to identify and understand the different features constituting the microstructure of nuclear graphite such as the filler particles, microcracks, binder phase, rosette-shaped quinoline insoluble (QI) particles, chaotic structures, and turbostratic graphite phase. The dimensions of microcracks were found to vary from a few nanometers to tens of microns. Furthermore, the microcracks were found to be filled with amorphous carbon of unknown origin. The pitch coke based graphite (NBG-18) was found to contain higher concentration of binder phase constituting QI particles as well as chaotic structures. The turbostratic graphite, present in all of the grades, was identified through their elliptical diffraction patterns. The difference in the microstructure has been analyzed in view of their processing conditions.

  1. Next Generation Advanced Video Guidance Sensor

    NASA Technical Reports Server (NTRS)

    Lee, Jimmy; Spencer, Susan; Bryan, Tom; Johnson, Jimmie; Robertson, Bryan

    2008-01-01

    The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. The United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport. Systems (COTS) Automated Rendezvous and Docking (AR&D). AVGS has a proven pedigree, based on extensive ground testing and flight demonstrations. The AVGS on the Demonstration of Autonomous Rendezvous Technology (DART)mission operated successfully in "spot mode" out to 2 km. The first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. Parts obsolescence issues prevent the construction of more AVGS. units, and the next generation sensor must be updated to support the CEV and COTS programs. The flight proven AR&D sensor is being redesigned to update parts and add additional. capabilities for CEV and COTS with the development of the Next, Generation AVGS (NGAVGS) at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities might include greater sensor range, auto ranging, and real-time video output. This paper presents an approach to sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It will also discuss approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, parts selection and test plans for the NGAVGS will be addressed to provide a highly reliable flight qualified sensor. Expanded capabilities through innovative use of existing capabilities will also be

  2. Microlensing, brown dwarfs and Gaia.

    NASA Astrophysics Data System (ADS)

    Evans, N. W.

    The GAIA satellite can precisely measure the masses of nearby brown dwarfs and lower main sequence stars by the microlensing effect. The scientific yield is maximised if the microlensing event is also followed with ground-based telesecopes to provide densely sampled photometry. There are two possible strategies. First, ongoing events can be triggered by photometric or astrometric alerts by GAIA. Second, events can be predicted using known high proper motion stars as lenses. This is much easier, as the location and time of an event can be forecast. Using the GAIA source density, we estimate that the sample size of high proper motion (>300 mas yr-1) brown dwarfs needed to provide predictable events during the 5 year mission lifetime is surprisingly small, only of the order of tens. This is comparable to the number of high proper motion brown dwarfs already known from the work of the UKIDSS Large Area Survey and the all-sky WISE satellite. Provided the relative parallax of the lens and the angular Einstein radius can be recovered from astrometric data, then the mass of the lens can be found. Microlensing provides the only way of measuring the masses of individual objects irrespective of their luminosity. So, microlensing with GAIA is the best way to carry out an inventory of masses in the solar neighbourhood in the brown dwarf regime.

  3. Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys

    NASA Astrophysics Data System (ADS)

    Clanton, Christian; Gaudi, B. Scott

    2016-03-01

    We present the first study to synthesize results from five different exoplanet surveys using three independent detection methods: microlensing, radial velocity, and direct imaging. The constraints derived herein represent the most comprehensive picture of the demographics of large-separation (≳2 AU) planets orbiting the most common stars in our Galaxy that has been constructed to date. We assume a simple, joint power-law planet distribution function of the form {d}2{N}{{pl}}/(d{log} {m}p d{log} a)={ A }{({m}p/{M}{{Sat}})}α {(a/2.5{{AU}})}β with an outer cutoff radius of the separation distribution function of aout. Generating populations of planets from these models and mapping them into the relevant observables for each survey, we use actual or estimated detection sensitivities to determine the expected observations for each survey. Comparing with the reported results, we derive constraints on the parameters \\{α ,β ,{ A },{a}{{out}}\\} that describe a single population of planets that is simultaneously consistent with the results of microlensing, radial velocity, and direct imaging surveys. We find median and 68% confindence intervals of α =-{0.86}-0.19+0.21 (-{0.85}-0.19+0.21), β ={1.1}-1.4+1.9 ({1.1}-1.3+1.9), { A }={0.21}-0.15+0.20 {{dex}}-2 ({0.21}-0.15+0.20 {{dex}}-2), and {a}{{out}}={10}-4.7+26 AU ({12}-6.2+50 AU) assuming “hot-start” (“cold-start”) planet evolutionary models. These values are consistent with all current knowledge of planets on orbits beyond ∼2 AU around single M dwarfs.

  4. Keeping Up With the Next Generation

    PubMed Central

    ten Bosch, John R.; Grody, Wayne W.

    2008-01-01

    The speed, accuracy, efficiency, and cost-effectiveness of DNA sequencing have been improving continuously since the initial derivation of the technique in the mid-1970s. With the advent of massively parallel sequencing technologies, DNA sequencing costs have been dramatically reduced. No longer is it unthinkable to sequence hundreds or even thousands of genes in a single individual with a suspected genetic disease or complex disease predisposition. Along with the benefits offered by these technologies come a number of challenges that must be addressed before wide-scale sequencing becomes accepted medical practice. Molecular diagnosticians will need to become comfortable with, and gain confidence in, these new platforms, which are based on radically different technologies compared to the standard DNA sequencers in routine use today. Experience will determine whether these instruments are best applied to sequencing versus resequencing. Perhaps most importantly, along with increasing read lengths inevitably comes increased ascertainment of novel sequence variants of uncertain clinical significance, the postanalytical aspects of which could bog down the entire field. But despite these obstacles, and as a direct result of the promises these sequencing advances present, it will likely not be long before next-generation sequencing begins to make an impact in molecular medicine. In this review, technical issues are discussed, in addition to the practical considerations that will need to be addressed as advances push toward personal genome sequencing. PMID:18832462

  5. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  6. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; Abney, Morgan B.; Wheeler, Raymond M.

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  7. Next generation sequencing in endocrine practice.

    PubMed

    Forlenza, Gregory P; Calhoun, Amy; Beckman, Kenneth B; Halvorsen, Tanya; Hamdoun, Elwaseila; Zierhut, Heather; Sarafoglou, Kyriakie; Polgreen, Lynda E; Miller, Bradley S; Nathan, Brandon; Petryk, Anna

    2015-01-01

    With the completion of the Human Genome Project and advances in genomic sequencing technologies, the use of clinical molecular diagnostics has grown tremendously over the last decade. Next-generation sequencing (NGS) has overcome many of the practical roadblocks that had slowed the adoption of molecular testing for routine clinical diagnosis. In endocrinology, targeted NGS now complements biochemical testing and imaging studies. The goal of this review is to provide clinicians with a guide to the application of NGS to genetic testing for endocrine conditions, by compiling a list of established gene mutations detectable by NGS, and highlighting key phenotypic features of these disorders. As we outline in this review, the clinical utility of NGS-based molecular testing for endocrine disorders is very high. Identifying an exact genetic etiology improves understanding of the disease, provides clear explanation to families about the cause, and guides decisions about screening, prevention and/or treatment. To illustrate this approach, a case of hypophosphatasia with a pathogenic mutation in the ALPL gene detected by NGS is presented.

  8. Towards Intelligent Control for Next Generation Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle; KrishnaKumar, Kalmanje Srinvas; Frost, Susan Alane

    2008-01-01

    NASA Aeronautics Subsonic Fixed Wing Project is focused on mitigating the environmental and operation impacts expected as aviation operations triple by 2025. The approach is to extend technological capabilities and explore novel civil transport configurations that reduce noise, emissions, fuel consumption and field length. Two Next Generation (NextGen) aircraft have been identified to meet the Subsonic Fixed Wing Project goals - these are the Hybrid Wing-Body (HWB) and Cruise Efficient Short Take-Off and Landing (CESTOL) aircraft. The technologies and concepts developed for these aircraft complicate the vehicle s design and operation. In this paper, flight control challenges for NextGen aircraft are described. The objective of this paper is to examine the potential of state-of-the-art control architectures and algorithms to meet the challenges and needed performance metrics for NextGen flight control. A broad range of conventional and intelligent control approaches are considered, including dynamic inversion control, integrated flight-propulsion control, control allocation, adaptive dynamic inversion control, data-based predictive control and reinforcement learning control.

  9. Intelsat's next generation satellite for the Americas

    NASA Astrophysics Data System (ADS)

    Virdee, L.; Jansson, G.; Kis, R.; Goodwin, P.; Temporelli, P.

    2001-03-01

    In order to meet the growing demand for high performance C- and Ku-Band services in the Americas, INTELSAT contracted with Astrium in February 2000 to procure a high capacity communications spacecraft for its 310°E operational location. The spacecraft platform is based on Astrium's next generation platform, the Eurostar 3000. Several new technologies such as integrated Data Handling System, Plasma Propulsion System, etc. are integral features of this platform. The communication payload comprises 36 C-Band and 20 high power Ku-Band transponders. The beam coverages are tailored for the 310°E orbital location and are implemented using a hybrid shaped antenna design approach, where multiple C-Band coverages are generated from a single shaped reflector utilizing a pair of Tx/Rx feed horns for each coverage. The Ku-Band coverages are generated by the classical dual Gregorian shaped reflector antenna design approach. With a total dry mass on the order of 2650 kg and a separated launch mass of 5400 kg, the spacecraft is compatible with most of the available launch vehicles providing mission life of greater than 13 years. The paper will provide technical details of the spacecraft.

  10. THE NEXT GENERATION NUCLEAR PLANT GRAPHITE PROGRAM

    SciTech Connect

    William E. Windes; Timothy D. Burchell; Robert L. Bratton

    2008-09-01

    Developing new nuclear grades of graphite used in the core of a High Temperature Gas-cooled Reactor (HTGR) is one of the critical development activities being pursued within the Next Generation Nuclear Plant (NGNP) program. Graphite’s thermal stability (in an inert gas environment), high compressive strength, fabricability, and cost effective price make it an ideal core structural material for the HTGR reactor design. While the general characteristics necessary for producing nuclear grade graphite are understood, historical “nuclear” grades no longer exist. New grades must be fabricated, characterized, and irradiated to demonstrate that current grades of graphite exhibit acceptable non-irradiated and irradiated properties upon which the thermo-mechanical design of the structural graphite in NGNP is based. The NGNP graphite R&D program has selected a handful of commercially available types for research and development activities necessary to qualify this nuclear grade graphite for use within the NGNP reactor. These activities fall within five primary areas; 1) material property characterization, 2) irradiated material property characterization, 3) modeling, and 4) ASTM test development, and 5) ASME code development efforts. Individual research and development activities within each area are being pursued with the ultimate goal of obtaining a commercial operating license for the nuclear graphite from the US NRC.

  11. Next generation sequencing methodologies--an overview.

    PubMed

    Pickrell, William O; Rees, Mark I; Chung, Seo-Kyung

    2012-01-01

    Gene discovery has been one of the most important advances in our understanding of human disorders. Early linkage and positional cloning strategies have now given way to next generation sequencing (NGS) with age-old help from biostatistical and bioinformatical input. In this chapter, we present the importance of getting the basics right, namely, how the best phenotyping in the clinical domain will provide a higher chance of a successful NGS experiment. In addition, we show getting the correct submission of DNA samples to NGS providers is dependent on the type of inheritance pattern that may or may not be apparent. We discuss one of the most crucial decisions for investigators when designing a study, namely choosing a trio, quad or cohort for analysis. Following on from this, we compare and contrast the underlying technology adopted by provider companies as they vie for customers and submissions. Each platform has advantages and disadvantages based on false calls, coverage, and read depth; however, some of these issues may be solved with the third wave of sequencing technology development in early commercial roll-out. Lastly, we provide a bioinformatic filtering overview of a "quad"-based submission and show how 3 million SNPs and indels can be reduced to a biologically plausible and experimentally manageable n≤50 gene variants. PMID:23046880

  12. Next generation SAR demonstration on space station

    SciTech Connect

    Edelstein, Wendy; Kim, Yunjin; Freeman, Anthony; Jordan, Rolando

    1999-01-22

    This paper describes the next generation synthetic aperture radar (SAR) that enables future low cost space-borne radar missions. In order to realize these missions, we propose to use an inflatable, membrane, microstrip antenna that is particularly suitable for low frequency science radar missions. In order to mitigate risks associated with this revolutionary technology, the space station demonstration will be very useful to test the long-term survivability of the proposed antenna. This experiment will demonstrate several critical technology challenges associated with space-inflatable technologies. Among these include space-rigidization of inflatable structures, controlled inflation deployment, flatness and uniform separation of thin-film membranes and RF performance of membrane microstrip antennas. This mission will also verify the in-space performance of lightweight, high performance advanced SAR electronics. Characteristics of this SAR instrument include a capability for high resolution polarimetric imaging. The mission will acquire high quality scientific data using this advanced SAR to demonstrate the utility of these advanced technologies. We will present an inflatable L-band SAR concept for commercial and science applications and a P-band design concept to validate the Biomass SAR mission concept. The ionospheric effects on P-band SAR images will also be examined using the acquired data.

  13. The next generation of crystal detectors

    NASA Astrophysics Data System (ADS)

    Zhu, Ren-Yuan

    2015-09-01

    Crystal detectors have been used widely in high energy and nuclear physics experiments, medical instruments and homeland security applications. Novel crystal detectors are continuously being discovered and developed in academia and in industry. In high energy and nuclear physics experiments, total absorption electromagnetic calorimeters (ECAL) made of inorganic crystals are known for their superb energy resolution and detection efficiency for photon and electron measurements. A crystal ECAL is thus the choice for those experiments where precision measurements of photons and electrons are crucial for their physics missions. For future HEP experiments at the energy and intensity frontiers, however, the crystal detectors used in the above mentioned ECALs are either not bright and fast enough, or not radiation hard enough. Crystal detectors have also been proposed to build a Homogeneous Hadron Calorimeter (HHCAL) to achieve unprecedented jet mass resolution by duel readout of both Cherenkov and scintillation light, where development of cost-effective crystal detectors is a crucial issue because of the huge crystal volume required. This paper discusses several R&D directions for the next generation of crystal detectors for future HEP experiments.

  14. Reaching the Next Generation of Marine Scientists

    NASA Astrophysics Data System (ADS)

    Joyce, J.

    2009-04-01

    The next generation of marine scientists are today at primary school, secondary school or at college. To encourage them in their career, and to introduce those who are as yet undecided to the wonders of marine science, the Irish Marine Institute has devised a series of three overlapping outreach programmes to reach children at all three levels. Beginning at primary school, the "Explorers" programme offers a range of resources to teachers to enable them to teach marine-related examples as part of the science or geography modules of the SESE curriculum. These include teacher training, expert visits to schools, the installation and stocking of aquaria, field trips and downloadable lesson plans. For older pupils, the "Follow the Fleet" programme is a web-based education asset that allows users to track individual merchant ships and research vessels across the world, to interact with senior crew members of ships and to learn about their cargoes, the ports they visit and the sea conditions along the way. Finally, the "Integrated Marine Exploration Programme (IMEP)" takes secondary school pupils and university students to sea aboard the Marine Institute's research vessels to give them a taste of life as a marine scientist or to educate them in the practical day-to-day sampling and data processing tasks that make up a marine scientist's job.

  15. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Pickering, Karen D.; Cox, Marlon; Towsend, Neil; Campbell, Colin; Flynn, Michael; Wheeler, Raymond

    2012-01-01

    Next Generation Life Support (NGLS) is one of several technology development projects sponsored by NASA s Game Changing Development Program. The NGLS Project is developing life support technologies (including water recovery and space suit life support technologies) needed for humans to live and work productively in space. NGLS has three project tasks: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, and Alternative Water Processor (AWP). The RCA swing bed and VOR tasks are directed at key technology needs for the Portable Life Support System (PLSS) for an Advanced Extravehicular Mobility Unit, with focus on test article development and integrated testing in an Advanced PLSS in cooperation with the Advanced Extra Vehicular Activity (EVA) Project. An RCA swing-bed provides integrated carbon dioxide removal and humidity control that can be regenerated in real time during an EVA. The VOR technology will significantly increase the number of pressure settings available to the space suit. Current space suit pressure regulators are limited to only two settings whereas the adjustability of the advanced regulator will be nearly continuous. The AWP effort, based on natural biological processes and membrane-based secondary treatment, will result in the development of a system capable of recycling wastewater from sources expected in future exploration missions, including hygiene and laundry water. This paper will provide a status of technology development activities and future plans.

  16. ESA Next Generation Radiation Monitor- NGRM

    NASA Astrophysics Data System (ADS)

    Desorgher, Laurent

    Precise monitoring of the highly dynamic space radiation environment around Earth is crucial for spacecraft safety, as support of radiation belt models, solar particle flux models, and space radiation effects tools. The ESA sponsored SREM is measuring the Earth's radiation belts, solar particle flux, and cosmic ray background more than one decade onboard six different spacecrafts. Recently the development of the follower of SREM, the Next Generation Radiation Monitor (NGRM), has been started within an european consortium led by RUAG space, together with Paul Scherrer Institute (PSI), ONERA, EREMS, and IDEAS. NGRM will measure protons from 2 MeV up to 200 MeV, electrons from 100 keV up to 7MeV, as well as LET spectrum of ions. Compared to SREM, NGRM will provide a much better energy resolution, will be smaller (<1L), lighter (<1kg) and consume less energy (<1W). In this paper we describe the design of the instrument, and present calibration tests and Monte Carlo analysis of the instrument.

  17. Next-generation hybridization and introgression

    PubMed Central

    Twyford, A D; Ennos, R A

    2012-01-01

    Hybridization has a major role in evolution—from the introgression of important phenotypic traits between species, to the creation of new species through hybrid speciation. Molecular studies of hybridization aim to understand the class of hybrids and the frequency of introgression, detect the signature of ancient hybridization, and understand the behaviour of introgressed loci in their new genomic background. This often involves a large investment in the design and application of molecular markers, leading to a compromise between the depth and breadth of genomic data. New techniques designed to assay a large sub-section of the genome, in association with next-generation sequencing (NGS) technologies, will allow genome-wide hybridization and introgression studies in organisms with no prior sequence data. These detailed genotypic data will unite the breadth of sampling of loci characteristic of population genetics with the depth of sequence information associated with molecular phylogenetics. In this review, we assess the theoretical and methodological constraints that limit our understanding of natural hybridization, and promote the use of NGS for detecting hybridization and introgression between non-model organisms. We also make recommendations for the ways in which emerging techniques, such as pooled barcoded amplicon sequencing and restriction site-associated DNA tags, should be used to overcome current limitations, and enhance our understanding of this evolutionary significant process. PMID:21897439

  18. Completing the Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Gregg, Michael

    2014-10-01

    We propose to complete our STIS UV+optical snapshot program, the Next Generation SpectralLibrary, which now stands at 380 targets. When complete the NGSL will comprise 600 stars,roughly equally divided among four metallicities, very low {[Fe/H] < -1.5}, low {-1.5 <[Fe/H] < -0.5}, near-solar {-0.3 < [Fe/H] < 0.1}, and super-solar {[Fe/H] > 0.2},well-sampling the entire HR-diagram in each bin. The finished NGSL will be invaluable formodeling the integrated light of galaxies and clusters, as well as calibrating the stellareffective temperature scale to <1% precision. Included in the updated target list forCycle 22 are select "touchstone" stars with precise radii measured with long baselineinterferometry, which will be used in the absolute calibration of the stellar effectivetemperature scale. Upon completion, the NGSL will surpass all extant spectral librariesbecause of its combination of UV spectral coverage and comprehensive metallicity range,with lasting archival value well into the JWST era and beyond. Because of the universalutility and community-broad nature of this venture, we waive the proprietary period.While snapshot proposals are ineligible for the UV initiative, the scientific returns fromthis program stem mainly from the HST/STIS UV capabilities.

  19. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  20. Next-generation healthcare: a strategic appraisal.

    PubMed

    Montague, Terrence

    2009-01-01

    Successful next-generation healthcare must deliver timely access and quality for an aging population, while simultaneously promoting disease prevention and managing costs. The key factors for sustained success are a culture with aligned goals and values; coordinated team care that especially engages with physicians and patients; practical information that is collected and communicated reliably; and education in the theory and methods of collaboration, measurement and leadership. Currently, optimal population health is challenged by a high prevalence of chronic disease, with large gaps between best and usual care, a scarcity of health human resources - particularly with the skills, attitudes and training for coordinated team care - and the absence of flexible, reliable clinical measurement systems. However, to make things better, institutional models and supporting technologies are available. In the short term, a first step is to enhance the awareness of the practical opportunities to improve, including the expansion of proven community-based disease management programs that communicate knowledge, competencies and clinical measurements among professional and patient partners, leading to reduced care gaps and improved clinical and economic outcomes. Longer-term success requires two additional steps. One is formal inter-professional training to provide, on an ongoing basis, the polyvalent human resource skills and foster the culture of working with others to improve the care of whole populations. The other is the adoption of reliable information systems, including electronic health records, to allow useful and timely measurement and effective communication of clinical information in real-world settings. A better health future can commence immediately, within existing resources, and be sustained with feasible innovations in provider and patient education and information systems. The future is now. PMID:19521152

  1. Patterning techniques for next generation IC's

    NASA Astrophysics Data System (ADS)

    Balasinski, A.

    2007-12-01

    Reduction of linear critical dimensions (CDs) beyond 45 nm would require significant increase of the complexity of pattern definition process. In this work, we discuss the key successor methodology to the current optical lithography, the Double Patterning Technique (DPT). We compare the complexity of CAD solutions, fab equipment, and wafer processing with its competitors, such as the nanoimprint (NIL) and the extreme UV (EUV) techniques. We also look ahead to the market availability for the product families enabled using the novel patterning solutions. DPT is often recognized as the most viable next generation lithography as it utilizes the existing equipment and processes and is considered a stop-gap solution before the advanced NIL or EUV equipment is developed. Using design for manufacturability (DfM) rules, DPT can drive the k1 factor down to 0.13. However, it faces a variety of challenges, from new mask overlay strategies, to layout pattern split, novel OPC, increased CD tolerances, new etch techniques, as well as long processing time, all of which compromise its return on investment (RoI). In contrast, it can be claimed e.g., that the RoI is the highest for the NIL but this technology bears significant risk. For all novel patterning techniques, the key questions remain: when and how should they be introduced, what is their long-term potential, when should they be replaced, and by what successor technology. We summarize the unpublished results of several panel discussions on DPT at the recent SPIE/BACUS conferences.

  2. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2013-09-01

    Infrared sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection has become application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive infrared (IR) sensors, the Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage and 2-stage cold-head architectures with an inventive set of warm-end mechanisms into a single mechanical module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (<20% improvement) and exported vibration performance (<=25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing techniques and hardware can be utilized to null all motion along the common axis. Low vibration translates to better sensor performance resulting in simpler, more direct mechanical mounting configurations, eliminating the need for convoluted, expensive, massive, long lead damping hardware.

  3. Next generation prophylactic human papillomavirus vaccines.

    PubMed

    Schiller, John T; Müller, Martin

    2015-05-01

    The two licensed bivalent and quadrivalent human papillomavirus (HPV) L1 (the major papillomavirus virion protein) virus-like particle (VLP) vaccines are regarded as safe, effective, and well established prophylactic vaccines. However, they have some inherent limitations, including a fairly high production and delivery cost, virus-type restricted protection, and no reported therapeutic activity, which might be addressed with the development of alternative dosing schedules and vaccine products. A change from a three-dose to a two-dose protocol for the licensed HPV vaccines, especially in younger adolescents (aged 9-13 years), is underway in several countries and is likely to become the future norm. Preliminary evidence suggests that recipients of HPV vaccines might derive prophylactic benefits from one dose of the bivalent vaccine. Substantial interest exists in both the academic and industrial sectors in the development of second-generation L1 VLP vaccines in terms of cost reduction-eg, by production in Escherichia coli or alternative types of yeast. However, Merck's nonavalent vaccine, produced via the Saccharomyces cerevisiae production system that is also used for their quadrivalent vaccine, is the first second-generation HPV VLP vaccine to be available on the market. By contrast, other pharmaceutical companies are developing microbial vectors that deliver L1 genes. These two approaches would add an HPV component to existing live attenuated vaccines for measles and typhoid fever. Prophylactic vaccines that are based on induction of broadly cross-neutralising antibodies to L2, the minor HPV capsid protein, are also being developed both as simple monomeric fusion proteins and as virus-like display vaccines. The strong interest in developing the next generation of vaccines, particularly by manufacturers in middle-to-high income countries, increases the likelihood that vaccine production will become decentralised with the hope that effective HPV vaccines will be

  4. NEXT GENERATION MELTER OPTIONEERING STUDY - INTERIM REPORT

    SciTech Connect

    GRAY MF; CALMUS RB; RAMSEY G; LOMAX J; ALLEN H

    2010-10-19

    The next generation melter (NOM) development program includes a down selection process to aid in determining the recommended vitrification technology to implement into the WTP at the first melter change-out which is scheduled for 2025. This optioneering study presents a structured value engineering process to establish and assess evaluation criteria that will be incorporated into the down selection process. This process establishes an evaluation framework that will be used progressively throughout the NGM program, and as such this interim report will be updated on a regular basis. The workshop objectives were achieved. In particular: (1) Consensus was reached with stakeholders and technology providers represented at the workshop regarding the need for a decision making process and the application of the D{sub 2}0 process to NGM option evaluation. (2) A framework was established for applying the decision making process to technology development and evaluation between 2010 and 2013. (3) The criteria for the initial evaluation in 2011 were refined and agreed with stakeholders and technology providers. (4) The technology providers have the guidance required to produce data/information to support the next phase of the evaluation process. In some cases it may be necessary to reflect the data/information requirements and overall approach to the evaluation of technology options against specific criteria within updated Statements of Work for 2010-2011. Access to the WTP engineering data has been identified as being very important for option development and evaluation due to the interface issues for the NGM and surrounding plant. WRPS efforts are ongoing to establish precisely data that is required and how to resolve this Issue. It is intended to apply a similarly structured decision making process to the development and evaluation of LAW NGM options.

  5. Economic regulation of next-generation sequencing.

    PubMed

    Evans, Barbara J

    2014-01-01

    Next-generation sequencing broadens the debate about appropriate regulatory oversight of genetic testing and may force scholars to move beyond familiar privacy and health and safety regulatory issues to address new problems with industry structure and economic regulation. The genetic testing industry is passing through a period of profound structural change in response to shifts in technology and in the legal environment. Making genetic testing safe and effective for consumers increasingly requires access to comprehensive genomic data infrastructures that can support accurate, state-of-the-art interpretation of genetic test results. At present, there are significant barriers to access and there is no sector-specific regulator with power to ensure appropriate data access. Without it, genetic testing will not be safe for consumers even when it is performed at CLIA-certified laboratories using tests that have been FDA-cleared or approved. This article explores the emerging structure of the genetic testing industry and describes its present economic regulatory vacuum. In view of this gap in regulation, the article explores whether generally applicable law, particularly antitrust law, may offer solutions to the industry's data access problems. It concludes that courts may have a useful role to play, particularly in Europe and other jurisdictions where the essential facilities doctrine enjoys continued vitality. After Verizon Communications v. Law Offices of Curtis V. Trinko, the role of U.S. federal courts is less certain. Congress has demonstrated willingness to address access issues as they emerged in other infrastructure industries in recent decades. This article expresses no preference between legislative and judicial solutions. Its aim is simply to highlight an emerging economic regulatory issue which, if left unresolved, presents real health and safety concerns for consumers who receive genetic tests.

  6. Next generation prophylactic human papillomavirus vaccines.

    PubMed

    Schiller, John T; Müller, Martin

    2015-05-01

    The two licensed bivalent and quadrivalent human papillomavirus (HPV) L1 (the major papillomavirus virion protein) virus-like particle (VLP) vaccines are regarded as safe, effective, and well established prophylactic vaccines. However, they have some inherent limitations, including a fairly high production and delivery cost, virus-type restricted protection, and no reported therapeutic activity, which might be addressed with the development of alternative dosing schedules and vaccine products. A change from a three-dose to a two-dose protocol for the licensed HPV vaccines, especially in younger adolescents (aged 9-13 years), is underway in several countries and is likely to become the future norm. Preliminary evidence suggests that recipients of HPV vaccines might derive prophylactic benefits from one dose of the bivalent vaccine. Substantial interest exists in both the academic and industrial sectors in the development of second-generation L1 VLP vaccines in terms of cost reduction-eg, by production in Escherichia coli or alternative types of yeast. However, Merck's nonavalent vaccine, produced via the Saccharomyces cerevisiae production system that is also used for their quadrivalent vaccine, is the first second-generation HPV VLP vaccine to be available on the market. By contrast, other pharmaceutical companies are developing microbial vectors that deliver L1 genes. These two approaches would add an HPV component to existing live attenuated vaccines for measles and typhoid fever. Prophylactic vaccines that are based on induction of broadly cross-neutralising antibodies to L2, the minor HPV capsid protein, are also being developed both as simple monomeric fusion proteins and as virus-like display vaccines. The strong interest in developing the next generation of vaccines, particularly by manufacturers in middle-to-high income countries, increases the likelihood that vaccine production will become decentralised with the hope that effective HPV vaccines will be

  7. Raytheon's next generation compact inline cryocooler architecture

    NASA Astrophysics Data System (ADS)

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-01

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  8. Raytheon's next generation compact inline cryocooler architecture

    SciTech Connect

    Schaefer, B. R.; Bellis, L.; Ellis, M. J.; Conrad, T.

    2014-01-29

    Since the 1970s, Raytheon has developed, built, tested and integrated high performance cryocoolers. Our versatile designs for single and multi-stage cryocoolers provide reliable operation for temperatures from 10 to 200 Kelvin with power levels ranging from 50 W to nearly 600 W. These advanced cryocoolers incorporate clearance seals, flexure suspensions, hermetic housings and dynamic balancing to provide long service life and reliable operation in all relevant environments. Today, sensors face a multitude of cryocooler integration challenges such as exported disturbance, efficiency, scalability, maturity, and cost. As a result, cryocooler selection is application dependent, oftentimes requiring extensive trade studies to determine the most suitable architecture. To optimally meet the needs of next generation passive IR sensors, the Compact Inline Raytheon Stirling 1-Stage (CI-RS1), Compact Inline Raytheon Single Stage Pulse Tube (CI-RP1) and Compact Inline Raytheon Hybrid Stirling/Pulse Tube 2-Stage (CI-RSP2) cryocoolers are being developed to satisfy this suite of requirements. This lightweight, compact, efficient, low vibration cryocooler combines proven 1-stage (RS1 or RP1) and 2-stage (RSP2) cold-head architectures with an inventive set of warm-end mechanisms into a single cooler module, allowing the moving mechanisms for the compressor and the Stirling displacer to be consolidated onto a common axis and in a common working volume. The CI cryocooler is a significant departure from the current Stirling cryocoolers in which the compressor mechanisms are remote from the Stirling displacer mechanism. Placing all of the mechanisms in a single volume and on a single axis provides benefits in terms of package size (30% reduction), mass (30% reduction), thermodynamic efficiency (>20% improvement) and exported vibration performance (≤25 mN peak in all three orthogonal axes at frequencies from 1 to 500 Hz). The main benefit of axial symmetry is that proven balancing

  9. Next-Generation Multifunctional Electrochromic Devices.

    PubMed

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    during the daytime. Energy can also be stored in the smart windows during the daytime simultaneously and be discharged for use in the evening. These results reveal that the electrochromic devices have potential applications in a wide range of areas. We hope that this Account will promote further efforts toward fundamental research on electrochromic materials and the development of new multifunctional electrochromic devices to meet the growing demands for next-generation electronic systems. PMID:27404116

  10. Next-Generation Multifunctional Electrochromic Devices.

    PubMed

    Cai, Guofa; Wang, Jiangxin; Lee, Pooi See

    2016-08-16

    during the daytime. Energy can also be stored in the smart windows during the daytime simultaneously and be discharged for use in the evening. These results reveal that the electrochromic devices have potential applications in a wide range of areas. We hope that this Account will promote further efforts toward fundamental research on electrochromic materials and the development of new multifunctional electrochromic devices to meet the growing demands for next-generation electronic systems.

  11. NEXT GENERATION ENERGY EFFICIENT FLUORESCENT LIGHTING PRODUCT

    SciTech Connect

    Alok Srivastava; Anant Setlur

    2003-04-01

    This is the Final Report of the Next-Generation Energy Efficient Fluorescent Lighting Products program, Department of Energy (DOE). The overall goal of this three-year program was to develop novel phosphors to improve the color rendition and efficiency of compact and linear fluorescent lamps. The prime technical approach was the development of quantum-splitting phosphor (QSP) to further increase the efficiency of conventional linear fluorescent lamps and the development of new high color rendering phosphor blends for compact fluorescent lamps (CFLs) as potential replacements for the energy-hungry and short-lived incandescent lamps in market segments that demand high color rendering light sources. We determined early in the project that the previously developed oxide QSP, SrAl{sub 12}O{sub 19}:Pr{sup 3+}, did not exhibit an quantum efficiency higher than unity under excitation by 185 nm radiation, and we therefore worked to determine the physical reasons for this observation. From our investigations we concluded that the achievement of quantum efficiency exceeding unity in SrAl{sub 12}O{sub 19}:Pr{sup 3+} was not possible due to interaction of the Pr{sup 3+} 5d level with the conduction band of the solid. The interaction which gives rise to an additional nonradiative decay path for the excitation energy is responsible for the low quantum efficiency of the phosphor. Our work has led to the development of a novel spectroscopic method for determining photoionzation threshold of luminescent centers in solids. This has resulted in further quantification of the requirements for host phosphor lattice materials to optimize quantum efficiency. Because of the low quantum efficiency of the QSP, we were unable to demonstrate a linear fluorescent lamp with overall performance exceeding that of existing mercury-based fluorescent lamps. Our work on the high color rendering CFLs has been very successful. We have demonstrated CFLs that satisfies the EnergyStar requirement with color

  12. Next Generation X-ray Polarimeter

    NASA Astrophysics Data System (ADS)

    Hill-Kittle, Joe

    The emission regions of many types of X-ray sources are small and cannot be spatially resolved without interferometry techniques that haven't yet been developed. In order to understand the emission mechanisms and emission geometry, alternate measurement techniques are required. Most microphysical processes that affect X-rays, including scattering and magnetic emission processes are imprinted as polarization signatures. X-ray polarization also reveals exotic physical processes occurring in regions of very strong gravitational and magnetic fields. Observations of X-ray polarization will provide a measurement of the geometrical distribution of gas and magnetic fields without foreground depolarization that affects longer wavelengths (e.g. Faraday rotation in the radio). Emission from accretion disks has an inclination-dependent polarization. The polarization signature is modified by extreme gravitational forces, which bend light, essentially changing the contribution of each part of the disk to the integrated total intensity seen by distant observers. Because gravity has the largest effect on the innermost parts of the disk (which are the hottest, and thus contributes to more high energy photons), the energy dependent polarization is diagnostic of disk inclination, black hole mass and spin. Increasing the sensitive energy band will make these measurements possible. X-ray polarimetry will also enable the study of the origin of cosmic rays in the universe, the nature of black holes, the role of black holes in the evolution of galaxies, and the interaction of matter with the highest physically possible magnetic fields. These objectives address NASA's strategic interest in the origin, structure, and evolution of the universe. We propose a two-year effort to develop the Next Generation X-ray Polarimeter (NGXP) that will have more than ten times the sensitivity of the current state of the art. NGXP will make possible game changing measurements of classes of astrophysical

  13. Educating the Next Generation of Lunar Scientists

    NASA Astrophysics Data System (ADS)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  14. Next Generation Flight Displays Using HTML5

    NASA Technical Reports Server (NTRS)

    Greenwood, Brian

    2016-01-01

    The Human Integrated Vehicles and Environments (HIVE) lab at Johnson Space Center (JSC) is focused on bringing together inter-disciplinary talent to design and integrate innovative human interface technologies for next generation manned spacecraft. As part of this objective, my summer internship project centered on an ongoing investigation in to building flight displays using the HTML5 standard. Specifically, the goals of my project were to build and demo "flight-like" crew and wearable displays as well as create a webserver for live systems being developed by the Advanced Exploration Systems (AES) program. In parallel to my project, a LabVIEW application, called a display server, was created by the HIVE that uses an XTCE (XML (Extensible Markup Language) Telemetry and Command Exchange) parser and CCSDS (Consultative Committee for Space Data System) space packet decoder to translate telemetry items sent by the CFS (Core Flight Software) over User Datagram Protocol (UDP). It was the webserver's job to receive these UDP messages and send them to the displays. To accomplish this functionality, I utilized Node.js and the accompanying Express framework. On the display side, I was responsible for creating the power system (AMPS) displays. I did this by using HTML5, CSS and JavaScript to create web pages that could update and change dynamically based on the data they received from the webserver. At this point, I have not started on the commanding, being able to send back to the CFS, portion of the displays but hope to have this functionality working by the completion of my internship. I also created a way to test the webserver's functionality without the display server by making a JavaScript application that read in a comma-separate values (CSV) file and converted it to XML which was then sent over UDP. One of the major requirements of my project was to build everything using as little preexisting code as possible, which I accomplished by only using a handful of Java

  15. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  16. EIDA Next Generation: ongoing and future developments

    NASA Astrophysics Data System (ADS)

    Strollo, Angelo; Quinteros, Javier; Sleeman, Reinoud; Trani, Luca; Clinton, John; Stammler, Klaus; Danecek, Peter; Pedersen, Helle; Ionescu, Constantin

    2015-04-01

    The European Integrated Data Archive (EIDA; http://www.orfeus-eu.org/eida/eida.html) is the distributed Data Centre system within ORFEUS, providing transparent access and services to high quality, seismic data across (currently) 9 large data archives in Europe. EIDA is growing, in terms of the number of participating data centres, the size of the archives, the variability of the data in the archives, the number of users, and the volume of downloads. The on-going success of EIDA is thus providing challenges that are the driving force behind the design of the next generation (NG) of EIDA, which is expected to be implemented within EPOS IP. EIDA ORFEUS must cope with further expansion of the system and more complex user requirements by developing new techniques and extended services. The EIDA NG is being designed to work on standard FDSN web services and two additional new web services: Routing Service and QC (quality controlled) service. This presentation highlights the challenges EIDA needs to address during the EPOS IP and focuses on these 2 new services. The Routing Service can be considered as the core of EIDA NG. It was designed to assist users and clients to locate data within a federated, decentralized data centre (e.g. EIDA). A detailed, FDSN-compliant specification of the service has been developed. Our implementation of this service will run at every EIDA node, but is also capable of running on a user's computer, allowing anyone to define virtual or integrate existing data centres. This (meta)service needs to be queried in order to locate the data. Some smart clients (in a beta status) have been also provided to offer the user an integrated view of the whole EIDA, hiding the complexity of its internal structure. The service is open and able to be queried by anyone without the need of credentials or authentication. The QC Service is developed to cope with user requirements to query for relevant data only. The web service provides detailed information on the

  17. K2 Microlensing and Campaign 9

    NASA Astrophysics Data System (ADS)

    Penny, Matthew

    2016-06-01

    Campaign 9 of K2 will observe a contiguous 3.7 deg^2 region of the Galactic bulge in order to search for microlensing events and measure microlens parallaxes. It will also perform targeted follow-up of approximately 50 microlensing events spread throughout the Kepler focal plane. Parallax measurements are a critical ingredient for measurements of both the lens mass and distance, which contribute to our understanding of the formation of cold exoplanets, and the formation of planets as a function of Galactic environment. Additionally, as the first un-targeted, space-based microlensing survey, K2C9 offers us the first chance to measure the masses and kinematics of a large population of free-floating planet candidates, whose large abundance has been a puzzle since their discovery.I will review the scientific goals of the K2C9 survey, which will be well underway, and report on the ongoing activity of the K2 Campaign 9 Microlensing Science Team and the wider microlensing community, with a focus on the progress that has been made towards analyzing K2 data in crowded fields.

  18. Roadmap for Next-Generation State Accountability Systems. Second Edition

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2011

    2011-01-01

    This Roadmap, developed by the Council of Chief State School Officers (CCSSO) Next-Generation State Accountability Taskforce, presents a vision for next-generation accountability systems to support college and career readiness for all students. It is written by and for states, building on the leadership toward college and career readiness. This…

  19. Accurately Mapping M31's Microlensing Population

    NASA Astrophysics Data System (ADS)

    Crotts, Arlin

    2004-07-01

    We propose to augment an existing microlensing survey of M31 with source identifications provided by a modest amount of ACS {and WFPC2 parallel} observations to yield an accurate measurement of the masses responsible for microlensing in M31, and presumably much of its dark matter. The main benefit of these data is the determination of the physical {or "einstein"} timescale of each microlensing event, rather than an effective {"FWHM"} timescale, allowing masses to be determined more than twice as accurately as without HST data. The einstein timescale is the ratio of the lensing cross-sectional radius and relative velocities. Velocities are known from kinematics, and the cross-section is directly proportional to the {unknown} lensing mass. We cannot easily measure these quantities without knowing the amplification, hence the baseline magnitude, which requires the resolution of HST to find the source star. This makes a crucial difference because M31 lens m ass determinations can be more accurate than those towards the Magellanic Clouds through our Galaxy's halo {for the same number of microlensing events} due to the better constrained geometry in the M31 microlensing situation. Furthermore, our larger survey, just completed, should yield at least 100 M31 microlensing events, more than any Magellanic survey. A small amount of ACS+WFPC2 imaging will deliver the potential of this large database {about 350 nights}. For the whole survey {and a delta-function mass distribution} the mass error should approach only about 15%, or about 6% error in slope for a power-law distribution. These results will better allow us to pinpoint the lens halo fraction, and the shape of the halo lens spatial distribution, and allow generalization/comparison of the nature of halo dark matter in spiral galaxies. In addition, we will be able to establish the baseline magnitude for about 50, 000 variable stars, as well as measure an unprecedentedly deta iled color-magnitude diagram and luminosity

  20. Next generation sequencers: methods and applications in food-borne pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...

  1. Applications and Case Studies of the Next-Generation Sequencing Technologies in Food, Nutrition and Agriculture.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...

  2. Planetesimal Disk Microlensing

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Keeton, Charles R.

    2009-12-01

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  3. PLANETESIMAL DISK MICROLENSING

    SciTech Connect

    Heng, Kevin; Keeton, Charles R. E-mail: keeton@physics.rutgers.ed

    2009-12-10

    Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.

  4. Next-generation sequencing technologies for environmental DNA research.

    PubMed

    Shokralla, Shadi; Spall, Jennifer L; Gibson, Joel F; Hajibabaei, Mehrdad

    2012-04-01

    Since 2005, advances in next-generation sequencing technologies have revolutionized biological science. The analysis of environmental DNA through the use of specific gene markers such as species-specific DNA barcodes has been a key application of next-generation sequencing technologies in ecological and environmental research. Access to parallel, massive amounts of sequencing data, as well as subsequent improvements in read length and throughput of different sequencing platforms, is leading to a better representation of sample diversity at a reasonable cost. New technologies are being developed rapidly and have the potential to dramatically accelerate ecological and environmental research. The fast pace of development and improvements in next-generation sequencing technologies can reflect on broader and more robust applications in environmental DNA research. Here, we review the advantages and limitations of current next-generation sequencing technologies in regard to their application for environmental DNA analysis.

  5. A research roadmap for next-generation sequencing informatics.

    PubMed

    Altman, Russ B; Prabhu, Snehit; Sidow, Arend; Zook, Justin M; Goldfeder, Rachel; Litwack, David; Ashley, Euan; Asimenos, George; Bustamante, Carlos D; Donigan, Katherine; Giacomini, Kathleen M; Johansen, Elaine; Khuri, Natalia; Lee, Eunice; Liang, Xueying Sharon; Salit, Marc; Serang, Omar; Tezak, Zivana; Wall, Dennis P; Mansfield, Elizabeth; Kass-Hout, Taha

    2016-04-20

    Next-generation sequencing technologies are fueling a wave of new diagnostic tests. Progress on a key set of nine research challenge areas will help generate the knowledge required to advance effectively these diagnostics to the clinic. PMID:27099173

  6. A research roadmap for next-generation sequencing informatics.

    PubMed

    Altman, Russ B; Prabhu, Snehit; Sidow, Arend; Zook, Justin M; Goldfeder, Rachel; Litwack, David; Ashley, Euan; Asimenos, George; Bustamante, Carlos D; Donigan, Katherine; Giacomini, Kathleen M; Johansen, Elaine; Khuri, Natalia; Lee, Eunice; Liang, Xueying Sharon; Salit, Marc; Serang, Omar; Tezak, Zivana; Wall, Dennis P; Mansfield, Elizabeth; Kass-Hout, Taha

    2016-04-20

    Next-generation sequencing technologies are fueling a wave of new diagnostic tests. Progress on a key set of nine research challenge areas will help generate the knowledge required to advance effectively these diagnostics to the clinic.

  7. NASA/NREN: Next Generation Internet (NGI) Activities

    NASA Technical Reports Server (NTRS)

    desJardins, Richard; Freeman, Ken

    1998-01-01

    Various issues associated with next generation internet (NGI) and the NREN (NASA Research and Education Network) activities are presented in viewgraph form. Specific topics include: 1) NREN architecture; 2) NREN applications; and 3) NREN applied research.

  8. Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report

    EPA Science Inventory

    This report summarizes the results of next generation air monitor (NGAM) volatile organic compound (VOC) evaluations performed using both laboratory as well as field scale settings. These evaluations focused on challenging lower cost (<$2500) NGAM technologies to either controlle...

  9. Pharmacokinetic and pharmacodynamic considerations for the next generation protein therapeutics

    PubMed Central

    Shah, Dhaval K.

    2015-01-01

    Increasingly sophisticated protein engineering efforts have been undertaken lately to generate protein therapeutics with desired properties. This has resulted in the discovery of the next generation of protein therapeutics, which include: engineered antibodies, immunoconjugates, bi/multi-specific proteins, antibody mimetic novel scaffolds, and engineered ligands/receptors. These novel protein therapeutics possess unique physicochemical properties and act via a unique mechanism-of-action, which collectively makes their pharmacokinetics (PK) and pharmacodynamics (PD) different than other established biological molecules. Consequently, in order to support the discovery and development of these next generation molecules, it becomes important to understand the determinants controlling their PK/PD. This review discusses the determinants that a PK/PD scientist should consider during the design and development of next generation protein therapeutics. In addition, the role of systems PK/PD models in enabling rational development of the next generation protein therapeutics is emphasized. PMID:26373957

  10. Next Generation Sequencing for the Diagnosis of Cardiac Arrhythmia Syndromes

    PubMed Central

    Lubitz, Steven A.; Ellinor, Patrick T.

    2015-01-01

    Inherited arrhythmia syndromes are collectively associated with substantial morbidity, yet our understanding of the genetic architecture of these conditions remains limited. Recent technological advances in DNA sequencing have led to the commercialization of genetic testing now widely available in clinical practice. In particular, next generation sequencing allows the large-scale and rapid assessment of entire genomes. Although next generation sequencing represents a major technological advance, it has introduced numerous challenges with respect to the interpretation of genetic variation, and has opened a veritable floodgate of biological data of unknown clinical significance to practitioners. In this review, we discuss current genetic testing indications for inherited arrhythmia syndromes, broadly outline characteristics of next generation sequencing techniques, and highlight challenges associated with such testing. We further summarize future directions that will be necessary to address to enable the widespread adoption of next generation sequencing in the routine management of patients with inherited arrhythmia syndromes. PMID:25625719

  11. Prospects for Next-Generation Storage Ring Light Sources

    NASA Astrophysics Data System (ADS)

    Borland, Michael

    2015-04-01

    Storage ring light sources are among the most productive large-scale scientific user facilities in existence, owing to a combination of broad tunability, mature technology, high capacity, remarkable reliability, and high performance. The most commonly-used performance measure is the photon beam brightness, which is proportional to the flux per unit volume in six-dimensional phase space. The brightness is generally maximized by minimizing the transverse phase space area, or emittance, of the electron beam that generates the photons. Since the 1990's, most storage ring light sources have used a variant of the Chasman-Green, or double-bend-achromat (DBA), lattice, which produces transverse emittances of several nanometers. Presently, several light sources are under construction based on more challenging multi-bend-achromat (MBA) concepts, which promise an order of magnitude reduction in the emittance. Somewhat larger reductions are contemplated for upgrades of the largest facilities. This talk briefly surveys the relevant concepts in light source design, then explains both the mechanism and challenge of achieving next-generation emittances. Other factors, such as improved radiation-emitting devices, are also described. Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.

  12. Skyshine study for next generation of fusion devices

    SciTech Connect

    Gohar, Y.; Yang, S.

    1987-02-01

    A shielding analysis for next generation of fusion devices (ETR/INTOR) was performed to study the dose equivalent outside the reactor building during operation including the contribution from neutrons and photons scattered back by collisions with air nuclei (skyshine component). Two different three-dimensional geometrical models for a tokamak fusion reactor based on INTOR design parameters were developed for this study. In the first geometrical model, the reactor geometry and the spatial distribution of the deuterium-tritium neutron source were simplified for a parametric survey. The second geometrical model employed an explicit representation of the toroidal geometry of the reactor chamber and the spatial distribution of the neutron source. The MCNP general Monte Carlo code for neutron and photon transport was used to perform all the calculations. The energy distribution of the neutron source was used explicitly in the calculations with ENDF/B-V data. The dose equivalent results were analyzed as a function of the concrete roof thickness of the reactor building and the location outside the reactor building.

  13. Toward green next-generation passive optical networks

    NASA Astrophysics Data System (ADS)

    Srivastava, Anand

    2015-01-01

    Energy efficiency has become an increasingly important aspect of designing access networks, due to both increased concerns for global warming and increased network costs related to energy consumption. Comparing access, metro, and core, the access constitutes a substantial part of the per subscriber network energy consumption and is regarded as the bottleneck for increased network energy efficiency. One of the main opportunities for reducing network energy consumption lies in efficiency improvements of the customer premises equipment. Access networks in general are designed for low utilization while supporting high peak access rates. The combination of large contribution to overall network power consumption and low Utilization implies large potential for CPE power saving modes where functionality is powered off during periods of idleness. Next-generation passive optical network, which is considered one of the most promising optical access networks, has notably matured in the past few years and is envisioned to massively evolve in the near future. This trend will increase the power requirements of NG-PON and make it no longer coveted. This paper will first provide a comprehensive survey of the previously reported studies on tackling this problem. A novel solution framework is then introduced, which aims to explore the maximum design dimensions and achieve the best possible power saving while maintaining the QoS requirements for each type of service.

  14. NEXT-GENERATION NUMERICAL MODELING: INCORPORATING ELASTICITY, ANISOTROPY AND ATTENUATION

    SciTech Connect

    S. LARSEN; ET AL

    2001-03-01

    A new effort has been initiated between the Department of Energy (DOE) and the Society of Exploration Geophysicists (SEG) to investigate what features the next generation of numerical seismic models should contain that will best address current technical problems encountered during exploration in increasingly complex geologies. This collaborative work is focused on designing and building these new models, generating synthetic seismic data through simulated surveys of various geometries, and using these data to test and validate new and improved seismic imaging algorithms. The new models will be both 2- and 3-dimensional and will include complex velocity structures as well as anisotropy and attenuation. Considerable attention is being focused on multi-component acoustic and elastic effects because it is now widely recognized that converted phases could play a vital role in improving the quality of seismic images. An existing, validated 3-D elastic modeling code is being used to generate the synthetic data. Preliminary elastic modeling results using this code are presented here along with a description of the proposed new models that will be built and tested.

  15. Gravitational Microlensing Events as a Target for the SETI project

    NASA Astrophysics Data System (ADS)

    Rahvar, Sohrab

    2016-09-01

    The detection of signals from a possible extrasolar technological civilization is one of the most challenging efforts of science. In this work, we propose using natural telescopes made of single or binary gravitational lensing systems to magnify leakage of electromagnetic signals from a remote planet that harbors Extraterrestrial Intelligent (ETI) technology. Currently, gravitational microlensing surveys are monitoring a large area of the Galactic bulge to search for microlensing events, finding more than 2000 events per year. These lenses are capable of playing the role of natural telescopes, and, in some instances, they can magnify radio band signals from planets orbiting around the source stars in gravitational microlensing systems. Assuming that the frequency of electromagnetic waves used for telecommunication in ETIs is similar to ours, we propose follow-up observation of microlensing events with radio telescopes such as the Square Kilometre Array (SKA), the Low Frequency Demonstrators, and the Mileura Wide-Field Array. Amplifying signals from the leakage of broadcasting by an Earth-like civilization will allow us to detect them as far as the center of the Milky Way galaxy. Our analysis shows that in binary microlensing systems, the probability of amplification of signals from ETIs is more than that in single microlensing events. Finally, we propose the use of the target of opportunity mode for follow-up observations of binary microlensing events with SKA as a new observational program for searching ETIs. Using optimistic values for the factors of the Drake equation provides detection of about one event per year.

  16. The Next Generation of the Montage Image Mopsaic Engine

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Good, John; Rusholme, Ben; Robitaille, Thomas

    2016-01-01

    We have released a major upgrade of the Montage image mosaic engine (http://montage.ipac.caltech.edu) , as part of a program to develop the next generation of the engine in response to the rapid changes in the data processing landscape in Astronomy, which is generating ever larger data sets in ever more complex formats . The new release (version 4) contains modules dedicated to creating and managing mosaics of data stored as multi-dimensional arrays ("data cubes"). The new release inherits the architectural benefits of portability and scalability of the original design. The code is publicly available on Git Hub and the Montage web page. The release includes a command line tool that supports visualization of large images, and the beta-release of a Python interface to the visualization tool. We will provide examples on how to use these these features. We are generating a mosaic of the Galactic Arecibo L-band Feed Array HI (GALFA-HI) Survey maps of neutral hydrogen in and around our Milky Way Galaxy, to assess the performance at scale and to develop tools and methodologies that will enable scientists inexpert in cloud processing to exploit could platforms for data processing and product generation at scale. Future releases include support for an R-tree based mechanism for fast discovery of and access to large data sets and on-demand access to calibrated SDSS DR9 data that exploits it; support for the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme, now standard for projects investigating cosmic background radiation (Gorski et al 2005); support fort the Tessellated Octahedral Adaptive Subdivision Transform (TOAST), the sky partitioning sky used by the WorldWide Telescope (WWT); and a public applications programming interface (API) in C that can be called from other languages, especially Python.

  17. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  18. Evolution and Next Generation of Large Cosmic-Ray Experiments

    NASA Astrophysics Data System (ADS)

    Olinto, Angela

    2016-03-01

    With collaborations involving as many as 32 countries, next generation astro-particle observatories are being built to understand the puzzling origin of the most energetic processes in the Universe. We will review some recent results and the effort behind next generation observatories, which include large arrays of detectors and space missions to study high to ultra-high energy cosmic-rays, neutrinos, and gamma-rays. The great opportunity of word-wide scientific productivity and funding motivates these large-scale efforts, which also face many challenges due to geopolitical events and differences in science funding cultures.

  19. Next Generation Science Standards: For States, by States

    ERIC Educational Resources Information Center

    National Academies Press, 2013

    2013-01-01

    "Next Generation Science Standards" identifies the science all K-12 students should know. These new standards are based on the National Research Council's "A Framework for K-12 Science Education." The National Research Council, the National Science Teachers Association, the American Association for the Advancement of Science,…

  20. Internet 2 and the Next Generation Internet: A Realistic Assessment.

    ERIC Educational Resources Information Center

    Preston, Cecilia M.

    1999-01-01

    Describes new developments, such as Internet 2 and the Next Generation Internet (NGI) initiative, as well as other potential advances in high-performance applications that these new electronic resources will create. Relates these developments to the evolution of the Internet, and looks ahead to their likely impact beyond the higher education and…

  1. The NPDT - the next generation concurrent design approach

    NASA Technical Reports Server (NTRS)

    Oxnevad, K. I.

    2000-01-01

    The Next Generation Payload Development Team (NPDT), also called Team I, at the Jet Propulsion Laboratory provides a customer with a state-of-the-art concurrent design and analysis environment for the early design stages that emphasizes a total systems approach.

  2. Developing Assessments for the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Pellegrino, James W., Ed.; Wilson, Mark R., Ed.; Koenig, Judith A., Ed.; Beatty, Alexandra S., Ed.

    2014-01-01

    Assessments, understood as tools for tracking what and how well students have learned, play a critical role in the classroom. "Developing Assessments for the Next Generation Science Standards" develops an approach to science assessment to meet the vision of science education for the future as it has been elaborated in "A Framework…

  3. Teachers Shift Instructional Approaches to Bring "Next Generation" into Class

    ERIC Educational Resources Information Center

    Robelen, Erik W.

    2013-01-01

    Well before the Next Generation Science Standards became final last month, teachers in pockets around the country were already exploring the vision for science education espoused by the document and bringing elements of that approach to the classroom. The new standards call for bringing greater depth to K-12 students' understanding of the subject…

  4. The Next Generation of Science Standards: Implications for Biology Education

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  5. The Next Generation Science Standards: The Features and Challenges

    ERIC Educational Resources Information Center

    Pruitt, Stephen L.

    2014-01-01

    Beginning in January of 2010, the Carnegie Corporation of New York funded a two-step process to develop a new set of state developed science standards intended to prepare students for college and career readiness in science. These new internationally benchmarked science standards, the Next Generation Science Standards (NGSS) were completed in…

  6. Next Generation Science Standards: All Standards, All Students

    ERIC Educational Resources Information Center

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-01-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS…

  7. Mobile e-Learning for Next Generation Communication Environment

    ERIC Educational Resources Information Center

    Wu, Tin-Yu; Chao, Han-Chieh

    2008-01-01

    This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…

  8. Design Principles of Next-Generation Digital Gaming for Education.

    ERIC Educational Resources Information Center

    Squire, Kurt; Jenkins, Henry; Holland, Walter; Miller, Heather; O'Driscoll, Alice; Tan, Katie Philip; Todd, Katie.

    2003-01-01

    Discusses the rapid growth of digital games, describes research at MIT that is exploring the potential of digital games for supporting learning, and offers hypotheses about the design of next-generation educational video and computer games. Highlights include simulations and games; and design principles, including context and using information to…

  9. The "Next Generation Science Standards": A Focus on Physical Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2013-01-01

    What should all students know about the physical sciences? Why should all students have a basic understanding of these ideas? An amazing number of new scientific breakthroughs have occurred in the last 20 years that impact daily lives. This article focuses on the "Next Generation Science Standards" (NGSS) disciplinary core ideas in…

  10. Answers to Teachers' Questions about the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Workosky, Cindy; Willard, Ted

    2015-01-01

    K-12 teachers of science have been digging into the "Next Generation Science Standards" ("NGSS") (NGSS Lead States 2013) to begin creating plans and processes for translating them for classroom instruction. As teachers learn about the NGSS, they have asked about the general structure of the standards document and how to read…

  11. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact sheet provides information on Tribes in the lower 48 states selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  12. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact sheet provides information on the Alaska Native governments selected to receive assistance from the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  13. Advancing Next-Generation Energy in Indian Country (Fact Sheet)

    SciTech Connect

    Not Available

    2012-08-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  14. Applications of next-generation sequencing techniques in plant biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last several years have seen revolutionary advances in DNA sequencing technologies with the advent of next generation sequencing (NGS) techniques. NGS methods now allow millions of bases to be sequenced in one round, at a fraction of the cost relative to traditional Sanger sequencing, allowing u...

  15. Next Generation Sequencing at the University of Chicago Genomics Core

    SciTech Connect

    Faber, Pieter

    2013-04-24

    The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.

  16. Efficient Cryptography for the Next Generation Secure Cloud

    ERIC Educational Resources Information Center

    Kupcu, Alptekin

    2010-01-01

    Peer-to-peer (P2P) systems, and client-server type storage and computation outsourcing constitute some of the major applications that the next generation cloud schemes will address. Since these applications are just emerging, it is the perfect time to design them with security and privacy in mind. Furthermore, considering the high-churn…

  17. Building Next Generation Video Game Collections in Academic Libraries

    ERIC Educational Resources Information Center

    Laskowski, Mary; Ward, David

    2009-01-01

    Most academic libraries do not yet have gaming collections, let alone gaming services and facilities that support the unique and growing teaching and research needs of campus environments. Academic libraries in particular need to start thinking about developing the next generation of gaming collections and services. This article examines the…

  18. NGSS and the Next Generation of Science Teachers

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2014-01-01

    This article centers on the "Next Generation Science Standards" (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts--interconnecting science and engineering…

  19. Approaches and Strategies in Next Generation Science Learning

    ERIC Educational Resources Information Center

    Khine, Myint Swe, Ed.; Saleh, Issa M., Ed.

    2013-01-01

    "Approaches and Strategies in Next Generation Science Learning" examines the challenges involved in the development of modern curriculum models, teaching strategies, and assessments in science education in order to prepare future students in the 21st century economies. This comprehensive collection of research brings together science educators,…

  20. 76 FR 2109 - Next Generation Risk Assessment Public Dialogue Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Next Generation Risk Assessment Public Dialogue Conference Correction In notice document 2010-32977 appearing on page 82387 in the issue of Thursday, December 30, 2010, make the following...

  1. Silver Birches: Finding Roots, Extending Branches into the Next Generation.

    ERIC Educational Resources Information Center

    Olmstead, Kathryn

    1995-01-01

    Between 1974 and 1981, 15 teenagers in northern Maine published a small magazine containing interviews with and photographs of their grandparents, aunts, uncles, and neighbors. At a 20-year reunion, they realized that they had collected that heritage not only for archival preservation but to carry it forward for the next generation. (TD)

  2. The Next Generation Science Standards: A Focus on Physical Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  3. Using Digital Watermarking for Securing Next Generation Media Broadcasts

    NASA Astrophysics Data System (ADS)

    Birk, Dominik; Gaines, Seán

    The Internet presents a problem for the protection of intellectual property. Those who create content must be adequately compensated for the use of their works. Rights agencies who monitor the use of these works exist in many jurisdictions. In the traditional broadcast environment this monitoring is a difficult task. With Internet Protocol Television (IPTV) and Next Generation Networks (NGN) this situation is further complicated.

  4. The "Next Generation Science Standards" and the Life Sciences

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2013-01-01

    Publication of the "Next Generation Science Standards" will be just short of two decades since publication of the "National Science Education Standards" (NRC 1996). In that time, biology and science education communities have advanced, and the new standards will reflect that progress (NRC 1999, 2007, 2009; Kress and Barrett…

  5. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  6. Applications and case studies of the next-generation sequencing technologies in food, nutrition and agriculture.

    PubMed

    Liu, George E

    2009-01-01

    The next-generation sequencing technologies are able to produce millions of short sequence reads in a high-throughput, cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. Here, I survey their major applications ranging from whole-genome sequencing and resequencing, single nucleotide polymorphism (SNP) and structural variation discovery, to mRNA and noncoding RNA profiling and protein-nucleic acid interaction assay. These case studies in structural, functional and comparative genomics, metagenomics, and epigenomics are providing a more complete picture of the genome structures and functions. In the near future, we will witness broad impacts of these next-generation sequencing technologies for solving the complex biological problems in food, nutrition and agriculture. In this article, recent patents based information is also included.

  7. Next-generation sequencing - feasibility and practicality in haematology.

    PubMed

    Kohlmann, Alexander; Grossmann, Vera; Nadarajah, Niroshan; Haferlach, Torsten

    2013-03-01

    Next-generation sequencing platforms have evolved to provide an accurate and comprehensive means for the detection of molecular mutations in heterogeneous tumour specimens. Here, we review the feasibility and practicality of this novel laboratory technology. In particular, we focus on the utility of next-generation sequencing technology in characterizing haematological neoplasms and the landmark findings in key haematological malignancies. We also discuss deep-sequencing strategies to analyse the constantly increasing number of molecular markers applied for disease classification, patient stratification and individualized monitoring of minimal residual disease. Although many facets of this assay need to be taken into account, amplicon deep-sequencing has already demonstrated a promising technical performance and is being continuously developed towards routine application in diagnostic laboratories so that an impact on clinical practice can be achieved.

  8. [Automatic analysis pipeline of next-generation sequencing data].

    PubMed

    Wenke, Li; Fengyu, Li; Siyao, Zhang; Bin, Cai; Na, Zheng; Yu, Nie; Dao, Zhou; Qian, Zhao

    2014-06-01

    The development of next-generation sequencing has generated high demand for data processing and analysis. Although there are a lot of software for analyzing next-generation sequencing data, most of them are designed for one specific function (e.g., alignment, variant calling or annotation). Therefore, it is necessary to combine them together for data analysis and to generate interpretable results for biologists. This study designed a pipeline to process Illumina sequencing data based on Perl programming language and SGE system. The pipeline takes original sequence data (fastq format) as input, calls the standard data processing software (e.g., BWA, Samtools, GATK, and Annovar), and finally outputs a list of annotated variants that researchers can further analyze. The pipeline simplifies the manual operation and improves the efficiency by automatization and parallel computation. Users can easily run the pipeline by editing the configuration file or clicking the graphical interface. Our work will facilitate the research projects using the sequencing technology.

  9. NASA's Next Generation Launch Technology Program - Strategy and Plans

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    2003-01-01

    The National Aeronautics and Space Administration established a new program office, Next Generation Launch Technology (NGLT) Program Office, last year to pursue technologies for future space launch systems. NGLT will fund research in key technology areas such as propulsion, launch vehicles, operations and system analyses. NGLT is part of NASA s Integrated Space Technology Plan. The NGLT Program is sponsored by NASA s Office of Aerospace Technology and is part of the Space Launch Initiative theme that includes both NGLT and Orbital Space Plane. NGLT will focus on technology development to increase safety and reliability and reduce overall costs associated with building, flying and maintaining the nation s next-generations of space launch vehicles. These investments will be guided by systems engineering and analysis with a focus on the needs of National customers.

  10. Next-generation proteomics faces new challenges in environmental biotechnology.

    PubMed

    Armengaud, Jean

    2016-04-01

    Environmental biotechnology relies on the exploration of novel biological systems and a thorough understanding of the underlying molecular mechanisms. Next-generation proteomics based on the latest generation of mass analyzers currently allows the recording of complete proteomes from any microorganism. Interpreting these data can be straightforward if the genome of the organism is established, or relatively easy to perform through proteogenomics approaches if a draft sequence can be obtained. However, next-generation proteomics faces new, interesting challenges when the organism is distantly related to previously characterized organisms or when mixtures of organisms have to be analyzed. New mass spectrometers and innovative bioinformatics tools are reshaping the possibilities of homology-based proteomics, proteogenomics, and metaproteomics for the characterization of biological systems. Novel time- and cost-effective screening strategies are also possible with this methodology, as exemplified by whole proteome thermal profiling and subpopulation proteomics. The complexity of environmental samples allows for unique developments of approaches and concepts. PMID:26950175

  11. The next generation of oxy-fuel boiler systems

    SciTech Connect

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  12. Next-generation proteomics faces new challenges in environmental biotechnology.

    PubMed

    Armengaud, Jean

    2016-04-01

    Environmental biotechnology relies on the exploration of novel biological systems and a thorough understanding of the underlying molecular mechanisms. Next-generation proteomics based on the latest generation of mass analyzers currently allows the recording of complete proteomes from any microorganism. Interpreting these data can be straightforward if the genome of the organism is established, or relatively easy to perform through proteogenomics approaches if a draft sequence can be obtained. However, next-generation proteomics faces new, interesting challenges when the organism is distantly related to previously characterized organisms or when mixtures of organisms have to be analyzed. New mass spectrometers and innovative bioinformatics tools are reshaping the possibilities of homology-based proteomics, proteogenomics, and metaproteomics for the characterization of biological systems. Novel time- and cost-effective screening strategies are also possible with this methodology, as exemplified by whole proteome thermal profiling and subpopulation proteomics. The complexity of environmental samples allows for unique developments of approaches and concepts.

  13. Emerging Definition of Next-Generation of Aeronautical Communications

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.

    2006-01-01

    Aviation continues to experience rapid growth. In regions such as the United States and Europe air traffic congestion is constraining operations, leading to major new efforts to develop methodologies and infrastructures to enable continued aviation growth through transformational air traffic management systems. Such a transformation requires better communications linking airborne and ground-based elements. Technologies for next-generation communications, the required capacities, frequency spectrum of operation, network interconnectivity, and global interoperability are now receiving increased attention. A number of major planning and development efforts have taken place or are in process now to define the transformed airspace of the future. These activities include government and industry led efforts in the United States and Europe, and by international organizations. This paper will review the features, approaches, and activities of several representative planning and development efforts, and identify the emerging global consensus on requirements of next generation aeronautical communications systems for air traffic control.

  14. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering. PMID:25575024

  15. On reactor type comparisons for the next generation of reactors

    SciTech Connect

    Alesso, H.P.; Majumdar, K.C.

    1991-08-22

    In this paper, we present a broad comparison of studies for a selected set of parameters for different nuclear reactor types including the next generation. This serves as an overview of key parameters which provide a semi-quantitative decision basis for selecting nuclear strategies. Out of a number of advanced reactor designs of the LWR type, gas cooled type, and FBR type, currently on the drawing board, the Advanced Light Water Reactors (ALWR) seem to have some edge over other types of the next generation of reactors for the near-term application. This is based on a number of attributes related to the benefit of the vast operating experience with LWRs coupled with an estimated low risk profile, economics of scale, degree of utilization of passive systems, simplification in the plant design and layout, modular fabrication and manufacturing. 32 refs., 1 fig., 3 tabs.

  16. Next-Generation Sequencing for Binary Protein–Protein Interactions

    PubMed Central

    Suter, Bernhard; Zhang, Xinmin; Pesce, C. Gustavo; Mendelsohn, Andrew R.; Dinesh-Kumar, Savithramma P.; Mao, Jian-Hua

    2015-01-01

    The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein–protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine. PMID:26734059

  17. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  18. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Astrophysics Data System (ADS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-06-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  19. Recent progress in nanostructured next-generation field emission devices

    NASA Astrophysics Data System (ADS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  20. Next Generation Advanced Video Guidance Sensor Development and Test

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.; Lee, Jimmy; Robertson, Bryan

    2009-01-01

    The Advanced Video Guidance Sensor (AVGS) was the primary docking sensor for the Orbital Express mission. The sensor performed extremely well during the mission, and the technology has been proven on orbit in other flights too. Parts obsolescence issues prevented the construction of more AVGS units, so the next generation of sensor was designed with current parts and updated to support future programs. The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been tested as a breadboard, two different brassboard units, and a prototype. The testing revealed further improvements that could be made and demonstrated capability beyond that ever demonstrated by the sensor on orbit. This paper presents some of the sensor history, parts obsolescence issues, radiation concerns, and software improvements to the NGAVGS. In addition, some of the testing and test results are presented. The NGAVGS has shown that it will meet the general requirements for any space proximity operations or docking need.

  1. RESULTS OF ANALYSES OF THE NEXT GENERATION SOLVENT FOR PARSONS

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2012-03-12

    Savannah River National Laboratory (SRNL) prepared a nominal 150 gallon batch of Next Generation Solvent (NGS) for Parsons. This material was then analyzed and tested for cesium mass transfer efficiency. The bulk of the results indicate that the solvent is qualified as acceptable for use in the upcoming pilot-scale testing at Parsons Technology Center. This report describes the analysis and testing of a batch of Next Generation Solvent (NGS) prepared in support of pilot-scale testing in the Parsons Technology Center. A total of {approx}150 gallons of NGS solvent was prepared in late November of 2011. Details for the work are contained in a controlled laboratory notebook. Analysis of the Parsons NGS solvent indicates that the material is acceptable for use. SRNL is continuing to improve the analytical method for the guanidine.

  2. Next-generation genome-scale models for metabolic engineering.

    PubMed

    King, Zachary A; Lloyd, Colton J; Feist, Adam M; Palsson, Bernhard O

    2015-12-01

    Constraint-based reconstruction and analysis (COBRA) methods have become widely used tools for metabolic engineering in both academic and industrial laboratories. By employing a genome-scale in silico representation of the metabolic network of a host organism, COBRA methods can be used to predict optimal genetic modifications that improve the rate and yield of chemical production. A new generation of COBRA models and methods is now being developed--encompassing many biological processes and simulation strategies-and next-generation models enable new types of predictions. Here, three key examples of applying COBRA methods to strain optimization are presented and discussed. Then, an outlook is provided on the next generation of COBRA models and the new types of predictions they will enable for systems metabolic engineering.

  3. THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS

    SciTech Connect

    Mosquera, A. M.; Kochanek, C. S.

    2011-09-01

    Gravitational microlensing is a powerful tool for probing the physical properties of quasar accretion disks and properties of the lens galaxy such as its dark matter fraction and mean stellar mass. Unfortunately, the number of lensed quasars ({approx}90) exceeds our monitoring capabilities. Thus, estimating their microlensing properties is important for identifying good microlensing candidates as well as for the expectations of future surveys. In this work, we estimate the microlensing properties of a sample of 87 lensed quasars. While the median Einstein radius crossing timescale is 20.6 years, the median source crossing timescale is 7.3 months. Broadly speaking, this means that on {approx}10 year timescales roughly half the lenses will be quiescent, with the source in a broad demagnified valley, and roughly half will be active with the source lying in the caustic ridges. We also found that the location of the lens system relative to the cosmic microwave background dipole has a modest effect on microlensing timescales, and in theory microlensing could be used to confirm the kinematic origin of the dipole. As a corollary of our study we analyzed the accretion rate parameters in a sub-sample of 32 lensed quasars. At fixed black hole mass, it is possible to sample a broad range of luminosities (i.e., Eddington factors) if it becomes feasible to monitor fainter lenses.

  4. Electron Beam Collimation for the Next Generation Light Source

    SciTech Connect

    Steier, C.; Emma, P.; Nishimura, H.; Papadopoulos, C.; Sannibale, F.

    2013-05-20

    The Next Generation Light Source will deliver high (MHz) repetition rate electron beams to an array of free electron lasers. Because of the significant average current in such a facility, effective beam collimation is extremely important to minimize radiation damage to undulators, prevent quenches of superconducting cavities, limit dose rates outside of the accelerator tunnel and prevent equipment damage. This paper describes the early conceptual design of a collimation system, as well as initial results of simulations to test its effectiveness.

  5. Towards Intelligent Control for Next Generation CESTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Acosta, Diana Michelle

    2008-01-01

    This talk will present the motivation, research approach and status of intelligent control research for Next Generation Cruise Efficient Short Take Off and Landing (CESTOL) aircraft. An introduction to the challenges of CESTOL control will be given, leading into an assessment of potential control solutions. The approach of the control research will be discussed, including a brief overview of the technical aspects of the research.

  6. Next Generation Luminaire (NGL) Downlight Demonstration Project, Hilton Columbus Downtown

    SciTech Connect

    Davis, R. G.; Perrin, T. E.

    2014-09-30

    At the Hilton Columbus Downtown hotel in Ohio, DOE's Better Buildings Alliance conducted a demonstration of Next Generation Luminaires-winning downlights installed in all guest rooms and suites prior to the hotel's 2012 opening. After a post-occupancy assessment, the LED downlights not only provided the aesthetic appearance and dimming functionality desired, but also provided 50% energy savings relative to a comparable CFL downlight and enabled the lighting power to be more than 20% below that allowed by code.

  7. Preparation of SELEX Samples for Next-Generation Sequencing.

    PubMed

    Tolle, Fabian; Mayer, Günter

    2016-01-01

    Fuelled by massive whole genome sequencing projects such as the human genome project, enormous technological advancements and therefore tremendous price drops could be achieved, rendering next-generation sequencing very attractive for deep sequencing of SELEX libraries. Herein we describe the preparation of SELEX samples for Illumina sequencing, based on the already established whole genome sequencing workflow. We describe the addition of barcode sequences for multiplexing and the adapter ligation, avoiding associated pitfalls. PMID:26552817

  8. NREL Next Generation Drivetrain: Mechanical Design and Test Plan (Poster)

    SciTech Connect

    Keller, J.; Halse, C.

    2014-05-01

    The Department of Energy and industry partners are sponsoring a $3m project for design and testing of a 'Next Generation' wind turbine drivetrain at the National Renewable Energy Laboratory (NREL). This poster focuses on innovative aspects of the gearbox design, completed as part of an end-to-end systems engineering approach incorporating innovations that increase drivetrain reliability, efficiency, torque density and minimize capital cost.

  9. NNSA Program Develops the Next Generation of Nuclear Security Experts

    SciTech Connect

    Brim, Cornelia P.; Disney, Maren V.

    2015-09-02

    NNSA is fostering the next generation of nuclear security experts is through its successful NNSA Graduate Fellowship Program (NGFP). NGFP offers its Fellows an exceptional career development opportunity through hands-on experience supporting NNSA mission areas across policy and technology disciplines. The one-year assignments give tomorrow’s leaders in global nuclear security and nonproliferation unparalleled exposure through assignments to Program Offices across NNSA.

  10. TriG: Next Generation Scalable Spaceborne GNSS Receiver

    NASA Technical Reports Server (NTRS)

    Tien, Jeffrey Y.; Okihiro, Brian Bachman; Esterhuizen, Stephan X.; Franklin, Garth W.; Meehan, Thomas K.; Munson, Timothy N.; Robison, David E.; Turbiner, Dmitry; Young, Lawrence E.

    2012-01-01

    TriG is the next generation NASA scalable space GNSS Science Receiver. It will track all GNSS and additional signals (i.e. GPS, GLONASS, Galileo, Compass and Doris). Scalable 3U architecture and fully software and firmware recofigurable, enabling optimization to meet specific mission requirements. TriG GNSS EM is currently undergoing testing and is expected to complete full performance testing later this year.

  11. Next-generation pushbroom filter radiometers for remote sensing

    NASA Astrophysics Data System (ADS)

    Tarde, Richard W.; Dittman, Michael G.; Kvaran, Geir E.

    2012-09-01

    Individual focal plane size, yield, and quality continue to improve, as does the technology required to combine these into large tiled formats. As a result, next-generation pushbroom imagers are replacing traditional scanning technologies in remote sensing applications. Pushbroom architecture has inherently better radiometric sensitivity and significantly reduced payload mass, power, and volume than previous generation scanning technologies. However, the architecture creates challenges achieving the required radiometric accuracy performance. Achieving good radiometric accuracy, including image spectral and spatial uniformity, requires creative optical design, high quality focal planes and filters, careful consideration of on-board calibration sources, and state-of-the-art ground test facilities. Ball Aerospace built the Landsat Data Continuity Mission (LDCM) next-generation Operational Landsat Imager (OLI) payload. Scheduled to launch in 2013, OLI provides imagery consistent with the historical Landsat spectral, spatial, radiometric, and geometric data record and completes the generational technology upgrade from the Enhanced Thematic Mapper (ETM+) whiskbroom technology to modern pushbroom technology afforded by advanced focal planes. We explain how Ball's capabilities allowed producing the innovative next-generational OLI pushbroom filter radiometer that meets challenging radiometric accuracy or calibration requirements. OLI will improve the multi-decadal land surface observation dataset dating back to the 1972 launch of ERTS-1 or Landsat 1.

  12. Insights into cancer biology through next-generation sequencing.

    PubMed

    Nik-Zainal, Serena

    2014-12-01

    Cancer is the ultimate disorder of the genome, characterised not by just one or two mutations, but by hundreds to thousands of acquired mutations that have been accrued through the development of a tumour. Thanks to the recent increase in the speed of sequencing offered by modern sequencing technologies, we are no longer restricted to exploring tiny fragments of protein-coding portions of the human genome. We can now read all the genetic material in human cells. Here, the framework of a next-generation sequencing experiment is explained, giving insight into the advances and difficulties posed by processing the enormous datasets generated through these methods. Some of the recent insights into tumour biology, that exploit the extraordinary surge in scale and the digital nature of next-generation sequencing, are highlighted, including cancer gene discovery, the detection of mutation signatures and cancer evolution. Technological and intellectual developments are starting to shape the personalized cancer genomic profiles of tomorrow. Let's train the next-generation of clinicians to be able to read them from today.

  13. SNP Discovery through Next-Generation Sequencing and Its Applications

    PubMed Central

    Kumar, Santosh; Banks, Travis W.; Cloutier, Sylvie

    2012-01-01

    The decreasing cost along with rapid progress in next-generation sequencing and related bioinformatics computing resources has facilitated large-scale discovery of SNPs in various model and nonmodel plant species. Large numbers and genome-wide availability of SNPs make them the marker of choice in partially or completely sequenced genomes. Although excellent reviews have been published on next-generation sequencing, its associated bioinformatics challenges, and the applications of SNPs in genetic studies, a comprehensive review connecting these three intertwined research areas is needed. This paper touches upon various aspects of SNP discovery, highlighting key points in availability and selection of appropriate sequencing platforms, bioinformatics pipelines, SNP filtering criteria, and applications of SNPs in genetic analyses. The use of next-generation sequencing methodologies in many non-model crops leading to discovery and implementation of SNPs in various genetic studies is discussed. Development and improvement of bioinformatics software that are open source and freely available have accelerated the SNP discovery while reducing the associated cost. Key considerations for SNP filtering and associated pipelines are discussed in specific topics. A list of commonly used software and their sources is compiled for easy access and reference. PMID:23227038

  14. Insights into cancer biology through next-generation sequencing.

    PubMed

    Nik-Zainal, Serena

    2014-12-01

    Cancer is the ultimate disorder of the genome, characterised not by just one or two mutations, but by hundreds to thousands of acquired mutations that have been accrued through the development of a tumour. Thanks to the recent increase in the speed of sequencing offered by modern sequencing technologies, we are no longer restricted to exploring tiny fragments of protein-coding portions of the human genome. We can now read all the genetic material in human cells. Here, the framework of a next-generation sequencing experiment is explained, giving insight into the advances and difficulties posed by processing the enormous datasets generated through these methods. Some of the recent insights into tumour biology, that exploit the extraordinary surge in scale and the digital nature of next-generation sequencing, are highlighted, including cancer gene discovery, the detection of mutation signatures and cancer evolution. Technological and intellectual developments are starting to shape the personalized cancer genomic profiles of tomorrow. Let's train the next-generation of clinicians to be able to read them from today. PMID:25468925

  15. Next generation sequencing in sporadic retinoblastoma patients reveals somatic mosaicism

    PubMed Central

    Amitrano, Sara; Marozza, Annabella; Somma, Serena; Imperatore, Valentina; Hadjistilianou, Theodora; De Francesco, Sonia; Toti, Paolo; Galimberti, Daniela; Meloni, Ilaria; Cetta, Francesco; Piu, Pietro; Di Marco, Chiara; Dosa, Laura; Lo Rizzo, Caterina; Carignani, Giulia; Mencarelli, Maria Antonietta; Mari, Francesca; Renieri, Alessandra; Ariani, Francesca

    2015-01-01

    In about 50% of sporadic cases of retinoblastoma, no constitutive RB1 mutations are detected by conventional methods. However, recent research suggests that, at least in some of these cases, there is somatic mosaicism with respect to RB1 normal and mutant alleles. The increased availability of next generation sequencing improves our ability to detect the exact percentage of patients with mosaicism. Using this technology, we re-tested a series of 40 patients with sporadic retinoblastoma: 10 of them had been previously classified as constitutional heterozygotes, whereas in 30 no RB1 mutations had been found in lymphocytes. In 3 of these 30 patients, we have now identified low-level mosaic variants, varying in frequency between 8 and 24%. In 7 out of the 10 cases previously classified as heterozygous from testing blood cells, we were able to test additional tissues (ocular tissues, urine and/or oral mucosa): in three of them, next generation sequencing has revealed mosaicism. Present results thus confirm that a significant fraction (6/40; 15%) of sporadic retinoblastoma cases are due to postzygotic events and that deep sequencing is an efficient method to unambiguously distinguish mosaics. Re-testing of retinoblastoma patients through next generation sequencing can thus provide new information that may have important implications with respect to genetic counseling and family care. PMID:25712084

  16. Extrasolar planets detections and statistics through gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Cassan, A.

    2014-10-01

    -mass objects, including free-floating planets of about Jupiter's mass, were also detected trough microlensing. Detections and non-detections inform us on the abundance of planets as a function of planetary mass and orbital distance. Recent microlensing studies imply that low-mass planets, in particular super-Earths, are far more abundant than giant planets, and reveal that there are, on average, one or more bound planets per Milky Way star. Future microlensing surveys will dramatically increase the number of microlensing alerts, thus providing unprecedented constraints on the planetary mass function, down to the mass of the Earth.

  17. Difference Image Analysis of Galactic Microlensing. II. Microlensing Events

    SciTech Connect

    Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.

    1999-09-01

    The MACHO collaboration has been carrying out difference image analysis (DIA) since 1996 with the aim of increasing the sensitivity to the detection of gravitational microlensing. This is a preliminary report on the application of DIA to galactic bulge images in one field. We show how the DIA technique significantly increases the number of detected lensing events, by removing the positional dependence of traditional photometry schemes and lowering the microlensing event detection threshold. This technique, unlike PSF photometry, gives the unblended colors and positions of the microlensing source stars. We present a set of criteria for selecting microlensing events from objects discovered with this technique. The 16 pixel and classical microlensing events discovered with the DIA technique are presented. (c) (c) 1999. The American Astronomical Society.

  18. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace.

  19. Defining next-generation products: an inside look.

    PubMed

    Tabrizi, B; Walleigh, R

    1997-01-01

    The continued success of technology-based companies depends on their proficiency in creating next-generation products and their derivatives. So getting such products out the door on schedule must be routine for such companies, right? Not quite. The authors recently engaged in a detailed study--in which they had access to sensitive internal information and to candid interviews with people at every level--of 28 next-generation product-development projects in 14 leading high-tech companies. They found that most of the companies were unable to complete such projects on schedule. And the companies also had difficulty developing the derivative products needed to fill the gaps in the market that their next-generation products would create. The problem in every case, the authors discovered, was rooted in the product definition phase. And not coincidentally, the successful companies in the study had all learned how to handle the technical and marketplace uncertainties in their product definition processes. The authors have discerned from the actions of those companies a set of best practices that can measurably improve the definition phase of any company's product-development process. They have grouped the techniques into three categories and carefully lay out the steps that companies need to take as they work through each stage. The best practices revealed here are not a magic formula for rapid, successful new-product definition. But they can help companies capture new markets without major delays. And that is good news for any manager facing the uncertainty that goes with developing products for a global marketplace. PMID:10174793

  20. Investigation of Next-Generation Earth Radiation Budget Radiometry

    NASA Technical Reports Server (NTRS)

    Coffey, Katherine L.; Mahan, J. R.

    1999-01-01

    The current effort addresses two issues important to the research conducted by the Thermal Radiation Group at Virginia Tech. The first research topic involves the development of a method which can properly model the diffraction of radiation as it enters an instrument aperture. The second topic involves the study of a potential next-generation space-borne radiometric instrument concept. Presented are multiple modeling efforts to describe the diffraction of monochromatic radiant energy passing through an aperture for use in the Monte-Carlo ray-trace environment. Described in detail is a deterministic model based upon Heisenberg's uncertainty principle and the particle theory of light. This method is applicable to either Fraunhofer or Fresnel diffraction situations, but is incapable of predicting the secondary fringes in a diffraction pattern. Also presented is a second diffraction model, based on the Huygens-Fresnel principle with a correcting obliquity factor. This model is useful for predicting Fraunhofer diffraction, and can predict the secondary fringes because it keeps track of phase. NASA is planning for the next-generation of instruments to follow CERES (Clouds and the Earth's Radiant Energy System), an instrument which measures components of the Earth's radiant energy budget in three spectral bands. A potential next-generation concept involves modification of the current CERES instrument to measure in a larger number of wavelength bands. This increased spectral partitioning would be achieved by the addition of filters and detectors to the current CERES geometry. The capacity of the CERES telescope to serve for this purpose is addressed in this thesis.

  1. THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS

    SciTech Connect

    Zhernosek, Alena V; Lynch, Patrick D; Scholz, Melissa A

    2011-01-01

    President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the international safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.

  2. Developing Next Generation Natural Fracture Detection and Prediction Technology

    SciTech Connect

    R.L. Billingsley

    2005-05-01

    The purpose of the ''Next Generation'' project was to develop technology that will provide a quantitative description of natural fracture properties and locations in low-permeability reservoirs. The development of this technology has consistently been ranked as one of the highest priority needs by industry. Numerous researchers and resource assessment groups have stated that the ability to identify area where intense clusters of natural fractures co-exist with gas-charged sands, the so called ''sweet spots'', will be the key to unlocking the vast quantities of gas in-place contained in these low-permeability gas basins. To meet this technology need, the ''Next Generation'' project was undertaken with three performance criteria in mind: (1) provide an integrated assessment of the burial and tectonic stresses in a basin responsible for natural fracture genesis (using seismic data, a significantly modified application of geomechanics, and a discrete natural fracture generation model); (2) link the assessment of natural fracture properties and locations to the reservoir's fluid, storage and flow properties; and, (3) provide a reservoir simulation-based calculation of the gas (and water) production capacity of a naturally fractured reservoir system. Phase III of the ''Next Generation'' project entailed the performance of a field demonstration of the software in an ''exploration'' setting. The search for an Industry Partner willing to host an exploratory field demonstration was unsuccessful and Phase III was canceled effective May, 31, 2005. The failure to find an Industry Partner can be attributed to severe changes in the petroleum industry competitive environment between 1999 when the project was initiated and 2005 when further demonstration efforts were halted. The software was employed in portions of other, non-exploratory, projects underway during the development time period, and insights gained will be summarized here in lieu of a full field demonstration.

  3. Lessons from next-generation sequencing analysis in hematological malignancies

    PubMed Central

    Braggio, E; Egan, J B; Fonseca, R; Stewart, A K

    2013-01-01

    Next-generation sequencing has led to a revolution in the study of hematological malignancies with a substantial number of publications and discoveries in the last few years. Significant discoveries associated with disease diagnosis, risk stratification, clonal evolution and therapeutic intervention have been generated by this powerful technology. As part of the post-genomic era, sequencing analysis will likely become part of routine clinical testing and the challenge will ultimately be successfully transitioning from gene discovery to preventive and therapeutic intervention as part of individualized medicine strategies. In this report, we review recent advances in the understanding of hematological malignancies derived through genome-wide sequence analysis. PMID:23872706

  4. Semantic e-Learning: Next Generation of e-Learning?

    NASA Astrophysics Data System (ADS)

    Konstantinos, Markellos; Penelope, Markellou; Giannis, Koutsonikos; Aglaia, Liopa-Tsakalidi

    Semantic e-learning aspires to be the next generation of e-learning, since the understanding of learning materials and knowledge semantics allows their advanced representation, manipulation, sharing, exchange and reuse and ultimately promote efficient online experiences for users. In this context, the paper firstly explores some fundamental Semantic Web technologies and then discusses current and potential applications of these technologies in e-learning domain, namely, Semantic portals, Semantic search, personalization, recommendation systems, social software and Web 2.0 tools. Finally, it highlights future research directions and open issues of the field.

  5. Clinical Next Generation Sequencing for Precision Medicine in Cancer

    PubMed Central

    Dong, Ling; Wang, Wanheng; Li, Alvin; Kansal, Rina; Chen, Yuhan; Chen, Hong; Li, Xinmin

    2015-01-01

    Rapid adoption of next generation sequencing (NGS) in genomic medicine has been driven by low cost, high throughput sequencing and rapid advances in our understanding of the genetic bases of human diseases. Today, the NGS method has dominated sequencing space in genomic research, and quickly entered clinical practice. Because unique features of NGS perfectly meet the clinical reality (need to do more with less), the NGS technology is becoming a driving force to realize the dream of precision medicine. This article describes the strengths of NGS, NGS panels used in precision medicine, current applications of NGS in cytology, and its challenges and future directions for routine clinical use. PMID:27006629

  6. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  7. Next Generation Nuclear Plant Materials Research and Development Program Plan

    SciTech Connect

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  8. Next generation immunotherapeutics--honing the magic bullet.

    PubMed

    Enever, Carrie; Batuwangala, Thil; Plummer, Chris; Sepp, Armin

    2009-08-01

    Most therapeutic antibodies in the clinic today are based on fully humanised immunoglobulins. They have proven to be outstandingly effective, especially for the treatment of cancer, autoimmune and inflammatory diseases where the target is a single, well-defined and accessible molecule. Many diseases however are complex, involving multiple mediators or signalling pathways that could be targeted simultaneously to maximise clinical benefit. There is also a wealth of validated intracellular and CNS-based targets which are currently inaccessible to monoclonal antibody therapy. A spectrum of next generation immunotherapeutics is in development to address these issues and a number of them have also entered clinical trials.

  9. Towards Human Centred Manufacturing Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Anezaki, Takashi; Hata, Seiji

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human friendly technology" and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred and human friendly manufacturing system, which has been proposed in the IMS-HUTOP project.

  10. JVM: Java Visual Mapping tool for next generation sequencing read.

    PubMed

    Yang, Ye; Liu, Juan

    2015-01-01

    We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.

  11. Small Accelerators for the Next Generation of BNCT Irradiation Systems

    SciTech Connect

    Kobayashi, T.; Tanaka, K.; Bengua, G.; Hoshi, M.; Nakagawa, Y.

    2005-01-15

    The neutron irradiation system for boron neutron capture therapy (BNCT) using compact accelerators installed at hospitals was mainly investigated for the usage of direct neutrons from near-threshold {sup 7}Li(p,n){sup 7}Be, and moderated neutrons from 2.5 MeV {sup 7}Li(p,n){sup 7}Be reactions and other reactions. This kind of system can supply the medical doctors and patients with convenience to carry out BNCT in hospitals. The accelerator system would be regarded as the next-generation of BNCT in the near future.

  12. Discovering the Majorana neutrino: The next generation of experiments

    SciTech Connect

    Winslow, L. A.

    2015-07-15

    The discovery of a Majorana neutrino would be revolutionary with far-reaching consequences in both particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for neutrinoless double-beta decay. The next generation of double-beta decay experiments are being prepared. The general goal is to search for neutrinoless double-beta decay throughout the parameter space corresponding to the inverted hierarchy for neutrino mass. There are a several strong proposals for how to achieve this goal. The status of these efforts is reviewed.

  13. How to Achieve Next-Generation Public Safety Networks

    SciTech Connect

    Juan D. Deaton

    2008-07-01

    Cellular technologies have dramatically affected our culture and the way we communicate. High-feature cellular handsets have enabled a cornucopia of new addictive information services. Meanwhile, public safety workers frequently are given antiquated wireless technologies, some systems more than 15 years old, to perform the important job of saving the lives of others while risking their own. Achieving nationwide interoperability and migrating public safety to next generation networks is a complicated, variegated problem that requires solutions in multiple arenas. Using the strategic solutions of cellular communication networks with backup capabilities, public safety data prioritization mechanisms, software development standards, and a public safety MVNO.

  14. Protecting against plague: towards a next-generation vaccine.

    PubMed

    Williamson, E D; Oyston, P C F

    2013-04-01

    The causative organism of plague is the bacterium Yersinia pestis. Advances in understanding the complex pathogenesis of plague infection have led to the identification of the F1- and V-antigens as key components of a next-generation vaccine for plague, which have the potential to be effective against all forms of the disease. Here we review the roles of F1- and V-antigens in the context of the range of virulence mechanisms deployed by Y. pestis, in order to develop a greater understanding of the protective immune responses required to protect against plague.

  15. Next generation geothermal power plants. Draft final report

    SciTech Connect

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  16. Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.

    PubMed

    Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby

    2013-10-01

    Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. PMID:24132899

  17. Energy Efficient Glass Melting - The Next Generation Melter

    SciTech Connect

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  18. Next generation patient monitor powered by in-silico physiology.

    PubMed

    Baronov, Dimitar; McManus, Michael; Butler, Evan; Chung, Douglas; Almodovar, Melvin C

    2015-01-01

    The goal of this paper is to introduce a next generation patient monitoring technology that relies on objective and continuous data analytics to alleviate the data overload in the critical care unit. The technology provides the foundation for increasing the consistency and efficacy of data use in clinical practice and improving outcomes. This paper presents results for applying the approach to the hemodynamic monitoring of infants immediately following cardiac surgery and demonstrates its efficacy of estimating the probability of inadequate systemic oxygen delivery, which is an essential risk attribute in the management of critically ill patients.

  19. Next Generation Patient Monitor Powered by In-Silico Physiology

    PubMed Central

    Baronov, Dimitar; McManus, Michael; Butler, Evan; Chung, Douglas; Almodovar, Melvin C.

    2015-01-01

    The goal of this paper is to introduce a next generation patient monitoring technology that relies on objective and continuous data analytics to alleviate the data overload in the critical care unit. The technology provides the foundation for increasing the consistency and efficacy of data use in clinical practice and improving outcomes. This paper presents results for applying the approach to the hemodynamic monitoring of infants immediately following cardiac surgery and demonstrates its efficacy of estimating the probability of inadequate systemic oxygen delivery, which is an essential risk attribute in the management of critically ill patients. PMID:26737282

  20. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    SciTech Connect

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  1. Airframe Technology Development for Next Generation Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Glass, David E.

    2004-01-01

    The Airframe subproject within NASA's Next Generation Launch Technology (NGLT) program has the responsibility to develop airframe technology for both rocket and airbreathing vehicles for access to space. The Airframe sub-project pushes the state-of-the-art in airframe technology for low-cost, reliable, and safe space transportation. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas being addressed include design and integration, hot and integrated structures, cryogenic tanks, and thermal protection systems. Each of the technologies in these areas are discussed in this paper.

  2. Beamstrahlung spectra in next generation linear colliders. Revision

    SciTech Connect

    Barklow, T.; Chen, P.; Kozanecki, W.

    1992-04-01

    For the next generation of linear colliders, the energy loss due to beamstrahlung during the collision of the e{sup +}e{sup {minus}} beams is expected to substantially influence the effective center-of-mass energy distribution of the colliding particles. In this paper, we first derive analytical formulae for the electron and photon energy spectra under multiple beamstrahlung processes, and for the e{sup +}e{sup {minus}} and {gamma}{gamma} differential luminosities. We then apply our formulation to various classes of 500 GeV e{sup +}e{sup {minus}} linear collider designs currently under study.

  3. NGSS and the Next Generation of Science Teachers

    NASA Astrophysics Data System (ADS)

    Bybee, Rodger W.

    2014-03-01

    This article centers on the Next Generation Science Standards (NGSS) and their implications for teacher development, particularly at the undergraduate level. After an introduction to NGSS and the influence of standards in the educational system, the article addresses specific educational shifts—interconnecting science and engineering practices, disciplinary core ideas, crosscutting concepts; recognizing learning progressions; including engineering; addressing the nature of science, coordinating with Common Core State Standards. The article continues with a general discussion of reforming teacher education programs and a concluding discussion of basic competencies and personal qualities of effective science teachers.

  4. Next-generation sequencing data interpretation: enhancing reproducibility and accessibility.

    PubMed

    Nekrutenko, Anton; Taylor, James

    2012-09-01

    Areas of life sciences research that were previously distant from each other in ideology, analysis practices and toolkits, such as microbial ecology and personalized medicine, have all embraced techniques that rely on next-generation sequencing instruments. Yet the capacity to generate the data greatly outpaces our ability to analyse it. Existing sequencing technologies are more mature and accessible than the methodologies that are available for individual researchers to move, store, analyse and present data in a fashion that is transparent and reproducible. Here we discuss currently pressing issues with analysis, interpretation, reproducibility and accessibility of these data, and we present promising solutions and venture into potential future developments.

  5. Advancing translational research with next-generation protein microarrays.

    PubMed

    Yu, Xiaobo; Petritis, Brianne; LaBaer, Joshua

    2016-04-01

    Protein microarrays are a high-throughput technology used increasingly in translational research, seeking to apply basic science findings to enhance human health. In addition to assessing protein levels, posttranslational modifications, and signaling pathways in patient samples, protein microarrays have aided in the identification of potential protein biomarkers of disease and infection. In this perspective, the different types of full-length protein microarrays that are used in translational research are reviewed. Specific studies employing these microarrays are presented to highlight their potential in finding solutions to real clinical problems. Finally, the criteria that should be considered when developing next-generation protein microarrays are provided. PMID:26749402

  6. Hepatitis B virus resistance substitutions: long-term analysis by next-generation sequencing.

    PubMed

    Jones, Leandro R; Sede, Mariano; Manrique, Julieta M; Quarleri, Jorge

    2016-10-01

    HBV phylogenetics and resistance-associated mutations (RAMs) were surveyed by next-generation sequencing of 21 longitudinal samples from seven patients entering antiviral therapy. The virus populations were dominated by a few abundant lineages that coexisted with substantial numbers of low-frequency variants. A few low-frequency RAMs were observed before treatment, but new ones emerged, and their frequencies increased during therapy. Together, these results support the idea that chronic HBV infection is dominated by a few virus lineages and that an accompanying plethora of diverse, low-frequency variants may function as a reservoir that potentially contribute to viral genetic plasticity, potentially affecting patient outcome. PMID:27447462

  7. Computational and Bioinformatics Frameworks for Next-Generation Whole Exome and Genome Sequencing

    PubMed Central

    Dolled-Filhart, Marisa P.; Lee, Michael; Ou-yang, Chih-wen; Haraksingh, Rajini Rani; Lin, Jimmy Cheng-Ho

    2013-01-01

    It has become increasingly apparent that one of the major hurdles in the genomic age will be the bioinformatics challenges of next-generation sequencing. We provide an overview of a general framework of bioinformatics analysis. For each of the three stages of (1) alignment, (2) variant calling, and (3) filtering and annotation, we describe the analysis required and survey the different software packages that are used. Furthermore, we discuss possible future developments as data sources grow and highlight opportunities for new bioinformatics tools to be developed. PMID:23365548

  8. Hepatitis B virus resistance substitutions: long-term analysis by next-generation sequencing.

    PubMed

    Jones, Leandro R; Sede, Mariano; Manrique, Julieta M; Quarleri, Jorge

    2016-10-01

    HBV phylogenetics and resistance-associated mutations (RAMs) were surveyed by next-generation sequencing of 21 longitudinal samples from seven patients entering antiviral therapy. The virus populations were dominated by a few abundant lineages that coexisted with substantial numbers of low-frequency variants. A few low-frequency RAMs were observed before treatment, but new ones emerged, and their frequencies increased during therapy. Together, these results support the idea that chronic HBV infection is dominated by a few virus lineages and that an accompanying plethora of diverse, low-frequency variants may function as a reservoir that potentially contribute to viral genetic plasticity, potentially affecting patient outcome.

  9. Next-generation detectors for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Ambrosi, Richard M.; Holland, Andrew D.; Mukerjee, Kallol; Keay, Adam; Turner, Martin J. L.; Abbey, Antony F.; Hutchinson, Ian B.; Ashton, T. J. R.; Beardmore, Andrew P.; Short, Alexander D. T.; Pool, Peter J.; Burt, David; Vernon, D.

    2004-09-01

    The next generation of X-ray astronomy instruments will require position sensitive detectors in the form of charge coupled devices (CCDs) for X-ray spectroscopy and imaging that will have the ability to probe the X-ray universe with a greater efficiency. This will require the development of CCDs with structures that will improve on the quantum efficiency of the current state of the art over a broader spectral range in addition to reducing spectral features, which may affect spectral resolution and signal to background levels. These devices will also have to be designed to withstand the harsh radiation environments associated with orbits that extend beyond the Earth"s magnetosphere. The next generation X-ray telescopes will incorporate larger X-ray optics that will allow deeper observations of the X-ray universe and sensors will have to compensate for this by an increased readout speed. This study will aim to describe some of the results obtained from test CCD structures that may fit many of the requirements described above.

  10. 25 years of endothelin research: the next generation.

    PubMed

    Emoto, Noriaki; Vignon-Zellweger, Nicolas; Lopes, Rhéure Alves Moreira; Cacioppo, Joseph; Desbiens, Louisane; Kamato, Danielle; Leurgans, Thomas; Moorhouse, Rebecca; Straube, Julia; Wurm, Raphael; Heiden, Susi; Ergul, Adviye; Yanagisawa, Masashi; Barton, Matthias

    2014-11-24

    In the past three decades, endothelin and endothelin receptor antagonists have received great scientific and clinical interest, leading to the publication of more than 27,000 scientific articles since its discovery. The Thirteenth International Conference on Endothelin (ET-13) was held on September 8-11, 2013, at Tokyo Campus of the University of Tsukuba in Japan. Close to 300 scientists from 25 countries from around the world came to Tokyo to celebrate the anniversary of the discovery of the endothelin peptide discovered 25 years ago at the University of Tsukuba. This article summarizes some of the highlights of the conference, the anniversary celebration ceremony, and particularly the participation of next generation of endothelin researchers in endothelin science and the anniversary celebration. As a particular highlight, next generation endothelin researchers wrote a haiku (a traditional form of Japanese poetry originating from consisting of no more than three short verses and 27 on, or Japanese phonetic units) to describe the magic of endothelin science which they presented to the conference audience at the anniversary ceremony. The text of each haiku - both in its original language together with the English translation - is part of this article providing in an exemplary fashion how poetry can be bridged with science. Finally, we give an outlook towards the next 25 years of endothelin research. PMID:25238993

  11. Engineering Micromechanical Systems for the Next Generation Wireless Capsule Endoscopy

    PubMed Central

    Woods, Stephen; Constandinou, Timothy

    2015-01-01

    Wireless capsule endoscopy (WCE) enables the detection and diagnosis of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. However treatment of these pathologies can only be achieved through conventional means. This paper describes the next generation WCE with increased functionality to enable targeted drug delivery in the small intestinal tract. A prototype microrobot fabricated in Nylon 6 is presented which is capable of resisting peristaltic pressure through the deployment of an integrated holding mechanism and delivering targeted therapy. The holding action is achieved by extending an “anchor” spanning a 60.4 mm circumference, for an 11.0 mm diameter WCE. This function is achieved by a mechanism that occupies only 347.0 mm3 volume, including mechanics and actuator. A micropositioning mechanism is described which utilises a single micromotor to radially position and then deploy a needle 1.5 mm outside the microrobot's body to deliver a 1 mL dose of medication to a targeted site. An analysis of the mechanics required to drive the holding mechanism is presented and an overview of microactuators and the state of the art in WCE is discussed. It is envisaged that this novel functionality will empower the next generation of WCE to help diagnose and treat pathologies of the GI tract. PMID:26258143

  12. Avionics architectures for the next generation of launch vehicles

    NASA Astrophysics Data System (ADS)

    Stanley, Jeffrey H.

    The challenges and benefits of utilizing current avionics architecture concepts for the next generation of space launch vehicles are examined. The generic integration approach and architecture produced by the Advanced System Avionics (ASA)-Pave Pillar program is the foundation for avionics development in next generation aircraft for the U.S. Department of Defense, and include aircraft such as the USAF advanced tactical fighter (AFTF) and USN advanced tactical aircraft (ATA). The implementation strategies being used by aircraft avionics include the system-wide utilization of common modular building blocks using advanced microelectronics such as VHSIC, standard electronic module (SEM) sizes and integrated racks, and interconnection networks using fiber optics. It is concluded that the Pave Pillar core architecture objectives of high availability, resiliency, supportability, and low life cycle cost are similar to the desired attributes of future space launch vehicles. The core avionics, with tailoring to those requirements, can be used as the design baseline for launch vehicles, and thereby utilize the experience and investment already committed to the advanced modular avionics architecture program.

  13. Women in Physics: The Next Generation At Our National Laboratories

    NASA Astrophysics Data System (ADS)

    Krossa, Cheryl

    2001-04-01

    Just as a house must be built on a strong foundation, with each subsequent course of bricks placed upon those that went before, the advances of women in physics are built upon the accomplishments of those women who have gone before. How are we preparing for the next course of bricks? Where will the next generation of women in physics come from, and how are these women being prepared to take their place among your ranks? The United States Department of Energy is helping to mold the next generation of women in physics, in part, through the efforts of its fifteen national laboratories: Argonne, Brookhaven, Fermi, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, Princeton Plasma Physics, Sandia, National Energy Technology Laboratory, National Renewable Energy Laboratory, Stanford Linear Accelerator Center, and Thomas Jefferson National Accelerator Facility. This presentation will showcase some of the creative and innovative approaches these institutions are taking, from outreach to girls in elementary schools to executive appointments, to secure not only this nation's future, but that of women in physics.

  14. Next generation sequencing applications for breast cancer research

    PubMed Central

    PETRIC, ROXANA COJOCNEANU; POP, LAURA-ANCUTA; JURJ, ANCUTA; RADULY, LAJOS; DUMITRASCU, DAN; DRAGOS, NICOLAE; NEAGOE, IOANA BERINDAN

    2015-01-01

    For some time, cancer has not been thought of as a disease, but as a multifaceted, heterogeneous complex of genotypic and phenotypic manifestations leading to tumorigenesis. Due to recent technological progress, the outcome of cancer patients can be greatly improved by introducing in clinical practice the advantages brought about by the development of next generation sequencing techniques. Biomedical suppliers have come up with various applications which medical researchers can use to characterize a patient’s disease from molecular and genetic point of view in order to provide caregivers with rapid and relevant information to guide them in choosing the most appropriate course of treatment, with maximum efficiency and minimal side effects. Breast cancer, whose incidence has risen dramatically, is a good candidate for these novel diagnosis and therapeutic approaches, particularly when referring to specific sequencing panels which are designed to detect germline or somatic mutations in genes that are involved in breast cancer tumorigenesis and progression. Benchtop next generation sequencing machines are becoming a more common presence in the clinical setting, empowering physicians to better treat their patients, by offering early diagnosis alternatives, targeted remedies, and bringing medicine a step closer to achieving its ultimate goal, personalized therapy. PMID:26609257

  15. Hybrid Network Architectures for the Next Generation NAS

    NASA Technical Reports Server (NTRS)

    Madubata, Christian

    2003-01-01

    To meet the needs of the 21st Century NAS, an integrated, network-centric infrastructure is essential that is characterized by secure, high bandwidth, digital communication systems that support precision navigation capable of reducing position errors for all aircraft to within a few meters. This system will also require precision surveillance systems capable of accurately locating all aircraft, and automatically detecting any deviations from an approved path within seconds and be able to deliver high resolution weather forecasts - critical to create 4- dimensional (space and time) profiles for up to 6 hours for all atmospheric conditions affecting aviation, including wake vortices. The 21st Century NAS will be characterized by highly accurate digital data bases depicting terrain, obstacle, and airport information no matter what visibility conditions exist. This research task will be to perform a high-level requirements analysis of the applications, information and services required by the next generation National Airspace System. The investigation and analysis is expected to lead to the development and design of several national network-centric communications architectures that would be capable of supporting the Next Generation NAS.

  16. Standardization and quality management in next-generation sequencing.

    PubMed

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data. PMID:27668169

  17. Designing Next Generation Massively Multithreaded Architectures for Irregular Applications

    SciTech Connect

    Tumeo, Antonino; Secchi, Simone; Villa, Oreste

    2012-08-31

    Irregular applications, such as data mining or graph-based computations, show unpredictable memory/network access patterns and control structures. Massively multi-threaded architectures with large node count, like the Cray XMT, have been shown to address their requirements better than commodity clusters. In this paper we present the approaches that we are currently pursuing to design future generations of these architectures. First, we introduce the Cray XMT and compare it to other multithreaded architectures. We then propose an evolution of the architecture, integrating multiple cores per node and next generation network interconnect. We advocate the use of hardware support for remote memory reference aggregation to optimize network utilization. For this evaluation we developed a highly parallel, custom simulation infrastructure for multi-threaded systems. Our simulator executes unmodified XMT binaries with very large datasets, capturing effects due to contention and hot-spotting, while predicting execution times with greater than 90% accuracy. We also discuss the FPGA prototyping approach that we are employing to study efficient support for irregular applications in next generation manycore processors.

  18. Standardization and quality management in next-generation sequencing.

    PubMed

    Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus

    2016-09-01

    DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.

  19. The Need for Next Generation of Radiochemists in the USA

    SciTech Connect

    Mansour Akbarzadeh; Steven Bakhtiar; Patricia Paviet-Hartmann

    2011-06-01

    In 2009, the nuclear industry employed approximately 120,000 people. Nearly 38 percent of the nuclear industry force will be eligible to retire within the next five years. To maintain the current work force, the industry will need to hire approximately 25,000 more workers by 2015.1 The federal government will also need nuclear workers in the future in its laboratories, the military and government programs. There is a need not only for the entire nuclear community to work with the academia to recruit and train students in a standardized way for employment at nuclear facilities. Several strategies are taking place in the USA, as an example, an initiative developed at the Idaho National Laboratory (INL) is the Institute of Nuclear Science and Technology (INEST) with four Centers of Research and Education (COREs) selected to address some of the most challenging issues facing nuclear energy today: (1) Fuels and Materials, (2) Space Nuclear Research, (3) Fuel Cycle, and (4) Safety and Licensing. Another example is the development of a radiochemistry program at two universities: the University of Nevada Las Vegas (UNLV) and Washington State University (WSU) to attract the next generation work force. This paper will solely focus on the next generation of radiochemists needed in the US and will give examples illustrating the needs as well as the current activities in the academia and in the national laboratories to fulfill national needs.

  20. Next generation sequencing (NGS): a golden tool in forensic toolkit.

    PubMed

    Aly, S M; Sabri, D M

    2015-01-01

    The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.

  1. 25 years of endothelin research: the next generation.

    PubMed

    Emoto, Noriaki; Vignon-Zellweger, Nicolas; Lopes, Rhéure Alves Moreira; Cacioppo, Joseph; Desbiens, Louisane; Kamato, Danielle; Leurgans, Thomas; Moorhouse, Rebecca; Straube, Julia; Wurm, Raphael; Heiden, Susi; Ergul, Adviye; Yanagisawa, Masashi; Barton, Matthias

    2014-11-24

    In the past three decades, endothelin and endothelin receptor antagonists have received great scientific and clinical interest, leading to the publication of more than 27,000 scientific articles since its discovery. The Thirteenth International Conference on Endothelin (ET-13) was held on September 8-11, 2013, at Tokyo Campus of the University of Tsukuba in Japan. Close to 300 scientists from 25 countries from around the world came to Tokyo to celebrate the anniversary of the discovery of the endothelin peptide discovered 25 years ago at the University of Tsukuba. This article summarizes some of the highlights of the conference, the anniversary celebration ceremony, and particularly the participation of next generation of endothelin researchers in endothelin science and the anniversary celebration. As a particular highlight, next generation endothelin researchers wrote a haiku (a traditional form of Japanese poetry originating from consisting of no more than three short verses and 27 on, or Japanese phonetic units) to describe the magic of endothelin science which they presented to the conference audience at the anniversary ceremony. The text of each haiku - both in its original language together with the English translation - is part of this article providing in an exemplary fashion how poetry can be bridged with science. Finally, we give an outlook towards the next 25 years of endothelin research.

  2. Next-generation optical wireless communications for data centers

    NASA Astrophysics Data System (ADS)

    Arnon, Shlomi

    2015-01-01

    Data centers collect and process information with a capacity that has been increasing from year to year at an almost exponential pace. Traditional fiber/cable data center network interconnections suffer from bandwidth overload, as well as flexibility and scalability issues. Therefore, a technology-shift from the fiber and cable to wireless has already been initiated in order to meet the required data-rate, flexibility and scalability demands for next-generation data center network interconnects. In addition, the shift to wireless reduces the volume allocated to the cabling/fiber and increases the cooling efficiency. Optical wireless communication (OWC), or free space optics (FSO), is one of the most effective wireless technologies that could be used in future data centers and could provide ultra-high capacity, very high cyber security and minimum latency, due to the low index of refraction of air in comparison to fiber technologies. In this paper we review the main concepts and configurations for next generation OWC for data centers. Two families of technologies are reviewed: the first technology regards interconnects between rack units in the same rack and the second technology regards the data center network that connects the server top of rack (TOR) to the switch. A comparison between different network technologies is presented.

  3. Next-Generation Linear Collider Final Focus System Stability Tolerances

    SciTech Connect

    Roy, G.; Irwin, J.; /SLAC

    2007-04-25

    The design of final focus systems for the next generation of linear colliders has evolved largely from the experience gained with the design and operation of the Stanford Linear Collider (SLC) and with the design of the Final Focus Test Beam (FFTB). We will compare the tolerances for two typical designs for a next-generation linear collider final focus system. The chromaticity generated by strong focusing systems, like the final quadrupole doublet before the interaction point of a linear collider, can be canceled by the introduction of sextupoles in a dispersive region. These sextupoles must be inserted in pairs separated by a -I transformation (Chromatic Correction Section) in order to cancel the strong geometric aberrations generated by sextupoles. Designs proposed for both the JLC or NLC final focus systems have two separate chromatic correction sections, one for each transverse plane separated by a ''{beta}-exchanger'' to manipulate the {beta}-function between the two CCS. The introduction of sextupoles and bending magnets gives rise to higher order aberrations (long sextupole and chrome-geometries) and radiation induced aberrations (chromaticity unbalance and ''Oide effect'') and one must optimize the lattice accordingly.

  4. Commercialization and internationalization of the next-generation launch system

    NASA Astrophysics Data System (ADS)

    Bille, Matthew A.; Richie, George E.; Bille, Deborah A.

    1996-03-01

    The United States, ESA, Russia, and Japan are all pursuing the goal of a next-generation launch system. However, economic constraints may ground these programs, as they did hypersonic spaceplane efforts. In today's constrained fiscal environment, engineering is secondary unless the most practical economic and political approach is also found. While international efforts face national concerns over jobs and competitiveness, low-cost access to orbit will open up space to whole new industries. In the long run, all involved nations will gain economically if a next-generation launcher is built, and all will lose if individual efforts fail. An international consortium is most likely to amass the resources needed. The consortium would not be dedicated to any single technical concept, but would select from industry proposals to design and build the technology demonstrator. The goal is to get one working system built: after that, it is not critical whether we have one cooperative operational system or a dozen competing ones. What is critical is not to miss another chance to launch the era of space commercialization.

  5. ACES: An Enabling Technology for Next Generation Space Transportation

    NASA Astrophysics Data System (ADS)

    Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.

    2004-02-01

    Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.

  6. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  7. Optical performance monitoring (OPM) in next-generation optical networks

    NASA Astrophysics Data System (ADS)

    Neuhauser, Richard E.

    2002-09-01

    DWDM transmission is the enabling technology currently pushing the transmission bandwidths in core networks towards the multi-Tb/s regime with unregenerated transmission distances of several thousand km. Such systems represent the basic platform for transparent DWDM networks enabling both the transport of client signals with different data formats and bit rates (e.g. SDH/SONET, IP over WDM, Gigabit Ethernet, etc.) and dynamic provisioning of optical wavelength channels. Optical Performance Monitoring (OPM) will be one of the key elements for providing the capabilities of link set-up/control, fault localization, protection/restoration and path supervisioning for stable network operation becoming the major differentiator in next-generation networks. Currently, signal quality is usually characterized by DWDM power levels, spectrum-interpolated Optical Signal-to-Noise-Ratio (OSNR), and channel wavelengths. On the other hand there is urgent need for new OPM technologies and strategies providing solutions for in-channel OSNR, signal quality measurement, fault localization and fault identification. Innovative research and product activities include polarization nulling, electrical and optical amplitude sampling, BER estimation, electrical spectrum analysis, and pilot tone technologies. This presentation focuses on reviewing the requirements and solution concepts in current and next-generation networks with respect to Optical Performance Monitoring.

  8. [Next generation sequencing for the diagnostics and epidemiology of tuberculosis].

    PubMed

    Comas, Iñaki; Gil, Ana

    2016-07-01

    Tuberculosis (TB) has overtaken HIV (human immunodeficiency virus) and malaria as the leading cause of death by an infectious disease worldwide. The reduction in the TB incidence is a modest 2% of cases per year, thus we will need 200 years to eradicate the disease. Part of the problem is that TB control tools are decades old and cannot anymore contribute to accelerate eradication of TB. New diagnostics, treatments and vaccines are urgently needed. Next generation sequencing has the potential to become one of these new tools. Genomic characterization of TB isolates is already showing its potential for epidemiology and diagnostics, particularly to identify drug resistance mutations. However, the experimental and bioinformatics skills needed are still far from being standardized and are not easy to incorporate as a routine in clinical laboratories. In this review we will describe current next generation sequencing approaches applied to the Mycobacterium tuberculosis complex, their contribution to the diagnostics and epidemiology of the disease and the efforts that are being undertaken to make the technology accessible to public health and clinical microbiology laboratories.

  9. The NASA Education Enterprise: Inspiring the Next Generation of Explorers

    NASA Technical Reports Server (NTRS)

    2003-01-01

    On April 12, 2002, NASA Administrator Sean O Keefe opened a new window to the future of space exploration with these words in his Pioneering the Future address. Thus began the conceptual framework for structuring the new Education Enterprise. The Agency s mission is to understand and protect our home planet; to explore the universe in search for life; and to inspire the next generation of explorers as only NASA can. In adopting this mission, education became a core element and is now a vital part of every major NASA research and development mission. NASA s call to inspire the next generation of explorers is now resounding throughout the NASA community and schools of all levels all around the country. The goal is to capture student interest, nurture their natural curiosities, and intrigue their minds with new and exciting scientific research; as well as to provide educators with the creative tools they need to improve America s scientific literacy. The future of NASA begins with America s youngest scholars. According to Administrator O Keefe s address, if NASA does not motivate the youngest generation now, there is little prospect this generation will choose to pursue scientific disciplines later. Since embracing Administrator O Keefe s educational mandate over a year ago, NASA has been fully devoted to broadening its roadmap to motivation. The efforts have generated a whole new showcase of thoughtprovoking and fun learning opportunities, through printed material, Web sites and Webcasts, robotics, rocketry, aerospace design contests, and various other resources as only NASA can.

  10. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content.

  11. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens.

    PubMed

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-09-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  12. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens

    PubMed Central

    Shokralla, Shadi; Gibson, Joel F; Nikbakht, Hamid; Janzen, Daniel H; Hallwachs, Winnie; Hajibabaei, Mehrdad

    2014-01-01

    DNA barcoding is an efficient method to identify specimens and to detect undescribed/cryptic species. Sanger sequencing of individual specimens is the standard approach in generating large-scale DNA barcode libraries and identifying unknowns. However, the Sanger sequencing technology is, in some respects, inferior to next-generation sequencers, which are capable of producing millions of sequence reads simultaneously. Additionally, direct Sanger sequencing of DNA barcode amplicons, as practiced in most DNA barcoding procedures, is hampered by the need for relatively high-target amplicon yield, coamplification of nuclear mitochondrial pseudogenes, confusion with sequences from intracellular endosymbiotic bacteria (e.g. Wolbachia) and instances of intraindividual variability (i.e. heteroplasmy). Any of these situations can lead to failed Sanger sequencing attempts or ambiguity of the generated DNA barcodes. Here, we demonstrate the potential application of next-generation sequencing platforms for parallel acquisition of DNA barcode sequences from hundreds of specimens simultaneously. To facilitate retrieval of sequences obtained from individual specimens, we tag individual specimens during PCR amplification using unique 10-mer oligonucleotides attached to DNA barcoding PCR primers. We employ 454 pyrosequencing to recover full-length DNA barcodes of 190 specimens using 12.5% capacity of a 454 sequencing run (i.e. two lanes of a 16 lane run). We obtained an average of 143 sequence reads for each individual specimen. The sequences produced are full-length DNA barcodes for all but one of the included specimens. In a subset of samples, we also detected Wolbachia, nontarget species, and heteroplasmic sequences. Next-generation sequencing is of great value because of its protocol simplicity, greatly reduced cost per barcode read, faster throughout and added information content. PMID:24641208

  13. VizieR Online Data Catalog: OGLE microlensing events in Galactic Bulge (Udalski+, 2000)

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Zebrun, K.; Szymanski, M.; Kubiak, M.; Pietrzynski, G.; Soszynski, I.; Wozniak, P.

    2006-09-01

    We present the Catalog of microlensing events detected toward the Galactic bulge in three observing seasons, 1997-1999, during the OGLE-II microlensing survey. The search for microlensing events was performed using a database of about 4x109 photometric measurements of about 20.5 million stars from the Galactic bulge. The Catalog comprises 214 microlensing events found in the fields covering about 11 square degrees on the sky and distributed in different parts of the Galactic bulge. The sample includes 20 binary microlensing events, 14 of them are caustic crossing. In one case a double star is likely lensed. We present distribution of the basic parameters of microlensing events and show preliminary rate of microlensing in different regions of the Galactic bulge. The latter reveals clear dependence on the Galactic coordinates. The dependence on l indicates that the majority of lenses toward the Galactic bulge are located in the Galactic bar. Models of the Galactic bar seem to reasonably predict the observed spatial distribution of microlensing events in the Galactic bulge. All data presented in the Catalog and photometry of all events are available from the OGLE Internet archive. (3 data files).

  14. Identification of conserved genomic regions and variation therein amongst Cetartiodactyla species using next generation sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background Next Generation Sequencing has created an opportunity to genetically characterize an individual both inexpensively and comprehensively. In earlier work produced in our collaboration [1], it was demonstrated that, for animals without a reference genome, their Next Generation Sequence data ...

  15. Production of the next-generation library virtual tour.

    PubMed

    Duncan, J M; Roth, L K

    2001-10-01

    While many libraries offer overviews of their services through their Websites, only a small number of health sciences libraries provide Web-based virtual tours. These tours typically feature photographs of major service areas along with textual descriptions. This article describes the process for planning, producing, and implementing a next-generation virtual tour in which a variety of media elements are integrated: photographic images, 360-degree "virtual reality" views, textual descriptions, and contextual floor plans. Hardware and software tools used in the project are detailed, along with a production timeline and budget, tips for streamlining the process, and techniques for improving production. This paper is intended as a starting guide for other libraries considering an investment in such a project. PMID:11837254

  16. Precision medicine for cancer with next-generation functional diagnostics

    PubMed Central

    Friedman, Adam A.; Letai, Anthony; Fisher, David E.; Flaherty, Keith T.

    2016-01-01

    Precision medicine is about matching the right drugs to the right patients. Although this approach is technology agnostic, in cancer there is a tendency to make precision medicine synonymous with genomics. However, genome-based cancer therapeutic matching is limited by incomplete biological understanding of the relationship between phenotype and cancer genotype. This limitation can be addressed by functional testing of live patient tumour cells exposed to potential therapies. Recently, several ‘next-generation’ functional diagnostic technologies have been reported, including novel methods for tumour manipulation, molecularly precise assays of tumour responses and device-based in situ approaches; these address the limitations of the older generation of chemosensitivity tests. The promise of these new technologies suggests a future diagnostic strategy that integrates functional testing with next-generation sequencing and immunoprofiling to precisely match combination therapies to individual cancer patients. PMID:26536825

  17. Retinal prostheses: progress toward the next generation implants

    PubMed Central

    Ghezzi, Diego

    2015-01-01

    In the last decade, various clinical trials proved the capability of visual prostheses, in particular retinal implants, to restore a useful form of vision. These encouraging results promoted the emerging of several strategies for neuronal stimulation aiming at the restoration of sight. Besides the traditional approach based on electrical stimulation through metal electrodes in the different areas of the visual path (e.g., the visual cortex, the lateral geniculate nucleus, the optic nerve, and the retina), novel concepts for neuronal stimulation have been mostly exploited as building blocks of the next generation of retinal implants. This review is focused on critically discussing recent major advancements in the field of retinal stimulation with particular attention to the findings in the application of novel concepts and materials. Last, the major challenges in the field and their clinical implications will be outlined. PMID:26347602

  18. NASDA next generation Aquatic Habitat for Space Shuttle and ISS.

    PubMed

    Masukawa, M; Ochiai, T; Kamigaichi, S; Ishioka, N; Uchida, S; Kono, Y; Sakimura, T

    2003-01-01

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grew to adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad (Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

  19. Next generation sequencing: Coping with rare genetic diseases in China

    PubMed Central

    Cram, David S; Zhou, Daixing

    2016-01-01

    Summary With a population of 1.4 billion, China shares the largest burden of rare genetic diseases worldwide. Current estimates suggest that there are over ten million individuals afflicted with chromosome disease syndromes and well over one million individuals with monogenic disease. Care of patients with rare genetic diseases remains a largely unmet need due to the paucity of available and affordable treatments. Over recent years, there is increasing recognition of the need for affirmative action by government, health providers, clinicians and patients. The advent of new next generation sequencing (NGS) technologies such as whole genome/exome sequencing, offers an unprecedented opportunity to provide large-scale population screening of the Chinese population to identify the molecular causes of rare genetic diseases. As a surrogate for lack of effective treatments, recent development and implementation of noninvasive prenatal testing (NIPT) in China has the greatest potential, as a single technology, for reducing the number of children born with rare genetic diseases.

  20. The AGATA Spectrometer: next generation gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Simpson, J.; AGATA Collaboration

    2015-05-01

    The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. The spectrometer will have an unparalleled level of detection power for electromagnetic nuclear radiation. The tracking technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realisation of gamma-ray tracking and AGATA is a result of many technical advances and the spectrometer is now operational. AGATA has been operated in a series of scientific campaigns at Legnaro National Laboratory in Italy and GSI in Germany and is presently being assembled at GANIL in France. The status of the instrument will be reviewed.

  1. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    PubMed

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  2. Next generation sequencing for characterizing biodiversity: promises and challenges.

    PubMed

    Pompanon, François; Samadi, Sarah

    2015-04-01

    DNA barcoding approaches are used to describe biodiversity by analysing specimens or environmental samples in taxonomic, phylogenetic and ecological studies. While sharing data among these disciplines would be highly valuable, this remains difficult because of contradictory requirements. The properties making a DNA barcode efficient for specimen identification or species delimitation are hardly reconcilable with those required for a powerful analysis of degraded DNA from environmental samples. The use of next generation sequencing methods open up the way towards the development of new markers (e.g., multilocus barcodes) that would overcome such limitations. However, several challenges should be taken up for coordinating actions at the interface between taxonomy, ecology, molecular biology and bioinformatics in order to develop methods and protocols compatible with both taxonomic and ecological studies.

  3. Next generation deep sequencing and vaccine design: today and tomorrow.

    PubMed

    Luciani, Fabio; Bull, Rowena A; Lloyd, Andrew R

    2012-09-01

    Next generation sequencing (NGS) technologies have redefined the modus operandi in both human and microbial genetics research, allowing the unprecedented generation of very large sequencing datasets on a short time scale and at affordable costs. Vaccine development research is rapidly taking full advantage of the advent of NGS. This review provides a concise summary of the current applications of NGS in relation to research seeking to develop vaccines for human infectious diseases, incorporating studies of both the pathogen and the host. We focus on rapidly mutating viral pathogens, which are major targets in current vaccine research. NGS is unraveling the complex dynamics of viral evolution and host responses against these viruses, thus contributing substantially to the likelihood of successful vaccine development.

  4. Unrevealed mosaicism in the next-generation sequencing era.

    PubMed

    Gajecka, Marzena

    2016-04-01

    Mosaicism refers to the presence in an individual of normal and abnormal cells that are genotypically distinct and are derived from a single zygote. The incidence of mosaicism events in the human body is underestimated as the genotypes in the mosaic ratio, especially in the low-grade mosaicism, stay unrevealed. This review summarizes various research outcomes and diagnostic questions in relation to different types of mosaicism. The impact of both tested biological material and applied method on the mosaicism detection rate is especially highlighted. As next-generation sequencing technologies constitute a promising methodological solution in mosaicism detection in the coming years, revisions in current diagnostic protocols are necessary to increase the detection rate of the unrevealed mosaicism events. Since mosaicism identification is a complex process, numerous examples of multistep mosaicism investigations are presented and discussed.

  5. Application of next-generation sequencing technology in forensic science.

    PubMed

    Yang, Yaran; Xie, Bingbing; Yan, Jiangwei

    2014-10-01

    Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice.

  6. ADITEC: joining forces for next-generation vaccines.

    PubMed

    Rappuoli, Rino; Medaglini, Donata

    2012-04-01

    Scientists sit poised at a singular moment in the history of vaccine research. Genomics and systems biology have fueled advances in our understanding of human immunology. Together with adjuvant development and structure-based design of immunogens, these next-generation technologies are transforming the field of vaccinology and shaping the future of medicine. However, the sophisticated science behind the development of modern vaccines and the resulting knotty ethical issues have become so complex that scientists and policy-makers need a new model for vaccine research. The European Commission-sponsored Advanced Immunization Technologies project--ADITEC--brings together some of the leading laboratories in the field to tackle the problems that no lab can tackle in isolation.

  7. Unrevealed mosaicism in the next-generation sequencing era.

    PubMed

    Gajecka, Marzena

    2016-04-01

    Mosaicism refers to the presence in an individual of normal and abnormal cells that are genotypically distinct and are derived from a single zygote. The incidence of mosaicism events in the human body is underestimated as the genotypes in the mosaic ratio, especially in the low-grade mosaicism, stay unrevealed. This review summarizes various research outcomes and diagnostic questions in relation to different types of mosaicism. The impact of both tested biological material and applied method on the mosaicism detection rate is especially highlighted. As next-generation sequencing technologies constitute a promising methodological solution in mosaicism detection in the coming years, revisions in current diagnostic protocols are necessary to increase the detection rate of the unrevealed mosaicism events. Since mosaicism identification is a complex process, numerous examples of multistep mosaicism investigations are presented and discussed. PMID:26481646

  8. Bioinformatics: identification of markers from next-generation sequence data.

    PubMed

    Ruperao, Pradeep; Edwards, David

    2015-01-01

    With the advent of sequencing technology, next-generation sequencing (NGS) technology has dramatically revolutionized plant genomics. NGS technology combined with new software tools enables the discovery, validation, and assessment of genetic markers on a large scale. Among different markers systems, simple sequence repeats (SSRs) and Single nucleotide polymorphisms (SNPs) are the markers of choice for genetics and plant breeding. SSR markers have been a choice for large-scale characterization of germplasm collections, construction of genetic maps, and QTL identification. Similarly, SNPs are the most abundant genetic variations with higher frequencies throughout the genome of plant species. This chapter discusses various tools available for genome assembly and widely focuses on SSR and SNP marker discovery.

  9. Next-Generation Sequencing: Role in Gynecologic Cancers.

    PubMed

    Evans, Tarra; Matulonis, Ursula

    2016-09-01

    Next-generation sequencing (NGS) has risen to the forefront of tumor analysis and has enabled unprecedented advances in the molecular profiling of solid tumors. Through massively parallel sequencing, previously unrecognized genomic alterations have been unveiled in many malignancies, including gynecologic cancers, thus expanding the potential repertoire for the use of targeted therapies. NGS has expanded the understanding of the genomic foundation of gynecologic malignancies and has allowed identification of germline and somatic mutations associated with cancer development, enabled tumor reclassification, and helped determine mechanisms of treatment resistance. NGS has also facilitated rationale therapeutic strategies based on actionable molecular aberrations. However, issues remain regarding cost and clinical utility. This review covers NGS analysis of and its impact thus far on gynecologic cancers, specifically ovarian, endometrial, cervical, and vulvar cancers. PMID:27587626

  10. Prenatal diagnosis of Gaucher disease using next-generation sequencing.

    PubMed

    Yoshida, Shinichiro; Kido, Jun; Matsumoto, Shirou; Momosaki, Ken; Mitsubuchi, Hiroshi; Shimazu, Tomoyuki; Sugawara, Keishin; Endo, Fumio; Nakamura, Kimitoshi

    2016-09-01

    In the prenatal diagnosis of Gaucher disease (GD), glucocerebrosidase (GBA) activity is measured with fetal cells, and gene analysis is performed when pathogenic mutations in GBA are identified in advance. Herein is described prenatal diagnosis in a family in which two children had GD. Although prior genetic information for this GD family was not obtained, next-generation sequencing (NGS) was carried out for this family because immediate prenatal diagnosis was necessary. Three mutations were identified in this GD family. The father had one mutation in intron 3 (IVS2 + 1), the mother had two mutations in exons 3 (I[-20]V) and 5 (M85T), and child 1 had all three of these mutations; child 3 had none of these mutations. On NGS the present fetus (child 3) was not a carrier of GD-related mutations. NGS may facilitate early detection and treatment before disease onset. PMID:27682613

  11. Reducing Risk for the Next Generation Nuclear Plant

    SciTech Connect

    John M. Beck II; Harold J. Heydt; Emmanuel O. Opare; Kyle B. Oswald

    2010-07-01

    The Next Generation Nuclear Plant (NGNP) Project, managed by the Idaho National Laboratory (INL), is directed by the Energy Policy Act of 2005, to research, develop, design, construct, and operate a prototype forth generation nuclear reactor to meet the needs of the 21st Century. As with all large projects developing and deploying new technologies, the NGNP has numerous risks that need to be identified, tracked, mitigated, and reduced in order for successful project completion. A Risk Management Plan (RMP) was created to outline the process the INL is using to manage the risks and reduction strategies for the NGNP Project. Integral to the RMP is the development and use of a Risk Management System (RMS). The RMS is a tool that supports management and monitoring of the project risks. The RMS does not only contain a risk register, but other functionality that allows decision makers, engineering staff, and technology researchers to review and monitor the risks as the project matures.

  12. Next generation sequencing: Coping with rare genetic diseases in China.

    PubMed

    Cram, David S; Zhou, Daixing

    2016-08-01

    With a population of 1.4 billion, China shares the largest burden of rare genetic diseases worldwide. Current estimates suggest that there are over ten million individuals afflicted with chromosome disease syndromes and well over one million individuals with monogenic disease. Care of patients with rare genetic diseases remains a largely unmet need due to the paucity of available and affordable treatments. Over recent years, there is increasing recognition of the need for affirmative action by government, health providers, clinicians and patients. The advent of new next generation sequencing (NGS) technologies such as whole genome/exome sequencing, offers an unprecedented opportunity to provide large-scale population screening of the Chinese population to identify the molecular causes of rare genetic diseases. As a surrogate for lack of effective treatments, recent development and implementation of noninvasive prenatal testing (NIPT) in China has the greatest potential, as a single technology, for reducing the number of children born with rare genetic diseases. PMID:27672536

  13. Scientific and Technical Development of the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Burg, Richard

    2003-01-01

    The Next Generation Space Telescope (NGST) is part of the Origins program and is the key mission to discover the origins of galaxies in the Universe. It is essential that scientific requirements be translated into technical specifications at the beginning of the program and that there is technical participation by astronomers in the design and modeling of the observatory. During the active time period of this grant, the PI participated in the NGST program at GSFC by participating in the development of the Design Reference Mission, the development of the full end-to-end model of the observatory, the design trade-off based on the modeling, the Science Instrument Module definition and modeling, the study of proto-mission and test-bed development, and by participating in meetings including quarterly reviews and support of the NGST SWG. This work was documented in a series of NGST Monographs that are available on the NGST web site.

  14. Application of Next-generation Sequencing Technology in Forensic Science

    PubMed Central

    Yang, Yaran; Xie, Bingbing; Yan, Jiangwei

    2014-01-01

    Next-generation sequencing (NGS) technology, with its high-throughput capacity and low cost, has developed rapidly in recent years and become an important analytical tool for many genomics researchers. New opportunities in the research domain of the forensic studies emerge by harnessing the power of NGS technology, which can be applied to simultaneously analyzing multiple loci of forensic interest in different genetic contexts, such as autosomes, mitochondrial and sex chromosomes. Furthermore, NGS technology can also have potential applications in many other aspects of research. These include DNA database construction, ancestry and phenotypic inference, monozygotic twin studies, body fluid and species identification, and forensic animal, plant and microbiological analyses. Here we review the application of NGS technology in the field of forensic science with the aim of providing a reference for future forensics studies and practice. PMID:25462152

  15. Non-random DNA fragmentation in next-generation sequencing

    NASA Astrophysics Data System (ADS)

    Poptsova, Maria S.; Il'Icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-03-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed ``reads'' are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions.

  16. Investigation of next generation engine for reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Konno, Akira; Kishimoto, Kenji; Atsumi, Masahiro

    1998-01-01

    A new investigation on next generation engines for fully Reusable Launch Vehicle (RLV) is under way in Japan. The RLV requires not only high specific impulse of the propulsion but also significant improvements in thrust-to weight ratio at liftoff, life cycle capability and operability. This paper will describe the conceptual outline on a new engine research program for RLV based on the main component characteristics of the LE-7A engine. This engine will be driven with tap off cycle or gas generator cycle, not staged combustion, in order to increase sea level thrust-to-weight ratio. Extendible nozzle will be also installed to enhance the vacuum specific impulse. In addition, this paper will present a new concept of Liquefied Air Cycle Engine (LACE) to boost air breathing spaceplane. The LACE engine has significantly higher specific impulse and sea level thrust-to weight ratio than rocket engine.

  17. NEXT GENERATION NUCLEAR PLANT LICENSING BASIS EVENT SELECTION WHITE PAPER

    SciTech Connect

    Mark Holbrook

    2010-09-01

    The Next Generation Nuclear Plant (NGNP) will be a licensed commercial high temperature gas-cooled reactor (HTGR) plant capable of producing the electricity and high temperature process heat for industrial markets supporting a range of end-user applications. The NGNP Project has adopted the 10 CFR 52 Combined License (COL) application process, as recommended in the Report to Congress, dated August 2008, as the foundation for the NGNP licensing strategy. NRC licensing of the NGNP plant utilizing this process will demonstrate the efficacy of licensing future HTGRs for commercial industrial applications. This white paper is one in a series of submittals that will address key generic issues of the COL priority licensing topics as part of the process for establishing HTGR regulatory requirements.

  18. Next-Generation Sequencing RNA-Seq Library Construction.

    PubMed

    Podnar, Jessica; Deiderick, Heather; Huerta, Gabriella; Hunicke-Smith, Scott

    2014-01-01

    This unit presents protocols for construction of next-generation sequencing (NGS) directional RNA sequencing libraries for the Illumina HiSeq and MiSeq from a wide variety of input RNA sources. The protocols are based on the New England Biolabs (NEB) small RNA library preparation set for Illumina, although similar kits exist from different vendors. The protocol preserves the orientation of the original RNA in the final sequencing library, enabling strand-specific analysis of the resulting data. These libraries have been used for differential gene expression analysis and small RNA discovery and are currently being tested for de novo transcriptome assembly. The protocol is robust and applicable to a broad range of RNA input types and RNA quality, making it ideal for high-throughput laboratories.

  19. Next Generation Nuclear Plant Resilient Control System Functional Analysis

    SciTech Connect

    Lynne M. Stevens

    2010-07-01

    Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

  20. Next Generation Sequencing Technologies for Insect Virus Discovery

    PubMed Central

    Liu, Sijun; Vijayendran, Diveena; Bonning, Bryony C.

    2011-01-01

    Insects are commonly infected with multiple viruses including those that cause sublethal, asymptomatic, and latent infections. Traditional methods for virus isolation typically lack the sensitivity required for detection of such viruses that are present at low abundance. In this respect, next generation sequencing technologies have revolutionized methods for the discovery and identification of new viruses from insects. Here we review both traditional and modern methods for virus discovery, and outline analysis of transcriptome and small RNA data for identification of viral sequences. We will introduce methods for de novo assembly of viral sequences, identification of potential viral sequences from BLAST data, and bioinformatics for generating full-length or near full-length viral genome sequences. We will also discuss implications of the ubiquity of viruses in insects and in insect cell lines. All of the methods described in this article can also apply to the discovery of viruses in other organisms. PMID:22069519

  1. Next-Generation Navigational Infrastructure and the ATLAS Event Store

    NASA Astrophysics Data System (ADS)

    van Gemmeren, P.; Malon, D.; Nowak, M.; Atlas Collaboration

    2014-06-01

    The ATLAS event store employs a persistence framework with extensive navigational capabilities. These include real-time back navigation to upstream processing stages, externalizable data object references, navigation from any data object to any other both within a single file and across files, and more. The 2013-2014 shutdown of the Large Hadron Collider provides an opportunity to enhance this infrastructure in several ways that both extend these capabilities and allow the collaboration to better exploit emerging computing platforms. Enhancements include redesign with efficient file merging in mind, content-based indices in optimized reference types, and support for forward references. The latter provide the potential to construct valid references to data before those data are written, a capability that is useful in a variety of multithreading, multiprocessing, distributed processing, and deferred processing scenarios. This paper describes the architecture and design of the next generation of ATLAS navigational infrastructure.

  2. Materials for next-generation desalination and water purification membranes

    NASA Astrophysics Data System (ADS)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  3. Multilayers for next generation x-ray sources

    SciTech Connect

    Bajt, S; Chapman, H N; Spiller, E; Hau-Riege, S; Alameda, J; Nelson, A J; Walton, C C; Kjornrattanawanich, B; Aquila, A; Dollar, F; Gullikson, E; Tarrio, C

    2007-05-04

    Multilayers are artificially layered structures that can be used to create optics and optical elements for a broad range of x-ray wavelengths, or can be optimized for other applications. The development of next generation x-ray sources (synchrotrons and x-ray free electron lasers) requires advances in x-ray optics. Newly developed multilayer-based mirrors and optical elements enabled efficient band-pass filtering, focusing and time resolved measurements in recent FLASH (Free Electron LASer in Hamburg) experiments. These experiments are providing invaluable feedback on the response of the multilayer structures to high intensity, short pulsed x-ray sources. This information is crucial to design optics for future x-ray free electron lasers and to benchmark computer codes that simulate damage processes.

  4. Prenatal diagnosis of Gaucher disease using next-generation sequencing.

    PubMed

    Yoshida, Shinichiro; Kido, Jun; Matsumoto, Shirou; Momosaki, Ken; Mitsubuchi, Hiroshi; Shimazu, Tomoyuki; Sugawara, Keishin; Endo, Fumio; Nakamura, Kimitoshi

    2016-09-01

    In the prenatal diagnosis of Gaucher disease (GD), glucocerebrosidase (GBA) activity is measured with fetal cells, and gene analysis is performed when pathogenic mutations in GBA are identified in advance. Herein is described prenatal diagnosis in a family in which two children had GD. Although prior genetic information for this GD family was not obtained, next-generation sequencing (NGS) was carried out for this family because immediate prenatal diagnosis was necessary. Three mutations were identified in this GD family. The father had one mutation in intron 3 (IVS2 + 1), the mother had two mutations in exons 3 (I[-20]V) and 5 (M85T), and child 1 had all three of these mutations; child 3 had none of these mutations. On NGS the present fetus (child 3) was not a carrier of GD-related mutations. NGS may facilitate early detection and treatment before disease onset.

  5. Optical-system design for next-generation pushbroom sensors

    NASA Technical Reports Server (NTRS)

    Mika, A. M.; Richard, H. L.

    1984-01-01

    Next-generation pushbroom sensors for earth observation require high-performance optics that provide high spatial resolution over wide fields of view. Specifically, blur diameters on the order of 10 to 15 microns are needed over 5 to 15 deg fields. In addition to this fundamental level of optical performance, other characteristics, such as spatial coregistration of spectral bands, flat focal plane, telecentricity, and workable pupil location are significant instrument design considerations. The detector-assembly design, optical line-of-sight pointing method and sensor packaging all hinge on these secondary attributes. Moreover, the need for broad spectral coverage, ranging from 0.4 to 12.5 microns, places an additional constraint on optical design. This paper presents alternative design forms that are candidates for wide-field pushbroom sensors, and discusses the instrument-design tradeoffs that are linked to the selection of these alternate optical approaches.

  6. Building Scientific Community Support for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    Sullivan, S. M.; Awad, A. A.; Robeck, E.

    2015-12-01

    The Next Generation Science Standards offer an opportunity to teach Earth and space science in ways that are closer to how scientists practice, and more relevant to students and to societal issues. However, the level of scientific community involvement required to capitalize on this opportunity is high. Building on the results of the Summit Meeting on the Implementation of the NGSS at the State Level , this presentation proposes a set of mechanisms and practices by which the NGSS Earth and space science community can support NGSS implementation at the national, state and local levels. Based on work with summit attendees, classroom teachers, informal educators and undergraduate faculty, this presentation proposes ways to build a network of practitioners with shared communication, approaches and resources. A set of mechanisms whereby the community can build relationships and share practices will be described, along with an emerging set of strategies for supporting groups as they take the first steps into implementation.

  7. Non-random DNA fragmentation in next-generation sequencing

    PubMed Central

    Poptsova, Maria S.; Il'icheva, Irina A.; Nechipurenko, Dmitry Yu.; Panchenko, Larisa A.; Khodikov, Mingian V.; Oparina, Nina Y.; Polozov, Robert V.; Nechipurenko, Yury D.; Grokhovsky, Sergei L.

    2014-01-01

    Next Generation Sequencing (NGS) technology is based on cutting DNA into small fragments, and their massive parallel sequencing. The multiple overlapping segments termed “reads” are assembled into a contiguous sequence. To reduce sequencing errors, every genome region should be sequenced several dozen times. This sequencing approach is based on the assumption that genomic DNA breaks are random and sequence-independent. However, previously we showed that for the sonicated restriction DNA fragments the rates of double-stranded breaks depend on the nucleotide sequence. In this work we analyzed genomic reads from NGS data and discovered that fragmentation methods based on the action of the hydrodynamic forces on DNA, produce similar bias. Consideration of this non-random DNA fragmentation may allow one to unravel what factors and to what extent influence the non-uniform coverage of various genomic regions. PMID:24681819

  8. Design Considerations for the Next Generation of General Aviation Designs

    NASA Technical Reports Server (NTRS)

    Marchesseault, Brian D.

    1995-01-01

    This paper discusses the results of research conducted at NASA Langley Research Center during two summer programs during 1994 and 1995. These programs were the NASA Advanced Design Program and the Langley Research Summer Scholars program. The work was incorporated in a three phase project at Embry-Riddle Aeronautical University which focused on development of the next generation Primary Flight Trainer, as well as in ERAU's participation in the AGATE General Aviation Design Competition. The project was conducted as part of the ERAU/NASA/USRA Advanced Design Program in Aeronautics as well as the AGATE competition. A design study was completed which encompassed the incorporation of existing conventional technologies and advanced technologies into PFT designs and advanced GA aircraft designs. Multiple aircraft configurations were also examined throughout the ADP/AGATE. Evaluations of the various technologies and configurations studied will be made and recommendations will be included.

  9. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  10. Next Generation GPS Ground Control Segment (OCX) Navigation Design

    NASA Technical Reports Server (NTRS)

    Bertiger, Willy; Bar-Sever, Yoaz; Harvey, Nate; Miller, Kevin; Romans, Larry; Weiss, Jan; Doyle, Larry; Solorzano, Tara; Petzinger, John; Stell, Al

    2010-01-01

    In February 2010, a Raytheon-led team was selected by The Air Force to develop, implement, and operate the next generation GPS ground control segment (OCX). To meet and exceed the demanding OCX navigation performance requirements, the Raytheon team partnered with ITT (Navigation lead) and JPL to adapt major elements of JPL's navigation technology, proven in the operations of the Global Differential GPS (GDGPS) System. Key design goals for the navigation subsystem include accurate ephemeris and clock accuracy (user range error), ease of model upgrades, and a smooth and safe transition from the legacy system to OCX.We will describe key elements of the innovative architecture of the OCX navigation subsystem,and demonstrate the anticipated performance of the system through high fidelity simulations withactual GPS measurements.

  11. NASDA next generation aquatic habitat for space shuttle and ISS

    NASA Astrophysics Data System (ADS)

    Masukawa, M.; Ochiai, T.; Kamigaichi, S.; Ishioka, N.; Uchida, S.; Kono, Y.; Sakimura, T.

    2003-10-01

    The National Space Development Agency of Japan (NASDA) has more than 20 years of experience developing aquatic animal experiment facilities. We are now studying the next-generation aquatic animal experiment facility or the Aquatic Habitat (AQH) for both Space Shuttle and International Space Station use. A prototype breeding system was designed and tested. Medaka adult fish were able to mate and spawn in this closed circulatory breeding system, and the larvae grewto adult fish and spawned on the 45th day after hatching. The water quality-control system using nitrifying bacteria worked well throughout the medaka breeding test. For amphibians, we also conducted the African clawed toad ( Xenopus laevis) breeding test with the same specimen chambers, although a part of circulation loop was opened to air. Xenopus larvae grew and completed metamorphosis successfully in the small specimen chamber. The first metamorphic climax started on the 30th day and was completed on the 38th day.

  12. Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Waltz, Ed

    2016-05-01

    Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.

  13. Towards the Next Generation of Space Environment Prediction Capabilities.

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.

    2015-12-01

    Since its establishment more than 15 years ago, the Community Coordinated Modeling Center (CCMC, http://ccmc.gsfc.nasa.gov) is serving as an assess point to expanding collection of state-of-the-art space environment models and frameworks as well as a hub for collaborative development of next generation space weather forecasting systems. In partnership with model developers and international research and operational communities the CCMC integrates new data streams and models from diverse sources into end-to-end space weather impacts predictive systems, identifies week links in data-model & model-model coupling and leads community efforts to fill those gaps. The presentation will highlight latest developments, progress in CCMC-led community-wide projects on testing, prototyping, and validation of models, forecasting techniques and procedures and outline ideas on accelerating implementation of new capabilities in space weather operations.

  14. Structural Modeling of the Next Generation Space Telescope's Primary Mirror

    NASA Technical Reports Server (NTRS)

    Boulet, J. A. M.

    1998-01-01

    In recent years, astronomical observations made with space telescopes have dramatically increased our understanding of the history of the universe. In particular, the cosmic Background Explorer (COBE) and the Hubble Space Telescope (HST) have yielded observations that cannot be achieved at ground-based observatories. We now have views of the universe before galaxies existed (from COBE) and views of young galaxies (from HST). But none of the existing observatories can provide views of the period in which the galaxies were born, about 100 million to one billion years after the "big bang". NASA expects the Next Generation Space Telescope (NGST) to fill this gap. An investigation into the structural modeling of the primary mirror of the NGST, its methodology and results are presented.

  15. SLAC Next-Generation High Availability Power Supply

    SciTech Connect

    Bellomo, P.; MacNair, D.; /SLAC

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  16. Next generation of variable frequency drives and application guidelines

    SciTech Connect

    Sen, P.K.; Gjorvad, S.

    1999-11-01

    With the advent in power electronics, increase in power handling capacity of silicone controlled rectifiers and other power electronic devices and the use of high speed digital signal processor (DSP), new and better control principles are now utilized for the design of numerous variable frequency drives (VFDs) for large induction motors. One of the latest technologies developed is the direct torque control (DTC) devices which utilizes the electromagnetic state of the motor to control the flux in the magnetic core and hence, the torque. The response of the drive to changes in the required torque is dramatically improved. DTC provides a precise torque control without the need for a feedback device, such as an encoder or tachogenerator. This paper will discuss the next generation of VFDs utilizing DTC and its application considerations in electric power industry.

  17. Drug resistance analysis by next generation sequencing in Leishmania

    PubMed Central

    Leprohon, Philippe; Fernandez-Prada, Christopher; Gazanion, Élodie; Monte-Neto, Rubens; Ouellette, Marc

    2014-01-01

    The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions. PMID:25941624

  18. Final Report for "Analyzing and visualizing next generation climate data"

    SciTech Connect

    Pletzer, Alexander

    2012-11-13

    The project "Analyzing and visualizing next generation climate data" adds block-structured (mosaic) grid support, parallel processing, and 2D/3D curvilinear interpolation to the open-source UV-CDAT climate data analysis tool. Block structured grid support complies to the Gridspec extension submitted to the Climate and Forecast metadata conventions. It contains two parts: aggregation of data spread over multiple mosaic tiles (M-SPEC) and aggregation of temporal data stored in different files (F-SPEC). Together, M-SPEC and F-SPEC allow users to interact with data stored in multiple files as if the data were in a single file. For computational expensive tasks, a flexible, multi-dimensional, multi-type distributed array class allows users to process data in parallel using remote memory access. Both nodal and cell based interpolation is supported; users can choose between different interpolation libraries including ESMF and LibCF depending on the their particular needs.

  19. Control of Next Generation Aircraft and Wind Turbines

    NASA Technical Reports Server (NTRS)

    Frost, Susan

    2010-01-01

    The first part of this talk will describe some of the exciting new next generation aircraft that NASA is proposing for the future. These aircraft are being designed to reduce aircraft fuel consumption and environmental impact. Reducing the aircraft weight is one approach that will be used to achieve these goals. A new control framework will be presented that enables lighter, more flexible aircraft to maintain aircraft handling qualities, while preventing the aircraft from exceeding structural load limits. The second part of the talk will give an overview of utility-scale wind turbines and their control. Results of collaboration with Dr. Balas will be presented, including new theory to adaptively control the turbine in the presence of structural modes, with the focus on the application of this theory to a high-fidelity simulation of a wind turbine.

  20. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  1. Satellite communications for the next generation telecommunication services and networks

    NASA Technical Reports Server (NTRS)

    Chitre, D. M.

    1991-01-01

    Satellite communications can play an important role in provisioning the next-generation telecommunication services and networks, provided the protocols specifying these services and networks are satellite-compatible and the satellite subnetworks, consisting of earth stations interconnected by the processor and the switch on board the satellite, interwork effectively with the terrestrial networks. The specific parameters and procedures of frame relay and broadband integrated services digital network (B-ISDN) protocols which are impacted by a satellite delay. Congestion and resource management functions for frame relay and B-ISDN are discussed in detail, describing the division of these functions between earth stations and on board the satellite. Specific onboard and ground functions are identified as potential candidates for their implementation via neural network technology.

  2. Next generation limb development and evolution: old questions, new perspectives.

    PubMed

    Zuniga, Aimée

    2015-11-15

    The molecular analysis of limb bud development in vertebrates continues to fuel our understanding of the gene regulatory networks that orchestrate the patterning, proliferation and differentiation of embryonic progenitor cells. In recent years, systems biology approaches have moved our understanding of the molecular control of limb organogenesis to the next level by incorporating next generation 'omics' approaches, analyses of chromatin architecture, enhancer-promoter interactions and gene network simulations based on quantitative datasets into experimental analyses. This Review focuses on the insights these studies have given into the gene regulatory networks that govern limb development and into the fin-to-limb transition and digit reductions that occurred during the evolutionary diversification of tetrapod limbs. PMID:26577204

  3. Executing Medical Guidelines on the Web: Towards Next Generation Healthcare

    NASA Astrophysics Data System (ADS)

    Argüello, M.; Des, J.; Fernandez-Prieto, M. J.; Perez, R.; Paniagua, H.

    There is still a lack of full integration between current Electronic Health Records (EHRs) and medical guidelines that encapsulate evidence-based medicine. Thus, general practitioners (GPs) and specialised physicians still have to read document-based medical guidelines and decide among various options for managing common non-life-threatening conditions where the selection of the most appropriate therapeutic option for each individual patient can be a difficult task. This paper presents a simulation framework and computational test-bed, called V.A.F. Framework, for supporting simulations of clinical situations that boosted the integration between Health Level Seven (HL7) and Semantic Web technologies (OWL, SWRL, and OWL-S) to achieve content layer interoperability between online clinical cases and medical guidelines, and therefore, it proves that higher integration between EHRs and evidence-based medicine can be accomplished which could lead to a next generation of healthcare systems that provide more support to physicians and increase patients' safety.

  4. A fraud management system architecture for next-generation networks.

    PubMed

    Bihina Bella, M A; Eloff, J H P; Olivier, M S

    2009-03-10

    This paper proposes an original architecture for a fraud management system (FMS) for convergent. Next-generation networks (NGNs), which are based on the Internet protocol (IP). The architecture has the potential to satisfy the requirements of flexibility and application-independency for effective fraud detection in NGNs that cannot be met by traditional FMSs. The proposed architecture has a thorough four-stage detection process that analyses billing records in IP detail record (IPDR) format - an emerging IP-based billing standard - for signs of fraud. Its key feature is its usage of neural networks in the form of self-organising maps (SOMs) to help uncover unknown NGN fraud scenarios. A prototype was implemented to test the effectiveness of using a SOM for fraud detection and is also described in the paper.

  5. Optical Property Evaluation of Next Generation Thermal Control Coatings

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Deshpande, Mukund S.; Pierson, Edward A.

    2010-01-01

    Next generation white thermal control coatings were developed via the Small Business Innovative Research program utilizing lithium silicate chemistry as a binder. Doping of the binder with additives yielded a powder that was plasma spray capable and that could be applied to light weight polymers and carbon-carbon composite surfaces. The plasma sprayed coating had acceptable beginning-of-life and end-of-live optical properties, as indicated by a successful 1.5 year exposure to the space environment in low Earth orbit. Recent studies also showed the coating to be durable to simulated space environments consisting of 1 keV and 10 keV electrons, 4.5 MeV electrons, and thermal cycling. Large scale deposition was demonstrated on a polymer matrix composite radiator panel, leading to the selection of the coating for use on the Gravity Recovery And Interior Laboratory (GRAIL) mission.

  6. A Next Generation Light Source Facility at LBNL

    SciTech Connect

    Corlett, J.N.; Austin, B.; Baptiste, K.M.; Byrd, J.M.; Denes, P.; Donahue, R.; Doolittle, L.; Falcone, R.W.; Filippetto, D.; Fournier, S.; Li, D.; Padmore, H.A.; Papadopoulos, C.; Pappas, C.; Penn, G.; Placidi, M.; Prestemon, S.; Prosnitz, D.; Qiang, J.; Ratti, A.; Reinsch, M.; Sannibale, F.; Schlueter, R.; Schoenlein, R.W.; Staples, J.W.; Vecchione, T.; Venturini, M.; Wells, R.; Wilcox, R.; Wurtele, J.; Charman, A.; Kur, E.; Zholents, A.A.

    2011-03-23

    The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multibeamline soft x-ray FEL array powered by a ~;;2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, highrepetition- rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.

  7. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  8. Next generation: In-space transportation system(s)

    NASA Technical Reports Server (NTRS)

    Huffaker, Fredrick; Redus, Jerry; Kelley, David L.

    1991-01-01

    The development of the next generation In-Space Transportation System presents a unique challenge to the design of a propulsion system for the Space Exploration Initiative (SEI). Never before have the requirements for long-life, multiple mission use, space basing, high reliability, man-rating, and minimum maintenance come together with performance in one system that must protect the lives of space travelers, support the mission logistics needs, and do so at an acceptable cost. The challenge that is presented is to quantify the bounds of these requirements. The issue is one of degree. The length of acceptable life in space, the time it takes for reuse to pay off, and the degree to which space basing is practical (full, partial, or expended) are the issues that determine the reusable bounds of a design and include dependability, contingency capabilities, resilency, and minimum dependence on a maintenance node in preparation for and during a mission. Missions to planet earth, other non-NASA missions, and planetary missions will provide important but less demanding requirements for the transportation systems of the future. The mission proposed for the SEI require a family of transportation vehicles to meet the requirements for establishing a permanent human presence on the Moon and eventually on Mars. Specialized vehicles are needed to accomplish the different phases of each mission. These large scale missions require assembly in space and will provide the greatest usage of the planned integrated transportation system. The current approach to defining the In-Space Transportation System for the SEI Moon missions with later Mars mission applications is presented. Several system development options, propulsion concepts, current/proposed activities are reviewed, and key propulsion design criteria, issues, and technology challenges for the next generation In-Space Transportation System(s) are outlined.

  9. Next Generation Sequencing Reveals the Hidden Diversity of Zooplankton Assemblages

    PubMed Central

    Harmer, Rachel A.; Somerfield, Paul J.; Atkinson, Angus

    2013-01-01

    Background Zooplankton play an important role in our oceans, in biogeochemical cycling and providing a food source for commercially important fish larvae. However, difficulties in correctly identifying zooplankton hinder our understanding of their roles in marine ecosystem functioning, and can prevent detection of long term changes in their community structure. The advent of massively parallel next generation sequencing technology allows DNA sequence data to be recovered directly from whole community samples. Here we assess the ability of such sequencing to quantify richness and diversity of a mixed zooplankton assemblage from a productive time series site in the Western English Channel. Methodology/Principle Findings Plankton net hauls (200 µm) were taken at the Western Channel Observatory station L4 in September 2010 and January 2011. These samples were analysed by microscopy and metagenetic analysis of the 18S nuclear small subunit ribosomal RNA gene using the 454 pyrosequencing platform. Following quality control a total of 419,041 sequences were obtained for all samples. The sequences clustered into 205 operational taxonomic units using a 97% similarity cut-off. Allocation of taxonomy by comparison with the National Centre for Biotechnology Information database identified 135 OTUs to species level, 11 to genus level and 1 to order, <2.5% of sequences were classified as unknowns. By comparison a skilled microscopic analyst was able to routinely enumerate only 58 taxonomic groups. Conclusions Metagenetics reveals a previously hidden taxonomic richness, especially for Copepoda and hard-to-identify meroplankton such as Bivalvia, Gastropoda and Polychaeta. It also reveals rare species and parasites. We conclude that Next Generation Sequencing of 18S amplicons is a powerful tool for elucidating the true diversity and species richness of zooplankton communities. While this approach allows for broad diversity assessments of plankton it may become increasingly

  10. Graphene Transparent Conductive Electrodes for Next- Generation Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Li, Mary; Sultana, Mahmooda; Hess, Larry

    2012-01-01

    Graphene is a single atomic layer of graphite. It is optically transparent and has high electron mobility, and thus has great potential to make transparent conductive electrodes. This invention contributes towards the development of graphene transparent conductive electrodes for next-generation microshutter arrays. The original design for the electrodes of the next generation of microshutters uses indium-tin-oxide (ITO) as the electrode material. ITO is widely used in NASA flight missions. The optical transparency of ITO is limited, and the material is brittle. Also, ITO has been getting more expensive in recent years. The objective of the invention is to develop a graphene transparent conductive electrode that will replace ITO. An exfoliation procedure was developed to make graphene out of graphite crystals. In addition, large areas of single-layer graphene were produced using low-pressure chemical vapor deposition (LPCVD) with high optical transparency. A special graphene transport procedure was developed for transferring graphene from copper substrates to arbitrary substrates. The concept is to grow large-size graphene sheets using the LPCVD system through chemical reaction, transfer the graphene film to a substrate, dope graphene to reduce the sheet resistance, and pattern the film to the dimension of the electrodes in the microshutter array. Graphene transparent conductive electrodes are expected to have a transparency of 97.7%. This covers the electromagnetic spectrum from UV to IR. In comparison, ITO electrodes currently used in microshutter arrays have 85% transparency in mid-IR, and suffer from dramatic transparency drop at a wavelength of near-IR or shorter. Thus, graphene also has potential application as transparent conductive electrodes for Schottky photodiodes in the UV region.

  11. Concept for a next-generation drop tower system

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Kaczmarczik, Ulrich; Gierse, Andreas; Greif, Andreas; Lutz, Torsten; Mawn, Simon; Siemer, Jan; Eigenbrod, Christian; von Kampen, Peter; Lämmerzahl, Claus

    2015-03-01

    The concept for a next-generation drop tower system is presented that is motivated by the scientific demand for much higher experiment repetition. This demand resulted in repetition rates of over 100 experiments per day which exceed the current capabilities of operating drop towers by far. High experiment repetition rates can for instance be realized through the novel application of a guided electro-magnetic linear drive system in a fully automatic drop tower operation. Such a new kind of drop tower system combines beneficial technologies of different free fall systems like freely falling drop capsules, capsule-in-capsule systems, and the vertical parabola method as already utilized in ZARM's worldwide unique catapult system. This proposed next-generation drop tower system named GraviTower Bremen does not only enable experiments with an outstanding microgravity quality (10-6 g, where g is the Earth's gravitational acceleration) and a duration of 6 s but also novel experiments under partial gravity conditions (0.1 g to 0.4 g) matching those of Moon or Mars with durations of up to 8.5 s. Due to its linear drive system the GraviTower allows the same very low initial acceleration and following deceleration loads onto the experiment. These can be selected according to the experiment's needs with only 1.5 g or 4 g. The engine power of the linear drive system allows also large payload dimensions and masses. The features and capabilities of the proposed GraviTower Bremen combine all advantages of current drop towers and represent the next technological step forward in ground-based research under space conditions.

  12. Next-generation wideband multimode fibers for data centers

    NASA Astrophysics Data System (ADS)

    Balemarthy, Kasyapa; Shubochkin, Roman; Sun, Yi

    2016-03-01

    Short-reach optical links such as those used in data centers pre-dominantly employ VCSELs together with laser- optimized OM4 and OM3 multimode fiber (MMF), mainly due to their reliability, energy-efficiency and low end-to-end system cost. The IEEE 802.3bm specification for 100Gbps Ethernet utilizes four parallel MMFs each operating at a serial data rate of 25Gbps. Due to the rapidly increasing internet traffic, the IEEE P802.3bs Task Force is working towards a 400Gbps Ethernet standard requiring a commensurate increase in the number of parallel fibers deployed. Using 16 parallel lanes, while feasible, is not the most efficient use of cabling. One solution to the data rate - cable density problem is the use of shortwave wavelength division multiplexing (SWDM) near 850nm. For example, employing four wavelengths separated by ~30nm (with an operational window of ~840-950nm) results in a four-fold increase in the per-fiber data rate. Furthermore, SWDM can be combined with the parallel solution to support 400Gbps with the same cable density as the current 100Gbps Ethernet solution using OM4 fiber. Conventional laser-optimized OM4 gives diminished performance at the longer wavelengths compared to 850nm. Shifting the OM4 optimization wavelength to longer wavelengths sacrifices the 850nm performance. In this paper, we present next-generation wideband multimode fibers (NG-WBMMF) that are optimized for SWDM operation using a novel design approach employing multiple dopants. We have fabricated and characterized a wideband MMF that is OM4 compliant over the 850-950nm wavelength window. BER measurements demonstrate that this next-generation WB MMF satisfies the pre-FEC requirement of 5 × 10-5 even after transmission over 300m.

  13. A Framework for the Next Generation of Risk Science

    PubMed Central

    Krewski, Daniel; Andersen, Melvin E.; Paoli, Gregory M.; Chiu, Weihsueh A.; Al-Zoughool, Mustafa; Croteau, Maxine C.; Burgoon, Lyle D.; Cote, Ila

    2014-01-01

    Objectives: In 2011, the U.S. Environmental Protection Agency initiated the NexGen project to develop a new paradigm for the next generation of risk science. Methods: The NexGen framework was built on three cornerstones: the availability of new data on toxicity pathways made possible by fundamental advances in basic biology and toxicological science, the incorporation of a population health perspective that recognizes that most adverse health outcomes involve multiple determinants, and a renewed focus on new risk assessment methodologies designed to better inform risk management decision making. Results: The NexGen framework has three phases. Phase I (objectives) focuses on problem formulation and scoping, taking into account the risk context and the range of available risk management decision-making options. Phase II (risk assessment) seeks to identify critical toxicity pathway perturbations using new toxicity testing tools and technologies, and to better characterize risks and uncertainties using advanced risk assessment methodologies. Phase III (risk management) involves the development of evidence-based population health risk management strategies of a regulatory, economic, advisory, community-based, or technological nature, using sound principles of risk management decision making. Conclusions: Analysis of a series of case study prototypes indicated that many aspects of the NexGen framework are already beginning to be adopted in practice. Citation: Krewski D, Westphal M, Andersen ME, Paoli GM, Chiu WA, Al-Zoughool M, Croteau MC, Burgoon LD, Cote I. 2014. A framework for the next generation of risk science. Environ Health Perspect 122:796–805; http://dx.doi.org/10.1289/ehp.1307260 PMID:24727499

  14. Extreme Precision Environmental Control for Next Generation Radial Velocity Spectrographs

    NASA Astrophysics Data System (ADS)

    Stefansson, Gudmundur K.; Hearty, Fred; Levi, Eric; Robertson, Paul; Mahadevan, Suvrath; Bender, Chad; Nelson, Matt; Halverson, Samuel

    2015-12-01

    Extreme radial velocity precisions of order 10cm/s will enable the discoveries of Earth-like planets around solar-type stars. Temperature and pressure variations inside a spectrograph can lead to thermomechanical instabilities in the optics and mounts, and refractive index variations in both the optical elements as well as the surrounding air. Together, these variations can easily induce instrumental drifts of several tens to hundreds of meters per second. Enclosing the full optical train in thermally stabilized high-vacuum environments minimizes such errors. In this talk, I will discuss the Environmental Control System (ECS) for the Habitable Zone Planet Finder (HPF) spectrograph: a near infrared (NIR) facility class instrument we will commission at the Hobby Eberly Telescope in 2016. The ECS will maintain the HPF optical bench stable at 180K at the sub milli-Kelvin level on the timescale of days, and at the few milli-Kelvin level over months to years. The entire spectrograph is kept under high-quality vacuum (<10-6 Torr), and environmental temperature fluctuations are compensated for with an actively controlled radiation shield outfitted with custom feedback electronics. High efficiency Multi-Layer Insulation (MLI) blankets, and a passive external thermal enclosure further isolate the optics from ambient perturbations. This environmental control scheme is versatile, suitable to stabilize both next generation NIR, and optical spectrographs. I will show how we are currently testing this control system for use with our design concept of the Extreme Precision Doppler Spectrograph (EPDS), the next generation optical spectrograph for the WIYN 3.5m telescope. Our most recent results from full-scale stability tests will be presented.

  15. A new parameter space study of cosmological microlensing

    NASA Astrophysics Data System (ADS)

    Vernardos, G.; Fluke, C. J.

    2013-09-01

    Cosmological gravitational microlensing is a useful technique for understanding the structure of the inner parts of a quasar, especially the accretion disc and the central supermassive black hole. So far, most of the cosmological microlensing studies have focused on single objects from ˜90 currently known lensed quasars. However, present and planned all-sky surveys are expected to discover thousands of new lensed systems. Using a graphics processing unit (GPU) accelerated ray-shooting code, we have generated 2550 magnification maps uniformly across the convergence (κ) and shear (γ) parameter space of interest to microlensing. We examine the effect of random realizations of the microlens positions on map properties such as the magnification probability distribution (MPD). It is shown that for most of the parameter space a single map is representative of an average behaviour. All of the simulations have been carried out on the GPU Supercomputer for Theoretical Astrophysics Research.

  16. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    SciTech Connect

    Sajadian, Sedighe

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  17. 76 FR 49776 - The Development and Evaluation of Next-Generation Smallpox Vaccines; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ... HUMAN SERVICES Food and Drug Administration The Development and Evaluation of Next-Generation Smallpox... workshop entitled ``The Development and Evaluation of Next-Generation Smallpox Vaccines.'' The purpose of... evaluation of next-generation smallpox vaccines. The public workshop will include presentations on the...

  18. Next-Generation Anchor Based Phylogeny (NexABP): Constructing phylogeny from Next-generation sequencing data

    PubMed Central

    Roychowdhury, Tanmoy; Vishnoi, Anchal; Bhattacharya, Alok

    2013-01-01

    Whole genome sequences are ideally suited for deriving evolutionary relationship among organisms. With the availability of Next Generation sequencing (NGS) datasets in an unprecedented scale, it will be highly desirable if phylogenetic analysis can be carried out using short read NGS data. We described here an anchor based approach NexABP for phylogenetic construction of closely related strains/isolates from NGS data. This approach can be used even in the absence of a fully assembled reference genome and works by reducing the complexity of the datasets without compromising results. NexABP was used for constructing phylogeny of different strains of some of the common pathogens, such as Mycobacterium tuberculosis, Vibrio cholera and Escherichia coli. In addition to classification into distinct lineages, NexABP could resolve inner branches and also allow statistical testing using bootstrap analysis. We believe that there are some clear advantages of using NexABP based phylogenetic analysis as compared to other methods. PMID:24022334

  19. The Impact of Transiting Planet Science on the Next Generation of Direct-Imaging Planet Searches

    NASA Astrophysics Data System (ADS)

    Carson, Joseph C.

    2009-02-01

    Within the next five years, a number of direct-imaging planet search instruments, like the VLT SPHERE instrument, will be coming online. To successfully carry out their programs, these instruments will rely heavily on a-priori information on planet composition, atmosphere, and evolution. Transiting planet surveys, while covering a different semi-major axis regime, have the potential to provide critical foundations for these next-generation surveys. For example, improved information on planetary evolutionary tracks may significantly impact the insights that can be drawn from direct-imaging statistical data. Other high-impact results from transiting planet science include information on mass-to-radius relationships as well as atmospheric absorption bands. The marriage of transiting planet and direct-imaging results may eventually give us the first complete picture of planet migration, multiplicity, and general evolution.

  20. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    SciTech Connect

    Nelson, C.A.; Drake, A.J.; Cook, K.H.; Bennett, D.P.; Popowski, P.; Dalal, N.; Nikolaev, S.; Alcock, C.; Axelrod, T.S.; Becker, A.C. Freeman, K.C.; Geha, M.; Griest, K.; Keller, S.C.; Lehner, M.J.; Marshall, S.L.; Minniti, D.; Pratt, M.R.; Quinn, P.J.; Stubbs, C.W.; Sutherland, W.; /Oxford U. /Oran, Sci. Tech. U. /Garching, Max Planck Inst. /McMaster U.

    2009-06-25

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at {approx}> 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.

  1. AgMIP: Next Generation Models and Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6

  2. DNA qualification workflow for next generation sequencing of histopathological samples.

    PubMed

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  3. Impact of the next generation solvent on DWPF CPC processing

    SciTech Connect

    Newell, J. D.

    2013-02-21

    As part of the Actinide Removal Process (ARP)/Modular Caustic-side Solvent Extraction Unit (MCU) Life Extension Project, a next generation solvent (NGS) and new strip acid will be deployed. Processing will begin with a blend of the current solvent and the NGS. Compositional changes in the NGS solvent and blending with the current solvent require review of previously performed work to determine if additional experimental work is required to address any impacts to the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC). The composition change involved the substitution of the N,N’-dicyclohexyl-N”-isotridecylguanidine LIX® 79 guanidine suppressor with N,N’,N”-tris (3,7-dimethyloctyl) guanidine (TiDG) guanidine suppressor. The Savannah River National Laboratory (SRNL) was requested by DWPF to evaluate any impacts to offgas generation, solvent buildup or carryover, chemical, thermal, and radiolytic stability of the blended and pure TiDG based NGS. Previous work has been performed by SRNL to evaluate impacts to CPC processing using the next generation solvent containing LIX® 79 suppressor with boric acid strip effluent. Based on previous experimental work and current literature, the following conclusions are made for processing in the CPC: No mechanism for a change in the catalytic hydrogen evolution in the CPC was identified for the NGS TiDG based solvent; The transition from the LIX® 79 based suppressor to the TiDG based suppressor is not expected to have any impact on solvent or Isopar® L accumulation; Transitioning from the current solvent to the TiDG based NGS is not expected to have an impact on solvent carryover or partitioning; No changes to the chemical stability of the solvent in the CPC process are expected; No changes to the thermal stability of the solvent in the CPC process are expected; A “worst case” scenario was examined in which all of the hydrogen atoms from the TiDG based NGS and blended solvent form hydrogen gas in the

  4. DNA qualification workflow for next generation sequencing of histopathological samples.

    PubMed

    Simbolo, Michele; Gottardi, Marisa; Corbo, Vincenzo; Fassan, Matteo; Mafficini, Andrea; Malpeli, Giorgio; Lawlor, Rita T; Scarpa, Aldo

    2013-01-01

    Histopathological samples are a treasure-trove of DNA for clinical research. However, the quality of DNA can vary depending on the source or extraction method applied. Thus a standardized and cost-effective workflow for the qualification of DNA preparations is essential to guarantee interlaboratory reproducible results. The qualification process consists of the quantification of double strand DNA (dsDNA) and the assessment of its suitability for downstream applications, such as high-throughput next-generation sequencing. We tested the two most frequently used instrumentations to define their role in this process: NanoDrop, based on UV spectroscopy, and Qubit 2.0, which uses fluorochromes specifically binding dsDNA. Quantitative PCR (qPCR) was used as the reference technique as it simultaneously assesses DNA concentration and suitability for PCR amplification. We used 17 genomic DNAs from 6 fresh-frozen (FF) tissues, 6 formalin-fixed paraffin-embedded (FFPE) tissues, 3 cell lines, and 2 commercial preparations. Intra- and inter-operator variability was negligible, and intra-methodology variability was minimal, while consistent inter-methodology divergences were observed. In fact, NanoDrop measured DNA concentrations higher than Qubit and its consistency with dsDNA quantification by qPCR was limited to high molecular weight DNA from FF samples and cell lines, where total DNA and dsDNA quantity virtually coincide. In partially degraded DNA from FFPE samples, only Qubit proved highly reproducible and consistent with qPCR measurements. Multiplex PCR amplifying 191 regions of 46 cancer-related genes was designated the downstream application, using 40 ng dsDNA from FFPE samples calculated by Qubit. All but one sample produced amplicon libraries suitable for next-generation sequencing. NanoDrop UV-spectrum verified contamination of the unsuccessful sample. In conclusion, as qPCR has high costs and is labor intensive, an alternative effective standard workflow for

  5. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  6. Microrna let-7: an emerging next-generation cancer therapeutic

    PubMed Central

    Barh, D.; Malhotra, R.; Ravi, B.; Sindhurani, P.

    2010-01-01

    In recent years, various rna-based technologies have been under evaluation as potential next-generation cancer therapeutics. Micrornas (mirnas), known to regulate the cell cycle and development, are deregulated in various cancers. Thus, they might serve as good targets or candidates in an exploration of anticancer therapeutics. One attractive candidate for this purpose is let-7 (“lethal-7”). Let-7 is underexpressed in various cancers, and restoration of its normal expression is found to inhibit cancer growth by targeting various oncogenes and inhibiting key regulators of several mitogenic pathways. In vivo, let-7 administration was found effective against mouse-model lung and breast cancers, and our computational prediction supports the possible effectiveness of let-7 in estrogen receptor (er)–positive metastatic breast cancer. Data also suggest that let-7 regulates apoptosis and cancer stem cell (csc) differentiation and can therefore be tested as a potential therapeutic in cancer treatment. However, the exact role of let-7 in cancer is not yet fully understood. There is a need to understand the causative molecular basis of let-7 alterations in cancer and to develop proper delivery systems before proceeding to therapeutic applications. This article attempts to highlight certain critical aspects of let-7’s therapeutic potential in cancer. PMID:20179807

  7. The HST/STIS Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Gregg, M. D.; Silva, D.; Rayner, J.; Worthey, G.; Valdes, F.; Pickles, A.; Rose, J.; Carney, B.; Vacca, W.

    2006-01-01

    During Cycles 10, 12, and 13, we obtained STIS G230LB, G430L, and G750L spectra of 378 bright stars covering a wide range in abundance, effective temperature, and luminosity. This HST/STIS Next Generation Spectral Library was scheduled to reach its goal of 600 targets by the end of Cycle 13 when STIS came to an untimely end. Even at 2/3 complete, the library significantly improves the sampling of stellar atmosphere parameter space compared to most other spectral libraries by including the near-UV and significant numbers of metal poor and super-solar abundance stars. Numerous calibration challenges have been encountered, some expected, some not; these arise from the use of the E1 aperture location, non-standard wavelength calibration, and, most significantly, the serious contamination of the near-UV spectra by red light. Maximizing the utility of the library depends directly on overcoming or at least minimizing these problems, especially correcting the UV spectra.

  8. Next generation sequencing data of a defined microbial mock community

    PubMed Central

    Singer, Esther; Andreopoulos, Bill; Bowers, Robert M.; Lee, Janey; Deshpande, Shweta; Chiniquy, Jennifer; Ciobanu, Doina; Klenk, Hans-Peter; Zane, Matthew; Daum, Christopher; Clum, Alicia; Cheng, Jan-Fang; Copeland, Alex; Woyke, Tanja

    2016-01-01

    Generating sequence data of a defined community composed of organisms with complete reference genomes is indispensable for the benchmarking of new genome sequence analysis methods, including assembly and binning tools. Moreover the validation of new sequencing library protocols and platforms to assess critical components such as sequencing errors and biases relies on such datasets. We here report the next generation metagenomic sequence data of a defined mock community (Mock Bacteria ARchaea Community; MBARC-26), composed of 23 bacterial and 3 archaeal strains with finished genomes. These strains span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat content and encompass a diverse abundance profile. Short read Illumina and long-read PacBio SMRT sequences of this mock community are described. These data represent a valuable resource for the scientific community, enabling extensive benchmarking and comparative evaluation of bioinformatics tools without the need to simulate data. As such, these data can aid in improving our current sequence data analysis toolkit and spur interest in the development of new tools. PMID:27673566

  9. Next-generation phenomics for the Tree of Life.

    PubMed

    Burleigh, J Gordon; Alphonse, Kenzley; Alverson, Andrew J; Bik, Holly M; Blank, Carrine; Cirranello, Andrea L; Cui, Hong; Daly, Marymegan; Dietterich, Thomas G; Gasparich, Gail; Irvine, Jed; Julius, Matthew; Kaufman, Seth; Law, Edith; Liu, Jing; Moore, Lisa; O'Leary, Maureen A; Passarotti, Maria; Ranade, Sonali; Simmons, Nancy B; Stevenson, Dennis W; Thacker, Robert W; Theriot, Edward C; Todorovic, Sinisa; Velazco, Paúl M; Walls, Ramona L; Wolfe, Joanna M; Yu, Mengjie

    2013-01-01

    The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life. PMID:23827969

  10. Next generation sequencing in predicting gene function in podophyllotoxin biosynthesis.

    PubMed

    Marques, Joaquim V; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A; May, Gregory D; Crow, John A; Davin, Laurence B; Lewis, Norman G

    2013-01-01

    Podophyllum species are sources of (-)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (-)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (-)-matairesinol into (-)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (-)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways.

  11. Quantifying Population Genetic Differentiation from Next-Generation Sequencing Data

    PubMed Central

    Fumagalli, Matteo; Vieira, Filipe G.; Korneliussen, Thorfinn Sand; Linderoth, Tyler; Huerta-Sánchez, Emilia; Albrechtsen, Anders; Nielsen, Rasmus

    2013-01-01

    Over the past few years, new high-throughput DNA sequencing technologies have dramatically increased speed and reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with the bioinformatical methods used for analyzing the data. In particular, the use of naïve methods to identify polymorphic sites and infer genotypes can inflate downstream analyses. Recently, explicit modeling of genotype probability distributions has been proposed as a method for taking genotype call uncertainty into account. Based on this idea, we propose a novel method for quantifying population genetic differentiation from next-generation sequencing data. In addition, we present a strategy for investigating population structure via principal components analysis. Through extensive simulations, we compare the new method herein proposed to approaches based on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer the fine-scale genetic structure of the sampled individuals, suggesting that employing this new method is useful for investigating the genetic relationships of populations sampled at low coverage. PMID:23979584

  12. Next Generation Trusted Radiation Identification System (NG-TRIS).

    SciTech Connect

    Flynn, Adam J.; Amai, Wendy A.; Merkle, Peter Benedict; Anderson, Lawrence Frederick; Strother, Jerry D.; Weber, Thomas M.; Etzkin, Joshua L.

    2010-05-01

    The original Trusted Radiation Identification System (TRIS) was developed from 1999-2001, featuring information barrier technology to collect gamma radiation template measurements useful for arms control regime operations. The first TRIS design relied upon a multichannel analyzer (MCA) that was external to the protected volume of the system enclosure, undesirable from a system security perspective. An internal complex programmable logic device (CPLD) contained data which was not subject to software authentication. Physical authentication of the TRIS instrument case was performed by a sensitive but slow eddy-current inspection method. This paper describes progress to date for the Next Generation TRIS (NG-TRIS), which improves the TRIS design. We have incorporated the MCA internal to the trusted system volume, achieved full authentication of CPLD data, and have devised rapid methods to authenticate the system enclosure and weld seals of the NG-TRIS enclosure. For a complete discussion of the TRIS system and components upon which NG-TRIS is based, the reader is directed to the comprehensive user's manual and system reference of Seager, et al.

  13. Probe microscopy for metrology of next generation devices

    NASA Astrophysics Data System (ADS)

    Humphris, Andrew D. L.; Zhao, Bin; Bastard, David; Bunday, Benjamin

    2016-03-01

    As device geometries shrink and the number of transistors on the wafer grows, new metrology solutions are required to support the development and production of next generation structures for the 10 nm node and beyond. This paper presents an innovative probe based microscope, the Rapid Probe Microscope (RPM), which is capable of obtaining nondestructive high resolution sub-nm information in all 3 dimensions and in a vacuum environment. The RPM is a platform supporting a novel probe detection and actuation system. It enables new imaging modes which are optimized for profiling narrow high aspect ratio structures as found in semiconductor devices. Additionally, the RPM can be operated in a vacuum environment allowing in-situ hybrid metrology solutions, for example operating alongside a CD or defect review SEM. Results are presented showing the imaging of thin lines and trenches, < 20 nm in width, using both a SEM and RPM to provide complementary information about the lateral and vertical dimensions of the structures. Comparison of images collected with different probes and at different sample locations demonstrates the ability of the RPM to operate consistently with long probe life and at high speed which is required for use in the High Volume Manufacturing (HVM) environment.

  14. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    PubMed

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions. PMID:26908260

  15. Next-Generation NASA Airborne Oceanographic Lidar System.

    PubMed

    Wright, C W; Hoge, F E; Swift, R N; Yungel, J K; Schirtzinger, C R

    2001-01-20

    The complete design and flight test of the next-generation Airborne Oceanographic Lidar (AOL-3) is detailed. The application of new technology has allowed major reductions in weight, volume, and power requirements compared with the earlier AOL sensor. Subsystem designs for the new AOL sensor include new technology in fiber optics, spectrometer detector optical train, miniature photomultiplier modules, dual-laser wavelength excitation from a single small laser source, and new receiver optical configuration. The new design reduced telescope size and maintained the same principal fluorescence and water Raman bands but essentially retained a comparable measurement accuracy. A major advancement is the implementation of single-laser simultaneous excitation of two physically separate oceanic target areas: one stimulated by 532 nm and the other by 355 nm. Backscattered fluorescence and Raman signals from both targets are acquired simultaneously by use of the same telescope and spectrometer-detector system. Two digital oscilloscopes provide temporal- and depth-resolved data from each of seven spectral emission bands.

  16. Next Generation Millimeter-Wave Radar for Safe Planetary Landing

    NASA Technical Reports Server (NTRS)

    Pollard, Brian D.; Sadowy, Gregory

    2005-01-01

    Safe, precise landing on planetary bodies requires knowledge of altitude and velocity, and may require active detection and avoidance of hazardous terrain. Radar offers a superior solution to both problems due to its ability to operate at any time of day, through dust and engine plumes, and ability to detect velocity coherently. While previous efforts have focused on providing near term solutions to the safe landing problem, we are designing radar velocimeters and radar imagers for missions beyond the next decade. In this paper we identify the fundamental issues within each approach, at arrive at strawman sensor designs at a center frequency at or around 160 GHz (Gband). We find that a G-band radar velocimeter design is capable of sub-10 cm/s accuracy, and a G-band imager is capable of sub-0.5 degree resolution over a 28 degree field of view. From those designs, we arrive at the key technology requirements for the development of power and low noise amplifiers, signal distribution methods, and antenna arrays that enable the construction of these next generation sensors.

  17. Next Generation Science Standards: All Standards, All Students

    NASA Astrophysics Data System (ADS)

    Lee, Okhee; Miller, Emily C.; Januszyk, Rita

    2014-03-01

    The Next Generation Science Standards (NGSS) offer a vision of science teaching and learning that presents both learning opportunities and demands for all students, particularly student groups that have traditionally been underserved in science classrooms. The NGSS have addressed issues of diversity and equity from their inception, and the NGSS Diversity and Equity Team completed four major charges: (1) bias reviews of the NGSS, (2) Appendix D on diversity and equity, (3) inclusion of the topic of diversity and equity across Appendices, and (4) seven case studies of diverse student groups. This article starts with an overview of the NGSS Diversity and Equity charges, followed by a description of each of the four charges. This body of work addresses what science educators can and should do to ensure that the NGSS are accessible to all students, hence the title: " All Standards, All Students." In the coming years, the nation's student diversity will continue to grow rapidly while states adopt and implement the NGSS. Therefore, science teaching for non-dominant student groups equates to science teaching for all students.

  18. Application of next-generation sequencing technologies in virology.

    PubMed

    Radford, Alan D; Chapman, David; Dixon, Linda; Chantrey, Julian; Darby, Alistair C; Hall, Neil

    2012-09-01

    The progress of science is punctuated by the advent of revolutionary technologies that provide new ways and scales to formulate scientific questions and advance knowledge. Following on from electron microscopy, cell culture and PCR, next-generation sequencing is one of these methodologies that is now changing the way that we understand viruses, particularly in the areas of genome sequencing, evolution, ecology, discovery and transcriptomics. Possibilities for these methodologies are only limited by our scientific imagination and, to some extent, by their cost, which has restricted their use to relatively small numbers of samples. Challenges remain, including the storage and analysis of the large amounts of data generated. As the chemistries employed mature, costs will decrease. In addition, improved methods for analysis will become available, opening yet further applications in virology including routine diagnostic work on individuals, and new understanding of the interaction between viral and host transcriptomes. An exciting era of viral exploration has begun, and will set us new challenges to understand the role of newly discovered viral diversity in both disease and health.

  19. Advanced Video Guidance Sensor and Next Generation Autonomous Docking Sensors

    NASA Technical Reports Server (NTRS)

    Granade, Stephen R.

    2004-01-01

    In recent decades, NASA's interest in spacecraft rendezvous and proximity operations has grown. Additional instrumentation is needed to improve manned docking operations' safety, as well as to enable telerobotic operation of spacecraft or completely autonomous rendezvous and docking. To address this need, Advanced Optical Systems, Inc., Orbital Sciences Corporation, and Marshall Space Flight Center have developed the Advanced Video Guidance Sensor (AVGS) under the auspices of the Demonstration of Autonomous Rendezvous Technology (DART) program. Given a cooperative target comprising several retro-reflectors, AVGS provides six-degree-of-freedom information at ranges of up to 300 meters for the DART target. It does so by imaging the target, then performing pattern recognition on the resulting image. Longer range operation is possible through different target geometries. Now that AVGS is being readied for its test flight in 2004, the question is: what next? Modifications can be made to AVGS, including different pattern recognition algorithms and changes to the retro-reflector targets, to make it more robust and accurate. AVGS could be coupled with other space-qualified sensors, such as a laser range-and-bearing finder, that would operate at longer ranges. Different target configurations, including the use of active targets, could result in significant miniaturization over the current AVGS package. We will discuss these and other possibilities for a next-generation docking sensor or sensor suite that involve AVGS.

  20. Next-generation electromagnetic sounding of the Moon

    NASA Astrophysics Data System (ADS)

    Grimm, Robert E.; Delory, Gregory T.

    2012-12-01

    Electromagnetic (EM) sounding of the Moon, largely performed during the Apollo program, provided constraints on core size, mantle composition, and interior temperature. We present new analytical and numerical models that demonstrate the abilities of a next generation of EM sounding to (1) determine the electrical structure of the outermost 500 km and its lateral variability, specifically to understand the extent of upper-mantle discontinuities and the structure of the Procellarum KREEP Terrane; (2) determine the temperature and composition of the lower mantle; and (3) better constrain core size. New EM sounding need not rely on the Apollo methodology, which analyzed the magnetic transfer function between a surface station and a distantly orbiting satellite. Instead, a network of magnetometers (as few as two) can be used, or a complete sounding can be performed from a single station by measuring both electric and magnetic fields. Furthermore, in the magnetotail or lunar wake, sensors can operate from orbit, at altitudes up to the desired investigation depth. The twin-spacecraft ARTEMIS mission will test these methods and a lunar geophysical network will provide definitive results.

  1. Deciphering next-generation pharmacogenomics: an information technology perspective.

    PubMed

    Potamias, George; Lakiotaki, Kleanthi; Katsila, Theodora; Lee, Ming Ta Michael; Topouzis, Stavros; Cooper, David N; Patrinos, George P

    2014-07-01

    In the post-genomic era, the rapid evolution of high-throughput genotyping technologies and the increased pace of production of genetic research data are continually prompting the development of appropriate informatics tools, systems and databases as we attempt to cope with the flood of incoming genetic information. Alongside new technologies that serve to enhance data connectivity, emerging information systems should contribute to the creation of a powerful knowledge environment for genotype-to-phenotype information in the context of translational medicine. In the area of pharmacogenomics and personalized medicine, it has become evident that database applications providing important information on the occurrence and consequences of gene variants involved in pharmacokinetics, pharmacodynamics, drug efficacy and drug toxicity will become an integral tool for researchers and medical practitioners alike. At the same time, two fundamental issues are inextricably linked to current developments, namely data sharing and data protection. Here, we discuss high-throughput and next-generation sequencing technology and its impact on pharmacogenomics research. In addition, we present advances and challenges in the field of pharmacogenomics information systems which have in turn triggered the development of an integrated electronic 'pharmacogenomics assistant'. The system is designed to provide personalized drug recommendations based on linked genotype-to-phenotype pharmacogenomics data, as well as to support biomedical researchers in the identification of pharmacogenomics-related gene variants. The provisioned services are tuned in the framework of a single-access pharmacogenomics portal.

  2. Application of next-generation sequencing technologies in Neurology

    PubMed Central

    Jiang, Teng; Tan, Meng-Shan

    2014-01-01

    Genetic risk factors that underlie many rare and common neurological diseases remain poorly understood because of the multi-factorial and heterogeneous nature of these disorders. Although genome-wide association studies (GWAS) have successfully uncovered numerous susceptibility genes for these diseases, odds ratios associated with risk alleles are generally low and account for only a small proportion of estimated heritability. These results implicated that there are rare (present in <5% of the population) but not causative variants exist in the pathogenesis of these diseases, which usually have large effect size and cannot be captured by GWAS. With the decreasing cost of next-generation sequencing (NGS) technologies, whole-genome sequencing (WGS) and whole-exome sequencing (WES) have enabled the rapid identification of rare variants with large effect size, which made huge progress in understanding the basis of many Mendelian neurological conditions as well as complex neurological diseases. In this article, recent NGS-based studies that aimed to investigate genetic causes for neurological diseases, including Alzheimer’s disease, Parkinson’s disease, epilepsy, multiple sclerosis, stroke, amyotrophic lateral sclerosis and spinocerebellar ataxias, have been reviewed. In addition, we also discuss the future directions of NGS applications in this article. PMID:25568878

  3. Toward robust AV conferencing on next-generation networks

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Cheng, Liang; El Zarki, Magda

    2005-01-01

    In order to enable a truly pervasive computing environment, next generation networks (including B3G and 4G) will merge the broadband wireless and wireline networking infrastructure. However, due to the tremendous complexity in administration and the unreliability of the wireless channel, provision of hard-guarantees for services on such networks will not happen in the foreseeable future. This consequently makes it particularly challenging to offer viable AV conferencing services due to their stringent synchronization, delay and data fidelity requirements. We propose in this paper a robust application-level solution for wireless mobile AV conferencing on B3G/4G networks. Expecting no special treatment from the network, we apply a novel adaptive delay and synchronization control mechanism to maintain the synchronization and reduce the latency as much as possible. We also employ a robust video coding technique that has better error-resilience capability. We investigate the performance of the proposed solution through simulations using a three-state hidden Markov chain as the generic end-to-end transport channel model. The results show that our scheme yields tight synchronization performance, relatively low end-to-end latency and satisfactory presentation quality. The scheme successfully provides a fairly robust AV conferencing service.

  4. Toward robust AV conferencing on next-generation networks

    NASA Astrophysics Data System (ADS)

    Liu, Haining; Cheng, Liang; El Zarki, Magda

    2004-12-01

    In order to enable a truly pervasive computing environment, next generation networks (including B3G and 4G) will merge the broadband wireless and wireline networking infrastructure. However, due to the tremendous complexity in administration and the unreliability of the wireless channel, provision of hard-guarantees for services on such networks will not happen in the foreseeable future. This consequently makes it particularly challenging to offer viable AV conferencing services due to their stringent synchronization, delay and data fidelity requirements. We propose in this paper a robust application-level solution for wireless mobile AV conferencing on B3G/4G networks. Expecting no special treatment from the network, we apply a novel adaptive delay and synchronization control mechanism to maintain the synchronization and reduce the latency as much as possible. We also employ a robust video coding technique that has better error-resilience capability. We investigate the performance of the proposed solution through simulations using a three-state hidden Markov chain as the generic end-to-end transport channel model. The results show that our scheme yields tight synchronization performance, relatively low end-to-end latency and satisfactory presentation quality. The scheme successfully provides a fairly robust AV conferencing service.

  5. Applications of Next Generation Sequencing to Blood and Marrow Transplantation

    PubMed Central

    Chapman, Michael; Warren, Edus H.; Wu, Catherine J.

    2011-01-01

    Since the advent of next-generation sequencing (NGS) in 2005, there has been an explosion of published studies employing the technology to tackle previously intractable questions in many disparate biological fields. This has been coupled with technology development that has occurred at a remarkable pace. This review discusses the potential impact of this new technology on the field of blood and marrow stem cell transplantation. Hematologic malignancies have been among the forefront of those cancers whose genomes have been the subject of NGS. Hence, these studies have opened novel areas of biology that can be exploited for prognostic, diagnostic, and therapeutic means. Because of the unprecedented depth, resolution and accuracy achievable by NGS, this technology is well-suited for providing detailed information on the diversity of receptors that govern antigen recognition; this approach has the potential to contribute important insights into understanding the biologic effects of transplantation. Finally, the ability to perform comprehensive tumor sequencing provides a systematic approach to the discovery of genetic alterations that can encode peptides with restricted tumor expression, and hence serve as potential target antigens of GvL responses. Altogether, this increasingly affordable technology will undoubtedly impact the future practice and care of patients with hematologic malignancies. PMID:22226099

  6. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach

    PubMed Central

    Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P.

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions. PMID:26908260

  7. First Results with the Next Generation Geodetic VLBI System

    NASA Astrophysics Data System (ADS)

    Niell, A. E.

    2012-12-01

    The next generation geodetic VLBI instrument is being developed with a goal of 1 mm position uncertainty in twenty-four hours. The broadband signal chain, which is essential for obtaining the required delay accuracy from a network of relatively small antennas, has been implemented on the 12 meter antenna at Goddard Space Flight Center, Maryland, USA, and on the 18 meter Westford antenna at Haystack Observatory, Massachusetts, USA. The first geodetic-style observing session has been completed. Data were recorded from four 512 MHz bands spanning the range 3.2 to 9.9 GHz at a total rate of 8 Gigabits/second. The signal chain was composed of commercially available broadband feeds, low noise amplifiers, digital back ends, and recorders. The six hour session demonstrated that the broadband hardware performs as expected, achieving delay precisions of a few picoseconds. The position uncertainties for the 12m antenna of ~9mm in vertical and 2mm in horizontal, obtained in a preliminary analysis from only 100 30-second observations, are probably dominated by incomplete modeling of the atmosphere. A potentially serious conflict of the broadband VLBI frequency coverage with the SLR aircraft-avoidance radars, which transmit at 9.4 GHz, and with the DORIS transmission near 2 GHz has become apparent during the implementation and testing of the VLBI2010 system. Mitigation efforts are being studied, but for this initial geodetic session, 20 percent of scheduled observations had to be dropped to avoid potential damage from the SLR radar.

  8. Developing the Next Generation Shell Buckling Design Factors and Technologies

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2012-01-01

    NASA s Shell Buckling Knockdown Factor (SBKF) Project was established in the spring of 2007 by the NASA Engineering and Safety Center (NESC) in collaboration with the Constellation Program and Exploration Systems Mission Directorate. The SBKF project has the current goal of developing less-conservative, robust shell buckling design factors (a.k.a. knockdown factors) and design and analysis technologies for light-weight stiffened metallic launch vehicle (LV) structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s LV development and performance risks. In particular, it is expected that the results from this project will help reduce the reliance on testing, provide high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. The SBKF project objectives and approach used to develop and validate new design technologies are presented, and provide a glimpse into the future of design of the next generation of buckling-critical launch vehicle structures.

  9. Recommendations on e-infrastructures for next-generation sequencing.

    PubMed

    Spjuth, Ola; Bongcam-Rudloff, Erik; Dahlberg, Johan; Dahlö, Martin; Kallio, Aleksi; Pireddu, Luca; Vezzi, Francesco; Korpelainen, Eija

    2016-01-01

    With ever-increasing amounts of data being produced by next-generation sequencing (NGS) experiments, the requirements placed on supporting e-infrastructures have grown. In this work, we provide recommendations based on the collective experiences from participants in the EU COST Action SeqAhead for the tasks of data preprocessing, upstream processing, data delivery, and downstream analysis, as well as long-term storage and archiving. We cover demands on computational and storage resources, networks, software stacks, automation of analysis, education, and also discuss emerging trends in the field. E-infrastructures for NGS require substantial effort to set up and maintain over time, and with sequencing technologies and best practices for data analysis evolving rapidly it is important to prioritize both processing capacity and e-infrastructure flexibility when making strategic decisions to support the data analysis demands of tomorrow. Due to increasingly demanding technical requirements we recommend that e-infrastructure development and maintenance be handled by a professional service unit, be it internal or external to the organization, and emphasis should be placed on collaboration between researchers and IT professionals. PMID:27267963

  10. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    SciTech Connect

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; Ferretti, J.; Filippi, A.; Fox, G.; Galata, G.; García-Tecocoatzi, H.; Glazier, Derek; Grube, B.; Hanhart, C.; Hoferichter, M.; Hughes, S. M.; Ireland, David G.; Ketzer, B.; Klein, Franz J.; Kubis, B.; Liu, B.; Masjuan, P.; Mathieu, Vincent; McKinnon, Brian; Mitchel, R.; Nerling, F.; Paul, S.; Peláez, J. R.; Rademacker, J.; Rizzo, Alessandro; Salgado, Carlos; Santopinto, E.; Sarantsev, Andrey V.; Sato, Toru; Schlüter, T.; da Silva, M. L.L.; Stankovic, I.; Strakovsky, Igor; Szczepaniak, Adam; Vassallo, A.; Walford, Natalie K.; Watts, Daniel P.

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopy in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.

  11. Next-generation technologies and data analytical approaches for epigenomics.

    PubMed

    Mensaert, Klaas; Denil, Simon; Trooskens, Geert; Van Criekinge, Wim; Thas, Olivier; De Meyer, Tim

    2014-04-01

    Epigenetics refers to the collection of heritable features that modulate the genome-environment interaction without being encoded in the actual DNA sequence. While being mitotically and sometimes even meiotically transmitted, epigenetic traits often demonstrate extensive flexibility. This allows cells to acquire diverse gene expression patterns during differentiation, but also to adapt to a changing environment. However, epigenetic alterations are not always beneficial to the organism, as they are, for example, frequently identified in human diseases such as cancer. Accurate and cost-efficient genome-scale profiling of epigenetic features is thus of major importance to pinpoint these "epimutations," for example, to monitor the epigenetic impact of environmental exposure. Over the last decade, the field of epigenetics has been revolutionized by several innovative "epigenomics" technologies exactly addressing this need. In this review, we discuss and compare widely used next-generation methods to assess DNA methylation and hydroxymethylation, noncoding RNA expression, histone modifications, and nucleosome positioning. Although recent methods are typically based on "second-generation" sequencing, we also pay attention to still commonly used array- and PCR-based methods, and look forward to the additional advantages of single-molecule sequencing. As the current bottleneck in epigenomics research is the analysis rather than generation of data, the basic difficulties and problem-solving strategies regarding data preprocessing and statistical analysis are introduced for the different technologies. Finally, we also consider the complications associated with epigenomic studies of species with yet unsequenced genomes and possible solutions.

  12. Impact of Next Generation Sequencing Techniques in Food Microbiology

    PubMed Central

    Mayo, Baltasar; Rachid, Caio T. C. C; Alegría, Ángel; Leite, Analy M. O; Peixoto, Raquel S; Delgado, Susana

    2014-01-01

    Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. PMID:25132799

  13. Advances in Alport syndrome diagnosis using next-generation sequencing

    PubMed Central

    Artuso, Rosangela; Fallerini, Chiara; Dosa, Laura; Scionti, Francesca; Clementi, Maurizio; Garosi, Guido; Massella, Laura; Epistolato, Maria Carmela; Mancini, Roberta; Mari, Francesca; Longo, Ilaria; Ariani, Francesca; Renieri, Alessandra; Bruttini, Mirella

    2012-01-01

    Alport syndrome (ATS) is a hereditary nephropathy often associated with sensorineural hypoacusis and ocular abnormalities. Mutations in the COL4A5 gene cause X-linked ATS. Mutations in COL4A4 and COL4A3 genes have been reported in both autosomal recessive and autosomal dominant ATS. The conventional mutation screening, performed by DHPLC and/or Sanger sequencing, is time-consuming and has relatively high costs because of the absence of hot spots and to the high number of exons per gene: 51 (COL4A5), 48 (COL4A4) and 52 (COL4A3). Several months are usually necessary to complete the diagnosis, especially in cases with less informative pedigrees. To overcome these limitations, we designed a next-generation sequencing (NGS) protocol enabling simultaneous detection of all possible variants in the three genes. We used a method coupling selective amplification to the 454 Roche DNA sequencing platform (Genome Sequencer junior). The application of this technology allowed us to identify the second mutation in two ATS patients (p.Ser1147Phe in COL4A3 and p.Arg1682Trp in COL4A4) and to reconsider the diagnosis of ATS in a third patient. This study, therefore, illustrates the successful application of NGS to mutation screening of Mendelian disorders with locus heterogeneity. PMID:21897443

  14. Advances in Alport syndrome diagnosis using next-generation sequencing.

    PubMed

    Artuso, Rosangela; Fallerini, Chiara; Dosa, Laura; Scionti, Francesca; Clementi, Maurizio; Garosi, Guido; Massella, Laura; Epistolato, Maria Carmela; Mancini, Roberta; Mari, Francesca; Longo, Ilaria; Ariani, Francesca; Renieri, Alessandra; Bruttini, Mirella

    2012-01-01

    Alport syndrome (ATS) is a hereditary nephropathy often associated with sensorineural hypoacusis and ocular abnormalities. Mutations in the COL4A5 gene cause X-linked ATS. Mutations in COL4A4 and COL4A3 genes have been reported in both autosomal recessive and autosomal dominant ATS. The conventional mutation screening, performed by DHPLC and/or Sanger sequencing, is time-consuming and has relatively high costs because of the absence of hot spots and to the high number of exons per gene: 51 (COL4A5), 48 (COL4A4) and 52 (COL4A3). Several months are usually necessary to complete the diagnosis, especially in cases with less informative pedigrees. To overcome these limitations, we designed a next-generation sequencing (NGS) protocol enabling simultaneous detection of all possible variants in the three genes. We used a method coupling selective amplification to the 454 Roche DNA sequencing platform (Genome Sequencer junior). The application of this technology allowed us to identify the second mutation in two ATS patients (p.Ser1147Phe in COL4A3 and p.Arg1682Trp in COL4A4) and to reconsider the diagnosis of ATS in a third patient. This study, therefore, illustrates the successful application of NGS to mutation screening of Mendelian disorders with locus heterogeneity.

  15. Next-generation diagnostics: gene panel, exome, or whole genome?

    PubMed

    Sun, Yu; Ruivenkamp, Claudia A L; Hoffer, Mariëtte J V; Vrijenhoek, Terry; Kriek, Marjolein; van Asperen, Christi J; den Dunnen, Johan T; Santen, Gijs W E

    2015-06-01

    Although the benefits of next-generation sequencing (NGS) for the diagnosis of heterogeneous diseases such as intellectual disability (ID) are undisputed, there is little consensus on the relative merits of targeted enrichment, whole-exome sequencing (WES) or whole-genome sequencing (WGS). To answer this question, WES and WGS data from the same nine samples were compared, and WES was shown not to miss any variants identified by WGS in a gene panel including ∼500 genes linked to ID (500GP). Additionally, deeply sequenced WES data were shown to adequately cover ∼99% of the 500GP; thus, little additional benefit was to be expected from a targeted enrichment approach. To reduce costs, minimal sequencing criteria were determined by investigating the relation between sequenced reads and outcome parameters such as coverage and variant yield. Our analysis indicated that 60 million reads yielded a mean coverage of ∼60×: ∼97% of the 500GP sequences were sufficiently covered to exclude variants, whereas variant yield was ∼99.5% and false-positive and false-negative rates were controlled. Our findings indicate that WES is currently the optimal approach to ID diagnostics. This result depends on the capture kit and sequencing strategy used. The developed framework however is amenable to other sequencing approaches.

  16. Next-generation sequencing for understanding and accelerating crop domestication.

    PubMed

    Henry, Robert J

    2012-01-01

    Next generation Sequencing (NGS) provides a powerful tool for discovery of domestication genes in crop plants and their wild relatives. The accelerated domestication of new plant species as crops may be facilitated by this knowledge. Re-sequencing of domesticated genotypes can identify regions of low diversity associated with domestication. Species-specific data can be obtained from related wild species by whole-genome shot-gun sequencing. This sequence data can be used to design species specific polymerase chain reaction (PCR) primers. Sequencing of the products of PCR amplification of target genes can be used to explore genetic variation in large numbers of genes and gene families. Novel allelic variation in close or distant relatives can be characterized by NGS. Examples of recent applications of NGS to capture of genetic diversity for crop improvement include rice, sugarcane and Eucalypts. Populations of large numbers of individuals can be screened rapidly. NGS supports the rapid domestication of new plant species and the efficient identification and capture of novel genetic variation from related species.

  17. The Next Generation of Positron Emission Tomography Radiopharmaceuticals in Oncology

    PubMed Central

    Rice, Samuel L.; Roney, Celeste A.; Daumar, Pierre; Lewis, Jason S.

    2015-01-01

    Although 18F-fluorodeoxyglucose (18F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively. PMID:21624561

  18. The next generation of positron emission tomography radiopharmaceuticals in oncology.

    PubMed

    Rice, Samuel L; Roney, Celeste A; Daumar, Pierre; Lewis, Jason S

    2011-07-01

    Although (18)F-fluorodeoxyglucose ((18)F-FDG) is still the most widely used positron emission tomography (PET) radiotracer, there are a few well-known limitations to its use. The last decade has seen the development of new PET probes for in vivo visualization of specific molecular targets, along with important technical advances in the production of positron-emitting radionuclides and their related labeling methods. As such, a broad range of new PET tracers are in preclinical development or have recently entered clinical trials. The topics covered in this review include labeling methods, biological targets, and the most recent preclinical or clinical data of some of the next generation of PET radiopharmaceuticals. This review, which is by no means exhaustive, has been separated into sections related to the PET radionuclide used for radiolabeling: fluorine-18, for the labeling of agents such as FACBC, FDHT, choline, and Galacto-RGD; carbon-11, for the labeling of choline; gallium-68, for the labeling of peptides such as DOTATOC and bombesin analogs; and the long-lived radionuclides iodine-124 and zirconium-89 for the labeling of monoclonal antibodies cG250, and J591 and trastuzumab, respectively.

  19. RICOR development of the next generation highly reliable rotary cryocooler

    NASA Astrophysics Data System (ADS)

    Regev, Itai; Nachman, Ilan; Livni, Dorit; Riabzev, Sergey; Filis, Avishai; Segal, Victor

    2016-05-01

    Early rotary cryocoolers were designed for the lifetime of a few thousands operating hours. Ricor K506 model's life expectancy was only 5,000 hours, then the next generation K508 model was designed to achieve 10,000 operating hours in basic conditions, while the modern K508N was designed for 20,000 operating hours. Nowadays, the new challenges in the field of rotary cryocoolers require development of a new generation cooler that could compete with the linear cryocooler reliability, achieving the lifetime goal of 30,000 operating hours, and even more. Such new advanced cryocooler can be used for upgrade existing systems, or to serve the new generation of high-temperature detectors that are currently under development, enabling the cryocooler to work more efficiently in the field. The improvement of the rotary cryocooler reliability is based on a deep analysis and understating of the root failure causes, finding solutions to reduce bearings wear, using modern materials and lubricants. All of those were taken into consideration during the development of the new generation rotary coolers. As a part of reliability challenges, new digital controller was also developed, which allows new options, such as discrete control of the operating frequency, and can extend the cooler operating hours due to new controlling technique. In addition, the digital controller will be able to collect data during cryocooler operation, aiming end of life prediction.

  20. Next Generation Sequencing in Predicting Gene Function in Podophyllotoxin Biosynthesis*

    PubMed Central

    Marques, Joaquim V.; Kim, Kye-Won; Lee, Choonseok; Costa, Michael A.; May, Gregory D.; Crow, John A.; Davin, Laurence B.; Lewis, Norman G.

    2013-01-01

    Podophyllum species are sources of (−)-podophyllotoxin, an aryltetralin lignan used for semi-synthesis of various powerful and extensively employed cancer-treating drugs. Its biosynthetic pathway, however, remains largely unknown, with the last unequivocally demonstrated intermediate being (−)-matairesinol. Herein, massively parallel sequencing of Podophyllum hexandrum and Podophyllum peltatum transcriptomes and subsequent bioinformatics analyses of the corresponding assemblies were carried out. Validation of the assembly process was first achieved through confirmation of assembled sequences with those of various genes previously established as involved in podophyllotoxin biosynthesis as well as other candidate biosynthetic pathway genes. This contribution describes characterization of two of the latter, namely the cytochrome P450s, CYP719A23 from P. hexandrum and CYP719A24 from P. peltatum. Both enzymes were capable of converting (−)-matairesinol into (−)-pluviatolide by catalyzing methylenedioxy bridge formation and did not act on other possible substrates tested. Interestingly, the enzymes described herein were highly similar to methylenedioxy bridge-forming enzymes from alkaloid biosynthesis, whereas candidates more similar to lignan biosynthetic enzymes were catalytically inactive with the substrates employed. This overall strategy has thus enabled facile further identification of enzymes putatively involved in (−)-podophyllotoxin biosynthesis and underscores the deductive power of next generation sequencing and bioinformatics to probe and deduce medicinal plant biosynthetic pathways. PMID:23161544

  1. Genetic markers, genotyping methods & next generation sequencing in Mycobacterium tuberculosis

    PubMed Central

    Desikan, Srinidhi; Narayanan, Sujatha

    2015-01-01

    Molecular epidemiology (ME) is one of the main areas in tuberculosis research which is widely used to study the transmission epidemics and outbreaks of tubercle bacilli. It exploits the presence of various polymorphisms in the genome of the bacteria that can be widely used as genetic markers. Many DNA typing methods apply these genetic markers to differentiate various strains and to study the evolutionary relationships between them. The three widely used genotyping tools to differentiate Mycobacterium tuberculosis strains are IS6110 restriction fragment length polymorphism (RFLP), spacer oligotyping (Spoligotyping), and mycobacterial interspersed repeat units - variable number of tandem repeats (MIRU-VNTR). A new prospect towards ME was introduced with the development of whole genome sequencing (WGS) and the next generation sequencing (NGS) methods, where the entire genome is sequenced that not only helps in pointing out minute differences between the various sequences but also saves time and the cost. NGS is also found to be useful in identifying single nucleotide polymorphisms (SNPs), comparative genomics and also various aspects about transmission dynamics. These techniques enable the identification of mycobacterial strains and also facilitate the study of their phylogenetic and evolutionary traits. PMID:26205019

  2. Solution processing of next-generation nanocrystal solar cells

    NASA Astrophysics Data System (ADS)

    van Embden, J.; Chesman, A. S. R.; Duffy, N. W.; Della Gaspera, E.; Jasieniak, J. J.

    2013-12-01

    Next-generation solar cells will be fabricated from low-cost and earth abundant elements, using processes that are amenable to printing on a variety of light-weight substrates. The utilization of compositionally and structurally controlled colloidal nanocrystals as building blocks for such devices fulfills these criteria. Our recent efforts in developing kesterite Cu2ZnSnS4 (CZTS) nanocrystals, one of the most promising materials to emerge in this area, enable the deposition of CZTS thin-films directly from a variety of solution-processed methods. Nanocrystalline thin films possess poor electronic properties, which precludes their use in solar cell devices. In order to overcome this, thermal treatment steps under an atmosphere of vaporous selenium are applied to induce large scale crystallite growth and the production of selenized CZTSSe films. This process results in a highly photoactive p-type layer. The n-type cadmium sulfide layer is also deposited from solution using chemical bath deposition. We will discuss each of these accomplishments in detail, highlighting the significant challenges that need to be overcome in order to fabricate working CZTSSe thin film solar cells.

  3. Modeling Pilot State in Next Generation Aircraft Alert Systems

    NASA Technical Reports Server (NTRS)

    Carlin, Alan S.; Alexander, Amy L.; Schurr, Nathan

    2011-01-01

    The Next Generation Air Transportation System will introduce new, advanced sensor technologies into the cockpit that must convey a large number of potentially complex alerts. Our work focuses on the challenges associated with prioritizing aircraft sensor alerts in a quick and efficient manner, essentially determining when and how to alert the pilot This "alert decision" becomes very difficult in NextGen due to the following challenges: 1) the increasing number of potential hazards, 2) the uncertainty associated with the state of potential hazards as well as pilot slate , and 3) the limited time to make safely-critical decisions. In this paper, we focus on pilot state and present a model for anticipating duration and quality of pilot behavior, for use in a larger system which issues aircraft alerts. We estimate pilot workload, which we model as being dependent on factors including mental effort, task demands. and task performance. We perform a mathematically rigorous analysis of the model and resulting alerting plans. We simulate the model in software and present simulated results with respect to manipulation of the pilot measures.

  4. Next Generation Sequencing of Pooled Samples: Guideline for Variants’ Filtering

    PubMed Central

    Anand, Santosh; Mangano, Eleonora; Barizzone, Nadia; Bordoni, Roberta; Sorosina, Melissa; Clarelli, Ferdinando; Corrado, Lucia; Martinelli Boneschi, Filippo; D’Alfonso, Sandra; De Bellis, Gianluca

    2016-01-01

    Sequencing large number of individuals, which is often needed for population genetics studies, is still economically challenging despite falling costs of Next Generation Sequencing (NGS). Pool-seq is an alternative cost- and time-effective option in which DNA from several individuals is pooled for sequencing. However, pooling of DNA creates new problems and challenges for accurate variant call and allele frequency (AF) estimation. In particular, sequencing errors confound with the alleles present at low frequency in the pools possibly giving rise to false positive variants. We sequenced 996 individuals in 83 pools (12 individuals/pool) in a targeted re-sequencing experiment. We show that Pool-seq AFs are robust and reliable by comparing them with public variant databases and in-house SNP-genotyping data of individual subjects of pools. Furthermore, we propose a simple filtering guideline for the removal of spurious variants based on the Kolmogorov-Smirnov statistical test. We experimentally validated our filters by comparing Pool-seq to individual sequencing data showing that the filters remove most of the false variants while retaining majority of true variants. The proposed guideline is fairly generic in nature and could be easily applied in other Pool-seq experiments. PMID:27670852

  5. Next-generation digital camera integration and software development issues

    NASA Astrophysics Data System (ADS)

    Venkataraman, Shyam; Peters, Ken; Hecht, Richard

    1998-04-01

    This paper investigates the complexities associated with the development of next generation digital cameras due to requirements in connectivity and interoperability. Each successive generation of digital camera improves drastically in cost, performance, resolution, image quality and interoperability features. This is being accomplished by advancements in a number of areas: research, silicon, standards, etc. As the capabilities of these cameras increase, so do the requirements for both hardware and software. Today, there are two single chip camera solutions in the market including the Motorola MPC 823 and LSI DCAM- 101. Real time constraints for a digital camera may be defined by the maximum time allowable between capture of images. Constraints in the design of an embedded digital camera include processor architecture, memory, processing speed and the real-time operating systems. This paper will present the LSI DCAM-101, a single-chip digital camera solution. It will present an overview of the architecture and the challenges in hardware and software for supporting streaming video in such a complex device. Issues presented include the development of the data flow software architecture, testing and integration on this complex silicon device. The strategy for optimizing performance on the architecture will also be presented.

  6. Toward the Next Generation of Air Quality Monitoring Indicators

    NASA Technical Reports Server (NTRS)

    Hsu, Angel; Reuben, Aaron; Shindell, Drew; deSherbinin, Alex; Levy, Marc

    2013-01-01

    This paper introduces an initiative to bridge the state of scientific knowledge on air pollution with the needs of policymakers and stakeholders to design the "next generation" of air quality indicators. As a first step this initiative assesses current monitoring and modeling associated with a number of important pollutants with an eye toward identifying knowledge gaps and scientific needs that are a barrier to reducing air pollution impacts on human and ecosystem health across the globe. Four outdoor air pollutants were considered e particulate matter, ozone, mercury, and Persistent Organic Pollutants (POPs) e because of their clear adverse impacts on human and ecosystem health and because of the availability of baseline data for assessment for each. While other papers appearing in this issue will address each pollutant separately, this paper serves as a summary of the initiative and presents recommendations for needed investments to provide improved measurement, monitoring, and modeling data for policyrelevant indicators. The ultimate goal of this effort is to enable enhanced public policy responses to air pollution by linking improved data and measurement methods to decision-making through the development of indicators that can allow policymakers to better understand the impacts of air pollution and, along with source attribution based on modeling and measurements, facilitate improved policies to solve it. The development of indicators represents a crucial next step in this process.

  7. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  8. Glass Formulation for Next Generation Cold Crucible Induction Melter

    SciTech Connect

    Kim, Dong-Sang; Schweiger, Michael J.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.; Smith, Gary L.

    2011-12-21

    Transformational melter technologies are being considered to support mission acceleration within the U.S. Department of Energy (DOE) complex. New glass formulations are required to take full advantage of the next generation melters, for example, the cold crucible induction melter (CCIM). The key advantage of CCIM technology over current reference technologies is its capability to provide higher processing temperatures, which can lead to an increased waste throughput rate by achieving higher waste loadings and by increasing the feed processing rate. Various waste compositions within the DOE complex were evaluated to determine their potential for successfully demonstrating the unique advantages of the CCIM technology. Glass formulations that satisfy a set of constraints for product quality and assumed CCIM processing conditions were developed for two Hanford waste streams, AZ-101 high-level waste (HLW) and AN-105 low-activity waste (LAW). Three glasses selected for AZ-101 HLW have waste loadings of 40, 42.5, and 45 wt%. The 45-wt% waste loading corresponds to a 22% increase from 37 wt%, which is the maximum expected waste loading based on the current reference formulation. One glass selected for AN-105 LAW has a waste loading of 31.3 wt% at 24 wt% Na2O in glass, which is a 14% increase from the current reference formulation maximum of 21 wt% Na2O. These four glasses are planned for scaled melter tests for initial demonstration of the CCIM technologies for Hanford wastes.

  9. Next generation sequencing: Coping with rare genetic diseases in China

    PubMed Central

    Cram, David S; Zhou, Daixing

    2016-01-01

    Summary With a population of 1.4 billion, China shares the largest burden of rare genetic diseases worldwide. Current estimates suggest that there are over ten million individuals afflicted with chromosome disease syndromes and well over one million individuals with monogenic disease. Care of patients with rare genetic diseases remains a largely unmet need due to the paucity of available and affordable treatments. Over recent years, there is increasing recognition of the need for affirmative action by government, health providers, clinicians and patients. The advent of new next generation sequencing (NGS) technologies such as whole genome/exome sequencing, offers an unprecedented opportunity to provide large-scale population screening of the Chinese population to identify the molecular causes of rare genetic diseases. As a surrogate for lack of effective treatments, recent development and implementation of noninvasive prenatal testing (NIPT) in China has the greatest potential, as a single technology, for reducing the number of children born with rare genetic diseases. PMID:27672536

  10. Assessing the Genetics Content in the Next Generation Science Standards.

    PubMed

    Lontok, Katherine S; Zhang, Hubert; Dougherty, Michael J

    2015-01-01

    Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards.

  11. Next generation radiotherapy biomaterials loaded with high-Z nanoparticles

    NASA Astrophysics Data System (ADS)

    Cifter, Gizem

    This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.

  12. Next generation sequencing for disorders of sex development.

    PubMed

    Tobias, Edward S; McElreavey, Ken

    2014-01-01

    Advances in sequencing technologies are having a major impact on our understanding of the genetic causes of many human congenital disorders. Next generation sequencing (NGS) approaches are particularly important for determining the inherited genetic changes leading to disorders of sex development (DSD). Knowledge of the genetic pathways involved in ovary or testis development is incomplete and, currently, a molecular diagnosis is made in a minority of DSD cases. Here, we review the different NGS strategies applied to the analysis of rare diseases and highlight the potential pitfalls and advantages that are associated with each approach. We also discuss the problems of variant calling as well as the challenges involved in the identification and interpretation of pathogenic mutations from NGS datasets. As clinics start to use NGS on a routine basis, a close collaboration between the molecular and clinical geneticists is essential. This is particularly relevant in the context of unsolicited genetic findings, where clear guidelines regarding counseling, truly informed consent and precise data interpretation will be invaluable.

  13. Analysis Tools for Next-Generation Hadron Spectroscopy Experiments

    DOE PAGES

    Battaglieri, Marco; Briscoe, William; Celentano, Andrea; Chung, Suh-Urk; D'Angelo, Annalisa; De Vita, Rafaella; Döring, Michael; Dudek, Jozef; Eidelman, S.; Fegan, Stuart; et al

    2015-01-01

    The series of workshops on New Partial-Wave Analysis Tools for Next-Generation Hadron Spectroscopy Experiments was initiated with the ATHOS 2012 meeting, which took place in Camogli, Italy, June 20-22, 2012. It was followed by ATHOS 2013 in Kloster Seeon near Munich, Germany, May 21-24, 2013. The third, ATHOS3, meeting is planned for April 13-17, 2015 at The George Washington University Virginia Science and Technology Campus, USA. The workshops focus on the development of amplitude analysis tools for meson and baryon spectroscopy, and complement other programs in hadron spectroscopy organized in the recent past including the INT-JLab Workshop on Hadron Spectroscopymore » in Seattle in 2009, the International Workshop on Amplitude Analysis in Hadron Spectroscopy at the ECT*-Trento in 2011, the School on Amplitude Analysis in Modern Physics in Bad Honnef in 2011, the Jefferson Lab Advanced Study Institute Summer School in 2012, and the School on Concepts of Modern Amplitude Analysis Techniques in Flecken-Zechlin near Berlin in September 2013. The aim of this document is to summarize the discussions that took place at the ATHOS 2012 and ATHOS 2013 meetings. We do not attempt a comprehensive review of the field of amplitude analysis, but offer a collection of thoughts that we hope may lay the ground for such a document.« less

  14. Molecular Characterization of Transgenic Events Using Next Generation Sequencing Approach.

    PubMed

    Guttikonda, Satish K; Marri, Pradeep; Mammadov, Jafar; Ye, Liang; Soe, Khaing; Richey, Kimberly; Cruse, James; Zhuang, Meibao; Gao, Zhifang; Evans, Clive; Rounsley, Steve; Kumpatla, Siva P

    2016-01-01

    Demand for the commercial use of genetically modified (GM) crops has been increasing in light of the projected growth of world population to nine billion by 2050. A prerequisite of paramount importance for regulatory submissions is the rigorous safety assessment of GM crops. One of the components of safety assessment is molecular characterization at DNA level which helps to determine the copy number, integrity and stability of a transgene; characterize the integration site within a host genome; and confirm the absence of vector DNA. Historically, molecular characterization has been carried out using Southern blot analysis coupled with Sanger sequencing. While this is a robust approach to characterize the transgenic crops, it is both time- and resource-consuming. The emergence of next-generation sequencing (NGS) technologies has provided highly sensitive and cost- and labor-effective alternative for molecular characterization compared to traditional Southern blot analysis. Herein, we have demonstrated the successful application of both whole genome sequencing and target capture sequencing approaches for the characterization of single and stacked transgenic events and compared the results and inferences with traditional method with respect to key criteria required for regulatory submissions.

  15. Next Generation Space Telescope Integrated Science Module Data System

    NASA Technical Reports Server (NTRS)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  16. Performance benchmarks for a next generation numerical dynamo model

    NASA Astrophysics Data System (ADS)

    Matsui, Hiroaki; Heien, Eric; Aubert, Julien; Aurnou, Jonathan M.; Avery, Margaret; Brown, Ben; Buffett, Bruce A.; Busse, Friedrich; Christensen, Ulrich R.; Davies, Christopher J.; Featherstone, Nicholas; Gastine, Thomas; Glatzmaier, Gary A.; Gubbins, David; Guermond, Jean-Luc; Hayashi, Yoshi-Yuki; Hollerbach, Rainer; Hwang, Lorraine J.; Jackson, Andrew; Jones, Chris A.; Jiang, Weiyuan; Kellogg, Louise H.; Kuang, Weijia; Landeau, Maylis; Marti, Philippe; Olson, Peter; Ribeiro, Adolfo; Sasaki, Youhei; Schaeffer, Nathanaël.; Simitev, Radostin D.; Sheyko, Andrey; Silva, Luis; Stanley, Sabine; Takahashi, Futoshi; Takehiro, Shin-ichi; Wicht, Johannes; Willis, Ashley P.

    2016-05-01

    Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ˜106 processor cores, paving the way for more realistic simulations in the next model generation.

  17. High-Throughput Microdissection for Next-Generation Sequencing

    PubMed Central

    Rosenberg, Avi Z.; Armani, Michael D.; Fetsch, Patricia A.; Xi, Liqiang; Pham, Tina Thu; Raffeld, Mark; Chen, Yun; O’Flaherty, Neil; Stussman, Rebecca; Blackler, Adele R.; Du, Qiang; Hanson, Jeffrey C.; Roth, Mark J.; Filie, Armando C.; Roh, Michael H.; Emmert-Buck, Michael R.; Hipp, Jason D.; Tangrea, Michael A.

    2016-01-01

    Precision medicine promises to enhance patient treatment through the use of emerging molecular technologies, including genomics, transcriptomics, and proteomics. However, current tools in surgical pathology lack the capability to efficiently isolate specific cell populations in complex tissues/tumors, which can confound molecular results. Expression microdissection (xMD) is an immuno-based cell/subcellular isolation tool that procures targets of interest from a cytological or histological specimen. In this study, we demonstrate the accuracy and precision of xMD by rapidly isolating immunostained targets, including cytokeratin AE1/AE3, p53, and estrogen receptor (ER) positive cells and nuclei from tissue sections. Other targets procured included green fluorescent protein (GFP) expressing fibroblasts, in situ hybridization positive Epstein-Barr virus nuclei, and silver stained fungi. In order to assess the effect on molecular data, xMD was utilized to isolate specific targets from a mixed population of cells where the targets constituted only 5% of the sample. Target enrichment from this admixed cell population prior to next-generation sequencing (NGS) produced a minimum 13-fold increase in mutation allele frequency detection. These data suggest a role for xMD in a wide range of molecular pathology studies, as well as in the clinical workflow for samples where tumor cell enrichment is needed, or for those with a relative paucity of target cells. PMID:26999048

  18. Design of the next generation cognitive mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Amjad, Ali; Wang, Huiqiang; Chen, Xiaoming

    Cognition capability has been seen by researchers as the way forward for the design of next generation of Mobile Ad Hoc Networks (MANETs). The reason why a cognitive paradigm would be more suited to a MANET is because MANETs are highly dynamic networks. The topology may change very frequently during the operation of a MANET. Traffic patterns in MANETs can vary from time to time depending on the need of the users. The size of a MANET and node density is also very dynamic and may change without any predictable pattern. In a MANET environment, most of these parameters may change very rapidly and keeping track of them manually would be very difficult. Previous studies have shown that the performance of a certain routing approach in MANETs is dependent on the size of the network and node density. The choice of whether to use a reactive or proactive routing approach comes down to the network size parameter. Static or offline approaches to fine tune a MANET to achieve certain performance goals is hence not very productive as a lot of these parameters keep changing during the course of operation of MANETs. Similarly, the performance of MANETs would improve greatly if the MAC layer entity could operate in a more flexible manner. In this paper we propose a cognitive MANET design that will ensure that all these dynamic parameters are automatically monitored and decisions are based on the current status of these parameters.

  19. Design reliability assurance program for Korean next generation reactor

    SciTech Connect

    Lee, Beom-Su; Han, Jin-Kyu; Na, Jang Hwan; Yoo, Kyung Yeong

    1997-12-01

    The Korean Next Generation Reactor (KNGR) project is to develop standardized nuclear power plant design for the construction of future nuclear power plants in Korea. The main purpose of the KNGR project is to develop the advanced nuclear power plants, which enhance safety and economics significantly through the incorporation of design concepts for severe accident prevention and mitigation, supplementary passive safety concept, simplification and application of modularization and so on. For those, Probabilistic Safety Assessment (PSA) and availability study will be performed at the early stage of the design, and the Design Reliability Assurance Program (D-RAP) is applied in the development of the KNGR to ensure that the safety and availability evaluated in the PSA and availability study at the early phase of the design is maintained through the detailed design, construction, procurement and operation of the plants. This paper presents the D-RAP concept that could be applied at the stage of the basic design of the nuclear power plants, based on the models for the reference plants and/or similar plants. 4 refs., 1 fig.

  20. Next generation of global land cover characterization, mapping, and monitoring

    NASA Astrophysics Data System (ADS)

    Giri, C.; Pengra, B.; Long, J.; Loveland, T. R.

    2013-12-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m-1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (˜30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  1. Assessing the Genetics Content in the Next Generation Science Standards

    PubMed Central

    Lontok, Katherine S.; Zhang, Hubert; Dougherty, Michael J.

    2015-01-01

    Science standards have a long history in the United States and currently form the backbone of efforts to improve primary and secondary education in science, technology, engineering, and math (STEM). Although there has been much political controversy over the influence of standards on teacher autonomy and student performance, little light has been shed on how well standards cover science content. We assessed the coverage of genetics content in the Next Generation Science Standards (NGSS) using a consensus list of American Society of Human Genetics (ASHG) core concepts. We also compared the NGSS against state science standards. Our goals were to assess the potential of the new standards to support genetic literacy and to determine if they improve the coverage of genetics concepts relative to state standards. We found that expert reviewers cannot identify ASHG core concepts within the new standards with high reliability, suggesting that the scope of content addressed by the standards may be inconsistently interpreted. Given results that indicate that the disciplinary core ideas (DCIs) included in the NGSS documents produced by Achieve, Inc. clarify the content covered by the standards statements themselves, we recommend that the NGSS standards statements always be viewed alongside their supporting disciplinary core ideas. In addition, gaps exist in the coverage of essential genetics concepts, most worryingly concepts dealing with patterns of inheritance, both Mendelian and complex. Finally, state standards vary widely in their coverage of genetics concepts when compared with the NGSS. On average, however, the NGSS support genetic literacy better than extant state standards. PMID:26222583

  2. Comparison of DNA Quantification Methods for Next Generation Sequencing

    PubMed Central

    Robin, Jérôme D.; Ludlow, Andrew T.; LaRanger, Ryan; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Next Generation Sequencing (NGS) is a powerful tool that depends on loading a precise amount of DNA onto a flowcell. NGS strategies have expanded our ability to investigate genomic phenomena by referencing mutations in cancer and diseases through large-scale genotyping, developing methods to map rare chromatin interactions (4C; 5C and Hi-C) and identifying chromatin features associated with regulatory elements (ChIP-seq, Bis-Seq, ChiA-PET). While many methods are available for DNA library quantification, there is no unambiguous gold standard. Most techniques use PCR to amplify DNA libraries to obtain sufficient quantities for optical density measurement. However, increased PCR cycles can distort the library’s heterogeneity and prevent the detection of rare variants. In this analysis, we compared new digital PCR technologies (droplet digital PCR; ddPCR, ddPCR-Tail) with standard methods for the titration of NGS libraries. DdPCR-Tail is comparable to qPCR and fluorometry (QuBit) and allows sensitive quantification by analysis of barcode repartition after sequencing of multiplexed samples. This study provides a direct comparison between quantification methods throughout a complete sequencing experiment and provides the impetus to use ddPCR-based quantification for improvement of NGS quality. PMID:27048884

  3. A next generation field-portable goniometer system

    NASA Astrophysics Data System (ADS)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  4. Next-generation transfer reaction studies with JENSA

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.

    2015-04-01

    Next generation radioactive ion beam facilities are being planned and built across the globe, and with them an incredible new array of exotic isotopes will be available for study. To keep pace with the state of nuclear physics research, both new detector systems and new target systems are needed. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target is one of these new target systems, designed to provide a target of light gas that is localized, dense, and pure. The JENSA gas jet target was originally constructed at Oak Ridge National Laboratory for testing and characterization, and has now moved to the ReA3 reaccelerated beam hall at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University for use with radioactive beams. The availability of a pure, localized target of light gases will enable exceptional scattering and transfer reaction studies with these exotic beams. Some examples will be given, and future plans will be discussed. This work is supported by the US DOE Office of Science (Office of Nuclear Physics) and the NSF.

  5. Persona: Network Layer Anonymity and Accountability for Next Generation Internet

    NASA Astrophysics Data System (ADS)

    Mallios, Yannis; Modi, Sudeep; Agarwala, Aditya; Johns, Christina

    Individual privacy has become a major concern, due to the intrusive nature of the services and websites that collect increasing amounts of private information. One of the notions that can lead towards privacy protection is that of anonymity. Unfortunately, anonymity can also be maliciously exploited by attackers to hide their actions and identity. Thus some sort of accountability is also required. The current Internet has failed to provide both properties, as anonymity techniques are difficult to fully deploy and thus are easily attacked, while the Internet provides limited level of accountability. The Next Generation Internet (NGI) provides us with the opportunity to examine how these conflicting properties could be efficiently applied and thus protect users’ privacy while holding malicious users accountable. In this paper we present the design of a scheme, called Persona that can provide anonymity and accountability in the network layer of NGI. More specifically, our design requirements are to combine these two conflicting desires in a stateless manner within routers. Persona allows users to choose different levels of anonymity, while it allows the discovery of malicious nodes.

  6. Next generation sequencing: new tools in immunology and hematology

    PubMed Central

    Mori, Antonio; Deola, Sara; Xumerle, Luciano; Mijatovic, Vladan; Malerba, Giovanni

    2013-01-01

    One of the hallmarks of the adaptive immune system is the specificity of B and T cell receptors. Thanks to somatic recombination, a large repertoire of receptors can be generated within an individual that guarantee the recognition of a vast number of antigens. Monoclonal antibodies have limited applicability, given the high degree of diversity among these receptors, in BCR and TCR monitoring. Furthermore, with regard to cancer, better characterization of complex genomes and the ability to monitor tumor-specific cryptic mutations or translocations are needed to develop better tailored therapies. Novel technologies, by enhancing the ability of BCR and TCR monitoring, can help in the search for minimal residual disease during hematological malignancy diagnosis and follow-up, and can aid in improving bone marrow transplantation techniques. Recently, a novel technology known as next generation sequencing has been developed; this allows the recognition of unique sequences and provides depth of coverage, heterogeneity, and accuracy of sequencing. This provides a powerful tool that, along with microarray analysis for gene expression, may become integral in resolving the remaining key problems in hematology. This review describes the state of the art of this novel technology, its application in the immunological and hematological fields, and the possible benefits it will provide for the hematology and immunology community. PMID:24466547

  7. Next generation sequencing technologies: tool to study avian virus diversity.

    PubMed

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses. PMID:25790045

  8. Next generation sequencing technologies: tool to study avian virus diversity.

    PubMed

    Kapgate, S S; Barbuddhe, S B; Kumanan, K

    2015-03-01

    Increased globalisation, climatic changes and wildlife-livestock interface led to emergence of novel viral pathogens or zoonoses that have become serious concern to avian, animal and human health. High biodiversity and bird migration facilitate spread of the pathogen and provide reservoirs for emerging infectious diseases. Current classical diagnostic methods designed to be virus-specific or aim to be limited to group of viral agents, hinder identifying of novel viruses or viral variants. Recently developed approaches of next-generation sequencing (NGS) provide culture-independent methods that are useful for understanding viral diversity and discovery of novel virus, thereby enabling a better diagnosis and disease control. This review discusses the different possible steps of a NGS study utilizing sequence-independent amplification, high-throughput sequencing and bioinformatics approaches to identify novel avian viruses and their diversity. NGS lead to the identification of a wide range of new viruses such as picobirnavirus, picornavirus, orthoreovirus and avian gamma coronavirus associated with fulminating disease in guinea fowl and is also used in describing viral diversity among avian species. The review also briefly discusses areas of viral-host interaction and disease associated causalities with newly identified avian viruses.

  9. A repetitive sequence assembler based on next-generation sequencing.

    PubMed

    Lian, S; Tu, Y; Wang, Y; Chen, X; Wang, L

    2016-01-01

    Repetitive sequences of variable length are common in almost all eukaryotic genomes, and most of them are presumed to have important biomedical functions and can cause genomic instability. Next-generation sequencing (NGS) technologies provide the possibility of identifying capturing these repetitive sequences directly from the NGS data. In this study, we assessed the performances in identifying capturing repeats of leading assemblers, such as Velvet, SOAPdenovo, SGA, MSR-CA, Bambus2, ALLPATHS-LG, and AByss using three real NGS datasets. Our results indicated that most of them performed poorly in capturing the repeats. Consequently, we proposed a repetitive sequence assembler, named NGSReper, for capturing repeats from NGS data. Simulated datasets were used to validate the feasibility of NGSReper. The results indicate that the completeness of capturing repeat is up to 99%. Cross validation was performed in three real NGS datasets, and extensive comparisons indicate that NGSReper performed best in terms of completeness and accuracy in capturing repeats. In conclusion, NGSReper is an appropriate and suitable tool for capturing repeats directly from NGS data. PMID:27525861

  10. Human identification by lice: A Next Generation Sequencing challenge.

    PubMed

    Pilli, Elena; Agostino, Alessandro; Vergani, Debora; Salata, Elena; Ciuna, Ignazio; Berti, Andrea; Caramelli, David; Lambiase, Simonetta

    2016-09-01

    Rapid and progressive advances in molecular biology techniques and the advent of Next Generation Sequencing (NGS) have opened new possibilities for analyses also in the identification of entomological matrixes. Insects and other arthropods are widespread in nature and those found at a crime scene can provide a useful contribution to forensic investigations. Entomological evidence is used by experts to define the postmortem interval (PMI), which is essentially based on morphological recognition of the insect and an estimation of its insect life cycle stage. However, molecular genotyping methods can also provide an important support for forensic entomological investigations when the identification of species or human genetic material is required. This case study concerns a collection of insects found in the house of a woman who died from unknown causes. Initially the insects were identified morphologically as belonging to the Pediculidae family, and then, human DNA was extracted and analyzed from their gastrointestinal tract. The application of the latest generation forensic DNA assays, such as the Quantifiler(®) Trio DNA Quantification Kit and the HID-Ion AmpliSeq™ Identity Panel (Applied Biosystems(®)), individuated the presence of human DNA in the samples and determined the genetic profile. PMID:27289564

  11. Next generation sequencing and its applications in forensic genetics.

    PubMed

    Børsting, Claus; Morling, Niels

    2015-09-01

    It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics.

  12. NG6: Integrated next generation sequencing storage and processing environment

    PubMed Central

    2012-01-01

    Background Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. Results We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. Conclusions NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data. PMID:22958229

  13. California Framework for the Next Generation Science Standards

    NASA Astrophysics Data System (ADS)

    d'Alessio, M. A.

    2015-12-01

    In September 2013, the California State Board of Education approved a revision to the state's science education standards, adopting the Next Generation Science Standards for the nation's most populous state. That action began a multi-year transition process that is ongoing. While the standards have been formally adopted, instructional materials and assessments that align with these standards have not yet been approved by the state. The approval process includes adopting a framework document that lays out the criteria for insructional materials and provides guidance to districts and teachers about how NGSS can be implemented effectively (not to be confused with the 2012 NRC Framework document). This document is currently available in draft form and has been approved by an appointed subcommittee, will undergo two periods of public comment, and is expected to be finalized by September 2016. We provide a summary of the process California is taking to implement NGSS, present highlights of the current document, and give a summary of the first public comment period.

  14. Laser Design for Next Generation Compton Scattering Source at LLNL

    NASA Astrophysics Data System (ADS)

    Shverdin, Miro; Albert, Felicie; Anderson, Scott; Bayramian, Andy; Betts, Shawn; Cross, Rick; Ebbers, Chris; Gibson, David; Marsh, Roark; Messerly, Michael; Hartemann, Fred; Scarpetti, Ray; Siders, Craig; Barty, Chris

    2010-11-01

    We describe laser systems designed for the next generation Mono-Energetic Gamma-Ray (MEGa-ray) Compton scattering light source at LLNL. An 80 fs Yb:doped fiber oscillator seeds a photogun drive laser (PDL) and a high energy interaction system laser (ILS). Utilizing chirped pulse amplification (CPA) in fiber, the PDL will generate 80 μJ, spatially and temporally shaped pulses at 263 nm at 120 Hz precisely synchronized to the linac RF. The PDL system employs large mode photonic bandgap fibers and large area multi-layer dielectric gratings to generate over 1mJ per pulse with high recompression fidelity prior to frequency quadrupling. The high energy, 120 W ILS utilizes (CPA) in Nd:YAG to amplify a sub-nanometer bandwidth 20 μJ pulses from a fiber system to 1 J. A novel pulse stretcher provides a dispersion of over 7000 ps/nm to expand a several picosecond wide seed pulse to 6 ns. After amplification, the pulse is recompressed to 10 ps with a hyper-dispersive pulse compressor. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Deciphering next-generation pharmacogenomics: an information technology perspective

    PubMed Central

    Potamias, George; Lakiotaki, Kleanthi; Katsila, Theodora; Lee, Ming Ta Michael; Topouzis, Stavros; Cooper, David N.; Patrinos, George P.

    2014-01-01

    In the post-genomic era, the rapid evolution of high-throughput genotyping technologies and the increased pace of production of genetic research data are continually prompting the development of appropriate informatics tools, systems and databases as we attempt to cope with the flood of incoming genetic information. Alongside new technologies that serve to enhance data connectivity, emerging information systems should contribute to the creation of a powerful knowledge environment for genotype-to-phenotype information in the context of translational medicine. In the area of pharmacogenomics and personalized medicine, it has become evident that database applications providing important information on the occurrence and consequences of gene variants involved in pharmacokinetics, pharmacodynamics, drug efficacy and drug toxicity will become an integral tool for researchers and medical practitioners alike. At the same time, two fundamental issues are inextricably linked to current developments, namely data sharing and data protection. Here, we discuss high-throughput and next-generation sequencing technology and its impact on pharmacogenomics research. In addition, we present advances and challenges in the field of pharmacogenomics information systems which have in turn triggered the development of an integrated electronic ‘pharmacogenomics assistant’. The system is designed to provide personalized drug recommendations based on linked genotype-to-phenotype pharmacogenomics data, as well as to support biomedical researchers in the identification of pharmacogenomics-related gene variants. The provisioned services are tuned in the framework of a single-access pharmacogenomics portal. PMID:25030607

  16. Next-generation phenomics for the Tree of Life.

    PubMed

    Burleigh, J Gordon; Alphonse, Kenzley; Alverson, Andrew J; Bik, Holly M; Blank, Carrine; Cirranello, Andrea L; Cui, Hong; Daly, Marymegan; Dietterich, Thomas G; Gasparich, Gail; Irvine, Jed; Julius, Matthew; Kaufman, Seth; Law, Edith; Liu, Jing; Moore, Lisa; O'Leary, Maureen A; Passarotti, Maria; Ranade, Sonali; Simmons, Nancy B; Stevenson, Dennis W; Thacker, Robert W; Theriot, Edward C; Todorovic, Sinisa; Velazco, Paúl M; Walls, Ramona L; Wolfe, Joanna M; Yu, Mengjie

    2013-01-01

    The phenotype represents a critical interface between the genome and the environment in which organisms live and evolve. Phenotypic characters also are a rich source of biodiversity data for tree building, and they enable scientists to reconstruct the evolutionary history of organisms, including most fossil taxa, for which genetic data are unavailable. Therefore, phenotypic data are necessary for building a comprehensive Tree of Life. In contrast to recent advances in molecular sequencing, which has become faster and cheaper through recent technological advances, phenotypic data collection remains often prohibitively slow and expensive. The next-generation phenomics project is a collaborative, multidisciplinary effort to leverage advances in image analysis, crowdsourcing, and natural language processing to develop and implement novel approaches for discovering and scoring the phenome, the collection of phentotypic characters for a species. This research represents a new approach to data collection that has the potential to transform phylogenetics research and to enable rapid advances in constructing the Tree of Life. Our goal is to assemble large phenomic datasets built using new methods and to provide the public and scientific community with tools for phenomic data assembly that will enable rapid and automated study of phenotypes across the Tree of Life.

  17. Unraveling genomic variation from next generation sequencing data.

    PubMed

    Pavlopoulos, Georgios A; Oulas, Anastasis; Iacucci, Ernesto; Sifrim, Alejandro; Moreau, Yves; Schneider, Reinhard; Aerts, Jan; Iliopoulos, Ioannis

    2013-01-01

    Elucidating the content of a DNA sequence is critical to deeper understand and decode the genetic information for any biological system. As next generation sequencing (NGS) techniques have become cheaper and more advanced in throughput over time, great innovations and breakthrough conclusions have been generated in various biological areas. Few of these areas, which get shaped by the new technological advances, involve evolution of species, microbial mapping, population genetics, genome-wide association studies (GWAs), comparative genomics, variant analysis, gene expression, gene regulation, epigenetics and personalized medicine. While NGS techniques stand as key players in modern biological research, the analysis and the interpretation of the vast amount of data that gets produced is a not an easy or a trivial task and still remains a great challenge in the field of bioinformatics. Therefore, efficient tools to cope with information overload, tackle the high complexity and provide meaningful visualizations to make the knowledge extraction easier are essential. In this article, we briefly refer to the sequencing methodologies and the available equipment to serve these analyses and we describe the data formats of the files which get produced by them. We conclude with a thorough review of tools developed to efficiently store, analyze and visualize such data with emphasis in structural variation analysis and comparative genomics. We finally comment on their functionality, strengths and weaknesses and we discuss how future applications could further develop in this field.

  18. Revealing the Complexity of Breast Cancer by Next Generation Sequencing

    PubMed Central

    Verigos, John; Magklara, Angeliki

    2015-01-01

    Over the last few years the increasing usage of “-omic” platforms, supported by next-generation sequencing, in the analysis of breast cancer samples has tremendously advanced our understanding of the disease. New driver and passenger mutations, rare chromosomal rearrangements and other genomic aberrations identified by whole genome and exome sequencing are providing missing pieces of the genomic architecture of breast cancer. High resolution maps of breast cancer methylomes and sequencing of the miRNA microworld are beginning to paint the epigenomic landscape of the disease. Transcriptomic profiling is giving us a glimpse into the gene regulatory networks that govern the fate of the breast cancer cell. At the same time, integrative analysis of sequencing data confirms an extensive intertumor and intratumor heterogeneity and plasticity in breast cancer arguing for a new approach to the problem. In this review, we report on the latest findings on the molecular characterization of breast cancer using NGS technologies, and we discuss their potential implications for the improvement of existing therapies. PMID:26561834

  19. Pattern Recognition on Read Positioning in Next Generation Sequencing

    PubMed Central

    Byeon, Boseon; Kovalchuk, Igor

    2016-01-01

    The usefulness and the utility of the next generation sequencing (NGS) technology are based on the assumption that the DNA or cDNA cleavage required to generate short sequence reads is random. Several previous reports suggest the existence of sequencing bias of NGS reads. To address this question in greater detail, we analyze NGS data from four organisms with different GC content, Plasmodium falciparum (19.39%), Arabidopsis thaliana (36.03%), Homo sapiens (40.91%) and Streptomyces coelicolor (72.00%). Using machine learning techniques, we recognize the pattern that the NGS read start is positioned in the local region where the nucleotide distribution is dissimilar from the global nucleotide distribution. We also demonstrate that the mono-nucleotide distribution underestimates sequencing bias, and the recognized pattern is explained largely by the distribution of multi-nucleotides (di-, tri-, and tetra- nucleotides) rather than mono-nucleotides. This implies that the correction of sequencing bias needs to be performed on the basis of the multi-nucleotide distribution. Providing companion software to quantify the effect of the recognized pattern on read positioning, we exemplify that the bias correction based on the mono-nucleotide distribution may not be sufficient to clean sequencing bias. PMID:27299343

  20. Advanced Combustion Systems for Next Generation Gas Turbines

    SciTech Connect

    Joel Haynes; Jonathan Janssen; Craig Russell; Marcus Huffman

    2006-01-01

    Next generation turbine power plants will require high efficiency gas turbines with higher pressure ratios and turbine inlet temperatures than currently available. These increases in gas turbine cycle conditions will tend to increase NOx emissions. As the desire for higher efficiency drives pressure ratios and turbine inlet temperatures ever higher, gas turbines equipped with both lean premixed combustors and selective catalytic reduction after treatment eventually will be unable to meet the new emission goals of sub-3 ppm NOx. New gas turbine combustors are needed with lower emissions than the current state-of-the-art lean premixed combustors. In this program an advanced combustion system for the next generation of gas turbines is being developed with the goal of reducing combustor NOx emissions by 50% below the state-of-the-art. Dry Low NOx (DLN) technology is the current leader in NOx emission technology, guaranteeing 9 ppm NOx emissions for heavy duty F class gas turbines. This development program is directed at exploring advanced concepts which hold promise for meeting the low emissions targets. The trapped vortex combustor is an advanced concept in combustor design. It has been studied widely for aircraft engine applications because it has demonstrated the ability to maintain a stable flame over a wide range of fuel flow rates. Additionally, it has shown significantly lower NOx emission than a typical aircraft engine combustor and with low CO at the same time. The rapid CO burnout and low NOx production of this combustor made it a strong candidate for investigation. Incremental improvements to the DLN technology have not brought the dramatic improvements that are targeted in this program. A revolutionary combustor design is being explored because it captures many of the critical features needed to significantly reduce emissions. Experimental measurements of the combustor performance at atmospheric conditions were completed in the first phase of the program