USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies were used to rapidly and efficiently sequence the genome of the domestic turkey (Meleagris gallopavo). The current genome assembly (~1.1 Gb) includes 917 Mb of sequence assigned to chromosomes. Innate heterozygosity of the sequenced bird allowed discovery of...
Caruccio, Nicholas
2011-01-01
DNA library preparation is a common entry point and bottleneck for next-generation sequencing. Current methods generally consist of distinct steps that often involve significant sample loss and hands-on time: DNA fragmentation, end-polishing, and adaptor-ligation. In vitro transposition with Nextera™ Transposomes simultaneously fragments and covalently tags the target DNA, thereby combining these three distinct steps into a single reaction. Platform-specific sequencing adaptors can be added, and the sample can be enriched and bar-coded using limited-cycle PCR to prepare di-tagged DNA fragment libraries. Nextera technology offers a streamlined, efficient, and high-throughput method for generating bar-coded libraries compatible with multiple next-generation sequencing platforms.
Next-Generation Sequencing in the Mycology Lab.
Zoll, Jan; Snelders, Eveline; Verweij, Paul E; Melchers, Willem J G
New state-of-the-art techniques in sequencing offer valuable tools in both detection of mycobiota and in understanding of the molecular mechanisms of resistance against antifungal compounds and virulence. Introduction of new sequencing platform with enhanced capacity and a reduction in costs for sequence analysis provides a potential powerful tool in mycological diagnosis and research. In this review, we summarize the applications of next-generation sequencing techniques in mycology.
Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi
2018-03-20
Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics.
Gong, Jun; Pan, Kathy; Fakih, Marwan; Pal, Sumanta; Salgia, Ravi
2018-01-01
Advancements in next-generation sequencing have greatly enhanced the development of biomarker-driven cancer therapies. The affordability and availability of next-generation sequencers have allowed for the commercialization of next-generation sequencing platforms that have found widespread use for clinical-decision making and research purposes. Despite the greater availability of tumor molecular profiling by next-generation sequencing at our doorsteps, the achievement of value-based care, or improving patient outcomes while reducing overall costs or risks, in the era of precision oncology remains a looming challenge. In this review, we highlight available data through a pre-established and conceptualized framework for evaluating value-based medicine to assess the cost (efficiency), clinical benefit (effectiveness), and toxicity (safety) of genomic profiling in cancer care. We also provide perspectives on future directions of next-generation sequencing from targeted panels to whole-exome or whole-genome sequencing and describe potential strategies needed to attain value-based genomics. PMID:29644010
USDA-ARS?s Scientific Manuscript database
Current technologies for next generation sequencing (NGS) have revolutionized metagenomics analysis of clinical samples. One advantage of the NGS platform is the possibility to sequence the genetic material in samples without any prior knowledge of the sequence contained within. Sequence-Independent...
Chen, Guiqian; Qiu, Yuan; Zhuang, Qingye; Wang, Suchun; Wang, Tong; Chen, Jiming; Wang, Kaicheng
2018-05-09
Next generation sequencing (NGS) is a powerful tool for the characterization, discovery, and molecular identification of RNA viruses. There were multiple NGS library preparation methods published for strand-specific RNA-seq, but some methods are not suitable for identifying and characterizing RNA viruses. In this study, we report a NGS library preparation method to identify RNA viruses using the Ion Torrent PGM platform. The NGS sequencing adapters were directly inserted into the sequencing library through reverse transcription and polymerase chain reaction, without fragmentation and ligation of nucleic acids. The results show that this method is simple to perform, able to identify multiple species of RNA viruses in clinical samples.
USDA-ARS?s Scientific Manuscript database
Using next-generation-sequencing technology to assess entire transcriptomes requires high quality starting RNA. Currently, RNA quality is routinely judged using automated microfluidic gel electrophoresis platforms and associated algorithms. Here we report that such automated methods generate false-n...
Targeted enrichment strategies for next-generation plant biology
Richard Cronn; Brian J. Knaus; Aaron Liston; Peter J. Maughan; Matthew Parks; John V. Syring; Joshua Udall
2012-01-01
The dramatic advances offered by modem DNA sequencers continue to redefine the limits of what can be accomplished in comparative plant biology. Even with recent achievements, however, plant genomes present obstacles that can make it difficult to execute large-scale population and phylogenetic studies on next-generation sequencing platforms. Factors like large genome...
Quail, Michael A; Smith, Miriam; Coupland, Paul; Otto, Thomas D; Harris, Simon R; Connor, Thomas R; Bertoni, Anna; Swerdlow, Harold P; Gu, Yong
2012-07-24
Next generation sequencing (NGS) technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent's PGM, Pacific Biosciences' RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.
USDA-ARS?s Scientific Manuscript database
Over the past decade, Next Generation Sequencing (NGS) technologies, also called deep sequencing, have continued to evolve, increasing capacity and lower the cost necessary for large genome sequencing projects. The one of the advantage of NGS platforms is the possibility to sequence the samples with...
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.
Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K
2010-04-16
DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.
DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing
2010-01-01
Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377
Hodzic, Jasin; Gurbeta, Lejla; Omanovic-Miklicanin, Enisa; Badnjevic, Almir
2017-01-01
Introduction: Major advancements in DNA sequencing methods introduced in the first decade of the new millennium initiated a rapid expansion of sequencing studies, which yielded a tremendous amount of DNA sequence data, including whole sequenced genomes of various species, including plants. A set of novel sequencing platforms, often collectively named as “next-generation sequencing” (NGS) completely transformed the life sciences, by allowing extensive throughput, while greatly reducing the necessary time, labor and cost of any sequencing endeavor. Purpose: of this paper is to present an overview NGS platforms used to produce the current compendium of published draft genomes of various plants, namely the Roche/454, ABI/SOLiD, and Solexa/Illumina, and to determine the most frequently used platform for the whole genome sequencing of plants in light of genotypization of immortelle plant. Materials and methods: 45 papers were selected (with 47 presented plant genome draft sequences), and utilized sequencing techniques and NGS platforms (Roche/454, ABI/SOLiD and Illumina/Solexa) in selected papers were determined. Subsequently, frequency of usage of each platform or combination of platforms was calculated. Results: Illumina/Solexa platforms are by used either as sole sequencing tool in 40.42% of published genomes, or in combination with other platforms - additional 48.94% of published genomes, followed by Roche/454 platforms, used in combination with traditional Sanger sequencing method (10.64%), and never as a sole tool. ABI/SOLiD was only used in combination with Illumina/Solexa and Roche/454 in 4.25% of publications. Conclusions: Illumina/Solexa platforms are by far most preferred by researchers, most probably due to most affordable sequencing costs. Taking into consideration the current economic situation in the Balkans region, Illumina Solexa is the best (if not the only) platform choice if the sequencing of immortelle plant (Helichrysium arenarium) is to be performed by the researchers in this region. PMID:28974852
Next Generation Sequencing Technologies: The Doorway to the Unexplored Genomics of Non-Model Plants
Unamba, Chibuikem I. N.; Nag, Akshay; Sharma, Ram K.
2015-01-01
Non-model plants i.e., the species which have one or all of the characters such as long life cycle, difficulty to grow in the laboratory or poor fecundity, have been schemed out of sequencing projects earlier, due to high running cost of Sanger sequencing. Consequently, the information about their genomics and key biological processes are inadequate. However, the advent of fast and cost effective next generation sequencing (NGS) platforms in the recent past has enabled the unearthing of certain characteristic gene structures unique to these species. It has also aided in gaining insight about mechanisms underlying processes of gene expression and secondary metabolism as well as facilitated development of genomic resources for diversity characterization, evolutionary analysis and marker assisted breeding even without prior availability of genomic sequence information. In this review we explore how different Next Gen Sequencing platforms, as well as recent advances in NGS based high throughput genotyping technologies are rewarding efforts on de-novo whole genome/transcriptome sequencing, development of genome wide sequence based markers resources for improvement of non-model crops that are less costly than phenotyping. PMID:26734016
NexGen Production â Sequencing and Analysis
Muzny, Donna
2018-01-16
Donna Muzny of the Baylor College of Medicine Human Genome Sequencing Center discusses next generation sequencing platforms and evaluating pipeline performance on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Advanced Applications of Next-Generation Sequencing Technologies to Orchid Biology.
Yeh, Chuan-Ming; Liu, Zhong-Jian; Tsai, Wen-Chieh
2018-01-01
Next-generation sequencing technologies are revolutionizing biology by permitting, transcriptome sequencing, whole-genome sequencing and resequencing, and genome-wide single nucleotide polymorphism profiling. Orchid research has benefited from this breakthrough, and a few orchid genomes are now available; new biological questions can be approached and new breeding strategies can be designed. The first part of this review describes the unique features of orchid biology. The second part provides an overview of the current next-generation sequencing platforms, many of which are already used in plant laboratories. The third part summarizes the state of orchid transcriptome and genome sequencing and illustrates current achievements. The genetic sequences currently obtained will not only provide a broad scope for the study of orchid biology, but also serves as a starting point for uncovering the mystery of orchid evolution.
Sequencing technologies - the next generation.
Metzker, Michael L
2010-01-01
Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.
Next-generation sequencing in the clinic: promises and challenges.
Xuan, Jiekun; Yu, Ying; Qing, Tao; Guo, Lei; Shi, Leming
2013-11-01
The advent of next generation sequencing (NGS) technologies has revolutionized the field of genomics, enabling fast and cost-effective generation of genome-scale sequence data with exquisite resolution and accuracy. Over the past years, rapid technological advances led by academic institutions and companies have continued to broaden NGS applications from research to the clinic. A recent crop of discoveries have highlighted the medical impact of NGS technologies on Mendelian and complex diseases, particularly cancer. However, the ever-increasing pace of NGS adoption presents enormous challenges in terms of data processing, storage, management and interpretation as well as sequencing quality control, which hinder the translation from sequence data into clinical practice. In this review, we first summarize the technical characteristics and performance of current NGS platforms. We further highlight advances in the applications of NGS technologies towards the development of clinical diagnostics and therapeutics. Common issues in NGS workflows are also discussed to guide the selection of NGS platforms and pipelines for specific research purposes. Published by Elsevier Ireland Ltd.
Rathi, Vivek; Wright, Gavin; Constantin, Diana; Chang, Siok; Pham, Huong; Jones, Kerryn; Palios, Atha; Mclachlan, Sue-Anne; Conron, Matthew; McKelvie, Penny; Williams, Richard
2017-01-01
The advent of massively parallel sequencing has caused a paradigm shift in the ways cancer is treated, as personalised therapy becomes a reality. More and more laboratories are looking to introduce next generation sequencing (NGS) as a tool for mutational analysis, as this technology has many advantages compared to conventional platforms like Sanger sequencing. In Australia all massively parallel sequencing platforms are still considered in-house in vitro diagnostic tools by the National Association of Testing Authorities (NATA) and a comprehensive analytical validation of all assays, and not just mere verification, is a strict requirement before accreditation can be granted for clinical testing on these platforms. Analytical validation of assays on NGS platforms can prove to be extremely challenging for pathology laboratories. Although there are many affordable and easily accessible NGS instruments available, there are no standardised guidelines as yet for clinical validation of NGS assays. We present an accreditation development procedure that was both comprehensive and applicable in a setting of hospital laboratory for NGS services. This approach may also be applied to other NGS applications in service laboratories. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.
Use of the Minion nanopore sequencer for rapid sequencing of avian influenza virus isolates
USDA-ARS?s Scientific Manuscript database
A relatively new sequencing technology, the MinION nanopore sequencer, provides a platform that is smaller, faster, and cheaper than existing Next Generation Sequence (NGS) technologies. The MinION sequences of individual strands of DNA and can produce millions of sequencing reads. The cost of the s...
Single molecule sequencing of the M13 virus genome without amplification
Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X.; Yan, Qin; Deem, Michael W.; He, Jiankui
2017-01-01
Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias. PMID:29253901
Single molecule sequencing of the M13 virus genome without amplification.
Zhao, Luyang; Deng, Liwei; Li, Gailing; Jin, Huan; Cai, Jinsen; Shang, Huan; Li, Yan; Wu, Haomin; Xu, Weibin; Zeng, Lidong; Zhang, Renli; Zhao, Huan; Wu, Ping; Zhou, Zhiliang; Zheng, Jiao; Ezanno, Pierre; Yang, Andrew X; Yan, Qin; Deem, Michael W; He, Jiankui
2017-01-01
Next generation sequencing (NGS) has revolutionized life sciences research. However, GC bias and costly, time-intensive library preparation make NGS an ill fit for increasing sequencing demands in the clinic. A new class of third-generation sequencing platforms has arrived to meet this need, capable of directly measuring DNA and RNA sequences at the single-molecule level without amplification. Here, we use the new GenoCare single-molecule sequencing platform from Direct Genomics to sequence the genome of the M13 virus. Our platform detects single-molecule fluorescence by total internal reflection microscopy, with sequencing-by-synthesis chemistry. We sequenced the genome of M13 to a depth of 316x, with 100% coverage. We determined a consensus sequence accuracy of 100%. In contrast to GC bias inherent to NGS results, we demonstrated that our single-molecule sequencing method yields minimal GC bias.
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing (NGS) technologies are revolutionizing both medical and biological research through generation of massive SNP data sets for identifying heritable genome variation underlying key traits, from rare human diseases to important agronomic phenotypes in crop species. We evaluate...
USDA-ARS?s Scientific Manuscript database
Marker assisted selection (MAS) has become widely used in perennial crop breeding programs to accelerate and enhance cultivar development via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) has been widely used for whole genome molecular...
USDA-ARS?s Scientific Manuscript database
Marker assisted selection (MAS) is often employed in crop breeding programs to accelerate and enhance cultivar development, via selection during the juvenile phase and parental selection prior to crossing. Next generation sequencing (NGS) and its derivative technologies have been used for genome-wid...
Historical Perspective, Development and Applications of Next-Generation Sequencing in Plant Virology
Barba, Marina; Czosnek, Henryk; Hadidi, Ahmed
2014-01-01
Next-generation high throughput sequencing technologies became available at the onset of the 21st century. They provide a highly efficient, rapid, and low cost DNA sequencing platform beyond the reach of the standard and traditional DNA sequencing technologies developed in the late 1970s. They are continually improved to become faster, more efficient and cheaper. They have been used in many fields of biology since 2004. In 2009, next-generation sequencing (NGS) technologies began to be applied to several areas of plant virology including virus/viroid genome sequencing, discovery and detection, ecology and epidemiology, replication and transcription. Identification and characterization of known and unknown viruses and/or viroids in infected plants are currently among the most successful applications of these technologies. It is expected that NGS will play very significant roles in many research and non-research areas of plant virology. PMID:24399207
New Technology Drafts: Production and Improvements
Lapidus, Alla
2018-01-22
Alla Lapidus, head of the DOE Joint Genome Institute's Finishing group, gives a talk on how the DOE JGI's microbial genome sequencing pipeline has been adapted to accommodate next generation sequencing platforms at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Evaluating Variant Calling Tools for Non-Matched Next-Generation Sequencing Data
NASA Astrophysics Data System (ADS)
Sandmann, Sarah; de Graaf, Aniek O.; Karimi, Mohsen; van der Reijden, Bert A.; Hellström-Lindberg, Eva; Jansen, Joop H.; Dugas, Martin
2017-02-01
Valid variant calling results are crucial for the use of next-generation sequencing in clinical routine. However, there are numerous variant calling tools that usually differ in algorithms, filtering strategies, recommendations and thus, also in the output. We evaluated eight open-source tools regarding their ability to call single nucleotide variants and short indels with allelic frequencies as low as 1% in non-matched next-generation sequencing data: GATK HaplotypeCaller, Platypus, VarScan, LoFreq, FreeBayes, SNVer, SAMtools and VarDict. We analysed two real datasets from patients with myelodysplastic syndrome, covering 54 Illumina HiSeq samples and 111 Illumina NextSeq samples. Mutations were validated by re-sequencing on the same platform, on a different platform and expert based review. In addition we considered two simulated datasets with varying coverage and error profiles, covering 50 samples each. In all cases an identical target region consisting of 19 genes (42,322 bp) was analysed. Altogether, no tool succeeded in calling all mutations. High sensitivity was always accompanied by low precision. Influence of varying coverages- and background noise on variant calling was generally low. Taking everything into account, VarDict performed best. However, our results indicate that there is a need to improve reproducibility of the results in the context of multithreading.
Next-Generation Sequencing of Antibody Display Repertoires
Rouet, Romain; Jackson, Katherine J. L.; Langley, David B.; Christ, Daniel
2018-01-01
In vitro selection technology has transformed the development of therapeutic monoclonal antibodies. Using methods such as phage, ribosome, and yeast display, high affinity binders can be selected from diverse repertoires. Here, we review strategies for the next-generation sequencing (NGS) of phage- and other antibody-display libraries, as well as NGS platforms and analysis tools. Moreover, we discuss recent examples relating to the use of NGS to assess library diversity, clonal enrichment, and affinity maturation. PMID:29472918
Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism.
Archer, John; Weber, Jan; Henry, Kenneth; Winner, Dane; Gibson, Richard; Lee, Lawrence; Paxinos, Ellen; Arts, Eric J; Robertson, David L; Mimms, Larry; Quiñones-Mateu, Miguel E
2012-01-01
HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.
Camerlengo, Terry; Ozer, Hatice Gulcin; Onti-Srinivasan, Raghuram; Yan, Pearlly; Huang, Tim; Parvin, Jeffrey; Huang, Kun
2012-01-01
Next Generation Sequencing is highly resource intensive. NGS Tasks related to data processing, management and analysis require high-end computing servers or even clusters. Additionally, processing NGS experiments requires suitable storage space and significant manual interaction. At The Ohio State University's Biomedical Informatics Shared Resource, we designed and implemented a scalable architecture to address the challenges associated with the resource intensive nature of NGS secondary analysis built around Illumina Genome Analyzer II sequencers and Illumina's Gerald data processing pipeline. The software infrastructure includes a distributed computing platform consisting of a LIMS called QUEST (http://bisr.osumc.edu), an Automation Server, a computer cluster for processing NGS pipelines, and a network attached storage device expandable up to 40TB. The system has been architected to scale to multiple sequencers without requiring additional computing or labor resources. This platform provides demonstrates how to manage and automate NGS experiments in an institutional or core facility setting.
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi
2013-01-01
Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114
USDA-ARS?s Scientific Manuscript database
The mitochondrial genome of the bollworm, Helicoverpa zea, was assembled using paired-end nucleotide sequence reads generated with a next-generation sequencing platform. Assembly resulted in a mitogenome of 15,348 bp with greater than 17,000-fold average coverage. Organization of the H. zea mitogen...
Next-Generation Sequencing Platforms
NASA Astrophysics Data System (ADS)
Mardis, Elaine R.
2013-06-01
Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.
Thaitrong, Numrin; Kim, Hanyoup; Renzi, Ronald F; Bartsch, Michael S; Meagher, Robert J; Patel, Kamlesh D
2012-12-01
We have developed an automated quality control (QC) platform for next-generation sequencing (NGS) library characterization by integrating a droplet-based digital microfluidic (DMF) system with a capillary-based reagent delivery unit and a quantitative CE module. Using an in-plane capillary-DMF interface, a prepared sample droplet was actuated into position between the ground electrode and the inlet of the separation capillary to complete the circuit for an electrokinetic injection. Using a DNA ladder as an internal standard, the CE module with a compact LIF detector was capable of detecting dsDNA in the range of 5-100 pg/μL, suitable for the amount of DNA required by the Illumina Genome Analyzer sequencing platform. This DMF-CE platform consumes tenfold less sample volume than the current Agilent BioAnalyzer QC technique, preserving precious sample while providing necessary sensitivity and accuracy for optimal sequencing performance. The ability of this microfluidic system to validate NGS library preparation was demonstrated by examining the effects of limited-cycle PCR amplification on the size distribution and the yield of Illumina-compatible libraries, demonstrating that as few as ten cycles of PCR bias the size distribution of the library toward undesirable larger fragments. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clinical analysis of genome next-generation sequencing data using the Omicia platform
Coonrod, Emily M; Margraf, Rebecca L; Russell, Archie; Voelkerding, Karl V; Reese, Martin G
2013-01-01
Aims Next-generation sequencing is being implemented in the clinical laboratory environment for the purposes of candidate causal variant discovery in patients affected with a variety of genetic disorders. The successful implementation of this technology for diagnosing genetic disorders requires a rapid, user-friendly method to annotate variants and generate short lists of clinically relevant variants of interest. This report describes Omicia’s Opal platform, a new software tool designed for variant discovery and interpretation in a clinical laboratory environment. The software allows clinical scientists to process, analyze, interpret and report on personal genome files. Materials & Methods To demonstrate the software, the authors describe the interactive use of the system for the rapid discovery of disease-causing variants using three cases. Results & Conclusion Here, the authors show the features of the Opal system and their use in uncovering variants of clinical significance. PMID:23895124
Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers
Wajid, Bilal; Serpedin, Erchin
2012-01-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. PMID:22768980
Suyama, Yoshihisa; Matsuki, Yu
2015-01-01
Restriction-enzyme (RE)-based next-generation sequencing methods have revolutionized marker-assisted genetic studies; however, the use of REs has limited their widespread adoption, especially in field samples with low-quality DNA and/or small quantities of DNA. Here, we developed a PCR-based procedure to construct reduced representation libraries without RE digestion steps, representing de novo single-nucleotide polymorphism discovery, and its genotyping using next-generation sequencing. Using multiplexed inter-simple sequence repeat (ISSR) primers, thousands of genome-wide regions were amplified effectively from a wide variety of genomes, without prior genetic information. We demonstrated: 1) Mendelian gametic segregation of the discovered variants; 2) reproducibility of genotyping by checking its applicability for individual identification; and 3) applicability in a wide variety of species by checking standard population genetic analysis. This approach, called multiplexed ISSR genotyping by sequencing, should be applicable to many marker-assisted genetic studies with a wide range of DNA qualities and quantities. PMID:26593239
Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses
Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T
2014-01-01
Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. PMID:24462600
Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses.
Liu, Bo; Madduri, Ravi K; Sotomayor, Borja; Chard, Kyle; Lacinski, Lukasz; Dave, Utpal J; Li, Jianqiang; Liu, Chunchen; Foster, Ian T
2014-06-01
Due to the upcoming data deluge of genome data, the need for storing and processing large-scale genome data, easy access to biomedical analyses tools, efficient data sharing and retrieval has presented significant challenges. The variability in data volume results in variable computing and storage requirements, therefore biomedical researchers are pursuing more reliable, dynamic and convenient methods for conducting sequencing analyses. This paper proposes a Cloud-based bioinformatics workflow platform for large-scale next-generation sequencing analyses, which enables reliable and highly scalable execution of sequencing analyses workflows in a fully automated manner. Our platform extends the existing Galaxy workflow system by adding data management capabilities for transferring large quantities of data efficiently and reliably (via Globus Transfer), domain-specific analyses tools preconfigured for immediate use by researchers (via user-specific tools integration), automatic deployment on Cloud for on-demand resource allocation and pay-as-you-go pricing (via Globus Provision), a Cloud provisioning tool for auto-scaling (via HTCondor scheduler), and the support for validating the correctness of workflows (via semantic verification tools). Two bioinformatics workflow use cases as well as performance evaluation are presented to validate the feasibility of the proposed approach. Copyright © 2014 Elsevier Inc. All rights reserved.
Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
Walsh, Aaron M; Crispie, Fiona; O'Sullivan, Orla; Finnegan, Laura; Claesson, Marcus J; Cotter, Paul D
2018-03-20
The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R 2 = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R 2 = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.
Genotyping General Information Genome Wide Association Custom FFPE Sample Options Methylation Linkage Enrichment Options 51 Mb 51 Mb plus 6.8 - 24Mb custom option 54 Mb Clinical Exome 71 Mb (includes UTRs) Next Generation Sequencing Platform Illumina HiSeq sequencers Options for Formalin-Fixed Paraffin-Embedded (FFPE
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee
2011-11-01
Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.
Effect of Next-Generation Exome Sequencing Depth for Discovery of Diagnostic Variants.
Kim, Kyung; Seong, Moon-Woo; Chung, Won-Hyong; Park, Sung Sup; Leem, Sangseob; Park, Won; Kim, Jihyun; Lee, KiYoung; Park, Rae Woong; Kim, Namshin
2015-06-01
Sequencing depth, which is directly related to the cost and time required for the generation, processing, and maintenance of next-generation sequencing data, is an important factor in the practical utilization of such data in clinical fields. Unfortunately, identifying an exome sequencing depth adequate for clinical use is a challenge that has not been addressed extensively. Here, we investigate the effect of exome sequencing depth on the discovery of sequence variants for clinical use. Toward this, we sequenced ten germ-line blood samples from breast cancer patients on the Illumina platform GAII(x) at a high depth of ~200×. We observed that most function-related diverse variants in the human exonic regions could be detected at a sequencing depth of 120×. Furthermore, investigation using a diagnostic gene set showed that the number of clinical variants identified using exome sequencing reached a plateau at an average sequencing depth of about 120×. Moreover, the phenomena were consistent across the breast cancer samples.
Design of association studies with pooled or un-pooled next-generation sequencing data.
Kim, Su Yeon; Li, Yingrui; Guo, Yiran; Li, Ruiqiang; Holmkvist, Johan; Hansen, Torben; Pedersen, Oluf; Wang, Jun; Nielsen, Rasmus
2010-07-01
Most common hereditary diseases in humans are complex and multifactorial. Large-scale genome-wide association studies based on SNP genotyping have only identified a small fraction of the heritable variation of these diseases. One explanation may be that many rare variants (a minor allele frequency, MAF <5%), which are not included in the common genotyping platforms, may contribute substantially to the genetic variation of these diseases. Next-generation sequencing, which would allow the analysis of rare variants, is now becoming so cheap that it provides a viable alternative to SNP genotyping. In this paper, we present cost-effective protocols for using next-generation sequencing in association mapping studies based on pooled and un-pooled samples, and identify optimal designs with respect to total number of individuals, number of individuals per pool, and the sequencing coverage. We perform a small empirical study to evaluate the pooling variance in a realistic setting where pooling is combined with exon-capturing. To test for associations, we develop a likelihood ratio statistic that accounts for the high error rate of next-generation sequencing data. We also perform extensive simulations to determine the power and accuracy of this method. Overall, our findings suggest that with a fixed cost, sequencing many individuals at a more shallow depth with larger pool size achieves higher power than sequencing a small number of individuals in higher depth with smaller pool size, even in the presence of high error rates. Our results provide guidelines for researchers who are developing association mapping studies based on next-generation sequencing. (c) 2010 Wiley-Liss, Inc.
Wu, Wei; Lu, Chao-Xia; Wang, Yi-Ning; Liu, Fang; Chen, Wei; Liu, Yong-Tai; Han, Ye-Chen; Cao, Jian; Zhang, Shu-Yang; Zhang, Xue
2015-07-10
MYBPC3 dysfunctions have been proven to induce dilated cardiomyopathy, hypertrophic cardiomyopathy, and/or left ventricular noncompaction; however, the genotype-phenotype correlation between MYBPC3 and restrictive cardiomyopathy (RCM) has not been established. The newly developed next-generation sequencing method is capable of broad genomic DNA sequencing with high throughput and can help explore novel correlations between genetic variants and cardiomyopathies. A proband from a multigenerational family with 3 live patients and 1 unrelated patient with clinical diagnoses of RCM underwent a next-generation sequencing workflow based on a custom AmpliSeq panel, including 64 candidate pathogenic genes for cardiomyopathies, on the Ion Personal Genome Machine high-throughput sequencing benchtop instrument. The selected panel contained a total of 64 genes that were reportedly associated with inherited cardiomyopathies. All patients fulfilled strict criteria for RCM with clinical characteristics, echocardiography, and/or cardiac magnetic resonance findings. The multigenerational family with 3 adult RCM patients carried an identical nonsense MYBPC3 mutation, and the unrelated patient carried a missense mutation in the MYBPC3 gene. All of these results were confirmed by the Sanger sequencing method. This study demonstrated that MYBPC3 gene mutations, revealed by next-generation sequencing, were associated with familial and sporadic RCM patients. It is suggested that the next-generation sequencing platform with a selected panel provides a highly efficient approach for molecular diagnosis of hereditary and idiopathic RCM and helps build new genotype-phenotype correlations. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Detection of Bacillus anthracis DNA in Complex Soil and Air Samples Using Next-Generation Sequencing
Be, Nicholas A.; Thissen, James B.; Gardner, Shea N.; McLoughlin, Kevin S.; Fofanov, Viacheslav Y.; Koshinsky, Heather; Ellingson, Sally R.; Brettin, Thomas S.; Jackson, Paul J.; Jaing, Crystal J.
2013-01-01
Bacillus anthracis is the potentially lethal etiologic agent of anthrax disease, and is a significant concern in the realm of biodefense. One of the cornerstones of an effective biodefense strategy is the ability to detect infectious agents with a high degree of sensitivity and specificity in the context of a complex sample background. The nature of the B. anthracis genome, however, renders specific detection difficult, due to close homology with B. cereus and B. thuringiensis. We therefore elected to determine the efficacy of next-generation sequencing analysis and microarrays for detection of B. anthracis in an environmental background. We applied next-generation sequencing to titrated genome copy numbers of B. anthracis in the presence of background nucleic acid extracted from aerosol and soil samples. We found next-generation sequencing to be capable of detecting as few as 10 genomic equivalents of B. anthracis DNA per nanogram of background nucleic acid. Detection was accomplished by mapping reads to either a defined subset of reference genomes or to the full GenBank database. Moreover, sequence data obtained from B. anthracis could be reliably distinguished from sequence data mapping to either B. cereus or B. thuringiensis. We also demonstrated the efficacy of a microbial census microarray in detecting B. anthracis in the same samples, representing a cost-effective and high-throughput approach, complementary to next-generation sequencing. Our results, in combination with the capacity of sequencing for providing insights into the genomic characteristics of complex and novel organisms, suggest that these platforms should be considered important components of a biosurveillance strategy. PMID:24039948
Next-generation sequencing in clinical virology: Discovery of new viruses.
Datta, Sibnarayan; Budhauliya, Raghvendra; Das, Bidisha; Chatterjee, Soumya; Vanlalhmuaka; Veer, Vijay
2015-08-12
Viruses are a cause of significant health problem worldwide, especially in the developing nations. Due to different anthropological activities, human populations are exposed to different viral pathogens, many of which emerge as outbreaks. In such situations, discovery of novel viruses is utmost important for deciding prevention and treatment strategies. Since last century, a number of different virus discovery methods, based on cell culture inoculation, sequence-independent PCR have been used for identification of a variety of viruses. However, the recent emergence and commercial availability of next-generation sequencers (NGS) has entirely changed the field of virus discovery. These massively parallel sequencing platforms can sequence a mixture of genetic materials from a very heterogeneous mix, with high sensitivity. Moreover, these platforms work in a sequence-independent manner, making them ideal tools for virus discovery. However, for their application in clinics, sample preparation or enrichment is necessary to detect low abundance virus populations. A number of techniques have also been developed for enrichment or viral nucleic acids. In this manuscript, we review the evolution of sequencing; NGS technologies available today as well as widely used virus enrichment technologies. We also discuss the challenges associated with their applications in the clinical virus discovery.
Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier
2016-01-01
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline. PMID:26910355
Fuentes-Pananá, Ezequiel M; Larios-Serrato, Violeta; Méndez-Tenorio, Alfonso; Morales-Sánchez, Abigail; Arias, Carlos F; Torres, Javier
2016-03-01
Gastric (GC) and breast (BrC) cancer are two of the most common and deadly tumours. Different lines of evidence suggest a possible causative role of viral infections for both GC and BrC. Wide genome sequencing (WGS) technologies allow searching for viral agents in tissues of patients with cancer. These technologies have already contributed to establish virus-cancer associations as well as to discovery new tumour viruses. The objective of this study was to document possible associations of viral infection with GC and BrC in Mexican patients. In order to gain idea about cost effective conditions of experimental sequencing, we first carried out an in silico simulation of WGS. The next-generation-platform IlluminaGallx was then used to sequence GC and BrC tumour samples. While we did not find viral sequences in tissues from BrC patients, multiple reads matching Epstein-Barr virus (EBV) sequences were found in GC tissues. An end-point polymerase chain reaction confirmed an enrichment of EBV sequences in one of the GC samples sequenced, validating the next-generation sequencing-bioinformatics pipeline.
Ai, Jing-Wen; Li, Yang; Cheng, Qi; Cui, Peng; Wu, Hong-Long; Xu, Bin; Zhang, Wen-Hong
2018-06-01
A 45-year-old man who complained of continuous fever and multiple hepatic masses was admitted to our hospital. Repeated MRI manifestations were similar while each radiological report suggested contradictory diagnosis pointing to infections or malignances respectively. Pathologic examination of the liver tissue showed no direct evidence of either infections or tumor. We performed next-generation sequencing on the liver tissue and peripheral blood to further investigate the possible etiology. High throughput sequencing was performed on the liver lesion tissues using BGISEQ-100 platform, and data was mapped to the Microbial Genome Databases after filtering low quality data and human reads. We identified a total of 299 sequencing reads of Mycobacterium tuberculosis (M. tuberculosis) complex sequences from the liver tissue, including 8, 229 of 4,424,435 of the M. tuberculosis nucleotide sequences, and Mycobacterium africanum, Mycobacterium bovis, and Mycobacterium canettii were also detected due to the 99.9% identical rate among these strains. No specific Mycobacterial tuberculosis nucleotide sequence was detected in the sample of peripheral blood. Patient's symptom quickly recovered after anti-tuberculosis treatment and repeated Ziehl-Neelsen staining of the liver tissue finally identified small numbers of positive bacillus. The diagnosis of this patient was difficult to establish before the next-generation sequencing because of contradictive radiological results and negative pathological findings. More sensitive diagnostic methods are urgently needed. This is the first case reporting hepatic tuberculosis confirmed by the next-generation sequencing, and marks the promising potential of the application of the next-generation sequencing in the diagnosis of hepatic lesions with unknown etiology. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Next-generation sequencing: hype and hope for development of personalized radiation therapy?
Tinhofer, Ingeborg; Niehr, Franziska; Konschak, Robert; Liebs, Sandra; Munz, Matthias; Stenzinger, Albrecht; Weichert, Wilko; Keilholz, Ulrich; Budach, Volker
2015-08-28
The introduction of next-generation sequencing (NGS) in the field of cancer research has boosted worldwide efforts of genome-wide personalized oncology aiming at identifying predictive biomarkers and novel actionable targets. Despite considerable progress in understanding the molecular biology of distinct cancer entities by the use of this revolutionary technology and despite contemporaneous innovations in drug development, translation of NGS findings into improved concepts for cancer treatment remains a challenge. The aim of this article is to describe shortly the NGS platforms for DNA sequencing and in more detail key achievements and unresolved hurdles. A special focus will be given on potential clinical applications of this innovative technique in the field of radiation oncology.
2011-01-01
Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. Conclusion An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml). PMID:21266061
Aslam, Luqman; Beal, Kathryn; Ann Blomberg, Le; Bouffard, Pascal; Burt, David W.; Crasta, Oswald; Crooijmans, Richard P. M. A.; Cooper, Kristal; Coulombe, Roger A.; De, Supriyo; Delany, Mary E.; Dodgson, Jerry B.; Dong, Jennifer J.; Evans, Clive; Frederickson, Karin M.; Flicek, Paul; Florea, Liliana; Folkerts, Otto; Groenen, Martien A. M.; Harkins, Tim T.; Herrero, Javier; Hoffmann, Steve; Megens, Hendrik-Jan; Jiang, Andrew; de Jong, Pieter; Kaiser, Pete; Kim, Heebal; Kim, Kyu-Won; Kim, Sungwon; Langenberger, David; Lee, Mi-Kyung; Lee, Taeheon; Mane, Shrinivasrao; Marcais, Guillaume; Marz, Manja; McElroy, Audrey P.; Modise, Thero; Nefedov, Mikhail; Notredame, Cédric; Paton, Ian R.; Payne, William S.; Pertea, Geo; Prickett, Dennis; Puiu, Daniela; Qioa, Dan; Raineri, Emanuele; Ruffier, Magali; Salzberg, Steven L.; Schatz, Michael C.; Scheuring, Chantel; Schmidt, Carl J.; Schroeder, Steven; Searle, Stephen M. J.; Smith, Edward J.; Smith, Jacqueline; Sonstegard, Tad S.; Stadler, Peter F.; Tafer, Hakim; Tu, Zhijian (Jake); Van Tassell, Curtis P.; Vilella, Albert J.; Williams, Kelly P.; Yorke, James A.; Zhang, Liqing; Zhang, Hong-Bin; Zhang, Xiaojun; Zhang, Yang; Reed, Kent M.
2010-01-01
A synergistic combination of two next-generation sequencing platforms with a detailed comparative BAC physical contig map provided a cost-effective assembly of the genome sequence of the domestic turkey (Meleagris gallopavo). Heterozygosity of the sequenced source genome allowed discovery of more than 600,000 high quality single nucleotide variants. Despite this heterozygosity, the current genome assembly (∼1.1 Gb) includes 917 Mb of sequence assigned to specific turkey chromosomes. Annotation identified nearly 16,000 genes, with 15,093 recognized as protein coding and 611 as non-coding RNA genes. Comparative analysis of the turkey, chicken, and zebra finch genomes, and comparing avian to mammalian species, supports the characteristic stability of avian genomes and identifies genes unique to the avian lineage. Clear differences are seen in number and variety of genes of the avian immune system where expansions and novel genes are less frequent than examples of gene loss. The turkey genome sequence provides resources to further understand the evolution of vertebrate genomes and genetic variation underlying economically important quantitative traits in poultry. This integrated approach may be a model for providing both gene and chromosome level assemblies of other species with agricultural, ecological, and evolutionary interest. PMID:20838655
Engineered CRISPR Systems for Next Generation Gene Therapies.
Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira
2017-09-15
An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.
Review of general algorithmic features for genome assemblers for next generation sequencers.
Wajid, Bilal; Serpedin, Erchin
2012-04-01
In the realm of bioinformatics and computational biology, the most rudimentary data upon which all the analysis is built is the sequence data of genes, proteins and RNA. The sequence data of the entire genome is the solution to the genome assembly problem. The scope of this contribution is to provide an overview on the art of problem-solving applied within the domain of genome assembly in the next-generation sequencing (NGS) platforms. This article discusses the major genome assemblers that were proposed in the literature during the past decade by outlining their basic working principles. It is intended to act as a qualitative, not a quantitative, tutorial to all working on genome assemblers pertaining to the next generation of sequencers. We discuss the theoretical aspects of various genome assemblers, identifying their working schemes. We also discuss briefly the direction in which the area is headed towards along with discussing core issues on software simplicity. Copyright © 2012 Beijing Institute of Genomics, Chinese Academy of Sciences. Published by Elsevier Ltd. All rights reserved.
Next-generation sequencing for endocrine cancers: Recent advances and challenges.
Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek
2017-05-01
Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.
NG6: Integrated next generation sequencing storage and processing environment.
Mariette, Jérôme; Escudié, Frédéric; Allias, Nicolas; Salin, Gérald; Noirot, Céline; Thomas, Sylvain; Klopp, Christophe
2012-09-09
Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data.
Lagkouvardos, Ilias; Joseph, Divya; Kapfhammer, Martin; Giritli, Sabahattin; Horn, Matthias; Haller, Dirk; Clavel, Thomas
2016-09-23
The SRA (Sequence Read Archive) serves as primary depository for massive amounts of Next Generation Sequencing data, and currently host over 100,000 16S rRNA gene amplicon-based microbial profiles from various host habitats and environments. This number is increasing rapidly and there is a dire need for approaches to utilize this pool of knowledge. Here we created IMNGS (Integrated Microbial Next Generation Sequencing), an innovative platform that uniformly and systematically screens for and processes all prokaryotic 16S rRNA gene amplicon datasets available in SRA and uses them to build sample-specific sequence databases and OTU-based profiles. Via a web interface, this integrative sequence resource can easily be queried by users. We show examples of how the approach allows testing the ecological importance of specific microorganisms in different hosts or ecosystems, and performing targeted diversity studies for selected taxonomic groups. The platform also offers a complete workflow for de novo analysis of users' own raw 16S rRNA gene amplicon datasets for the sake of comparison with existing data. IMNGS can be accessed at www.imngs.org.
McCourt, Clare M; McArt, Darragh G; Mills, Ken; Catherwood, Mark A; Maxwell, Perry; Waugh, David J; Hamilton, Peter; O'Sullivan, Joe M; Salto-Tellez, Manuel
2013-01-01
Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.
WormBase 2014: new views of curated biology
Harris, Todd W.; Baran, Joachim; Bieri, Tamberlyn; Cabunoc, Abigail; Chan, Juancarlos; Chen, Wen J.; Davis, Paul; Done, James; Grove, Christian; Howe, Kevin; Kishore, Ranjana; Lee, Raymond; Li, Yuling; Muller, Hans-Michael; Nakamura, Cecilia; Ozersky, Philip; Paulini, Michael; Raciti, Daniela; Schindelman, Gary; Tuli, Mary Ann; Auken, Kimberly Van; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Wong, J. D.; Yook, Karen; Schedl, Tim; Hodgkin, Jonathan; Berriman, Matthew; Kersey, Paul; Spieth, John; Stein, Lincoln; Sternberg, Paul W.
2014-01-01
WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest. PMID:24194605
Mak, Sarah Siu Tze; Gopalakrishnan, Shyam; Carøe, Christian; Geng, Chunyu; Liu, Shanlin; Sinding, Mikkel-Holger S; Kuderna, Lukas F K; Zhang, Wenwei; Fu, Shujin; Vieira, Filipe G; Germonpré, Mietje; Bocherens, Hervé; Fedorov, Sergey; Petersen, Bent; Sicheritz-Pontén, Thomas; Marques-Bonet, Tomas; Zhang, Guojie; Jiang, Hui; Gilbert, M Thomas P
2017-01-01
Abstract Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA. PMID:28854615
Research Associate | Center for Cancer Research
The Basic Science Program (BSP) at the Frederick National Laboratory for Cancer Research (FNLCR) pursues independent, multidisciplinary research programs in basic or applied molecular biology, immunology, retrovirology, cancer biology or human genetics. As part of the BSP, the Microbiome and Genetics Core (the Core) characterizes microbiomes by next-generation sequencing to determine their composition and variation, as influenced by immune, genetic, and host health factors. The Core provides support across a spectrum of processes, from nucleic acid isolation through bioinformatics and statistical analysis. KEY ROLES/RESPONSIBILITIES The Research Associate II will provide support in the areas of automated isolation, preparation, PCR and sequencing of DNA on next generation platforms (Illumina MiSeq and NextSeq). An opportunity exists to join the Core’s team of highly trained experimentalists and bioinformaticians working to characterize microbiome samples. The following represent requirements of the position: A minimum of five (5) years related of biomedical experience. Experience with high-throughput nucleic acid (DNA/RNA) extraction. Experience in performing PCR amplification (including quantitative real-time PCR). Experience or familiarity with robotic liquid handling protocols (especially on the Eppendorf epMotion 5073 or 5075 platforms). Experience in operating and maintaining benchtop Illumina sequencers (MiSeq and NextSeq). Ability to evaluate experimental quality and to troubleshoot molecular biology protocols. Experience with sample tracking, inventory management and biobanking. Ability to operate and communicate effectively in a team-oriented work environment.
Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses
Zhou, Bin; Barnes, John R.; Sessions, October M.; Chou, Tsui-Wen; Wilson, Malania; Stark, Thomas J.; Volk, Michelle; Spirason, Natalie; Halpin, Rebecca A.; Kamaraj, Uma Sangumathi; Ding, Tao; Stockwell, Timothy B.; Ghedin, Elodie; Barr, Ian G.
2017-01-01
ABSTRACT Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms. PMID:28978683
Standardization and quality management in next-generation sequencing.
Endrullat, Christoph; Glökler, Jörn; Franke, Philipp; Frohme, Marcus
2016-09-01
DNA sequencing continues to evolve quickly even after > 30 years. Many new platforms suddenly appeared and former established systems have vanished in almost the same manner. Since establishment of next-generation sequencing devices, this progress gains momentum due to the continually growing demand for higher throughput, lower costs and better quality of data. In consequence of this rapid development, standardized procedures and data formats as well as comprehensive quality management considerations are still scarce. Here, we listed and summarized current standardization efforts and quality management initiatives from companies, organizations and societies in form of published studies and ongoing projects. These comprise on the one hand quality documentation issues like technical notes, accreditation checklists and guidelines for validation of sequencing workflows. On the other hand, general standard proposals and quality metrics are developed and applied to the sequencing workflow steps with the main focus on upstream processes. Finally, certain standard developments for downstream pipeline data handling, processing and storage are discussed in brief. These standardization approaches represent a first basis for continuing work in order to prospectively implement next-generation sequencing in important areas such as clinical diagnostics, where reliable results and fast processing is crucial. Additionally, these efforts will exert a decisive influence on traceability and reproducibility of sequence data.
Estimating genotype error rates from high-coverage next-generation sequence data.
Wall, Jeffrey D; Tang, Ling Fung; Zerbe, Brandon; Kvale, Mark N; Kwok, Pui-Yan; Schaefer, Catherine; Risch, Neil
2014-11-01
Exome and whole-genome sequencing studies are becoming increasingly common, but little is known about the accuracy of the genotype calls made by the commonly used platforms. Here we use replicate high-coverage sequencing of blood and saliva DNA samples from four European-American individuals to estimate lower bounds on the error rates of Complete Genomics and Illumina HiSeq whole-genome and whole-exome sequencing. Error rates for nonreference genotype calls range from 0.1% to 0.6%, depending on the platform and the depth of coverage. Additionally, we found (1) no difference in the error profiles or rates between blood and saliva samples; (2) Complete Genomics sequences had substantially higher error rates than Illumina sequences had; (3) error rates were higher (up to 6%) for rare or unique variants; (4) error rates generally declined with genotype quality (GQ) score, but in a nonlinear fashion for the Illumina data, likely due to loss of specificity of GQ scores greater than 60; and (5) error rates increased with increasing depth of coverage for the Illumina data. These findings, especially (3)-(5), suggest that caution should be taken in interpreting the results of next-generation sequencing-based association studies, and even more so in clinical application of this technology in the absence of validation by other more robust sequencing or genotyping methods. © 2014 Wall et al.; Published by Cold Spring Harbor Laboratory Press.
Germplasm Management in the Post-genomics Era-a case study with lettuce
USDA-ARS?s Scientific Manuscript database
High-throughput genotyping platforms and next-generation sequencing technologies revolutionized our ways in germplasm characterization. In collaboration with UC Davis Genome Center, we completed a project of genotyping the entire cultivated lettuce (Lactuca sativa L.) collection of 1,066 accessions ...
The vast datasets generated by next generation gene sequencing and expression profiling have transformed biological and translational research. However, technologies to produce large-scale functional genomics datasets, such as high-throughput detection of protein-protein interactions (PPIs), are still in early development. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform featured with both high sensitivity and robustness in a mammalian cell environment remains to be established.
Bijwaard, Karen; Dickey, Jennifer S; Kelm, Kellie; Težak, Živana
2015-01-01
The rapid emergence and clinical translation of novel high-throughput sequencing technologies created a need to clarify the regulatory pathway for the evaluation and authorization of these unique technologies. Recently, the US FDA authorized for marketing four next generation sequencing (NGS)-based diagnostic devices which consisted of two heritable disease-specific assays, library preparation reagents and a NGS platform that are intended for human germline targeted sequencing from whole blood. These first authorizations can serve as a case study in how different types of NGS-based technology are reviewed by the FDA. In this manuscript we describe challenges associated with the evaluation of these novel technologies and provide an overview of what was reviewed. Besides making validated NGS-based devices available for in vitro diagnostic use, these first authorizations create a regulatory path for similar future instruments and assays.
Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.
Hawkins, Steve F C; Guest, Paul C
2018-01-01
The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.
Reiman, Anne; Pandey, Sarojini; Lloyd, Kate L; Dyer, Nigel; Khan, Mike; Crockard, Martin; Latten, Mark J; Watson, Tracey L; Cree, Ian A; Grammatopoulos, Dimitris K
2016-11-01
Background Detection of disease-associated mutations in patients with familial hypercholesterolaemia is crucial for early interventions to reduce risk of cardiovascular disease. Screening for these mutations represents a methodological challenge since more than 1200 different causal mutations in the low-density lipoprotein receptor has been identified. A number of methodological approaches have been developed for screening by clinical diagnostic laboratories. Methods Using primers targeting, the low-density lipoprotein receptor, apolipoprotein B, and proprotein convertase subtilisin/kexin type 9, we developed a novel Ion Torrent-based targeted re-sequencing method. We validated this in a West Midlands-UK small cohort of 58 patients screened in parallel with other mutation-targeting methods, such as multiplex polymerase chain reaction (Elucigene FH20), oligonucleotide arrays (Randox familial hypercholesterolaemia array) or the Illumina next-generation sequencing platform. Results In this small cohort, the next-generation sequencing method achieved excellent analytical performance characteristics and showed 100% and 89% concordance with the Randox array and the Elucigene FH20 assay. Investigation of the discrepant results identified two cases of mutation misclassification of the Elucigene FH20 multiplex polymerase chain reaction assay. A number of novel mutations not previously reported were also identified by the next-generation sequencing method. Conclusions Ion Torrent-based next-generation sequencing can deliver a suitable alternative for the molecular investigation of familial hypercholesterolaemia patients, especially when comprehensive mutation screening for rare or unknown mutations is required.
Sun, Zhifu; Cunningham, Julie; Slager, Susan; Kocher, Jean-Pierre
2015-01-01
Bisulfite treatment-based methylation microarray (mainly Illumina 450K Infinium array) and next-generation sequencing (reduced representation bisulfite sequencing, Agilent SureSelect Human Methyl-Seq, NimbleGen SeqCap Epi CpGiant or whole-genome bisulfite sequencing) are commonly used for base resolution DNA methylome research. Although multiple tools and methods have been developed and used for the data preprocessing and analysis, confusions remains for these platforms including how and whether the 450k array should be normalized; which platform should be used to better fit researchers’ needs; and which statistical models would be more appropriate for differential methylation analysis. This review presents the commonly used platforms and compares the pros and cons of each in methylome profiling. We then discuss approaches to study design, data normalization, bias correction and model selection for differentially methylated individual CpGs and regions. PMID:26366945
Long Read Alignment with Parallel MapReduce Cloud Platform
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887
Long Read Alignment with Parallel MapReduce Cloud Platform.
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.
A statistical method for the detection of variants from next-generation resequencing of DNA pools.
Bansal, Vikas
2010-06-15
Next-generation sequencing technologies have enabled the sequencing of several human genomes in their entirety. However, the routine resequencing of complete genomes remains infeasible. The massive capacity of next-generation sequencers can be harnessed for sequencing specific genomic regions in hundreds to thousands of individuals. Sequencing-based association studies are currently limited by the low level of multiplexing offered by sequencing platforms. Pooled sequencing represents a cost-effective approach for studying rare variants in large populations. To utilize the power of DNA pooling, it is important to accurately identify sequence variants from pooled sequencing data. Detection of rare variants from pooled sequencing represents a different challenge than detection of variants from individual sequencing. We describe a novel statistical approach, CRISP [Comprehensive Read analysis for Identification of Single Nucleotide Polymorphisms (SNPs) from Pooled sequencing] that is able to identify both rare and common variants by using two approaches: (i) comparing the distribution of allele counts across multiple pools using contingency tables and (ii) evaluating the probability of observing multiple non-reference base calls due to sequencing errors alone. Information about the distribution of reads between the forward and reverse strands and the size of the pools is also incorporated within this framework to filter out false variants. Validation of CRISP on two separate pooled sequencing datasets generated using the Illumina Genome Analyzer demonstrates that it can detect 80-85% of SNPs identified using individual sequencing while achieving a low false discovery rate (3-5%). Comparison with previous methods for pooled SNP detection demonstrates the significantly lower false positive and false negative rates for CRISP. Implementation of this method is available at http://polymorphism.scripps.edu/~vbansal/software/CRISP/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.
MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).
Chen, Hui; Luthra, Rajyalakshmi; Goswami, Rashmi S; Singh, Rajesh R; Roy-Chowdhuri, Sinchita
2015-08-28
Application of next-generation sequencing (NGS) technology to routine clinical practice has enabled characterization of personalized cancer genomes to identify patients likely to have a response to targeted therapy. The proper selection of tumor sample for downstream NGS based mutational analysis is critical to generate accurate results and to guide therapeutic intervention. However, multiple pre-analytic factors come into play in determining the success of NGS testing. In this review, we discuss pre-analytic requirements for AmpliSeq PCR-based sequencing using Ion Torrent Personal Genome Machine (PGM) (Life Technologies), a NGS sequencing platform that is often used by clinical laboratories for sequencing solid tumors because of its low input DNA requirement from formalin fixed and paraffin embedded tissue. The success of NGS mutational analysis is affected not only by the input DNA quantity but also by several other factors, including the specimen type, the DNA quality, and the tumor cellularity. Here, we review tissue requirements for solid tumor NGS based mutational analysis, including procedure types, tissue types, tumor volume and fraction, decalcification, and treatment effects.
Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data
Martin, John; Abubucker, Sahar; Heizer, Esley; Taylor, Christina M.; Mitreva, Makedonka
2012-01-01
Nematode.net (http://nematode.net) has been a publicly available resource for studying nematodes for over a decade. In the past 3 years, we reorganized Nematode.net to provide more user-friendly navigation through the site, a necessity due to the explosion of data from next-generation sequencing platforms. Organism-centric portals containing dynamically generated data are available for over 56 different nematode species. Next-generation data has been added to the various data-mining portals hosted, including NemaBLAST and NemaBrowse. The NemaPath metabolic pathway viewer builds associations using KOs, rather than ECs to provide more accurate and fine-grained descriptions of proteins. Two new features for data analysis and comparative genomics have been added to the site. NemaSNP enables the user to perform population genetics studies in various nematode populations using next-generation sequencing data. HelmCoP (Helminth Control and Prevention) as an independent component of Nematode.net provides an integrated resource for storage, annotation and comparative genomics of helminth genomes to aid in learning more about nematode genomes, as well as drug, pesticide, vaccine and drug target discovery. With this update, Nematode.net will continue to realize its original goal to disseminate diverse bioinformatic data sets and provide analysis tools to the broad scientific community in a useful and user-friendly manner. PMID:22139919
Ho, Cynthia K. Y.; Raghwani, Jayna; Koekkoek, Sylvie; Liang, Richard H.; Van der Meer, Jan T. M.; Van Der Valk, Marc; De Jong, Menno; Pybus, Oliver G.
2016-01-01
ABSTRACT In contrast to other available next-generation sequencing platforms, PacBio single-molecule, real-time (SMRT) sequencing has the advantage of generating long reads albeit with a relatively higher error rate in unprocessed data. Using this platform, we longitudinally sampled and sequenced the hepatitis C virus (HCV) envelope genome region (1,680 nucleotides [nt]) from individuals belonging to a cluster of sexually transmitted cases. All five subjects were coinfected with HIV-1 and a closely related strain of HCV genotype 4d. In total, 50 samples were analyzed by using SMRT sequencing. By using 7 passes of circular consensus sequencing, the error rate was reduced to 0.37%, and the median number of sequences was 612 per sample. A further reduction of insertions was achieved by alignment against a sample-specific reference sequence. However, in vitro recombination during PCR amplification could not be excluded. Phylogenetic analysis supported close relationships among HCV sequences from the four male subjects and subsequent transmission from one subject to his female partner. Transmission was characterized by a strong genetic bottleneck. Viral genetic diversity was low during acute infection and increased upon progression to chronicity but subsequently fluctuated during chronic infection, caused by the alternate detection of distinct coexisting lineages. SMRT sequencing combines long reads with sufficient depth for many phylogenetic analyses and can therefore provide insights into within-host HCV evolutionary dynamics without the need for haplotype reconstruction using statistical algorithms. IMPORTANCE Next-generation sequencing has revolutionized the study of genetically variable RNA virus populations, but for phylogenetic and evolutionary analyses, longer sequences than those generated by most available platforms, while minimizing the intrinsic error rate, are desired. Here, we demonstrate for the first time that PacBio SMRT sequencing technology can be used to generate full-length HCV envelope sequences at the single-molecule level, providing a data set with large sequencing depth for the characterization of intrahost viral dynamics. The selection of consensus reads derived from at least 7 full circular consensus sequencing rounds significantly reduced the intrinsic high error rate of this method. We used this method to genetically characterize a unique transmission cluster of sexually transmitted HCV infections, providing insight into the distinct evolutionary pathways in each patient over time and identifying the transmission-associated genetic bottleneck as well as fluctuations in viral genetic diversity over time, accompanied by dynamic shifts in viral subpopulations. PMID:28077634
The Democratization of the Oncogene
Le, Anh T.; Doebele, Robert C.
2014-01-01
Summary The identification of novel, oncogenic gene rearrangements in inflammatory myofibroblastic tumor (IMT) demonstrates the potential of next generation sequencing (NGS) platforms for the detection of therapeutically relevant oncogenes across multiple tumor types, but raises significant questions relating to the investigation of targeted therapies in this new era of widespread NGS testing. PMID:25092743
Analysis and Visualization Tool for Targeted Amplicon Bisulfite Sequencing on Ion Torrent Sequencers
Pabinger, Stephan; Ernst, Karina; Pulverer, Walter; Kallmeyer, Rainer; Valdes, Ana M.; Metrustry, Sarah; Katic, Denis; Nuzzo, Angelo; Kriegner, Albert; Vierlinger, Klemens; Weinhaeusel, Andreas
2016-01-01
Targeted sequencing of PCR amplicons generated from bisulfite deaminated DNA is a flexible, cost-effective way to study methylation of a sample at single CpG resolution and perform subsequent multi-target, multi-sample comparisons. Currently, no platform specific protocol, support, or analysis solution is provided to perform targeted bisulfite sequencing on a Personal Genome Machine (PGM). Here, we present a novel tool, called TABSAT, for analyzing targeted bisulfite sequencing data generated on Ion Torrent sequencers. The workflow starts with raw sequencing data, performs quality assessment, and uses a tailored version of Bismark to map the reads to a reference genome. The pipeline visualizes results as lollipop plots and is able to deduce specific methylation-patterns present in a sample. The obtained profiles are then summarized and compared between samples. In order to assess the performance of the targeted bisulfite sequencing workflow, 48 samples were used to generate 53 different Bisulfite-Sequencing PCR amplicons from each sample, resulting in 2,544 amplicon targets. We obtained a mean coverage of 282X using 1,196,822 aligned reads. Next, we compared the sequencing results of these targets to the methylation level of the corresponding sites on an Illumina 450k methylation chip. The calculated average Pearson correlation coefficient of 0.91 confirms the sequencing results with one of the industry-leading CpG methylation platforms and shows that targeted amplicon bisulfite sequencing provides an accurate and cost-efficient method for DNA methylation studies, e.g., to provide platform-independent confirmation of Illumina Infinium 450k methylation data. TABSAT offers a novel way to analyze data generated by Ion Torrent instruments and can also be used with data from the Illumina MiSeq platform. It can be easily accessed via the Platomics platform, which offers a web-based graphical user interface along with sample and parameter storage. TABSAT is freely available under a GNU General Public License version 3.0 (GPLv3) at https://github.com/tadkeys/tabsat/ and http://demo.platomics.com/. PMID:27467908
Targeted exploration and analysis of large cross-platform human transcriptomic compendia
Zhu, Qian; Wong, Aaron K; Krishnan, Arjun; Aure, Miriam R; Tadych, Alicja; Zhang, Ran; Corney, David C; Greene, Casey S; Bongo, Lars A; Kristensen, Vessela N; Charikar, Moses; Li, Kai; Troyanskaya, Olga G.
2016-01-01
We present SEEK (http://seek.princeton.edu), a query-based search engine across very large transcriptomic data collections, including thousands of human data sets from almost 50 microarray and next-generation sequencing platforms. SEEK uses a novel query-level cross-validation-based algorithm to automatically prioritize data sets relevant to the query and a robust search approach to identify query-coregulated genes, pathways, and processes. SEEK provides cross-platform handling, multi-gene query search, iterative metadata-based search refinement, and extensive visualization-based analysis options. PMID:25581801
Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina
2017-01-01
Background We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. Methodology An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Principal findings The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1–10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Conclusions Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. PMID:29155823
Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas
2017-11-01
We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.
Hirsch, B; Endris, V; Lassmann, S; Weichert, W; Pfarr, N; Schirmacher, P; Kovaleva, V; Werner, M; Bonzheim, I; Fend, F; Sperveslage, J; Kaulich, K; Zacher, A; Reifenberger, G; Köhrer, K; Stepanow, S; Lerke, S; Mayr, T; Aust, D E; Baretton, G; Weidner, S; Jung, A; Kirchner, T; Hansmann, M L; Burbat, L; von der Wall, E; Dietel, M; Hummel, M
2018-04-01
The simultaneous detection of multiple somatic mutations in the context of molecular diagnostics of cancer is frequently performed by means of amplicon-based targeted next-generation sequencing (NGS). However, only few studies are available comparing multicenter testing of different NGS platforms and gene panels. Therefore, seven partner sites of the German Cancer Consortium (DKTK) performed a multicenter interlaboratory trial for targeted NGS using the same formalin-fixed, paraffin-embedded (FFPE) specimen of molecularly pre-characterized tumors (n = 15; each n = 5 cases of Breast, Lung, and Colon carcinoma) and a colorectal cancer cell line DNA dilution series. Detailed information regarding pre-characterized mutations was not disclosed to the partners. Commercially available and custom-designed cancer gene panels were used for library preparation and subsequent sequencing on several devices of two NGS different platforms. For every case, centrally extracted DNA and FFPE tissue sections for local processing were delivered to each partner site to be sequenced with the commercial gene panel and local bioinformatics. For cancer-specific panel-based sequencing, only centrally extracted DNA was analyzed at seven sequencing sites. Subsequently, local data were compiled and bioinformatics was performed centrally. We were able to demonstrate that all pre-characterized mutations were re-identified correctly, irrespective of NGS platform or gene panel used. However, locally processed FFPE tissue sections disclosed that the DNA extraction method can affect the detection of mutations with a trend in favor of magnetic bead-based DNA extraction methods. In conclusion, targeted NGS is a very robust method for simultaneous detection of various mutations in FFPE tissue specimens if certain pre-analytical conditions are carefully considered.
Muñoz-Colmenero, Marta; Martínez, Jose Luis; Roca, Agustín; Garcia-Vazquez, Eva
2017-01-01
The Next Generation Sequencing methodologies are considered the next step within DNA-based methods and their applicability in different fields is being evaluated. Here, we tested the usefulness of the Ion Torrent Personal Genome Machine (PGM) in food traceability analyzing candies as a model of high processed foods, and compared the results with those obtained by PCR-cloning-sequencing (PCR-CS). The majority of samples exhibited consistency between methodologies, yielding more information and species per product from the PGM platform than PCR-CS. Significantly higher AT-content in sequences of the same species was also obtained from PGM. This together with some taxonomical discrepancies between methodologies suggest that the PGM platform is still pre-mature for its use in food traceability of complex highly processed products. It could be a good option for analysis of less complex food, saving time and cost per sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beltman, Joost B; Urbanus, Jos; Velds, Arno; van Rooij, Nienke; Rohr, Jan C; Naik, Shalin H; Schumacher, Ton N
2016-04-02
Next generation sequencing (NGS) of amplified DNA is a powerful tool to describe genetic heterogeneity within cell populations that can both be used to investigate the clonal structure of cell populations and to perform genetic lineage tracing. For applications in which both abundant and rare sequences are biologically relevant, the relatively high error rate of NGS techniques complicates data analysis, as it is difficult to distinguish rare true sequences from spurious sequences that are generated by PCR or sequencing errors. This issue, for instance, applies to cellular barcoding strategies that aim to follow the amount and type of offspring of single cells, by supplying these with unique heritable DNA tags. Here, we use genetic barcoding data from the Illumina HiSeq platform to show that straightforward read threshold-based filtering of data is typically insufficient to filter out spurious barcodes. Importantly, we demonstrate that specific sequencing errors occur at an approximately constant rate across different samples that are sequenced in parallel. We exploit this observation by developing a novel approach to filter out spurious sequences. Application of our new method demonstrates its value in the identification of true sequences amongst spurious sequences in biological data sets.
Analysis of Illumina Microbial Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clum, Alicia; Foster, Brian; Froula, Jeff
2010-05-28
Since the emerging of second generation sequencing technologies, the evaluation of different sequencing approaches and their assembly strategies for different types of genomes has become an important undertaken. Next generation sequencing technologies dramatically increase sequence throughput while decreasing cost, making them an attractive tool for whole genome shotgun sequencing. To compare different approaches for de-novo whole genome assembly, appropriate tools and a solid understanding of both quantity and quality of the underlying sequence data are crucial. Here, we performed an in-depth analysis of short-read Illumina sequence assembly strategies for bacterial and archaeal genomes. Different types of Illumina libraries as wellmore » as different trim parameters and assemblers were evaluated. Results of the comparative analysis and sequencing platforms will be presented. The goal of this analysis is to develop a cost-effective approach for the increased throughput of the generation of high quality microbial genomes.« less
Shum, Bennett O V; Henner, Ilya; Belluoccio, Daniele; Hinchcliffe, Marcus J
2017-07-01
The sensitivity and specificity of next-generation sequencing laboratory developed tests (LDTs) are typically determined by an analyte-specific approach. Analyte-specific validations use disease-specific controls to assess an LDT's ability to detect known pathogenic variants. Alternatively, a methods-based approach can be used for LDT technical validations. Methods-focused validations do not use disease-specific controls but use benchmark reference DNA that contains known variants (benign, variants of unknown significance, and pathogenic) to assess variant calling accuracy of a next-generation sequencing workflow. Recently, four whole-genome reference materials (RMs) from the National Institute of Standards and Technology (NIST) were released to standardize methods-based validations of next-generation sequencing panels across laboratories. We provide a practical method for using NIST RMs to validate multigene panels. We analyzed the utility of RMs in validating a novel newborn screening test that targets 70 genes, called NEO1. Despite the NIST RM variant truth set originating from multiple sequencing platforms, replicates, and library types, we discovered a 5.2% false-negative variant detection rate in the RM truth set genes that were assessed in our validation. We developed a strategy using complementary non-RM controls to demonstrate 99.6% sensitivity of the NEO1 test in detecting variants. Our findings have implications for laboratories or proficiency testing organizations using whole-genome NIST RMs for testing. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Lee, Yi-Xuan; Chen, Chien-Wen; Lin, Yi-Hui; Tzeng, Chii-Ruey; Chen, Chi-Huang
2018-01-01
Preimplantation genetic testing has been used widely in recent years as a part of assisted reproductive technology (ART) owing to the breakthrough development of deoxyribonucleic acid (DNA) sequencing. With the advancement of technology and increased resolution of next generation sequencing (NGS), extensive comprehensive chromosome screening along with small clinically significant deletions and duplications can possibly be performed simultaneously. Here, we present a case of rare chromosomal aberrations: 46,XY,dup(15)(q11.2q13),t(16;18)(q23;p11.2), which resulted in a normally developed adult but abnormal gametes leading to recurrent pregnancy loss (RPL). To our best knowledge, this is the first report of t(16;18) translocation with such a small exchanged segment detected by NGS platform of MiSeq system in simultaneous 24-chromosome aneuploidy screening.
Guo, Liang; Li, Mingming; Zhang, Heng; Yang, Sen; Chen, Xinghan; Meng, Zining; Lin, Haoran
2016-05-01
Recently, the next-generation sequencing (NGS) technology has become a powerful tool for sequencing the teleost mitochondrial genome (mitogenome). Here, we used this technology to determine the mitogenome of the yellowfin tuna (Thunnus albacares). A total of 41,378 reads were generated by Illumina platform with an average depth of 250×. The mitogenome (16,528 bp in length) contained 37 mitochondrial genes with the similar gene order to other typical teleosts. These mitochondrial genes were encoded on the heavy strand except for ND6 and eight tRNA genes. The result of phylogenetic analysis supported two distinct clades dividing the genus Thunnus, but the tuna species of these two genetic clades were different from that of two recognized subgenus based on anatomical characters and geographical distribution. Our results might help to understand the structure, function, and evolutionary history of the yellowfin tuna mitogenome and also provide valuable new insights for phylogenetic affinity of tuna species.
Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies
Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland
2013-01-01
The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes. PMID:23776689
Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit.
Daoud, Hussein; Luco, Stephanie M; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M; Graham, Gail E; Richer, Julie; Armour, Christine; Bulman, Dennis E; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M; Dyment, David A
2016-08-09
Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children's Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype-phenotype correlations. Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys-Drash syndrome. This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. © 2016 Canadian Medical Association or its licensors.
Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit
Daoud, Hussein; Luco, Stephanie M.; Li, Rui; Bareke, Eric; Beaulieu, Chandree; Jarinova, Olga; Carson, Nancy; Nikkel, Sarah M.; Graham, Gail E.; Richer, Julie; Armour, Christine; Bulman, Dennis E.; Chakraborty, Pranesh; Geraghty, Michael; Lines, Matthew A.; Lacaze-Masmonteil, Thierry; Majewski, Jacek; Boycott, Kym M.; Dyment, David A.
2016-01-01
Background: Rare diseases often present in the first days and weeks of life and may require complex management in the setting of a neonatal intensive care unit (NICU). Exhaustive consultations and traditional genetic or metabolic investigations are costly and often fail to arrive at a final diagnosis when no recognizable syndrome is suspected. For this pilot project, we assessed the feasibility of next-generation sequencing as a tool to improve the diagnosis of rare diseases in newborns in the NICU. Methods: We retrospectively identified and prospectively recruited newborns and infants admitted to the NICU of the Children’s Hospital of Eastern Ontario and the Ottawa Hospital, General Campus, who had been referred to the medical genetics or metabolics inpatient consult service and had features suggesting an underlying genetic or metabolic condition. DNA from the newborns and parents was enriched for a panel of clinically relevant genes and sequenced on a MiSeq sequencing platform (Illumina Inc.). The data were interpreted with a standard informatics pipeline and reported to care providers, who assessed the importance of genotype–phenotype correlations. Results: Of 20 newborns studied, 8 received a diagnosis on the basis of next-generation sequencing (diagnostic rate 40%). The diagnoses were renal tubular dysgenesis, SCN1A-related encephalopathy syndrome, myotubular myopathy, FTO deficiency syndrome, cranioectodermal dysplasia, congenital myasthenic syndrome, autosomal dominant intellectual disability syndrome type 7 and Denys–Drash syndrome. Interpretation: This pilot study highlighted the potential of next-generation sequencing to deliver molecular diagnoses rapidly with a high success rate. With broader use, this approach has the potential to alter health care delivery in the NICU. PMID:27241786
Software for pre-processing Illumina next-generation sequencing short read sequences
2014-01-01
Background When compared to Sanger sequencing technology, next-generation sequencing (NGS) technologies are hindered by shorter sequence read length, higher base-call error rate, non-uniform coverage, and platform-specific sequencing artifacts. These characteristics lower the quality of their downstream analyses, e.g. de novo and reference-based assembly, by introducing sequencing artifacts and errors that may contribute to incorrect interpretation of data. Although many tools have been developed for quality control and pre-processing of NGS data, none of them provide flexible and comprehensive trimming options in conjunction with parallel processing to expedite pre-processing of large NGS datasets. Methods We developed ngsShoRT (next-generation sequencing Short Reads Trimmer), a flexible and comprehensive open-source software package written in Perl that provides a set of algorithms commonly used for pre-processing NGS short read sequences. We compared the features and performance of ngsShoRT with existing tools: CutAdapt, NGS QC Toolkit and Trimmomatic. We also compared the effects of using pre-processed short read sequences generated by different algorithms on de novo and reference-based assembly for three different genomes: Caenorhabditis elegans, Saccharomyces cerevisiae S288c, and Escherichia coli O157 H7. Results Several combinations of ngsShoRT algorithms were tested on publicly available Illumina GA II, HiSeq 2000, and MiSeq eukaryotic and bacteria genomic short read sequences with the focus on removing sequencing artifacts and low-quality reads and/or bases. Our results show that across three organisms and three sequencing platforms, trimming improved the mean quality scores of trimmed sequences. Using trimmed sequences for de novo and reference-based assembly improved assembly quality as well as assembler performance. In general, ngsShoRT outperformed comparable trimming tools in terms of trimming speed and improvement of de novo and reference-based assembly as measured by assembly contiguity and correctness. Conclusions Trimming of short read sequences can improve the quality of de novo and reference-based assembly and assembler performance. The parallel processing capability of ngsShoRT reduces trimming time and improves the memory efficiency when dealing with large datasets. We recommend combining sequencing artifacts removal, and quality score based read filtering and base trimming as the most consistent method for improving sequence quality and downstream assemblies. ngsShoRT source code, user guide and tutorial are available at http://research.bioinformatics.udel.edu/genomics/ngsShoRT/. ngsShoRT can be incorporated as a pre-processing step in genome and transcriptome assembly projects. PMID:24955109
StatsDB: platform-agnostic storage and understanding of next generation sequencing run metrics
Ramirez-Gonzalez, Ricardo H.; Leggett, Richard M.; Waite, Darren; Thanki, Anil; Drou, Nizar; Caccamo, Mario; Davey, Robert
2014-01-01
Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. ”provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month”. The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages. PMID:24627795
USDA-ARS?s Scientific Manuscript database
The rapid advancement in high-throughput SNP genotyping technologies along with next generation sequencing (NGS) platforms has decreased the cost, improved the quality of large-scale genome surveys, and allowed specialty crops with limited genomic resources such as carrot (Daucus carota) to access t...
Detection of human microRNAs across miRNA Array and Next Generation DNA Sequencing Platforms
microRNA (miRNAs) are non-coding RNA molecules between 19 and 30 nucleotides in length that are believed to regulate approximately 30 per cent of all human genes. They act as negative regulators of their gene targets in many biological processes. Recent developments in microar...
The democratization of the oncogene.
Le, Anh T; Doebele, Robert C
2014-08-01
The identification of novel, oncogenic gene rearrangements in inflammatory myofibroblastic tumor demonstrates the potential of next-generation sequencing (NGS) platforms for the detection of therapeutically relevant oncogenes across multiple tumor types, but raises significant questions relating to the investigation of targeted therapies in this new era of widespread NGS testing. ©2014 American Association for Cancer Research.
Kappel, Kristina; Haase, Ilka; Käppel, Christine; Sotelo, Carmen G; Schröder, Ute
2017-11-01
Conventional Sanger sequencing of PCR products is the gold standard for species authentication of seafood products. However, this method is inappropriate for the analysis of products that might contain mixtures of species, such as tinned tuna. The purpose of this study was to test whether next-generation sequencing (NGS) can be a solution for the authentication of mixed products. Nine tuna samples containing mixtures of up to four species were prepared and subjected to an NGS approach targeting two short cytochrome b gene (cytb) fragments on the Illumina MiSeq platform. Sequence recovery was precise and admixtures of as low as 1% could be identified, depending on the species composition of the mixtures. Duplicate samples as well as two individual NGS runs produced very similar results. A first test of three commercial tinned tuna samples indicated the presence of different species in the same tin, although this is forbidden by EU law. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mohammed, Monzoorul Haque; Dutta, Anirban; Bose, Tungadri; Chadaram, Sudha; Mande, Sharmila S
2012-10-01
An unprecedented quantity of genome sequence data is currently being generated using next-generation sequencing platforms. This has necessitated the development of novel bioinformatics approaches and algorithms that not only facilitate a meaningful analysis of these data but also aid in efficient compression, storage, retrieval and transmission of huge volumes of the generated data. We present a novel compression algorithm (DELIMINATE) that can rapidly compress genomic sequence data in a loss-less fashion. Validation results indicate relatively higher compression efficiency of DELIMINATE when compared with popular general purpose compression algorithms, namely, gzip, bzip2 and lzma. Linux, Windows and Mac implementations (both 32 and 64-bit) of DELIMINATE are freely available for download at: http://metagenomics.atc.tcs.com/compression/DELIMINATE. sharmila@atc.tcs.com Supplementary data are available at Bioinformatics online.
Inaugural Genomics Automation Congress and the coming deluge of sequencing data.
Creighton, Chad J
2010-10-01
Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.
Optimizing Illumina next-generation sequencing library preparation for extremely AT-biased genomes.
Oyola, Samuel O; Otto, Thomas D; Gu, Yong; Maslen, Gareth; Manske, Magnus; Campino, Susana; Turner, Daniel J; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Swerdlow, Harold P; Quail, Michael A
2012-01-03
Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences. We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates. We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.
A Next-Generation Sequencing Primer—How Does It Work and What Can It Do?
Alekseyev, Yuriy O.; Fazeli, Roghayeh; Yang, Shi; Basran, Raveen; Miller, Nancy S.
2018-01-01
Next-generation sequencing refers to a high-throughput technology that determines the nucleic acid sequences and identifies variants in a sample. The technology has been introduced into clinical laboratory testing and produces test results for precision medicine. Since next-generation sequencing is relatively new, graduate students, medical students, pathology residents, and other physicians may benefit from a primer to provide a foundation about basic next-generation sequencing methods and applications, as well as specific examples where it has had diagnostic and prognostic utility. Next-generation sequencing technology grew out of advances in multiple fields to produce a sophisticated laboratory test with tremendous potential. Next-generation sequencing may be used in the clinical setting to look for specific genetic alterations in patients with cancer, diagnose inherited conditions such as cystic fibrosis, and detect and profile microbial organisms. This primer will review DNA sequencing technology, the commercialization of next-generation sequencing, and clinical uses of next-generation sequencing. Specific applications where next-generation sequencing has demonstrated utility in oncology are provided. PMID:29761157
Papasavva, Thessalia; van IJcken, Wilfred F J; Kockx, Christel E M; van den Hout, Mirjam C G N; Kountouris, Petros; Kythreotis, Loukas; Kalogirou, Eleni; Grosveld, Frank G; Kleanthous, Marina
2013-01-01
β-Thalassaemia is one of the most common autosomal recessive single-gene disorder worldwide, with a carrier frequency of 12% in Cyprus. Prenatal tests for at risk pregnancies use invasive methods and development of a non-invasive prenatal diagnostic (NIPD) method is of paramount importance to prevent unnecessary risks inherent to invasive methods. Here, we describe such a method by assessing a modified version of next generation sequencing (NGS) using the Illumina platform, called ‘targeted sequencing', based on the detection of paternally inherited fetal alleles in maternal plasma. We selected four single-nucleotide polymorphisms (SNPs) located in the β-globin locus with a high degree of heterozygosity in the Cypriot population. Spiked genomic samples were used to determine the specificity of the platform. We could detect the minor alleles in the expected ratio, showing the specificity of the platform. We then developed a multiplexed format for the selected SNPs and analysed ten maternal plasma samples from pregnancies at risk. The presence or absence of the paternal mutant allele was correctly determined in 27 out of 34 samples analysed. With haplotype analysis, NIPD was possible on eight out of ten families. This is the first study carried out for the NIPD of β-thalassaemia using targeted NGS and haplotype analysis. Preliminary results show that NGS is effective in detecting paternally inherited alleles in the maternal plasma. PMID:23572027
Haimovich, Adrian D.; Muir, Paul; Isaacs, Farren J.
2016-01-01
Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges. PMID:26260262
A Roadmap for using Agile Development in a Traditional System
NASA Technical Reports Server (NTRS)
Streiffert, Barbara; Starbird, Thomas
2006-01-01
I. Ensemble Development Group: a) Produces activity planning software for in spacecraft; b) Built on Eclipse Rich Client Platform (open source development and runtime software); c) Funded by multiple sources including the Mars Technology Program; d) Incorporated the use of Agile Development. II. Next Generation Uplink Planning System: a) Researches the Activity Planning and Sequencing Subsystem for Mars Science Laboratory (APSS); b) APSS includes Ensemble, Activity Modeling, Constraint Checking, Command Editing and Sequencing tools plus other uplink generation utilities; c) Funded by the Mars Technology Program; d) Integrates all of the tools for APSS.
Patel, Rajesh; Tsan, Alison; Sumiyoshi, Teiko; Fu, Ling; Desai, Rupal; Schoenbrunner, Nancy; Myers, Thomas W.; Bauer, Keith; Smith, Edward; Raja, Rajiv
2014-01-01
Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development. PMID:24658394
Panek, Marina; Čipčić Paljetak, Hana; Barešić, Anja; Perić, Mihaela; Matijašić, Mario; Lojkić, Ivana; Vranešić Bender, Darija; Krznarić, Željko; Verbanac, Donatella
2018-03-23
The information on microbiota composition in the human gastrointestinal tract predominantly originates from the analyses of human faeces by application of next generation sequencing (NGS). However, the detected composition of the faecal bacterial community can be affected by various factors including experimental design and procedures. This study evaluated the performance of different protocols for collection and storage of faecal samples (native and OMNIgene.GUT system) and bacterial DNA extraction (MP Biomedicals, QIAGEN and MO BIO kits), using two NGS platforms for 16S rRNA gene sequencing (Ilumina MiSeq and Ion Torrent PGM). OMNIgene.GUT proved as a reliable and convenient system for collection and storage of faecal samples although favouring Sutterella genus. MP provided superior DNA yield and quality, MO BIO depleted Gram positive organisms while using QIAGEN with OMNIgene.GUT resulted in greatest variability compared to other two kits. MiSeq and IT platforms in their supplier recommended setups provided comparable reproducibility of donor faecal microbiota. The differences included higher diversity observed with MiSeq and increased capacity of MiSeq to detect Akkermansia muciniphila, [Odoribacteraceae], Erysipelotrichaceae and Ruminococcaceae (primarily Faecalibacterium prausnitzii). The results of our study could assist the investigators using NGS technologies to make informed decisions on appropriate tools for their experimental pipelines.
Sun, Beili; Zhou, Dongrui; Tu, Jing; Lu, Zuhong
2017-01-01
The characteristics of tongue coating are very important symbols for disease diagnosis in traditional Chinese medicine (TCM) theory. As a habitat of oral microbiota, bacteria on the tongue dorsum have been proved to be the cause of many oral diseases. The high-throughput next-generation sequencing (NGS) platforms have been widely applied in the analysis of bacterial 16S rRNA gene. We developed a methodology based on genus-specific multiprimer amplification and ligation-based sequencing for microbiota analysis. In order to validate the efficiency of the approach, we thoroughly analyzed six tongue coating samples from lung cancer patients with different TCM types, and more than 600 genera of bacteria were detected by this platform. The results showed that ligation-based parallel sequencing combined with enzyme digestion and multiamplification could expand the effective length of sequencing reads and could be applied in the microbiota analysis.
Advances in DNA sequencing technologies for high resolution HLA typing.
Cereb, Nezih; Kim, Hwa Ran; Ryu, Jaejun; Yang, Soo Young
2015-12-01
This communication describes our experience in large-scale G group-level high resolution HLA typing using three different DNA sequencing platforms - ABI 3730 xl, Illumina MiSeq and PacBio RS II. Recent advances in DNA sequencing technologies, so-called next generation sequencing (NGS), have brought breakthroughs in deciphering the genetic information in all living species at a large scale and at an affordable level. The NGS DNA indexing system allows sequencing multiple genes for large number of individuals in a single run. Our laboratory has adopted and used these technologies for HLA molecular testing services. We found that each sequencing technology has its own strengths and weaknesses, and their sequencing performances complement each other. HLA genes are highly complex and genotyping them is quite challenging. Using these three sequencing platforms, we were able to meet all requirements for G group-level high resolution and high volume HLA typing. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.
Lu, Chaoxia; Wu, Wei; Xiao, Jifang; Meng, Yan; Zhang, Shuyang; Zhang, Xue
2013-06-01
To detect pathogenic mutations in Marfan syndrome (MFS) using an Ion Torrent Personal Genome Machine (PGM) and to validate the result of targeted next-generation semiconductor sequencing for the diagnosis of genetic disorders. Peripheral blood samples were collected from three MFS patients and a normal control with informed consent. Genomic DNA was isolated by standard method and then subjected to targeted sequencing using an Ion Ampliseq(TM) Inherited Disease Panel. Three multiplex PCR reactions were carried out to amplify the coding exons of 328 genes including FBN1, TGFBR1 and TGFBR2. DNA fragments from different samples were ligated with barcoded sequencing adaptors. Template preparation and emulsion PCR, and Ion Sphere Particles enrichment were carried out using an Ion One Touch system. The ion sphere particles were sequenced on a 318 chip using the PGM platform. Data from the PGM runs were processed using an Ion Torrent Suite 3.2 software to generate sequence reads. After sequence alignment and extraction of SNPs and indels, all the variants were filtered against dbSNP137. DNA sequences were visualized with an Integrated Genomics Viewer. The most likely disease-causing variants were analyzed by Sanger sequencing. The PGM sequencing has yielded an output of 855.80 Mb, with a > 100 × median sequencing depth and a coverage of > 98% for the targeted regions in all the four samples. After data analysis and database filtering, one known missense mutation (p.E1811K) and two novel premature termination mutations (p.E2264X and p.L871FfsX23) in the FBN1 gene were identified in the three MFS patients. All mutations were verified by conventional Sanger sequencing. Pathogenic FBN1 mutations have been identified in all patients with MFS, indicating that the targeted next-generation sequencing on the PGM sequencers can be applied for accurate and high-throughput testing of genetic disorders.
Microfluidics for genome-wide studies involving next generation sequencing
Murphy, Travis W.; Lu, Chang
2017-01-01
Next-generation sequencing (NGS) has revolutionized how molecular biology studies are conducted. Its decreasing cost and increasing throughput permit profiling of genomic, transcriptomic, and epigenomic features for a wide range of applications. Microfluidics has been proven to be highly complementary to NGS technology with its unique capabilities for handling small volumes of samples and providing platforms for automation, integration, and multiplexing. In this article, we review recent progress on applying microfluidics to facilitate genome-wide studies. We emphasize on several technical aspects of NGS and how they benefit from coupling with microfluidic technology. We also summarize recent efforts on developing microfluidic technology for genomic, transcriptomic, and epigenomic studies, with emphasis on single cell analysis. We envision rapid growth in these directions, driven by the needs for testing scarce primary cell samples from patients in the context of precision medicine. PMID:28396707
Pant, Saumya; Weiner, Russell; Marton, Matthew J.
2014-01-01
Over the past decade, next-generation sequencing (NGS) technology has experienced meteoric growth in the aspects of platform, technology, and supporting bioinformatics development allowing its widespread and rapid uptake in research settings. More recently, NGS-based genomic data have been exploited to better understand disease development and patient characteristics that influence response to a given therapeutic intervention. Cancer, as a disease characterized by and driven by the tumor genetic landscape, is particularly amenable to NGS-based diagnostic (Dx) approaches. NGS-based technologies are particularly well suited to studying cancer disease development, progression and emergence of resistance, all key factors in the development of next-generation cancer Dxs. Yet, to achieve the promise of NGS-based patient treatment, drug developers will need to overcome a number of operational, technical, regulatory, and strategic challenges. Here, we provide a succinct overview of the state of the clinical NGS field in terms of the available clinically targeted platforms and sequencing technologies. We discuss the various operational and practical aspects of clinical NGS testing that will facilitate or limit the uptake of such assays in routine clinical care. We examine the current strategies for analytical validation and Food and Drug Administration (FDA)-approval of NGS-based assays and ongoing efforts to standardize clinical NGS and build quality control standards for the same. The rapidly evolving companion diagnostic (CDx) landscape for NGS-based assays will be reviewed, highlighting the key areas of concern and suggesting strategies to mitigate risk. The review will conclude with a series of strategic questions that face drug developers and a discussion of the likely future course of NGS-based CDx development efforts. PMID:24860780
NASA Astrophysics Data System (ADS)
Harrer, S.; Kim, S. C.; Schieber, C.; Kannam, S.; Gunn, N.; Moore, S.; Scott, D.; Bathgate, R.; Skafidas, S.; Wagner, J. M.
2015-05-01
Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular ‘omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual’s genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.
Harrer, S; Kim, S C; Schieber, C; Kannam, S; Gunn, N; Moore, S; Scott, D; Bathgate, R; Skafidas, S; Wagner, J M
2015-05-08
Employing integrated nano- and microfluidic circuits for detecting and characterizing biological compounds through resistive pulse sensing technology is a vibrant area of research at the interface of biotechnology and nanotechnology. Resistive pulse sensing platforms can be customized to study virtually any particle of choice which can be threaded through a fluidic channel and enable label-free single-particle interrogation with the primary read-out signal being an electric current fingerprint. The ability to perform label-free molecular screening with single-molecule and even single binding site resolution makes resistive pulse sensing technology a powerful tool for analyzing the smallest units of biological systems and how they interact with each other on a molecular level. This task is at the core of experimental systems biology and in particular 'omics research which in combination with next-generation DNA-sequencing and next-generation drug discovery and design forms the foundation of a novel disruptive medical paradigm commonly referred to as personalized medicine or precision medicine. DNA-sequencing has approached the 1000-Dollar-Genome milestone allowing for decoding a complete human genome with unmatched speed and at low cost. Increased sequencing efficiency yields massive amounts of genomic data. Analyzing this data in combination with medical and biometric health data eventually enables understanding the pathways from individual genes to physiological functions. Access to this information triggers fundamental questions for doctors and patients alike: what are the chances of an outbreak for a specific disease? Can individual risks be managed and if so how? Which drugs are available and how should they be applied? Could a new drug be tailored to an individual's genetic predisposition fast and in an affordable way? In order to provide answers and real-life value to patients, the rapid evolvement of novel computing approaches for analyzing big data in systems genomics has to be accompanied by an equally strong effort to develop next-generation DNA-sequencing and next-generation drug screening and design platforms. In that context lab-on-a-chip devices utilizing nanopore- and nanochannel based resistive pulse-sensing technology for DNA-sequencing and protein screening applications occupy a key role. This paper describes the status quo of resistive pulse sensing technology for these two application areas with a special focus on current technology trends and challenges ahead.
Riman, Sarah; Kiesler, Kevin M; Borsuk, Lisa A; Vallone, Peter M
2017-07-01
Standard Reference Materials SRM 2392 and 2392-I are intended to provide quality control when amplifying and sequencing human mitochondrial genome sequences. The National Institute of Standards and Technology (NIST) offers these SRMs to laboratories performing DNA-based forensic human identification, molecular diagnosis of mitochondrial diseases, mutation detection, evolutionary anthropology, and genetic genealogy. The entire mtGenome (∼16569bp) of SRM 2392 and 2392-I have previously been characterized at NIST by Sanger sequencing. Herein, we used the sensitivity, specificity, and accuracy offered by next generation sequencing (NGS) to: (1) re-sequence the certified values of the SRM 2392 and 2392-I; (2) confirm Sanger data with a high coverage new sequencing technology; (3) detect lower level heteroplasmies (<20%); and thus (4) support mitochondrial sequencing communities in the adoption of NGS methods. To obtain a consensus sequence for the SRMs as well as identify and control any bias, sequencing was performed using two NGS platforms and data was analyzed using different bioinformatics pipelines. Our results confirm five low level heteroplasmy sites that were not previously observed with Sanger sequencing: three sites in the GM09947A template in SRM 2392 and two sites in the HL-60 template in SRM 2392-I. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of Next Generation Sequencing Techniques in Food Microbiology
Mayo, Baltasar; Rachid, Caio T. C. C; Alegría, Ángel; Leite, Analy M. O; Peixoto, Raquel S; Delgado, Susana
2014-01-01
Understanding the Maxam-Gilbert and Sanger sequencing as the first generation, in recent years there has been an explosion of newly-developed sequencing strategies, which are usually referred to as next generation sequencing (NGS) techniques. NGS techniques have high-throughputs and produce thousands or even millions of sequences at the same time. These sequences allow for the accurate identification of microbial taxa, including uncultivable organisms and those present in small numbers. In specific applications, NGS provides a complete inventory of all microbial operons and genes present or being expressed under different study conditions. NGS techniques are revolutionizing the field of microbial ecology and have recently been used to examine several food ecosystems. After a short introduction to the most common NGS systems and platforms, this review addresses how NGS techniques have been employed in the study of food microbiota and food fermentations, and discusses their limits and perspectives. The most important findings are reviewed, including those made in the study of the microbiota of milk, fermented dairy products, and plant-, meat- and fish-derived fermented foods. The knowledge that can be gained on microbial diversity, population structure and population dynamics via the use of these technologies could be vital in improving the monitoring and manipulation of foods and fermented food products. They should also improve their safety. PMID:25132799
Stajdohar, Miha; Rosengarten, Rafael D; Kokosar, Janez; Jeran, Luka; Blenkus, Domen; Shaulsky, Gad; Zupan, Blaz
2017-06-02
Dictyostelium discoideum, a soil-dwelling social amoeba, is a model for the study of numerous biological processes. Research in the field has benefited mightily from the adoption of next-generation sequencing for genomics and transcriptomics. Dictyostelium biologists now face the widespread challenges of analyzing and exploring high dimensional data sets to generate hypotheses and discovering novel insights. We present dictyExpress (2.0), a web application designed for exploratory analysis of gene expression data, as well as data from related experiments such as Chromatin Immunoprecipitation sequencing (ChIP-Seq). The application features visualization modules that include time course expression profiles, clustering, gene ontology enrichment analysis, differential expression analysis and comparison of experiments. All visualizations are interactive and interconnected, such that the selection of genes in one module propagates instantly to visualizations in other modules. dictyExpress currently stores the data from over 800 Dictyostelium experiments and is embedded within a general-purpose software framework for management of next-generation sequencing data. dictyExpress allows users to explore their data in a broader context by reciprocal linking with dictyBase-a repository of Dictyostelium genomic data. In addition, we introduce a companion application called GenBoard, an intuitive graphic user interface for data management and bioinformatics analysis. dictyExpress and GenBoard enable broad adoption of next generation sequencing based inquiries by the Dictyostelium research community. Labs without the means to undertake deep sequencing projects can mine the data available to the public. The entire information flow, from raw sequence data to hypothesis testing, can be accomplished in an efficient workspace. The software framework is generalizable and represents a useful approach for any research community. To encourage more wide usage, the backend is open-source, available for extension and further development by bioinformaticians and data scientists.
A filtering method to generate high quality short reads using illumina paired-end technology.
Eren, A Murat; Vineis, Joseph H; Morrison, Hilary G; Sogin, Mitchell L
2013-01-01
Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of consensus between very similar sequences in metagenomic studies can and often does represent natural variation of biological significance. The common use of machine-assigned quality scores on next generation platforms does not necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user instructions can be obtained from https://github.com/meren/illumina-utils.
Allali, Imane; Arnold, Jason W; Roach, Jeffrey; Cadenas, Maria Belen; Butz, Natasha; Hassan, Hosni M; Koci, Matthew; Ballou, Anne; Mendoza, Mary; Ali, Rizwana; Azcarate-Peril, M Andrea
2017-09-13
Advancements in Next Generation Sequencing (NGS) technologies regarding throughput, read length and accuracy had a major impact on microbiome research by significantly improving 16S rRNA amplicon sequencing. As rapid improvements in sequencing platforms and new data analysis pipelines are introduced, it is essential to evaluate their capabilities in specific applications. The aim of this study was to assess whether the same project-specific biological conclusions regarding microbiome composition could be reached using different sequencing platforms and bioinformatics pipelines. Chicken cecum microbiome was analyzed by 16S rRNA amplicon sequencing using Illumina MiSeq, Ion Torrent PGM, and Roche 454 GS FLX Titanium platforms, with standard and modified protocols for library preparation. We labeled the bioinformatics pipelines included in our analysis QIIME1 and QIIME2 (de novo OTU picking [not to be confused with QIIME version 2 commonly referred to as QIIME2]), QIIME3 and QIIME4 (open reference OTU picking), UPARSE1 and UPARSE2 (each pair differs only in the use of chimera depletion methods), and DADA2 (for Illumina data only). GS FLX+ yielded the longest reads and highest quality scores, while MiSeq generated the largest number of reads after quality filtering. Declines in quality scores were observed starting at bases 150-199 for GS FLX+ and bases 90-99 for MiSeq. Scores were stable for PGM-generated data. Overall microbiome compositional profiles were comparable between platforms; however, average relative abundance of specific taxa varied depending on sequencing platform, library preparation method, and bioinformatics analysis. Specifically, QIIME with de novo OTU picking yielded the highest number of unique species and alpha diversity was reduced with UPARSE and DADA2 compared to QIIME. The three platforms compared in this study were capable of discriminating samples by treatment, despite differences in diversity and abundance, leading to similar biological conclusions. Our results demonstrate that while there were differences in depth of coverage and phylogenetic diversity, all workflows revealed comparable treatment effects on microbial diversity. To increase reproducibility and reliability and to retain consistency between similar studies, it is important to consider the impact on data quality and relative abundance of taxa when selecting NGS platforms and analysis tools for microbiome studies.
Management of Incidental Findings in the Era of Next-generation Sequencing
Blackburn, Heather L.; Schroeder, Bradley; Turner, Clesson; Shriver, Craig D.; Ellsworth, Darrell L.; Ellsworth, Rachel E.
2015-01-01
Next-generation sequencing (NGS) technologies allow for the generation of whole exome or whole genome sequencing data, which can be used to identify novel genetic alterations associated with defined phenotypes or to expedite discovery of functional variants for improved patient care. Because this robust technology has the ability to identify all mutations within a genome, incidental findings (IF)- genetic alterations associated with conditions or diseases unrelated to the patient’s present condition for which current tests are being performed- may have important clinical ramifications. The current debate among genetic scientists and clinicians focuses on the following questions: 1) should any IF be disclosed to patients, and 2) which IF should be disclosed – actionable mutations, variants of unknown significance, or all IF? Policies for disclosure of IF are being developed for when and how to convey these findings and whether adults, minors, or individuals unable to provide consent have the right to refuse receipt of IF. In this review, we detail current NGS technology platforms, discuss pressing issues regarding disclosure of IF, and how IF are currently being handled in prenatal, pediatric, and adult patients. PMID:26069456
Mack, Steven J.; Milius, Robert P.; Gifford, Benjamin D.; Sauter, Jürgen; Hofmann, Jan; Osoegawa, Kazutoyo; Robinson, James; Groeneweg, Mathijs; Turenchalk, Gregory S.; Adai, Alex; Holcomb, Cherie; Rozemuller, Erik H.; Penning, Maarten T.; Heuer, Michael L.; Wang, Chunlin; Salit, Marc L.; Schmidt, Alexander H.; Parham, Peter R.; Müller, Carlheinz; Hague, Tim; Fischer, Gottfried; Fernandez-Viňa, Marcelo; Hollenbach, Jill A; Norman, Paul J.; Maiers, Martin
2015-01-01
The development of next-generation sequencing (NGS) technologies for HLA and KIR genotyping is rapidly advancing knowledge of genetic variation of these highly polymorphic loci. NGS genotyping is poised to replace older methods for clinical use, but standard methods for reporting and exchanging these new, high quality genotype data are needed. The Immunogenomic NGS Consortium, a broad collaboration of histocompatibility and immunogenetics clinicians, researchers, instrument manufacturers and software developers, has developed the Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines. MIRING is a checklist that specifies the content of NGS genotyping results as well as a set of messaging guidelines for reporting the results. A MIRING message includes five categories of structured information – message annotation, reference context, full genotype, consensus sequence and novel polymorphism – and references to three categories of accessory information – NGS platform documentation, read processing documentation and primary data. These eight categories of information ensure the long-term portability and broad application of this NGS data for all current histocompatibility and immunogenetics use cases. In addition, MIRING can be extended to allow the reporting of genotype data generated using pre-NGS technologies. Because genotyping results reported using MIRING are easily updated in accordance with reference and nomenclature databases, MIRING represents a bold departure from previous methods of reporting HLA and KIR genotyping results, which have provided static and less-portable data. More information about MIRING can be found online at miring.immunogenomics.org. PMID:26407912
The impact of next-generation sequencing on genomics
Zhang, Jun; Chiodini, Rod; Badr, Ahmed; Zhang, Genfa
2011-01-01
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come. PMID:21477781
Monitoring Error Rates In Illumina Sequencing.
Manley, Leigh J; Ma, Duanduan; Levine, Stuart S
2016-12-01
Guaranteeing high-quality next-generation sequencing data in a rapidly changing environment is an ongoing challenge. The introduction of the Illumina NextSeq 500 and the depreciation of specific metrics from Illumina's Sequencing Analysis Viewer (SAV; Illumina, San Diego, CA, USA) have made it more difficult to determine directly the baseline error rate of sequencing runs. To improve our ability to measure base quality, we have created an open-source tool to construct the Percent Perfect Reads (PPR) plot, previously provided by the Illumina sequencers. The PPR program is compatible with HiSeq 2000/2500, MiSeq, and NextSeq 500 instruments and provides an alternative to Illumina's quality value (Q) scores for determining run quality. Whereas Q scores are representative of run quality, they are often overestimated and are sourced from different look-up tables for each platform. The PPR's unique capabilities as a cross-instrument comparison device, as a troubleshooting tool, and as a tool for monitoring instrument performance can provide an increase in clarity over SAV metrics that is often crucial for maintaining instrument health. These capabilities are highlighted.
Cao, Yu; Fanning, Séamus; Proos, Sinéad; Jordan, Kieran; Srikumar, Shabarinath
2017-01-01
The development of next generation sequencing (NGS) techniques has enabled researchers to study and understand the world of microorganisms from broader and deeper perspectives. The contemporary advances in DNA sequencing technologies have not only enabled finer characterization of bacterial genomes but also provided deeper taxonomic identification of complex microbiomes which in its genomic essence is the combined genetic material of the microorganisms inhabiting an environment, whether the environment be a particular body econiche (e.g., human intestinal contents) or a food manufacturing facility econiche (e.g., floor drain). To date, 16S rDNA sequencing, metagenomics and metatranscriptomics are the three basic sequencing strategies used in the taxonomic identification and characterization of food-related microbiomes. These sequencing strategies have used different NGS platforms for DNA and RNA sequence identification. Traditionally, 16S rDNA sequencing has played a key role in understanding the taxonomic composition of a food-related microbiome. Recently, metagenomic approaches have resulted in improved understanding of a microbiome by providing a species-level/strain-level characterization. Further, metatranscriptomic approaches have contributed to the functional characterization of the complex interactions between different microbial communities within a single microbiome. Many studies have highlighted the use of NGS techniques in investigating the microbiome of fermented foods. However, the utilization of NGS techniques in studying the microbiome of non-fermented foods are limited. This review provides a brief overview of the advances in DNA sequencing chemistries as the technology progressed from first, next and third generations and highlights how NGS provided a deeper understanding of food-related microbiomes with special focus on non-fermented foods. PMID:29033905
Next-generation sequencing: advances and applications in cancer diagnosis
Serratì, Simona; De Summa, Simona; Pilato, Brunella; Petriella, Daniela; Lacalamita, Rosanna; Tommasi, Stefania; Pinto, Rosamaria
2016-01-01
Technological advances have led to the introduction of next-generation sequencing (NGS) platforms in cancer investigation. NGS allows massive parallel sequencing that affords maximal tumor genomic assessment. NGS approaches are different, and concern DNA and RNA analysis. DNA sequencing includes whole-genome, whole-exome, and targeted sequencing, which focuses on a selection of genes of interest for a specific disease. RNA sequencing facilitates the detection of alternative gene-spliced transcripts, posttranscriptional modifications, gene fusion, mutations/single-nucleotide polymorphisms, small and long noncoding RNAs, and changes in gene expression. Most applications are in the cancer research field, but lately NGS technology has been revolutionizing cancer molecular diagnostics, due to the many advantages it offers compared to traditional methods. There is greater knowledge on solid cancer diagnostics, and recent interest has been shown also in the field of hematologic cancer. In this review, we report the latest data on NGS diagnostic/predictive clinical applications in solid and hematologic cancers. Moreover, since the amount of NGS data produced is very large and their interpretation is very complex, we briefly discuss two bioinformatic aspects, variant-calling accuracy and copy-number variation detection, which are gaining a lot of importance in cancer-diagnostic assessment. PMID:27980425
Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric
2014-01-29
Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.
An architecture for genomics analysis in a clinical setting using Galaxy and Docker
Digan, W; Countouris, H; Barritault, M; Baudoin, D; Laurent-Puig, P; Blons, H; Burgun, A
2017-01-01
Abstract Next-generation sequencing is used on a daily basis to perform molecular analysis to determine subtypes of disease (e.g., in cancer) and to assist in the selection of the optimal treatment. Clinical bioinformatics handles the manipulation of the data generated by the sequencer, from the generation to the analysis and interpretation. Reproducibility and traceability are crucial issues in a clinical setting. We have designed an approach based on Docker container technology and Galaxy, the popular bioinformatics analysis support open-source software. Our solution simplifies the deployment of a small-size analytical platform and simplifies the process for the clinician. From the technical point of view, the tools embedded in the platform are isolated and versioned through Docker images. Along the Galaxy platform, we also introduce the AnalysisManager, a solution that allows single-click analysis for biologists and leverages standardized bioinformatics application programming interfaces. We added a Shiny/R interactive environment to ease the visualization of the outputs. The platform relies on containers and ensures the data traceability by recording analytical actions and by associating inputs and outputs of the tools to EDAM ontology through ReGaTe. The source code is freely available on Github at https://github.com/CARPEM/GalaxyDocker. PMID:29048555
An architecture for genomics analysis in a clinical setting using Galaxy and Docker.
Digan, W; Countouris, H; Barritault, M; Baudoin, D; Laurent-Puig, P; Blons, H; Burgun, A; Rance, B
2017-11-01
Next-generation sequencing is used on a daily basis to perform molecular analysis to determine subtypes of disease (e.g., in cancer) and to assist in the selection of the optimal treatment. Clinical bioinformatics handles the manipulation of the data generated by the sequencer, from the generation to the analysis and interpretation. Reproducibility and traceability are crucial issues in a clinical setting. We have designed an approach based on Docker container technology and Galaxy, the popular bioinformatics analysis support open-source software. Our solution simplifies the deployment of a small-size analytical platform and simplifies the process for the clinician. From the technical point of view, the tools embedded in the platform are isolated and versioned through Docker images. Along the Galaxy platform, we also introduce the AnalysisManager, a solution that allows single-click analysis for biologists and leverages standardized bioinformatics application programming interfaces. We added a Shiny/R interactive environment to ease the visualization of the outputs. The platform relies on containers and ensures the data traceability by recording analytical actions and by associating inputs and outputs of the tools to EDAM ontology through ReGaTe. The source code is freely available on Github at https://github.com/CARPEM/GalaxyDocker. © The Author 2017. Published by Oxford University Press.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N
2014-01-01
A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project
Gilbert, Jack A.; Meyer, Folker; Antonopoulos, Dion; Balaji, Pavan; Brown, C. Titus; Brown, Christopher T.; Desai, Narayan; Eisen, Jonathan A; Evers, Dirk; Field, Dawn; Feng, Wu; Huson, Daniel; Jansson, Janet; Knight, Rob; Knight, James; Kolker, Eugene; Konstantindis, Kostas; Kostka, Joel; Kyrpides, Nikos; Mackelprang, Rachel; McHardy, Alice; Quince, Christopher; Raes, Jeroen; Sczyrba, Alexander; Shade, Ashley; Stevens, Rick
2010-01-01
Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet. PMID:21304727
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C; Quake, Stephen R; Burkholder, William F
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.
Davey, Sue; Navarrete, Cristina; Brown, Colin
2017-06-01
Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected. © 2017 AABB.
Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.
2013-01-01
Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273
Buttitta, Fiamma; Felicioni, Lara; Del Grammastro, Maela; Filice, Giampaolo; Di Lorito, Alessia; Malatesta, Sara; Viola, Patrizia; Centi, Irene; D'Antuono, Tommaso; Zappacosta, Roberta; Rosini, Sandra; Cuccurullo, Franco; Marchetti, Antonio
2013-02-01
The therapeutic choice for patients with lung adenocarcinoma depends on the presence of EGF receptor (EGFR) mutations. In many cases, only cytologic samples are available for molecular diagnosis. Bronchoalveolar lavage (BAL) and pleural fluid, which represent a considerable proportion of cytologic specimens, cannot always be used for molecular testing because of low rate of tumor cells. We tested the feasibility of EGFR mutation analysis on BAL and pleural fluid samples by next-generation sequencing (NGS), an innovative and extremely sensitive platform. The study was devised to extend the EGFR test to those patients who could not get it due to the paucity of biologic material. A series of 830 lung cytology specimens was used to select 48 samples (BAL and pleural fluid) from patients with EGFR mutations in resected tumors. These samples included 36 cases with 0.3% to 9% of neoplastic cells (series A) and 12 cases without evidence of tumor (series B). All samples were analyzed by Sanger sequencing and NGS on 454 Roche platform. A mean of 21,130 ± 2,370 sequences per sample were obtained by NGS. In series A, EGFR mutations were detected in 16% of cases by Sanger sequencing and in 81% of cases by NGS. Seventy-seven percent of cases found to be negative by Sanger sequencing showed mutations by NGS. In series B, all samples were negative for EGFR mutation by Sanger sequencing whereas 42% of them were positive by NGS. The very sensitive EGFR-NGS assay may open up to the possibility of specific treatments for patients otherwise doomed to re-biopsies or nontargeted therapies.
PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.
Liu, Chao Chun; Ji, Hezhao
2018-06-26
The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A
2017-11-10
The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Genovo: De Novo Assembly for Metagenomes
NASA Astrophysics Data System (ADS)
Laserson, Jonathan; Jojic, Vladimir; Koller, Daphne
Next-generation sequencing technologies produce a large number of noisy reads from the DNA in a sample. Metagenomics and population sequencing aim to recover the genomic sequences of the species in the sample, which could be of high diversity. Methods geared towards single sequence reconstruction are not sensitive enough when applied in this setting. We introduce a generative probabilistic model of read generation from environmental samples and present Genovo, a novel de novo sequence assembler that discovers likely sequence reconstructions under the model. A Chinese restaurant process prior accounts for the unknown number of genomes in the sample. Inference is made by applying a series of hill-climbing steps iteratively until convergence. We compare the performance of Genovo to three other short read assembly programs across one synthetic dataset and eight metagenomic datasets created using the 454 platform, the largest of which has 311k reads. Genovo's reconstructions cover more bases and recover more genes than the other methods, and yield a higher assembly score.
The Sequencing Bead Array (SBA), a Next-Generation Digital Suspension Array
Akhras, Michael S.; Pettersson, Erik; Diamond, Lisa; Unemo, Magnus; Okamoto, Jennifer; Davis, Ronald W.; Pourmand, Nader
2013-01-01
Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e.g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing. PMID:24116138
Next-generation sequencing: the future of molecular genetics in poultry production and food safety.
Diaz-Sanchez, S; Hanning, I; Pendleton, Sean; D'Souza, Doris
2013-02-01
The era of molecular biology and automation of the Sanger chain-terminator sequencing method has led to discovery and advances in diagnostics and biotechnology. The Sanger methodology dominated research for over 2 decades, leading to significant accomplishments and technological improvements in DNA sequencing. Next-generation high-throughput sequencing (HT-NGS) technologies were developed subsequently to overcome the limitations of this first generation technology that include higher speed, less labor, and lowered cost. Various platforms developed include sequencing-by-synthesis 454 Life Sciences, Illumina (Solexa) sequencing, SOLiD sequencing (among others), and the Ion Torrent semiconductor sequencing technologies that use different detection principles. As technology advances, progress made toward third generation sequencing technologies are being reported, which include Nanopore Sequencing and real-time monitoring of PCR activity through fluorescent resonant energy transfer. The advantages of these technologies include scalability, simplicity, with increasing DNA polymerase performance and yields, being less error prone, and even more economically feasible with the eventual goal of obtaining real-time results. These technologies can be directly applied to improve poultry production and enhance food safety. For example, sequence-based (determination of the gut microbial community, genes for metabolic pathways, or presence of plasmids) and function-based (screening for function such as antibiotic resistance, or vitamin production) metagenomic analysis can be carried out. Gut microbialflora/communities of poultry can be sequenced to determine the changes that affect health and disease along with efficacy of methods to control pathogenic growth. Thus, the purpose of this review is to provide an overview of the principles of these current technologies and their potential application to improve poultry production and food safety as well as public health.
Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.
Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C
2018-05-21
In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.
Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin
2015-12-01
We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Compartmental genomics in living cells revealed by single-cell nanobiopsy.
Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader
2014-01-28
The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.
Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit
2018-01-01
Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.
Proteome Studies of Filamentous Fungi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Scott E.; Panisko, Ellen A.
2011-04-20
The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel basedmore » proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.« less
Proteome studies of filamentous fungi.
Baker, Scott E; Panisko, Ellen A
2011-01-01
The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide variety of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, nongel-based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of variations on the general methods and technologies for identifying peptides in a given sample. We present a method that can serve as a "baseline" for proteomic studies of fungi.
Approaches for in silico finishing of microbial genome sequences
Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva
2017-01-01
Abstract The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing. PMID:28898352
Approaches for in silico finishing of microbial genome sequences.
Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva
The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.
Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C
2012-01-01
The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).
Analysis of selected genes associated with cardiomyopathy by next-generation sequencing.
Szabadosova, Viktoria; Boronova, Iveta; Ferenc, Peter; Tothova, Iveta; Bernasovska, Jarmila; Zigova, Michaela; Kmec, Jan; Bernasovsky, Ivan
2018-02-01
As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)<0.01: rs148374985 (MURC), rs34580776 (MYBPC3). Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered. © 2017 Wiley Periodicals, Inc.
Sablok, Gaurav; Pérez-Pulido, Antonio J.; Do, Thac; Seong, Tan Y.; Casimiro-Soriguer, Carlos S.; La Porta, Nicola; Ralph, Peter J.; Squartini, Andrea; Muñoz-Merida, Antonio; Harikrishna, Jennifer A.
2016-01-01
Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr. PMID:27446111
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.
Kim, Tae Hoon; Dekker, Job
2018-05-01
Owing to its digital nature, ChIP-seq has become the standard method for genome-wide ChIP analysis. Using next-generation sequencing platforms (notably the Illumina Genome Analyzer), millions of short sequence reads can be obtained. The densities of recovered ChIP sequence reads along the genome are used to determine the binding sites of the protein. Although a relatively small amount of ChIP DNA is required for ChIP-seq, the current sequencing platforms still require amplification of the ChIP DNA by ligation-mediated PCR (LM-PCR). This protocol, which involves linker ligation followed by size selection, is the standard ChIP-seq protocol using an Illumina Genome Analyzer. The size-selected ChIP DNA is amplified by LM-PCR and size-selected for the second time. The purified ChIP DNA is then loaded into the Genome Analyzer. The ChIP DNA can also be processed in parallel for ChIP-chip results. © 2018 Cold Spring Harbor Laboratory Press.
McArt, Darragh G.; Dunne, Philip D.; Blayney, Jaine K.; Salto-Tellez, Manuel; Van Schaeybroeck, Sandra; Hamilton, Peter W.; Zhang, Shu-Dong
2013-01-01
The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. PMID:23840550
Singh, Jaya; Mishra, Avshesh; Pandian, Arunachalam Jayamuruga; Mallipatna, Ashwin C.; Khetan, Vikas; Sripriya, S.; Kapoor, Suman; Agarwal, Smita; Sankaran, Satish; Katragadda, Shanmukh; Veeramachaneni, Vamsi; Hariharan, Ramesh; Subramanian, Kalyanasundaram
2016-01-01
Purpose Retinoblastoma (Rb) is the most common primary intraocular cancer of childhood and one of the major causes of blindness in children. India has the highest number of patients with Rb in the world. Mutations in the RB1 gene are the primary cause of Rb, and heterogeneous mutations are distributed throughout the entire length of the gene. Therefore, genetic testing requires screening of the entire gene, which by conventional sequencing is time consuming and expensive. Methods In this study, we screened the RB1 gene in the DNA isolated from blood or saliva samples of 50 unrelated patients with Rb using the TruSight Cancer panel. Next-generation sequencing (NGS) was done on the Illumina MiSeq platform. Genetic variations were identified using the Strand NGS software and interpreted using the StrandOmics platform. Results We were able to detect germline pathogenic mutations in 66% (33/50) of the cases, 12 of which were novel. We were able to detect all types of mutations, including missense, nonsense, splice site, indel, and structural variants. When we considered bilateral Rb cases only, the mutation detection rate increased to 100% (22/22). In unilateral Rb cases, the mutation detection rate was 30% (6/20). Conclusions Our study suggests that NGS-based approaches increase the sensitivity of mutation detection in the RB1 gene, making it fast and cost-effective compared to the conventional tests performed in a reflex-testing mode. PMID:27582626
2014-01-01
Background Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. Results To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. Conclusions By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples. PMID:24475911
Progress in ion torrent semiconductor chip based sequencing.
Merriman, Barry; Rothberg, Jonathan M
2012-12-01
In order for next-generation sequencing to become widely used as a diagnostic in the healthcare industry, sequencing instrumentation will need to be mass produced with a high degree of quality and economy. One way to achieve this is to recast DNA sequencing in a format that fully leverages the manufacturing base created for computer chips, complementary metal-oxide semiconductor chip fabrication, which is the current pinnacle of large scale, high quality, low-cost manufacturing of high technology. To achieve this, ideally the entire sensory apparatus of the sequencer would be embodied in a standard semiconductor chip, manufactured in the same fab facilities used for logic and memory chips. Recently, such a sequencing chip, and the associated sequencing platform, has been developed and commercialized by Ion Torrent, a division of Life Technologies, Inc. Here we provide an overview of this semiconductor chip based sequencing technology, and summarize the progress made since its commercial introduction. We described in detail the progress in chip scaling, sequencing throughput, read length, and accuracy. We also summarize the enhancements in the associated platform, including sample preparation, data processing, and engagement of the broader development community through open source and crowdsourcing initiatives. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India
S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali
2014-01-01
Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.
Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy
Actis, Paolo; Maalouf, Michelle; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader
2014-01-01
The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis. PMID:24279711
Tan, BoonFei; Ng, Charmaine; Nshimyimana, Jean Pierre; Loh, Lay Leng; Gin, Karina Y.-H.; Thompson, Janelle R.
2015-01-01
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools. PMID:26441948
Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2016-01-01
Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.
Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas
2016-01-01
Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid. PMID:26840129
Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T
2012-01-01
Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.
Targeted next generation sequencing for molecular diagnosis of Usher syndrome.
Aparisi, María J; Aller, Elena; Fuster-García, Carla; García-García, Gema; Rodrigo, Regina; Vázquez-Manrique, Rafael P; Blanco-Kelly, Fiona; Ayuso, Carmen; Roux, Anne-Françoise; Jaijo, Teresa; Millán, José M
2014-11-18
Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
DNA sequencing using polymerase substrate-binding kinetics
Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min
2015-01-01
Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848
Wilkinson, Samuel L.; John, Shibu; Walsh, Roddy; Novotny, Tomas; Valaskova, Iveta; Gupta, Manu; Game, Laurence; Barton, Paul J R.; Cook, Stuart A.; Ware, James S.
2013-01-01
Background Molecular genetic testing is recommended for diagnosis of inherited cardiac disease, to guide prognosis and treatment, but access is often limited by cost and availability. Recently introduced high-throughput bench-top DNA sequencing platforms have the potential to overcome these limitations. Methodology/Principal Findings We evaluated two next-generation sequencing (NGS) platforms for molecular diagnostics. The protein-coding regions of six genes associated with inherited arrhythmia syndromes were amplified from 15 human samples using parallelised multiplex PCR (Access Array, Fluidigm), and sequenced on the MiSeq (Illumina) and Ion Torrent PGM (Life Technologies). Overall, 97.9% of the target was sequenced adequately for variant calling on the MiSeq, and 96.8% on the Ion Torrent PGM. Regions missed tended to be of high GC-content, and most were problematic for both platforms. Variant calling was assessed using 107 variants detected using Sanger sequencing: within adequately sequenced regions, variant calling on both platforms was highly accurate (Sensitivity: MiSeq 100%, PGM 99.1%. Positive predictive value: MiSeq 95.9%, PGM 95.5%). At the time of the study the Ion Torrent PGM had a lower capital cost and individual runs were cheaper and faster. The MiSeq had a higher capacity (requiring fewer runs), with reduced hands-on time and simpler laboratory workflows. Both provide significant cost and time savings over conventional methods, even allowing for adjunct Sanger sequencing to validate findings and sequence exons missed by NGS. Conclusions/Significance MiSeq and Ion Torrent PGM both provide accurate variant detection as part of a PCR-based molecular diagnostic workflow, and provide alternative platforms for molecular diagnosis of inherited cardiac conditions. Though there were performance differences at this throughput, platforms differed primarily in terms of cost, scalability, protocol stability and ease of use. Compared with current molecular genetic diagnostic tests for inherited cardiac arrhythmias, these NGS approaches are faster, less expensive, and yet more comprehensive. PMID:23861798
Lee, Tae-Rim; Ahn, Jin Mo; Kim, Gyuhee; Kim, Sangsoo
2017-12-01
Next-generation sequencing (NGS) technology has become a trend in the genomics research area. There are many software programs and automated pipelines to analyze NGS data, which can ease the pain for traditional scientists who are not familiar with computer programming. However, downstream analyses, such as finding differentially expressed genes or visualizing linkage disequilibrium maps and genome-wide association study (GWAS) data, still remain a challenge. Here, we introduce a dockerized web application written in R using the Shiny platform to visualize pre-analyzed RNA sequencing and GWAS data. In addition, we have integrated a genome browser based on the JBrowse platform and an automated intermediate parsing process required for custom track construction, so that users can easily build and navigate their personal genome tracks with in-house datasets. This application will help scientists perform series of downstream analyses and obtain a more integrative understanding about various types of genomic data by interactively visualizing them with customizable options.
Mack, Stephen C; Northcott, Paul A
2017-07-20
Recent breakthroughs in next-generation sequencing technology and complementary genomic platforms have transformed our capacity to interrogate the molecular landscapes of human cancers, including childhood brain tumors. Numerous high-throughput genomic studies have been reported for the major histologic brain tumor entities diagnosed in children, including interrogations at the level of the genome, epigenome, and transcriptome, many of which have yielded essential new insights into disease biology. The nature of these discoveries has been largely platform dependent, exemplifying the usefulness of applying different genomic and computational strategies, or integrative approaches, to address specific biologic and/or clinical questions. The goal of this article is to summarize the spectrum of molecular profiling methods available for investigating genomic aspects of childhood brain tumors in both the research and the clinical setting. We provide an overview of the main next-generation sequencing and array-based technologies currently being applied in this field and draw from key examples in the recent neuro-oncology literature to illustrate how these genomic approaches have profoundly advanced our understanding of individual tumor entities. Moreover, we discuss the current status of genomic profiling in the clinic and how different platforms are being used to improve patient diagnosis and stratification, as well as to identify actionable targets for informing molecularly guided therapies, especially for patients for whom conventional standard-of-care treatments have failed. Both the demand for genomic testing and the main challenges associated with incorporating genomics into the clinical management of pediatric patients with brain tumors are discussed, as are recommendations for incorporating these assays into future clinical trials.
Somatic Point Mutation Calling in Low Cellularity Tumors
Kassahn, Karin S.; Holmes, Oliver; Nones, Katia; Patch, Ann-Marie; Miller, David K.; Christ, Angelika N.; Harliwong, Ivon; Bruxner, Timothy J.; Xu, Qinying; Anderson, Matthew; Wood, Scott; Leonard, Conrad; Taylor, Darrin; Newell, Felicity; Song, Sarah; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Steptoe, Anita; Pajic, Marina; Cowley, Mark J.; Pinese, Mark; Chang, David K.; Gill, Anthony J.; Johns, Amber L.; Wu, Jianmin; Wilson, Peter J.; Fink, Lynn; Biankin, Andrew V.; Waddell, Nicola; Grimmond, Sean M.; Pearson, John V.
2013-01-01
Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/) for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform. PMID:24250782
Farr, Ryan J; Januszewski, Andrzej S; Joglekar, Mugdha V; Liang, Helena; McAulley, Annie K; Hewitt, Alex W; Thomas, Helen E; Loudovaris, Tom; Kay, Thomas W H; Jenkins, Alicia; Hardikar, Anandwardhan A
2015-06-02
MicroRNAs are now increasingly recognized as biomarkers of disease progression. Several quantitative real-time PCR (qPCR) platforms have been developed to determine the relative levels of microRNAs in biological fluids. We systematically compared the detection of cellular and circulating microRNA using a standard 96-well platform, a high-content microfluidics platform and two ultra-high content platforms. We used extensive analytical tools to compute inter- and intra-run variability and concordance measured using fidelity scoring, coefficient of variation and cluster analysis. We carried out unprejudiced next generation sequencing to identify a microRNA signature for Diabetic Retinopathy (DR) and systematically assessed the validation of this signature on clinical samples using each of the above four qPCR platforms. The results indicate that sensitivity to measure low copy number microRNAs is inversely related to qPCR reaction volume and that the choice of platform for microRNA biomarker validation should be made based on the abundance of miRNAs of interest.
CANEapp: a user-friendly application for automated next generation transcriptomic data analysis.
Velmeshev, Dmitry; Lally, Patrick; Magistri, Marco; Faghihi, Mohammad Ali
2016-01-13
Next generation sequencing (NGS) technologies are indispensable for molecular biology research, but data analysis represents the bottleneck in their application. Users need to be familiar with computer terminal commands, the Linux environment, and various software tools and scripts. Analysis workflows have to be optimized and experimentally validated to extract biologically meaningful data. Moreover, as larger datasets are being generated, their analysis requires use of high-performance servers. To address these needs, we developed CANEapp (application for Comprehensive automated Analysis of Next-generation sequencing Experiments), a unique suite that combines a Graphical User Interface (GUI) and an automated server-side analysis pipeline that is platform-independent, making it suitable for any server architecture. The GUI runs on a PC or Mac and seamlessly connects to the server to provide full GUI control of RNA-sequencing (RNA-seq) project analysis. The server-side analysis pipeline contains a framework that is implemented on a Linux server through completely automated installation of software components and reference files. Analysis with CANEapp is also fully automated and performs differential gene expression analysis and novel noncoding RNA discovery through alternative workflows (Cuffdiff and R packages edgeR and DESeq2). We compared CANEapp to other similar tools, and it significantly improves on previous developments. We experimentally validated CANEapp's performance by applying it to data derived from different experimental paradigms and confirming the results with quantitative real-time PCR (qRT-PCR). CANEapp adapts to any server architecture by effectively using available resources and thus handles large amounts of data efficiently. CANEapp performance has been experimentally validated on various biological datasets. CANEapp is available free of charge at http://psychiatry.med.miami.edu/research/laboratory-of-translational-rna-genomics/CANE-app . We believe that CANEapp will serve both biologists with no computational experience and bioinformaticians as a simple, timesaving but accurate and powerful tool to analyze large RNA-seq datasets and will provide foundations for future development of integrated and automated high-throughput genomics data analysis tools. Due to its inherently standardized pipeline and combination of automated analysis and platform-independence, CANEapp is an ideal for large-scale collaborative RNA-seq projects between different institutions and research groups.
A novel molecular diagnostics platform for somatic and germline precision oncology.
Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan
2017-07-01
Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to translate to the clinical practice the latest advances in precision oncology, integrating under the same platform the identification of somatic and germline genomic alterations.
Low Diversity in the Mitogenome of Sperm Whales Revealed by Next-Generation Sequencing
Alexander, Alana; Steel, Debbie; Slikas, Beth; Hoekzema, Kendra; Carraher, Colm; Parks, Matthew; Cronn, Richard; Baker, C. Scott
2013-01-01
Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity. PMID:23254394
Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing.
Alexander, Alana; Steel, Debbie; Slikas, Beth; Hoekzema, Kendra; Carraher, Colm; Parks, Matthew; Cronn, Richard; Baker, C Scott
2013-01-01
Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers.
Varshney, Rajeev K; Chen, Wenbin; Li, Yupeng; Bharti, Arvind K; Saxena, Rachit K; Schlueter, Jessica A; Donoghue, Mark T A; Azam, Sarwar; Fan, Guangyi; Whaley, Adam M; Farmer, Andrew D; Sheridan, Jaime; Iwata, Aiko; Tuteja, Reetu; Penmetsa, R Varma; Wu, Wei; Upadhyaya, Hari D; Yang, Shiaw-Pyng; Shah, Trushar; Saxena, K B; Michael, Todd; McCombie, W Richard; Yang, Bicheng; Zhang, Gengyun; Yang, Huanming; Wang, Jun; Spillane, Charles; Cook, Douglas R; May, Gregory D; Xu, Xun; Jackson, Scott A
2011-11-06
Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance-related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.
Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing
2015-08-05
To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.
Epigenetics of prostate cancer.
McKee, Tawnya C; Tricoli, James V
2015-01-01
The introduction of novel technologies that can be applied to the investigation of the molecular underpinnings of human cancer has allowed for new insights into the mechanisms associated with tumor development and progression. They have also advanced the diagnosis, prognosis and treatment of cancer. These technologies include microarray and other analysis methods for the generation of large-scale gene expression data on both mRNA and miRNA, next-generation DNA sequencing technologies utilizing a number of platforms to perform whole genome, whole exome, or targeted DNA sequencing to determine somatic mutational differences and gene rearrangements, and a variety of proteomic analysis platforms including liquid chromatography/mass spectrometry (LC/MS) analysis to survey alterations in protein profiles in tumors. One other important advancement has been our current ability to survey the methylome of human tumors in a comprehensive fashion through the use of sequence-based and array-based methylation analysis (Bock et al., Nat Biotechnol 28:1106-1114, 2010; Harris et al., Nat Biotechnol 28:1097-1105, 2010). The focus of this chapter is to present and discuss the evidence for key genes involved in prostate tumor development, progression, or resistance to therapy that are regulated by methylation-induced silencing.
2014-01-01
Background Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources. PMID:24460871
Menon, Thangam; Gopalakrishnan, Sathya Narayanan; Balasubramanian, Rayvathy; Justin, Stalin Roy
2017-01-01
Oral health is suspected to be linked to heart disease since species of bacteria that cause periodontitis and dental caries have been found in the atherosclerotic plaque in arteries in the heart. The aim of this study was to characterize the oral microbiome in patients with coronary artery disease (CAD) and in a patient with dental caries (DC) without any clinical symptoms of CAD. DNA was extracted from the oral swabs collected from the patients and sequencing was performed by next generation sequencing method using Illumina (MiSeq) platform. The resulting sequencing data set was analysed using QIIME. A total of 31 phyla were found in all the samples. The predominant phylum found in both CAD and DC was Firmicutes (46.09% & 38.98%), Proteobacteria (17.73% & 9.79%), Fusobacteria (13.44% & 17.95%), Bacteroidetes (11.82% & 22.73%), Actinobacteria (8.33% & 7.71%) and TM7 (2.25% & 2.71%). We found a similarity in the bacterial diversity in the two groups of patients. A comparison of the oral microbiome in patients with CAD and DC shows a similarity in the composition of the oral microbiota with variations in the proportion of a few genera.
Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.
Elingaramil, Sauli; Li, Xiaolong; He, Nongyue
2013-07-01
Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.
DSAP: deep-sequencing small RNA analysis pipeline.
Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus
2010-07-01
DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.
Ramos, Rommel Thiago Jucá; Carneiro, Adriana Ribeiro; Soares, Siomar de Castro; dos Santos, Anderson Rodrigues; Almeida, Sintia; Guimarães, Luis; Figueira, Flávia; Barbosa, Eudes; Tauch, Andreas; Azevedo, Vasco; Silva, Artur
2013-03-01
New sequencing platforms have enabled rapid decoding of complete prokaryotic genomes at relatively low cost. The Ion Torrent platform is an example of these technologies, characterized by lower coverage, generating challenges for the genome assembly. One particular problem is the lack of genomes that enable reference-based assembly, such as the one used in the present study, Corynebacterium pseudotuberculosis biovar equi, which causes high economic losses in the US equine industry. The quality treatment strategy incorporated into the assembly pipeline enabled a 16-fold greater use of the sequencing data obtained compared with traditional quality filter approaches. Data preprocessing prior to the de novo assembly enabled the use of known methodologies in the next-generation sequencing data assembly. Moreover, manual curation was proved to be essential for ensuring a quality assembly, which was validated by comparative genomics with other species of the genus Corynebacterium. The present study presents a modus operandi that enables a greater and better use of data obtained from semiconductor sequencing for obtaining the complete genome from a prokaryotic microorganism, C. pseudotuberculosis, which is not a traditional biological model such as Escherichia coli. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.
Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D
2017-12-01
- Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.
Yu, Yang; Wei, Jiankai; Zhang, Xiaojun; Liu, Jingwen; Liu, Chengzhang; Li, Fuhua; Xiang, Jianhai
2014-01-01
The application of next generation sequencing technology has greatly facilitated high throughput single nucleotide polymorphism (SNP) discovery and genotyping in genetic research. In the present study, SNPs were discovered based on two transcriptomes of Litopenaeus vannamei (L. vannamei) generated from Illumina sequencing platform HiSeq 2000. One transcriptome of L. vannamei was obtained through sequencing on the RNA from larvae at mysis stage and its reference sequence was de novo assembled. The data from another transcriptome were downloaded from NCBI and the reads of the two transcriptomes were mapped separately to the assembled reference by BWA. SNP calling was performed using SAMtools. A total of 58,717 and 36,277 SNPs with high quality were predicted from the two transcriptomes, respectively. SNP calling was also performed using the reads of two transcriptomes together, and a total of 96,040 SNPs with high quality were predicted. Among these 96,040 SNPs, 5,242 and 29,129 were predicted as non-synonymous and synonymous SNPs respectively. Characterization analysis of the predicted SNPs in L. vannamei showed that the estimated SNP frequency was 0.21% (one SNP per 476 bp) and the estimated ratio for transition to transversion was 2.0. Fifty SNPs were randomly selected for validation by Sanger sequencing after PCR amplification and 76% of SNPs were confirmed, which indicated that the SNPs predicted in this study were reliable. These SNPs will be very useful for genetic study in L. vannamei, especially for the high density linkage map construction and genome-wide association studies. PMID:24498047
HEx: A heterologous expression platform for the discovery of fungal natural products
Schlecht, Ulrich; Horecka, Joe; Lin, Hsiao-Ching; Naughton, Brian; Miranda, Molly; Li, Yong Fuga; Hennessy, James R.; Vandova, Gergana A.; Steinmetz, Lars M.; Sattely, Elizabeth; Khosla, Chaitan; Hillenmeyer, Maureen E.
2018-01-01
For decades, fungi have been a source of U.S. Food and Drug Administration–approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth, with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products. PMID:29651464
Rapid evaluation and quality control of next generation sequencing data with FaQCs.
Lo, Chien-Chi; Chain, Patrick S G
2014-11-19
Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly process large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.
2013-01-01
Background With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. Results The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. Conclusions Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology. PMID:23497206
Bonatelli, Isabel A S; Carstens, Bryan C; Moraes, Evandro M
2015-01-01
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.
Bonatelli, Isabel A. S.; Carstens, Bryan C.; Moraes, Evandro M.
2015-01-01
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms. PMID:26561396
STINGRAY: system for integrated genomic resources and analysis.
Wagner, Glauber; Jardim, Rodrigo; Tschoeke, Diogo A; Loureiro, Daniel R; Ocaña, Kary A C S; Ribeiro, Antonio C B; Emmel, Vanessa E; Probst, Christian M; Pitaluga, André N; Grisard, Edmundo C; Cavalcanti, Maria C; Campos, Maria L M; Mattoso, Marta; Dávila, Alberto M R
2014-03-07
The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/.
STINGRAY: system for integrated genomic resources and analysis
2014-01-01
Background The STINGRAY system has been conceived to ease the tasks of integrating, analyzing, annotating and presenting genomic and expression data from Sanger and Next Generation Sequencing (NGS) platforms. Findings STINGRAY includes: (a) a complete and integrated workflow (more than 20 bioinformatics tools) ranging from functional annotation to phylogeny; (b) a MySQL database schema, suitable for data integration and user access control; and (c) a user-friendly graphical web-based interface that makes the system intuitive, facilitating the tasks of data analysis and annotation. Conclusion STINGRAY showed to be an easy to use and complete system for analyzing sequencing data. While both Sanger and NGS platforms are supported, the system could be faster using Sanger data, since the large NGS datasets could potentially slow down the MySQL database usage. STINGRAY is available at http://stingray.biowebdb.org and the open source code at http://sourceforge.net/projects/stingray-biowebdb/. PMID:24606808
Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity.
Terekhov, Stanislav S; Smirnov, Ivan V; Stepanova, Anastasiya V; Bobik, Tatyana V; Mokrushina, Yuliana A; Ponomarenko, Natalia A; Belogurov, Alexey A; Rubtsova, Maria P; Kartseva, Olga V; Gomzikova, Marina O; Moskovtsev, Alexey A; Bukatin, Anton S; Dubina, Michael V; Kostryukova, Elena S; Babenko, Vladislav V; Vakhitova, Maria T; Manolov, Alexander I; Malakhova, Maja V; Kornienko, Maria A; Tyakht, Alexander V; Vanyushkina, Anna A; Ilina, Elena N; Masson, Patrick; Gabibov, Alexander G; Altman, Sidney
2017-03-07
Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus , and predicted which genera were associated with inhibitory activity.
2013-01-01
Analyzing and storing data and results from next-generation sequencing (NGS) experiments is a challenging task, hampered by ever-increasing data volumes and frequent updates of analysis methods and tools. Storage and computation have grown beyond the capacity of personal computers and there is a need for suitable e-infrastructures for processing. Here we describe UPPNEX, an implementation of such an infrastructure, tailored to the needs of data storage and analysis of NGS data in Sweden serving various labs and multiple instruments from the major sequencing technology platforms. UPPNEX comprises resources for high-performance computing, large-scale and high-availability storage, an extensive bioinformatics software suite, up-to-date reference genomes and annotations, a support function with system and application experts as well as a web portal and support ticket system. UPPNEX applications are numerous and diverse, and include whole genome-, de novo- and exome sequencing, targeted resequencing, SNP discovery, RNASeq, and methylation analysis. There are over 300 projects that utilize UPPNEX and include large undertakings such as the sequencing of the flycatcher and Norwegian spruce. We describe the strategic decisions made when investing in hardware, setting up maintenance and support, allocating resources, and illustrate major challenges such as managing data growth. We conclude with summarizing our experiences and observations with UPPNEX to date, providing insights into the successful and less successful decisions made. PMID:23800020
Advances in Alport syndrome diagnosis using next-generation sequencing
Artuso, Rosangela; Fallerini, Chiara; Dosa, Laura; Scionti, Francesca; Clementi, Maurizio; Garosi, Guido; Massella, Laura; Epistolato, Maria Carmela; Mancini, Roberta; Mari, Francesca; Longo, Ilaria; Ariani, Francesca; Renieri, Alessandra; Bruttini, Mirella
2012-01-01
Alport syndrome (ATS) is a hereditary nephropathy often associated with sensorineural hypoacusis and ocular abnormalities. Mutations in the COL4A5 gene cause X-linked ATS. Mutations in COL4A4 and COL4A3 genes have been reported in both autosomal recessive and autosomal dominant ATS. The conventional mutation screening, performed by DHPLC and/or Sanger sequencing, is time-consuming and has relatively high costs because of the absence of hot spots and to the high number of exons per gene: 51 (COL4A5), 48 (COL4A4) and 52 (COL4A3). Several months are usually necessary to complete the diagnosis, especially in cases with less informative pedigrees. To overcome these limitations, we designed a next-generation sequencing (NGS) protocol enabling simultaneous detection of all possible variants in the three genes. We used a method coupling selective amplification to the 454 Roche DNA sequencing platform (Genome Sequencer junior). The application of this technology allowed us to identify the second mutation in two ATS patients (p.Ser1147Phe in COL4A3 and p.Arg1682Trp in COL4A4) and to reconsider the diagnosis of ATS in a third patient. This study, therefore, illustrates the successful application of NGS to mutation screening of Mendelian disorders with locus heterogeneity. PMID:21897443
Next generation sequencing and its applications in forensic genetics.
Børsting, Claus; Morling, Niels
2015-09-01
It has been almost a decade since the first next generation sequencing (NGS) technologies emerged and quickly changed the way genetic research is conducted. Today, full genomes are mapped and published almost weekly and with ever increasing speed and decreasing costs. NGS methods and platforms have matured during the last 10 years, and the quality of the sequences has reached a level where NGS is used in clinical diagnostics of humans. Forensic genetic laboratories have also explored NGS technologies and especially in the last year, there has been a small explosion in the number of scientific articles and presentations at conferences with forensic aspects of NGS. These contributions have demonstrated that NGS offers new possibilities for forensic genetic case work. More information may be obtained from unique samples in a single experiment by analyzing combinations of markers (STRs, SNPs, insertion/deletions, mRNA) that cannot be analyzed simultaneously with the standard PCR-CE methods used today. The true variation in core forensic STR loci has been uncovered, and previously unknown STR alleles have been discovered. The detailed sequence information may aid mixture interpretation and will increase the statistical weight of the evidence. In this review, we will give an introduction to NGS and single-molecule sequencing, and we will discuss the possible applications of NGS in forensic genetics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Derkach, Andriy; Chiang, Theodore; Gong, Jiafen; Addis, Laura; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K.; Strug, Lisa J.
2014-01-01
Motivation: Sufficiently powered case–control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds. Assuming one can match cases and controls on the basis of ethnicity and other potential confounding factors, and one has access to the aligned reads in both groups, we investigate the effect of systematic differences in read depth and selection threshold when comparing allele frequencies between cases and controls. We propose a novel likelihood-based method, the robust variance score (RVS), that substitutes genotype calls by their expected values given observed sequence data. Results: We show theoretically that the RVS eliminates read depth bias in the estimation of minor allele frequency. We also demonstrate that, using simulated and real NGS data, the RVS method controls Type I error and has comparable power to the ‘gold standard’ analysis with the true underlying genotypes for both common and rare variants. Availability and implementation: An RVS R script and instructions can be found at strug.research.sickkids.ca, and at https://github.com/strug-lab/RVS. Contact: lisa.strug@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:24733292
Ip, Hon S.; Wiley, Michael R.; Long, Renee; Gustavo, Palacios; Shearn-Bochsler, Valerie; Whitehouse, Chris A.
2014-01-01
Advances in massively parallel DNA sequencing platforms, commonly termed next-generation sequencing (NGS) technologies, have greatly reduced time, labor, and cost associated with DNA sequencing. Thus, NGS has become a routine tool for new viral pathogen discovery and will likely become the standard for routine laboratory diagnostics of infectious diseases in the near future. This study demonstrated the application of NGS for the rapid identification and characterization of a virus isolated from the brain of an endangered Mississippi sandhill crane. This bird was part of a population restoration effort and was found in an emaciated state several days after Hurricane Isaac passed over the refuge in Mississippi in 2012. Post-mortem examination had identified trichostrongyliasis as the possible cause of death, but because a virus with morphology consistent with a togavirus was isolated from the brain of the bird, an arboviral etiology was strongly suspected. Because individual molecular assays for several known arboviruses were negative, unbiased NGS by Illumina MiSeq was used to definitively identify and characterize the causative viral agent. Whole genome sequencing and phylogenetic analysis revealed the viral isolate to be the Highlands J virus, a known avian pathogen. This study demonstrates the use of unbiased NGS for the rapid detection and characterization of an unidentified viral pathogen and the application of this technology to wildlife disease diagnostics and conservation medicine.
Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies
Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; ...
2015-04-14
During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less
Hoogestraat, Daniel R.; Abbott, April N.; SenGupta, Dhruba J.; Cummings, Lisa A.; Butler-Wu, Susan M.; Stephens, Karen; Cookson, Brad T.; Hoffman, Noah G.
2014-01-01
Some bacterial infections involve potentially complex mixtures of species that can now be distinguished using next-generation DNA sequencing. We present a case of mastoiditis where Gram stain, culture, and molecular diagnosis were nondiagnostic or discrepant. Next-generation sequencing implicated coinfection of Fusobacterium nucleatum and Actinomyces israelii, resolving these diagnostic discrepancies. PMID:24574281
Next Generation Distributed Computing for Cancer Research
Agarwal, Pankaj; Owzar, Kouros
2014-01-01
Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539
Next generation distributed computing for cancer research.
Agarwal, Pankaj; Owzar, Kouros
2014-01-01
Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.
Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform.
Della Mina, Erika; Ciccone, Roberto; Brustia, Francesca; Bayindir, Baran; Limongelli, Ivan; Vetro, Annalisa; Iascone, Maria; Pezzoli, Laura; Bellazzi, Riccardo; Perotti, Gianfranco; De Giorgis, Valentina; Lunghi, Simona; Coppola, Giangennaro; Orcesi, Simona; Merli, Pietro; Savasta, Salvatore; Veggiotti, Pierangelo; Zuffardi, Orsetta
2015-03-01
We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 19 patients with different types of either isolated or syndromic epileptic disorders and in 15 controls to investigate whether a quick and cheap molecular diagnosis could be provided. The average number of nonsynonymous and splice site mutations per subject was similar in the two cohorts indicating that, even with relatively small targeted platforms, finding the disease gene is not an univocal process. Our diagnostic yield was 47% with nine cases in which we identified a very likely causative mutation. In most of them no interpretation would have been possible in absence of detailed phenotype and familial information. Seven out of 19 patients had a phenotype suggesting the involvement of a specific gene. Disease-causing mutations were found in six of these cases. Among the remaining patients, we could find a probably causative mutation only in three. None of the genes affected in the latter cases had been suspected a priori. Our protocol requires 8-10 weeks including the investigation of the parents with a cost per patient comparable to sequencing of 1-2 medium-to-large-sized genes by conventional techniques. The platform we used, although providing much less information than whole-exome or whole-genome sequencing, has the advantage that can also be run on 'benchtop' sequencers combining rapid turnaround times with higher manageability.
Next generation platforms for high-throughput biodosimetry
Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.
2014-01-01
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. PMID:24837249
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Metagenomics workflow analysis of endophytic bacteria from oil palm fruits
NASA Astrophysics Data System (ADS)
Tanjung, Z. A.; Aditama, R.; Sudania, W. M.; Utomo, C.; Liwang, T.
2017-05-01
Next-Generation Sequencing (NGS) has become a powerful sequencing tool for microbial study especially to lead the establishment of the field area of metagenomics. This study described a workflow to analyze metagenomics data of a Sequence Read Archive (SRA) file under accession ERP004286 deposited by University of Sao Paulo. It was a direct sequencing data generated by 454 pyrosequencing platform originated from oil palm fruits endophytic bacteria which were cultured using oil-palm enriched medium. This workflow used SortMeRNA to split ribosomal reads sequence, Newbler (GS Assembler and GS Mapper) to assemble and map reads into genome reference, BLAST package to identify and annotate contigs sequence, and QualiMap for statistical analysis. Eight bacterial species were identified in this study. Enterobacter cloacae was the most abundant species followed by Citrobacter koseri, Seratia marcescens, Latococcus lactis subsp. lactis, Klebsiella pneumoniae, Citrobacter amalonaticus, Achromobacter xylosoxidans, and Pseudomonas sp. respectively. All of these species have been reported as endophyte bacteria in various plant species and each has potential as plant growth promoting bacteria or another application in agricultural industries.
Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries
Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.
2012-01-01
Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365
Moser, Lindsey A.; Ramirez-Carvajal, Lisbeth; Puri, Vinita; Pauszek, Steven J.; Matthews, Krystal; Dilley, Kari A.; Mullan, Clancy; McGraw, Jennifer; Khayat, Michael; Beeri, Karen; Yee, Anthony; Dugan, Vivien; Heise, Mark T.; Frieman, Matthew B.; Rodriguez, Luis L.; Bernard, Kristen A.; Wentworth, David E.
2016-01-01
ABSTRACT Several biosafety level 3 and/or 4 (BSL-3/4) pathogens are high-consequence, single-stranded RNA viruses, and their genomes, when introduced into permissive cells, are infectious. Moreover, many of these viruses are select agents (SAs), and their genomes are also considered SAs. For this reason, cDNAs and/or their derivatives must be tested to ensure the absence of infectious virus and/or viral RNA before transfer out of the BSL-3/4 and/or SA laboratory. This tremendously limits the capacity to conduct viral genomic research, particularly the application of next-generation sequencing (NGS). Here, we present a sequence-independent method to rapidly amplify viral genomic RNA while simultaneously abolishing both viral and genomic RNA infectivity across multiple single-stranded positive-sense RNA (ssRNA+) virus families. The process generates barcoded DNA amplicons that range in length from 300 to 1,000 bp, which cannot be used to rescue a virus and are stable to transport at room temperature. Our barcoding approach allows for up to 288 barcoded samples to be pooled into a single library and run across various NGS platforms without potential reconstitution of the viral genome. Our data demonstrate that this approach provides full-length genomic sequence information not only from high-titer virion preparations but it can also recover specific viral sequence from samples with limited starting material in the background of cellular RNA, and it can be used to identify pathogens from unknown samples. In summary, we describe a rapid, universal standard operating procedure that generates high-quality NGS libraries free of infectious virus and infectious viral RNA. IMPORTANCE This report establishes and validates a standard operating procedure (SOP) for select agents (SAs) and other biosafety level 3 and/or 4 (BSL-3/4) RNA viruses to rapidly generate noninfectious, barcoded cDNA amenable for next-generation sequencing (NGS). This eliminates the burden of testing all processed samples derived from high-consequence pathogens prior to transfer from high-containment laboratories to lower-containment facilities for sequencing. Our established protocol can be scaled up for high-throughput sequencing of hundreds of samples simultaneously, which can dramatically reduce the cost and effort required for NGS library construction. NGS data from this SOP can provide complete genome coverage from viral stocks and can also detect virus-specific reads from limited starting material. Our data suggest that the procedure can be implemented and easily validated by institutional biosafety committees across research laboratories. PMID:27822536
Azab, Marwa Mohamed; Fayyad, Dalia Mukhtar
2018-01-01
The use of high throughput next generation technologies has allowed more comprehensive analysis than traditional Sanger sequencing. The specific aim of this study was to investigate the microbial diversity of primary endodontic infections using Illumina MiSeq sequencing platform in Egyptian patients. Samples were collected from 19 patients in Suez Canal University Hospital (Endodontic Department) using sterile # 15K file and paper points. DNA was extracted using Mo Bio power soil DNA isolation extraction kit followed by PCR amplification and agarose gel electrophoresis. The microbiome was characterized on the basis of the V3 and V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. MOTHUR software was used in sequence filtration and analysis of sequenced data. A total of 1858 operational taxonomic units at 97% similarity were assigned to 26 phyla, 245 families, and 705 genera. Four main phyla Firmicutes, Bacteroidetes, Proteobacteria, and Synergistetes were predominant in all samples. At genus level, Prevotella, Bacillus, Porphyromonas, Streptococcus, and Bacteroides were the most abundant. Illumina MiSeq platform sequencing can be used to investigate oral microbiome composition of endodontic infections. Elucidating the ecology of endodontic infections is a necessary step in developing effective intracanal antimicrobials. PMID:29849646
Development of a cloud-based Bioinformatics Training Platform.
Revote, Jerico; Watson-Haigh, Nathan S; Quenette, Steve; Bethwaite, Blair; McGrath, Annette; Shang, Catherine A
2017-05-01
The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. © The Author 2016. Published by Oxford University Press.
Development of a cloud-based Bioinformatics Training Platform
Revote, Jerico; Watson-Haigh, Nathan S.; Quenette, Steve; Bethwaite, Blair; McGrath, Annette
2017-01-01
Abstract The Bioinformatics Training Platform (BTP) has been developed to provide access to the computational infrastructure required to deliver sophisticated hands-on bioinformatics training courses. The BTP is a cloud-based solution that is in active use for delivering next-generation sequencing training to Australian researchers at geographically dispersed locations. The BTP was built to provide an easy, accessible, consistent and cost-effective approach to delivering workshops at host universities and organizations with a high demand for bioinformatics training but lacking the dedicated bioinformatics training suites required. To support broad uptake of the BTP, the platform has been made compatible with multiple cloud infrastructures. The BTP is an open-source and open-access resource. To date, 20 training workshops have been delivered to over 700 trainees at over 10 venues across Australia using the BTP. PMID:27084333
Yang, Zhihui; Mammel, Mark; Papafragkou, Efstathia; Hida, Kaoru; Elkins, Christopher A; Kulka, Michael
2017-11-16
Next generation sequencing (NGS) holds promise as a single application for both detection and sequence identification of foodborne viruses; however, technical challenges remain due to anticipated low quantities of virus in contaminated food. In this study, with a focus on data analysis using several bioinformatics tools, we applied NGS toward amplification-independent detection and identification of norovirus at low copy (<10 3 copies) or within multiple strains from produce. Celery samples were inoculated with human norovirus (stool suspension) either as a single norovirus strain, a mixture of strains (GII.4 and GII.6), or a mixture of different species (hepatitis A virus and norovirus). Viral RNA isolation and recovery was confirmed by RT-qPCR, and optimized for library generation and sequencing without amplification using the Illumina MiSeq platform. Extracts containing either a single virus or a two-virus mixture were analyzed using two different analytic approaches to achieve virus detection and identification. First an overall assessment of viral genome coverage for samples varying in copy numbers (1.1×10 3 to 1.7×10 7 ) and genomic content (single or multiple strains in various ratios) was completed by reference-guided mapping. Not unexpectedly, this targeted approach to identification was successful in correctly mapping reads, thus identifying each virus contained in the inoculums even at low copy (estimated at 12 copies). For the second (metagenomic) approach, samples were treated as "unknowns" for data analyses using (i) a sequence-based alignment with a local database, (ii) an "in-house" k-mer tool, (iii) a commercially available metagenomics bioinformatic analysis platform cosmosID, and (iv) an open-source program Kraken. Of the four metagenomics tools applied in this study, only the local database alignment and in-house k-mer tool were successful in detecting norovirus (as well as HAV) at low copy (down to <10 3 copies) and within a mixture of virus strains or species. The results of this investigation provide support for continued investigation into the development and integration of these analytical tools for identification and detection of foodborne viruses. Published by Elsevier B.V.
Consistency of biological networks inferred from microarray and sequencing data.
Vinciotti, Veronica; Wit, Ernst C; Jansen, Rick; de Geus, Eco J C N; Penninx, Brenda W J H; Boomsma, Dorret I; 't Hoen, Peter A C
2016-06-24
Sparse Gaussian graphical models are popular for inferring biological networks, such as gene regulatory networks. In this paper, we investigate the consistency of these models across different data platforms, such as microarray and next generation sequencing, on the basis of a rich dataset containing samples that are profiled under both techniques as well as a large set of independent samples. Our analysis shows that individual node variances can have a remarkable effect on the connectivity of the resulting network. Their inconsistency across platforms and the fact that the variability level of a node may not be linked to its regulatory role mean that, failing to scale the data prior to the network analysis, leads to networks that are not reproducible across different platforms and that may be misleading. Moreover, we show how the reproducibility of networks across different platforms is significantly higher if networks are summarised in terms of enrichment amongst functional groups of interest, such as pathways, rather than at the level of individual edges. Careful pre-processing of transcriptional data and summaries of networks beyond individual edges can improve the consistency of network inference across platforms. However, caution is needed at this stage in the (over)interpretation of gene regulatory networks inferred from biological data.
ParticleCall: A particle filter for base calling in next-generation sequencing systems
2012-01-01
Background Next-generation sequencing systems are capable of rapid and cost-effective DNA sequencing, thus enabling routine sequencing tasks and taking us one step closer to personalized medicine. Accuracy and lengths of their reads, however, are yet to surpass those provided by the conventional Sanger sequencing method. This motivates the search for computationally efficient algorithms capable of reliable and accurate detection of the order of nucleotides in short DNA fragments from the acquired data. Results In this paper, we consider Illumina’s sequencing-by-synthesis platform which relies on reversible terminator chemistry and describe the acquired signal by reformulating its mathematical model as a Hidden Markov Model. Relying on this model and sequential Monte Carlo methods, we develop a parameter estimation and base calling scheme called ParticleCall. ParticleCall is tested on a data set obtained by sequencing phiX174 bacteriophage using Illumina’s Genome Analyzer II. The results show that the developed base calling scheme is significantly more computationally efficient than the best performing unsupervised method currently available, while achieving the same accuracy. Conclusions The proposed ParticleCall provides more accurate calls than the Illumina’s base calling algorithm, Bustard. At the same time, ParticleCall is significantly more computationally efficient than other recent schemes with similar performance, rendering it more feasible for high-throughput sequencing data analysis. Improvement of base calling accuracy will have immediate beneficial effects on the performance of downstream applications such as SNP and genotype calling. ParticleCall is freely available at https://sourceforge.net/projects/particlecall. PMID:22776067
Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan
2013-11-01
Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
2016-07-06
1 Targeted next-generation sequencing for the detection of ciprofloxacin resistance markers using molecular inversion probes Christopher P...development and evaluation of a panel of 44 single-stranded molecular inversion probes (MIPs) coupled to next-generation sequencing (NGS) for the...padlock and molecular inversion probes as upfront enrichment steps for use with NGS showed the specificity and multiplexability of these techniques
Assessment of replicate bias in 454 pyrosequencing and a multi-purpose read-filtering tool.
Jérôme, Mariette; Noirot, Céline; Klopp, Christophe
2011-05-26
Roche 454 pyrosequencing platform is often considered the most versatile of the Next Generation Sequencing technology platforms, permitting the sequencing of large genomes, the analysis of variations or the study of transcriptomes. A recent reported bias leads to the production of multiple reads for a unique DNA fragment in a random manner within a run. This bias has a direct impact on the quality of the measurement of the representation of the fragments using the reads. Other cleaning steps are usually performed on the reads before assembly or alignment. PyroCleaner is a software module intended to clean 454 pyrosequencing reads in order to ease the assembly process. This program is a free software and is distributed under the terms of the GNU General Public License as published by the Free Software Foundation. It implements several filters using criteria such as read duplication, length, complexity, base-pair quality and number of undetermined bases. It also permits to clean flowgram files (.sff) of paired-end sequences generating on one hand validated paired-ends file and the other hand single read file. Read cleaning has always been an important step in sequence analysis. The pyrocleaner python module is a Swiss knife dedicated to 454 reads cleaning. It includes commonly used filters as well as specialised ones such as duplicated read removal and paired-end read verification.
Genome-wide comparative analysis of four Indian Drosophila species.
Mohanty, Sujata; Khanna, Radhika
2017-12-01
Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.
Rapid evaluation and quality control of next generation sequencing data with FaQCs
Lo, Chien -Chi; Chain, Patrick S. G.
2014-12-01
Background: Next generation sequencing (NGS) technologies that parallelize the sequencing process and produce thousands to millions, or even hundreds of millions of sequences in a single sequencing run, have revolutionized genomic and genetic research. Because of the vagaries of any platform's sequencing chemistry, the experimental processing, machine failure, and so on, the quality of sequencing reads is never perfect, and often declines as the read is extended. These errors invariably affect downstream analysis/application and should therefore be identified early on to mitigate any unforeseen effects. Results: Here we present a novel FastQ Quality Control Software (FaQCs) that can rapidly processmore » large volumes of data, and which improves upon previous solutions to monitor the quality and remove poor quality data from sequencing runs. Both the speed of processing and the memory footprint of storing all required information have been optimized via algorithmic and parallel processing solutions. The trimmed output compared side-by-side with the original data is part of the automated PDF output. We show how this tool can help data analysis by providing a few examples, including an increased percentage of reads recruited to references, improved single nucleotide polymorphism identification as well as de novo sequence assembly metrics. Conclusion: FaQCs combines several features of currently available applications into a single, user-friendly process, and includes additional unique capabilities such as filtering the PhiX control sequences, conversion of FASTQ formats, and multi-threading. The original data and trimmed summaries are reported within a variety of graphics and reports, providing a simple way to do data quality control and assurance.« less
Application of next generation sequencing in clinical microbiology and infection prevention.
Deurenberg, Ruud H; Bathoorn, Erik; Chlebowicz, Monika A; Couto, Natacha; Ferdous, Mithila; García-Cobos, Silvia; Kooistra-Smid, Anna M D; Raangs, Erwin C; Rosema, Sigrid; Veloo, Alida C M; Zhou, Kai; Friedrich, Alexander W; Rossen, John W A
2017-02-10
Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Deurenberg, Ruud H; Bathoorn, Erik; Chlebowicz, Monika A; Couto, Natacha; Ferdous, Mithila; García-Cobos, Silvia; Kooistra-Smid, Anna M D; Raangs, Erwin C; Rosema, Sigrid; Veloo, Alida C M; Zhou, Kai; Friedrich, Alexander W; Rossen, John W A
2017-05-20
Current molecular diagnostics of human pathogens provide limited information that is often not sufficient for outbreak and transmission investigation. Next generation sequencing (NGS) determines the DNA sequence of a complete bacterial genome in a single sequence run, and from these data, information on resistance and virulence, as well as information for typing is obtained, useful for outbreak investigation. The obtained genome data can be further used for the development of an outbreak-specific screening test. In this review, a general introduction to NGS is presented, including the library preparation and the major characteristics of the most common NGS platforms, such as the MiSeq (Illumina) and the Ion PGM™ (ThermoFisher). An overview of the software used for NGS data analyses used at the medical microbiology diagnostic laboratory in the University Medical Center Groningen in The Netherlands is given. Furthermore, applications of NGS in the clinical setting are described, such as outbreak management, molecular case finding, characterization and surveillance of pathogens, rapid identification of bacteria using the 16S-23S rRNA region, taxonomy, metagenomics approaches on clinical samples, and the determination of the transmission of zoonotic micro-organisms from animals to humans. Finally, we share our vision on the use of NGS in personalised microbiology in the near future, pointing out specific requirements. Copyright © 2017. Published by Elsevier B.V.
Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.
Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei
2014-01-01
Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.
ChIP-seq and RNA-seq methods to study circadian control of transcription in mammals
Takahashi, Joseph S.; Kumar, Vivek; Nakashe, Prachi; Koike, Nobuya; Huang, Hung-Chung; Green, Carla B.; Kim, Tae-Kyung
2015-01-01
Genome-wide analyses have revolutionized our ability to study the transcriptional regulation of circadian rhythms. The advent of next-generation sequencing methods has facilitated the use of two such technologies, ChIP-seq and RNA-seq. In this chapter, we describe detailed methods and protocols for these two techniques, with emphasis on their usage in circadian rhythm experiments in the mouse liver, a major target organ of the circadian clock system. Critical factors for these methods are highlighted and issues arising with time series samples for ChIP-seq and RNA-seq are discussed. Finally detailed protocols for library preparation suitable for Illumina sequencing platforms are presented. PMID:25662462
Robertson, Charles E; Harris, J Kirk; Wagner, Brandie D; Granger, David; Browne, Kathy; Tatem, Beth; Feazel, Leah M; Park, Kristin; Pace, Norman R; Frank, Daniel N
2013-12-01
Studies of the human microbiome, and microbial community ecology in general, have blossomed of late and are now a burgeoning source of exciting research findings. Along with the advent of next-generation sequencing platforms, which have dramatically increased the scope of microbiome-related projects, several high-performance sequence analysis pipelines (e.g. QIIME, MOTHUR, VAMPS) are now available to investigators for microbiome analysis. The subject of our manuscript, the graphical user interface-based Explicet software package, fills a previously unmet need for a robust, yet intuitive means of integrating the outputs of the software pipelines with user-specified metadata and then visualizing the combined data.
OPAC: The Next Generation Placing an Encore Front End onto a SirsiDynix ILS
ERIC Educational Resources Information Center
Marcin, Susan; Morris, Peter
2008-01-01
Over the last few years, there has been a wealth of materials written and presented on next-generation library catalogs. These next-generation interfaces strive to turn "standard" integrated library systems (ILSs) into more nimble and robust search platforms that offer more user-friendly 2.0 enhancements for users. Rather than abandoning…
Luo, Wei; Nie, Zhulan; Zhan, Fanbin; Wei, Jie; Wang, Weimin; Gao, Zexia
2012-11-14
Tarim schizothoracin (Schizothorax biddulphi) is an endemic fish species native to the Tarim River system of Xinjiang and has been classified as an extremely endangered freshwater fish species in China. Here, we used a next generation sequencing platform (ion torrent PGM™) to obtain a large number of microsatellites for S. biddulphi, for the first time. A total of 40577 contigs were assembled, which contained 1379 SSRs. In these SSRs, the number of dinucleotide repeats were the most frequent (77.08%) and AC repeats were the most frequently occurring microsatellite, followed by AG, AAT and AT. Fifty loci were randomly selected for primer development; of these, 38 loci were successfully amplified and 29 loci were polymorphic across panels of 30 individuals. The H(o) ranged from 0.15 to 0.83, and H(e) ranged from 0.15 to 0.85, with 3.5 alleles per locus on average. Cross-species utility indicated that 20 of these markers were successfully amplified in a related, also an endangered fish species, S. irregularis. This study suggests that PGM™ sequencing is a rapid and cost-effective tool for developing microsatellite markers for non-model species and the developed microsatellite markers in this study would be useful in Schizothorax genetic analysis.
Ono, Shintaro; Nakayama, Manabu; Kanegane, Hirokazu; Hoshino, Akihiro; Shimodera, Saeko; Shibata, Hirofumi; Fujino, Hisanori; Fujino, Takahiro; Yunomae, Yuta; Okano, Tsubasa; Yamashita, Motoi; Yasumi, Takahiro; Izawa, Kazushi; Takagi, Masatoshi; Imai, Kohsuke; Zhang, Kejian; Marsh, Rebecca; Picard, Capucine; Latour, Sylvain; Ohara, Osamu; Morio, Tomohiro
2018-05-18
Epstein-Barr virus (EBV) is associated with several life-threatening diseases, such as lymphoproliferative disease (LPD), particularly in immunocompromised hosts. Some categories of primary immunodeficiency diseases (PIDs) including X-linked lymphoproliferative syndrome (XLP), are characterized by susceptibility and vulnerability to EBV infection. The number of genetically defined PIDs is rapidly increasing, and clinical genetic testing plays an important role in establishing a definitive diagnosis. Whole-exome sequencing is performed for diagnosing rare genetic diseases, but is both expensive and time-consuming. Low-cost, high-throughput gene analysis systems are thus necessary. We developed a comprehensive molecular diagnostic method using a two-step tailed polymerase chain reaction (PCR) and a next-generation sequencing (NGS) platform to detect mutations in 23 candidate genes responsible for XLP or XLP-like diseases. Samples from 19 patients suspected of having EBV-associated LPD were used in this comprehensive molecular diagnosis. Causative gene mutations (involving PRF1 and SH2D1A) were detected in two of the 19 patients studied. This comprehensive diagnosis method effectively detected mutations in all coding exons of 23 genes with sufficient read numbers for each amplicon. This comprehensive molecular diagnostic method using PCR and NGS provides a rapid, accurate, low-cost diagnosis for patients with XLP or XLP-like diseases.
FDA's Activities Supporting Regulatory Application of "Next Gen" Sequencing Technologies.
Wilson, Carolyn A; Simonyan, Vahan
2014-01-01
Applications of next-generation sequencing (NGS) technologies require availability and access to an information technology (IT) infrastructure and bioinformatics tools for large amounts of data storage and analyses. The U.S. Food and Drug Administration (FDA) anticipates that the use of NGS data to support regulatory submissions will continue to increase as the scientific and clinical communities become more familiar with the technologies and identify more ways to apply these advanced methods to support development and evaluation of new biomedical products. FDA laboratories are conducting research on different NGS platforms and developing the IT infrastructure and bioinformatics tools needed to enable regulatory evaluation of the technologies and the data sponsors will submit. A High-performance Integrated Virtual Environment, or HIVE, has been launched, and development and refinement continues as a collaborative effort between the FDA and George Washington University to provide the tools to support these needs. The use of a highly parallelized environment facilitated by use of distributed cloud storage and computation has resulted in a platform that is both rapid and responsive to changing scientific needs. The FDA plans to further develop in-house capacity in this area, while also supporting engagement by the external community, by sponsoring an open, public workshop to discuss NGS technologies and data formats standardization, and to promote the adoption of interoperability protocols in September 2014. Next-generation sequencing (NGS) technologies are enabling breakthroughs in how the biomedical community is developing and evaluating medical products. One example is the potential application of this method to the detection and identification of microbial contaminants in biologic products. In order for the U.S. Food and Drug Administration (FDA) to be able to evaluate the utility of this technology, we need to have the information technology infrastructure and bioinformatics tools to be able to store and analyze large amounts of data. To address this need, we have developed the High-performance Integrated Virtual Environment, or HIVE. HIVE uses a combination of distributed cloud storage and distributed cloud computations to provide a platform that is both rapid and responsive to support the growing and increasingly diverse scientific and regulatory needs of FDA scientists in their evaluation of NGS in research and ultimately for evaluation of NGS data in regulatory submissions. © PDA, Inc. 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Po-E; Lo, Chien -Chi; Anderson, Joseph J.
Continued advancements in sequencing technologies have fueled the development of new sequencing applications and promise to flood current databases with raw data. A number of factors prevent the seamless and easy use of these data, including the breadth of project goals, the wide array of tools that individually perform fractions of any given analysis, the large number of associated software/hardware dependencies, and the detailed expertise required to perform these analyses. To address these issues, we have developed an intuitive web-based environment with a wide assortment of integrated and cutting-edge bioinformatics tools in pre-configured workflows. These workflows, coupled with the easemore » of use of the environment, provide even novice next-generation sequencing users with the ability to perform many complex analyses with only a few mouse clicks and, within the context of the same environment, to visualize and further interrogate their results. As a result, this bioinformatics platform is an initial attempt at Empowering the Development of Genomics Expertise (EDGE) in a wide range of applications for microbial research.« less
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis.
Simonyan, Vahan; Mazumder, Raja
2014-09-30
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis.
Li, Po-E; Lo, Chien-Chi; Anderson, Joseph J.; Davenport, Karen W.; Bishop-Lilly, Kimberly A.; Xu, Yan; Ahmed, Sanaa; Feng, Shihai; Mokashi, Vishwesh P.; Chain, Patrick S.G.
2017-01-01
Continued advancements in sequencing technologies have fueled the development of new sequencing applications and promise to flood current databases with raw data. A number of factors prevent the seamless and easy use of these data, including the breadth of project goals, the wide array of tools that individually perform fractions of any given analysis, the large number of associated software/hardware dependencies, and the detailed expertise required to perform these analyses. To address these issues, we have developed an intuitive web-based environment with a wide assortment of integrated and cutting-edge bioinformatics tools in pre-configured workflows. These workflows, coupled with the ease of use of the environment, provide even novice next-generation sequencing users with the ability to perform many complex analyses with only a few mouse clicks and, within the context of the same environment, to visualize and further interrogate their results. This bioinformatics platform is an initial attempt at Empowering the Development of Genomics Expertise (EDGE) in a wide range of applications for microbial research. PMID:27899609
Li, Po-E; Lo, Chien -Chi; Anderson, Joseph J.; ...
2016-11-24
Continued advancements in sequencing technologies have fueled the development of new sequencing applications and promise to flood current databases with raw data. A number of factors prevent the seamless and easy use of these data, including the breadth of project goals, the wide array of tools that individually perform fractions of any given analysis, the large number of associated software/hardware dependencies, and the detailed expertise required to perform these analyses. To address these issues, we have developed an intuitive web-based environment with a wide assortment of integrated and cutting-edge bioinformatics tools in pre-configured workflows. These workflows, coupled with the easemore » of use of the environment, provide even novice next-generation sequencing users with the ability to perform many complex analyses with only a few mouse clicks and, within the context of the same environment, to visualize and further interrogate their results. As a result, this bioinformatics platform is an initial attempt at Empowering the Development of Genomics Expertise (EDGE) in a wide range of applications for microbial research.« less
High-Performance Integrated Virtual Environment (HIVE) Tools and Applications for Big Data Analysis
Simonyan, Vahan; Mazumder, Raja
2014-01-01
The High-performance Integrated Virtual Environment (HIVE) is a high-throughput cloud-based infrastructure developed for the storage and analysis of genomic and associated biological data. HIVE consists of a web-accessible interface for authorized users to deposit, retrieve, share, annotate, compute and visualize Next-generation Sequencing (NGS) data in a scalable and highly efficient fashion. The platform contains a distributed storage library and a distributed computational powerhouse linked seamlessly. Resources available through the interface include algorithms, tools and applications developed exclusively for the HIVE platform, as well as commonly used external tools adapted to operate within the parallel architecture of the system. HIVE is composed of a flexible infrastructure, which allows for simple implementation of new algorithms and tools. Currently, available HIVE tools include sequence alignment and nucleotide variation profiling tools, metagenomic analyzers, phylogenetic tree-building tools using NGS data, clone discovery algorithms, and recombination analysis algorithms. In addition to tools, HIVE also provides knowledgebases that can be used in conjunction with the tools for NGS sequence and metadata analysis. PMID:25271953
Derkach, Andriy; Chiang, Theodore; Gong, Jiafen; Addis, Laura; Dobbins, Sara; Tomlinson, Ian; Houlston, Richard; Pal, Deb K; Strug, Lisa J
2014-08-01
Sufficiently powered case-control studies with next-generation sequence (NGS) data remain prohibitively expensive for many investigators. If feasible, a more efficient strategy would be to include publicly available sequenced controls. However, these studies can be confounded by differences in sequencing platform; alignment, single nucleotide polymorphism and variant calling algorithms; read depth; and selection thresholds. Assuming one can match cases and controls on the basis of ethnicity and other potential confounding factors, and one has access to the aligned reads in both groups, we investigate the effect of systematic differences in read depth and selection threshold when comparing allele frequencies between cases and controls. We propose a novel likelihood-based method, the robust variance score (RVS), that substitutes genotype calls by their expected values given observed sequence data. We show theoretically that the RVS eliminates read depth bias in the estimation of minor allele frequency. We also demonstrate that, using simulated and real NGS data, the RVS method controls Type I error and has comparable power to the 'gold standard' analysis with the true underlying genotypes for both common and rare variants. An RVS R script and instructions can be found at strug.research.sickkids.ca, and at https://github.com/strug-lab/RVS. lisa.strug@utoronto.ca Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife.
Vermeulen, Elke T; Lott, Matthew J; Eldridge, Mark D B; Power, Michelle L
2016-05-01
Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies. Copyright © 2016 Elsevier B.V. All rights reserved.
The Relevance of HLA Sequencing in Population Genetics Studies
Sanchez-Mazas, Alicia
2014-01-01
Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today. PMID:25126587
The relevance of HLA sequencing in population genetics studies.
Sanchez-Mazas, Alicia; Meyer, Diogo
2014-01-01
Next generation sequencing (NGS) is currently being adapted by different biotechnological platforms to the standard typing method for HLA polymorphism, the huge diversity of which makes this initiative particularly challenging. Boosting the molecular characterization of the HLA genes through efficient, rapid, and low-cost technologies is expected to amplify the success of tissue transplantation by enabling us to find donor-recipient matching for rare phenotypes. But the application of NGS technologies to the molecular mapping of the MHC region also anticipates essential changes in population genetic studies. Huge amounts of HLA sequence data will be available in the next years for different populations, with the potential to change our understanding of HLA variation in humans. In this review, we first explain how HLA sequencing allows a better assessment of the HLA diversity in human populations, taking also into account the methodological difficulties it introduces at the statistical level; secondly, we show how analyzing HLA sequence variation may improve our comprehension of population genetic relationships by facilitating the identification of demographic events that marked human evolution; finally, we discuss the interest of both HLA and genome-wide sequencing and genotyping in detecting functionally significant SNPs in the MHC region, the latter having also contributed to the makeup of the HLA molecular diversity observed today.
A remark on copy number variation detection methods.
Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin
2018-01-01
Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of necessarily.
Licastro, Danilo; Mutarelli, Margherita; Peluso, Ivana; Neveling, Kornelia; Wieskamp, Nienke; Rispoli, Rossella; Vozzi, Diego; Athanasakis, Emmanouil; D'Eustacchio, Angela; Pizzo, Mariateresa; D'Amico, Francesca; Ziviello, Carmela; Simonelli, Francesca; Fabretto, Antonella; Scheffer, Hans; Gasparini, Paolo; Banfi, Sandro; Nigro, Vincenzo
2012-01-01
Usher syndrome (USH) is a clinically and genetically heterogeneous disorder characterized by visual and hearing impairments. Clinically, it is subdivided into three subclasses with nine genes identified so far. In the present study, we investigated whether the currently available Next Generation Sequencing (NGS) technologies are already suitable for molecular diagnostics of USH. We analyzed a total of 12 patients, most of which were negative for previously described mutations in known USH genes upon primer extension-based microarray genotyping. We enriched the NGS template either by whole exome capture or by Long-PCR of the known USH genes. The main NGS sequencing platforms were used: SOLiD for whole exome sequencing, Illumina (Genome Analyzer II) and Roche 454 (GS FLX) for the Long-PCR sequencing. Long-PCR targeting was more efficient with up to 94% of USH gene regions displaying an overall coverage higher than 25×, whereas whole exome sequencing yielded a similar coverage for only 50% of those regions. Overall this integrated analysis led to the identification of 11 novel sequence variations in USH genes (2 homozygous and 9 heterozygous) out of 18 detected. However, at least two cases were not genetically solved. Our result highlights the current limitations in the diagnostic use of NGS for USH patients. The limit for whole exome sequencing is linked to the need of a strong coverage and to the correct interpretation of sequence variations with a non obvious, pathogenic role, whereas the targeted approach suffers from the high genetic heterogeneity of USH that may be also caused by the presence of additional causative genes yet to be identified. PMID:22952768
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technology such as genotyping-by-sequencing (GBS) made low-cost, but often low-coverage, whole-genome sequencing widely available. Extensive inbreeding in crop plants provides an untapped, high quality source of phased haplotypes for imputing missing genotypes. We introduc...
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies are able to produce high-throughput short sequence reads in a cost-effective fashion. The emergence of these technologies has not only facilitated genome sequencing but also changed the landscape of life sciences. Here I survey their major applications ranging...
Next generation sequencers: methods and applications in food-borne pathogens
USDA-ARS?s Scientific Manuscript database
Next generation sequencers are able to produce millions of short sequence reads in a high-throughput, low-cost way. The emergence of these technologies has not only facilitated genome sequencing but also started to change the landscape of life sciences. This chapter will survey their methods and app...
Govindaraj, Mahalingam
2015-01-01
The number of sequenced crop genomes and associated genomic resources is growing rapidly with the advent of inexpensive next generation sequencing methods. Databases have become an integral part of all aspects of science research, including basic and applied plant and animal sciences. The importance of databases keeps increasing as the volume of datasets from direct and indirect genomics, as well as other omics approaches, keeps expanding in recent years. The databases and associated web portals provide at a minimum a uniform set of tools and automated analysis across a wide range of crop plant genomes. This paper reviews some basic terms and considerations in dealing with crop plant databases utilization in advancing genomic era. The utilization of databases for variation analysis with other comparative genomics tools, and data interpretation platforms are well described. The major focus of this review is to provide knowledge on platforms and databases for genome-based investigations of agriculturally important crop plants. The utilization of these databases in applied crop improvement program is still being achieved widely; otherwise, the end for sequencing is not far away. PMID:25874133
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...
Dudakovic, Amel; Gluscevic, Martina; Paradise, Christopher R.; Dudakovic, Halil; Khani, Farzaneh; Thaler, Roman; Ahmed, Farah S.; Li, Xiaodong; Dietz, Allan B.; Stein, Gary S.; Montecino, Martin A.; Deyle, David R.; Westendorf, Jennifer J.; van Wijnen, Andre J.
2017-01-01
Epigenetic mechanisms control phenotypic commitment of mesenchymal stromal/stem cells (MSCs) into osteogenic, chondrogenic or adipogenic lineages. To investigate enzymes and chromatin binding proteins controlling the epigenome, we developed a hybrid expression screening strategy that combines semi-automatic real-time qPCR (RT-qPCR), next generation RNA sequencing (RNA-seq), and a novel data management application (FileMerge). This strategy was used to interrogate expression of a large cohort (n>300) of human epigenetic regulators (EpiRegs) that generate, interpret and/or edit the histone code. We find that EpiRegs with similar enzymatic functions are variably expressed and specific isoforms dominate over others in human MSCs. This principle is exemplified by analysis of key histone acetyl transferases (HATs) and deacetylases (HDACs), H3 lysine methyl transferases (e.g., EHMTs) and demethylases (KDMs), as well as bromodomain (BRDs) and chromobox (CBX) proteins. Our results show gender-specific expression of H3 lysine 9 [H3K9] demethylases (e.g., KDM5D and UTY) as expected and upregulation of distinct EpiRegs (n>30) during osteogenic differentiation of MSCs (e.g., HDAC5 and HDAC7). The functional significance of HDACs in osteogenic lineage commitment of MSCs was functionally validated using panobinostat (LBH-589). This pan-deacetylase inhibitor suppresses osteoblastic differentiation as evidenced by reductions in bone-specific mRNA markers (e.g., ALPL), alkaline phosphatase activity and calcium deposition (i.e., Alizarin Red staining). Thus, our RT-qPCR platform identifies candidate EpiRegs by expression screening, predicts biological outcomes of their corresponding inhibitors, and enables manipulation of the human epigenome using molecular or pharmacological approaches to control stem cell differentiation. PMID:28132772
Heydt, C; Kostenko, A; Merkelbach-Bruse, S; Wolf, J; Büttner, R
2016-09-01
Comprehensive molecular genotyping of lung cancers has become a key requirement for guiding therapeutic decisions. As a paradigm model of implementing next-generation comprehensive diagnostics, Network Genomic Medicine (NGM) has established central diagnostic and clinical trial platforms for centralised testing and decentralised personalised treatment in clinical practice. Here, we describe the structures of the NGM network and give a summary of technologies to identify patients with anaplastic lymphoma kinase (ALK) fusion-positive lung adenocarcinomas. As unifying test platforms will become increasingly important for delivering reliable, quick and affordable tests, the NGM diagnostic platform is currently implementing a comprehensive hybrid capture-based parallel sequencing pan-cancer assay. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Dissecting enzyme function with microfluidic-based deep mutational scanning.
Romero, Philip A; Tran, Tuan M; Abate, Adam R
2015-06-09
Natural enzymes are incredibly proficient catalysts, but engineering them to have new or improved functions is challenging due to the complexity of how an enzyme's sequence relates to its biochemical properties. Here, we present an ultrahigh-throughput method for mapping enzyme sequence-function relationships that combines droplet microfluidic screening with next-generation DNA sequencing. We apply our method to map the activity of millions of glycosidase sequence variants. Microfluidic-based deep mutational scanning provides a comprehensive and unbiased view of the enzyme function landscape. The mapping displays expected patterns of mutational tolerance and a strong correspondence to sequence variation within the enzyme family, but also reveals previously unreported sites that are crucial for glycosidase function. We modified the screening protocol to include a high-temperature incubation step, and the resulting thermotolerance landscape allowed the discovery of mutations that enhance enzyme thermostability. Droplet microfluidics provides a general platform for enzyme screening that, when combined with DNA-sequencing technologies, enables high-throughput mapping of enzyme sequence space.
JVM: Java Visual Mapping tool for next generation sequencing read.
Yang, Ye; Liu, Juan
2015-01-01
We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.
Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino
2017-01-01
Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error. PMID:28505201
Brassac, Jonathan; Blattner, Frank R
2015-09-01
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Fantini, Marco; Pandolfini, Luca; Lisi, Simonetta; Chirichella, Michele; Arisi, Ivan; Terrigno, Marco; Goracci, Martina; Cremisi, Federico; Cattaneo, Antonino
2017-01-01
Antibody libraries are important resources to derive antibodies to be used for a wide range of applications, from structural and functional studies to intracellular protein interference studies to developing new diagnostics and therapeutics. Whatever the goal, the key parameter for an antibody library is its complexity (also known as diversity), i.e. the number of distinct elements in the collection, which directly reflects the probability of finding in the library an antibody against a given antigen, of sufficiently high affinity. Quantitative evaluation of antibody library complexity and quality has been for a long time inadequately addressed, due to the high similarity and length of the sequences of the library. Complexity was usually inferred by the transformation efficiency and tested either by fingerprinting and/or sequencing of a few hundred random library elements. Inferring complexity from such a small sampling is, however, very rudimental and gives limited information about the real diversity, because complexity does not scale linearly with sample size. Next-generation sequencing (NGS) has opened new ways to tackle the antibody library complexity quality assessment. However, much remains to be done to fully exploit the potential of NGS for the quantitative analysis of antibody repertoires and to overcome current limitations. To obtain a more reliable antibody library complexity estimate here we show a new, PCR-free, NGS approach to sequence antibody libraries on Illumina platform, coupled to a new bioinformatic analysis and software (Diversity Estimator of Antibody Library, DEAL) that allows to reliably estimate the complexity, taking in consideration the sequencing error.
Next Generation Sequencing at the University of Chicago Genomics Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faber, Pieter
2013-04-24
The University of Chicago Genomics Core provides University of Chicago investigators (and external clients) access to State-of-the-Art genomics capabilities: next generation sequencing, Sanger sequencing / genotyping and micro-arrays (gene expression, genotyping, and methylation). The current presentation will highlight our capabilities in the area of ultra-high throughput sequencing analysis.
Dias, Miguel de Sousa; Hernan, Imma; Pascual, Beatriz; Borràs, Emma; Mañé, Begoña; Gamundi, Maria José
2013-01-01
Purpose To devise an effective method for detecting mutations in 12 genes (CA4, CRX, IMPDH1, NR2E3, RP9, PRPF3, PRPF8, PRPF31, PRPH2, RHO, RP1, and TOPORS) commonly associated with autosomal dominant retinitis pigmentosa (adRP) that account for more than 95% of known mutations. Methods We used long-range PCR (LR-PCR) amplification and next-generation sequencing (NGS) performed in a GS Junior 454 benchtop sequencing platform. Twenty LR-PCR fragments, between 3,000 and 10,000 bp, containing all coding exons and flanking regions of the 12 genes, were obtained from DNA samples of patients with adRP. Sequencing libraries were prepared with an enzymatic (Fragmentase technology) method. Results Complete coverage of the coding and flanking sequences of the 12 genes assayed was obtained with NGS, with an average sequence depth of 380× (ranging from 128× to 1,077×). Five previous known mutations in the adRP genes were detected with a sequence variation percentage between 35% and 65%. We also performed a parallel sequence analysis of four samples, three of them new patients with index adRP, in which two novel mutations were detected in RHO (p.Asn73del) and PRPF31 (p.Ile109del). Conclusions The results demonstrate that genomic LR-PCR amplification together with NGS is an effective method for analyzing individual patient samples for mutations in a monogenic heterogeneous disease such as adRP. This approach proved effective for the parallel analysis of adRP and has been introduced as routine. Additionally, this approach could be extended to other heterogeneous genetic diseases. PMID:23559859
Henry, Kevin A
2018-01-01
Immunogenetic analyses of expressed antibody repertoires are becoming increasingly common experimental investigations and are critical to furthering our understanding of autoimmunity, infectious disease, and cancer. Next-generation DNA sequencing (NGS) technologies have now made it possible to interrogate antibody repertoires to unprecedented depths, typically by sequencing of cDNAs encoding immunoglobulin variable domains. In this chapter, we describe simple, fast, and reliable methods for producing and sequencing multiplex PCR amplicons derived from the variable regions (V H , V H H or V L ) of rearranged immunoglobulin heavy and light chain genes using the Illumina MiSeq platform. We include complete protocols and primer sets for amplicon sequencing of V H /V H H/V L repertoires directly from human, mouse, and llama lymphocytes as well as from phage-displayed V H /V H H/V L libraries; these can be easily be adapted to other types of amplicons with little modification. The resulting amplicons are diverse and representative, even using as few as 10 3 input B cells, and their generation is relatively inexpensive, requiring no special equipment and only a limited set of primers. In the absence of heavy-light chain pairing, single-domain antibodies are uniquely amenable to NGS analyses. We present a number of applications of NGS technology useful in discovery of single-domain antibodies from phage display libraries, including: (i) assessment of library functionality; (ii) confirmation of desired library randomization; (iii) estimation of library diversity; and (iv) monitoring the progress of panning experiments. While the case studies presented here are of phage-displayed single-domain antibody libraries, the principles extend to other types of in vitro display libraries.
Mobile e-Learning for Next Generation Communication Environment
ERIC Educational Resources Information Center
Wu, Tin-Yu; Chao, Han-Chieh
2008-01-01
This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…
Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike
2016-07-01
High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Altimari, Annalisa; de Biase, Dario; De Maglio, Giovanna; Gruppioni, Elisa; Capizzi, Elisa; Degiovanni, Alessio; D’Errico, Antonia; Pession, Annalisa; Pizzolitto, Stefano; Fiorentino, Michelangelo; Tallini, Giovanni
2013-01-01
Detection of KRAS mutations in archival pathology samples is critical for therapeutic appropriateness of anti-EGFR monoclonal antibodies in colorectal cancer. We compared the sensitivity, specificity, and accuracy of Sanger sequencing, ARMS-Scorpion (TheraScreen®) real-time polymerase chain reaction (PCR), pyrosequencing, chip array hybridization, and 454 next-generation sequencing to assess KRAS codon 12 and 13 mutations in 60 nonconsecutive selected cases of colorectal cancer. Twenty of the 60 cases were detected as wild-type KRAS by all methods with 100% specificity. Among the 40 mutated cases, 13 were discrepant with at least one method. The sensitivity was 85%, 90%, 93%, and 92%, and the accuracy was 90%, 93%, 95%, and 95% for Sanger sequencing, TheraScreen real-time PCR, pyrosequencing, and chip array hybridization, respectively. The main limitation of Sanger sequencing was its low analytical sensitivity, whereas TheraScreen real-time PCR, pyrosequencing, and chip array hybridization showed higher sensitivity but suffered from the limitations of predesigned assays. Concordance between the methods was k = 0.79 for Sanger sequencing and k > 0.85 for the other techniques. Tumor cell enrichment correlated significantly with the abundance of KRAS-mutated deoxyribonucleic acid (DNA), evaluated as ΔCt for TheraScreen real-time PCR (P = 0.03), percentage of mutation for pyrosequencing (P = 0.001), ratio for chip array hybridization (P = 0.003), and percentage of mutation for 454 next-generation sequencing (P = 0.004). Also, 454 next-generation sequencing showed the best cross correlation for quantification of mutation abundance compared with all the other methods (P < 0.001). Our comparison showed the superiority of next-generation sequencing over the other techniques in terms of sensitivity and specificity. Next-generation sequencing will replace Sanger sequencing as the reference technique for diagnostic detection of KRAS mutation in archival tumor tissues. PMID:23950653
Next generation tools for genomic data generation, distribution, and visualization
2010-01-01
Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq. PMID:20828407
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd
Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved frommore » 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.« less
Next-generation sequencing for targeted discovery of rare mutations in rice
USDA-ARS?s Scientific Manuscript database
Advances in DNA sequencing (i.e., next-generation sequencing, NGS) have greatly increased the power and efficiency of detecting rare mutations in large mutant populations. Targeting Induced Local Lesions in Genomes (TILLING) is a reverse genetics approach for identifying gene mutations resulting fro...
Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas.
Pillai, Suja; Gopalan, Vinod; Lam, Alfred King-Yin
2017-08-01
Genetic testing is recommended for patients with phaeochromocytoma (PCC) and paraganglioma (PGL) because of their genetic heterogeneity and heritability. Due to the large number of susceptibility genes associated with PCC/PGL, next-generation sequencing (NGS) technology is ideally suited for carrying out genetic screening of these individuals. New generations of DNA sequencing technologies facilitate the development of comprehensive genetic testing in PCC/PGL at a lower cost. Whole-exome sequencing and targeted NGS are the preferred methods for screening of PCC/PGL, both having precise mutation detection methods and low costs. RNA sequencing and DNA methylation studies using NGS technology in PCC/PGL can be adopted to act as diagnostic or prognostic biomarkers as well as in planning targeted epigenetic treatment of patients with PCC/PGL. The designs of NGS having a high depth of coverage and robust analytical pipelines can lead to the successful detection of a wide range of genomic defects in PCC/PGL. Nevertheless, the major challenges of this technology must be addressed before it has practical applications in the clinical diagnostics to fulfill the goal of personalized medicine in PCC/PGL. In future, novel approaches of sequencing, such as third and fourth generation sequencing can alter the workflow, cost, analysis, and interpretation of genomics associated with PCC/PGL. Copyright © 2017 Elsevier B.V. All rights reserved.
Gürtler, Nicolas; Röthlisberger, Benno; Ludin, Katja; Schlegel, Christoph; Lalwani, Anil K
2017-07-01
Identification of the causative mutation using next-generation sequencing in autosomal-dominant hereditary hearing impairment, as mutation analysis in hereditary hearing impairment by classic genetic methods, is hindered by the high heterogeneity of the disease. Two Swiss families with autosomal-dominant hereditary hearing impairment. Amplified DNA libraries for next-generation sequencing were constructed from extracted genomic DNA, derived from peripheral blood, and enriched by a custom-made sequence capture library. Validated, pooled libraries were sequenced on an Illumina MiSeq instrument, 300 cycles and paired-end sequencing. Technical data analysis was performed with SeqMonk, variant analysis with GeneTalk or VariantStudio. The detection of mutations in genes related to hearing loss by next-generation sequencing was subsequently confirmed using specific polymerase-chain-reaction and Sanger sequencing. Mutation detection in hearing-loss-related genes. The first family harbored the mutation c.5383+5delGTGA in the TECTA-gene. In the second family, a novel mutation c.2614-2625delCATGGCGCCGTG in the WFS1-gene and a second mutation TCOF1-c.1028G>A were identified. Next-generation sequencing successfully identified the causative mutation in families with autosomal-dominant hereditary hearing impairment. The results helped to clarify the pathogenic role of a known mutation and led to the detection of a novel one. NGS represents a feasible approach with great potential future in the diagnostics of hereditary hearing impairment, even in smaller labs.
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Campbell, Catherine
2018-01-22
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Catherine
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Next generation sequencing provides rapid access to the genome of wheat stripe rust
USDA-ARS?s Scientific Manuscript database
Background: The wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, PST) is responsible for significant yield losses in wheat production worldwide. In spite of its economic importance, the PST genomic sequence is not currently available. Fortunately Next Generation Sequencing (NGS) has ra...
The invention of new approaches to DNA sequencing commonly referred to as next generation sequencing technologies is revolutionizing the study of microbial diversity. In this chapter, we discuss the characterization of microbial population structures in recreational waters and p...
Next generation platforms for high-throughput biodosimetry.
Repin, Mikhail; Turner, Helen C; Garty, Guy; Brenner, David J
2014-06-01
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.
2014-01-01
Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.
ERIC Educational Resources Information Center
Bowling, Bethany; Zimmer, Erin; Pyatt, Robert E.
2014-01-01
Although the development of next-generation (NextGen) sequencing technologies has revolutionized genomic research and medicine, the incorporation of these topics into the classroom is challenging, given an implied high degree of technical complexity. We developed an easy-to-implement, interactive classroom activity investigating the similarities…
Philipp, E E R; Kraemer, L; Mountfort, D; Schilhabel, M; Schreiber, S; Rosenstiel, P
2012-03-15
Next generation sequencing (NGS) technologies allow a rapid and cost-effective compilation of large RNA sequence datasets in model and non-model organisms. However, the storage and analysis of transcriptome information from different NGS platforms is still a significant bottleneck, leading to a delay in data dissemination and subsequent biological understanding. Especially database interfaces with transcriptome analysis modules going beyond mere read counts are missing. Here, we present the Transcriptome Analysis and Comparison Explorer (T-ACE), a tool designed for the organization and analysis of large sequence datasets, and especially suited for transcriptome projects of non-model organisms with little or no a priori sequence information. T-ACE offers a TCL-based interface, which accesses a PostgreSQL database via a php-script. Within T-ACE, information belonging to single sequences or contigs, such as annotation or read coverage, is linked to the respective sequence and immediately accessible. Sequences and assigned information can be searched via keyword- or BLAST-search. Additionally, T-ACE provides within and between transcriptome analysis modules on the level of expression, GO terms, KEGG pathways and protein domains. Results are visualized and can be easily exported for external analysis. We developed T-ACE for laboratory environments, which have only a limited amount of bioinformatics support, and for collaborative projects in which different partners work on the same dataset from different locations or platforms (Windows/Linux/MacOS). For laboratories with some experience in bioinformatics and programming, the low complexity of the database structure and open-source code provides a framework that can be customized according to the different needs of the user and transcriptome project.
Marcacci, Maurilia; Ancora, Massimo; Mangone, Iolanda; Teodori, Liana; Di Sabatino, Daria; De Massis, Fabrizio; Camma', Cesare; Savini, Giovanni; Lorusso, Alessio
2014-06-01
Dynamic surveillance and characterization of canine distemper virus (CDV) circulating strains are essential against possible vaccine breakthroughs events. This study describes the setup of a fast and robust next-generation sequencing (NGS) Ion PGM™ protocol that was used to obtain the complete genome sequence of a CDV isolate (CDV2784/2013). CDV2784/2013 is the prototype of CDV strains responsible for severe clinical distemper in dogs and wolves in Italy during 2013. CDV2784/2013 was isolated on cell culture and total RNA was used for NGS sample preparation. A total of 112.3 Mb of reads were assembled de novo using MIRA version 4.0rc4, which yielded a total number of 403 contigs with 12.1% coverage. The whole genome (15,690 bp) was recovered successfully and compared to those of existing CDV whole genomes. CDV2784/2013 was shown to have 92% nt identity with the Onderstepoort vaccine strain. This study describes for the first time a fast and robust Ion PGM™ platform-based whole genome amplification protocol for non-segmented negative stranded RNA viruses starting from total cell-purified RNA. Additionally, this is the first study reporting the whole genome analysis of an Arctic lineage strain that is known to circulate widely in Europe, Asia and USA. Copyright © 2014 Elsevier B.V. All rights reserved.
Comparison of next generation sequencing technologies for transcriptome characterization
2009-01-01
Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272
Competitive Genomic Screens of Barcoded Yeast Libraries
Urbanus, Malene; Proctor, Michael; Heisler, Lawrence E.; Giaever, Guri; Nislow, Corey
2011-01-01
By virtue of advances in next generation sequencing technologies, we have access to new genome sequences almost daily. The tempo of these advances is accelerating, promising greater depth and breadth. In light of these extraordinary advances, the need for fast, parallel methods to define gene function becomes ever more important. Collections of genome-wide deletion mutants in yeasts and E. coli have served as workhorses for functional characterization of gene function, but this approach is not scalable, current gene-deletion approaches require each of the thousands of genes that comprise a genome to be deleted and verified. Only after this work is complete can we pursue high-throughput phenotyping. Over the past decade, our laboratory has refined a portfolio of competitive, miniaturized, high-throughput genome-wide assays that can be performed in parallel. This parallelization is possible because of the inclusion of DNA 'tags', or 'barcodes,' into each mutant, with the barcode serving as a proxy for the mutation and one can measure the barcode abundance to assess mutant fitness. In this study, we seek to fill the gap between DNA sequence and barcoded mutant collections. To accomplish this we introduce a combined transposon disruption-barcoding approach that opens up parallel barcode assays to newly sequenced, but poorly characterized microbes. To illustrate this approach we present a new Candida albicans barcoded disruption collection and describe how both microarray-based and next generation sequencing-based platforms can be used to collect 10,000 - 1,000,000 gene-gene and drug-gene interactions in a single experiment. PMID:21860376
Quantifying low-frequency revertants in oral poliovirus vaccine using next generation sequencing.
Sarcey, Eric; Serres, Aurélie; Tindy, Fabrice; Chareyre, Audrey; Ng, Siemon; Nicolas, Marine; Vetter, Emmanuelle; Bonnevay, Thierry; Abachin, Eric; Mallet, Laurent
2017-08-01
Spontaneous reversion to neurovirulence of live attenuated oral poliovirus vaccine (OPV) serotype 3 (chiefly involving the n.472U>C mutation), must be monitored during production to ensure vaccine safety and consistency. Mutant analysis by polymerase chain reaction and restriction enzyme cleavage (MAPREC) has long been endorsed by the World Health Organization as the preferred in vitro test for this purpose; however, it requires radiolabeling, which is no longer supported by many laboratories. We evaluated the performance and suitability of next generation sequencing (NGS) as an alternative to MAPREC. The linearity of NGS was demonstrated at revertant concentrations equivalent to the study range of 0.25%-1.5%. NGS repeatability and intermediate precision were comparable across all tested samples, and NGS was highly reproducible, irrespective of sequencing platform or analysis software used. NGS was performed on OPV serotype 3 working seed lots and monovalent bulks (n=21) that were previously tested using MAPREC, and which covered the representative range of vaccine production. Percentages of 472-C revertants identified by NGS and MAPREC were comparable and highly correlated (r≥0.80), with a Pearson correlation coefficient of 0.95585 (p<0.0001). NGS demonstrated statistically equivalent performance to that of MAPREC for quantifying low-frequency OPV serotype 3 revertants, and offers a valid alternative to MAPREC. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
He, Ruifeng; Kim, Min-Jeong; Nelson, William; Balbuena, Tiago S; Kim, Ryan; Kramer, Robin; Crow, John A; May, Greg D; Thelen, Jay J; Soderlund, Carol A; Gang, David R
2012-02-01
The common reed (Phragmites australis), one of the most widely distributed of all angiosperms, uses its rhizomes (underground stems) to invade new territory, making it one of the most successful weedy species worldwide. Characterization of the rhizome transcriptome and proteome is needed to identify candidate genes and proteins involved in rhizome growth, development, metabolism, and invasiveness. We employed next-generation sequencing technologies including 454 and Illumina platforms to characterize the reed rhizome transcriptome and used quantitative proteomics techniques to identify the rhizome proteome. Combining 336514 Roche 454 Titanium reads and 103350802 Illumina paired-end reads in a de novo hybrid assembly yielded 124450 unique transcripts with an average length of 549 bp, of which 54317 were annotated. Rhizome-specific and differentially expressed transcripts were identified between rhizome apical tips (apical meristematic region) and rhizome elongation zones. A total of 1280 nonredundant proteins were identified and quantified using GeLC-MS/MS based label-free proteomics, where 174 and 77 proteins were preferentially expressed in the rhizome elongation zone and apical tip tissues, respectively. Genes involved in allelopathy and in controlling development and potentially invasiveness were identified. In addition to being a valuable sequence and protein data resource for studying plant rhizome species, our results provide useful insights into identifying specific genes and proteins with potential roles in rhizome differentiation, development, and function.
Lim, Yan Wei; Cuevas, Daniel A.; Silva, Genivaldo Gueiros Z.; Aguinaldo, Kristen; Dinsdale, Elizabeth A.; Haas, Andreas F.; Hatay, Mark; Sanchez, Savannah E.; Wegley-Kelly, Linda; Dutilh, Bas E.; Harkins, Timothy T.; Lee, Clarence C.; Tom, Warren; Sandin, Stuart A.; Smith, Jennifer E.; Zgliczynski, Brian; Vermeij, Mark J.A.; Rohwer, Forest
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines. PMID:25177534
Lim, Yan Wei; Cuevas, Daniel A; Silva, Genivaldo Gueiros Z; Aguinaldo, Kristen; Dinsdale, Elizabeth A; Haas, Andreas F; Hatay, Mark; Sanchez, Savannah E; Wegley-Kelly, Linda; Dutilh, Bas E; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Sandin, Stuart A; Smith, Jennifer E; Zgliczynski, Brian; Vermeij, Mark J A; Rohwer, Forest; Edwards, Robert A
2014-01-01
Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.
USDA-ARS?s Scientific Manuscript database
Advances in Next Generation Sequencing (NGS) allow for rapid development of genomics resources needed to generate molecular diagnostics assays for infectious agents. NGS approaches are particularly helpful for organisms that cannot be cultured, such as the downy mildew pathogens, a group of biotrop...
2013-01-01
Background Next generation sequencing technologies have greatly advanced many research areas of the biomedical sciences through their capability to generate massive amounts of genetic information at unprecedented rates. The advent of next generation sequencing has led to the development of numerous computational tools to analyze and assemble the millions to billions of short sequencing reads produced by these technologies. While these tools filled an important gap, current approaches for storing, processing, and analyzing short read datasets generally have remained simple and lack the complexity needed to efficiently model the produced reads and assemble them correctly. Results Previously, we presented an overlap graph coarsening scheme for modeling read overlap relationships on multiple levels. Most current read assembly and analysis approaches use a single graph or set of clusters to represent the relationships among a read dataset. Instead, we use a series of graphs to represent the reads and their overlap relationships across a spectrum of information granularity. At each information level our algorithm is capable of generating clusters of reads from the reduced graph, forming an integrated graph modeling and clustering approach for read analysis and assembly. Previously we applied our algorithm to simulated and real 454 datasets to assess its ability to efficiently model and cluster next generation sequencing data. In this paper we extend our algorithm to large simulated and real Illumina datasets to demonstrate that our algorithm is practical for both sequencing technologies. Conclusions Our overlap graph theoretic algorithm is able to model next generation sequencing reads at various levels of granularity through the process of graph coarsening. Additionally, our model allows for efficient representation of the read overlap relationships, is scalable for large datasets, and is practical for both Illumina and 454 sequencing technologies. PMID:24564333
Gao, M L; Zhong, X M; Ma, X; Ning, H J; Zhu, D; Zou, J Z
2016-06-02
To make genetic diagnosis of Alagille syndrome (ALGS) patients using target gene sequence capture and next generation sequencing technology. Target gene sequence capture and next generation sequencing were used to detect ALGS gene of 4 patients. They were hospitalized at the Affiliated Hospital, Capital Institute of Pediatrics between January 2014 and December 2015, referred to clinical diagnosis of ALGS typical and atypical respectively in 2 cases. Blood samples were collected from patients and their parents and genomic DNA was extracted from lymphocytes. Target gene sequence capture and next generation sequencing was detected. Sanger sequencing was used to confirm the results of the patients and their parents. Cholestasis, heart defects, inverted triangular face and butterfly vertebrae were presented as main clinical features in 4 male patients. The first hospital visiting ages ranged from 3 months and 14 days to 3 years and 1 month. The age of onset ranged from 3 days to 42 days (median 23 days). According to the clinical diagnostic criteria of ALGS, patient 1 and patient 2 were considered as typical ALGS. The other 2 patients were considered as atypical ALGS. Four Jagged 1(JAG1) pathogenic mutations were detected. Three different missense mutations were detected in patient 1 to patient 3 with ALGS(c.839C>T(p.W280X), c. 703G>A(p.R235X), c. 1720C>T(p.V574M)). The JAG1 mutation of patient 3 was first reported. Patient 4 had one novel insertion mutation (c.1779_1780insA(p.Ile594AsnfsTer23)). Parental analysis verified that the JAG1 missense mutation of 3 patients were de novo. The results of sanger sequencing was consistent with the results of the next generation sequencing. Target gene sequence capture combined with next generation sequencing can detect two pathogenic genes in ALGS and test genes of other related diseases in infantile cholestatic diseases simultaneously and presents a high throughput, high efficiency and low cost. It may provide molecular diagnosis and treatment for clinicians with good clinical application prospects.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...
Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un
2018-01-01
Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.
Is this the real time for genomics?
Guarnaccia, Maria; Gentile, Giulia; Alessi, Enrico; Schneider, Claudio; Petralia, Salvatore; Cavallaro, Sebastiano
2014-01-01
In the last decades, molecular biology has moved from gene-by-gene analysis to more complex studies using a genome-wide scale. Thanks to high-throughput genomic technologies, such as microarrays and next-generation sequencing, a huge amount of information has been generated, expanding our knowledge on the genetic basis of various diseases. Although some of this information could be transferred to clinical diagnostics, the technologies available are not suitable for this purpose. In this review, we will discuss the drawbacks associated with the use of traditional DNA microarrays in diagnostics, pointing out emerging platforms that could overcome these obstacles and offer a more reproducible, qualitative and quantitative multigenic analysis. New miniaturized and automated devices, called Lab-on-Chip, begin to integrate PCR and microarray on the same platform, offering integrated sample-to-result systems. The introduction of this kind of innovative devices may facilitate the transition of genome-based tests into clinical routine. Copyright © 2014. Published by Elsevier Inc.
Reverse Genetics and High Throughput Sequencing Methodologies for Plant Functional Genomics
Ben-Amar, Anis; Daldoul, Samia; Reustle, Götz M.; Krczal, Gabriele; Mliki, Ahmed
2016-01-01
In the post-genomic era, increasingly sophisticated genetic tools are being developed with the long-term goal of understanding how the coordinated activity of genes gives rise to a complex organism. With the advent of the next generation sequencing associated with effective computational approaches, wide variety of plant species have been fully sequenced giving a wealth of data sequence information on structure and organization of plant genomes. Since thousands of gene sequences are already known, recently developed functional genomics approaches provide powerful tools to analyze plant gene functions through various gene manipulation technologies. Integration of different omics platforms along with gene annotation and computational analysis may elucidate a complete view in a system biology level. Extensive investigations on reverse genetics methodologies were deployed for assigning biological function to a specific gene or gene product. We provide here an updated overview of these high throughout strategies highlighting recent advances in the knowledge of functional genomics in plants. PMID:28217003
Liu, Donglai; Zhou, Haiwei; Shi, Dawei; Shen, Shu; Tian, Yabin; Wang, Lin; Lou, Jiatao; Cong, Rong; Lu, Juan; Zhang, Henghui; Zhao, Meiru; Zhu, Shida; Cao, Zhisheng; Jin, Ruilin; Wang, Yin; Zhang, Xiaoni; Yang, Guohua; Wang, Youchun; Zhang, Chuntao
2018-01-01
Background: Widespread clinical implementation of next-generation sequencing (NGS)-based cancer in vitro diagnostic tests (IVDs) highlighted the urgency to establish reference materials which could provide full control of the process from nucleic acid extraction to test report generation. The formalin-fixed, paraffin-embedded (FFPE) tissue and blood plasma containing circulating tumor deoxyribonucleic acid (ctDNA) were mostly used for clinically detecting onco-relevant mutations. Methods: We respectively developed multiplex FFPE and plasma reference materials covering three clinically onco-relevant mutations within the epidermal growth factor receptor ( EGFR ) gene at serial allelic frequencies. All reference materials were quantified and validated via droplet digital polymerase chain reaction (ddPCR), and then were distributed to eight domestic manufacturers for the collaborative evaluation of the performance of several domestic NGS-based cancer IVDs covering four major NGS platforms (NextSeq, HiSeq, Ion Proton and BGISEQ). Results: All expected mutations except one at extremely low allelic frequencies were detected, despite some differences in coefficient of variation (CV) which increased with the decrease of allelic frequency (CVs ranging from 18% to 106%). It was worth noting that the CV value seemed to correlate with a particular mutation as well. The repeatability of determination of different mutations was L858R>T790M>19del. Conclusions: The results indicated our reference materials would be pivotal for quality control of NGS-based cancer IVDs and would guide the further development of reference materials covering more onco-relevant mutations.
Li, Po-E; Lo, Chien-Chi; Anderson, Joseph J; Davenport, Karen W; Bishop-Lilly, Kimberly A; Xu, Yan; Ahmed, Sanaa; Feng, Shihai; Mokashi, Vishwesh P; Chain, Patrick S G
2017-01-09
Continued advancements in sequencing technologies have fueled the development of new sequencing applications and promise to flood current databases with raw data. A number of factors prevent the seamless and easy use of these data, including the breadth of project goals, the wide array of tools that individually perform fractions of any given analysis, the large number of associated software/hardware dependencies, and the detailed expertise required to perform these analyses. To address these issues, we have developed an intuitive web-based environment with a wide assortment of integrated and cutting-edge bioinformatics tools in pre-configured workflows. These workflows, coupled with the ease of use of the environment, provide even novice next-generation sequencing users with the ability to perform many complex analyses with only a few mouse clicks and, within the context of the same environment, to visualize and further interrogate their results. This bioinformatics platform is an initial attempt at Empowering the Development of Genomics Expertise (EDGE) in a wide range of applications for microbial research. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Green, Larry L
2014-03-01
Transgenic mice have yielded seven of the ten currently-approved human antibody drugs, making them the most successful platform for the discovery of fully human antibody therapeutics. The use of the in vivo immune system helps drive this success by taking advantage of the natural selection process that produces antibodies with desirable characteristics. Appropriately genetically-engineered mice act as robust engines for the generation of diverse repertoires of affinity- matured fully human variable regions with intrinsic properties necessary for successful antibody drug development including high potency, specificity, manufacturability, solubility and low risk of immunogenicity. A broad range of mAb drug targets are addressable in these mice, comprising both secreted and transmembrane targets, including membrane multi-spanning targets, as well as human target antigens that share high sequence identity with their mouse orthologue. Transgenic mice can routinely yield antibodies with sub-nanomolar binding affinity for their antigen, with lead candidate mAbs frequently possessing affinities for binding to their target of less than 100 picomolar, without requiring any ex vivo affinity optimization. While the originator transgenic mice platforms are no longer broadly available, a new generation of transgenic platforms is in development for discovery of the next wave of human therapeutic antibodies.
USDA-ARS?s Scientific Manuscript database
Next generation sequencing (NGS) technology was used to analyze the occurrence of viruses in Sorghum almum plants in Florida exhibiting mosaic symptoms. Total RNA was extracted from symptomatic leaves and used as a template for cDNA library preparation. The resulting library was sequenced on an Illu...
Kai, Junhai; Puntambekar, Aniruddha; Santiago, Nelson; Lee, Se Hwan; Sehy, David W; Moore, Victor; Han, Jungyoup; Ahn, Chong H
2012-11-07
In this work we introduce a novel microfluidic enzyme linked immunoassays (ELISA) microplate as the next generation assay platform for unparalleled assay performances. A combination of microfluidic technology with standard SBS-configured 96-well microplate architecture, in the form of microfluidic microplate technology, allows for the improvement of ELISA workflows, conservation of samples and reagents, improved reaction kinetics, and the ability to improve the sensitivity of the assay by multiple analyte loading. This paper presents the design and characterization of the microfluidic microplate, and its application in ELISA.
Next Generation Proton Beam Writing: A Platform Technology for Nanowire Integration
2010-06-01
Final Report AOARD 09-4020 Next Generation Proton Beam Writing: a platform technology for Nanowire Integration JA van Kan1, AA Bettiol1, T...PBW with a finely focused 2 MeV beam was used to write holes in a matrix of thick PMMA . A G-G developer was used to develop the PMMA patterns. The...solution. The deposition speed was about 1 μm of plated Au in every 5 min. When a sufficient thickness of Au had been deposited, the PMMA around the
Initial steps towards a production platform for DNA sequence analysis on the grid.
Luyf, Angela C M; van Schaik, Barbera D C; de Vries, Michel; Baas, Frank; van Kampen, Antoine H C; Olabarriaga, Silvia D
2010-12-14
Bioinformatics is confronted with a new data explosion due to the availability of high throughput DNA sequencers. Data storage and analysis becomes a problem on local servers, and therefore it is needed to switch to other IT infrastructures. Grid and workflow technology can help to handle the data more efficiently, as well as facilitate collaborations. However, interfaces to grids are often unfriendly to novice users. In this study we reused a platform that was developed in the VL-e project for the analysis of medical images. Data transfer, workflow execution and job monitoring are operated from one graphical interface. We developed workflows for two sequence alignment tools (BLAST and BLAT) as a proof of concept. The analysis time was significantly reduced. All workflows and executables are available for the members of the Dutch Life Science Grid and the VL-e Medical virtual organizations All components are open source and can be transported to other grid infrastructures. The availability of in-house expertise and tools facilitates the usage of grid resources by new users. Our first results indicate that this is a practical, powerful and scalable solution to address the capacity and collaboration issues raised by the deployment of next generation sequencers. We currently adopt this methodology on a daily basis for DNA sequencing and other applications. More information and source code is available via http://www.bioinformaticslaboratory.nl/
Christensen, Paul A.; Ni, Yunyun; Bao, Feifei; Hendrickson, Heather L.; Greenwood, Michael; Thomas, Jessica S.; Long, S. Wesley; Olsen, Randall J.
2017-01-01
Introduction: Next-generation-sequencing (NGS) is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV). HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community. PMID:29226007
Fu, Xiaona; Liu, Aijie; Yang, Haipo; Wei, Cuijie; Ding, Juan; Wang, Shuang; Wang, Jingmin; Yuan, Yun; Jiang, Yuwu; Xiong, Hui
2015-10-01
To elucidate the usefulness of next generation sequencing for diagnosis of inherited myopathy, and to analyze the relevance between clinical phenotype and genotype in inherited myopathy. Related genes were selected for SureSelect target enrichment system kit (Panel Version 1 and Panel Version 2). A total of 134 patients who were diagnosed as inherited myopathy clinically underwent next generation sequencing in Department of Pediatrics, Peking University First Hospital from January 2013 to June 2014. Clinical information and gene detection result of the patients were collected and analyzed. Seventy-seven of 134 patients (89 males and 45 females, visiting ages from 6-month-old to 26-year-old, average visiting age was 6 years and 1 month) underwent next generation sequencing by Panel Version 1 in 2013, and 57 patients underwent next generation sequencing by Panel Version 2 in 2014. The gene detection revealed that 74 patients had pathogenic gene mutations, and the positive rate of genetic diagnosis was 55.22%. One patient was diagnosed as metabolic myopathy. Five patients were diagnosed as congenital myopathy; 68 were diagnosed as muscular dystrophy, including 22 with congenital muscular dystrophy 1A (MDC1A), 11 with Ullrich congenital muscular dystrophy (UCMD), 6 with Bethlem myopathy (BM), 12 with Duchenne muscular dystrophy (DMD) caused by point mutations in DMD gene, 5 with LMNA-related congenital muscular dystrophy (L-CMD), 1 with Emery-Dreifuss muscular dystrophy (EDMD), 7 with alpha-dystroglycanopathy (α-DG) patients, and 4 with limb-girdle muscular dystrophy (LGMD) patients. Next generation sequencing plays an important role in diagnosis of inherited myopathy. Clinical and biological information analysis was essential for screening pathogenic gene of inherited myopathy.
ParDRe: faster parallel duplicated reads removal tool for sequencing studies.
González-Domínguez, Jorge; Schmidt, Bertil
2016-05-15
Current next generation sequencing technologies often generate duplicated or near-duplicated reads that (depending on the application scenario) do not provide any interesting biological information but can increase memory requirements and computational time of downstream analysis. In this work we present ParDRe, a de novo parallel tool to remove duplicated and near-duplicated reads through the clustering of Single-End or Paired-End sequences from fasta or fastq files. It uses a novel bitwise approach to compare the suffixes of DNA strings and employs hybrid MPI/multithreading to reduce runtime on multicore systems. We show that ParDRe is up to 27.29 times faster than Fulcrum (a representative state-of-the-art tool) on a platform with two 8-core Sandy-Bridge processors. Source code in C ++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/pardre/ jgonzalezd@udc.es. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sánchez-Sevilla, José F.; Horvath, Aniko; Botella, Miguel A.; Gaston, Amèlia; Folta, Kevin; Kilian, Andrzej; Denoyes, Beatrice; Amaya, Iraida
2015-01-01
Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed ‘232’ × ‘1392’ mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options. PMID:26675207
Malapelle, Umberto; Mayo-de-Las-Casas, Clara; Molina-Vila, Miguel A; Rosell, Rafael; Savic, Spasenija; Bihl, Michel; Bubendorf, Lukas; Salto-Tellez, Manuel; de Biase, Dario; Tallini, Giovanni; Hwang, David H; Sholl, Lynette M; Luthra, Rajyalakshmi; Weynand, Birgit; Vander Borght, Sara; Missiaglia, Edoardo; Bongiovanni, Massimo; Stieber, Daniel; Vielh, Philippe; Schmitt, Fernando; Rappa, Alessandra; Barberis, Massimo; Pepe, Francesco; Pisapia, Pasquale; Serra, Nicola; Vigliar, Elena; Bellevicine, Claudio; Fassan, Matteo; Rugge, Massimo; de Andrea, Carlos E; Lozano, Maria D; Basolo, Fulvio; Fontanini, Gabriella; Nikiforov, Yuri E; Kamel-Reid, Suzanne; da Cunha Santos, Gilda; Nikiforova, Marina N; Roy-Chowdhuri, Sinchita; Troncone, Giancarlo
2017-08-01
Molecular testing of cytological lung cancer specimens includes, beyond epidermal growth factor receptor (EGFR), emerging predictive/prognostic genomic biomarkers such as Kirsten rat sarcoma viral oncogene homolog (KRAS), neuroblastoma RAS viral [v-ras] oncogene homolog (NRAS), B-Raf proto-oncogene, serine/threonine kinase (BRAF), and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA). Next-generation sequencing (NGS) and other multigene mutational assays are suitable for cytological specimens, including smears. However, the current literature reflects single-institution studies rather than multicenter experiences. Quantitative cytological molecular reference slides were produced with cell lines designed to harbor concurrent mutations in the EGFR, KRAS, NRAS, BRAF, and PIK3CA genes at various allelic ratios, including low allele frequencies (AFs; 1%). This interlaboratory ring trial study included 14 institutions across the world that performed multigene mutational assays, from tissue extraction to data analysis, on these reference slides, with each laboratory using its own mutation analysis platform and methodology. All laboratories using NGS (n = 11) successfully detected the study's set of mutations with minimal variations in the means and standard errors of variant fractions at dilution points of 10% (P = .171) and 5% (P = .063) despite the use of different sequencing platforms (Illumina, Ion Torrent/Proton, and Roche). However, when mutations at a low AF of 1% were analyzed, the concordance of the NGS results was low, and this reflected the use of different thresholds for variant calling among the institutions. In contrast, laboratories using matrix-assisted laser desorption/ionization-time of flight (n = 2) showed lower concordance in terms of mutation detection and mutant AF quantification. Quantitative molecular reference slides are a useful tool for monitoring the performance of different multigene mutational assays, and this could lead to better standardization of molecular cytopathology procedures. Cancer Cytopathol 2017;125:615-26. © 2017 American Cancer Society. © 2017 American Cancer Society.
A Concise Atlas of Thyroid Cancer Next-Generation Sequencing Panel ThyroSeq v.2
Alsina, Jorge; Alsina, Raul; Gulec, Seza
2017-01-01
The next-generation sequencing technology allows high out-put genomic analysis. An innovative assay in thyroid cancer, ThyroSeq® was developed for targeted mutation detection by next generation sequencing technology in fine needle aspiration and tissue samples. ThyroSeq v.2 next generation sequencing panel offers simultaneous sequencing and detection in >1000 hotspots of 14 thyroid cancer-related genes and for 42 types of gene fusions known to occur in thyroid cancer. ThyroSeq is being increasingly used to further narrow the indeterminate category defined by cytology for thyroid nodules. From a surgical perspective, genomic profiling also provides prognostic and predictive information and closely relates to determination of surgical strategy. Both the genomic analysis technology and the informatics for the cancer genome data base are rapidly developing. In this paper, we have gathered existing information on the thyroid cancer-related genes involved in the initiation and progression of thyroid cancer. Our goal is to assemble a glossary for the current ThyroSeq genomic panel that can help elucidate the role genomics play in thyroid cancer oncogenesis. PMID:28117295
Detection of a divergent variant of grapevine virus F by next-generation sequencing.
Molenaar, Nicholas; Burger, Johan T; Maree, Hans J
2015-08-01
The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).
Uribe-Convers, Simon; Duke, Justin R.; Moore, Michael J.; Tank, David C.
2014-01-01
• Premise of the study: We present an alternative approach for molecular systematic studies that combines long PCR and next-generation sequencing. Our approach can be used to generate templates from any DNA source for next-generation sequencing. Here we test our approach by amplifying complete chloroplast genomes, and we present a set of 58 potentially universal primers for angiosperms to do so. Additionally, this approach is likely to be particularly useful for nuclear and mitochondrial regions. • Methods and Results: Chloroplast genomes of 30 species across angiosperms were amplified to test our approach. Amplification success varied depending on whether PCR conditions were optimized for a given taxon. To further test our approach, some amplicons were sequenced on an Illumina HiSeq 2000. • Conclusions: Although here we tested this approach by sequencing plastomes, long PCR amplicons could be generated using DNA from any genome, expanding the possibilities of this approach for molecular systematic studies. PMID:25202592
Clinical next-generation sequencing in patients with non-small cell lung cancer.
Hagemann, Ian S; Devarakonda, Siddhartha; Lockwood, Christina M; Spencer, David H; Guebert, Kalin; Bredemeyer, Andrew J; Al-Kateb, Hussam; Nguyen, TuDung T; Duncavage, Eric J; Cottrell, Catherine E; Kulkarni, Shashikant; Nagarajan, Rakesh; Seibert, Karen; Baggstrom, Maria; Waqar, Saiama N; Pfeifer, John D; Morgensztern, Daniel; Govindan, Ramaswamy
2015-02-15
A clinical assay was implemented to perform next-generation sequencing (NGS) of genes commonly mutated in multiple cancer types. This report describes the feasibility and diagnostic yield of this assay in 381 consecutive patients with non-small cell lung cancer (NSCLC). Clinical targeted sequencing of 23 genes was performed with DNA from formalin-fixed, paraffin-embedded (FFPE) tumor tissue. The assay used Agilent SureSelect hybrid capture followed by Illumina HiSeq 2000, MiSeq, or HiSeq 2500 sequencing in a College of American Pathologists-accredited, Clinical Laboratory Improvement Amendments-certified laboratory. Single-nucleotide variants and insertion/deletion events were reported. This assay was performed before methods were developed to detect rearrangements by NGS. Two hundred nine of all requisitioned samples (55%) were successfully sequenced. The most common reason for not performing the sequencing was an insufficient quantity of tissue available in the blocks (29%). Excisional, endoscopic, and core biopsy specimens were sufficient for testing in 95%, 66%, and 40% of the cases, respectively. The median turnaround time (TAT) in the pathology laboratory was 21 days, and there was a trend of an improved TAT with more rapid sequencing platforms. Sequencing yielded a mean coverage of 1318×. Potentially actionable mutations (ie, predictive or prognostic) were identified in 46% of 209 samples and were most commonly found in KRAS (28%), epidermal growth factor receptor (14%), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (4%), phosphatase and tensin homolog (1%), and BRAF (1%). Five percent of the samples had multiple actionable mutations. A targeted therapy was instituted on the basis of NGS in 11% of the sequenced patients or in 6% of all patients. NGS-based diagnostics are feasible in NSCLC and provide clinically relevant information from readily available FFPE tissue. The sample type is associated with the probability of successful testing. © 2014 American Cancer Society.
2013-01-01
Background The revolution in DNA sequencing technology continues unabated, and is affecting all aspects of the biological and medical sciences. The training and recruitment of the next generation of researchers who are able to use and exploit the new technology is severely lacking and potentially negatively influencing research and development efforts to advance genome biology. Here we present a cross-disciplinary course that provides undergraduate students with practical experience in running a next generation sequencing instrument through to the analysis and annotation of the generated DNA sequences. Results Many labs across world are installing next generation sequencing technology and we show that the undergraduate students produce quality sequence data and were excited to participate in cutting edge research. The students conducted the work flow from DNA extraction, library preparation, running the sequencing instrument, to the extraction and analysis of the data. They sequenced microbes, metagenomes, and a marine mammal, the Californian sea lion, Zalophus californianus. The students met sequencing quality controls, had no detectable contamination in the targeted DNA sequences, provided publication quality data, and became part of an international collaboration to investigate carcinomas in carnivores. Conclusions Students learned important skills for their future education and career opportunities, and a perceived increase in students’ ability to conduct independent scientific research was measured. DNA sequencing is rapidly expanding in the life sciences. Teaching undergraduates to use the latest technology to sequence genomic DNA ensures they are ready to meet the challenges of the genomic era and allows them to participate in annotating the tree of life. PMID:24007365
A vertebrate case study of the quality of assemblies derived from next-generation sequences
2011-01-01
The unparalleled efficiency of next-generation sequencing (NGS) has prompted widespread adoption, but significant problems remain in the use of NGS data for whole genome assembly. We explore the advantages and disadvantages of chicken genome assemblies generated using a variety of sequencing and assembly methodologies. NGS assemblies are equivalent in some ways to a Sanger-based assembly yet deficient in others. Nonetheless, these assemblies are sufficient for the identification of the majority of genes and can reveal novel sequences when compared to existing assembly references. PMID:21453517
Massively Parallel Sequencing of Forensic STRs Using the Ion Chef™ and the Ion S5™ XL Systems.
Wang, Le; Chen, Man; Wu, Bo; Liu, Yi-Cheng; Zhang, Guang-Feng; Jiang, Li; Xu, Xiu-Lan; Zhao, Xing-Chun; Ji, An-Quan; Ye, Jian
2018-03-01
Next-generation sequencing (NGS) has been used to genotype forensic short tandem repeat (STR) markers for individual identification and kinship analysis. STR data from several NGS platforms have been published, but forensic application trials using the Ion S5™ XL system have not been reported. In this work, we report sensitivity, reproducibility, mixture, simulated degradation, and casework sample data on the Ion Chef™ and S5™ XL systems using an early access 25-plex panel. Sensitivity experiments showed that over 97% of the alleles were detectable with down to 62 pg input of genomic DNA. In mixture studies, alleles from minor contributors were correctly assigned at 1:9 and 9:1 ratios. NGS successfully gave 12 full genotype results from 13 challenging casework samples, compared with five full results using the CE platform. In conclusion, the Ion Chef™ and the Ion S5™ XL systems provided an alternative and promising approach for forensic STR genotyping. © 2018 American Academy of Forensic Sciences.
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Review of the evolution of display technologies for next-generation aircraft
NASA Astrophysics Data System (ADS)
Tchon, Joseph L.; Barnidge, Tracy J.
2015-05-01
Advancements in electronic display technologies have provided many benefits for military avionics. The modernization of legacy tanker transport aircraft along with the development of next-generation platforms, such as the KC-46 aerial refueling tanker, offers a timeline of the evolution of avionics display approaches. The adaptation of advanced flight displays from the Boeing 787 for the KC-46 flight deck also provides examples of how avionics display solutions may be leveraged across commercial and military flight decks to realize greater situational awareness and improve overall mission effectiveness. This paper provides a review of the display technology advancements that have led to today's advanced avionics displays for the next-generation KC-46 tanker aircraft. In particular, progress in display operating modes, backlighting, packaging, and ruggedization will be discussed along with display certification considerations across military and civilian platforms.
Next generation sequencing applications for microRNA biomarker discovery in toxicological studies
Next Generation Sequencing (NGS) technology will be reviewed for its base pair resolution, wide dynamic range, and insights into the genome and transcriptome, with special focus upon the biomarker potential of microRNAs (miRNAs). The first part of this presentation reviews commo...
DNApod: DNA polymorphism annotation database from next-generation sequence read archives.
Mochizuki, Takako; Tanizawa, Yasuhiro; Fujisawa, Takatomo; Ohta, Tazro; Nikoh, Naruo; Shimizu, Tokurou; Toyoda, Atsushi; Fujiyama, Asao; Kurata, Nori; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2017-01-01
With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information.
DNApod: DNA polymorphism annotation database from next-generation sequence read archives
Mochizuki, Takako; Tanizawa, Yasuhiro; Fujisawa, Takatomo; Ohta, Tazro; Nikoh, Naruo; Shimizu, Tokurou; Toyoda, Atsushi; Fujiyama, Asao; Kurata, Nori; Nagasaki, Hideki; Kaminuma, Eli; Nakamura, Yasukazu
2017-01-01
With the rapid advances in next-generation sequencing (NGS), datasets for DNA polymorphisms among various species and strains have been produced, stored, and distributed. However, reliability varies among these datasets because the experimental and analytical conditions used differ among assays. Furthermore, such datasets have been frequently distributed from the websites of individual sequencing projects. It is desirable to integrate DNA polymorphism data into one database featuring uniform quality control that is distributed from a single platform at a single place. DNA polymorphism annotation database (DNApod; http://tga.nig.ac.jp/dnapod/) is an integrated database that stores genome-wide DNA polymorphism datasets acquired under uniform analytical conditions, and this includes uniformity in the quality of the raw data, the reference genome version, and evaluation algorithms. DNApod genotypic data are re-analyzed whole-genome shotgun datasets extracted from sequence read archives, and DNApod distributes genome-wide DNA polymorphism datasets and known-gene annotations for each DNA polymorphism. This new database was developed for storing genome-wide DNA polymorphism datasets of plants, with crops being the first priority. Here, we describe our analyzed data for 679, 404, and 66 strains of rice, maize, and sorghum, respectively. The analytical methods are available as a DNApod workflow in an NGS annotation system of the DNA Data Bank of Japan and a virtual machine image. Furthermore, DNApod provides tables of links of identifiers between DNApod genotypic data and public phenotypic data. To advance the sharing of organism knowledge, DNApod offers basic and ubiquitous functions for multiple alignment and phylogenetic tree construction by using orthologous gene information. PMID:28234924
CAFE: aCcelerated Alignment-FrEe sequence analysis.
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu
2017-07-03
Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
CNV-seq, a new method to detect copy number variation using high-throughput sequencing.
Xie, Chao; Tammi, Martti T
2009-03-06
DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.
VAMPS: a website for visualization and analysis of microbial population structures.
Huse, Susan M; Mark Welch, David B; Voorhis, Andy; Shipunova, Anna; Morrison, Hilary G; Eren, A Murat; Sogin, Mitchell L
2014-02-05
The advent of next-generation DNA sequencing platforms has revolutionized molecular microbial ecology by making the detailed analysis of complex communities over time and space a tractable research pursuit for small research groups. However, the ability to generate 10⁵-10⁸ reads with relative ease brings with it many downstream complications. Beyond the computational resources and skills needed to process and analyze data, it is difficult to compare datasets in an intuitive and interactive manner that leads to hypothesis generation and testing. We developed the free web service VAMPS (Visualization and Analysis of Microbial Population Structures, http://vamps.mbl.edu) to address these challenges and to facilitate research by individuals or collaborating groups working on projects with large-scale sequencing data. Users can upload marker gene sequences and associated metadata; reads are quality filtered and assigned to both taxonomic structures and to taxonomy-independent clusters. A simple point-and-click interface allows users to select for analysis any combination of their own or their collaborators' private data and data from public projects, filter these by their choice of taxonomic and/or abundance criteria, and then explore these data using a wide range of analytic methods and visualizations. Each result is extensively hyperlinked to other analysis and visualization options, promoting data exploration and leading to a greater understanding of data relationships. VAMPS allows researchers using marker gene sequence data to analyze the diversity of microbial communities and the relationships between communities, to explore these analyses in an intuitive visual context, and to download data, results, and images for publication. VAMPS obviates the need for individual research groups to make the considerable investment in computational infrastructure and bioinformatic support otherwise necessary to process, analyze, and interpret massive amounts of next-generation sequence data. Any web-capable device can be used to upload, process, explore, and extract data and results from VAMPS. VAMPS encourages researchers to share sequence and metadata, and fosters collaboration between researchers of disparate biomes who recognize common patterns in shared data.
A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS
Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T.; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J.; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A.; Lempicki, Richard A.; Huang, Da Wei
2013-01-01
PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results. PMID:24179701
A Benchmark Study on Error Assessment and Quality Control of CCS Reads Derived from the PacBio RS.
Jiao, Xiaoli; Zheng, Xin; Ma, Liang; Kutty, Geetha; Gogineni, Emile; Sun, Qiang; Sherman, Brad T; Hu, Xiaojun; Jones, Kristine; Raley, Castle; Tran, Bao; Munroe, David J; Stephens, Robert; Liang, Dun; Imamichi, Tomozumi; Kovacs, Joseph A; Lempicki, Richard A; Huang, Da Wei
2013-07-31
PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.
Whole-genome sequencing for comparative genomics and de novo genome assembly.
Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C
2015-01-01
Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...
Individualized cattle copy number and segmental duplication maps using next generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...
Copy number variation of individual cattle genomes using next-generation sequencing
USDA-ARS?s Scientific Manuscript database
Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...
Practical applications of next-generation sequencing for food-safety research
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing (NGS) is a transformative technology that is revolutionizing the biological sciences. However, many researchers remain uncertain as to the best ways to harness the power of NGS and apply it to their own research questions. Here we highlight three case studies of how NGS ...
Using next generation sequencing for multiplexed trait-linked markers in wheat
USDA-ARS?s Scientific Manuscript database
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used...
Early detection of non-native fishes using next-generation DNA sequencing of fish larvae
Our objective was to evaluate the use of fish larvae for early detection of non-native fishes, comparing traditional and molecular taxonomy based on next-generation DNA sequencing to investigate potential efficiencies. Our approach was to intensively sample a Great Lakes non-nati...
The role of next generation sequencing for the development and testing of veterinary biologics
USDA-ARS?s Scientific Manuscript database
Next generation sequencing technology has become widely available and it offers many new opportunities in vaccine technology. Both human and veterinary medicine has numerous examples of adventitious agents being found in live vaccines. In veterinary medicine a continuing trend is the use of viral ...
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-01-01
Goats (Capra hircus) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat’s selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome. PMID:27989103
Detecting Positive Selection of Korean Native Goat Populations Using Next-Generation Sequencing.
Lee, Wonseok; Ahn, Sojin; Taye, Mengistie; Sung, Samsun; Lee, Hyun-Jeong; Cho, Seoae; Kim, Heebal
2016-12-01
Goats ( Capra hircus ) are one of the oldest species of domesticated animals. Native Korean goats are a particularly interesting group, as they are indigenous to the area and were raised in the Korean peninsula almost 2,000 years ago. Although they have a small body size and produce low volumes of milk and meat, they are quite resistant to lumbar paralysis. Our study aimed to reveal the distinct genetic features and patterns of selection in native Korean goats by comparing the genomes of native Korean goat and crossbred goat populations. We sequenced the whole genome of 15 native Korean goats and 11 crossbred goats using next-generation sequencing (Illumina platform) to compare the genomes of the two populations. We found decreased nucleotide diversity in the native Korean goats compared to the crossbred goats. Genetic structural analysis demonstrated that the native Korean goat and crossbred goat populations shared a common ancestry, but were clearly distinct. Finally, to reveal the native Korean goat's selective sweep region, selective sweep signals were identified in the native Korean goat genome using cross-population extended haplotype homozygosity (XP-EHH) and a cross-population composite likelihood ratio test (XP-CLR). As a result, we were able to identify candidate genes for recent selection, such as the CCR3 gene, which is related to lumbar paralysis resistance. Combined with future studies and recent goat genome information, this study will contribute to a thorough understanding of the native Korean goat genome.
Genome editing and the next generation of antiviral therapy
Stone, Daniel; Niyonzima, Nixon
2016-01-01
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application. PMID:27272125
Corrie, Brian D; Marthandan, Nishanth; Zimonja, Bojan; Jaglale, Jerome; Zhou, Yang; Barr, Emily; Knoetze, Nicole; Breden, Frances M W; Christley, Scott; Scott, Jamie K; Cowell, Lindsay G; Breden, Felix
2018-07-01
Next-generation sequencing allows the characterization of the adaptive immune receptor repertoire (AIRR) in exquisite detail. These large-scale AIRR-seq data sets have rapidly become critical to vaccine development, understanding the immune response in autoimmune and infectious disease, and monitoring novel therapeutics against cancer. However, at present there is no easy way to compare these AIRR-seq data sets across studies and institutions. The ability to combine and compare information for different disease conditions will greatly enhance the value of AIRR-seq data for improving biomedical research and patient care. The iReceptor Data Integration Platform (gateway.ireceptor.org) provides one implementation of the AIRR Data Commons envisioned by the AIRR Community (airr-community.org), an initiative that is developing protocols to facilitate sharing and comparing AIRR-seq data. The iReceptor Scientific Gateway links distributed (federated) AIRR-seq repositories, allowing sequence searches or metadata queries across multiple studies at multiple institutions, returning sets of sequences fulfilling specific criteria. We present a review of the development of iReceptor, and how it fits in with the general trend toward sharing genomic and health data, and the development of standards for describing and reporting AIRR-seq data. Researchers interested in integrating their repositories of AIRR-seq data into the iReceptor Platform are invited to contact support@ireceptor.org. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization
Vogeti, Sriharsha
2018-01-01
Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/. PMID:29621297
Solving the problem of comparing whole bacterial genomes across different sequencing platforms.
Kaas, Rolf S; Leekitcharoenphon, Pimlapas; Aarestrup, Frank M; Lund, Ole
2014-01-01
Whole genome sequencing (WGS) shows great potential for real-time monitoring and identification of infectious disease outbreaks. However, rapid and reliable comparison of data generated in multiple laboratories and using multiple technologies is essential. So far studies have focused on using one technology because each technology has a systematic bias making integration of data generated from different platforms difficult. We developed two different procedures for identifying variable sites and inferring phylogenies in WGS data across multiple platforms. The methods were evaluated on three bacterial data sets and sequenced on three different platforms (Illumina, 454, Ion Torrent). We show that the methods are able to overcome the systematic biases caused by the sequencers and infer the expected phylogenies. It is concluded that the cause of the success of these new procedures is due to a validation of all informative sites that are included in the analysis. The procedures are available as web tools.
Parallel processing of genomics data
NASA Astrophysics Data System (ADS)
Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario
2016-10-01
The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.
Bioinformatics and Microarray Data Analysis on the Cloud.
Calabrese, Barbara; Cannataro, Mario
2016-01-01
High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.
USDA-ARS?s Scientific Manuscript database
Early stage infections caused by fungal/oomycete spores can remain undetected until signs or symptoms develop. Serological and molecular techniques are currently used for detecting these pathogens. Next-generation sequencing (NGS) has potential as a diagnostic tool, due to the capacity to target mul...
Shen, Li; Shao, Ningyi; Liu, Xiaochuan; Nestler, Eric
2014-04-15
Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. We have developed ngs.plot - a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data.
2014-01-01
Background Understanding the relationship between the millions of functional DNA elements and their protein regulators, and how they work in conjunction to manifest diverse phenotypes, is key to advancing our understanding of the mammalian genome. Next-generation sequencing technology is now used widely to probe these protein-DNA interactions and to profile gene expression at a genome-wide scale. As the cost of DNA sequencing continues to fall, the interpretation of the ever increasing amount of data generated represents a considerable challenge. Results We have developed ngs.plot – a standalone program to visualize enrichment patterns of DNA-interacting proteins at functionally important regions based on next-generation sequencing data. We demonstrate that ngs.plot is not only efficient but also scalable. We use a few examples to demonstrate that ngs.plot is easy to use and yet very powerful to generate figures that are publication ready. Conclusions We conclude that ngs.plot is a useful tool to help fill the gap between massive datasets and genomic information in this era of big sequencing data. PMID:24735413
Fumagalli, Caterina; Vacirca, Davide; Rappa, Alessandra; Passaro, Antonio; Guarize, Juliana; Rafaniello Raviele, Paola; de Marinis, Filippo; Spaggiari, Lorenzo; Casadio, Chiara; Viale, Giuseppe; Barberis, Massimo; Guerini-Rocco, Elena
2018-03-13
Molecular profiling of advanced non-small cell lung cancers (NSCLC) is essential to identify patients who may benefit from targeted treatments. In the last years, the number of potentially actionable molecular alterations has rapidly increased. Next-generation sequencing allows for the analysis of multiple genes simultaneously. To evaluate the feasibility and the throughput of next-generation sequencing in clinical molecular diagnostics of advanced NSCLC. A single-institution cohort of 535 non-squamous NSCLC was profiled using a next-generation sequencing panel targeting 22 actionable and cancer-related genes. 441 non-squamous NSCLC (82.4%) harboured at least one gene alteration, including 340 cases (63.6%) with clinically relevant molecular aberrations. Mutations have been detected in all but one gene ( FGFR1 ) of the panel. Recurrent alterations were observed in KRAS , TP53 , EGFR , STK11 and MET genes, whereas the remaining genes were mutated in <5% of the cases. Concurrent mutations were detected in 183 tumours (34.2%), mostly impairing KRAS or EGFR in association with TP53 alterations. The study highlights the feasibility of targeted next-generation sequencing in clinical setting. The majority of NSCLC harboured mutations in clinically relevant genes, thus identifying patients who might benefit from different targeted therapies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Der Sarkissian, Clio; Allentoft, Morten E.; Ávila-Arcos, María C.; Barnett, Ross; Campos, Paula F.; Cappellini, Enrico; Ermini, Luca; Fernández, Ruth; da Fonseca, Rute; Ginolhac, Aurélien; Hansen, Anders J.; Jónsson, Hákon; Korneliussen, Thorfinn; Margaryan, Ashot; Martin, Michael D.; Moreno-Mayar, J. Víctor; Raghavan, Maanasa; Rasmussen, Morten; Velasco, Marcela Sandoval; Schroeder, Hannes; Schubert, Mikkel; Seguin-Orlando, Andaine; Wales, Nathan; Gilbert, M. Thomas P.; Willerslev, Eske; Orlando, Ludovic
2015-01-01
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field's focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past. PMID:25487338
Microsatellite DNA capture from enriched libraries.
Gonzalez, Elena G; Zardoya, Rafael
2013-01-01
Microsatellites are DNA sequences of tandem repeats of one to six nucleotides, which are highly polymorphic, and thus the molecular markers of choice in many kinship, population genetic, and conservation studies. There have been significant technical improvements since the early methods for microsatellite isolation were developed, and today the most common procedures take advantage of the hybrid capture methods of enriched-targeted microsatellite DNA. Furthermore, recent advents in sequencing technologies (i.e., next-generation sequencing, NGS) have fostered the mining of microsatellite markers in non-model organisms, affording a cost-effective way of obtaining a large amount of sequence data potentially useful for loci characterization. The rapid improvements of NGS platforms together with the increase in available microsatellite information open new avenues to the understanding of the evolutionary forces that shape genetic structuring in wild populations. Here, we provide detailed methodological procedures for microsatellite isolation based on the screening of GT microsatellite-enriched libraries, either by cloning and Sanger sequencing of positive clones or by direct NGS. Guides for designing new species-specific primers and basic genotyping are also given.
Droplet Digital™ PCR Next-Generation Sequencing Library QC Assay.
Heredia, Nicholas J
2018-01-01
Digital PCR is a valuable tool to quantify next-generation sequencing (NGS) libraries precisely and accurately. Accurately quantifying NGS libraries enable accurate loading of the libraries on to the sequencer and thus improve sequencing performance by reducing under and overloading error. Accurate quantification also benefits users by enabling uniform loading of indexed/barcoded libraries which in turn greatly improves sequencing uniformity of the indexed/barcoded samples. The advantages gained by employing the Droplet Digital PCR (ddPCR™) library QC assay includes the precise and accurate quantification in addition to size quality assessment, enabling users to QC their sequencing libraries with confidence.
Zhang, Ran; Yin, Yinliang; Zhang, Yujun; Li, Kexin; Zhu, Hongxia; Gong, Qin; Wang, Jianwu; Hu, Xiaoxiang; Li, Ning
2012-01-01
As the number of transgenic livestock increases, reliable detection and molecular characterization of transgene integration sites and copy number are crucial not only for interpreting the relationship between the integration site and the specific phenotype but also for commercial and economic demands. However, the ability of conventional PCR techniques to detect incomplete and multiple integration events is limited, making it technically challenging to characterize transgenes. Next-generation sequencing has enabled cost-effective, routine and widespread high-throughput genomic analysis. Here, we demonstrate the use of next-generation sequencing to extensively characterize cattle harboring a 150-kb human lactoferrin transgene that was initially analyzed by chromosome walking without success. Using this approach, the sites upstream and downstream of the target gene integration site in the host genome were identified at the single nucleotide level. The sequencing result was verified by event-specific PCR for the integration sites and FISH for the chromosomal location. Sequencing depth analysis revealed that multiple copies of the incomplete target gene and the vector backbone were present in the host genome. Upon integration, complex recombination was also observed between the target gene and the vector backbone. These findings indicate that next-generation sequencing is a reliable and accurate approach for the molecular characterization of the transgene sequence, integration sites and copy number in transgenic species. PMID:23185606
Biswal, Devendra Kumar; Ghatani, Sudeep; Shylla, Jollin A.; Sahu, Ranjana; Mullapudi, Nandita
2013-01-01
Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create an NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and don’t contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help investigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites. PMID:24255820
Ordulu, Zehra; Wong, Kristen E; Currall, Benjamin B; Ivanov, Andrew R; Pereira, Shahrin; Althari, Sara; Gusella, James F; Talkowski, Michael E; Morton, Cynthia C
2014-05-01
With recent rapid advances in genomic technologies, precise delineation of structural chromosome rearrangements at the nucleotide level is becoming increasingly feasible. In this era of "next-generation cytogenetics" (i.e., an integration of traditional cytogenetic techniques and next-generation sequencing), a consensus nomenclature is essential for accurate communication and data sharing. Currently, nomenclature for describing the sequencing data of these aberrations is lacking. Herein, we present a system called Next-Gen Cytogenetic Nomenclature, which is concordant with the International System for Human Cytogenetic Nomenclature (2013). This system starts with the alignment of rearrangement sequences by BLAT or BLAST (alignment tools) and arrives at a concise and detailed description of chromosomal changes. To facilitate usage and implementation of this nomenclature, we are developing a program designated BLA(S)T Output Sequence Tool of Nomenclature (BOSToN), a demonstrative version of which is accessible online. A standardized characterization of structural chromosomal rearrangements is essential both for research analyses and for application in the clinical setting. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Consolidation of molecular testing in clinical virology.
Scagnolari, Carolina; Turriziani, Ombretta; Monteleone, Katia; Pierangeli, Alessandra; Antonelli, Guido
2017-04-01
The development of quantitative methods for the detection of viral nucleic acids have significantly improved our ability to manage disease progression and to assess the efficacy of antiviral treatment. Moreover, major advances in molecular technologies during the last decade have allowed the identification of new host genetic markers associated with antiviral drug response but have also strongly revolutionized the way we see and perform virus diagnostics in the coming years. Areas covered: In this review, we describe the history and development of virology diagnostic methods, dedicating particular emphasis on the gradual evolution and recent advances toward the introduction of multiparametric platforms for the syndromic diagnosis. In parallel, we outline the consolidation of viral genome quantification practice in different clinical settings. Expert commentary: More rapid, accurate and affordable molecular technology can be predictable with particular emphasis on emerging techniques (next generation sequencing, digital PCR, point of care testing and syndromic diagnosis) to simplify viral diagnosis in the next future.
Tikkanen, Tuomas; Leroy, Bernard; Fournier, Jean Louis; Risques, Rosa Ana; Malcikova, Jitka; Soussi, Thierry
2018-07-01
Accurate annotation of genomic variants in human diseases is essential to allow personalized medicine. Assessment of somatic and germline TP53 alterations has now reached the clinic and is required in several circumstances such as the identification of the most effective cancer therapy for patients with chronic lymphocytic leukemia (CLL). Here, we present Seshat, a Web service for annotating TP53 information derived from sequencing data. A flexible framework allows the use of standard file formats such as Mutation Annotation Format (MAF) or Variant Call Format (VCF), as well as common TXT files. Seshat performs accurate variant annotations using the Human Genome Variation Society (HGVS) nomenclature and the stable TP53 genomic reference provided by the Locus Reference Genomic (LRG). In addition, using the 2017 release of the UMD_TP53 database, Seshat provides multiple statistical information for each TP53 variant including database frequency, functional activity, or pathogenicity. The information is delivered in standardized output tables that minimize errors and facilitate comparison of mutational data across studies. Seshat is a beneficial tool to interpret the ever-growing TP53 sequencing data generated by multiple sequencing platforms and it is freely available via the TP53 Website, http://p53.fr or directly at http://vps338341.ovh.net/. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, Patrick; Lo, Chien-Chi; Li, Po-E
EDGE bioinformatics was developed to help biologists process Next Generation Sequencing data (in the form of raw FASTQ files), even if they have little to no bioinformatics expertise. EDGE is a highly integrated and interactive web-based platform that is capable of running many of the standard analyses that biologists require for viral, bacterial/archaeal, and metagenomic samples. EDGE provides the following analytical workflows: quality trimming and host removal, assembly and annotation, comparisons against known references, taxonomy classification of reads and contigs, whole genome SNP-based phylogenetic analysis, and PCR analysis. EDGE provides an intuitive web-based interface for user input, allows users tomore » visualize and interact with selected results (e.g. JBrowse genome browser), and generates a final detailed PDF report. Results in the form of tables, text files, graphic files, and PDFs can be downloaded. A user management system allows tracking of an individual’s EDGE runs, along with the ability to share, post publicly, delete, or archive their results.« less
Gullapalli, Rama R; Desai, Ketaki V; Santana-Santos, Lucas; Kant, Jeffrey A; Becich, Michael J
2012-01-01
The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future.
Gullapalli, Rama R.; Desai, Ketaki V.; Santana-Santos, Lucas; Kant, Jeffrey A.; Becich, Michael J.
2012-01-01
The Human Genome Project (HGP) provided the initial draft of mankind's DNA sequence in 2001. The HGP was produced by 23 collaborating laboratories using Sanger sequencing of mapped regions as well as shotgun sequencing techniques in a process that occupied 13 years at a cost of ~$3 billion. Today, Next Generation Sequencing (NGS) techniques represent the next phase in the evolution of DNA sequencing technology at dramatically reduced cost compared to traditional Sanger sequencing. A single laboratory today can sequence the entire human genome in a few days for a few thousand dollars in reagents and staff time. Routine whole exome or even whole genome sequencing of clinical patients is well within the realm of affordability for many academic institutions across the country. This paper reviews current sequencing technology methods and upcoming advancements in sequencing technology as well as challenges associated with data generation, data manipulation and data storage. Implementation of routine NGS data in cancer genomics is discussed along with potential pitfalls in the interpretation of the NGS data. The overarching importance of bioinformatics in the clinical implementation of NGS is emphasized.[7] We also review the issue of physician education which also is an important consideration for the successful implementation of NGS in the clinical workplace. NGS technologies represent a golden opportunity for the next generation of pathologists to be at the leading edge of the personalized medicine approaches coming our way. Often under-emphasized issues of data access and control as well as potential ethical implications of whole genome NGS sequencing are also discussed. Despite some challenges, it's hard not to be optimistic about the future of personalized genome sequencing and its potential impact on patient care and the advancement of knowledge of human biology and disease in the near future. PMID:23248761
Visual programming for next-generation sequencing data analytics.
Milicchio, Franco; Rose, Rebecca; Bian, Jiang; Min, Jae; Prosperi, Mattia
2016-01-01
High-throughput or next-generation sequencing (NGS) technologies have become an established and affordable experimental framework in biological and medical sciences for all basic and translational research. Processing and analyzing NGS data is challenging. NGS data are big, heterogeneous, sparse, and error prone. Although a plethora of tools for NGS data analysis has emerged in the past decade, (i) software development is still lagging behind data generation capabilities, and (ii) there is a 'cultural' gap between the end user and the developer. Generic software template libraries specifically developed for NGS can help in dealing with the former problem, whilst coupling template libraries with visual programming may help with the latter. Here we scrutinize the state-of-the-art low-level software libraries implemented specifically for NGS and graphical tools for NGS analytics. An ideal developing environment for NGS should be modular (with a native library interface), scalable in computational methods (i.e. serial, multithread, distributed), transparent (platform-independent), interoperable (with external software interface), and usable (via an intuitive graphical user interface). These characteristics should facilitate both the run of standardized NGS pipelines and the development of new workflows based on technological advancements or users' needs. We discuss in detail the potential of a computational framework blending generic template programming and visual programming that addresses all of the current limitations. In the long term, a proper, well-developed (although not necessarily unique) software framework will bridge the current gap between data generation and hypothesis testing. This will eventually facilitate the development of novel diagnostic tools embedded in routine healthcare.
An integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data.
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A V S K; Varshney, Rajeev K
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software.
Hettling, Hannes; Condamine, Fabien L.; Vos, Karin; Nilsson, R. Henrik; Sanderson, Michael J.; Sauquet, Hervé; Scharn, Ruud; Silvestro, Daniele; Töpel, Mats; Bacon, Christine D.; Oxelman, Bengt; Vos, Rutger A.
2017-01-01
Abstract Rapidly growing biological data—including molecular sequences and fossils—hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a “Dated Tree of Life” where all node ages are directly comparable. PMID:27616324
Szymanski, Maciej; Karlowski, Wojciech M
2016-01-01
In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.
HLA genotyping by next-generation sequencing of complementary DNA.
Segawa, Hidenobu; Kukita, Yoji; Kato, Kikuya
2017-11-28
Genotyping of the human leucocyte antigen (HLA) is indispensable for various medical treatments. However, unambiguous genotyping is technically challenging due to high polymorphism of the corresponding genomic region. Next-generation sequencing is changing the landscape of genotyping. In addition to high throughput of data, its additional advantage is that DNA templates are derived from single molecules, which is a strong merit for the phasing problem. Although most currently developed technologies use genomic DNA, use of cDNA could enable genotyping with reduced costs in data production and analysis. We thus developed an HLA genotyping system based on next-generation sequencing of cDNA. Each HLA gene was divided into 3 or 4 target regions subjected to PCR amplification and subsequent sequencing with Ion Torrent PGM. The sequence data were then subjected to an automated analysis. The principle of the analysis was to construct candidate sequences generated from all possible combinations of variable bases and arrange them in decreasing order of the number of reads. Upon collecting candidate sequences from all target regions, 2 haplotypes were usually assigned. Cases not assigned 2 haplotypes were forwarded to 4 additional processes: selection of candidate sequences applying more stringent criteria, removal of artificial haplotypes, selection of candidate sequences with a relaxed threshold for sequence matching, and countermeasure for incomplete sequences in the HLA database. The genotyping system was evaluated using 30 samples; the overall accuracy was 97.0% at the field 3 level and 98.3% at the G group level. With one sample, genotyping of DPB1 was not completed due to short read size. We then developed a method for complete sequencing of individual molecules of the DPB1 gene, using the molecular barcode technology. The performance of the automatic genotyping system was comparable to that of systems developed in previous studies. Thus, next-generation sequencing of cDNA is a viable option for HLA genotyping.
Sutherland, J David; Tu, Noah P; Nemcek, Thomas A; Searle, Philip A; Hochlowski, Jill E; Djuric, Stevan W; Pan, Jeffrey Y
2014-04-01
A flexible and integrated flow-chemistry-synthesis-purification compound-generation and sample-management platform has been developed to accelerate the production of small-molecule organic-compound drug candidates in pharmaceutical research. Central to the integrated system is a Mitsubishi robot, which hands off samples throughout the process to the next station, including synthesis and purification, sample dispensing for purity and quantification analysis, dry-down, and aliquot generation.
Paweletz, Cloud P; Sacher, Adrian G; Raymond, Chris K; Alden, Ryan S; O'Connell, Allison; Mach, Stacy L; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M; Lim, Lee P; Jänne, Pasi A; Oxnard, Geoffrey R
2016-02-15
Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. NGS could identify mutations present in DNA dilutions at ≥ 0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. ©2015 American Association for Cancer Research.
Paweletz, Cloud P.; Sacher, Adrian G.; Raymond, Chris K.; Alden, Ryan S.; O'Connell, Allison; Mach, Stacy L.; Kuang, Yanan; Gandhi, Leena; Kirschmeier, Paul; English, Jessie M.; Lim, Lee P.; Jänne, Pasi A.; Oxnard, Geoffrey R.
2015-01-01
Purpose Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care, however comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). Experimental Design An NGS panel was developed targeting 11 driver oncogenes found in NSCLC. Targeted NGS was performed using a novel methodology that maximizes on-target reads, and minimizes artifact, and was validated on DNA dilutions derived from cell lines. Plasma NGS was then blindly performed on 48 patients with advanced, progressive NSCLC and a known tumor genotype, and explored in two patients with incomplete tumor genotyping. Results NGS could identify mutations present in DNA dilutions at ≥0.4% allelic frequency with 100% sensitivity/specificity. Plasma NGS detected a broad range of driver and resistance mutations, including ALK, ROS1, and RET rearrangements, HER2 insertions, and MET amplification, with 100% specificity. Sensitivity was 77% across 62 known driver and resistance mutations from the 48 cases; in 29 cases with common EGFR and KRAS mutations, sensitivity was similar to droplet digital PCR. In two cases with incomplete tumor genotyping, plasma NGS rapidly identified a novel EGFR exon 19 deletion and a missed case of MET amplification. Conclusion Blinded to tumor genotype, this plasma NGS approach detected a broad range of targetable genomic alterations in NSCLC with no false positives including complex mutations like rearrangements and unexpected resistance mutations such as EGFR C797S. Through use of widely available vacutainers and a desktop sequencing platform, this assay has the potential to be implemented broadly for patient care and translational research. PMID:26459174
Next-generation sequencing identifies the natural killer cell microRNA transcriptome
Fehniger, Todd A.; Wylie, Todd; Germino, Elizabeth; Leong, Jeffrey W.; Magrini, Vincent J.; Koul, Sunita; Keppel, Catherine R.; Schneider, Stephanie E.; Koboldt, Daniel C.; Sullivan, Ryan P.; Heinz, Michael E.; Crosby, Seth D.; Nagarajan, Rakesh; Ramsingh, Giridharan; Link, Daniel C.; Ley, Timothy J.; Mardis, Elaine R.
2010-01-01
Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g., granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates for mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes have been established, little is known about miRNAs in NK cells. Here, we used two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by quantitative real-time PCR (qRT-PCR) and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 21 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range and exhibit isomiR complexity, and a subset is differentially expressed following cytokine activation. Using these miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine activation. Furthermore, we demonstrate that miR-223 specifically targets the 3′ untranslated region of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology. PMID:20935160
Rapid RHD Zygosity Determination Using Digital PCR.
Sillence, Kelly A; Halawani, Amr J; Tounsi, Wajnat A; Clarke, Kirsty A; Kiernan, Michele; Madgett, Tracey E; Avent, Neil D
2017-08-01
Paternal zygosity testing is used for determining homo- or hemizygosity of RHD in pregnancies that are at a risk of hemolytic disease of the fetus and newborn. At present, this is achieved by using real-time PCR or the Rhesus box PCR, which can be difficult to interpret and unreliable, particularly for black African populations. DNA samples extracted from 53 blood donors were analyzed using 2 multiplex reactions for RHD -specific targets against a reference ( AGO1 ) 2 to determine gene dosage by digital PCR. Results were compared with serological data, and the correct genotype for 2 discordant results was determined by long-range PCR (LR-PCR), next-generation sequencing, and conventional Sanger sequencing. The results showed clear and reliable determination of RHD zygosity using digital PCR and revealed that 4 samples did not match the serologically predicted genotype. Sanger sequencing and long-range PCR followed by next-generation sequencing revealed that the correct genotypes for samples 729M and 351D, which were serologically typed as R 1 R 2 (DCe/DcE), were R 2 r' (DcE/dCe) for 729M and R 1 r″ (DCe/dcE), R 0 r y (Dce/dCE), or R Z r (DCE/dce) for 351D, in concordance with the digital PCR data. Digital PCR provides a highly accurate method to rapidly define blood group zygosity and has clinical application in the analysis of Rh phenotyped or genotyped samples. The vast majority of current blood group genotyping platforms are not designed to define zygosity, and thus, this technique may be used to define paternal RH zygosity in pregnancies that are at a risk of hemolytic disease of the fetus and newborn and can distinguish between homo- and hemizygous RHD -positive individuals. © 2017 American Association for Clinical Chemistry.
SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.
Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C
2016-12-15
The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .
Next-generation Sequencing-based genomic profiling: Fostering innovation in cancer care?
Fernandes, Gustavo S; Marques, Daniel F; Girardi, Daniel M; Braghiroli, Maria Ignez F; Coudry, Renata A; Meireles, Sibele I; Katz, Artur; Hoff, Paulo M
2017-10-01
With the development of next-generation sequencing (NGS) technologies, DNA sequencing has been increasingly utilized in clinical practice. Our goal was to investigate the impact of genomic evaluation on treatment decisions for heavily pretreated patients with metastatic cancer. We analyzed metastatic cancer patients from a single institution whose cancers had progressed after all available standard-of-care therapies and whose tumors underwent next-generation sequencing analysis. We determined the percentage of patients who received any therapy directed by the test, and its efficacy. From July 2013 to December 2015, 185 consecutive patients were tested using a commercially available next-generation sequencing-based test, and 157 patients were eligible. Sixty-six patients (42.0%) were female, and 91 (58.0%) were male. The mean age at diagnosis was 52.2 years, and the mean number of pre-test lines of systemic treatment was 2.7. One hundred and seventy-seven patients (95.6%) had at least one identified gene alteration. Twenty-four patients (15.2%) underwent systemic treatment directed by the test result. Of these, one patient had a complete response, four (16.7%) had partial responses, two (8.3%) had stable disease, and 17 (70.8%) had disease progression as the best result. The median progression-free survival time with matched therapy was 1.6 months, and the median overall survival was 10 months. We identified a high prevalence of gene alterations using an next-generation sequencing test. Although some benefit was associated with the matched therapy, most of the patients had disease progression as the best response, indicating the limited biological potential and unclear clinical relevance of this practice.
Pepo aphid-borne yellows virus: a new species in the genus Polerovirus.
Ibaba, Jacques D; Laing, Mark D; Gubba, Augustine
2017-02-01
Pepo aphid-borne yellows virus (PABYV) has been proposed as a putative representative of a new species in the genus Polerovirus in the family Luteoviridae. The genomes of two South African (SA) isolates of cucurbit-infecting PABYV were described in this record. Total RNA, extracted from a pattypan (Cucurbita pepo L.) and a baby marrow (C. pepo L.) leaf samples, was subjected to next-generation sequencing (NGS) on the HiSeq Illumina platform. Sanger sequencing was subsequently used to authenticate the integrity of PABYV's genome generated from de novo assembly of the NGS data. PABYV genome of SA isolates consists of 5813 nucleotides and displays an organisation typical of poleroviruses. Genome sequence comparisons of the SA PABYV isolates to other poleroviruses support the classification of PABYV as a new species in the genus Polerovirus. Recombination analyses showed that PABYV and Cucurbit aphid-borne yellows virus (CABYV) shared the same ancestor for the genome part situated between breaking points. Phylogenetic analyses of the RNA-dependent RNA polymerase and the coat protein genes showed that SA PABYV isolates shared distant relationship with CABYV and Suakwa aphid-borne yellows virus. Based on our results, we propose that PABYV is a distinct species in the genus Polerovirus.
SCARF: maximizing next-generation EST assemblies for evolutionary and population genomic analyses.
Barker, Michael S; Dlugosch, Katrina M; Reddy, A Chaitanya C; Amyotte, Sarah N; Rieseberg, Loren H
2009-02-15
Scaffolded and Corrected Assembly of Roche 454 (SCARF) is a next-generation sequence assembly tool for evolutionary genomics that is designed especially for assembling 454 EST sequences against high-quality reference sequences from related species. The program was created to knit together 454 contigs that do not assemble during traditional de novo assembly, using a reference sequence library to orient the 454 sequences. SCARF is freely available at http://msbarker.com/software.htm, and is released under the open source GPLv3 license (http://www.opensource.org/licenses/gpl-3.0.html.
[Molecular and prenatal diagnosis of a family with Fanconi anemia by next generation sequencing].
Gong, Zhuwen; Yu, Yongguo; Zhang, Qigang; Gu, Xuefan
2015-04-01
To provide prenatal diagnosis for a pregnant woman who had given birth to a child with Fanconi anemia with combined next-generation sequencing (NGS) and Sanger sequencing. For the affected child, potential mutations of the FANCA gene were analyzed with NGS. Suspected mutation was verified with Sanger sequencing. For prenatal diagnosis, genomic DNA was extracted from cultured fetal amniotic fluid cells and subjected to analysis of the same mutations. A low-frequency frameshifting mutation c.989_995del7 (p.H330LfsX2, inherited from his father) and a truncating mutation c.3971C>T (p.P1324L, inherited from his mother) have been identified in the affected child and considered to be pathogenic. The two mutations were subsequently verified by Sanger sequencing. Upon prenatal diagnosis, the fetus was found to carry two mutations. The combined next-generation sequencing and Sanger sequencing can reduce the time for diagnosis and identify subtypes of Fanconi anemia and the mutational sites, which has enabled reliable prenatal diagnosis of this disease.
Ho, Thai H.; Nateras, Rafael Nunez; Yan, Huihuang; Park, Jin G.; Jensen, Sally; Borges, Chad; Lee, Jeong Heon; Champion, Mia D.; Tibes, Raoul; Bryce, Alan H.; Carballido, Estrella M.; Todd, Mark A.; Joseph, Richard W.; Wong, William W.; Parker, Alexander S.; Stanton, Melissa L.; Castle, Erik P.
2015-01-01
To address the need to study frozen clinical specimens using next-generation RNA, DNA, chromatin immunoprecipitation (ChIP) sequencing and protein analyses, we developed a biobank work flow to prospectively collect biospecimens from patients with renal cell carcinoma (RCC). We describe our standard operating procedures and work flow to annotate pathologic results and clinical outcomes. We report quality control outcomes and nucleic acid yields of our RCC submissions (N=16) to The Cancer Genome Atlas (TCGA) project, as well as newer discovery platforms, by describing mass spectrometry analysis of albumin oxidation in plasma and 6 ChIP sequencing libraries generated from nephrectomy specimens after histone H3 lysine 36 trimethylation (H3K36me3) immunoprecipitation. From June 1, 2010, through January 1, 2013, we enrolled 328 patients with RCC. Our mean (SD) TCGA RNA integrity numbers (RINs) were 8.1 (0.8) for papillary RCC, with a 12.5% overall rate of sample disqualification for RIN <7. Banked plasma had significantly less albumin oxidation (by mass spectrometry analysis) than plasma kept at 25°C (P<.001). For ChIP sequencing, the FastQC score for average read quality was at least 30 for 91% to 95% of paired-end reads. In parallel, we analyzed frozen tissue by RNA sequencing; after genome alignment, only 0.2% to 0.4% of total reads failed the default quality check steps of Bowtie2, which was comparable to the disqualification ratio (0.1%) of the 786-O RCC cell line that was prepared under optimal RNA isolation conditions. The overall correlation coefficients for gene expression between Mayo Clinic vs TCGA tissues ranged from 0.75 to 0.82. These data support the generation of high-quality nucleic acids for genomic analyses from banked RCC. Importantly, the protocol does not interfere with routine clinical care. Collections over defined time points during disease treatment further enhance collaborative efforts to integrate genomic information with outcomes. PMID:26181416
HomozygosityMapper2012--bridging the gap between homozygosity mapping and deep sequencing.
Seelow, Dominik; Schuelke, Markus
2012-07-01
Homozygosity mapping is a common method to map recessive traits in consanguineous families. To facilitate these analyses, we have developed HomozygosityMapper, a web-based approach to homozygosity mapping. HomozygosityMapper allows researchers to directly upload the genotype files produced by the major genotyping platforms as well as deep sequencing data. It detects stretches of homozygosity shared by the affected individuals and displays them graphically. Users can interactively inspect the underlying genotypes, manually refine these regions and eventually submit them to our candidate gene search engine GeneDistiller to identify the most promising candidate genes. Here, we present the new version of HomozygosityMapper. The most striking new feature is the support of Next Generation Sequencing *.vcf files as input. Upon users' requests, we have implemented the analysis of common experimental rodents as well as of important farm animals. Furthermore, we have extended the options for single families and loss of heterozygosity studies. Another new feature is the export of *.bed files for targeted enrichment of the potential disease regions for deep sequencing strategies. HomozygosityMapper also generates files for conventional linkage analyses which are already restricted to the possible disease regions, hence superseding CPU-intensive genome-wide analyses. HomozygosityMapper is freely available at http://www.homozygositymapper.org/.
Kang, Wenjun; Kadri, Sabah; Puranik, Rutika; Wurst, Michelle N; Patil, Sushant A; Mujacic, Ibro; Benhamed, Sonia; Niu, Nifang; Zhen, Chao Jie; Ameti, Bekim; Long, Bradley C; Galbo, Filipo; Montes, David; Iracheta, Crystal; Gamboa, Venessa L; Lopez, Daisy; Yourshaw, Michael; Lawrence, Carolyn A; Aisner, Dara L; Fitzpatrick, Carrie; McNerney, Megan E; Wang, Y Lynn; Andrade, Jorge; Volchenboum, Samuel L; Furtado, Larissa V; Ritterhouse, Lauren L; Segal, Jeremy P
2018-04-24
Next-generation sequencing (NGS) diagnostic assays increasingly are becoming the standard of care in oncology practice. As the scale of an NGS laboratory grows, management of these assays requires organizing large amounts of information, including patient data, laboratory processes, genomic data, as well as variant interpretation and reporting. Although several Laboratory Information Systems and/or Laboratory Information Management Systems are commercially available, they may not meet all of the needs of a given laboratory, in addition to being frequently cost-prohibitive. Herein, we present the System for Informatics in the Molecular Pathology Laboratory, a free and open-source Laboratory Information System/Laboratory Information Management System for academic and nonprofit molecular pathology NGS laboratories, developed at the Genomic and Molecular Pathology Division at the University of Chicago Medicine. The System for Informatics in the Molecular Pathology Laboratory was designed as a modular end-to-end information system to handle all stages of the NGS laboratory workload from test order to reporting. We describe the features of the system, its clinical validation at the Genomic and Molecular Pathology Division at the University of Chicago Medicine, and its installation and testing within a different academic center laboratory (University of Colorado), and we propose a platform for future community co-development and interlaboratory data sharing. Copyright © 2018. Published by Elsevier Inc.
El-Husny, Antonette; Raiol-Moraes, Milene; Amador, Marcos; Ribeiro-dos-Santos, André M.; Montagnini, André; Barbosa, Silvanira; Silva, Artur; Assumpção, Paulo; Ishak, Geraldo; Santos, Sidney; Pinto, Pablo; Cruz, Aline; Ribeiro-dos-Santos, Ândrea
2016-01-01
Abstract Gastric cancer is considered to be the fifth highest incident tumor worldwide and the third leading cause of cancer deaths. Developing regions report a higher number of sporadic cases, but there are only a few local studies related to hereditary cases of gastric cancer in Brazil to confirm this fact. CDH1 germline mutations have been described both in familial and sporadic cases, but there is only one recent molecular description of individuals from Brazil. In this study we performed Next Generation Sequencing (NGS) to assess CDH1 germline mutations in individuals who match the clinical criteria for Hereditary Diffuse Gastric Cancer (HDGC), or who exhibit very early diagnosis of gastric cancer. Among five probands we detected CDH1 germline mutations in two cases (40%). The mutation c.1023T > G was found in a HDGC family and the mutation c.1849G > A, which is nearly exclusive to African populations, was found in an early-onset case of gastric adenocarcinoma. The mutations described highlight the existence of gastric cancer cases caused by CDH1 germline mutations in northern Brazil, although such information is frequently ignored due to the existence of a large number of environmental factors locally. Our report represent the first CDH1 mutations in HDGC described from Brazil by an NGS platform. PMID:27192129
Hunter, Margaret E.; Hart, Kristen M.
2013-01-01
Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae.
Hunter, Margaret E.; Hart, Kristen M.
2013-01-01
Invasive species represent an increasing threat to native ecosystems, harming indigenous taxa through predation, habitat modification, cross-species hybridization and alteration of ecosystem processes. Additionally, high economic costs are associated with environmental damage, restoration and control measures. The Burmese python, Python molurus bivittatus, is one of the most notable invasive species in the US, due to the threat it poses to imperiled species and the Greater Everglades ecosystem. To address population structure and relatedness, next generation sequencing was used to rapidly produce species-specific microsatellite loci. The Roche 454 GS-FLX Titanium platform provided 6616 di-, tri- and tetra-nucleotide repeats in 117,516 sequences. Using stringent criteria, 24 of 26 selected tri- and tetra-nucleotide loci were polymerase chain reaction (PCR) amplified and 18 were polymorphic. An additional six cross-species loci were amplified, and the resulting 24 loci were incorporated into eight PCR multiplexes. Multi-locus genotypes yielded an average of 61% (39%–77%) heterozygosity and 3.7 (2–6) alleles per locus. Population-level studies using the developed microsatellites will track the invasion front and monitor population-suppression dynamics. Additionally, cross-species amplification was detected in the invasive Ball, P. regius, and Northern African python, P. sebae. These markers can be used to address the hybridization potential of Burmese pythons and the larger, more aggressive P. sebae. PMID:23449030
Yang, Lei; Naylor, Gavin J P
2016-01-01
We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.
Lim, Eileen C P; Brett, Maggie; Lai, Angeline H M; Lee, Siew-Peng; Tan, Ee-Shien; Jamuar, Saumya S; Ng, Ivy S L; Tan, Ene-Choo
2015-12-14
Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome sequencing for patients whose features are suggestive of a genetic etiology involving one of the genes in the panel.
KNIME for reproducible cross-domain analysis of life science data.
Fillbrunn, Alexander; Dietz, Christian; Pfeuffer, Julianus; Rahn, René; Landrum, Gregory A; Berthold, Michael R
2017-11-10
Experiments in the life sciences often involve tools from a variety of domains such as mass spectrometry, next generation sequencing, or image processing. Passing the data between those tools often involves complex scripts for controlling data flow, data transformation, and statistical analysis. Such scripts are not only prone to be platform dependent, they also tend to grow as the experiment progresses and are seldomly well documented, a fact that hinders the reproducibility of the experiment. Workflow systems such as KNIME Analytics Platform aim to solve these problems by providing a platform for connecting tools graphically and guaranteeing the same results on different operating systems. As an open source software, KNIME allows scientists and programmers to provide their own extensions to the scientific community. In this review paper we present selected extensions from the life sciences that simplify data exploration, analysis, and visualization and are interoperable due to KNIME's unified data model. Additionally, we name other workflow systems that are commonly used in the life sciences and highlight their similarities and differences to KNIME. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E
2012-03-19
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community
2012-01-01
Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538
USDA-ARS?s Scientific Manuscript database
The dissection of complex traits of economic importance for the pig industry requires the availability of a significant number of genetic markers, such as SNPs. This study was conducted in order to discover thousands of porcine SNPs using next generation sequencing technologies and use those SNPs, a...
Sherry, Norelle L.; Porter, Jessica L.; Seemann, Torsten; Watkins, Andrew; Stinear, Timothy P.
2013-01-01
Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the blaCTX-M-15 extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications. PMID:23408689
Genetic mutations in human rectal cancers detected by targeted sequencing.
Bai, Jun; Gao, Jinglong; Mao, Zhijun; Wang, Jianhua; Li, Jianhui; Li, Wensheng; Lei, Yu; Li, Shuaishuai; Wu, Zhuo; Tang, Chuanning; Jones, Lindsey; Ye, Hua; Lou, Feng; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Huang, Xue F; Chen, Si-Yi; Zhang, Enke
2015-10-01
Colorectal cancer (CRC) is widespread with significant mortality. Both inherited and sporadic mutations in various signaling pathways influence the development and progression of the cancer. Identifying genetic mutations in CRC is important for optimal patient treatment and many approaches currently exist to uncover these mutations, including next-generation sequencing (NGS) and commercially available kits. In the present study, we used a semiconductor-based targeted DNA-sequencing approach to sequence and identify genetic mutations in 91 human rectal cancer samples. Analysis revealed frequent mutations in KRAS (58.2%), TP53 (28.6%), APC (16.5%), FBXW7 (9.9%) and PIK3CA (9.9%), and additional mutations in BRAF, CTNNB1, ERBB2 and SMAD4 were also detected at lesser frequencies. Thirty-eight samples (41.8%) also contained two or more mutations, with common combination mutations occurring between KRAS and TP53 (42.1%), and KRAS and APC (31.6%). DNA sequencing for individual cancers is of clinical importance for targeted drug therapy and the advantages of such targeted gene sequencing over other NGS platforms or commercially available kits in sensitivity, cost and time effectiveness may aid clinicians in treating CRC patients in the near future.
Dlugosch, Katrina M.; Lai, Zhao; Bonin, Aurélie; Hierro, José; Rieseberg, Loren H.
2013-01-01
Transcriptome sequences are becoming more broadly available for multiple individuals of the same species, providing opportunities to derive population genomic information from these datasets. Using the 454 Life Science Genome Sequencer FLX and FLX-Titanium next-generation platforms, we generated 11−430 Mbp of sequence for normalized cDNA for 40 wild genotypes of the invasive plant Centaurea solstitialis, yellow starthistle, from across its worldwide distribution. We examined the impact of sequencing effort on transcriptome recovery and overlap among individuals. To do this, we developed two novel publicly available software pipelines: SnoWhite for read cleaning before assembly, and AllelePipe for clustering of loci and allele identification in assembled datasets with or without a reference genome. AllelePipe is designed specifically for cases in which read depth information is not appropriate or available to assist with disentangling closely related paralogs from allelic variation, as in transcriptome or previously assembled libraries. We find that modest applications of sequencing effort recover most of the novel sequences present in the transcriptome of this species, including single-copy loci and a representative distribution of functional groups. In contrast, the coverage of variable sites, observation of heterozygosity, and overlap among different libraries are all highly dependent on sequencing effort. Nevertheless, the information gained from overlapping regions was informative regarding coarse population structure and variation across our small number of population samples, providing the first genetic evidence in support of hypothesized invasion scenarios. PMID:23390612
Seneca, Sara; Vancampenhout, Kim; Van Coster, Rudy; Smet, Joél; Lissens, Willy; Vanlander, Arnaud; De Paepe, Boel; Jonckheere, An; Stouffs, Katrien; De Meirleir, Linda
2015-01-01
Next-generation sequencing (NGS), an innovative sequencing technology that enables the successful analysis of numerous gene sequences in a massive parallel sequencing approach, has revolutionized the field of molecular biology. Although NGS was introduced in a rather recent past, the technology has already demonstrated its potential and effectiveness in many research projects, and is now on the verge of being introduced into the diagnostic setting of routine laboratories to delineate the molecular basis of genetic disease in undiagnosed patient samples. We tested a benchtop device on retrospective genomic DNA (gDNA) samples of controls and patients with a clinical suspicion of a mitochondrial DNA disorder. This Ion Torrent Personal Genome Machine platform is a high-throughput sequencer with a fast turnaround time and reasonable running costs. We challenged the chemistry and technology with the analysis and processing of a mutational spectrum composed of samples with single-nucleotide substitutions, indels (insertions and deletions) and large single or multiple deletions, occasionally in heteroplasmy. The output data were compared with previously obtained conventional dideoxy sequencing results and the mitochondrial revised Cambridge Reference Sequence (rCRS). We were able to identify the majority of all nucleotide alterations, but three false-negative results were also encountered in the data set. At the same time, the poor performance of the PGM instrument in regions associated with homopolymeric stretches generated many false-positive miscalls demanding additional manual curation of the data.
Refinetti, Paulo; Morgenthaler, Stephan; Ekstrøm, Per O
2016-07-01
Cycling temperature capillary electrophoresis has been optimised for mutation detection in 76% of the mitochondrial genome. The method was tested on a mixed sample and compared to mutation detection by next generation sequencing. Out of 152 fragments 90 were concordant, 51 discordant and in 11 were semi-concordant. Dilution experiments show that cycling capillary electrophoresis has a detection limit of 1-3%. The detection limit of routine next generation sequencing was in the ranges of 15 to 30%. Cycling temperature capillary electrophoresis detect and accurate quantify mutations at a fraction of the cost and time required to perform a next generation sequencing analysis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Hot topics of circulating tumor DNA testing in breast cancer].
Liu, Y H; Zhou, B; Xu, L; Xin, L
2017-02-01
The progress of gene detection technologies represented by next generation sequencing (NGS) and digital PCR laid a foundation for studies of circulating tumor DNA (ctDNA) in breast cancer. In 2014, the NGS workgroup organized by the College of American Pathologists (CAP) published the College of American Pathologists ' Laboratory Standards for Next - Generation Sequencing Clinical Tests, which provides a blueprint for the standardization of gene testing. In 2015, the Guidelines for Diagnostic Next - generation Sequencing published by the European Society of Human Genetics claimed that NGS is unacceptable in clinical practice before studies guided by guidelines are approved. Although existing studies show the benefits of ctDNA testing in disease monitoring and prognosis analyzing, we have a ways to go to normalize the procedure and build strict detection criteria.
Bashir, Ali; Bansal, Vikas; Bafna, Vineet
2010-06-18
Massively parallel DNA sequencing technologies have enabled the sequencing of several individual human genomes. These technologies are also being used in novel ways for mRNA expression profiling, genome-wide discovery of transcription-factor binding sites, small RNA discovery, etc. The multitude of sequencing platforms, each with their unique characteristics, pose a number of design challenges, regarding the technology to be used and the depth of sequencing required for a particular sequencing application. Here we describe a number of analytical and empirical results to address design questions for two applications: detection of structural variations from paired-end sequencing and estimating mRNA transcript abundance. For structural variation, our results provide explicit trade-offs between the detection and resolution of rearrangement breakpoints, and the optimal mix of paired-read insert lengths. Specifically, we prove that optimal detection and resolution of breakpoints is achieved using a mix of exactly two insert library lengths. Furthermore, we derive explicit formulae to determine these insert length combinations, enabling a 15% improvement in breakpoint detection at the same experimental cost. On empirical short read data, these predictions show good concordance with Illumina 200 bp and 2 Kbp insert length libraries. For transcriptome sequencing, we determine the sequencing depth needed to detect rare transcripts from a small pilot study. With only 1 Million reads, we derive corrections that enable almost perfect prediction of the underlying expression probability distribution, and use this to predict the sequencing depth required to detect low expressed genes with greater than 95% probability. Together, our results form a generic framework for many design considerations related to high-throughput sequencing. We provide software tools http://bix.ucsd.edu/projects/NGS-DesignTools to derive platform independent guidelines for designing sequencing experiments (amount of sequencing, choice of insert length, mix of libraries) for novel applications of next generation sequencing.
Liu, Gary W; Livesay, Brynn R; Kacherovsky, Nataly A; Cieslewicz, Maryelise; Lutz, Emi; Waalkes, Adam; Jensen, Michael C; Salipante, Stephen J; Pun, Suzie H
2015-08-19
Peptide ligands are used to increase the specificity of drug carriers to their target cells and to facilitate intracellular delivery. One method to identify such peptide ligands, phage display, enables high-throughput screening of peptide libraries for ligands binding to therapeutic targets of interest. However, conventional methods for identifying target binders in a library by Sanger sequencing are low-throughput, labor-intensive, and provide a limited perspective (<0.01%) of the complete sequence space. Moreover, the small sample space can be dominated by nonspecific, preferentially amplifying "parasitic sequences" and plastic-binding sequences, which may lead to the identification of false positives or exclude the identification of target-binding sequences. To overcome these challenges, we employed next-generation Illumina sequencing to couple high-throughput screening and high-throughput sequencing, enabling more comprehensive access to the phage display library sequence space. In this work, we define the hallmarks of binding sequences in next-generation sequencing data, and develop a method that identifies several target-binding phage clones for murine, alternatively activated M2 macrophages with a high (100%) success rate: sequences and binding motifs were reproducibly present across biological replicates; binding motifs were identified across multiple unique sequences; and an unselected, amplified library accurately filtered out parasitic sequences. In addition, we validate the Multiple Em for Motif Elicitation tool as an efficient and principled means of discovering binding sequences.
DistMap: a toolkit for distributed short read mapping on a Hadoop cluster.
Pandey, Ram Vinay; Schlötterer, Christian
2013-01-01
With the rapid and steady increase of next generation sequencing data output, the mapping of short reads has become a major data analysis bottleneck. On a single computer, it can take several days to map the vast quantity of reads produced from a single Illumina HiSeq lane. In an attempt to ameliorate this bottleneck we present a new tool, DistMap - a modular, scalable and integrated workflow to map reads in the Hadoop distributed computing framework. DistMap is easy to use, currently supports nine different short read mapping tools and can be run on all Unix-based operating systems. It accepts reads in FASTQ format as input and provides mapped reads in a SAM/BAM format. DistMap supports both paired-end and single-end reads thereby allowing the mapping of read data produced by different sequencing platforms. DistMap is available from http://code.google.com/p/distmap/
DistMap: A Toolkit for Distributed Short Read Mapping on a Hadoop Cluster
Pandey, Ram Vinay; Schlötterer, Christian
2013-01-01
With the rapid and steady increase of next generation sequencing data output, the mapping of short reads has become a major data analysis bottleneck. On a single computer, it can take several days to map the vast quantity of reads produced from a single Illumina HiSeq lane. In an attempt to ameliorate this bottleneck we present a new tool, DistMap - a modular, scalable and integrated workflow to map reads in the Hadoop distributed computing framework. DistMap is easy to use, currently supports nine different short read mapping tools and can be run on all Unix-based operating systems. It accepts reads in FASTQ format as input and provides mapped reads in a SAM/BAM format. DistMap supports both paired-end and single-end reads thereby allowing the mapping of read data produced by different sequencing platforms. DistMap is available from http://code.google.com/p/distmap/ PMID:24009693
Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I
2015-03-01
The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
L'vov, D K; Al'khovskiĭ, S V; Shchelkanov, M Iu; Shchetinin, A M; Deriabin, P G; Aristova, V A; Gitel'man, A K; Samokhvalov, E I; Botikov, A G
2014-01-01
The Tyulek virus (TLKV) was isolated from the ticks Argas vulgaris Filippova, 1961 (Argasidae), collected from the burrow biotopes in multispecies birds colony in the Aksu river floodplain near Tyulek village (northern part of Chu Valley, Kyrgyzstan). Recently, the TLKV was assigned to the Quaranfil group (including the Quaranfil virus (QRFV), Johnston Atoll virus (JAV), Lake Chad virus) that is a novel genus of the Quaranjavirus in the Orthomyxoviridae family. In his work, the complete genome (ID GenBank KJ438647-8) sequence of the TLKV was determined using next-generation sequencing (Illumina platform). Comparison of deduced amino acid sequences shows closed relationship of the TLKV with QRFV and JAV (86% and 84% identity for PB1 and about 70% for PB2 and PA, respectively). The identity level of the TLKV and QRFV in outer glycoprotein GP is 72% and 80% for nucleotide and amino acid sequences, respectively. The phylogenetic analysis showed that the TLKV belongs to the genus of the Quaranjavirus in the family Orthomyxoviridae.
From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.
Kwok, Hin; Chiang, Alan Kwok Shing
2016-02-24
Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.
NGS Catalog: A Database of Next Generation Sequencing Studies in Humans
Xia, Junfeng; Wang, Qingguo; Jia, Peilin; Wang, Bing; Pao, William; Zhao, Zhongming
2015-01-01
Next generation sequencing (NGS) technologies have been rapidly applied in biomedical and biological research since its advent only a few years ago, and they are expected to advance at an unprecedented pace in the following years. To provide the research community with a comprehensive NGS resource, we have developed the database Next Generation Sequencing Catalog (NGS Catalog, http://bioinfo.mc.vanderbilt.edu/NGS/index.html), a continually updated database that collects, curates and manages available human NGS data obtained from published literature. NGS Catalog deposits publication information of NGS studies and their mutation characteristics (SNVs, small insertions/deletions, copy number variations, and structural variants), as well as mutated genes and gene fusions detected by NGS. Other functions include user data upload, NGS general analysis pipelines, and NGS software. NGS Catalog is particularly useful for investigators who are new to NGS but would like to take advantage of these powerful technologies for their own research. Finally, based on the data deposited in NGS Catalog, we summarized features and findings from whole exome sequencing, whole genome sequencing, and transcriptome sequencing studies for human diseases or traits. PMID:22517761
Johnston, Christine; Magaret, Amalia; Roychoudhury, Pavitra; Greninger, Alexander L; Cheng, Anqi; Diem, Kurt; Fitzgibbon, Matthew P; Huang, Meei-Li; Selke, Stacy; Lingappa, Jairam R; Celum, Connie; Jerome, Keith R; Wald, Anna; Koelle, David M
2017-10-01
Understanding the variability in circulating herpes simplex virus type 2 (HSV-2) genomic sequences is critical to the development of HSV-2 vaccines. Genital lesion swabs containing ≥ 10 7 log 10 copies HSV DNA collected from Africa, the USA, and South America underwent next-generation sequencing, followed by K-mer based filtering and de novo genomic assembly. Sites of heterogeneity within coding regions in unique long and unique short (U L _U S ) regions were identified. Phylogenetic trees were created using maximum likelihood reconstruction. Among 46 samples from 38 persons, 1468 intragenic base-pair substitutions were identified. The maximum nucleotide distance between strains for concatenated U L_ U S segments was 0.4%. Phylogeny did not reveal geographic clustering. The most variable proteins had non-synonymous mutations in < 3% of amino acids. Unenriched HSV-2 DNA can undergo next-generation sequencing to identify intragenic variability. The use of clinical swabs for sequencing expands the information that can be gathered directly from these specimens. Copyright © 2017 Elsevier Inc. All rights reserved.
Library construction for next-generation sequencing: Overviews and challenges
Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip
2014-01-01
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796
Yarkoni, Tal
2012-01-01
Traditional pre-publication peer review of scientific output is a slow, inefficient, and unreliable process. Efforts to replace or supplement traditional evaluation models with open evaluation platforms that leverage advances in information technology are slowly gaining traction, but remain in the early stages of design and implementation. Here I discuss a number of considerations relevant to the development of such platforms. I focus particular attention on three core elements that next-generation evaluation platforms should strive to emphasize, including (1) open and transparent access to accumulated evaluation data, (2) personalized and highly customizable performance metrics, and (3) appropriate short-term incentivization of the userbase. Because all of these elements have already been successfully implemented on a large scale in hundreds of existing social web applications, I argue that development of new scientific evaluation platforms should proceed largely by adapting existing techniques rather than engineering entirely new evaluation mechanisms. Successful implementation of open evaluation platforms has the potential to substantially advance both the pace and the quality of scientific publication and evaluation, and the scientific community has a vested interest in shifting toward such models as soon as possible. PMID:23060783
Clustering of reads with alignment-free measures and quality values.
Comin, Matteo; Leoni, Andrea; Schimd, Michele
2015-01-01
The data volume generated by Next-Generation Sequencing (NGS) technologies is growing at a pace that is now challenging the storage and data processing capacities of modern computer systems. In this context an important aspect is the reduction of data complexity by collapsing redundant reads in a single cluster to improve the run time, memory requirements, and quality of post-processing steps like assembly and error correction. Several alignment-free measures, based on k-mers counts, have been used to cluster reads. Quality scores produced by NGS platforms are fundamental for various analysis of NGS data like reads mapping and error detection. Moreover future-generation sequencing platforms will produce long reads but with a large number of erroneous bases (up to 15 %). In this scenario it will be fundamental to exploit quality value information within the alignment-free framework. To the best of our knowledge this is the first study that incorporates quality value information and k-mers counts, in the context of alignment-free measures, for the comparison of reads data. Based on this principles, in this paper we present a family of alignment-free measures called D (q) -type. A set of experiments on simulated and real reads data confirms that the new measures are superior to other classical alignment-free statistics, especially when erroneous reads are considered. Also results on de novo assembly and metagenomic reads classification show that the introduction of quality values improves over standard alignment-free measures. These statistics are implemented in a software called QCluster (http://www.dei.unipd.it/~ciompin/main/qcluster.html).
Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M
2015-01-01
The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.
Jimenez, Nelson Lopez; Flannick, Jason; Yahyavi, Mani; Li, Jiang; Bardakjian, Tanya; Tonkin, Leath; Schneider, Adele; Sherr, Elliott H; Slavotinek, Anne M
2011-12-28
Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.
2011-01-01
Background Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M. Methods We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing. Results We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2. Conclusions Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M. PMID:22204637
Yuan, Shuai; Johnston, H. Richard; Zhang, Guosheng; Li, Yun; Hu, Yi-Juan; Qin, Zhaohui S.
2015-01-01
With rapid decline of the sequencing cost, researchers today rush to embrace whole genome sequencing (WGS), or whole exome sequencing (WES) approach as the next powerful tool for relating genetic variants to human diseases and phenotypes. A fundamental step in analyzing WGS and WES data is mapping short sequencing reads back to the reference genome. This is an important issue because incorrectly mapped reads affect the downstream variant discovery, genotype calling and association analysis. Although many read mapping algorithms have been developed, the majority of them uses the universal reference genome and do not take sequence variants into consideration. Given that genetic variants are ubiquitous, it is highly desirable if they can be factored into the read mapping procedure. In this work, we developed a novel strategy that utilizes genotypes obtained a priori to customize the universal haploid reference genome into a personalized diploid reference genome. The new strategy is implemented in a program named RefEditor. When applying RefEditor to real data, we achieved encouraging improvements in read mapping, variant discovery and genotype calling. Compared to standard approaches, RefEditor can significantly increase genotype calling consistency (from 43% to 61% at 4X coverage; from 82% to 92% at 20X coverage) and reduce Mendelian inconsistency across various sequencing depths. Because many WGS and WES studies are conducted on cohorts that have been genotyped using array-based genotyping platforms previously or concurrently, we believe the proposed strategy will be of high value in practice, which can also be applied to the scenario where multiple NGS experiments are conducted on the same cohort. The RefEditor sources are available at https://github.com/superyuan/refeditor. PMID:26267278
Wei, Xiaoming; Sun, Yan; Xie, Jiansheng; Shi, Quan; Qu, Ning; Yang, Guanghui; Cai, Jun; Yang, Yi; Liang, Yu; Wang, Wei; Yi, Xin
2012-11-20
Targeted enrichment and next-generation sequencing (NGS) have been employed for detection of genetic diseases. The purpose of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection of hereditary hearing loss, and identify inherited mutations involved in human deafness accurately and economically. To make genetic diagnosis of hereditary hearing loss simple and timesaving, we designed a 0.60 MB array-based chip containing 69 nuclear genes and mitochondrial genome responsible for human deafness and conducted NGS toward ten patients with five known mutations and a Chinese family with hearing loss (never genetically investigated). Ten patients with five known mutations were sequenced using next-generation sequencing to validate the sensitivity of the method. We identified four known mutations in two nuclear deafness causing genes (GJB2 and SLC26A4), one in mitochondrial DNA. We then performed this method to analyze the variants in a Chinese family with hearing loss and identified compound heterozygosity for two novel mutations in gene MYO7A. The compound heterozygosity identified in gene MYO7A causes Usher Syndrome 1B with severe phenotypes. The results support that the combination of enrichment of targeted genes and next-generation sequencing is a valuable molecular diagnostic tool for hereditary deafness and suitable for clinical application. Copyright © 2012 Elsevier B.V. All rights reserved.
The FDA's Experience with Emerging Genomics Technologies-Past, Present, and Future.
Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida
2016-07-01
The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing.
Microfluidic single-cell whole-transcriptome sequencing.
Streets, Aaron M; Zhang, Xiannian; Cao, Chen; Pang, Yuhong; Wu, Xinglong; Xiong, Liang; Yang, Lu; Fu, Yusi; Zhao, Liang; Tang, Fuchou; Huang, Yanyi
2014-05-13
Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.
The FDA’s Experience with Emerging Genomics Technologies—Past, Present, and Future
Xu, Joshua; Thakkar, Shraddha; Gong, Binsheng; Tong, Weida
2016-01-01
The rapid advancement of emerging genomics technologies and their application for assessing safety and efficacy of FDA-regulated products require a high standard of reliability and robustness supporting regulatory decision-making in the FDA. To facilitate the regulatory application, the FDA implemented a novel data submission program, Voluntary Genomics Data Submission (VGDS), and also to engage the stakeholders. As part of the endeavor, for the past 10 years, the FDA has led an international consortium of regulatory agencies, academia, pharmaceutical companies, and genomics platform providers, which was named MicroArray Quality Control Consortium (MAQC), to address issues such as reproducibility, precision, specificity/sensitivity, and data interpretation. Three projects have been completed so far assessing these genomics technologies: gene expression microarrays, whole genome genotyping arrays, and whole transcriptome sequencing (i.e., RNA-seq). The resultant studies provide the basic parameters for fit-for-purpose application of these new data streams in regulatory environments, and the solutions have been made available to the public through peer-reviewed publications. The latest MAQC project is also called the SEquencing Quality Control (SEQC) project focused on next-generation sequencing. Using reference samples with built-in controls, SEQC studies have demonstrated that relative gene expression can be measured accurately and reliably across laboratories and RNA-seq platforms. Besides prediction performance comparable to microarrays in clinical settings and safety assessments, RNA-seq is shown to have better sensitivity for low expression and reveal novel transcriptomic features. Future effort of MAQC will be focused on quality control of whole genome sequencing and targeted sequencing. PMID:27116022
MHC class I diversity of olive baboons (Papio anubis) unravelled by next-generation sequencing.
van der Wiel, Marit K H; Doxiadis, Gaby G M; de Groot, N; Otting, N; de Groot, N G; Poirier, N; Blancho, G; Bontrop, R E
2018-02-24
The olive baboon represents an important model system to study various aspects of human biology and health, including the origin and diversity of the major histocompatibility complex. After screening of a group of related animals for polymorphisms associated with a well-defined microsatellite marker, subsequent MHC class I typing of a selected population of 24 animals was performed on two distinct next-generation sequencing (NGS) platforms. A substantial number of 21 A and 80 B transcripts were discovered, about half of which had not been previously reported. Per animal, from one to four highly transcribed A alleles (majors) were observed, in addition to ones characterised by low transcripion levels (minors), such as members of the A*14 lineage. Furthermore, in one animal, up to 13 B alleles with differential transcription level profiles may be present. Based on segregation profiles, 16 Paan-AB haplotypes were defined. A haplotype encodes in general one or two major A and three to seven B transcripts, respectively. A further peculiarity is the presence of at least one copy of a B*02 lineage on nearly every haplotype, which indicates that B*02 represents a separate locus with probably a specialistic function. Haplotypes appear to be generated by recombination-like events, and the breakpoints map not only between the A and B regions but also within the B region itself. Therefore, the genetic makeup of the olive baboon MHC class I region appears to have been subject to a similar or even more complex expansion process than the one documented for macaque species.
Heeke, Simon; Hofman, Véronique; Long-Mira, Elodie; Lespinet, Virginie; Lalvée, Salomé; Bordone, Olivier; Ribeyre, Camille; Tanga, Virginie; Benzaquen, Jonathan; Leroy, Sylvie; Cohen, Charlotte; Mouroux, Jérôme; Marquette, Charles Hugo; Ilié, Marius; Hofman, Paul
2018-03-21
Background : With the integration of various targeted therapies into the clinical management of patients with advanced lung adenocarcinoma, next-generation sequencing (NGS) has become the technology of choice and has led to an increase in simultaneously interrogated genes. However, the broader adoption of NGS for routine clinical practice is still hampered by sophisticated workflows, complex bioinformatics analysis and medical interpretation. Therefore, the performance of the novel QIAGEN GeneReader NGS system was compared to an in-house ISO-15189 certified Ion PGM NGS platform. Methods : Clinical samples from 90 patients (60 Retrospectively and 30 Prospectively) with lung adenocarcinoma were sequenced with both systems. Mutations were analyzed and EGFR , KRAS , BRAF , NRAS , ALK , PIK3CA and ERBB2 genes were compared and sampling time and suitability for clinical testing were assessed. Results : Both sequencing systems showed perfect concordance for the overlapping genes. Correlation of allele frequency was r ² = 0.93 for the retrospective patients and r ² = 0.81 for the prospective patients. Hands-on time and total run time were shorter using the PGM system, while the GeneReader platform provided good traceability and up-to-date interpretation of the results. Conclusion : We demonstrated the suitability of the GeneReader NGS system in routine practice in a clinical pathology laboratory setting.
2012-01-01
Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS) technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD) might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP) marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison. PMID:22908993
Model-based quality assessment and base-calling for second-generation sequencing data.
Bravo, Héctor Corrada; Irizarry, Rafael A
2010-09-01
Second-generation sequencing (sec-gen) technology can sequence millions of short fragments of DNA in parallel, making it capable of assembling complex genomes for a small fraction of the price and time of previous technologies. In fact, a recently formed international consortium, the 1000 Genomes Project, plans to fully sequence the genomes of approximately 1200 people. The prospect of comparative analysis at the sequence level of a large number of samples across multiple populations may be achieved within the next five years. These data present unprecedented challenges in statistical analysis. For instance, analysis operates on millions of short nucleotide sequences, or reads-strings of A,C,G, or T's, between 30 and 100 characters long-which are the result of complex processing of noisy continuous fluorescence intensity measurements known as base-calling. The complexity of the base-calling discretization process results in reads of widely varying quality within and across sequence samples. This variation in processing quality results in infrequent but systematic errors that we have found to mislead downstream analysis of the discretized sequence read data. For instance, a central goal of the 1000 Genomes Project is to quantify across-sample variation at the single nucleotide level. At this resolution, small error rates in sequencing prove significant, especially for rare variants. Sec-gen sequencing is a relatively new technology for which potential biases and sources of obscuring variation are not yet fully understood. Therefore, modeling and quantifying the uncertainty inherent in the generation of sequence reads is of utmost importance. In this article, we present a simple model to capture uncertainty arising in the base-calling procedure of the Illumina/Solexa GA platform. Model parameters have a straightforward interpretation in terms of the chemistry of base-calling allowing for informative and easily interpretable metrics that capture the variability in sequencing quality. Our model provides these informative estimates readily usable in quality assessment tools while significantly improving base-calling performance. © 2009, The International Biometric Society.
Droege, Marcus; Hill, Brendon
2008-08-31
The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.
Bag, Sudeep; Al Rwahnih, Maher; Li, Ashley; Gonzalez, Asaul; Rowhani, Adib; Uyemoto, Jerry K; Sudarshana, Mysore R
2015-06-01
In spring 2013, 5-year-old nectarine (Prunus persica) trees, grafted on peach rootstock Nemaguard, were found stunted in a propagation block in California. These trees had been propagated from budwood of three nectarine cultivars imported from France and cleared through the post-entry quarantine procedure. Examination of the canopy failed to reveal any obvious symptoms. However, examination of the trunks, after stripping the bark, revealed extensive pitting on the woody cylinder. To investigate the etiological agent, double-stranded RNA was extracted from bark scrapings from the scion and rootstock portions, and a cDNA library was prepared and sequenced using the Illumina platform. BLAST analysis of the contigs generated by the de novo assembly of sequence reads indicated the presence of a novel luteovirus. Complete sequence of the viral genome was determined by sequencing of three overlapping cDNA clones generated by reverse transcription-polymerase chain reaction (RT-PCR) and by rapid amplification of the 5'- and 3'-termini. The virus genome was comprised of 4,991 nucleotides with a gene organization similar to members of the genus Luteovirus (family Luteoviridae). The presence of the virus, tentatively named Nectarine stem pitting-associated virus, was confirmed in symptomatic trees by RT-PCR. Discovery of a new virus in nectarine trees after post-entry quarantine indicates the importance of including (i) metagenomic analysis by next-generation sequencing approach as an essential tool to assess the plant health status, and (ii) examination of the woody cylinders as part of the indexing process.
An Integrated SNP Mining and Utilization (ISMU) Pipeline for Next Generation Sequencing Data
Azam, Sarwar; Rathore, Abhishek; Shah, Trushar M.; Telluri, Mohan; Amindala, BhanuPrakash; Ruperao, Pradeep; Katta, Mohan A. V. S. K.; Varshney, Rajeev K.
2014-01-01
Open source single nucleotide polymorphism (SNP) discovery pipelines for next generation sequencing data commonly requires working knowledge of command line interface, massive computational resources and expertise which is a daunting task for biologists. Further, the SNP information generated may not be readily used for downstream processes such as genotyping. Hence, a comprehensive pipeline has been developed by integrating several open source next generation sequencing (NGS) tools along with a graphical user interface called Integrated SNP Mining and Utilization (ISMU) for SNP discovery and their utilization by developing genotyping assays. The pipeline features functionalities such as pre-processing of raw data, integration of open source alignment tools (Bowtie2, BWA, Maq, NovoAlign and SOAP2), SNP prediction (SAMtools/SOAPsnp/CNS2snp and CbCC) methods and interfaces for developing genotyping assays. The pipeline outputs a list of high quality SNPs between all pairwise combinations of genotypes analyzed, in addition to the reference genome/sequence. Visualization tools (Tablet and Flapjack) integrated into the pipeline enable inspection of the alignment and errors, if any. The pipeline also provides a confidence score or polymorphism information content value with flanking sequences for identified SNPs in standard format required for developing marker genotyping (KASP and Golden Gate) assays. The pipeline enables users to process a range of NGS datasets such as whole genome re-sequencing, restriction site associated DNA sequencing and transcriptome sequencing data at a fast speed. The pipeline is very useful for plant genetics and breeding community with no computational expertise in order to discover SNPs and utilize in genomics, genetics and breeding studies. The pipeline has been parallelized to process huge datasets of next generation sequencing. It has been developed in Java language and is available at http://hpc.icrisat.cgiar.org/ISMU as a standalone free software. PMID:25003610
E2FM: an encrypted and compressed full-text index for collections of genomic sequences.
Montecuollo, Ferdinando; Schmid, Giovannni; Tagliaferri, Roberto
2017-09-15
Next Generation Sequencing (NGS) platforms and, more generally, high-throughput technologies are giving rise to an exponential growth in the size of nucleotide sequence databases. Moreover, many emerging applications of nucleotide datasets-as those related to personalized medicine-require the compliance with regulations about the storage and processing of sensitive data. We have designed and carefully engineered E 2 FM -index, a new full-text index in minute space which was optimized for compressing and encrypting nucleotide sequence collections in FASTA format and for performing fast pattern-search queries. E 2 FM -index allows to build self-indexes which occupy till to 1/20 of the storage required by the input FASTA file, thus permitting to save about 95% of storage when indexing collections of highly similar sequences; moreover, it can exactly search the built indexes for patterns in times ranging from few milliseconds to a few hundreds milliseconds, depending on pattern length. Source code is available at https://github.com/montecuollo/E2FM . ferdinando.montecuollo@unicampania.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.
Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques
2017-09-20
The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.
Cartwright, Joseph F; Anderson, Karin; Longworth, Joseph; Lobb, Philip; James, David C
2018-06-01
High-fidelity replication of biologic-encoding recombinant DNA sequences by engineered mammalian cell cultures is an essential pre-requisite for the development of stable cell lines for the production of biotherapeutics. However, immortalized mammalian cells characteristically exhibit an increased point mutation frequency compared to mammalian cells in vivo, both across their genomes and at specific loci (hotspots). Thus unforeseen mutations in recombinant DNA sequences can arise and be maintained within producer cell populations. These may affect both the stability of recombinant gene expression and give rise to protein sequence variants with variable bioactivity and immunogenicity. Rigorous quantitative assessment of recombinant DNA integrity should therefore form part of the cell line development process and be an essential quality assurance metric for instances where synthetic/multi-component assemblies are utilized to engineer mammalian cells, such as the assessment of recombinant DNA fidelity or the mutability of single-site integration target loci. Based on Pacific Biosciences (Menlo Park, CA) single molecule real-time (SMRT™) circular consensus sequencing (CCS) technology we developed a rDNA sequence analysis tool to process the multi-parallel sequencing of ∼40,000 single recombinant DNA molecules. After statistical filtering of raw sequencing data, we show that this analytical method is capable of detecting single point mutations in rDNA to a minimum single mutation frequency of 0.0042% (<1/24,000 bases). Using a stable CHO transfectant pool harboring a randomly integrated 5 kB plasmid construct encoding GFP we found that 28% of recombinant plasmid copies contained at least one low frequency (<0.3%) point mutation. These mutations were predominantly found in GC base pairs (85%) and that there was no positional bias in mutation across the plasmid sequence. There was no discernable difference between the mutation frequencies of coding and non-coding DNA. The putative ratio of non-synonymous and synonymous changes within the open reading frames (ORFs) in the plasmid sequence indicates that natural selection does not impact upon the prevalence of these mutations. Here we have demonstrated the abundance of mutations that fall outside of the reported range of detection of next generation sequencing (NGS) and second generation sequencing (SGS) platforms, providing a methodology capable of being utilized in cell line development platforms to identify the fidelity of recombinant genes throughout the production process. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Miller, R. S.; Ajello, M.; Beacom, J. F.; Bloser, P. F.; Burrows, A.; Errando, M.; Goldsten, J. O.; Hartmann, D.; Hoeflich, P.; Hungerford, A.; Lawrence, D. J.; Leary, J. C.; Leising, M. D.; Milne, P.; Peplowski, P. N.; The, L.-S.
2018-02-01
The Lunar Occultation Explorer (LOX) is a paradigm shift that will leverage the power of a new observational paradigm to transform our understanding of the nuclear cosmos (0.1-10 MeV) and establish the Moon as a platform for astrophysics.
Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing.
Zhang, Jin; Ruhlman, Tracey A; Mower, Jeffrey P; Jansen, Robert K
2013-12-29
Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing
2013-01-01
Background Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. Results Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. Conclusions The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants. PMID:24373163
Next-Generation Technologies for Multiomics Approaches Including Interactome Sequencing
Ohashi, Hiroyuki; Miyamoto-Sato, Etsuko
2015-01-01
The development of high-speed analytical techniques such as next-generation sequencing and microarrays allows high-throughput analysis of biological information at a low cost. These techniques contribute to medical and bioscience advancements and provide new avenues for scientific research. Here, we outline a variety of new innovative techniques and discuss their use in omics research (e.g., genomics, transcriptomics, metabolomics, proteomics, and interactomics). We also discuss the possible applications of these methods, including an interactome sequencing technology that we developed, in future medical and life science research. PMID:25649523
Ancient DNA studies: new perspectives on old samples
2012-01-01
In spite of past controversies, the field of ancient DNA is now a reliable research area due to recent methodological improvements. A series of recent large-scale studies have revealed the true potential of ancient DNA samples to study the processes of evolution and to test models and assumptions commonly used to reconstruct patterns of evolution and to analyze population genetics and palaeoecological changes. Recent advances in DNA technologies, such as next-generation sequencing make it possible to recover DNA information from archaeological and paleontological remains allowing us to go back in time and study the genetic relationships between extinct organisms and their contemporary relatives. With the next-generation sequencing methodologies, DNA sequences can be retrieved even from samples (for example human remains) for which the technical pitfalls of classical methodologies required stringent criteria to guaranty the reliability of the results. In this paper, we review the methodologies applied to ancient DNA analysis and the perspectives that next-generation sequencing applications provide in this field. PMID:22697611
Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng
2013-01-01
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions. PMID:24312295
The LAM-PCR Method to Sequence LV Integration Sites.
Wang, Wei; Bartholomae, Cynthia C; Gabriel, Richard; Deichmann, Annette; Schmidt, Manfred
2016-01-01
Integrating viral gene transfer vectors are commonly used gene delivery tools in clinical gene therapy trials providing stable integration and continuous gene expression of the transgene in the treated host cell. However, integration of the reverse-transcribed vector DNA into the host genome is a potentially mutagenic event that may directly contribute to unwanted side effects. A comprehensive and accurate analysis of the integration site (IS) repertoire is indispensable to study clonality in transduced cells obtained from patients undergoing gene therapy and to identify potential in vivo selection of affected cell clones. To date, next-generation sequencing (NGS) of vector-genome junctions allows sophisticated studies on the integration repertoire in vitro and in vivo. We have explored the use of the Illumina MiSeq Personal Sequencer platform to sequence vector ISs amplified by non-restrictive linear amplification-mediated PCR (nrLAM-PCR) and LAM-PCR. MiSeq-based high-quality IS sequence retrieval is accomplished by the introduction of a double-barcode strategy that substantially minimizes the frequency of IS sequence collisions compared to the conventionally used single-barcode protocol. Here, we present an updated protocol of (nr)LAM-PCR for the analysis of lentiviral IS using a double-barcode system and followed by deep sequencing using the MiSeq device.
Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng
2013-01-01
Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.
Valtcheva, Nadejda; Lang, Franziska M; Noske, Aurelia; Samartzis, Eleftherios P; Schmidt, Anna-Maria; Bellini, Elisa; Fink, Daniel; Moch, Holger; Rechsteiner, Markus; Dedes, Konstantin J; Wild, Peter J
2017-01-19
Endometrioid adenocarcinoma of the uterus and ovarian endometrioid carcinoma share many morphological and molecular features. Differentiation between simultaneous primary carcinomas and ovarian metastases of an endometrial cancer may be very challenging but is essential for prognostic and therapeutic considerations. In the present case study of a 33 year-old patient we used targeted amplicon next-generation re-sequencing for clarifying the origin of synchronous endometrioid cancer of the corpus uteri and the left ovary. The patient developed a metachronous lung metastasis of an endometrioid adenocarcinoma four years after hyster- and adnexectomy, vaginal brachytherapy and treatment with the synthetic steroid tibolone. Removal of the metastasis and megestrol treatment for seven years led to a complete remission. A total of 409 genes from the Ampliseq Comprehensive Cancer Panel (Ion Torrent, Thermo Fisher) were analysed by next generation sequencing and mutations in 10 genes, including ARID1A, CTNNB1, PIK3CA and PTEN were identified and confirmed by Sanger sequencing. Primary endometrial as well as ovarian cancer showed an identical mutational profile, suggesting the presence of an ovarian metastasis of the endometrial cancer, rather than a simultaneous endometrial and ovarian cancer. The metachronous lung metastasis showed a different mutational profile compared to the primary cancer. Immunohistochemical staining of the corresponding proteins suggested that the tumour development was driven by alterations in the protein function rather than by changes of the protein abundance in the cell. Our results have demonstrated next generation sequencing as a valuable tool in the differentiation of synchronous primary tumours and metastases, which has an important impact on the clinical decision making process. Similar to breast cancer, targeted therapies based on mutational tumour profiling will become increasingly important in endometrial and ovarian cancer. In summary, our results support the usage of next generation sequencing as a supplementary diagnostic tool, assisting in personalized precision medicine.
Genome assembly reborn: recent computational challenges
2009-01-01
Research into genome assembly algorithms has experienced a resurgence due to new challenges created by the development of next generation sequencing technologies. Several genome assemblers have been published in recent years specifically targeted at the new sequence data; however, the ever-changing technological landscape leads to the need for continued research. In addition, the low cost of next generation sequencing data has led to an increased use of sequencing in new settings. For example, the new field of metagenomics relies on large-scale sequencing of entire microbial communities instead of isolate genomes, leading to new computational challenges. In this article, we outline the major algorithmic approaches for genome assembly and describe recent developments in this domain. PMID:19482960
Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classification
Kamps, Rick; Brandão, Rita D.; van den Bosch, Bianca J.; Paulussen, Aimee D. C.; Xanthoulea, Sofia; Blok, Marinus J.; Romano, Andrea
2017-01-01
Next-generation sequencing (NGS) technology has expanded in the last decades with significant improvements in the reliability, sequencing chemistry, pipeline analyses, data interpretation and costs. Such advances make the use of NGS feasible in clinical practice today. This review describes the recent technological developments in NGS applied to the field of oncology. A number of clinical applications are reviewed, i.e., mutation detection in inherited cancer syndromes based on DNA-sequencing, detection of spliceogenic variants based on RNA-sequencing, DNA-sequencing to identify risk modifiers and application for pre-implantation genetic diagnosis, cancer somatic mutation analysis, pharmacogenetics and liquid biopsy. Conclusive remarks, clinical limitations, implications and ethical considerations that relate to the different applications are provided. PMID:28146134
Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz
2018-01-01
High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).
Bałut, Magdalena; Buckley, Patrick G.; Ochocka, J. Renata; Bartoszewski, Rafał; Crossman, David K.; Messiaen, Ludwine M.; Piotrowski, Arkadiusz
2018-01-01
High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp). PMID:29432475
IgSimulator: a versatile immunosequencing simulator.
Safonova, Yana; Lapidus, Alla; Lill, Jennie
2015-10-01
The recent introduction of next-generation sequencing technologies to antibody studies have resulted in a growing number of immunoinformatics tools for antibody repertoire analysis. However, benchmarking these newly emerging tools remains problematic since the gold standard datasets that are needed to validate these tools are typically not available. Since simulating antibody repertoires is often the only feasible way to benchmark new immunoinformatics tools, we developed the IgSimulator tool that addresses various complications in generating realistic antibody repertoires. IgSimulator's code has modular structure and can be easily adapted to new requirements to simulation. IgSimulator is open source and freely available as a C++ and Python program running on all Unix-compatible platforms. The source code is available from yana-safonova.github.io/ig_simulator. safonova.yana@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
AutoAssemblyD: a graphical user interface system for several genome assemblers.
Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá
2013-01-01
Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.
“Shovel-ready” Sequences as a Stimulus for the Next Generation of Life Scientists
Boyle, Michael D.
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists. PMID:23653696
"Shovel-ready" Sequences as a Stimulus for the Next Generation of Life Scientists.
Boyle, Michael D
2010-01-01
Genomics and bioinformatics are dynamic fields well-suited for capturing the imagination of undergraduates in both research laboratories and classrooms. Currently, raw nucleotide sequence is being provided, as part of several genomics research initiatives, for undergraduate research and teaching. These initiatives could be easily extended and much more effective if the source of the sequenced material and the subsequent focus of the data analysis were aligned with the research interests of individual faculty at undergraduate institutions. By judicious use of surplus capacity in existing nucleotide sequencing cores, raw sequence data could be generated to support ongoing research efforts involving undergraduates. This would allow these students to participate actively in discovery research, with a goal of making novel contributions to their field through original research while nurturing the next generation of talented research scientists.
Li, Runsheng; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Ren, Xiaoliang; Zhao, Zhongying
2015-01-01
Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24×reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads. PMID:26039588
Goya, Stephanie; Valinotto, Laura E; Tittarelli, Estefania; Rojo, Gabriel L; Nabaes Jodar, Mercedes S; Greninger, Alexander L; Zaiat, Jonathan J; Marti, Marcelo A; Mistchenko, Alicia S; Viegas, Mariana
2018-01-01
Over the last decade, the number of viral genome sequences deposited in available databases has grown exponentially. However, sequencing methodology vary widely and many published works have relied on viral enrichment by viral culture or nucleic acid amplification with specific primers rather than through unbiased techniques such as metagenomics. The genome of RNA viruses is highly variable and these enrichment methodologies may be difficult to achieve or may bias the results. In order to obtain genomic sequences of human respiratory syncytial virus (HRSV) from positive nasopharyngeal aspirates diverse methodologies were evaluated and compared. A total of 29 nearly complete and complete viral genomes were obtained. The best performance was achieved with a DNase I treatment to the RNA directly extracted from the nasopharyngeal aspirate (NPA), sequence-independent single-primer amplification (SISPA) and library preparation performed with Nextera XT DNA Library Prep Kit with manual normalization. An average of 633,789 and 1,674,845 filtered reads per library were obtained with MiSeq and NextSeq 500 platforms, respectively. The higher output of NextSeq 500 was accompanied by the increasing of duplicated reads percentage generated during SISPA (from an average of 1.5% duplicated viral reads in MiSeq to an average of 74% in NextSeq 500). HRSV genome recovery was not affected by the presence or absence of duplicated reads but the computational demand during the analysis was increased. Considering that only samples with viral load ≥ E+06 copies/ml NPA were tested, no correlation between sample viral loads and number of total filtered reads was observed, nor with the mapped viral reads. The HRSV genomes showed a mean coverage of 98.46% with the best methodology. In addition, genomes of human metapneumovirus (HMPV), human rhinovirus (HRV) and human parainfluenza virus types 1-3 (HPIV1-3) were also obtained with the selected optimal methodology.
Lam, Stephen Sze-Yuen; He, Alex Bai-Liang; Leung, Anskar Yu-Hung
2017-11-01
Information arising from next generation sequencing of leukemia genome has shed important light on the heterogeneous and combinatorial driver events in acute myeloid leukemia (AML). It has also provided insight into its intricate signaling pathways operative in the disease pathogenesis. These have also become biomarkers and targets for therapeutic intervention. Emerging evidence from in vitro drug screening has demonstrated its potential value in predicting clinical drug responses in specific AML subtypes. However, the best culture conditions and readouts have yet to be standardized and the drugs included in these screening exercises frequently revised in view of the rapid emergence of new therapeutic agents in the oncology field. Testing of leukemia cell functions, including BCL2 profiling, has also been used to predict treatment response to conventional chemotherapy and hypomethylating agents as well as BCL2 antagonist in small patient cohorts. These platforms should be integrated into future clinical trials to develop personalized treatment of AML. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jinjin; Yu, Xiaomu; Zhao, Kai; Zhang, Yaoguang; Tong, Jingou; Peng, Zuogang
2012-01-01
Megalobrama pellegrini is an endemic fish species found in the upper Yangtze River basin in China. This species has become endangered due to the construction of the Three Gorges Dam and overfishing. However, the available genetic data for this species is limited. Here, we developed 26 polymorphic microsatellite markers from the M. pellegrini genome using next-generation sequencing techniques. A total of 257,497 raw reads were obtained from a quarter-plate run on 454 GS-FLX titanium platforms and 49,811 unique sequences were generated with an average length of 404 bp; 24,522 (49.2%) sequences contained microsatellite repeats. Of the 53 loci screened, 33 were amplified successfully and 26 were polymorphic. The genetic diversity in M. pellegrini was moderate, with an average of 3.08 alleles per locus, and the mean observed and expected heterozygosity were 0.47 and 0.51, respectively. In addition, we tested cross-species amplification for all 33 loci in four additional breams: M. amblycephala, M. skolkovii, M. terminalis, and Sinibrama wui. The cross-species amplification showed a significant high level of transferability (79%–97%), which might be due to their dramatically close genetic relationships. The polymorphic microsatellites developed in the current study will not only contribute to further conservation genetic studies and parentage analyses of this endangered species, but also facilitate future work on the other closely related species. PMID:22489139
Next-generation digital information storage in DNA.
Church, George M; Gao, Yuan; Kosuri, Sriram
2012-09-28
Digital information is accumulating at an astounding rate, straining our ability to store and archive it. DNA is among the most dense and stable information media known. The development of new technologies in both DNA synthesis and sequencing make DNA an increasingly feasible digital storage medium. We developed a strategy to encode arbitrary digital information in DNA, wrote a 5.27-megabit book using DNA microchips, and read the book by using next-generation DNA sequencing.
2016-06-13
syndrome ; JCV 5 JC polyomavirus; NGS 5 next- generation sequencing; PML 5 progressive multifocal leukoencephalopathy. Ascertainment of the etiology of...Hunt-like syndrome and focal pachymeningitis. A 69-year-old man developed left-sided ptosis and Figure 1 Heatmap shows the top microbial species in each...The symptoms were followed by decreased vision, diplopia, ophthalmoplegia, and facial numbness. He was diagnosed with Tolosa-Hunt syndrome and treated
Brancaccio, Rosario N; Robitaille, Alexis; Dutta, Sankhadeep; Cuenin, Cyrille; Santare, Daiga; Skenders, Girts; Leja, Marcis; Fischer, Nicole; Giuliano, Anna R; Rollison, Dana E; Grundhoff, Adam; Tommasino, Massimo; Gheit, Tarik
2018-05-07
With the advent of new molecular tools, the discovery of new papillomaviruses (PVs) has accelerated during the past decade, enabling the expansion of knowledge about the viral populations that inhabit the human body. Human PVs (HPVs) are etiologically linked to benign or malignant lesions of the skin and mucosa. The detection of HPV types can vary widely, depending mainly on the methodology and the quality of the biological sample. Next-generation sequencing is one of the most powerful tools, enabling the discovery of novel viruses in a wide range of biological material. Here, we report a novel protocol for the detection of known and unknown HPV types in human skin and oral gargle samples using improved PCR protocols combined with next-generation sequencing. We identified 105 putative new PV types in addition to 296 known types, thus providing important information about the viral distribution in the oral cavity and skin. Copyright © 2018. Published by Elsevier Inc.
Chinaranagari, Swathi; Sharma, Pankaj; Bowen, Nathan J.; Chaudhary, Jaideep
2018-01-01
Prostate cancer is a major health burden within the ever-increasingly aging US population. The molecular mechanisms involved in prostate cancer are diverse and heterogeneous. In this context, epigenetic changes, both global and gene specific, are now an emerging alternate mechanism in disease initiation and progression. The three major risk factors in prostate cancer: age, geographic ancestry, and environment are all influenced by epigenetics and additional significant insight is required to gain an understanding of the underlying mechanisms. The androgen receptor and its downstream effector pathways, central to prostate cancer initiation and progression, are subject to a multitude of epigenetic alterations. In this review we focus on the global perspective of epigenetics and the use of recent next-generation sequencing platforms to interrogate epigenetic changes in the prostate cancer genome. PMID:25421658
Chinaranagari, Swathi; Sharma, Pankaj; Bowen, Nathan J; Chaudhary, Jaideep
2015-01-01
Prostate cancer is a major health burden within the ever-increasingly aging US population. The molecular mechanisms involved in prostate cancer are diverse and heterogeneous. In this context, epigenetic changes, both global and gene specific, are now an emerging alternate mechanism in disease initiation and progression. The three major risk factors in prostate cancer: age, geographic ancestry, and environment are all influenced by epigenetics and additional significant insight is required to gain an understanding of the underlying mechanisms. The androgen receptor and its downstream effector pathways, central to prostate cancer initiation and progression, are subject to a multitude of epigenetic alterations. In this review we focus on the global perspective of epigenetics and the use of recent next-generation sequencing platforms to interrogate epigenetic changes in the prostate cancer genome.
The present and future of de novo whole-genome assembly.
Sohn, Jang-Il; Nam, Jin-Wu
2018-01-01
As the advent of next-generation sequencing (NGS) technology, various de novo assembly algorithms based on the de Bruijn graph have been developed to construct chromosome-level sequences. However, numerous technical or computational challenges in de novo assembly still remain, although many bright ideas and heuristics have been suggested to tackle the challenges in both experimental and computational settings. In this review, we categorize de novo assemblers on the basis of the type of de Bruijn graphs (Hamiltonian and Eulerian) and discuss the challenges of de novo assembly for short NGS reads regarding computational complexity and assembly ambiguity. Then, we discuss how the limitations of the short reads can be overcome by using a single-molecule sequencing platform that generates long reads of up to several kilobases. In fact, the long read assembly has caused a paradigm shift in whole-genome assembly in terms of algorithms and supporting steps. We also summarize (i) hybrid assemblies using both short and long reads and (ii) overlap-based assemblies for long reads and discuss their challenges and future prospects. This review provides guidelines to determine the optimal approach for a given input data type, computational budget or genome. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Insertion sequence transposition determines imipenem resistance in Acinetobacter baumannii.
Kuo, Han-Yueh; Chang, Kai-Chih; Liu, Chih-Chin; Tang, Chuan Yi; Peng, Jhih-Hua; Lu, Chia-Wei; Tu, Chi-Chao; Liou, Ming-Li
2014-10-01
This study employed genomewide analysis to investigate potential resistance mechanisms in Acinetobacter baumannii following imipenem exposure. Imipenem-selected mutants were generated from the imipenem-susceptible strain ATCC 17978 by multistep selection resistance. Antibiotic susceptibilities were examined, and the selected mutants originated from the ATCC 17978 strain were confirmed by pulsed-field gel electrophoresis. The genomic sequence of a resistant mutant was analyzed using a next-generation sequencing platform, and genetic recombination was further confirmed by PCR. The result showed that phenotypic resistance was observed with carbapenem upon exposure to various concentrations of imipenem. Genomewide analysis showed that ISAba1 transposition was initiated by imipenem exposure at concentrations up to 0.5 mg/L. Transposition of ISAba1 upstream of blaOXA-95 was detected in all the selected mutants. The expression of blaOXA-95 was further analyzed by quantitative PCR, and the results demonstrated that a 200-fold increase in gene expression was required for resistance to imipenem. This study concluded that imipenem exposure at a concentration of 0.5 mg/L mediated the transposition of ISAba1 upstream of the blaOXA-95 gene and resulted in the overexpression of blaOXA-95 gene, which may play a major role in the resistance to imipenem in A. baumannii.
Metagenome assembly through clustering of next-generation sequencing data using protein sequences.
Sim, Mikang; Kim, Jaebum
2015-02-01
The study of environmental microbial communities, called metagenomics, has gained a lot of attention because of the recent advances in next-generation sequencing (NGS) technologies. Microbes play a critical role in changing their environments, and the mode of their effect can be solved by investigating metagenomes. However, the difficulty of metagenomes, such as the combination of multiple microbes and different species abundance, makes metagenome assembly tasks more challenging. In this paper, we developed a new metagenome assembly method by utilizing protein sequences, in addition to the NGS read sequences. Our method (i) builds read clusters by using mapping information against available protein sequences, and (ii) creates contig sequences by finding consensus sequences through probabilistic choices from the read clusters. By using simulated NGS read sequences from real microbial genome sequences, we evaluated our method in comparison with four existing assembly programs. We found that our method could generate relatively long and accurate metagenome assemblies, indicating that the idea of using protein sequences, as a guide for the assembly, is promising. Copyright © 2015 Elsevier B.V. All rights reserved.
A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis
Down, Thomas A.; Rakyan, Vardhman K.; Turner, Daniel J.; Flicek, Paul; Li, Heng; Kulesha, Eugene; Gräf, Stefan; Johnson, Nathan; Herrero, Javier; Tomazou, Eleni M.; Thorne, Natalie P.; Bäckdahl, Liselotte; Herberth, Marlis; Howe, Kevin L.; Jackson, David K.; Miretti, Marcos M.; Marioni, John C.; Birney, Ewan; Hubbard, Tim J. P.; Durbin, Richard; Tavaré, Simon; Beck, Stephan
2009-01-01
DNA methylation is an indispensible epigenetic modification of mammalian genomes. Consequently there is great interest in strategies for genome-wide/whole-genome DNA methylation analysis, and immunoprecipitation-based methods have proven to be a powerful option. Such methods are rapidly shifting the bottleneck from data generation to data analysis, necessitating the development of better analytical tools. Until now, a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling has been the inability to estimate absolute methylation levels. Here we report the development of a novel cross-platform algorithm – Bayesian Tool for Methylation Analysis (Batman) – for analyzing Methylated DNA Immunoprecipitation (MeDIP) profiles generated using arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). The latter is an approach we have developed to elucidate the first high-resolution whole-genome DNA methylation profile (DNA methylome) of any mammalian genome. MeDIP-seq/MeDIP-chip combined with Batman represent robust, quantitative, and cost-effective functional genomic strategies for elucidating the function of DNA methylation. PMID:18612301
Baum, Jordan E; Zhang, Pan; Hoda, Rana S; Geraghty, Brian; Rennert, Hanna; Narula, Navneet; Fernandes, Helen D
2017-06-01
Minimally invasive diagnostic procedures such as needle-core biopsy and fine-needle aspiration provide adequate material for molecular analyses. Advances in precision oncology are trending toward the interrogation of limited amounts of genomic material to guide clinical and therapeutic decisions. The aim of this study was to investigate the minimum cellularity needed on cytologic smears for the identification of clinically relevant variants with next-generation sequencing (NGS). Thirty cases of cytologically diagnosed, resection-proven primary lung adenocarcinoma were identified. Nineteen of the 30 cases were known to harbor actionable variants. One Diff-Quik (DQ)-stained slide and 1 Papanicolaou (Pap)-stained slide were selected from each case. Cases were categorized as containing fewer than 100 tumor cells, 100 to 500 tumor cells, or more than 500 tumor cells. NGS was performed on the Ion Torrent platform. NGS was successfully performed on all cell blocks and on 90% of the smears. Paired DQ and Pap smears showed similar cellularity, and cases that differed in cellularity were within 1 category of each other. The cases with more than 100 tumor cells had a 93% success rate; this was significantly different from the situation for cases with fewer than 100 tumor cells, which were successfully sequenced only 67% of the time. Overall, NGS was able to provide clinically relevant information for 83% of DQ smears and for 90% of Pap smears tested. The data show a significantly higher likelihood of successful NGS with cytologic smears with more than 100 tumor cells. There was a trend for a higher NGS success rate with Pap smears versus DQ smears. Cancer Cytopathol 2017;125:398-406. © 2017 American Cancer Society. © 2017 American Cancer Society.
Frawley, Thomas; O'Brien, Cathal P; Conneally, Eibhlin; Vandenberghe, Elisabeth; Percy, Melanie; Langabeer, Stephen E; Haslam, Karl
2018-02-01
The classical Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), consisting of polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are a heterogeneous group of neoplasms that harbor driver mutations in the JAK2, CALR, and MPL genes. The detection of mutations in these genes has been incorporated into the recent World Health Organization (WHO) diagnostic criteria for MPN. Given a pressing clinical need to screen for mutations in these genes in a routine diagnostic setting, a targeted next-generation sequencing (NGS) assay for the detection of MPN-associated mutations located in JAK2 exon 14, JAK2 exon 12, CALR exon 9, and MPL exon 10 was developed to provide a single platform alternative to reflexive, stepwise diagnostic algorithms. Polymerase chain reaction (PCR) primers were designed to target mutation hotspots in JAK2 exon 14, JAK2 exon 12, MPL exon 10, and CALR exon 9. Multiplexed PCR conditions were optimized by using qualitative PCR followed by NGS. Diagnostic genomic DNA from 35 MPN patients, known to harbor driver mutations in one of the target genes, was used to validate the assay. One hundred percent concordance was observed between the previously-identified mutations and those detected by NGS, with no false positives, nor any known mutations missed (specificity = 100%, CI = 0.96, sensitivity = 100%, CI = 0.89). Improved resolution of mutation sequences was also revealed by NGS analysis. Detection of diagnostically relevant driver mutations of MPN is enhanced by employing a targeted multiplex NGS approach. This assay presents a robust solution to classical MPN mutation screening, providing an alternative to time-consuming sequential analyses.
Lim, Sun Min; Cho, Sang Hee; Hwang, In Gyu; Choi, Jae Woo; Chang, Hyun; Ahn, Myung-Ju; Park, Keon Uk; Kim, Ji-Won; Ko, Yoon Ho; Ahn, Hee Kyung; Cho, Byoung Chul; Nam, Byung-Ho; Chun, Sang Hoon; Hong, Ji Hyung; Kwon, Jung Hye; Choi, Jong Gwon; Kang, Eun Joo; Yun, Tak; Lee, Keun-Wook; Kim, Joo-Hang; Kim, Jin Soo; Lee, Hyun Woo; Kim, Min Kyoung; Jung, Dongmin; Kim, Ji Eun; Keam, Bhumsuk; Yun, Hwan Jung; Kim, Sangwoo; Kim, Hye Ryun
2018-05-09
Head and neck squamous cell carcinoma (HNSCC) is a deadly disease in which precision medicine needs to be incorporated. We aimed to implement next-generation sequencing (NGS) in determining actionable targets to guide appropriate molecular targeted therapy in HNSCC patients. Ninety-three tumors and matched blood samples underwent targeted sequencing of 244 genes using the Illumina HiSeq 2500 platform with an average depth of coverage of greater than 1,000×. Clinicopathological data from patients were obtained from 17 centers in Korea, and were analyzed in correlation with NGS data. Ninety-two of the 93 tumors were amenable to data analysis. TP53 was the most common mutation, occurring in 47 (51%) patients, followed by CDKN2A (n=23, 25%), CCND1 (n=22, 24%) and PIK3CA (n=19, 21%). The total mutational burden was similar between human papillomavirus (HPV)-negative vs. positive tumors, although TP53, CDKN2A and CCND1 gene alterations occurred more frequently in HPV-negative tumors. HPV-positive tumors were significantly associated with immune signature-related genes compared to HPV-negative tumors. Mutations of NOTCH1 (p=0.027), CDKN2A (p<0.001) and TP53 (p=0.038) were significantly associated with poorer overall survival. FAT1 mutations were highly enriched in cisplatin responders, and potentially targetable alterations such as PIK3CA E545K and CDKN2A R58X were noted in 14 (15%) patients. We found several targetable genetic alterations, and our findings suggest that implementation of precision medicine in HNSCC is feasible. The predictive value of each targetable alteration should be assessed in a future umbrella trial using matched molecular targeted agents.
Next generation sequencing as a useful tool in the diagnostics of mosaicism in Alport syndrome.
Beicht, Sonja; Strobl-Wildemann, Gertrud; Rath, Sabine; Wachter, Oliver; Alberer, Martin; Kaminsky, Elke; Weber, Lutz T; Hinrichsen, Tanja; Klein, Hanns-Georg; Hoefele, Julia
2013-09-10
Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection. We report the case of a boy and his mother who presented with Alport syndrome. Mutational analysis showed the novel hemizygote pathogenic mutation c.2396-1G>A (IVS29-1G>A) at the splice acceptor site of the intron 29 exon 30 boundary of the COL4A5 gene in the boy. The mutation in the mother would not have been detected by Sanger sequencing without the knowledge of the mutational analysis result of her son. Further investigation of the mother using next generation sequencing showed somatic mosaicism and implied potential germ cell mosaicism. The mutation in the mother has most likely occurred during early embryogenesis. Analysis of tissue of different embryonic origin in the mother confirmed mosaicism in both mesoderm and ectoderm. Low grade mosaicism is very difficult to detect by Sanger sequencing. Next generation sequencing is increasingly used in the diagnostics and might improve the detection of mosaicism. In the case of definite clinical symptoms of ATS and missing detection of a mutation by Sanger sequencing, mutational analysis should be performed by next generation sequencing. Copyright © 2013 Elsevier B.V. All rights reserved.
Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A
2016-03-01
The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
Targeted Re-Sequencing Emulsion PCR Panel for Myopathies: Results in 94 Cases.
Punetha, Jaya; Kesari, Akanchha; Uapinyoying, Prech; Giri, Mamta; Clarke, Nigel F; Waddell, Leigh B; North, Kathryn N; Ghaoui, Roula; O'Grady, Gina L; Oates, Emily C; Sandaradura, Sarah A; Bönnemann, Carsten G; Donkervoort, Sandra; Plotz, Paul H; Smith, Edward C; Tesi-Rocha, Carolina; Bertorini, Tulio E; Tarnopolsky, Mark A; Reitter, Bernd; Hausmanowa-Petrusewicz, Irena; Hoffman, Eric P
2016-05-27
Molecular diagnostics in the genetic myopathies often requires testing of the largest and most complex transcript units in the human genome (DMD, TTN, NEB). Iteratively targeting single genes for sequencing has traditionally entailed high costs and long turnaround times. Exome sequencing has begun to supplant single targeted genes, but there are concerns regarding coverage and needed depth of the very large and complex genes that frequently cause myopathies. To evaluate efficiency of next-generation sequencing technologies to provide molecular diagnostics for patients with previously undiagnosed myopathies. We tested a targeted re-sequencing approach, using a 45 gene emulsion PCR myopathy panel, with subsequent sequencing on the Illumina platform in 94 undiagnosed patients. We compared the targeted re-sequencing approach to exome sequencing for 10 of these patients studied. We detected likely pathogenic mutations in 33 out of 94 patients with a molecular diagnostic rate of approximately 35%. The remaining patients showed variants of unknown significance (35/94 patients) or no mutations detected in the 45 genes tested (26/94 patients). Mutation detection rates for targeted re-sequencing vs. whole exome were similar in both methods; however exome sequencing showed better distribution of reads and fewer exon dropouts. Given that costs of highly parallel re-sequencing and whole exome sequencing are similar, and that exome sequencing now takes considerably less laboratory processing time than targeted re-sequencing, we recommend exome sequencing as the standard approach for molecular diagnostics of myopathies.
Next generation sequencing (NGS): a golden tool in forensic toolkit.
Aly, S M; Sabri, D M
The DNA analysis is a cornerstone in contemporary forensic sciences. DNA sequencing technologies are powerful tools that enrich molecular sciences in the past based on Sanger sequencing and continue to glowing these sciences based on Next generation sequencing (NGS). Next generation sequencing has excellent potential to flourish and increase the molecular applications in forensic sciences by jumping over the pitfalls of the conventional method of sequencing. The main advantages of NGS compared to conventional method that it utilizes simultaneously a large number of genetic markers with high-resolution of genetic data. These advantages will help in solving several challenges such as mixture analysis and dealing with minute degraded samples. Based on these new technologies, many markers could be examined to get important biological data such as age, geographical origins, tissue type determination, external visible traits and monozygotic twins identification. It also could get data related to microbes, insects, plants and soil which are of great medico-legal importance. Despite the dozens of forensic research involving NGS, there are requirements before using this technology routinely in forensic cases. Thus, there is a great need to more studies that address robustness of these techniques. Therefore, this work highlights the applications of forensic sciences in the era of massively parallel sequencing.
Li, De-Zhu; Guo, Zhen-Hua
2012-01-01
Background Transcriptome sequencing can be used to determine gene sequences and transcript abundance in non-model species, and the advent of next-generation sequencing (NGS) technologies has greatly decreased the cost and time required for this process. Transcriptome data are especially desirable in bamboo species, as certain members constitute an economically and culturally important group of mostly semelparous plants with remarkable flowering features, yet little bamboo genomic research has been performed. Here we present, for the first time, extensive sequence and transcript abundance data for the floral transcriptome of a key bamboo species, Dendrocalamus latiflorus, obtained using the Illumina GAII sequencing platform. Our further goal was to identify patterns of gene expression during bamboo flower development. Results Approximately 96 million sequencing reads were generated and assembled de novo, yielding 146,395 high quality unigenes with an average length of 461 bp. Of these, 80,418 were identified as putative homologs of annotated sequences in the public protein databases, of which 290 were associated with the floral transition and 47 were related to flower development. Digital abundance analysis identified 26,529 transcripts differentially enriched between two developmental stages, young flower buds and older developing flowers. Unigenes found at each stage were categorized according to their putative functional categories. These sequence and putative function data comprise a resource for future investigation of the floral transition and flower development in bamboo species. Conclusions Our results present the first broad survey of a bamboo floral transcriptome. Although it will be necessary to validate the functions carried out by these genes, these results represent a starting point for future functional research on D. latiflorus and related species. PMID:22916120
Nong, Rachel Yuan; Wu, Di; Yan, Junhong; Hammond, Maria; Gu, Gucci Jijuan; Kamali-Moghaddam, Masood; Landegren, Ulf; Darmanis, Spyros
2013-06-01
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ~5 h. The multiplex version of the assay takes 7-8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.
2014-01-01
Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036
Analyzing large scale genomic data on the cloud with Sparkhit
Huang, Liren; Krüger, Jan
2018-01-01
Abstract Motivation The increasing amount of next-generation sequencing data poses a fundamental challenge on large scale genomic analytics. Existing tools use different distributed computational platforms to scale-out bioinformatics workloads. However, the scalability of these tools is not efficient. Moreover, they have heavy run time overheads when pre-processing large amounts of data. To address these limitations, we have developed Sparkhit: a distributed bioinformatics framework built on top of the Apache Spark platform. Results Sparkhit integrates a variety of analytical methods. It is implemented in the Spark extended MapReduce model. It runs 92–157 times faster than MetaSpark on metagenomic fragment recruitment and 18–32 times faster than Crossbow on data pre-processing. We analyzed 100 terabytes of data across four genomic projects in the cloud in 21 h, which includes the run times of cluster deployment and data downloading. Furthermore, our application on the entire Human Microbiome Project shotgun sequencing data was completed in 2 h, presenting an approach to easily associate large amounts of public datasets with reference data. Availability and implementation Sparkhit is freely available at: https://rhinempi.github.io/sparkhit/. Contact asczyrba@cebitec.uni-bielefeld.de Supplementary information Supplementary data are available at Bioinformatics online. PMID:29253074
Novel Insights into the Transcriptome of Dirofilaria immitis
Zhang, Zhihe; Hou, Rong; Wu, Xuhang; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Yang, Zhi; Wang, Chengdong; Luo, Li; Liu, Li; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou
2012-01-01
Background The heartworm Dirofilaria immitis is the causal agent of cardiopulmonary dirofilariosis in dogs and cats, and also infects a wide range of wild mammals as well as humans. One bottleneck for the design of fundamentally new intervention and management strategies against D. immitis may be the currently limited knowledge of fundamental molecular aspects of D. immitis. Methodology/Principal Findings A next-generation sequencing platform combining computational approaches was employed to assess a global view of the heartworm transcriptome. A total of 20,810 unigenes (mean length = 1,270 bp) were assembled from 22.3 million clean reads. From these, 15,698 coding sequences (CDS) were inferred, and about 85% of the unigenes had orthologs/homologs in public databases. Comparative transcriptomic study uncovered 4,157 filarial-specific genes as well as 3,795 genes potentially involved in filarial-Wolbachia symbiosis. In addition, the potential intestine transcriptome of D. immitis (1,101 genes) was mined for the first time, which might help to discover ‘hidden antigens’. Conclusions/Significance This study provides novel insights into the transcriptome of D. immitis and sheds light on its molecular processes and survival mechanisms. Furthermore, it provides a platform to discover new vaccine candidates and potential targets for new drugs against dirofilariosis. PMID:22911833
ALEA: a toolbox for allele-specific epigenomics analysis.
Younesy, Hamid; Möller, Torsten; Heravi-Moussavi, Alireza; Cheng, Jeffrey B; Costello, Joseph F; Lorincz, Matthew C; Karimi, Mohammad M; Jones, Steven J M
2014-04-15
The assessment of expression and epigenomic status using sequencing based methods provides an unprecedented opportunity to identify and correlate allelic differences with epigenomic status. We present ALEA, a computational toolbox for allele-specific epigenomics analysis, which incorporates allelic variation data within existing resources, allowing for the identification of significant associations between epigenetic modifications and specific allelic variants in human and mouse cells. ALEA provides a customizable pipeline of command line tools for allele-specific analysis of next-generation sequencing data (ChIP-seq, RNA-seq, etc.) that takes the raw sequencing data and produces separate allelic tracks ready to be viewed on genome browsers. The pipeline has been validated using human and hybrid mouse ChIP-seq and RNA-seq data. The package, test data and usage instructions are available online at http://www.bcgsc.ca/platform/bioinfo/software/alea CONTACT: : mkarimi1@interchange.ubc.ca or sjones@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Allegra, Carmen J.
2015-01-01
During the past decade, biomedical technologies have undergone an explosive evolution---from the publication of the first complete human genome in 2003, after more than a decade of effort and at a cost of hundreds of millions of dollars---to the present time, where a complete genomic sequence can be available in less than a day and at a small fraction of the cost of the original sequence. The widespread availability of next generation genomic sequencing has opened the door to the development of precision oncology. The need to test multiple new targeted agents both alone and in combination with other targeted therapies, as well as classic cytotoxic agents, demand the development of novel therapeutic platforms (particularly Master Protocols) capable of efficiently and effectively testing multiple targeted agents or targeted therapeutic strategies in relatively small patient subpopulations. Here, we describe the Master Protocol concept, with a focus on the expected gains and complexities of the use of this design. An overview of Master Protocols currently active or in development is provided along with a more extensive discussion of the Lung Master Protocol (Lung-MAP study). PMID:26433553
The ChIP-exo Method: Identifying Protein-DNA Interactions with Near Base Pair Precision.
Perreault, Andrea A; Venters, Bryan J
2016-12-23
Chromatin immunoprecipitation (ChIP) is an indispensable tool in the fields of epigenetics and gene regulation that isolates specific protein-DNA interactions. ChIP coupled to high throughput sequencing (ChIP-seq) is commonly used to determine the genomic location of proteins that interact with chromatin. However, ChIP-seq is hampered by relatively low mapping resolution of several hundred base pairs and high background signal. The ChIP-exo method is a refined version of ChIP-seq that substantially improves upon both resolution and noise. The key distinction of the ChIP-exo methodology is the incorporation of lambda exonuclease digestion in the library preparation workflow to effectively footprint the left and right 5' DNA borders of the protein-DNA crosslink site. The ChIP-exo libraries are then subjected to high throughput sequencing. The resulting data can be leveraged to provide unique and ultra-high resolution insights into the functional organization of the genome. Here, we describe the ChIP-exo method that we have optimized and streamlined for mammalian systems and next-generation sequencing-by-synthesis platform.
García-Chequer, A.J.; Méndez-Tenorio, A.; Olguín-Ruiz, G.; Sánchez-Vallejo, C.; Isa, P.; Arias, C.F.; Torres, J.; Hernández-Angeles, A.; Ramírez-Ortiz, M.A.; Lara, C.; Cabrera-Muñoz, M.L.; Sadowinski-Pine, S.; Bravo-Ortiz, J.C.; Ramón-García, G.; Diegopérez-Ramírez, J.; Ramírez-Reyes, G.; Casarrubias-Islas, R.; Ramírez, J.; Orjuela, M.A.; Ponce-Castañeda, M.V.
2016-01-01
Genes are frequently lost or gained in malignant tumors and the analysis of these changes can be informative about the underlying tumor biology. Retinoblastoma is a pediatric intraocular malignancy, and since deletions in chromosome 13 have been described in this tumor, we performed genome wide sequencing with the Illumina platform to test whether recurrent losses could be detected in low coverage data from DNA pools of Rb cases. An in silico reference profile for each pool was created from the human genome sequence GRCh37p5; a chromosome integrity score and a graphics 40 Kb window analysis approach, allowed us to identify with high resolution previously reported non random recurrent losses in all chromosomes of these tumors. We also found a pattern of gains and losses associated to clear and dark cytogenetic bands respectively. We further analyze a pool of medulloblastoma and found a more stable genomic profile and previously reported losses in this tumor. This approach facilitates identification of recurrent deletions from many patients that may be biological relevant for tumor development. PMID:26883451
DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.
Sucher, Nikolaus J; Hennell, James R; Carles, Maria C
2012-01-01
DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.
Next-generation sequencing in schizophrenia and other neuropsychiatric disorders.
Schreiber, Matthew; Dorschner, Michael; Tsuang, Debby
2013-10-01
Schizophrenia is a debilitating lifelong illness that lacks a cure and poses a worldwide public health burden. The disease is characterized by a heterogeneous clinical and genetic presentation that complicates research efforts to identify causative genetic variations. This review examines the potential of current findings in schizophrenia and in other related neuropsychiatric disorders for application in next-generation technologies, particularly whole-exome sequencing (WES) and whole-genome sequencing (WGS). These approaches may lead to the discovery of underlying genetic factors for schizophrenia and may thereby identify and target novel therapeutic targets for this devastating disorder. © 2013 Wiley Periodicals, Inc.
Polygenic Versus Monogenic Causes of Hypercholesterolemia Ascertained Clinically.
Wang, Jian; Dron, Jacqueline S; Ban, Matthew R; Robinson, John F; McIntyre, Adam D; Alazzam, Maher; Zhao, Pei Jun; Dilliott, Allison A; Cao, Henian; Huff, Murray W; Rhainds, David; Low-Kam, Cécile; Dubé, Marie-Pierre; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2016-12-01
Next-generation sequencing technology is transforming our understanding of heterozygous familial hypercholesterolemia, including revision of prevalence estimates and attribution of polygenic effects. Here, we examined the contributions of monogenic and polygenic factors in patients with severe hypercholesterolemia referred to a specialty clinic. We applied targeted next-generation sequencing with custom annotation, coupled with evaluation of large-scale copy number variation and polygenic scores for raised low-density lipoprotein cholesterol in a cohort of 313 individuals with severe hypercholesterolemia, defined as low-density lipoprotein cholesterol >5.0 mmol/L (>194 mg/dL). We found that (1) monogenic familial hypercholesterolemia-causing mutations detected by targeted next-generation sequencing were present in 47.3% of individuals; (2) the percentage of individuals with monogenic mutations increased to 53.7% when copy number variations were included; (3) the percentage further increased to 67.1% when individuals with extreme polygenic scores were included; and (4) the percentage of individuals with an identified genetic component increased from 57.0% to 92.0% as low-density lipoprotein cholesterol level increased from 5.0 to >8.0 mmol/L (194 to >310 mg/dL). In a clinically ascertained sample with severe hypercholesterolemia, we found that most patients had a discrete genetic basis detected using a comprehensive screening approach that includes targeted next-generation sequencing, an assay for copy number variations, and polygenic trait scores. © 2016 American Heart Association, Inc.
Signature of genetic associations in oral cancer.
Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi
2017-10-01
Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene-environment interaction studies is needed to confirm their involvement in modifying oral cancer.
Beigh, Mohammad Muzafar
2016-01-01
Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system. PMID:28930123
ReQON: a Bioconductor package for recalibrating quality scores from next-generation sequencing data
2012-01-01
Background Next-generation sequencing technologies have become important tools for genome-wide studies. However, the quality scores that are assigned to each base have been shown to be inaccurate. If the quality scores are used in downstream analyses, these inaccuracies can have a significant impact on the results. Results Here we present ReQON, a tool that recalibrates the base quality scores from an input BAM file of aligned sequencing data using logistic regression. ReQON also generates diagnostic plots showing the effectiveness of the recalibration. We show that ReQON produces quality scores that are both more accurate, in the sense that they more closely correspond to the probability of a sequencing error, and do a better job of discriminating between sequencing errors and non-errors than the original quality scores. We also compare ReQON to other available recalibration tools and show that ReQON is less biased and performs favorably in terms of quality score accuracy. Conclusion ReQON is an open source software package, written in R and available through Bioconductor, for recalibrating base quality scores for next-generation sequencing data. ReQON produces a new BAM file with more accurate quality scores, which can improve the results of downstream analysis, and produces several diagnostic plots showing the effectiveness of the recalibration. PMID:22946927
A parallel and sensitive software tool for methylation analysis on multicore platforms.
Tárraga, Joaquín; Pérez, Mariano; Orduña, Juan M; Duato, José; Medina, Ignacio; Dopazo, Joaquín
2015-10-01
DNA methylation analysis suffers from very long processing time, as the advent of Next-Generation Sequencers has shifted the bottleneck of genomic studies from the sequencers that obtain the DNA samples to the software that performs the analysis of these samples. The existing software for methylation analysis does not seem to scale efficiently neither with the size of the dataset nor with the length of the reads to be analyzed. As it is expected that the sequencers will provide longer and longer reads in the near future, efficient and scalable methylation software should be developed. We present a new software tool, called HPG-Methyl, which efficiently maps bisulphite sequencing reads on DNA, analyzing DNA methylation. The strategy used by this software consists of leveraging the speed of the Burrows-Wheeler Transform to map a large number of DNA fragments (reads) rapidly, as well as the accuracy of the Smith-Waterman algorithm, which is exclusively employed to deal with the most ambiguous and shortest reads. Experimental results on platforms with Intel multicore processors show that HPG-Methyl significantly outperforms in both execution time and sensitivity state-of-the-art software such as Bismark, BS-Seeker or BSMAP, particularly for long bisulphite reads. Software in the form of C libraries and functions, together with instructions to compile and execute this software. Available by sftp to anonymous@clariano.uv.es (password 'anonymous'). juan.orduna@uv.es or jdopazo@cipf.es. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants.
Taheri, Sima; Lee Abdullah, Thohirah; Yusop, Mohd Rafii; Hanafi, Mohamed Musa; Sahebi, Mahbod; Azizi, Parisa; Shamshiri, Redmond Ramin
2018-02-13
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
CAFE: aCcelerated Alignment-FrEe sequence analysis
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.
2017-01-01
Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388
Transforming clinical microbiology with bacterial genome sequencing.
Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W
2012-09-01
Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.
Transforming clinical microbiology with bacterial genome sequencing
2016-01-01
Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263
Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing
Maglio, C; Mancina, R M; Motta, B M; Stef, M; Pirazzi, C; Palacios, L; Askaryar, N; Borén, J; Wiklund, O; Romeo, S
2014-01-01
Maglio C., Mancina R. M., Motta B. M., Stef M., Pirazzi C., Palacios L., Askaryar N., Borén J., Wiklund O., Romeo S. (University of Gothenburg, Gothenburg, Sweden; University Magna Graecia of Catanzaro, Italy; University of Milan, Italy; Progenika Biopharma SA, Derio, Spain). Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. Objectives The aim of this study was to combine clinical criteria and next-generation sequencing (pyrosequencing) to establish a diagnosis of familial hypercholesterolaemia (FH). Design, setting and subjects A total of 77 subjects with a Dutch Lipid Clinic Network score of ≥3 (possible, probable or definite FH clinical diagnosis) were recruited from the Lipid Clinic at Sahlgrenska Hospital, Gothenburg, Sweden. Next-generation sequencing was performed in all subjects using SEQPRO LIPO RS, a kit that detects mutations in the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9) and LDLR adapter protein 1 (LDLRAP1) genes; copy-number variations in the LDLR gene were also examined. Results A total of 26 mutations were detected in 50 subjects (65% success rate). Amongst these, 23 mutations were in the LDLR gene, two in the APOB gene and one in the PCSK9 gene. Four mutations with unknown pathogenicity were detected in LDLR. Of these, three mutations (Gly505Asp, Ile585Thr and Gln660Arg) have been previously reported in subjects with FH, but their pathogenicity has not been proved. The fourth, a mutation in LDLR affecting a splicing site (exon 6–intron 6) has not previously been reported; it was found to segregate with high cholesterol levels in the family of the proband. Conclusions Using a combination of clinical criteria and targeted next-generation sequencing, we have achieved FH diagnosis with a high success rate. Furthermore, we identified a new splicing-site mutation in the LDLR gene. PMID:24785115
The advantages of SMRT sequencing.
Roberts, Richard J; Carneiro, Mauricio O; Schatz, Michael C
2013-07-03
Of the current next-generation sequencing technologies, SMRT sequencing is sometimes overlooked. However, attributes such as long reads, modified base detection and high accuracy make SMRT a useful technology and an ideal approach to the complete sequencing of small genomes.
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time. PMID:27959951
Eichmeier, Aleš; Komínková, Marcela; Komínek, Petr; Baránek, Miroslav
2016-01-01
Comprehensive next generation sequencing virus detection was used to detect the whole spectrum of viruses and viroids in selected grapevines from the Czech Republic. The novel NGS approach was based on sequencing libraries of small RNA isolated from grapevine vascular tissues. Eight previously partially-characterized grapevines of diverse varieties were selected and subjected to analysis: Chardonnay, Laurot, Guzal Kara, and rootstock Kober 125AA from the Moravia wine-producing region; plus Müller-Thurgau and Pinot Noir from the Bohemia wine-producing region, both in the Czech Republic. Using next generation sequencing of small RNA, the presence of 8 viruses and 2 viroids were detected in a set of eight grapevines; therefore, confirming the high effectiveness of the technique in plant virology and producing results supporting previous data on multiple infected grapevines in Czech vineyards. Among the pathogens detected, the Grapevine rupestris vein feathering virus and Grapevine yellow speckle viroid 1 were recorded in the Czech Republic for the first time.
Bateman, Randall J.; Benzinger, Tammie L.; Berry, Scott; Clifford, David B.; Duggan, Cynthia; Fagan, Anne M.; Fanning, Kathleen; Farlow, Martin R.; Hassenstab, Jason; McDade, Eric M.; Mills, Susan; Paumier, Katrina; Quintana, Melanie; Salloway, Stephen P.; Santacruz, Anna; Schneider, Lon S.; Wang, Guoqiao; Xiong, Chengjie
2016-01-01
INTRODUCTION The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) trial is an adaptive platform trial testing multiple drugs to slow or prevent the progression of Alzheimer’s disease in autosomal dominant Alzheimer’s disease (ADAD) families. With completion of enrollment of the first two drug arms, the DIAN-TU now plans to add new drugs to the platform, designated as the Next Generation Prevention Trial (NexGen). METHODS In collaboration with ADAD families, philanthropic organizations, academic leaders, the DIAN-TU Pharma Consortium, the NIH, and regulatory colleagues, the DIAN-TU developed innovative clinical study designs for the DIAN-TU NexGen trial. RESULTS Our expanded trials toolbox consists of a Disease Progression Model for ADAD, primary endpoint DIAN-TU cognitive performance composite, biomarker development, self-administered cognitive assessments, adaptive dose adjustments, and blinded data collection through the last participant completion. CONCLUSION These steps represent elements to improve efficacy of the adaptive platform trial and a continued effort to optimize prevention and treatment trials in ADAD. PMID:27583651
USDA-ARS?s Scientific Manuscript database
High-throughput next-generation sequencing was used to scan the genome and generate reliable sequence of high copy number regions. Using this method, we examined whole plastid genomes as well as nearly 6000 bases of nuclear ribosomal DNA sequences for nine genotypes of Theobroma cacao and an indivi...
Lesho, Emil; Clifford, Robert; Onmus-Leone, Fatma; Appalla, Lakshmi; Snesrud, Erik; Kwak, Yoon; Ong, Ana; Maybank, Rosslyn; Waterman, Paige; Rohrbeck, Patricia; Julius, Michael; Roth, Amanda; Martinez, Joshua; Nielsen, Lindsey; Steele, Eric; McGann, Patrick; Hinkle, Mary
2016-01-01
Objective We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems. Design Prospective surveillance and system-wide implementation of NGS. Setting 288-hospital healthcare network. Methods All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. Results From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones. Conclusion Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed. PMID:27196272
Lesho, Emil; Clifford, Robert; Onmus-Leone, Fatma; Appalla, Lakshmi; Snesrud, Erik; Kwak, Yoon; Ong, Ana; Maybank, Rosslyn; Waterman, Paige; Rohrbeck, Patricia; Julius, Michael; Roth, Amanda; Martinez, Joshua; Nielsen, Lindsey; Steele, Eric; McGann, Patrick; Hinkle, Mary
2016-01-01
We sought to: 1) provide an overview of the genomic epidemiology of an extensive collection of carbapenemase-producing bacteria (CPB) collected in the U.S. Department of Defense health system; 2) increase awareness of the public availability of the sequences, isolates, and customized antimicrobial resistance database of that system; and 3) illustrate challenges and offer mitigations for implementing next generation sequencing (NGS) across large health systems. Prospective surveillance and system-wide implementation of NGS. 288-hospital healthcare network. All phenotypically carbapenem resistant bacteria underwent CarbaNP® testing and PCR, followed by NGS. Commercial (Newbler and Geneious), on-line (ResFinder), and open-source software (Btrim, FLASh, Bowtie2, an Samtools) were used for assembly, SNP detection and clustering. Laboratory capacity, throughput, and response time were assessed. From 2009 through 2015, 27,000 multidrug-resistant Gram-negative isolates were submitted. 225 contained carbapenemase-encoding genes (most commonly blaKPC, blaNDM, and blaOXA23). These were found in 15 species from 146 inpatients in 19 facilities. Genetically related CPB were found in more than one hospital. Other clusters or outbreaks were not clonal and involved genetically related plasmids, while some involved several unrelated plasmids. Relatedness depended on the clustering algorithm used. Transmission patterns of plasmids and other mobile genetic elements could not be determined without ultra-long read, single-molecule real-time sequencing. 80% of carbapenem-resistant phenotypes retained susceptibility to aminoglycosides, and 70% retained susceptibility to fluoroquinolones. However, among the CPB-confirmed genotypes, fewer than 25% retained susceptibility to aminoglycosides or fluoroquinolones. Although NGS is increasingly acclaimed to revolutionize clinical practice, resource-constrained environments, large or geographically dispersed healthcare networks, and military or government-funded public health laboratories are likely to encounter constraints and challenges as they implement NGS across their health systems. These include lack of standardized definitions and quality control metrics, limitations of short-read sequencing, insufficient bandwidth, and the current limited availability of very expensive and scarcely available sequencing platforms. Possible solutions and mitigations are also proposed.
Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron
2012-01-01
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421
Toxicogenomics and Cancer Susceptibility: Advances with Next-Generation Sequencing
Ning, Baitang; Su, Zhenqiang; Mei, Nan; Hong, Huixiao; Deng, Helen; Shi, Leming; Fuscoe, James C.; Tolleson, William H.
2017-01-01
The aim of this review is to comprehensively summarize the recent achievements in the field of toxicogenomics and cancer research regarding genetic-environmental interactions in carcinogenesis and detection of genetic aberrations in cancer genomes by next-generation sequencing technology. Cancer is primarily a genetic disease in which genetic factors and environmental stimuli interact to cause genetic and epigenetic aberrations in human cells. Mutations in the germline act as either high-penetrance alleles that strongly increase the risk of cancer development, or as low-penetrance alleles that mildly change an individual’s susceptibility to cancer. Somatic mutations, resulting from either DNA damage induced by exposure to environmental mutagens or from spontaneous errors in DNA replication or repair are involved in the development or progression of the cancer. Induced or spontaneous changes in the epigenome may also drive carcinogenesis. Advances in next-generation sequencing technology provide us opportunities to accurately, economically, and rapidly identify genetic variants, somatic mutations, gene expression profiles, and epigenetic alterations with single-base resolution. Whole genome sequencing, whole exome sequencing, and RNA sequencing of paired cancer and adjacent normal tissue present a comprehensive picture of the cancer genome. These new findings should benefit public health by providing insights in understanding cancer biology, and in improving cancer diagnosis and therapy. PMID:24875441
Next Generation Sequence Assembly with AMOS
Treangen, Todd J; Sommer, Dan D; Angly, Florent E; Koren, Sergey; Pop, Mihai
2011-01-01
A Modular Open-Source Assembler (AMOS) was designed to offer a modular approach to genome assembly. AMOS includes a wide range of tools for assembly, including lightweight de novo assemblers Minimus and Minimo, and Bambus 2, a robust scaffolder able to handle metagenomic and polymorphic data. This protocol describes how to configure and use AMOS for the assembly of Next Generation sequence data. Additionally, we provide three tutorial examples that include bacterial, viral, and metagenomic datasets with specific tips for improving assembly quality. PMID:21400694
Thompson, Kirsten F; Patel, Selina; Williams, Liam; Tsai, Peter; Constantine, Rochelle; Baker, C Scott; Millar, Craig D
2016-01-01
Using an Illumina platform, we shot-gun sequenced the complete mitochondrial genome of Gray's beaked whale (Mesoplodon grayi) to an average coverage of 152X. We performed a de novo assembly using SOAPdenovo2 and determined the total mitogenome length to be 16,347 bp. The nucleotide composition was asymmetric (33.3% A, 24.6% C, 12.6% G, 29.5% T) with an overall GC content of 37.2%. The gene organization was similar to that of other cetaceans with 13 protein-coding genes, 2 rRNAs (12S and 16S), 22 predicted tRNAs and 1 control region or D-loop. We found no evidence of heteroplasmy or nuclear copies of mitochondrial DNA in this individual. Beaked whales within the genus Mesoplodon are rarely seen at sea and their basic biology is poorly understood. These data will contribute to resolving the phylogeography and population ecology of this speciose group.
Distinct Ecological Niche of Anal, Oral, and Cervical Mucosal Microbiomes in Adolescent Women.
Smith, Benjamin C; Zolnik, Christine P; Usyk, Mykhaylo; Chen, Zigui; Kaiser, Katherine; Nucci-Sack, Anne; Peake, Ken; Diaz, Angela; Viswanathan, Shankar; Strickler, Howard D; Schlecht, Nicolas F; Burk, Robert D
2016-09-01
Human body sites represent ecological niches for microorganisms, each providing variations in microbial exposure, nutrient availability, microbial competition, and host immunological responses. In this study, we investigated the oral, anal, and cervical microbiomes from the same 20 sexually active adolescent females, using culture-independent, next-generation sequencing. DNA from each sample was amplified for the bacterial 16S rRNA gene and sequenced on an Illumina platform using paired-end reads. Across the three anatomical niches, we found significant differences in bacterial community composition and diversity. Overall anal samples were dominated with Prevotella and Bacteriodes , oral samples with Streptococcus and Prevotella , and cervical samples with Lactobacillus . The microbiomes of a few cervical samples clustered with anal samples in weighted principal coordinate analyses, due in part to a higher proportion of Prevotella in those samples. Additionally, cervical samples had the lowest alpha diversity. Our results demonstrate the occurrence of distinct microbial communities across body sites within the same individual.
A Fast Solution to NGS Library Prep with Low Nanogram DNA Input
Liu, Pingfang; Lohman, Gregory J.S.; Cantor, Eric; Langhorst, Bradley W.; Yigit, Erbay; Apone, Lynne M.; Munafo, Daniela B.; Stewart, Fiona J.; Evans, Thomas C.; Nichols, Nicole; Dimalanta, Eileen T.; Davis, Theodore B.; Sumner, Christine
2013-01-01
Next Generation Sequencing (NGS) has significantly impacted human genetics, enabling a comprehensive characterization of the human genome as well as a better understanding of many genomic abnormalities. By delivering massive DNA sequences at unprecedented speed and cost, NGS promises to make personalized medicine a reality in the foreseeable future. To date, library construction with clinical samples has been a challenge, primarily due to the limited quantities of sample DNA available. Our objective here was to overcome this challenge by developing NEBNext® Ultra DNA Library Prep Kit, a fast library preparation method. Specifically, we streamlined the workflow utilizing novel NEBNext reagents and adaptors, including a new DNA polymerase that has been optimized to minimize GC bias. As a result of this work, we have developed a simple method for library construction from an amount of DNA as low as 5 ng, which can be used for both intact and fragmented DNA. Moreover, the workflow is compatible with multiple NGS platforms.
Towards Precision Medicine in the Clinic: From Biomarker Discovery to Novel Therapeutics.
Collins, Dearbhaile C; Sundar, Raghav; Lim, Joline S J; Yap, Timothy A
2017-01-01
Precision medicine continues to be the benchmark to which we strive in cancer research. Seeking out actionable aberrations that can be selectively targeted by drug compounds promises to optimize treatment efficacy and minimize toxicity. Utilizing these different targeted agents in combination or in sequence may further delay resistance to treatments and prolong antitumor responses. Remarkable progress in the field of immunotherapy adds another layer of complexity to the management of cancer patients. Corresponding advances in companion biomarker development, novel methods of serial tumor assessments, and innovative trial designs act synergistically to further precision medicine. Ongoing hurdles such as clonal evolution, intra- and intertumor heterogeneity, and varied mechanisms of drug resistance continue to be challenges to overcome. Large-scale data-sharing and collaborative networks using next-generation sequencing (NGS) platforms promise to take us further into the cancer 'ome' than ever before, with the goal of achieving successful precision medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isolation and genomic characterization of gosling gout caused by a novel goose astrovirus.
Yang, Jing; Tian, Jiajun; Tang, Yi; Diao, Youxiang
2018-06-19
A severe infectious disease characterized with gout, haemorrhage and swellings of kidneys has affected goslings around the major goose-producing regions in China since November 2016. A Novel goose-origin astrovirus (AStV), designated as AStV/SDPY/Goose/1116/17 (AStV-SDPY) strain, was isolated from diseased goslings, and experimental reproduction of gout was successful using the AStV-SDPY strain. Additionally, the AStV-SDPY was conducted for its full genome sequencing characterization using next-generation sequencing (NGS) technique on Illumina HiSeq platform. A complete genome of the AStV-SDPY was 7,252 nt in length and encoded three viral proteins. Phylogenetic analysis revealed that AStV-SDPY strain belongs to an independent branch of avian astroviruses, and the nucleotide homology among AStV-SDPY and other classic avian astrovirus strains was only 48.8%-68.2%. Results of above data indicated the causative agent of the gosling gout occurring in China is a novel divergent goose astrovirus. © 2018 Blackwell Verlag GmbH.
Yang, Huaan; Tao, Ye; Zheng, Zequn; Shao, Di; Li, Zhenzhong; Sweetingham, Mark W; Buirchell, Bevan J; Li, Chengdao
2013-02-01
Selection for phomopsis stem blight disease (PSB) resistance is one of the key objectives in lupin (Lupinus angustifolius L.) breeding programs. A cross was made between cultivar Tanjil (resistant to PSB) and Unicrop (susceptible). The progeny was advanced into F(8) recombinant inbred lines (RILs). The RIL population was phenotyped for PSB disease resistance. Twenty plants from the RIL population representing disease resistance and susceptibility was subjected to next-generation sequencing (NGS)-based restriction site-associated DNA sequencing on the NGS platform Solexa HiSeq2000, which generated 7,241 single nucleotide polymorphisms (SNPs). Thirty-three SNP markers showed the correlation between the marker genotypes and the PSB disease phenotype on the 20 representative plants, which were considered as candidate markers linked to a putative R gene for PSB resistance. Seven candidate markers were converted into sequence-specific PCR markers, which were designated as PhtjM1, PhtjM2, PhtjM3, PhtjM4, PhtjM5, PhtjM6 and PhtjM7. Linkage analysis of the disease phenotyping data and marker genotyping data on a F(8) population containing 187 RILs confirmed that all the seven converted markers were associated with the putative R gene within the genetic distance of 2.1 CentiMorgan (cM). One of the PCR markers, PhtjM3, co-segregated with the R gene. The seven established PCR markers were tested in the 26 historical and current commercial cultivars released in Australia. The numbers of "false positives" (showing the resistance marker allele band but lack of the putative R gene) for each of the seven PCR markers ranged from nil to eight. Markers PhtjM4 and PhtjM7 are recommended in marker-assisted selection for PSB resistance in the Australian national lupin breeding program due to its wide applicability on breeding germplasm and close linkage to the putative R gene. The results demonstrated that application of NGS technology is a rapid and cost-effective approach in development of markers for molecular plant breeding.
De novo transcriptome assembly of 'Angeleno' and 'Lamoon' Japanese plum cultivars (Prunus salicina).
González, Máximo; Maldonado, Jonathan; Salazar, Erika; Silva, Herman; Carrasco, Basilio
2016-09-01
Japanese plum (Prunus salicina L.) is a fruit tree of the Rosaceae family, which is an economically important stone fruit around the world. Currently, Japanese plum breeding programs combine traditional breeding and plant physiology strategies with genetic and genomic analysis. In order to understand the flavonoid pathway regulation and to develop molecular markers associated to the fuit skin color (EST-SSRs), we performed a next generation sequencing based on Illumina Hiseq2000 platform. A total of 22.4 GB and 21 GB raw data were obtained from 'Lamoon' and 'Angeleno' respectively, corresponding to 85,404,726 raw reads to 'Lamoon' and 79,781,666 to 'Angeleno'. A total of 139,775,975 reads were filtered after removing low-quality reads and trimming the adapter sequences. De novo transcriptome assembly was performed using CLC Genome Workbench software and a total of 54,584 unique contigs were generated, with an N50 of 1343 base pair (bp) and a mean length of 829 bp. This work contributed with a specific Japanese plum skin transcriptome, providing two libraries of contrasting fruit skin color phenotype (yellow and red) and increasing substantially the GB of raw data available until now for this specie.
Tempo and mode of genomic mutations unveil human evolutionary history.
Hara, Yuichiro
2015-01-01
Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.
From genomics to functional markers in the era of next-generation sequencing.
Salgotra, R K; Gupta, B B; Stewart, C N
2014-03-01
The availability of complete genome sequences, along with other genomic resources for Arabidopsis, rice, pigeon pea, soybean and other crops, has revolutionized our understanding of the genetic make-up of plants. Next-generation DNA sequencing (NGS) has facilitated single nucleotide polymorphism discovery in plants. Functionally-characterized sequences can be identified and functional markers (FMs) for important traits can be developed at an ever-increasing ease. FMs are derived from sequence polymorphisms found in allelic variants of a functional gene. Linkage disequilibrium-based association mapping and homologous recombinants have been developed for identification of "perfect" markers for their use in crop improvement practices. Compared with many other molecular markers, FMs derived from the functionally characterized sequence genes using NGS techniques and their use provide opportunities to develop high-yielding plant genotypes resistant to various stresses at a fast pace.
Hocum, Jonah D; Battrell, Logan R; Maynard, Ryan; Adair, Jennifer E; Beard, Brian C; Rawlings, David J; Kiem, Hans-Peter; Miller, Daniel G; Trobridge, Grant D
2015-07-07
Analyzing the integration profile of retroviral vectors is a vital step in determining their potential genotoxic effects and developing safer vectors for therapeutic use. Identifying retroviral vector integration sites is also important for retroviral mutagenesis screens. We developed VISA, a vector integration site analysis server, to analyze next-generation sequencing data for retroviral vector integration sites. Sequence reads that contain a provirus are mapped to the human genome, sequence reads that cannot be localized to a unique location in the genome are filtered out, and then unique retroviral vector integration sites are determined based on the alignment scores of the remaining sequence reads. VISA offers a simple web interface to upload sequence files and results are returned in a concise tabular format to allow rapid analysis of retroviral vector integration sites.
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
2011-01-01
Background Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. Results BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. Conclusions There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/. PMID:21824423
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.
Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A
2011-08-08
Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.
First report of bacterial community from a Bat Guano using Illumina next-generation sequencing.
De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu
2015-06-01
V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave - Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach.
First report of bacterial community from a Bat Guano using Illumina next-generation sequencing
De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu
2015-01-01
V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave — Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach. PMID:26484190
New tool to assemble repetitive regions using next-generation sequencing data
NASA Astrophysics Data System (ADS)
Kuśmirek, Wiktor; Nowak, Robert M.; Neumann, Łukasz
2017-08-01
The next generation sequencing techniques produce a large amount of sequencing data. Some part of the genome are composed of repetitive DNA sequences, which are very problematic for the existing genome assemblers. We propose a modification of the algorithm for a DNA assembly, which uses the relative frequency of reads to properly reconstruct repetitive sequences. The new approach was implemented and tested, as a demonstration of the capability of our software we present some results for model organisms. The new implementation, using a three-layer software architecture was selected, where the presentation layer, data processing layer, and data storage layer were kept separate. Source code as well as demo application with web interface and the additional data are available at project web-page: http://dnaasm.sourceforge.net.
Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada
2010-08-01
Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity.