Sample records for nf-kappab p65 subunit

  1. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Hiroshi, E-mail: htomita@iwate-u.ac.jp; Soft-Path Engineering Research Center; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574

    2016-05-13

    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65more » depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.« less

  2. Short communication: molecular characterization of dog and cat p65 subunits of NF-kappaB.

    PubMed

    Ishikawa, Shingo; Takemitsu, Hiroshi; Li, Gebin; Mori, Nobuko; Yamamoto, Ichiro; Arai, Toshiro

    2015-04-01

    Nuclear factor kappa B (NF-κB) plays an important role in the immune system. The p65 subunit is an important part of NF-κB unit, and studies of dog and cat p65 subunits of NF-κB (dp65 and cp65) are important in understanding their immune function. In this study, we described the molecular characterization of dp65 and cp65. The dp65 and cp65 complementary DNA encoded 542 and 555 amino acids, respectively, showing a high sequence homology with the mammalian p65 subunit (>87.5%). Quantitative polymerase chain reaction revealed that the p65 messenger RNA is highly expressed in the dog stomach and cat heart and adipose tissue. Functional NF-κB promoter-luciferase reporter vectors revealed that our isolated dp65 and cp65 cDNA encodes a functionally active protein. Transiently expressed dp65 and cp65 up-regulated pro-inflammatory cytokine expression levels in dog and cat, respectively. These findings suggest that dp65 and cp65 play important roles in regulating immune function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A novel form of the RelA nuclear factor kappaB subunit is induced by and forms a complex with the proto-oncogene c-Myc.

    PubMed Central

    Chapman, Neil R; Webster, Gill A; Gillespie, Peter J; Wilson, Brian J; Crouch, Dorothy H; Perkins, Neil D

    2002-01-01

    Members of both Myc and nuclear factor kappaB (NF-kappaB) families of transcription factors are found overexpressed or inappropriately activated in many forms of human cancer. Furthermore, NF-kappaB can induce c-Myc gene expression, suggesting that the activities of these factors are functionally linked. We have discovered that both c-Myc and v-Myc can induce a previously undescribed, truncated form of the RelA(p65) NF-kappaB subunit, RelA(p37). RelA(p37) encodes the N-terminal DNA binding and dimerization domain of RelA(p65) and would be expected to function as a trans-dominant negative inhibitor of NF-kappaB. Surprisingly, we found that RelA(p37) no longer binds to kappaB elements. This result is explained, however, by the observation that RelA(p37), but not RelA(p65), forms a high-molecular-mass complex with c-Myc. These results demonstrate a previously unknown functional and physical interaction between RelA and c-Myc with many significant implications for our understanding of the role that both proteins play in the molecular events underlying tumourigenesis. PMID:12027803

  4. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  5. Omega-3 polyunsaturated fatty acids alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker (Larmichthys crocea).

    PubMed

    Wang, Tianjiao; Yang, Bo; Ji, Renlei; Xu, Wei; Mai, Kangsen; Ai, Qinghui

    2017-12-01

    Hepatic steatosis induced inflammation is becoming increasingly prevalent in farmed fish. This study was conducted to investigate the protective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) against hepatic steatosis-induced inflammation and its potential molecular mechanisms in hepatocyte of large yellow croaker (Larmichthys crocea). We found that the hepatic steatosis-induced inflammation was relieved by ω-3 PUFAs, meanwhile, the Sirt1 activity and transcript expression was increased by ω-3 PUFAs. The increased Sirt1 activity can decrease the hepatic steatosis-induced inflammation. The protective effects of ω-3 PUFAs against hepatic steatosis-induced inflammation was reversed by the treatment with Sirt1 inhibitor EX-527. The nuclear translocation of nuclear transcription factor kappa-B (NF-κB) p65 was significantly decreased after ω-3 PUFAs treatments compared to the palmitic acid stimulation group. The ω-3 PUFAs induced cytoplasm translocation of NF-κB p65 was reversed by EX-527. Together, ω-3 PUFAs alleviate hepatic steatosis-induced inflammation through Sirt1-mediated nuclear translocation of NF-κB p65 subunit in hepatocytes of large yellow croaker. The present study provides important insight into the mechanisms of the protective effects of ω-3 PUFAs, providing theory bases for alleviating the hepatic steatosis induced inflammation of farmed fish, thereby offering great benefits to the aquaculture industry and fish consumers. Copyright © 2017. Published by Elsevier Ltd.

  6. Nuclear NF-kappaB p65 phosphorylation at serine 276 by protein kinase A contributes to the malignant phenotype of head and neck cancer.

    PubMed

    Arun, Pattatheyil; Brown, Matthew S; Ehsanian, Reza; Chen, Zhong; Van Waes, Carter

    2009-10-01

    Aberrant nuclear activation and phosphorylation of the canonical NF-kappaB subunit RELA/p65 at Serine-536 by inhibitor kappaB kinase is prevalent in head and neck squamous cell carcinoma (HNSCC), but the role of other kinases in NF-kappaB activation has not been well defined. Here, we investigated the prevalence and function of p65-Ser276 phosphorylation by protein kinase A (PKA) in the malignant phenotype and gene transactivation, and studied p65-Ser276 as a potential target for therapy. Phospho and total p65 protein expression and localization were determined in HNSCC tissue array and in cell lines. The effects of the PKA inhibitor H-89 on NF-kappaB activation, downstream gene expression, cell proliferation and cell cycle were examined. Knockdown of PKA by specific siRNA confirmed the specificity. NF-kappaB p65 phosphorylated at Ser276 was prevalent in HNSCC and adjacent dysplastic mucosa, but localized to the cytoplasm in normal mucosa. In HNSCC lines, tumor necrosis factor-alpha (TNF-alpha) significantly increased, whereas H-89 inhibited constitutive and TNF-alpha-induced nuclear p65 (Ser276) phosphorylation, and significantly suppressed NF-kappaB and target gene IL-8 reporter activity. Knockdown of PKA by small interfering RNA inhibited NF-kappaB, IL-8, and BCL-XL reporter gene activities. H-89 suppressed cell proliferation, induced cell death, and blocked the cell cycle in G(1)-S phase. Consistent with its biological effects, H-89 down-modulated expression of NF-kappaB-related genes Cyclin D1, BCL2, BCL-XL, COX2, IL-8, and VEGF, as well as induced cell cycle inhibitor p21(CIP1/WAF1), while suppressing proliferative marker Ki67. NF-kappaB p65 (Ser276) phosphorylation by PKA promotes the malignant phenotype and holds potential as a therapeutic target in HNSCC.

  7. PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65

    PubMed Central

    Zhang, Tiejun; Park, Kyeong Ah; Li, Yuwen; Byun, Hee Sun; Jeon, Juhee; Lee, Yoonjung; Hong, Jang Hee; Kim, Jin Man; Huang, Song-Mei; Choi, Seung-Won; Kim, Sun-Hwan; Sohn, Kyung-Cheol; Ro, Hyunju; Lee, Ji Hoon; Lu, Tao; Stark, George R.; Shen, Han-Ming; Liu, Zheng-gang; Park, Jongsun; Hur, Gang Min

    2014-01-01

    Constitutive NF-κB activation in cancer cells is caused by defects in the signalling network responsible for terminating the NF-κB response. Here we report that plant homeodomain finger protein 20 maintains NF-κB in an active state in the nucleus by inhibiting the interaction between PP2A and p65. We show that plant homeodomain finger protein 20 induces canonical NF-κB signalling by increasing the DNA-binding activity of NF-κB subunit p65. In plant homeodomain finger protein 20-overexpressing cells, the termination of tumour necrosis factor-induced p65 phosphorylation is impaired whereas upstream signalling events triggered by tumour necrosis factor are unaffected. This effect strictly depends on the interaction between plant homeodomain finger protein 20 and methylated lysine residues of p65, which hinders recruitment of PP2A to p65, thereby maintaining p65 in a phosphorylated state. We further show that plant homeodomain finger protein 20 levels correlate with p65 phosphorylation levels in human glioma specimens. Our work identifies plant homeodomain finger protein 20 as a novel regulator of NF-κB activation and suggests that elevated expression of plant homeodomain finger protein 20 may drive constitutive NF-κB activation in some cancers. PMID:23797602

  8. Eukaryotic Initiation Factor 4H Is under Transcriptional Control of p65/NF-κB

    PubMed Central

    Fiume, Giuseppe; Rossi, Annalisa; de Laurentiis, Annamaria; Falcone, Cristina; Pisano, Antonio; Vecchio, Eleonora; Pontoriero, Marilena; Scala, Iris; Scialdone, Annarita; Masci, Francesca Fasanella; Mimmi, Selena; Palmieri, Camillo; Scala, Giuseppe; Quinto, Ileana

    2013-01-01

    Protein synthesis is mainly regulated at the initiation step, allowing the fast, reversible and spatial control of gene expression. Initiation of protein synthesis requires at least 13 translation initiation factors to assemble the 80S ribosomal initiation complex. Loss of translation control may result in cell malignant transformation. Here, we asked whether translational initiation factors could be regulated by NF-κB transcription factor, a major regulator of genes involved in cell proliferation, survival, and inflammatory response. We show that the p65 subunit of NF-κB activates the transcription of eIF4H gene, which is the regulatory subunit of eIF4A, the most relevant RNA helicase in translation initiation. The p65-dependent transcriptional activation of eIF4H increased the eIF4H protein content augmenting the rate of global protein synthesis. In this context, our results provide novel insights into protein synthesis regulation in response to NF-κB activation signalling, suggesting a transcription-translation coupled mechanism of control. PMID:23776612

  9. A peptide that blocks the interaction of NF-κB p65 subunit with Smad4 enhances BMP2-induced osteogenesis.

    PubMed

    Urata, Mariko; Kokabu, Shoichiro; Matsubara, Takuma; Sugiyama, Goro; Nakatomi, Chihiro; Takeuchi, Hiroshi; Hirata-Tsuchiya, Shizu; Aoki, Kazuhiro; Tamura, Yukihiko; Moriyama, Yasuko; Ayukawa, Yasunori; Matsuda, Miho; Zhang, Min; Koyano, Kiyoshi; Kitamura, Chiaki; Jimi, Eijiro

    2018-09-01

    Bone morphogenetic protein (BMP) potentiates bone formation through the Smad signaling pathway in vitro and in vivo. The transcription factor nuclear factor κB (NF-κB) suppresses BMP-induced osteoblast differentiation. Recently, we identified that the transactivation (TA) 2 domain of p65, a main subunit of NF-κB, interacts with the mad homology (MH) 1 domain of Smad4 to inhibit BMP signaling. Therefore, we further attempted to identify the interacting regions of these two molecules at the amino acid level. We identified a region that we term the Smad4-binding domain (SBD), an amino-terminal region of TA2 that associates with the MH1 domain of Smad4. Cell-permeable SBD peptide blocked the association of p65 with Smad4 and enhanced BMP2-induced osteoblast differentiation and mineralization without affecting the phosphorylation of Smad1/5 or the activation of NF-κB signaling. SBD peptide enhanced the binding of the BMP2-inudced phosphorylated Smad1/5 on the promoter region of inhibitor of DNA binding 1 (Id-1) compared with control peptide. Although SBD peptide did not affect BMP2-induced chondrogenesis during ectopic bone formation, the peptide enhanced BMP2-induced ectopic bone formation in subcortical bone. Thus, the SBD peptide is useful for enabling BMP2-induced bone regeneration without inhibiting NF-κB activity. © 2018 Wiley Periodicals, Inc.

  10. FBI-1 enhances transcription of the nuclear factor-kappaB (NF-kappaB)-responsive E-selectin gene by nuclear localization of the p65 subunit of NF-kappaB.

    PubMed

    Lee, Dong-Kee; Kang, Jae-Eun; Park, Hye-Jin; Kim, Myung-Hwa; Yim, Tae-Hee; Kim, Jung-Min; Heo, Min-Kyu; Kim, Kyu-Yeun; Kwon, Ho Jeong; Hur, Man-Wook

    2005-07-29

    The POZ domain is a highly conserved protein-protein interaction motif found in many regulatory proteins. Nuclear factor-kappaB (NF-kappaB) plays a key role in the expression of a variety of genes in response to infection, inflammation, and stressful conditions. We found that the POZ domain of FBI-1 (factor that binds to the inducer of short transcripts of human immunodeficiency virus-1) interacted with the Rel homology domain of the p65 subunit of NF-kappaB in both in vivo and in vitro protein-protein interaction assays. FBI-1 enhanced NF-kappaB-mediated transcription of E-selectin genes in HeLa cells upon phorbol 12-myristate 13-acetate stimulation and overcame gene repression by IkappaB alpha or IkappaB beta. In contrast, the POZ domain of FBI-1, which is a dominant-negative form of FBI-1, repressed NF-kappaB-mediated transcription, and the repression was cooperative with IkappaB alpha or IkappaB beta. In contrast, the POZ domain tagged with a nuclear localization sequence polypeptide of FBI-1 enhanced NF-kappaB-responsive gene transcription, suggesting that the molecular interaction between the POZ domain and the Rel homology domain of p65 and the nuclear localization by the nuclear localization sequence are important in the transcription enhancement mediated by FBI-1. Confocal microscopy showed that FBI-1 increased NF-kappaB movement into the nucleus and increased the stability of NF-kappaB in the nucleus, which enhanced NF-kappaB-mediated transcription of the E-selectin gene. FBI-1 also interacted with IkappaB alpha and IkappaB beta.

  11. Genetic ablation of P65 subunit of NF-κB in mdx mice to improve muscle physiological function.

    PubMed

    Yin, Xi; Tang, Ying; Li, Jian; Dzuricky, Anna T; Pu, Chuanqiang; Fu, Freddie; Wang, Bing

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a genetic muscle disease characterized by dystrophin deficiency. Beyond gene replacement, the question of whether ablation of the p65 gene of nuclear factor-kappa B (NF-κB) in DMD can improve muscle physiology function is unknown. In this study, we investigated muscle physiological improvement in mdx mice (DMD model) with a genetic reduction of NF-κB. Muscle physiological function and histology were studied in 2-month-old mdx/p65 +/- , wild-type, mdx, and human minidystrophin gene transgenic mdx (TghΔDys/mdx) mice. Improved muscle physiological function was found in mdx/p65 +/- mice when compared with mdx mice; however, it was similar to TghΔDys/mdx mice. The results indicate that genetic reduction of p65 levels diminished chronic inflammation in dystrophic muscle, thus leading to amelioration of muscle pathology and improved muscle physiological function. The results show that inhibition of NF-κB may be a promising therapy when combined with gene therapy for DMD. Muscle Nerve 56: 759-767, 2017. © 2016 Wiley Periodicals, Inc.

  12. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    PubMed

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human

  13. New Molecular Bridge between RelA/p65 and NF-κB Target Genes via Histone Acetyltransferase TIP60 Cofactor*

    PubMed Central

    Kim, Jung-Woong; Jang, Sang-Min; Kim, Chul-Hong; An, Joo-Hee; Kang, Eun-Jin; Choi, Kyung-Hee

    2012-01-01

    The nuclear factor-κB (NF-κB) family is involved in the expressions of numerous genes, in development, apoptosis, inflammatory responses, and oncogenesis. In this study we identified four NF-κB target genes that are modulated by TIP60. We also found that TIP60 interacts with the NF-κB RelA/p65 subunit and increases its transcriptional activity through protein-protein interaction. Although TIP60 binds with RelA/p65 using its histone acetyltransferase domain, TIP60 does not directly acetylate RelA/p65. However, TIP60 maintained acetylated Lys-310 RelA/p65 levels in the TNF-α-dependent NF-κB signaling pathway. In chromatin immunoprecipitation assay, TIP60 was primarily recruited to the IL-6, IL-8, C-IAP1, and XIAP promoters in TNF-α stimulation followed by acetylation of histones H3 and H4. Chromatin remodeling by TIP60 involved the sequential recruitment of acetyl-Lys-310 RelA/p65 to its target gene promoters. Furthermore, we showed that up-regulated TIP60 expression was correlated with acetyl-Lys-310 RelA/p65 expressions in hepatocarcinoma tissues. Taken together these results suggest that TIP60 is involved in the NF-κB pathway through protein interaction with RelA/p65 and that it modulates the transcriptional activity of RelA/p65 in NF-κB-dependent gene expression. PMID:22249179

  14. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Xia; Center for New Drugs Evaluation, Shandong University, Jinan 250012; Qu, Xian-Jun

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at dosesmore » of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.« less

  15. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  16. Regulation of nuclear factor κB (NF-κB) transcriptional activity via p65 acetylation by the chaperonin containing TCP1 (CCT).

    PubMed

    Pejanovic, Nadja; Hochrainer, Karin; Liu, Tao; Aerne, Birgit L; Soares, Miguel P; Anrather, Josef

    2012-01-01

    The NF-κB family member p65 is central to inflammation and immunity. The purpose of this study was to identify and characterize evolutionary conserved genes modulating p65 transcriptional activity. Using an RNAi screening approach, we identified chaperonin containing TCP1 subunit η (CCTη) as a regulator of Drosophila NF-κB proteins, Dorsal and Dorsal-related immunity factor (Dif). CCTη was also found to regulate NF-κB-driven transcription in mammalian cells, acting in a promoter-specific context, downstream of IκB kinase (IKK). CCTη knockdown repressed IκBα and CXCL2/MIP2 transcription during the early phase of NF-κB activation while impairing the termination of CCL5/RANTES and CXCL10/IP10 transcription. The latter effect was associated with increased DNA binding and reduced p65 acetylation, presumably by altering the activity of histone acetyltransferase CREB-binding protein (CBP). We identified p65 lysines (K) 122 and 123 as target residues mediating the CCTη-driven termination of NF-κB-dependent transcription. We propose that CCTη regulates NF-κB activity in a manner that resolves inflammation.

  17. NF-κB p65 Subunit Mediates Lipopolysaccharide-Induced Na+/I− Symporter Gene Expression by Involving Functional Interaction with the Paired Domain Transcription Factor Pax8

    PubMed Central

    Nicola, Juan Pablo; Nazar, Magalí; Mascanfroni, Iván Darío; Pellizas, Claudia Gabriela; Masini-Repiso, Ana María

    2010-01-01

    The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a variety of biological responses. Na+/I− symporter (NIS)-mediated iodide uptake is the main rate-limiting step in thyroid hormonogenesis. We have recently reported that LPS stimulates TSH-induced iodide uptake. Here, we further analyzed the molecular mechanism involved in the LPS-induced NIS expression in Fisher rat thyroid cell line 5 (FRTL-5) thyroid cells. We observed an increase in TSH-induced NIS mRNA expression in a dose-dependent manner upon LPS treatment. LPS enhanced the TSH-stimulated NIS promoter activity denoting the NIS-upstream enhancer region (NUE) as responsible for the stimulatory effects. We characterized a novel putative conserved κB site for the transcription factor nuclear factor-κB (NF-κB) within the NUE region. NUE contains two binding sites for the transcription factor paired box 8 (Pax8), main regulator of NIS transcription. A physical interaction was observed between the NF-κB p65 subunit and paired box 8 (Pax8), which appears to be responsible for the synergic effect displayed by these transcription factors on NIS gene transcription. Moreover, functional blockage of NF-κB signaling and site-directed mutagenesis of the κB cis-acting element abrogated LPS stimulation. Silencing expression of p65 confirmed its participation as an effector of LPS-induced NIS stimulation. Furthermore, chromatin immunoprecipitation corroborated that NIS is a novel target gene for p65 transactivation in response to LPS. Moreover, we were able to corroborate the LPS-stimulatory effect on thyroid cells in vivo in LPS-treated rats, supporting that thyrocytes are capable of responding to systemic infections. In conclusion, our results reveal a new mechanism involving p65 in the LPS-induced NIS expression, denoting a novel aspect in thyroid cell differentiation. PMID:20667985

  18. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanospheres-mediated photothermal transfection

    PubMed Central

    Lu, Wei; Zhang, Guodong; Zhang, Rui; Flores, Leo G; Huang, Qian; Gelovani, Juri G; Li, Chun

    2010-01-01

    Nuclear factor-κB (NF-κB) transcription factor is a critical regulator of the expression of genes involved in tumor formation and progression. Successful RNA interference (RNAi) therapeutics targeting NF-κB is challenged by siRNA delivery systems, which can render targeted in vivo delivery, efficient endo-lysosomal escape and dynamic control over activation of RNAi. Here, we report near-infrared light-inducible NF-κB down-regulation through folate receptor-targeted hollow gold nanospheres carrying siRNA recognizing NF-κB p65 subunit. Using micro-positron emission tomography/computed tomography imaging, the targeted nanoconstructs exhibited significantly higher tumor uptake in nude mice-bearing HeLa cervical cancer xenografts than non-targeted nanoparticles following intravenous administration. Mediated by hollow gold nanospheres, controllable cytoplasmic delivery of siRNA was obtained upon near-infrared light irradiation through photothermal effect. Efficient down-regulation of NF-κB p65 was achieved only in tumors irradiated with near-infrared light, but not in non-irradiated tumors grown in the same mice. Liver, spleen, kidney, and lung were not affected by the treatments, in spite of significant uptake of the siRNA nanoparticles in these organs. We term this mode of action “photothermal transfection”. Combined treatments with p65 siRNA photothermal transfection and irinotecan caused substantially enhanced tumor apoptosis and significant tumor growth delay compared with other treatment regimens. Therefore, photothermal transfection of NF-κB p65 siRNA could effectively sensitize the tumor to chemotherapeutic agents. Because NIR light can penetrate skin and be delivered with high spatiotemporal control, therapeutic RNAi may benefit from this novel transfection strategy while avoiding unwanted side effect. PMID:20388791

  19. BCL10 aberations and NF-kappa B activation involving p65 are absent or rare in primary gastric MALT lymphoma.

    PubMed

    Hajder, Jelena; Marisavljević, Dragomir; Stanisavljević, Natasa; Mihaljević, Biljana; Kovcin, Vladimir; Marković, Olivera; Zivković, Radmila

    2014-11-01

    Mucosa-associated lymphoid tissue (MALT) lymphoma accounts for 5-17% non-Hodgkin lymphomas (NHL). The molecular pathogenesis of MALT lymphomas is not well-established. The aim of this study was to evaluate immunohistochemically determined nuclear coexpression of BCL10 and NF-kappaB (NF-kappaB) in tumor cells of gastric MALT lymphoma and its impact on the patogenesis and outcome of the disease. Medical records of 35 patients with newly diagnosed gastric MALT lymphoma were analyzed and biopsy specimens were immunostained for BCL10 and NF-kappaB expression (p65 subunit). The median age of 35 patients diagnosed with gastric MALT lymphoma was 63.5 years (male/female = 21/14). Symptoms were present in 23/35 (65.7%) patients with the weight loss as the most common symptom. Gastric MALT lymphomas were usually localized in the stomach corpus and corpus and antrum (45.7% and 31.2%, respectively). H. pylon infection was confirmed in 20 out of 30 (66.7%) patients. Treatment options were as follows: immunochemotherapy in 10 (28.5%) patients, surgery in 9 (25.8%) patients, combined surgery and chemotherapy in 14 (40%) patients and supportive measures in 2 (5.7%) patients. Complete remission was achieved in 13 (37.10/) patients and partial remission in two (5.7%/) patients. Sixteen (45.7%/) patients had disease progression (p < 0.001). Cytoplasmatic expression of BCL10 in tumor cells was detected in 19 (54.3%) specimens. Nuclear expression was detected in no specimen. Cytoplasmic expression of NF-kappaB was present in 22 (65.7%) specimens, but nuclear expression was not detected in any specimens. Nuclear expressions (activation)of NF-kappaB p65 subunit and BCL10 were not detected in specimens of gastric MALT lymphoma. The correlation of nuclear coexpression of BCL10 and NF-kappaB in gastric MALT lymphoma was not established. These results indicate that other mechanisms and signal pathways are active in lymphogenesis of gastric MALT lymphoma, as that apoptotic inhibition is not

  20. Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma

    PubMed Central

    Murray, Megan Y; Zaitseva, Lyubov; Auger, Martin J; Craig, Jenny IO; MacEwan, David J; Rushworth, Stuart A; Bowles, Kristian M

    2015-01-01

    Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10–15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton's tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib. PMID:25565020

  1. Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma.

    PubMed

    Murray, Megan Y; Zaitseva, Lyubov; Auger, Martin J; Craig, Jenny Io; MacEwan, David J; Rushworth, Stuart A; Bowles, Kristian M

    2015-01-01

    Multiple Myeloma (MM) is a haematologic malignancy characterized by the accumulation of clonal plasma cells in the bone marrow. Over the last 10-15 y the introduction of the proteasome-inhibitor bortezomib has improved MM prognosis, however relapse due to bortezomib-resistance is inevitable and the disease, at present, remains incurable. To model bortezomib-resistant MM we generated bortezomib-resistant MM cell lines (n = 4 ) and utilised primary malignant plasma cells from patients relapsing after bortezomib treatment (n = 6 ). We identified enhanced Bruton's tyrosine kinase (BTK) activity in bortezomib-resistant MM cells and found that inhibition of BTK, either pharmacologically with ibrutinib (0.5 μM) or via lenti-viral miRNA-targeted BTK interference, re-sensitized previously bortezomib-resistant MM cells to further bortezomib therapy at a physiologically relevant concentration (5 nM). Further analysis of pro-survival signaling revealed a role for the NF-κB p65 subunit in MM bortezomib-resistance, thus a combination of BTK and NF-κB p65 inhibition, either pharmacologically or via further lenti-viral miRNA NF-κB p65 interference, also restored sensitivity to bortezomib, significantly reducing cell viability (37.5 ± 6 .9 %, ANOVA P ≤ 0 .001). Accordingly, we propose the clinical evaluation of a bortezomib/ibrutinib combination therapy, including in patients resistant to single-agent bortezomib.

  2. NIK and Cot cooperate to trigger NF-kappaB p65 phosphorylation.

    PubMed

    Wittwer, Tobias; Schmitz, M Lienhard

    2008-06-27

    The serine/threonine kinase Cot triggers NF-kappaB-dependent transactivation and activation of various MAPKinases. Here we identify Cot as a novel p65 interacting protein kinase. Cot expression induces p65 phosphorylation at serines 536 and 468 in dependence from its kinase function. Accordingly, shRNA-mediated knockdown of Cot expression interferes with TNF-induced NF-kappaB-dependent gene expression. Also the C-terminally truncated, oncogenic form of Cot is able to trigger p65 phosphorylation. In vitro kinase assays and dominant negative mutants revealed that NIK functions downstream of Cot to mediate p65 phosphorylation.

  3. NF-kappaB signaling blockade by Bay 11-7085 during early cardiac morphogenesis induces alterations of the outflow tract in chicken heart.

    PubMed

    Hernández-Gutierrez, S; García-Peláez, I; Zentella-Dehesa, A; Ramos-Kuri, M; Hernández-Franco, P; Hernández-Sánchez, F; Rojas, E

    2006-07-01

    Nuclear factor kappaB (NF-kappaB) is a pleiotropic transcription factor implicated in the regulation of diverse morphologic cardiac alterations, for which the p50 and p65 subunits form the most prevalent dimeric form in the heart. NF-kappaB is inactivated by proteins of the IkappaB family, which trap it in the cytoplasm. It is not known whether NF-kappaB influences cardiac development. Here we investigated the role of NF-kappaB in regulating transcription in chicken heart morphogenesis. Specifically, we tested whether NF-kappaB activation is required for normal formation of the outflow tract (OFT) during a critical stage of heart development. We designed a reporter vector with kappaB binding sites for Rel family members in the promoter, upstream from the cDNA of Green Fluorescent Protein (GFP). This construct was injected directly into the developing heart of chicken embryos. NF-kappaB activation was subsequently inhibited by administration of the specific pharmacological agent Bay 11-7085. We found that forced NF-kappaB expression was associated with multiple congenital cardiac alterations of the OFT (mainly IVC, DORV and great arteries stenosis). These findings indicate that blockade of NF-kappaB induces apoptosis and is an important factor in the development of OFT during cardiogenesis. However, it remains unknown which members of the Rel family are relevant in this process.

  4. SIRT1 Activators Suppress Inflammatory Responses through Promotion of p65 Deacetylation and Inhibition of NF-κB Activity

    PubMed Central

    Yang, Hongying; Zhang, Wei; Pan, Heng; Feldser, Heidi G.; Lainez, Elden; Miller, Christine; Leung, Stewart; Zhong, Zhong; Zhao, Huizhen; Sweitzer, Sharon; Considine, Thomas; Riera, Thomas; Suri, Vipin; White, Brian; Ellis, James L.; Vlasuk, George P.; Loh, Christine

    2012-01-01

    Chronic inflammation is a major contributing factor in the pathogenesis of many age-associated diseases. One central protein that regulates inflammation is NF-κB, the activity of which is modulated by post-translational modifications as well as by association with co-activator and co-repressor proteins. SIRT1, an NAD+-dependent protein deacetylase, has been shown to suppress NF-κB signaling through deacetylation of the p65 subunit of NF-κB resulting in the reduction of the inflammatory responses mediated by this transcription factor. The role of SIRT1 in the regulation of NF-κB provides the necessary validation for the development of pharmacological strategies for activating SIRT1 as an approach for the development of a new class of anti-inflammatory therapeutics. We report herein the development of a quantitative assay to assess compound effects on acetylated p65 protein in the cell. We demonstrate that small molecule activators of SIRT1 (STACs) enhance deacetylation of cellular p65 protein, which results in the suppression of TNFα-induced NF-κB transcriptional activation and reduction of LPS-stimulated TNFα secretion in a SIRT1-dependent manner. In an acute mouse model of LPS-induced inflammation, the STAC SRTCX1003 decreased the production of the proinflammatory cytokines TNFα and IL-12. Our studies indicate that increasing SIRT1-mediated NF-κB deacetylation using small molecule activating compounds is a novel approach to the development of a new class of therapeutic anti-inflammatory agents. PMID:23029496

  5. NF-{kappa}B p65 represses {beta}-catenin-activated transcription of cyclin D1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Injoo; Choi, Yong Seok; Jeon, Mi-Ya

    2010-12-03

    Research highlights: {yields} Cyclin D1 transcription is directly activated by {beta}-catenin; however, {beta}-catenin-induced cyclin D1 transcription is reduced by NF-{kappa}B p65. {yields} Protein-protein interaction between NF-{kappa}B p65 and {beta}-catenin might be responsible for p65-mediated repression of cyclin D1. {yields} One of five putative binding sites, located further upstream of other sites, is the major {beta}-catenin binding site in the cyclin D1 promoter. {yields} NF-{kappa}B binding site in cyclin D1 is occupied not only by p65 but also by {beta}-catenin, which is dynamically regulated by the signal. -- Abstract: Signaling crosstalk between the {beta}-catenin and NF-{kappa}B pathways represents a functional network.more » To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. {beta}-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-{kappa}B p65 reduced {beta}-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of {beta}-catenin on one of the T-cell activating factor binding sites. More interestingly, {beta}-catenin binding was greatly reduced by NF-{kappa}B p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of {beta}-catenin and NF-{kappa}B on promoters might contribute to the regulated expression of their target genes.« less

  6. Melatonin reverses H2 O2 -induced senescence in SH-SY5Y cells by enhancing autophagy via sirtuin 1 deacetylation of the RelA/p65 subunit of NF-κB.

    PubMed

    Nopparat, Chutikorn; Sinjanakhom, Puritat; Govitrapong, Piyarat

    2017-08-01

    Autophagy, a degradation mechanism that plays a major role in maintaining cellular homeostasis and diminishes in aging, is considered an aging characteristic. Melatonin is an important hormone that plays a wide range of physiological functions, including the anti-aging effect, potentially via the regulation of the Sirtuin1 (SIRT1) pathway. The deacetylation ability of SIRT1 is important for controlling the function of several transcription factors, including nuclear factor kappa B (NF-ĸB). Apart from inflammation, NF-ĸB can regulate autophagy by inhibiting Beclin1, an initiator of autophagy. Although numerous studies have revealed the role of melatonin in regulating autophagy, very limited experiments have shown that melatonin can increase autophagic activity via SIRT1 in a senescent model. This study focuses on the effect of melatonin on autophagy via the deacetylation activity of SIRT1 on RelA/p65, a subunit of NF-ĸB, to determine whether melatonin can attenuate the aging condition. SH-SY5Y cells were treated with H 2 O 2 to induce the senescent state. These results demonstrated that melatonin reduced a number of beta-galactosidase (SA-βgal)-positive cells, a senescent marker. In addition, melatonin increased the protein levels of SIRT1, Beclin1, and LC3-II, a hallmark protein of autophagy, and reduced the levels of acetylated-Lys310 in the p65 subunit of NF-ĸB in SH-SY5Y cells treated with H 2 O 2 . Furthermore, in the presence of SIRT1 inhibitor, melatonin failed to increase autophagic markers. The present data indicate that melatonin enhances autophagic activity via the SIRT1 signaling pathway. Taken together, we propose that in modulating autophagy, melatonin may provide a therapeutically beneficial role in the anti-aging processes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation.

    PubMed

    Evans, Sean M; Rodino, Kyle G; Adcox, Haley E; Carlyon, Jason A

    2018-05-01

    Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that threatens over one billion people. Nuclear translocation of the transcription factor, NF-κB, is the central initiating cellular event in the antimicrobial response. Here, we report that NF-κB p65 nuclear accumulation and NF-κB-dependent transcription are inhibited in O. tsutsugamushi infected HeLa cells and/or primary macrophages, even in the presence of TNFα. The bacterium modulates p65 subcellular localization by neither degrading it nor inhibiting IκBα degradation. Rather, it exploits host exportin 1 to mediate p65 nuclear export, as this phenomenon is leptomycin B-sensitive. O. tsutsugamushi antagonizes NF-κB-activated transcription even when exportin 1 is inhibited and NF-κB consequently remains in the nucleus. Two ankyrin repeat-containing effectors (Anks), Ank1 and Ank6, each of which possess a C-terminal F-box and exhibit 58.5% amino acid identity, are linked to the pathogen's ability to modulate NF-κB. When ectopically expressed, both translocate to the nucleus, abrogate NF-κB-activated transcription in an exportin 1-independent manner, and pronouncedly reduce TNFα-induced p65 nuclear levels by exportin 1-dependent means. Flag-tagged Ank 1 and Ank6 co-immunoprecipitate p65 and exportin 1. Both also bind importin β1, a host protein that is essential for the classical nuclear import pathway. Importazole, which blocks importin β1 activity, abrogates Ank1 and Ank6 nuclear translocation. The Ank1 and Ank6 regions that bind importin β1 also mediate their transport into the nucleus. Yet, these regions are distinct from those that bind p65/exportin 1. The Ank1 and Ank6 F-box and the region that lies between it and the ankyrin repeat domain are essential for blocking p65 nuclear accumulation. These data reveal a novel mechanism by which O. tsutsugamushi modulates the activity and nuclear transport of NF-κB p65 and identify the first microbial proteins that co-opt both

  8. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tongyi; Department of Cardiothoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai; Zhang, Ben

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction.more » Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the

  9. A water-soluble polysaccharide from Grifola frondosa induced macrophages activation via TLR4-MyD88-IKKβ-NF-κB p65 pathways

    PubMed Central

    Hou, Lihua; Meng, Meng; Chen, Yuanyuan; Wang, Chunling

    2017-01-01

    Here, the immunomodulatory effects of water-soluble polysaccharide from Grifola frondosa on RAW264.7 macrophages and its molecular mechanisms were investigated. G. frondosa polysaccharide could obviously enhance immunostimulatory activity such as the release of nitric oxide and cytokine production. Western blotting results showed that G. frondosa polysaccharide elevated the TLR4, which might act as an upstream regulator of MyD88 induced G. frondosa polysaccharide. MyD88 promoted IKKβ in endochylema and translocate NF-κB p65 subunit into the nucleus which increased the NO production and cytokine/chemokines level. The results suggested that G. frondosa polysaccharide activated macrophages through TLR4-MyD88-IKKβ-NF-κBp65 signaling pathways. PMID:29156820

  10. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA.

    PubMed

    Yen, Hilo; Ooka, Tadasuke; Iguchi, Atsushi; Hayashi, Tetsuya; Sugimoto, Nakaba; Tobe, Toru

    2010-12-16

    The NF-κB signaling pathway is central to the innate and adaptive immune responses. Upon their detection of pathogen-associated molecular patterns, Toll-like receptors on the cell surface initiate signal transduction and activate the NF-κB pathway, leading to the production of a wide array of inflammatory cytokines, in attempt to eradicate the invaders. As a countermeasure, pathogens have evolved ways to subvert and manipulate this system to their advantage. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are closely related bacteria responsible for major food-borne diseases worldwide. Via a needle-like protein complex called the type three secretion system (T3SS), these pathogens deliver virulence factors directly to host cells and modify cellular functions, including by suppressing the inflammatory response. Using gain- and loss-of-function screenings, we identified two bacterial effectors, NleC and NleE, that down-regulate the NF-κB signal upon being injected into a host cell via the T3SS. A recent report showed that NleE inhibits NF-κB activation, although an NleE-deficient pathogen was still immune-suppressive, indicating that other anti-inflammatory effectors are involved. In agreement, our present results showed that NleC was also required to inhibit inflammation. We found that NleC is a zinc protease that disrupts NF-κB activation by the direct cleavage of NF-κB's p65 subunit in the cytoplasm, thereby decreasing the available p65 and reducing the total nuclear entry of active p65. More importantly, we showed that a mutant EPEC/EHEC lacking both NleC and NleE (ΔnleC ΔnleE) caused greater inflammatory response than bacteria carrying ΔnleC or ΔnleE alone. This effect was similar to that of a T3SS-defective mutant. In conclusion, we found that NleC is an anti-inflammatory bacterial zinc protease, and that the cooperative function of NleE and NleC disrupts the NF-κB pathway and accounts for most of the immune suppression caused

  11. Eicosapentaenoic Acid (EPA) Induced Macrophages Activation through GPR120-Mediated Raf-ERK1/2-IKKβ-NF-κB p65 Signaling Pathways

    PubMed Central

    Han, Lirong; Song, Shumin; Niu, Yabing; Meng, Meng; Wang, Chunling

    2017-01-01

    Objectives: To investigate the immunomodulatory effect and molecular mechanisms of Eicosapentaenoic acid (EPA, a typical kind of n-3PUFAs) on RAW264.7 cells. Methods: A variety of research methods, including the RAW264.7 cells culture, cell proliferation assays, morphologic observations, measurements of NO production, cytokine assays, nuclear protein extractions, western blot analyses and NF-κB p65 immunofluorescence assays were used in this study. Results: The results showed that EPA could increase the proliferation index and enhance the release of nitric oxide (NO) and cytokines in RAW264.7 cells. Western blotting results revealed that the protein level of GPR120 increased significantly in RAW264.7 cells after EPA treatment. Meanwhile, EPA elevated the phosphorylation status of Raf, which may act as an upstream regulator of EPA-induced phosphorylated ERK1/2. In addition, the phosphorylated ERK1/2 may then promote IKKβ in endochylema and translocate the NF-κB p65 subunit into the nucleus, thus regulating the production of inducible nitric oxide synthase (iNOS) and cytokines. Conclusions: EPA (0.6–3.0 μmol) activates RAW264.7 cells through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways. PMID:28841192

  12. Eicosapentaenoic Acid (EPA) Induced Macrophages Activation through GPR120-Mediated Raf-ERK1/2-IKKβ-NF-κB p65 Signaling Pathways.

    PubMed

    Han, Lirong; Song, Shumin; Niu, Yabing; Meng, Meng; Wang, Chunling

    2017-08-25

    Objectives: To investigate the immunomodulatory effect and molecular mechanisms of Eicosapentaenoic acid (EPA, a typical kind of n-3PUFAs) on RAW264.7 cells. Methods: A variety of research methods, including the RAW264.7 cells culture, cell proliferation assays, morphologic observations, measurements of NO production, cytokine assays, nuclear protein extractions, western blot analyses and NF-κB p65 immunofluorescence assays were used in this study. Results: The results showed that EPA could increase the proliferation index and enhance the release of nitric oxide (NO) and cytokines in RAW264.7 cells. Western blotting results revealed that the protein level of GPR120 increased significantly in RAW264.7 cells after EPA treatment. Meanwhile, EPA elevated the phosphorylation status of Raf, which may act as an upstream regulator of EPA-induced phosphorylated ERK1/2. In addition, the phosphorylated ERK1/2 may then promote IKKβ in endochylema and translocate the NF-κB p65 subunit into the nucleus, thus regulating the production of inducible nitric oxide synthase (iNOS) and cytokines. Conclusions: EPA (0.6-3.0 μmol) activates RAW264.7 cells through GPR120-mediated Raf-ERK1/2-IKKβ-NF-κB p65 signaling pathways.

  13. Enterovirus 71 2C Protein Inhibits NF-κB Activation by Binding to RelA(p65)

    PubMed Central

    Du, Haiwei; Yin, Peiqi; Yang, Xiaojie; Zhang, Leiliang; Jin, Qi; Zhu, Guofeng

    2015-01-01

    Viruses evolve multiple ways to interfere with NF-κB signaling, a key regulator of innate and adaptive immunity. Enterovirus 71 (EV71) is one of primary pathogens that cause hand-foot-mouth disease. Here, we identify RelA(p65) as a novel binding partner for EV71 2C protein from yeast two-hybrid screen. By interaction with IPT domain of p65, 2C reduces the formation of heterodimer p65/p50, the predominant form of NF-κB. We also show that picornavirus 2C family proteins inhibit NF-κB activation and associate with p65 and IKKβ. Our findings provide a novel mechanism how EV71 antagonizes innate immunity. PMID:26394554

  14. Evidence for activation of nuclear factor kappaB in obstructive sleep apnea.

    PubMed

    Yamauchi, Motoo; Tamaki, Shinji; Tomoda, Koichi; Yoshikawa, Masanori; Fukuoka, Atsuhiko; Makinodan, Kiyoshi; Koyama, Noriko; Suzuki, Takahiro; Kimura, Hiroshi

    2006-12-01

    Obstructive sleep apnea (OSA) is a risk factor for atherosclerosis, and atherosclerosis evolves from activation of the inflammatory cascade. We propose that activation of the nuclear factor kappaB (NF-kappaB), a key transcription factor in the inflammatory cascade, occurs in OSA. Nine age-matched, nonsmoking, and non-hypertensive men with OSA symptoms and seven similar healthy subjects were recruited for standard polysomnography followed by the collection of blood samples for monocyte nuclear p65 concentrations (OSA and healthy groups). In the OSA group, p65 and of monocyte production of tumor necrosis factor alpha (TNF-alpha) were measured at the same time and after the next night of continuous positive airway pressure (CPAP). p65 Concentrations in the OSA group were significantly higher than in the control group [median, 0.037 ng/microl (interquartile range, 0.034 to 0.051) vs 0.019 ng/microl (interquartile range, 0.013 to 0.032); p = 0.008], and in the OSA group were significantly correlated with apnea-hypopnea index and time spent below an oxygen saturation of 90% (r = 0.77 and 0.88, respectively) after adjustment for age and BMI. One night of CPAP resulted in a reduction in p65 [to 0.020 ng/mul (interquartile range, 0.010 to 0.036), p = 0.04] and levels of TNF-alpha production in cultured monocytes [16.26 (interquartile range, 7.75 to 24.85) to 7.59 ng/ml (interquartile range, 5.19 to 12.95), p = 0.01]. NF-kappaB activation occurs with sleep-disordered breathing. Such activation of NF-kappaB may contribute to the pathogenesis of atherosclerosis in OSA patients.

  15. Dioxonaphthoimidazoliums AB1 and YM155 disrupt phosphorylation of p50 in the NF-κB pathway

    PubMed Central

    Chin, Tan Min; Go, Mei Lin

    2016-01-01

    The NF-κB pathway is overexpressed in non-small cell lung cancers (NSCLC) and contributes to the poor prognosis and high mortality characterizing this malignancy. Silencing the p50 and p65 NF-κB subunits in the NSCLC H1299 cell line led to profound loss in cell viability and downregulated anti-apoptotic proteins survivin and Mcl1. We also showed that a survivin suppressant, the dioxonaphthoimidazolium YM155, and its structural analog AB1 arrested the growth of H1299 cells at nanomolar concentrations. Both compounds were apoptogenic and suppressed survivin and other anti-apoptotic proteins (Mcl1, Bcl-2, Bcl-xl) in a dose- and/or time-dependent manner. YM155 and AB1 did not affect the expression of key proteins (IκBα, p65, p50) involved in NF-κB signaling. Stable IκBα levels suggest that the NF-κB/IκB complex and proteins upstream of IκBα, were not targeted. Neither did the compounds intercept the nuclear translocation of the p50 and p65 subunits. On the other hand, YM155 and AB1 suppressed the phosphorylation of the p50 subunit at Ser337 which is critical in promoting the binding of NF-κB dimers to DNA. Both compounds duly impeded the binding of NF-κB dimers to DNA and attenuated transcriptional activity of luciferase-transfected HEK293 cells controlled by NF-κB response elements. We propose that the “silencing” the NF-κB pathway effected by these compounds contributed to their potent apoptogenic effects on H1299. Notwithstanding, the mechanism(s) involved in their ability to abolish phosphorylation of p50 remains to be elucidated. Taken together, these results disclose a novel facet of functionalized dioxonaphthoimidazoliums that could account for their potent cell killing property. PMID:26872379

  16. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    PubMed

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  17. Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex.

    PubMed

    Bergqvist, Simon; Croy, Carrie H; Kjaergaard, Magnus; Huxford, Tom; Ghosh, Gourisankar; Komives, Elizabeth A

    2006-07-07

    IkappaBalpha is an ankyrin repeat protein that inhibits NF-kappaB transcriptional activity by sequestering NF-kappaB outside of the nucleus in resting cells. We have characterized the binding thermodynamics and kinetics of the IkappaBalpha ankyrin repeat domain to NF-kappaB(p50/p65) using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC). SPR data showed that the IkappaBalpha and NF-kappaB associate rapidly but dissociate very slowly, leading to an extremely stable complex with a K(D,obs) of approximately 40 pM at 37 degrees C. As reported previously, the amino-terminal DNA-binding domain of p65 contributes little to the overall binding affinity. Conversely, helix four of p65, which forms part of the nuclear localization sequence, was essential for high-affinity binding. This was surprising, given the small size of the binding interface formed by this part of p65. The NF-kappaB(p50/p65) heterodimer and p65 homodimer bound IkappaBalpha with almost indistinguishable thermodynamics, except that the NF-kappaB p65 homodimer was characterized by a more favorable DeltaH(obs) relative to the NF-kappaB(p50/p65) heterodimer. Both interactions were characterized by a large negative heat capacity change (DeltaC(P,obs)), approximately half of which was contributed by the p65 helix four that was necessary for tight binding. This could not be accounted for readily by the small loss of buried non-polar surface area and we hypothesize that the observed effect is due to additional folding of some regions of the complex.

  18. The p65 Subunit of NF-κB Inhibits COL1A1 Gene Transcription in Human Dermal and Scleroderma Fibroblasts through Its Recruitment on Promoter by Protein Interaction with Transcriptional Activators (c-Krox, Sp1, and Sp3)*

    PubMed Central

    Beauchef, Gallic; Bigot, Nicolas; Kypriotou, Magdalini; Renard, Emmanuelle; Porée, Benoît; Widom, Russell; Dompmartin-Blanchere, Anne; Oddos, Thierry; Maquart, François-Xavier; Demoor, Magali; Boumediene, Karim; Galera, Philippe

    2012-01-01

    Transcriptional mechanisms regulating type I collagen genes expression in physiopathological situations are not completely known. In this study, we have investigated the role of nuclear factor-κB (NF-κB) transcription factor on type I collagen expression in adult normal human (ANF) and scleroderma (SF) fibroblasts. We demonstrated that NF-κB, a master transcription factor playing a major role in immune response/apoptosis, down-regulates COL1A1 expression by a transcriptional control involving the −112/−61 bp sequence. This 51-bp region mediates the action of two zinc fingers, Sp1 (specific protein-1) and Sp3, acting as trans-activators of type I collagen expression in ANF and SF. Knockdown of each one of these trans factors by siRNA confirmed the trans-activating effect of Sp1/Sp3 and the p65 subunit of NF-κB trans-inhibiting effect on COL1A1 expression. Despite no existing κB consensus sequence in the COL1A1 promoter, we found that Sp1/Sp3/c-Krox and NF-κB bind and/or are recruited on the proximal promoter in chromatin immunoprecipitation (ChIP) assays. Attempts to elucidate whether interactions between Sp1/Sp3/c-Krox and p65 are necessary to mediate the NF-κB inhibitory effect on COL1A1 in ANF and SF were carried out; in this regard, immunoprecipitation assays revealed that they interact, and this was validated by re-ChIP. Finally, the knockdown of Sp1/Sp3/c-Krox prevents the p65 inhibitory effect on COL1A1 transcription in ANF, whereas only the siRNAs targeting Sp3 and c-Krox provoked the same effect in SF, suggesting that particular interactions are characteristic of the scleroderma phenotype. In conclusion, our findings highlight a new mechanism for COL1A1 transcriptional regulation by NF-κB, and these data could allow the development of new antifibrotic strategies. PMID:22139845

  19. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  20. 6-Shogaol suppressed lipopolysaccharide-induced up-expression of iNOS and COX-2 in murine macrophages.

    PubMed

    Pan, Min-Hsiung; Hsieh, Min-Chi; Hsu, Ping-Chi; Ho, Sheng-Yow; Lai, Ching-Shu; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang

    2008-12-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, antinausea, anti-inflammatory, and anticarcinogenic properties. In this study, we investigated the inhibitory effects of 6-shogaol and a related compound, 6-gingerol, on the induction of nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2) in murine RAW 264.7 cells activated with LPS. Western blotting and reverse transcription-PCR analyses demonstrated that 6-shogaol significantly blocked protein and mRNA expression of inducible NOS (iNOS) and COX-2 in LPS-induced macrophages. The in vivo anti-inflammatory activity was evaluated by a topical 12-O-tetradecanoylphorbol 13-acetate (TPA) application to mouse skin. When applied topically onto the shaven backs of mice prior to TPA, 6-shogaol markedly inhibited the expression of iNOS and COX-2 proteins. Treatment with 6-shogaol resulted in the reduction of LPS-induced nuclear translocation of nuclear factor-kappaB (NF kappaB) subunit and the dependent transcriptional activity of NF kappaB by blocking phosphorylation of inhibitor kappaB (I kappaB)alpha and p65 and subsequent degradation of I kappaB alpha. Transient transfection experiments using NF kappaB reporter constructs indicated that 6-shogaol inhibits the transcriptional activity of NF kappaB in LPS-stimulated mouse macrophages. We found that 6-shogaol also inhibited LPS-induced activation of PI3K/Akt and extracellular signal-regulated kinase 1/2, but not p38 mitogen-activated protein kinase (MAPK). Taken together, these results show that 6-shogaol downregulates inflammatory iNOS and COX-2 gene expression in macrophages by inhibiting the activation of NF kappaB by interfering with the activation PI3K/Akt/I kappaB kinases IKK and MAPK.

  1. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  2. ABCB5 promotes melanoma metastasis through enhancing NF-κB p65 protein stability.

    PubMed

    Wang, Shenghao; Tang, Li; Lin, Junyu; Shen, Zhongliang; Yao, Yikun; Wang, Wei; Tao, Shuai; Gu, Chenjian; Ma, Jie; Xie, Youhua; Liu, Yanfeng

    2017-10-07

    Melanoma is the most aggressive type of skin cancer. Melanoma has an extremely poor prognosis because of its high potential for vascular invasion, metastasis and recurrence. The mechanism of melanoma metastasis is not well understood. ATP-binding cassette sub-family B member 5 (ABCB5) plays a key role in melanoma growth. However, it is uncertain what function ABCB5 may exert in melanoma metastasis. In this report, we for the first time demonstrate ABCB5 as a crucial factor that promotes melanoma metastasis. ABCB5 positive (ABCB5 + ) malignant melanoma initiating cells (MMICs) display a higher metastatic potential compared with ABCB5 negative (ABCB5 - ) melanoma subpopulation. Knockdown of ABCB5 expression reduces melanoma cell migration and invasion in vitro and melanoma pulmonary metastasis in tumor xenograft mice. ABCB5 and NF-κB p65 expression levels are positively correlated in both melanoma tissues and cell lines. Consequently, ABCB5 activates the NF-κB pathway by inhibiting p65 ubiquitination to enhance p65 protein stability. Our finding highlights ABCB5 as a novel pro-metastasis factor and provides a potential therapeutic target for melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Homeostatic regulatory role of Pokemon in NF-κB signaling: stimulating both p65 and IκBα expression in human hepatocellular carcinoma cells.

    PubMed

    Zhang, Nan-Nan; Sun, Qin-Sheng; Chen, Zhe; Liu, Feng; Jiang, Yu-Yang

    2013-01-01

    NF-κB consists of p50, p65 (RelA), p52, c-Rel, and RelB, and among them p65 is a representative protein to investigate the regulation and function of this signaling. NF-κB integrates inflammation and carcinogenesis and regulates the expression of a variety of genes in response to immunity, inflammation, and apoptosis. IκBα acts as an inhibitor of NF-κB through forming an inactive NF-κB/IκBα complex. Pokemon is a ubiquitous transcription factor involved in different signaling pathways, playing a pivotal role in cell proliferation, anti-apoptosis, embryonic development, and maintenance. In this study, we found that p65 and IκBα are both novel regulatory targets of Pokemon. Ectopic expression of Pokemon in immortalized liver cells HL7702 enhanced p65 and IκBα expression, whereas silencing of Pokemon in hepatocellular carcinoma cells QGY7703 reduced cellular p65 levels. ChIP assay and targeted mutagenesis revealed that Pokemon directly binds to the element of -434 to -430 bp in p65 promoter and of -453 to -448 bp in IκBα promoter and stimulates luciferase reporter gene expression. Co-transfection of Pokemon with p65 or IκBα promoter-reporter notably enhanced their promoter activity. These data suggest that Pokemon activates the expression of both p65 and IκBα by sequence-specific binding to their promoters and plays a dual role in regulating NF-κB signaling.

  4. The peroxisome proliferator-activated receptor β/δ (PPARβ/δ) agonist GW501516 prevents TNF-α-induced NF-κB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1.

    PubMed

    Barroso, Emma; Eyre, Elena; Palomer, Xavier; Vázquez-Carrera, Manuel

    2011-02-15

    Nuclear factor (NF)-κB is a ubiquitously expressed transcription factor controlling the expression of numerous genes involved in inflammation. The aim of this study was to evaluate whether activation of the peroxisome proliferator-activated receptor (PPAR) β/δ prevented TNF-α-induced NF-κB activation in human HaCaT keratinocytes and, if so, to determine the mechanism involved. The PPARβ/δ agonist GW501516 inhibited the increase caused by TNF-α in the mRNA levels of the NF-κB target genes interleukin 8 (IL-8), TNF-α and thymic stromal lymphopoietin (TSLP). Likewise, GW501516 prevented the increase in NF-κB DNA-binding activity observed in cells exposed to TNF-α. The reduction in NF-κB activity following GW501516 treatment in cells stimulated with TNF-α did not involve either increased IκBα protein levels or a reduction in the translocation of the p65 subunit of NF-κB. In contrast, GW501516 treatment decreased TNF-α-induced p65 acetylation. Acetylation of p65 is mainly regulated by p300, a transcriptional co-activator that binds to and acetylates p65. Of note, AMP kinase (AMPK) activation phosphorylates p300 and reduces its binding to p65. GW501516 increased AMPK phosphorylation and the subsequent p300 phosphorylation, leading to a marked reduction in the association between p65 and this transcriptional co-activator. In addition, treatment with the PPARβ/δ agonist increased SIRT1 protein levels. Finally, the reduction in IL-8 mRNA levels following GW501516 treatment in TNF-α-stimulated cells was abolished in the presence of the PPARβ/δ antagonist GSK0660, the AMPK inhibitor compound C and the SIRT1 inhibitor sirtinol, indicating that the effects of GW501516 on NF-κB activity were dependent on PPARβ/δ, AMPK and SIRT1, respectively. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells

    PubMed Central

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-01-01

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer. PMID:28545028

  6. STC1 promotes cell apoptosis via NF-κB phospho-P65 Ser536 in cervical cancer cells.

    PubMed

    Pan, Xi; Jiang, Binyuan; Liu, Jianhao; Ding, Juan; Li, Yuehui; Sun, Ruili; Peng, Li; Qin, Changfei; Fang, Shujuan; Li, Guancheng

    2017-07-11

    Stanniocalin-1 (STC1) is a secreted glycoprotein hormone and involved in various types of human malignancies. Our previous studies revealed that STC1 inhibited cell proliferation and invasion of cervical cancer cells through NF-κB P65 activation, but the mechanism is poorly understood. In our studies, we found overexpression of STC1 promoted cell apoptosis while silencing of STC1 promoted cell growth of cervical cancer. Phospho-protein profiling and Western blotting results showed the expression of NF-κB related phosphorylation sites including NF-κB P65 (Ser536), IκBα, IKKβ, PI3K, and AKT was altered in STC1-overexpressed cervical cancer cells. Moreover, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA could decrease the protein content of phospho-P65 (Ser536), phospho-IκBα, phospho-AKT and phospho-IKKβ while increasing the level of P65 compared to STC1 overexpression groups in cervical cancer cells. Also, PI3K inhibitor LY294002, AKT-shRNA and IκBα-shRNA elevated the percentage of apoptosis and suppressed the G1/S transition in those cells. Additionally, STC1 level was decreased in cervical cancer, especial in stage II and III. The results of immunohistochemistry for the cervical cancer microarray showed that a lower level of STC1, phospho-PI3K and P65 protein expression in tumor tissues than that in normal tissues, and a higher level of phospho-P65 protein expression in tumor tissues, which is consistent with the results of the Western blotting. These data demonstrated that STC1 can promote cell apoptosis via NF-κB phospho-P65 (Ser536) by PI3K/AKT, IκBα and IKK signaling in cervical cancer cells. Our results offer the first mechanism that explains the link between STC1 and cell apoptosis in cervical cancer.

  7. Targeting NF-κB RelA/p65 phosphorylation overcomes RITA resistance.

    PubMed

    Bu, Yiwen; Cai, Guoshuai; Shen, Yi; Huang, Chenfei; Zeng, Xi; Cao, Yu; Cai, Chuan; Wang, Yuhong; Huang, Dan; Liao, Duan-Fang; Cao, Deliang

    2016-12-28

    Inactivation of p53 occurs frequently in various cancers. RITA is a promising anticancer small molecule that dissociates p53-MDM2 interaction, reactivates p53 and induces exclusive apoptosis in cancer cells, but acquired RITA resistance remains a major drawback. This study found that the site-differential phosphorylation of nuclear factor-κB (NF-κB) RelA/p65 creates a barcode for RITA chemosensitivity in cancer cells. In naïve MCF7 and HCT116 cells where RITA triggered vast apoptosis, phosphorylation of RelA/p65 increased at Ser536, but decreased at Ser276 and Ser468; oppositely, in RITA-resistant cells, RelA/p65 phosphorylation decreased at Ser536, but increased at Ser276 and Ser468. A phosphomimetic mutation at Ser536 (p65/S536D) or silencing of endogenous RelA/p65 resensitized the RITA-resistant cells to RITA while the phosphomimetic mutant at Ser276 (p65/S276D) led to RITA resistance of naïve cells. In mouse xenografts, intratumoral delivery of the phosphomimetic p65/S536D mutant increased the antitumor activity of RITA. Furthermore, in the RITA-resistant cells ATP-binding cassette transporter ABCC6 was upregulated, and silencing of ABCC6 expression in these cells restored RITA sensitivity. In the naïve cells, ABCC6 delivery led to RITA resistance and blockage of p65/S536D mutant-induced RITA sensitivity. Taken together, these data suggest that the site-differential phosphorylation of RelA/p65 modulates RITA sensitivity in cancer cells, which may provide an avenue to manipulate RITA resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. A parapoxviral virion protein inhibits NF-κB signaling early in infection

    PubMed Central

    Khatiwada, Sushil; Delhon, Gustavo; Nagendraprabhu, Ponnuraj; Chaulagain, Sabal; Luo, Shuhong; Diel, Diego G.; Flores, Eduardo F.

    2017-01-01

    Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection. PMID:28787456

  9. Regulation of NF-{kappa}B activity in astrocytes: effects of flavonoids at dietary-relevant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spilsbury, Alison; Vauzour, David; Spencer, Jeremy P.E.

    Highlights: Black-Right-Pointing-Pointer We tested the hypothesis that low concentrations of flavonoids inhibit NF-{kappa}B in astrocytes. Black-Right-Pointing-Pointer Primary cultured astrocytes possess a functional {kappa}B-system, measured using luciferase assays. Black-Right-Pointing-Pointer Seven flavonoids (100 nM-1 {mu}M) failed to reduce NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer Four flavonoids (100 nM-1 {mu}M) failed to reduce TNFa-stimulated NF-{kappa}B activity in astrocytes. Black-Right-Pointing-Pointer (-)-Epicatechin did not regulate nuclear translocation of the NF-{kappa}B subunit, p65. -- Abstract: Neuroinflammation plays an important role in the progression of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Sustained activation of nuclear transcription factor {kappa}B (NF-{kappa}B) is thought to play an importantmore » role in the pathogenesis of neurodegenerative disorders. Flavonoids have been shown to possess antioxidant and anti-inflammatory properties and we investigated whether flavonoids, at submicromolar concentrations relevant to their bioavailability from the diet, were able to modulate NF-{kappa}B signalling in astrocytes. Using luciferase reporter assays, we found that tumour necrosis factor (TNF{alpha}, 150 ng/ml) increased NF-{kappa}B-mediated transcription in primary cultures of mouse cortical astrocytes, which was abolished on co-transfection of a dominant-negative I{kappa}B{alpha} construct. In addition, TNF{alpha} increased nuclear localisation of p65 as shown by immunocytochemistry. To investigate potential flavonoid modulation of NF-{kappa}B activity, astrocytes were treated with flavonoids from different classes; flavan-3-ols ((-)-epicatechin and (+)-catechin), flavones (luteolin and chrysin), a flavonol (kaempferol) or the flavanones (naringenin and hesperetin) at dietary-relevant concentrations (0.1-1 {mu}M) for 18 h. None of the flavonoids modulated constitutive or

  10. [Effects of different nuclear factor kappaB dimers on the survival of immortalized neural progenitor cells].

    PubMed

    Gui, Ling-Li; Zhang, Chuan-Han; Liu, Zhi-Heng; Chen, Zhao-Jun; Zhu, Chang

    2008-04-01

    To investigate the effects of different nuclear factor (NF)-KB dimers on the survival of immortalized neural progenitor cells (INPCs). The control vector RC/CMV, containing the promoter of cytomegalovirus (CMV), and the expression vectors, RcCMV-p50 and RcCMV-p65, containing the coding regions of NF-KB subunits p50 and p65 genes, were transfected into the INPCs by liposome respectively. Stably transfected clones were screened out following G418 selection. Subsequently, the plasmid RcCMV-p50 was transiently transfected into the INPCs which had been stably transfected with the plasmid RcCMV-p65. The expression of p50 or p65 gene was detected in each cell strain by Western blotting. And the NF-KB DNA binding activity in the cell nuclear extracts was measured by electrophoresis mobility shift assay (EMSA). The expression of IkappaBalpha in the cytoplasm was detected by Western blotting. After oxygen and glucose deprivation for 13 h, the cell survival rate was measured by MTT assay. After gene transfection, five different cell strains were obtained: INPC, INPC/CMV, INPC/p50, INPC/p65, and INPC/p50p65. p50 or p65 gene was translated correctly and efficiently in the cell strains which had been transfected with the corresponding plasmids. EMSA showed that the INPC/p50, INPC/p65, and INPC/p50p65 cells all gave rise to NF-kappaB specific bands, which were composed of p50 homodimer, p65 homodimer, and p50 p65 heterodimer and p50 homodimer respectively. The expression of IkappaBbeta was increased significantly in the cytoplasm of the INPC/p65 and INPC/p50p65 cells. Games-Howell test showed that after oxygen and glucose deprivation for 13 h, the survival rates of the NPC/p65 and INPC/p50p65 cells were (6.0 +/- 1.0)% and (4.6 +/- 0.6)% respectively, both significantly lower than those of the INPC, INPC/CMV, and INPC/p50 cells [(72.5 +/- 6.2)%, (70.1 +/- 4.3)%, and (70.4 +/- 7.3)% respectively, all P < 0.05]. Overexpression of p50 gene and p65 gene directly enhance the DNA

  11. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma.

    PubMed

    Zhao, Xinkai; Ning, Qiaoming; Sun, Xiaoning; Tian, De'an

    2011-06-01

    To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  12. Targeting Activation of Specific NF-κB Subunits Prevents Stress-Dependent Atherothrombotic Gene Expression

    PubMed Central

    Djuric, Zdenka; Kashif, Muhammed; Fleming, Thomas; Muhammad, Sajjad; Piel, David; von Bauer, Rüdiger; Bea, Florian; Herzig, Stephan; Zeier, Martin; Pizzi, Marina; Isermann, Berend; Hecker, Markus; Schwaninger, Markus; Bierhaus, Angelika; Nawroth, Peter P

    2012-01-01

    Psychosocial stress has been shown to be a contributing factor in the development of atherosclerosis. Although the underlying mechanisms have not been elucidated entirely, it has been shown previously that the transcription factor nuclear factor-κB (NF-κB) is an important component of stress-activated signaling pathway. In this study, we aimed to decipher the mechanisms of stress-induced NF-κB-mediated gene expression, using an in vitro and in vivo model of psychosocial stress. Induction of stress led to NF-κB-dependent expression of proinflammatory (tissue factor, intracellular adhesive molecule 1 [ICAM-1]) and protective genes (manganese superoxide dismutase [MnSOD]) via p50, p65 or cRel. Selective inhibition of the different subunits and the respective kinases showed that inhibition of cRel leads to the reduction of atherosclerotic lesions in apolipoprotein−/− (ApoE−/−) mice via suppression of proinflammatory gene expression. This observation may therefore provide a possible explanation for ineffectiveness of antioxidant therapies and suggests that selective targeting of cRel activation may provide a novel approach for the treatment of stress-related inflammatory vascular disease. PMID:23114885

  13. BZLF1, an Epstein-Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Thomas E.; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; Kenney, Shannon C.

    We have previously demonstrated that the Epstein-Barr virus immediate-early BZLF1 protein interacts with, and is inhibited by, the NF-{kappa}B family member p65. However, the effects of BZLF1 on NF-{kappa}B activity have not been intensively studied. Here we show that BZLF1 inhibits p65-dependent gene expression. BZLF1 inhibited the ability of IL-1, as well as transfected p65, to activate the expression of two different NF-{kappa}B-responsive genes, ICAM-1 and I{kappa}B-{alpha}. BZLF1 also reduced the constitutive level of I{kappa}B-{alpha} protein in HeLa and A549 cells, and increased the amount of nuclear NF-{kappa}B to a similar extent as tumor necrosis factor-alpha (TNF-{alpha}) treatment. In spitemore » of this BZLF1-associated increase in the nuclear form of NF-{kappa}B, BZLF1 did not induce binding of NF-{kappa}B to NF-{kappa}B responsive promoters (as determined by chromatin immunoprecipitation assay) in vivo, although TNF-{alpha} treatment induced NF-{kappa}B binding as expected. Overexpression of p65 dramatically inhibited the lytic replication cycle of EBV in 293-EBV cells, confirming that NF-{kappa}B also inhibits BZLF1 transcriptional function. Our results are consistent with a model in which BZLF1 inhibits the transcriptional function of p65, resulting in decreased transcription of I{kappa}B-{alpha}, decreased expression of I{kappa}B-{alpha} protein, and subsequent translocation of NF-{kappa}B to the nucleus. This nuclear translocation of NF-{kappa}B may promote viral latency by negatively regulating BZLF1 transcriptional activity. In situations where p65 activity is limiting in comparison to BZLF1, the ability of BZLF1 to inhibit p65 transcriptional function may protect the virus from the host immune system during the lytic form of infection.« less

  14. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells.

    PubMed

    Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V

    2001-01-01

    Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  15. Analysis and Quantitation of NF-[kappa]B Nuclear Translocation in Tumor Necrosis Factor Alpha (TNF-[alpha]) Activated Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Fuseler, John W.; Merrill, Dana M.; Rogers, Jennifer A.; Grisham, Matthew B.; Wolf, Robert E.

    2006-07-01

    Nuclear factor kappa B (NF-[kappa]B) is a heterodimeric transcription factor typically composed of p50 and p65 subunits and is a pleiotropic regulator of various inflammatory and immune responses. In quiescent cells, p50/p65 dimers are sequestered in the cytoplasm bound to its inhibitors, the I-[kappa]Bs, which prevent entry into the nucleus. Following cellular stimulation, the I-[kappa]Bs are rapidly degraded, activating NF-[kappa]B. The active form of NF-[kappa]B rapidly translocates into the nucleus, binding to consensus sequences in the promoter/enhancer region of various genes, promoting their transcription. In human vascular endothelial cells activated with tumor necrosis factor-alpha, the activation and translocation of NF-[kappa]B is rapid, reaching maximal nuclear localization by 30 min. In this study, the appearance of NF-[kappa]B (p65 subunit, p65-NF-[kappa]B) in the nucleus visualized by immunofluorescence and quantified by morphometric image analysis (integrated optical density, IOD) is compared to the appearance of activated p65-NF-[kappa]B protein in the nucleus determined biochemically. The appearance of p65-NF-[kappa]B in the nucleus measured by fluorescence image analysis and biochemically express a linear correlation (R2 = 0.9477). These data suggest that localization and relative protein concentrations of NF-[kappa]B can be reliably determined from IOD measurements of the immunofluorescent labeled protein.

  16. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65.

    PubMed

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S; Kaneki, Masao

    2014-11-11

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson's disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. Copyright © 2014, American Association for the Advancement of Science.

  17. Inflammatory stimuli induce inhibitory S-nitrosylation of the deacetylase SIRT1 to increase acetylation and activation of p53 and p65

    PubMed Central

    Shinozaki, Shohei; Chang, Kyungho; Sakai, Michihiro; Shimizu, Nobuyuki; Yamada, Marina; Tanaka, Tomokazu; Nakazawa, Harumasa; Ichinose, Fumito; Yamada, Yoshitsugu; Ishigami, Akihito; Ito, Hideki; Ouchi, Yasuyoshi; Starr, Marlene E.; Saito, Hiroshi; Shimokado, Kentaro; Stamler, Jonathan S.; Kaneki, Masao

    2015-01-01

    Inflammation increases the abundance of inducible nitric oxide synthase (iNOS), leading to enhanced production of nitric oxide (NO), which can modify proteins by S-nitrosylation. Enhanced NO production increases the activities of the transcription factors p53 and nuclear factor κB (NF-κB) in several models of disease-associated inflammation. S-Nitrosylation inhibits the activity of the protein deacetylase SIRT1. SIRT1 limits apoptosis and inflammation by deacetylating p53 and p65 (also known as RelA), a subunit of NF-κB. We showed in multiple cultured mammalian cell lines that NO donors or inflammatory stimuli induced S-nitrosylation of SIRT1 within CXXC motifs, which inhibited SIRT1 by disrupting its ability to bind zinc. Inhibition of SIRT1 reduced deacetylation and promoted activation of p53 and p65, leading to apoptosis and increased expression of proinflammatory genes. In rodent models of systemic inflammation, Parkinson’s disease, or aging-related muscular atrophy, S-nitrosylation of SIRT1 correlated with increased acetylation of p53 and p65 and activation of p53 and NF-κB target genes, suggesting that S-nitrosylation of SIRT1 may represent a proinflammatory switch common to many diseases and aging. PMID:25389371

  18. Citrullination of NF-κB p65 promotes its nuclear localization and TLR-induced expression of IL-1β and TNFα.

    PubMed

    Sun, Bo; Dwivedi, Nishant; Bechtel, Tyler J; Paulsen, Janet L; Muth, Aaron; Bawadekar, Mandar; Li, Gang; Thompson, Paul R; Shelef, Miriam A; Schiffer, Celia A; Weerapana, Eranthie; Ho, I-Cheng

    2017-06-09

    Many citrullinated proteins are known autoantigens in rheumatoid arthritis, a disease mediated by inflammatory cytokines, such as tumor necrosis factor-α (TNFα). Citrullinated proteins are generated by converting peptidylarginine to peptidylcitrulline, a process catalyzed by the peptidylarginine deiminases (PADs), including PAD1 to PAD4 and PAD6. Several major risk factors for rheumatoid arthritis are associated with heightened citrullination. However, the physiological role of citrullination in immune cells is poorly understood. We report that suppression of PAD activity attenuates Toll-like receptor-induced expression of interleukin-1β (IL-1β) and TNFα by neutrophils in vivo and in vitro but not their global transcription activity. Mechanistically, PAD4 directly citrullinates nuclear factor κB (NF-κB) p65 and enhances the interaction of p65 with importin α3, which brings p65 into the nucleus. The citrullination-enhanced interaction of p65 with importin α3 and its nuclear translocation and transcriptional activity can be attributed to citrullination of four arginine residues located in the Rel homology domain of p65. Furthermore, a rheumatoid arthritis-prone variant of PAD4, carrying three missense mutations, is more efficient in interacting with p65 and enhancing NF-κB activity. Together, these data not only demonstrate a critical role of citrullination in an NF-κB-dependent expression of IL-1β and TNFα but also provide a molecular mechanism by which heightened citrullination propagates inflammation in rheumatoid arthritis. Accordingly, attenuating p65-mediated production of IL-1β and TNFα by blocking the citrullination of p65 has great therapeutic potential in rheumatoid arthritis. Copyright © 2017, American Association for the Advancement of Science.

  19. Anti-nociceptive effect of dexmedetomidine in a rat model of monoarthritis via suppression of the TLR4/NF-κB p65 pathway

    PubMed Central

    Ji, Dong; Zhou, Yalan; Li, Shuangshuang; Li, Dai; Chen, Hui; Xiong, Yuanchang; Zhang, Yuqiu; Xu, Hua

    2017-01-01

    As a therapeutic target for neuropathic pain, the anti-nociceptive effects of α 2-adrenoceptors (α2AR) have attracted attention. Dexmedetomidine (DEX), a potent and highly selective α2AR agonist, has exhibited significant analgesic effects in neuropathic pain, but the underlying mechanism has remained elusive. The present study investigated the effect of DEX on Toll-like receptor (TLR)4 and nuclear factor (NF)-κB p65 expression, as well as the production of pro-inflammatory cytokines. The rat monoarthritis (MA) model was induced by intra-articular injection of complete Freund's adjuvant (CFA) at the ankle joint. After induction of MA, the rats were intrathecally treated with normal saline or DEX (2.5 µg) for 3 consecutive days. The concentration of interleukin-1β and −6 as well as tumor necrosis factor-α was examined by ELISA. The expression levels of TLR4 and NF-κB p65 were determined by western blot analysis and immunohistochemistry. The results indicated that the pro-inflammatory cytokines TLR4 and NF-κB p65 were significantly upregulated in MA rats. DEX treatment markedly reduced mechanical and thermal hyperalgesia, suppressed MA-induced elevation of the pro-inflammatory cytokines and inhibited the TLR4/NF-κB p65 pathway, while these effects were blocked by pre-treatment with the selective α2AR antagonist BRL44408 (15 µg) at 30 min prior to CFA injection. These results suggested that DEX has an anti-nociceptive effect via suppressing the TLR4/NF-κB p65 pathway. PMID:29201195

  20. p38 mitogen-activated protein kinase up-regulates NF-{kappa}B transcriptional activation through RelA phosphorylation during stretch-induced myogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Guoping; Liu, Dongxu; Liu, Jing

    2010-01-01

    p38 MAPK and nuclear factor-B (NF-B) signaling pathways play an indispensable role in the control of skeletal myogenesis. The specific contribution of these signaling pathways to the response of myoblast to the mechanical stimulation and the molecular mechanisms underlying this response remain unresolved. Using an established in vitro model, we now show that p38 MAP kinase activity regulates the transcriptional activation of NF-{kappa}B in response to mechanical stimulation of myoblasts. Furthermore, SB203580 blocked stretch-induced NF-{kappa}B activation during myogenesis, not through down-regulation of degradation of I{kappa}B-{alpha}, and consequent translocation of the p65 subunit of NF-{kappa}B to the nucleus. It is likelymore » that stretch-induced NF-{kappa}B activation by phosphorylation of p65 NF-{kappa}B. Moreover, depletion of p38{alpha} using siRNA significantly reduces stretch-induced phosphorylation of RelA and NF-{kappa}B activity. These results provides the first evidence of a cross-talk between p38 MAPK and NF-{kappa}B signaling pathways during stretch-induced myogenesis, with phosphorylation of RelA being one of the effectors of this promyogenic mechanism. The {alpha} isoform of p38MAP kinase regulates the transcriptional activation of NF-{kappa}B following stimulation with cyclic stretch.« less

  1. Annexin A6 interacts with p65 and stimulates NF-κB activity and catabolic events in articular chondrocytes.

    PubMed

    Campbell, Kirk A; Minashima, Takeshi; Zhang, Ying; Hadley, Scott; Lee, You Jin; Giovinazzo, Joseph; Quirno, Martin; Kirsch, Thorsten

    2013-12-01

    ANXA6, the gene for annexin A6, is highly expressed in osteoarthritic (OA) articular chondrocytes but not in healthy articular chondrocytes. This study was undertaken to determine whether annexin A6 affects catabolic events in these cells. Articular chondrocytes were isolated from Anxa6-knockout mice, wild-type (WT) mice, and human articular cartilage in which ANXA6 was overexpressed. Cells were treated with interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα), and expression of catabolic genes and activation of NF-κB were determined by real-time polymerase chain reaction and luciferase reporter assay. Anxa6(-/-) and WT mouse knee joints were injected with IL-1β or the medial collateral ligament was transected and partial resection of the medial meniscus was performed to determine the role of Anxa6 in IL-1β-mediated cartilage destruction and OA progression. The mechanism by which Anxa6 stimulates NF-κB activity was determined by coimmunoprecipitation and immunoblot analysis of nuclear and cytoplasmic fractions of IL-1β-treated Anxa6(-/-) and WT mouse chondrocytes for p65 and Anxa6. Loss of Anxa6 resulted in decreased NF-κB activation and catabolic marker messenger RNA (mRNA) levels in IL-1β- or TNFα-treated articular chondrocytes, whereas overexpression of ANXA6 resulted in increased NF-κB activity and catabolic marker mRNA levels. Annexin A6 interacted with p65, and loss of Anxa6 caused decreased nuclear translocation and retention of the active p50/p65 NF-κB complex. Cartilage destruction in Anxa6(-/-) mouse knee joints after IL-1β injection or partial medial meniscectomy was reduced as compared to that in WT mouse joints. Our data define a role of annexin A6 in the modulation of NF-κB activity and in the stimulation of catabolic events in articular chondrocytes. Copyright © 2013 by the American College of Rheumatology.

  2. Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation.

    PubMed

    Kelleher, Zachary T; Sha, Yonggang; Foster, Matthew W; Foster, W Michael; Forrester, Michael T; Marshall, Harvey E

    2014-01-31

    S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.

  3. Inhibition of HSP90 Promotes Neural Stem Cell Survival from Oxidative Stress through Attenuating NF-κB/p65 Activation

    PubMed Central

    Jiang, Wenkai; Zhou, Lin

    2016-01-01

    Stem cell survival after transplantation determines the efficiency of stem cell treatment, which develops as a novel potential therapy for several central nervous system (CNS) diseases in recent decades. The engrafted stem cells face the damage of oxidative stress, inflammation, and immune response at the lesion point in host. Among the damaging pathologies, oxidative stress directs stem cells to apoptosis and even death through several signalling pathways and DNA damage. However, the in-detail mechanism of stem cell survival from oxidative stress has not been revealed clearly. Here, in this study, we used hydrogen peroxide (H2O2) to induce the oxidative damage on neural stem cells (NSCs). The damage was in consequence demonstrated involving the activation of heat shock protein 90 (HSP90) and NF-κB/p65 signalling pathways. Further application of the pharmacological inhibitors, respectively, targeting at each signalling indicated an upper-stream role of HSP90 upon NF-κB/p65 on NSCs survival. Preinhibition of HSP90 with the specific inhibitor displayed a significant protection on NSCs against oxidative stress. In conclusion, inhibition of HSP90 would attenuate NF-κB/p65 activation by oxidative induction and promote NSCs survival from oxidative damage. The HSP90/NF-κB mechanism provides a new evidence on rescuing NSCs from oxidative stress and also promotes the stem cell application on CNS pathologies. PMID:27818721

  4. Biphasic activation of nuclear factor-κB and expression of p65 and c-Rel following traumatic neuronal injury.

    PubMed

    Zhang, Huasheng; Zhang, Dingding; Li, Hua; Yan, Huiying; Zhang, Zihuan; Zhou, Chenhui; Chen, Qiang; Ye, Zhennan; Hang, Chunhua

    2018-06-01

    The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.

  5. Inactivation of p53 by Human T-Cell Lymphotropic Virus Type 1 Tax Requires Activation of the NF-κB Pathway and Is Dependent on p53 Phosphorylation

    PubMed Central

    Pise-Masison, Cynthia A.; Mahieux, Renaud; Jiang, Hua; Ashcroft, Margaret; Radonovich, Michael; Duvall, Janet; Guillerm, Claire; Brady, John N.

    2000-01-01

    p53 plays a key role in guarding cells against DNA damage and transformation. We previously demonstrated that the human T-cell lymphotropic virus type 1 (HTLV-1) Tax can inactivate p53 transactivation function in lymphocytes. The present study demonstrates that in T cells, Tax-induced p53 inactivation is dependent upon NF-κB activation. Analysis of Tax mutants demonstrated that Tax inactivation of p53 function correlates with the ability of Tax to induce NF-κB but not p300 binding or CREB transactivation. The Tax-induced p53 inactivation can be overcome by overexpression of a dominant IκB mutant. Tax-NF-κB-induced p53 inactivation is not due to p300 squelching, since overexpression of p300 does not recover p53 activity in the presence of Tax. Further, using wild-type and p65 knockout mouse embryo fibroblasts (MEFs), we demonstrate that the p65 subunit of NF-κB is critical for Tax-induced p53 inactivation. While Tax can inactivate endogenous p53 function in wild-type MEFs, it fails to inactivate p53 function in p65 knockout MEFs. Importantly, Tax-induced p53 inactivation can be restored by expression of p65 in the knockout MEFs. Finally, we present evidence that phosphorylation of serines 15 and 392 correlates with inactivation of p53 by Tax in T cells. This study provides evidence that the divergent NF-κB proliferative and p53 cell cycle arrest pathways may be cross-regulated at several levels, including posttranslational modification of p53. PMID:10779327

  6. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway.

    PubMed

    Zhang, Yu; Wei, Guangkuan; Di, Zhiyong; Zhao, Qingjie

    2014-09-26

    Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitro techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. NF-κB (p65) negatively regulates myocardin-induced cardiomyocyte hypertrophy through multiple mechanisms.

    PubMed

    Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun

    2014-12-01

    Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export.

    PubMed

    Chen, Yao; Li, Hong Hai; Fu, Jing; Wang, Xue Feng; Ren, Yi Bin; Dong, Li Wei; Tang, Shan Hua; Liu, Shu Qing; Wu, Meng Chao; Wang, Hong Yang

    2007-12-01

    p28(GANK) (also known as PSMD10, p28 and gankyrin) is an ankyrin repeat anti-apoptotic oncoprotein that is commonly overexpressed in hepatocellular carcinomas and increases the degradation of p53 and Rb. NF-kappaB (nuclear factor-kappaB) is known to be sequestered in the cytoplasm by I kappaB (inhibitor of NF-kappaB) proteins, but much less is known about the cytoplasmic retention of NF-kappaB by other cellular proteins. Here we show that p28(GANK) inhibits NF-kappaB activity. As a nuclear-cytoplasmic shuttling protein, p28(GANK) directly binds to NF-kappaB/RelA and exports RelA from nucleus through a chromosomal region maintenance-1 (CRM-1) dependent pathway, which results in the cytoplasmic retention of NF-kappaB/RelA. We demonstrate that all the ankyrin repeats of p28(GANK) are required for the interaction with RelA and that the N terminus of p28(GANK), which contains the nuclear export sequence (NES), is responsible for suppressing NF-kappaB/RelA nuclear translocation. These results suggest that overexpression of p28(GANK) prevents the nuclear localization and inhibits the activity of NF-kappaB/RelA.

  9. Stabilisation of p53 enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation.

    PubMed

    Pan, D; Pan, L-Z; Hill, R; Marcato, P; Shmulevitz, M; Vassilev, L T; Lee, P W K

    2011-09-27

    Naturally oncolytic reovirus preferentially kills cancer cells, making it a promising cancer therapeutic. Mutations in tumour suppressor p53 are prevalent in cancers, yet the role of p53 in reovirus oncolysis is relatively unexplored. Human cancer cell lines were exposed to Nutlin-3a, reovirus or a combination of the two and cells were processed for reovirus titration, western blot, real-time PCR and apoptosis assay using Annexin V and 7-AAD staining. Confocal microscopy was used to determine translocation of the NF-κB p65 subunit. We show that despite similar reovirus replication in p53(+/+) and p53(-/-) cells, stabilisation of p53 by Nutlin-3a significantly enhanced reovirus-induced apoptosis and hence virus release and dissemination while having no direct effect on virus replication. Enhanced apoptosis by Nutlin-3a was not observed in p53(-/-) or p53 knockdown cells; however, increased expression of Bax and p21 are required. Moreover, elevated NF-κB activation in reovirus-infected cells following Nutlin-3a treatment was necessary for enhanced reovirus-induced apoptosis, as synergistic cytotoxicity was overcome by specific NF-κB inhibitors. Nutlin-3a treatment enhances reovirus-induced apoptosis and virus spread through p53-dependent NF-κB activation, and combination of reovirus and Nutlin-3a might represent an improved therapy against cancers harbouring wild-type p53.

  10. Gallic acid inhibits the release of ADAMTS4 in nucleus pulposus cells by inhibiting p65 phosphorylation and acetylation of the NF-κB signaling pathway.

    PubMed

    Huang, Yao; Chen, Jian; Jiang, Tao; Zhou, Zheng; Lv, Bin; Yin, Guoyong; Fan, Jin

    2017-07-18

    This study investigated the inhibitory effect of gallic acid (GA) on the release of A Disintegrin and Metalloproteinase with Thrombospondin motifs 4 (ADAMTS4) through the regulation of the NF-κB signaling pathway, which is closely related to the matrix metalloproteinases in nucleus pulposus cells. Different concentrations of GA were added to TNF-α-induced human nucleus pulposus cells (hNPCs) and intervertebral disc degeneration rat model. ADAMTS-4 expression increased both in the TNF-α-induced nucleus pulposus cells and intervertebral disc degeneration rat model. By contrast, the release of ADAMTS-4 was reduced, and the TNF-α-induced apoptosis of nucleus pulposus cells was significantly inhibited after addition of GA at different concentrations. Further study found that the levels of phosphorylated p65 (p-p65) was increased and the classical NF-κB signal pathway was activated after the nucleus pulposus cells were stimulated by TNF-α. Meanwhile, GA suppressed the p65 phosphorylation and inceased p65 deacetylation levels. As a consequence, GA can decrease the expression of ADAMTS-4 in nucleus pulposus cells by regulating the phosphorylation and acetylation of p65 in NF-κB signaling pathways.

  11. 1, 25(OH){sub 2}D{sub 3}-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Dong; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000; Zhang, Ruo-nan

    KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2more » in LPS-treated macrophages. Further studies revealed that 1, 25(OH){sub 2}D{sub 3}-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH){sub 2}D{sub 3} induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages. - Highlights: • 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression via upregulation of VDR expression. • KLF5 interacts with NF-κB-p50 to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. • 1,25(OH){sub 2}D{sub 3} induces interaction of VDR with p50.« less

  12. miR-339-5p inhibits alcohol-induced brain inflammation through regulating NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu; Wei, Guangkuan; Di, Zhiyong

    Graphical abstract: - Highlights: • Alcohol upregulates miR-339-5p expression. • miR-339-5p inhibits the NF-kB pathway. • miR-339-5p interacts with and blocks activity of IKK-beat and IKK-epsilon. • miR-339-5p modulates IL-1β, IL-6 and TNF-α. - Abstract: Alcohol-induced neuroinflammation is mediated by the innate immunesystem. Pro-inflammatory responses to alcohol are modulated by miRNAs. The miRNA miR-339-5p has previously been found to be upregulated in alcohol-induced neuroinflammation. However, little has been elucidated on the regulatory functions of this miRNA in alcohol-induced neuroinflammation. We investigated the function of miR-339-5p in alcohol exposed brain tissue and isolated microglial cells using ex vivo and in vitromore » techniques. Our results show that alcohol induces transcription of miR 339-5p, IL-6, IL-1β and TNF-α in mouse brain tissue and isolated microglial cells by activating NF-κB. Alcohol activation of NF-κB allows for nuclear translocation of the NF-κB subunit p65 and expression of pro-inflammatory mediators. miR-339-5p inhibited expression of these pro-inflammatory factors through the NF-κB pathway by abolishing IKK-β and IKK-ε activity.« less

  13. Oestrogen exerts anti-inflammation via p38 MAPK/NF-κB cascade in adipocytes.

    PubMed

    Mu, Pan-Wei; Jiang, Ping; Wang, Man-Man; Chen, Yan-Ming; Zheng, Shu-Hui; Tan, Zhi; Jiang, Wei; Zeng, Long-Yi; Wang, Ting-Huai

    Oestrogen has anti-inflammatory property in obesity. However, the mechanism is still not defined. To investigate the effect of oestrogen on LPS-induced monocyte chemoattractant protein-1 (MCP-1) production in adipocytes. Lipopolysaccharides (LPS) was used to imitate inflammatory responses and monocyte chemotactic protein-1 (MCP-1) was selected as an inflammatory marker to observe. 17β-Estradiol (E 2 ), SB203580 (SB), pyrrolidine dithiocarbamate (PDTC), pertussis toxin (PTX), wortmannin (WM), p65 siRNA and p38 MAPK siRNA were pre-treated respectively or together in LPS-induced MCP-1. Then p38 MAPK and NF-κB cascade were silenced successively to observe the change of each other. Lastly, oestrogen receptor (ER) α agonist, ERβ agonist and ER antagonist were utilised. LPS-induced MCP-1 largely impaired by pre-treatment with E 2 , SB, PDTC or silencing NF-κB subunit. E 2 inhibited LPS-induced MCP-1 in a time- and dose-dependent manner, which was related to the suppression of p65 translocation to nucleus. Furthermore, LPS rapidly activated p38 MAPK, while E 2 markedly inhibited this activation. It markedly attenuated LPS-stimulated p65 translocation to nucleus and MCP-1 production by transfecting with p38 MAPK siRNA or using p38 MAPK inhibitor. The oestrogen's inhibitory effect was mimicked by the ERα agonist, but not by the ERβ agonist. The inhibition of E 2 on p38 MAPK phosphorylation was prevented by ER antagonist. E 2 inhibits LPS-stimulated MCP-1 in adipocytes. This effect is related to the inhibition of p38 MAPK/NF-κB cascade, and ERα appears to be the dominant ER subtype in these events. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  14. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  15. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis.

    PubMed

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis.

  16. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis

    PubMed Central

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831

  17. The C-terminal domains of NF-H and NF-M subunits maintain axonal neurofilament content by blocking turnover of the stationary neurofilament network.

    PubMed

    Rao, Mala V; Yuan, Aidong; Campbell, Jabbar; Kumar, Asok; Nixon, Ralph A

    2012-01-01

    Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)(tailΔ)] mice that the deletion of both of these domains selectively lowers NF levels 3-6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)(tailΔ) mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)(tailΔ) axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons.

  18. The C-Terminal Domains of NF-H and NF-M Subunits Maintain Axonal Neurofilament Content by Blocking Turnover of the Stationary Neurofilament Network

    PubMed Central

    Rao, Mala V.; Yuan, Aidong; Campbell, Jabbar; Kumar, Asok; Nixon, Ralph A.

    2012-01-01

    Newly synthesized neurofilaments or protofilaments are incorporated into a highly stable stationary cytoskeleton network as they are transported along axons. Although the heavily phosphorylated carboxyl-terminal tail domains of the heavy and medium neurofilament (NF) subunits have been proposed to contribute to this process and particularly to stability of this structure, their function is still obscure. Here we show in NF-H/M tail deletion [NF-(H/M)tailΔ] mice that the deletion of both of these domains selectively lowers NF levels 3–6 fold along optic axons without altering either rates of subunit synthesis or the rate of slow axonal transport of NF. Pulse labeling studies carried out over 90 days revealed a significantly faster rate of disappearance of NF from the stationary NF network of optic axons in NF-(H/M)tailΔ mice. Faster NF disappearance was accompanied by elevated levels of NF-L proteolytic fragments in NF-(H/M)tailΔ axons. We conclude that NF-H and NF-M C-terminal domains do not normally regulate NF transport rates as previously proposed, but instead increase the proteolytic resistance of NF, thereby stabilizing the stationary neurofilament cytoskeleton along axons. PMID:23028520

  19. Role of the p50 subunit of NF-κB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate

    PubMed Central

    Calfee-Mason, Karen G.; Lee, Eun Y.; Spear, Brett T.; Glauert, Howard P.

    2008-01-01

    Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-κB (NF-κB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-κB and that dietary vitamin E decreases CIP-induced NF-κB DNA binding. We therefore hypothesized that inhibition of NF-κB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-κB (p50−/−) were fed a purified diet containing 10 or 250 mg/kg vitamin E (α-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-κB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50−/− mice had lower NF-κB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50−/− mice fed higher vitamin E in comparison to the p50−/− mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-κB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-κB activation, suggesting that vitamin E is acting by other molecular mechanisms. PMID:18336980

  20. Andrographolide Enhances Nuclear Factor-κB Subunit p65 Ser536 Dephosphorylation through Activation of Protein Phosphatase 2A in Vascular Smooth Muscle Cells*

    PubMed Central

    Hsieh, Cheng Y.; Hsu, Ming J.; Hsiao, George; Wang, Yi H.; Huang, Chi W.; Chen, Shiuan W.; Jayakumar, Thanasekaran; Chiu, Pei T.; Chiu, Yi H.; Sheu, Joen R.

    2011-01-01

    Recent studies have demonstrated that transcription factor nuclear factor (NF)-κB inhibition may contribute to the protective anti-inflammatory actions of andrographolide, an abundant component of plants of the genus Andrographis. However, the precise mechanism by which andrographolide inhibits NF-κB signaling remains unclear. We thus investigated the mechanism involved in andrographolide suppression of NF-κB signaling in rat vascular smooth muscle cells (VSMCs) exposed to proinflammatory stimuli, LPS, and IFN-γ. Andrographolide was shown to suppress LPS/IFN-γ-induced inducible nitric-oxide synthase and matrix metalloprotease 9 expression in rat VSMCs. Andrographolide also inhibited LPS/IFN-γ-induced p65 nuclear translocation, DNA binding activity, p65 Ser536 phosphorylation, and NF-κB reporter activity. However, IKK phosphorylation and downstream inhibitory κBα phosphorylation and degradation were not altered by the presence of andrographolide in LPS/IFN-γ-stimulated VSMCs. These andrographolide inhibitory actions could be prevented by selective inhibition of neutral sphingomyelinase and protein phosphatase 2A (PP2A). Furthermore, andrographolide was demonstrated to increase ceramide formation and PP2A activity in VSMCs and to inhibit neointimal formation in rat carotid injury models. These results suggest that andrographolide caused neutral sphingomyelinase-mediated ceramide formation and PP2A activation to dephosphorylate p65 Ser536, leading to NF-κB inactivation and subsequent inducible nitric-oxide synthase down-regulation in rat VSMCs stimulated by LPS and IFN-γ. PMID:21169355

  1. The Role of the Noncanonical NF-KappaB Pathway in Colon Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-13-1-0321 TITLE: The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer PRINCIPAL INVESTIGATOR: Yatrik Shah...2013 - 29 May 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-13-1-0321 The Role of the Noncanonical NF -KappaB Pathway in Colon Cancer 5b...inflammatory bowel disease samples that the non-canonical NF -κB2 signaling cascade is highly activated in intestinal epithelial cells compared to normal

  2. Effect of 6-gingerol on AMPK- NF-κB axis in high fat diet fed rats.

    PubMed

    Hashem, Reem M; Rashed, Laila A; Hassanin, Kamel M A; Hetta, Mona H; Ahmed, Asmaa O

    2017-04-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in metabolic homeostasis and regulation of inflammatory responses through attenuation of nuclear factor kappa-B (NF-κB), Thus AMPK may be a promising pharmacologic target for the treatment of various chronic inflammatory diseases. We examined the effect of 6-gingerol, an active ingredient of ginger on AMPK-NF-κB pathway in high fat diet (HFD) rats in comparison to fish oil. Protein levels of AMPK-α1 and phosphorylated AMPK-α1 were measured by western blot while Sirtuin 6 (Sirt-6), resistin and P65 were estimated by RT-PCR, TNF-α was determined by ELISA, FFAs were estimated chemically as well as the enzymatic determination of the metabolic parameters. 6-Gingerol substantially enhanced phosphorylated AMPK-α1 more than fish oil and reduced the P65 via upregulation of Sirt-6 and downregulation of resistin, and resulted in attenuation of the inflammatory molecules P65, FFAs and TNF-α more than fish oil treated groups but in an insignificant statistical manner, those effects were accompanied by a substantial hypoglycemic effect. Gingerol treatment effectively modulated the state of inflammatory privilege in HFD group and the metabolic disorders via targeting the AMPK-NF-κB pathway, through an increment in the SIRT-6 and substantial decrement in resistin levels. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Vitamin D attenuates pro-inflammatory TNF-α cytokine expression by inhibiting NF-кB/p65 signaling in hypertrophied rat hearts.

    PubMed

    Al-Rasheed, Nawal M; Al-Rasheed, Nouf M; Bassiouni, Yieldez A; Hasan, Iman H; Al-Amin, Maha A; Al-Ajmi, Hanaa N; Mohamad, Raeesa A

    2015-06-01

    A growing body of evidence suggests that immune activation and inflammatory mediators may play a key role in the development and progression of left ventricle (LV) hypertrophy. The present study was designed to test the hypothesis that the cardioprotective effect of cholecalciferol (Vit-D3) is mediated via the regulation of messenger RNA (mRNA) expression of pro-inflammatory cytokines. Rats were randomly divided into four groups: control group received normal saline (0.9 % NaCl) i.p. for 14 days; Vit-D3 group received Vit-D3 at a dose of 12 μg/kg/day by gavage for 14 days; ISO group received saline for 7 days, and at day 7, ISO (5 mg/kg/day) was injected i.p. for 7 consecutive days to induce cardiac hypertrophy; and Vit-D3 + ISO group was treated with Vit-D3 for 14 days, and at day 7, ISO was administered for 7 consecutive days. Heart/body weight ratio, troponin-T, creatine kinase-MB, and tumor necrosis factor-α (TNF-α) levels of LV tissue were estimated. Levels of mRNA expression of NF-кB (NF-кB)/p65 and inhibitory kappa B (IкB)-α were determined by real-time PCR. Vit-D3 administration before and during induction of cardiac hypertrophy significantly reduced (P < 0.001) cardiac biomarkers. The histopathological examination further confirmed these results. In addition, Vit-D3 significantly decreased (P < 0.001) NF-кB-p65 mRNA expression and increased (P < 0.01) IкB-α mRNA expression in LV tissues compared to ISO group. Based on these findings, it was concluded that the administration of cholecalciferol markedly attenuated the development of ISO-induced cardiac hypertrophy likely through downregulation of TNF-α /NF-кb/p65 signaling pathways. However, it should be pointed out that other signaling pathways may contribute to the cardioprotective effect of Vit-D3 which requires further investigation.

  4. [NF-κB signaling pathways and the future perspectives of bone disease therapy using selective inhibitors of NF-κB].

    PubMed

    Jimi, Eijiro; Fukushima, Hidefumi

    2016-02-01

    The transcriptional factor nuclear factor κB(NF-κB)regulates the expression of a wide variety of genes that are involved in immune and inflammatory responses, proliferation, and tumorigenesis. NF-κB consists of five members, such as p65(RelA), RelB, c-Rel, p50/p105(NF-κB1), and p52/p100(NF-κB2). There are two distinct NF-κB activation pathways, termed the classical and alternative NF-κB signaling pathways. Since mice lacking both p50 and p52 subunits developed typical osteopetrosis, due to total lack of osteoclasts, NF-κB is also important osteoclast differentiation. A selective NF-κB inhibitor blocked receptor activator of NF-κB ligand(RANKL)-induced osteoclastogenesis both in vitro and in vivo. Recent findings have shown that inactivation of NF-κB enhances osteoblast differentiation in vitro and bone formation in vivo. NF-κB is constitutively activated in many cancers including oral squamous cell carcinoma(OSCC), and is involved in the invasive characteristics of OSCC. A selective NF-κB inhibitor also prevented jaw bone destruction by OSCC by reduced osteoclast numbers in animal model. Thus the inhibition of NF-κB might useful for the treatment of bone diseases, such as arthritis, osteoporosis, periodontitis, and bone invasion by OSCC by inhibiting bone resorption and by stimulating bone formation.

  5. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  6. NF-κB p65 repression by the sesquiterpene lactone, Helenalin, contributes to the induction of autophagy cell death

    PubMed Central

    2012-01-01

    Background Numerous studies have demonstrated that autophagy plays a vital role in maintaining cellular homeostasis. Interestingly, several anticancer agents were found to exert their anticancer effects by triggering autophagy. Emerging data suggest that autophagy represents a novel mechanism that can be exploited for therapeutic benefit. Pharmacologically active natural compounds such as those from marine, terrestrial plants and animals represent a promising resource for novel anticancer drugs. There are several prominent examples from the past proving the success of natural products and derivatives exhibiting anticancer activity. Helenalin, a sesquiterpene lactone has been demonstrated to have potent anti-inflammatory and antitumor activity. Albeit previous studies demonstrating helenalin’s multi modal action on cellular proliferative and apoptosis, the mechanisms underlying its action are largely unexplained. Methods To deduce the mechanistic action of helenalin, cancer cells were treated with the drug at various concentrations and time intervals. Using western blot, FACS analysis, overexpression and knockdown studies, cellular signaling pathways were interrogated focusing on apoptosis and autophagy markers. Results We show here that helenalin induces sub-G1 arrest, apoptosis, caspase cleavage and increases the levels of the autophagic markers. Suppression of caspase cleavage by the pan caspase inhibitor, Z-VAD-fmk, suppressed induction of LC3-B and Atg12 and reduced autophagic cell death, indicating caspase activity was essential for autophagic cell death induced by helenalin. Additionally, helenalin suppressed NF-κB p65 expression in a dose and time dependent manner. Exogenous overexpression of p65 was accompanied by reduced levels of cell death whereas siRNA mediated suppression led to augmented levels of caspase cleavage, autophagic cell death markers and increased cell death. Conclusions Taken together, these results show that helenalin mediated

  7. Profile of NF-κBp(65/NFκBp50) among prostate specific antigen sera levels in prostatic pathologies.

    PubMed

    Bouraoui, Y; Ben Jemaa, A; Rodriguez, G; Ben Rais, N; Fraile, B; Paniagua, R; Sellemi, S; Royuela, M; Oueslati, R

    2012-10-01

    The aim of this work was to characterise the immunoexpression of NF-κB (p50/p65) in human prostatic pathologies and to study its profiles of activation among sera prostate specific antigen antigen (PSA) according the three groups: 0-4ng/mL, 4-20ng/mL and >20ng/mL. Twenty-four men with benign prostate hyperplasia (BPH); 19 men with prostate cancer (PC) and five men with normal prostates (NP). Immunohistochemical and western blot analysis was performed. Serum levels of PSA were assayed by immulite autoanalyser. In BPH and PC samples, immunoexpressions were observed for NF-κBp65 and NF-κBp50; while in NP samples, only were detected NF-κBp50. PC samples showed immunoreactions to NF-κBp65 and NF-κBp50 more intense (respectively 24.18±0.67 and 28.23±2.01) than that observed in BPH samples (respectively18.46±2.04 and 18.66±1.59) with special localisation in the nucleus. Different profiles of NF-κBp65 immunoexpressions were observed and BPH patients with sera PSA levels between 0-4ng/mL presented a significant weak percentage compared to BPH patients with sera PSA levels between 4-20ng/mL and >20ng/mL. No immunoreactions to NF-κBp65 were observed in PC patients with sera PSA levels between 4-20ng/mL. The sensibility of both NF-κB and PSA to inflammation allowed confirming the relationship between these two molecules and its involvement in prostatic diseases progression (inflammatory and neoplasic). Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of Enteropathogenic Escherichia coli Leads to NF-κB p65 Cleavage.

    PubMed

    Stolle, Anne-Sophie; Norkowski, Stefanie; Körner, Britta; Schmitz, Jürgen; Lüken, Lena; Frankenberg, Maj; Rüter, Christian; Schmidt, M Alexander

    2017-01-01

    Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida ( Phdp ). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.

  9. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  10. SIRT1 counteracted the activation of STAT3 and NF-κB to repress the gastric cancer growth.

    PubMed

    Lu, Juanjuan; Zhang, Liping; Chen, Xiang; Lu, Qiming; Yang, Yuxia; Liu, Jingping; Ma, Xin

    2014-01-01

    Sirtuin-1 (SIRT1) possesses apparently dual roles in regulation of tumor. Previous reports have documented the crosstalk between SIRT1 with signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-B (NF-κB) signaling in leukemia, lymphoma and myeloma. In this study, the purpose was to survey the regulatory effects of SIRT1 on gastric cancer (GC) cells (AGS and MKN-45) and the relationships between SIRT1 and activation of STAT3 and NF-κB in GC cells. We found the SIRT1 activator (resveratrol RSV) contributed to the repression of viability and increase of senescence, which were rescued by SIRT1 inhibitor (nicotinamide NA) and SIRT1 depletion by CCK-8 assay and SA-β-gal assay respectively. Further study found SIRT1 activation (RSV supplement) not only inhibited the activation of STAT3 including STAT3 mRNA level, c-myc mRNA level phosphorylated STAT3 (pSTAT3) proteins and acetylizad STAT3 (acSTAT3) proteins, but also repression of pNF-κB p65 and acNF-κB p65. NA reversed the effects of RSV. In addition, either RSV or NA application could not change the cellular viability and senescence in MKN-45 cells with STAT3 knockdown or NF-κB knockdown. Overall, our findings suggested SIRT1 activation could induced the loss of viability and increases of senescence in GC in vitro. Moreover, our observations revealed SIRT1 displayed growth inhibitory activity in GC cells highly associated with causing repression of activation of STAT3 and NF-κB proteins via deacetylation.

  11. HTLV-1 Tax-Induced Rapid Senescence Is Driven by the Transcriptional Activity of NF-κB and Depends on Chronically Activated IKKα and p65/RelA

    PubMed Central

    Ho, Yik-Khuan; Zhi, Huijun; DeBiaso, Dominic; Philip, Subha; Shih, Hsiu-Ming

    2012-01-01

    The HTLV-1 oncoprotein Tax is a potent activator of classical and alternative NF-κB pathways and is thought to promote cell proliferation and transformation via NF-κB activation. We showed recently that hyperactivation of NF-κB by Tax triggers a cellular senescence response (H. Zhi et al., PLoS Pathog. 7:e1002025, 2011). Inhibition of NF-κB activation by expression of I-κBα superrepressor or by small hairpin RNA (shRNA)-mediated knockdown of p65/RelA rescues cells from Tax-induced rapid senescence (Tax-IRS). Here we demonstrate that Tax-IRS is driven by the transcriptional activity of NF-κB. Knockdown of IKKγ, the primary Tax target, by shRNAs abrogated Tax-mediated activation of both classical and alternative NF-κB pathways and rendered knockdown cells resistant to Tax-IRS. Consistent with a critical role of IKKα in the transcriptional activity of NF-κB, IKKα deficiency drastically decreased NF-κB trans-activation by Tax, although it only modestly reduced Tax-mediated I-κBα degradation and NF-κB nuclear localization. In contrast, although IKKβ knockdown attenuated Tax-induced NF-κB transcriptional activation, the residual NF-κB activation in IKKβ-deficient cells was sufficient to trigger Tax-IRS. Importantly, the phenotypes of NIK and TAK1 knockdown were similar to those of IKKα and IKKβ knockdown, respectively. Finally, double knockdown of RelB and p100 had a minor effect on senescence induction by Tax. These data suggest that Tax, through its interaction with IKKγ, helps recruit NIK and TAK1 for IKKα and IKKβ activation, respectively. In the presence of Tax, the delineation between the classical and alternative NF-κB pathways becomes obscured. The senescence checkpoint triggered by Tax is driven by the transcriptional activity of NF-κB, which depends on activated IKKα and p65/RelA. PMID:22740410

  12. Screening for anti-inflammatory activity of 12 Arnica (Asteraceae) species assessed by inhibition of NF-kappaB and release of human neutrophil elastase.

    PubMed

    Ekenäs, Catarina; Zebrowska, Anna; Schuler, Barbara; Vrede, Tobias; Andreasen, Katarina; Backlund, Anders; Merfort, Irmgard; Bohlin, Lars

    2008-12-01

    Several species in the genus Arnica have been used in traditional medicine to treat inflammatory-related disorders. Extracts of twelve Arnica species and two species closely related to arnica ( Layia hieracioides and Madia sativa) were investigated for inhibition of human neutrophil elastase release and inhibition of transcription factor NF-kappaB. Statistical analyses reveal significant differences in inhibitory capacities between extracts. Sesquiterpene lactones of the helenanolide type, of which some are known inhibitors of human neutrophil elastase release and NF-kappaB, are present in large amounts in the very active extracts of A. montana and A. chamissonis. Furthermore, A. longifolia, which has previously not been investigated, shows a high activity similar to that of A. montana and A. chamissonis in both bioassays. Sesquiterpene lactones of the xanthalongin type are present in large amounts in A. longifolia and other active extracts and would be interesting to evaluate further. COX-2:cyclooxygenase 2 EMSA:electrophoretic mobility shift assay fMLP: N-formyl-methionyl-leucyl-phenylalanine HaCaT:human keratinocyte HNE:human neutrophil elastase IkappaB:inhibitory subunit of kappaB iNOS:inducible nitric oxide synthase NF-kappaB:nuclear factor kappaB PAF:platelet activating factor STL:sesquiterpene lactone TNF-alpha:tumor necrosis factor alpha.

  13. Notch1 is a prognostic factor that is distinctly activated in the classical and proneural subtype of glioblastoma and that promotes glioma cell survival via the NF-κB(p65) pathway.

    PubMed

    Hai, Long; Zhang, Chen; Li, Tao; Zhou, Xingchen; Liu, Bo; Li, Shuai; Zhu, Meng; Lin, Yu; Yu, Shengping; Zhang, Kai; Ren, Bingcheng; Ming, Haolang; Huang, Yubao; Chen, Lei; Zhao, Pengfei; Zhou, Hua; Jiang, Tao; Yang, Xuejun

    2018-02-06

    Glioblastomas (GBMs) are the most prevalent and devastating primary intracranial malignancies and have extensive heterogeneity. Notch1 signaling is a more complex process in the development of numerous cell and tissue types, including gliomagenesis and progression, and is upregulated in glioma-initiating cells. However, the contradictory expression of Notch1 among lower grade gliomas and GBMs confounds our understanding of GBM biology and has made identifying effective therapies difficult. In this study, we validated that Notch1 and NF-κB(p65) are highly expressed in the classical and proneural subtypes of GBM using the data set from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). DAPT and shRNA targeting Notch1 decreased NF-κB(p65) expression, suppressed cell proliferation, and induced apoptosis of GBM cells in vitro and in vivo. Furthermore, we illustrated that the intracellular Notch could bind with NF-κB(p65) in GBM cells. These findings suggest that the cross-talk between Notch1 signaling and NF-κB(p65) could contribute to the proliferation and apoptosis of glioma, and this discovery could help drive the design of more effective therapies in Notch1-targeted clinical trials.

  14. Haploinsufficiency of the NF-κB1 Subunit p50 in Common Variable Immunodeficiency.

    PubMed

    Fliegauf, Manfred; Bryant, Vanessa L; Frede, Natalie; Slade, Charlotte; Woon, See-Tarn; Lehnert, Klaus; Winzer, Sandra; Bulashevska, Alla; Scerri, Thomas; Leung, Euphemia; Jordan, Anthony; Keller, Baerbel; de Vries, Esther; Cao, Hongzhi; Yang, Fang; Schäffer, Alejandro A; Warnatz, Klaus; Browett, Peter; Douglass, Jo; Ameratunga, Rohan V; van der Meer, Jos W M; Grimbacher, Bodo

    2015-09-03

    Common variable immunodeficiency (CVID), characterized by recurrent infections, is the most prevalent symptomatic antibody deficiency. In ∼90% of CVID-affected individuals, no genetic cause of the disease has been identified. In a Dutch-Australian CVID-affected family, we identified a NFKB1 heterozygous splice-donor-site mutation (c.730+4A>G), causing in-frame skipping of exon 8. NFKB1 encodes the transcription-factor precursor p105, which is processed to p50 (canonical NF-κB pathway). The altered protein bearing an internal deletion (p.Asp191_Lys244delinsGlu; p105ΔEx8) is degraded, but is not processed to p50ΔEx8. Altered NF-κB1 proteins were also undetectable in a German CVID-affected family with a heterozygous in-frame exon 9 skipping mutation (c.835+2T>G) and in a CVID-affected family from New Zealand with a heterozygous frameshift mutation (c.465dupA) in exon 7. Given that residual p105 and p50—translated from the non-mutated alleles—were normal, and altered p50 proteins were absent, we conclude that the CVID phenotype in these families is caused by NF-κB1 p50 haploinsufficiency. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Effects of age and sedentary lifestyle on skeletal muscle NF-kappaB signaling in men.

    PubMed

    Buford, Thomas W; Cooke, Matthew B; Manini, Todd M; Leeuwenburgh, Christiaan; Willoughby, Darryn S

    2010-05-01

    Nuclear factor kappa B (NF-kappaB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. The present study examined lean mass, maximal force production, and skeletal muscle NF-kappaB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 +/- 6.59 year), physically active (OA, N = 14, 60.71 +/- 5.54 year), or young and sedentary (YS, N = 14, 21.35 +/- 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the beta subunit of IkB kinase (IKKbeta), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBalpha), and nuclear content of NF-kappaB subunits p50 and p65. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBalpha than OA and 61% more pIKBalpha than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKbeta. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBalpha. A sedentary lifestyle appears to play some role in increased IKBalpha; however, further research is needed to identify downstream effects of this increase.

  16. Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes

    PubMed Central

    Sundar, Isaac K.; Chung, Sangwoon; Hwang, Jae-woong; Lapek, John D.; Bulger, Michael; Friedman, Alan E.; Yao, Hongwei; Davie, James R.; Rahman, Irfan

    2012-01-01

    Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis

  17. Phloretin inhibits interleukin-1β-induced COX-2 and ICAM-1 expression through inhibition of MAPK, Akt, and NF-κB signaling in human lung epithelial cells.

    PubMed

    Huang, Wen-Chung; Wu, Shu-Ju; Tu, Rong-Syuan; Lai, You-Rong; Liou, Chian-Jiun

    2015-06-01

    Phloretin, a flavonoid isolated from the apple tree, is reported to have anti-inflammatory, anti-oxidant, and anti-adiposity effects. In this study, we evaluated the suppressive effects of phloretin on intercellular adhesion molecule 1 (ICAM-1) and cyclooxygenase (COX)-2 expression in IL-1β-stimulated human lung epithelial A549 cells. The cells were pretreated with various concentrations of phloretin (3-100 μM), followed by induced inflammation by IL-1β. Phloretin inhibited levels of prostaglandin E2, decreased COX-2 expression, and suppressed IL-8, monocyte chemotactic protein 1, and IL-6 production. It also decreased ICAM-1 gene and protein expression and suppressed monocyte adhesion to inflammatory A549 cells. Phloretin also significantly inhibited Akt and mitogen-activated protein kinase (MAPK) phosphorylation and decreased nuclear transcription factor kappa-B (NF-κB) subunit p65 protein translocation into the nucleus. In addition, ICAM-1 and COX-2 expression was suppressed by pretreatment with both MAPK inhibitors and phloretin in inflammatory A549 cells. However, phlorizin, a derivative of phloretin, did not suppress the inflammatory response in IL-1β-stimulated A549 cells. These results suggest that phloretin might have an anti-inflammatory effect by inhibiting proinflammatory cytokine, COX-2, and ICAM-1 expression via blocked NF-κB and MAPK signaling pathways.

  18. Direct evidence of central nervous system axonal damage in patients with postoperative delirium: A preliminary study of pNF-H as a promising serum biomarker.

    PubMed

    Inoue, Reo; Sumitani, Masahiko; Ogata, Toru; Chikuda, Hirotaka; Matsubara, Takehiro; Kato, So; Shimojo, Nobutake; Uchida, Kanji; Yamada, Yoshitsugu

    2017-07-13

    Approximately 50-80% patients experience postoperative delirium, an acute cognitive dysfunction associated with prolonged hospitalization, increased mortality, excess healthcare costs, and persistent cognitive impairment. Elucidation of the mechanism of delirium and associated diagnostic and therapeutic measures are urgently required. Here we investigated the role of phosphorylated neurofilament heavy subunit (pNF-H), a major structural protein in axons, as a predictive maker of postoperative delirium. Twenty-three patients who underwent surgery for abdominal cancer were screened for postoperative delirium, and they were assessed for its severity using the memorial delirium assessment scale (MDAS) at and 48h after delirium onset. Serum pNF-H levels were also measured at both time points. The patients were divided into two groups according to the presence or absence of pNF-H. Clinical variables were compared between groups using the Mann-Whitney U test, and the relationship between pNF-H levels and delirium severity was analyzed using the exponential curve fitting. Fifteen of the 23 (65.2%) patients tested positive for pNF-H, and these patients exhibited significantly higher MDAS scores compared with the pNF-H-negative patients only at the onset of delirium. Although the MDAS score significantly improved over time in the positive group, pNF-H positivity persisted. There was a correlation between the maximum pNF-H level and maximum MDAS score (R 2 =0.31, p=0.013). More severe postoperative delirium was directly related to higher serum pNF-H levels, suggesting the potential application of pNF-H as a quantitative biomarker of neural damage in postoperative delirium. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Association of growth factors, HIF-1 and NF-κB expression with proteasomes in endometrial cancer.

    PubMed

    Spirina, Ludmila V; Yunusova, Nataliya V; Kondakova, Irina V; Kolomiets, Larisa A; Koval, Valeriya D; Chernyshova, Alena L; Shpileva, Olga V

    2012-09-01

    Insulin-like growth factors (IGFs), vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 (HIF-1), and nuclear factor kappa-B (NF-κB) are known to play an important role in endometrial cancer pathogenesis. However, the proteolytic regulation of these factors is still poorly understood. We studied the correlation between chymotrypsin-like activity of proteasomes and IGF-I, IGF-II, VEGF, HIF-1, and NF-κB levels in endometrial cancer tissues. It was shown that the total activity of proteasomes and the activity of the 20S and 26S proteasomes in malignant tumors were significantly higher than those observed in the normal endometrium. Negative relationships between the proteasome activity and IGF-I, HIF-1, and NF-κB p50 expressions were found. High 20S proteasome activity was associated with increase of HIF-1 level. Positive relationships between IGF-I expression and two classic forms of NF-κB p50 and p65 in endometrial cancer were revealed. The data obtained indicate the possible proteasomal regulation of growth and transcription factors. The major pool of IGF-I is located in the extracellular space, and it is likely that extracellular proteasomes also take part in the regulation of the IGF-I content. The present data show the evidence of proteasome regulation of growth and nuclear factors that can play an important role in cancer pathogenesis.

  20. Increased interactions between PKA and NF-κB signaling in the hippocampus following loss of cholinergic input.

    PubMed

    Lim, C S; Hwang, Y K; Kim, D; Cho, S H; Bañuelos, C; Bizon, J L; Han, J-S

    2011-09-29

    Neuropsychiatric disorders such as depression are frequently associated with Alzheimer's disease (AD) and the degeneration of cholinergic basal forebrain neurons and reductions in acetylcholine that occur in AD have been identified as potential mediators of these secondary neuropsychiatric symptomologies. Indeed, removal of cholinergic innervation to the hippocampus via selective immunolesions of septohippocampal cholinergic neurons induces dysfunction of the hypothalamic-pituitary-adrenocortical (HPA) axis and decreases glucocorticoid receptor expression (GR). A subsequent study showed that loss of cholinergic input decreases the activity of the catalytic subunit of protein kinase A (PKAc) and lessens the interaction of protein kinase A (PKA) with GR. Because cross-coupling between nuclear factor-κB (NF-κB) p65 and GR depends on PKA signaling, the present study was conducted to evaluate the status of NF-κB as well as interactions of PKA with NF-κB in the hippocampus following cholinergic denervation. Expression of cytosolic NF-κB p65 was diminished and IκB was degraded in the hippocampus of cholinergic immunolesioned rats compared to the controls. Immunolesions also increased NF-κB p65 Ser276 phosphorylation, as well as interactions between PKAc and NF-κB p65. These results indicate that loss of cholinergic input to the hippocampus results in decreased PKA activity and increased NF-κB activity. Such altered signaling may contribute to psychiatric symptoms, including depression, in patients with AD. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The NF-κB Subunit c-Rel Stimulates Cardiac Hypertrophy and Fibrosis

    PubMed Central

    Gaspar-Pereira, Silvia; Fullard, Nicola; Townsend, Paul A.; Banks, Paul S.; Ellis, Elizabeth L.; Fox, Christopher; Maxwell, Aidan G.; Murphy, Lindsay B.; Kirk, Adam; Bauer, Ralf; Caamaño, Jorge H.; Figg, Nichola; Foo, Roger S.; Mann, Jelena; Mann, Derek A.; Oakley, Fiona

    2012-01-01

    Cardiac remodeling and hypertrophy are the pathological consequences of cardiovascular disease and are correlated with its associated mortality. Activity of the transcription factor NF-κB is increased in the diseased heart; however, our present understanding of how the individual subunits contribute to cardiovascular disease is limited. We assign a new role for the c-Rel subunit as a stimulator of cardiac hypertrophy and fibrosis. We discovered that c-Rel-deficient mice have smaller hearts at birth, as well as during adulthood, and are protected from developing cardiac hypertrophy and fibrosis after chronic angiotensin infusion. Results of both gene expression and cross-linked chromatin immunoprecipitation assay analyses identified transcriptional activators of hypertrophy, myocyte enhancer family, Gata4, and Tbx proteins as Rel gene targets. We suggest that the p50 subunit could limit the prohypertrophic actions of c-Rel in the normal heart, because p50 overexpression in H9c2 cells repressed c-Rel levels and the absence of cardiac p50 was associated with increases in both c-Rel levels and cardiac hypertrophy. We report for the first time that c-Rel is highly expressed and confined to the nuclei of diseased adult human hearts but is restricted to the cytoplasm of normal cardiac tissues. We conclude that c-Rel-dependent signaling is critical for both cardiac remodeling and hypertrophy. Targeting its activities could offer a novel therapeutic strategy to limit the effects of cardiac disease. PMID:22210479

  2. Extracts of Porphyra tenera (Nori Seaweed) Activate the Immune Response in Mouse RAW264.7 Macrophages via NF-κB Signaling.

    PubMed

    Song, Ji-Hye; Kang, Hee-Bum; Park, Seung-Ho; Jeong, Ji-Hoon; Park, Jeongjin; You, Yanghee; Lee, Yoo-Hyun; Lee, Jeongmin; Kim, Eungpil; Choi, Kyung-Chul; Jun, Woojin

    2017-12-01

    Porphyra tenera, also known as nori, is a red algal species of seaweed. It is cultivated in Asia for culinary purposes. We report that P. tenera extract (PTE) enhances the immune response in mouse macrophages. We found that P. tenera extract regulates the NF-κB IκB kinase (IKK) signaling pathway, and we assessed the expression and translocation of p65, a subunit of NF-κB, in RAW264.7 mouse macrophage cells after treatment with PTE. We also investigated the effects of 10% ethanol PTE (PTE10) in RAW264.7 cells. The production of IL-10, IL-6, TNF-α, and IFN-γ was induced by PTE treatment of the macrophages, and PTE also enhanced p-IκB and p-AKT. PTE10 showed no cytotoxicity at 10-20 μg/mL in RAW264.7 cells. PTE10, in fact, increased cell viability at 24 h, stimulated macrophage cells, and induced the phosphorylation of Akt. Akt stimulates IKK activity through the phosphorylation of IKKα and enhances immune activity through the activation of NF-κB. In this study, NF-κB activation was induced by increasing p-NF-κB and p-IKK. A subunit of NF-κB, p65, was located in the nucleus and increased the expression of various cytokines. PTE thus enhanced the immune response through IκB-α immunostimulation signaling in RAW264.7 cells. PTE10 has potential therefore for development of future treatments requiring immune system stimulation.

  3. Effects of Age and Sedentary Lifestyle on Skeletal Muscle NF-κB Signaling in Men

    PubMed Central

    Buford, Thomas W.; Cooke, Matthew B.; Manini, Todd M.; Leeuwenburgh, Christiaan

    2010-01-01

    Background. Nuclear factor kappa B (NF-κB) is a critical signaling molecule of disuse-induced skeletal muscle atrophy. However, few studies have carefully investigated whether similar pathways are modulated with physical activity and age. Methods. The present study examined lean mass, maximal force production, and skeletal muscle NF-κB signaling in 41 men categorized as sedentary (OS, N = 13, 63.85 ± 6.59 year), physically active (OA, N = 14, 60.71 ± 5.54 year), or young and sedentary (YS, N = 14, 21.35 ± 3.84 year). Muscle tissue from the vastus lateralis was assayed for messenger RNA (mRNA) expression of the β subunit of IkB kinase (IKKβ), cytosolic protein content of phosphorylated inhibitor of kappa B alpha (pIKBα), and nuclear content of NF-κB subunits p50 and p65. Results. When compared with YS, OS demonstrated age-related muscle atrophy and reduced isokinetic knee extension torque. Physical activity in older individuals preserved maximal isokinetic knee extension torque. OS muscle contained 50% more pIKBα than OA and 61% more pIKBα than YS. Furthermore, nuclear p65 was significantly elevated in OS compared with YS. OS muscle did not differ from either of the other two groups for nuclear p50 or for mRNA expression of IKKβ. Conclusions. These results indicate that skeletal muscle content of nuclear-bound p65 is elevated by age in humans. The elevation in nuclear-bound p65 appears to be at least partially due to significant increases in pIKBα. A sedentary lifestyle appears to play some role in increased IKBα; however, further research is needed to identify downstream effects of this increase. PMID:20045871

  4. Effect of Huperzine A on Aβ-induced p65 of astrocyte in vitro.

    PubMed

    Xie, Lushuang; Jiang, Cen; Wang, Zhang; Yi, Xiaohong; Gong, Yuanyuan; Chen, Yunhui; Fu, Yan

    2016-12-01

    Alzheimer's disease (AD) is the most common cause of dementia. Its pathology often accompanies inflammatory action, and astrocytes play important roles in such procedure. Rela(p65) is one of significant message factors in NF-κB pathway which has been reported high expression in astrocyte treated by Aβ. HupA, an alkaloid isolated from Chinese herb Huperzia serrata, has been widely used to treat AD and observations reflected that it improves memory and cognitive capacity of AD patients. To reveal its molecular mechanisms on p65, we cultured astrocytes, built Aβ-induced AD model, treated astrocytes with HupA at different concentrations, assayed cell viability with MTT, and detected p65 expression by immunohistochemistry and PCR. Our results revealed that treatment with 10 μM Aβ1-42 for 24 h induced a significant increase of NF-κB in astrocytes; HupA significantly down-regulated p65 expression induced by Aβ in astrocytes. This study infers that HupA can regulate NF-κB pathway to treat AD.

  5. NF-kappaB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope.

    PubMed

    Perfettini, Jean-Luc; Roumier, Thomas; Castedo, Maria; Larochette, Nathanael; Boya, Patricia; Raynal, Brigitte; Lazar, Vladimir; Ciccosanti, Fabiola; Nardacci, Roberta; Penninger, Josef; Piacentini, Mauro; Kroemer, Guido

    2004-03-01

    The coculture of cells expressing the HIV-1 envelope glycoprotein complex (Env) with cells expressing CD4 results into cell fusion, deregulated mitosis, and subsequent cell death. Here, we show that NF-kappaB, p53, and AP1 are activated in Env-elicited apoptosis. The nuclear factor kappaB (NF-kappaB) super repressor had an antimitotic and antiapoptotic effect and prevented the Env-elicited phosphorylation of p53 on serine 15 and 46, as well as the activation of AP1. Transfection with dominant-negative p53 abolished apoptosis and AP1 activation. Signs of NF-kappaB and p53 activation were also detected in lymph node biopsies from HIV-1-infected individuals. Microarrays revealed that most (85%) of the transcriptional effects of HIV-1 Env were blocked by the p53 inhibitor pifithrin-alpha. Macroarrays led to the identification of several Env-elicited, p53-dependent proapoptotic transcripts, in particular Puma, a proapoptotic "BH3-only" protein from the Bcl-2 family known to activate Bax/Bak. Down modulation of Puma by antisense oligonucleotides, as well as RNA interference of Bax and Bak, prevented Env-induced apoptosis. HIV-1-infected primary lymphoblasts up-regulated Puma in vitro. Moreover, circulating CD4+ lymphocytes from untreated, HIV-1-infected donors contained enhanced amounts of Puma protein, and these elevated Puma levels dropped upon antiretroviral therapy. Altogether, these data indicate that NF-kappaB and p53 cooperate as the dominant proapoptotic transcription factors participating in HIV-1 infection.

  6. Ultraviolet B Radiation Stimulates the Interaction between Nuclear Factor of Activated T Cells 5 (NFAT5) and Nuclear Factor-Kappa B (NF-κB) in Human Lens Epithelial Cells.

    PubMed

    Chung, Inyoung; Hah, Young-Sool; Ju, SunMi; Kim, Ji-Hye; Yoo, Woong-Sun; Cho, Hee-Young; Yoo, Ji-Myong; Seo, Seong-Wook; Choi, Wan-Sung; Kim, Seong-Jae

    2017-07-01

    Nuclear factor-kappa B (NF-κB) has been proposed as a therapeutic target for the treatment of cataracts. The authors investigated the relationship between nuclear factor of activated T cells 5 (NFAT5) and NF-κB in ultraviolet B (UVB)-irradiated human lens epithelial (HLE) cells. Human lens epithelial B-3 (HLE-B3) cells were exposed to UVB light at a dose of 10 mJ/cm 2 and then incubated for 24 h. Cell viability was assessed by using the Cell Counting Kit-8 (CCK-8) assay. Gene expression level of NFAT5 was determined using real-time quantitative polymerase chain reaction (qPCR). Protein expression levels of NFAT5, NF-κB p65, and α-smooth muscle actin (α-SMA) and the association of NFAT5 with the NF-κB p65 subunit were measured by Western blot analysis and a co-immunoprecipitation assay, respectively. The cellular distribution of NFAT5 and NF-κB p65 was examined by triple immunofluorescence staining. At 24 h after UVB exposure, cell viability significantly decreased in a dose-dependent manner, and UVB light (15 and 20 mJ/cm 2 ) significantly increased the ROS generation. UVB irradiation increased NFAT5 mRNA and protein levels and increased phosphorylation of NF-κB in HLE-B3 cells. α-SMA protein levels were increased in the irradiated cells. In addition, NFAT5 and NF-κB translocated from the cytoplasm to the nucleus, and binding between the p65 subunit and NFAT5 was increased. Exposure to UVB radiation induces nuclear translocation and stimulates binding between NFAT5 and NF-κB proteins in HLE-B3 cells. These interactions may form part of the biochemical mechanism of cataractogenesis in UVB-irradiated HLECs.

  7. AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells

    PubMed Central

    2014-01-01

    Background The aryl hydrocarbon receptor (AhR) has gradually emerged as a regulator of inflammation in the lung and other tissues. AhR may interact with the p65-subunit of the nuclear factor (NF)-κB transcription factors, but reported outcomes of AhR/NF-κB-interactions are conflicting. Some studies suggest that AhR possess pro-inflammatory activities while others suggest that AhR may be anti-inflammatory. The present study explored the impact of AhR and its binding partner AhR nuclear translocator (Arnt) on p65-activation and two differentially regulated chemokines, CXCL8 (IL-8) and CCL5 (RANTES), in human bronchial epithelial cells (BEAS-2B). Results Cells were exposed to CXCL8- and CCL5-inducing chemicals, 1-nitropyrene (1-NP) and 1-aminopyrene (1-AP) respectively, or the synthetic double-stranded RNA analogue, polyinosinic-polycytidylic acid (Poly I:C) which induced both chemokines. Only CXCL8, and not CCL5, appeared to be p65-dependent. Yet, constitutively active unligated AhR suppressed both CXCL8 and CCL5, as shown by siRNA knock-down and the AhR antagonist α-naphthoflavone. Moreover, AhR suppressed activation of p65 by TNF-α and Poly I:C as assessed by luciferase-assay and p65-phosphorylation at serine 536, without affecting basal p65-activity. In contrast, Arnt suppressed only CXCL8, but did not prevent the p65-activation directly. However, Arnt suppressed expression of the NF-κB-subunit RelB which is under transcriptional regulation by p65. Furthermore, AhR-ligands alone at high concentrations induced a moderate CXCL8-response, without affecting CCL5, but suppressed both CXCL8 and CCL5-responses by Poly I:C. Conclusion AhR and Arnt may differentially and independently regulate chemokine-responses induced by both inhaled pollutants and pulmonary infections. Constitutively active, unligated AhR suppressed the activation of p65, while Arnt may possibly interfere with the action of activated p65. Moreover, ligand-activated AhR suppressed CXCL8 and CCL5

  8. Phosphorylated neurofilament subunit NF-H as a biomarker for evaluating the severity of spinal cord injury patients, a pilot study.

    PubMed

    Hayakawa, K; Okazaki, R; Ishii, K; Ueno, T; Izawa, N; Tanaka, Y; Toyooka, S; Matsuoka, N; Morioka, K; Ohori, Y; Nakamura, K; Akai, M; Tobimatsu, Y; Hamabe, Y; Ogata, T

    2012-07-01

    A pilot cross-sectional study of patients with acute cervical spinal cord injury (SCI). The precise evaluation of the severity of SCI is important for developing novel therapies. Although several biomarkers in cerebrospinal fluid have been tested, few analyses of blood samples have been reported. A novel biomarker for axonal injury, phosphorylated form of the high-molecular-weight neurofilament subunit NF-H (pNF-H), has been reported to be elevated in blood from rodent SCI model. The aim of this study is to investigate whether pNF-H values in blood can serve as a biomarker to evaluate the severity of patients with SCI. Tokyo Metropolitan Bokutoh Hospital and National Rehabilitation Center, Japan. This study enrolled 14 patients with acute cervical SCI. Sequential plasma samples were obtained from 6 h to 21 days after injury. Patients were classified according to American Spinal Injury Association impairment scale (AIS) at the end of the follow-up (average, 229.1 days). Plasma pNF-H values were compared between different AIS grades. In patients with complete SCI, pNF-H became detectable at 12 h after injury and remained elevated at 21 days after injury. There was a statistically significant difference between AIS A (complete paralysis) patients and AIS C (incomplete paralysis) patients. Plasma pNF-H was elevated in accordance with the severity of SCI and reflected a greater magnitude of axonal damage. Therefore, pNF-H is a potential biomarker to independently distinguish AIS A patients (complete SCI) from AIS C-E patients (incomplete SCI). However, further studies are required to evaluate its utility in predicting prognosis of patients in the incomplete category.

  9. NF-kappaB transcription factor is required for inhibitory avoidance long-term memory in mice.

    PubMed

    Freudenthal, Ramiro; Boccia, Mariano M; Acosta, Gabriela B; Blake, Mariano G; Merlo, Emiliano; Baratti, Carlos M; Romano, Arturo

    2005-05-01

    Although it is generally accepted that memory consolidation requires regulation of gene expression, only a few transcription factors (TFs) have been clearly demonstrated to be specifically involved in this process. Increasing research data point to the participation of the Rel/nuclear factor-kappaB (NF-kappaB) family of TFs in memory and neural plasticity. Here we found that two independent inhibitors of NF-kappaB induced memory impairment in the one-trial step-through inhibitory avoidance paradigm in mice: post-training administration of the drug sulfasalazine and 2 h pretraining administration of a double-stranded DNA oligonucleotide containing the NF-kappaB consensus sequence (kappaB decoy). Conversely, one base mutation of the kappaB decoy (mut-kappaB decoy) injection did not affect long-term memory. Accordingly, the kappaB decoy inhibited NF-kappaB in hippocampus 2 h after injection but no inhibition was found with mut-kappaB decoy administration. A temporal course of hippocampal NF-kappaB activity after training was determined. Unexpectedly, an inhibition of NF-kappaB was found 15 min after training in shocked and unshocked groups when compared with the naïve group. Hippocampal NF-kappaB was activated 45 min after training in both shocked and unshocked groups, decreasing 1 h after training and returning to basal levels 2 and 4 h after training. On the basis of the latter results, we propose that activation of NF-kappaB in hippocampus is part of the molecular mechanism involved in the storage of contextual features that constitute the conditioned stimulus representation. The results presented here provide the first evidence to support NF-kappaB activity being regulated in hippocampus during consolidation, stressing the role of this TF as a conserved molecular mechanism for memory storage.

  10. Effects of acteoside on lipopolysaccharide-induced inflammation in acute lung injury via regulation of NF-κB pathway in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, Wang; Chunhua, Ma, E-mail: machunhuabest@126.com; Shumin, Wang, E-mail: wangshuminch@126.com

    The purpose of the present study was to investigate the protective role of acteoside (AC) on lipopolysaccharide (LPS)-induced acute lung injury (ALI). BalB/c mice intraperitoneally received AC (30, and 60 mg/kg) or dexamethasone (2 mg/kg) 2 h prior to or after intratracheal instillation of LPS. Treatment with AC significantly decreased lung wet-to-dry weight (W/D) ratio and lung myeloperoxidase (MPO) activity and ameliorated LPS-induced lung histopathological changes. In addition, AC increased super oxide dismutase (SOD) level and inhibited malondialdehyde (MDA) content, total cell and neutrophil infiltrations, and levels of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6)more » in bronchoalveolar lavage fluid (BALF) in LPS-stimulated mice. Furthermore, we demonstrated that AC inhibited the phosphorylation of IκBα, nuclear factor-κB (NF-κB) p65, inhibitor of nuclear factor kappa-B kinase-α (IKK-α) and inhibitor of nuclear factor kappa-B kinase-β (IKKβ) in LPS-induced inflammation in A549 cells. Our data suggested that LPS evoked the inflammatory response in lung epithelial cells A549. The experimental results indicated that the protective mechanism of AC might be attributed partly to the inhibition of proinflammatory cytokine production and NF-κB activation. - Highlights: • Acteoside inhibited inflammation in LPS-induced lung injury in mice. • Acteoside inhibited inflammation in lung epithelial cells A549. • Acteoside inhibited NF-kB activation in LPS-induced mice and lung epithelial cells A549.« less

  11. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling.

    PubMed

    Cao, Qiong; Karthikeyan, Aparna; Dheen, S Thameem; Kaur, Charanjit; Ling, Eng-Ang

    2017-01-01

    Microglia activation and associated inflammatory response are involved in the pathogenesis of different neurodegenerative diseases. We have reported that Notch-1 and NF-κB/p65 signalling pathways operate in synergy in regulating the production of proinflammatory mediators in activated microglia. In the latter, there is also evidence by others that glycogen synthase kinase 3β (GSK-3β) mediates the release of proinflammatory cytokines but the interrelationships between the three signalling pathways have not been fully clarified. This is an important issue as activated microglia are potential therapeutic target for amelioration of microglia mediated neuroinflammation. Here we show that blocking of Notch-1 with N-[(3,5-Difluorophenyl) acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT) in LPS activated BV-2 microglia not only suppressed Notch intracellular domain (NICD) and Hes-1 protein expression, but also that of GSK-3β. Conversely, blocking of the latter with lithium chloride (LiCl) decreased NICD expression in a dose-dependent manner; moreover, Hes-1 immunofluorescence was attenuated. Along with this, the protein expression level of p-GSK-3β and p-AKT protein expression was significantly increased. Furthermore, DAPT and LiCl decreased production of IL-1β, TNF-α, IL-6, iNOS, Cox2 and MCP-1; however, IL-10 expression was increased notably in LiCl treated cells. The effects of DAPT and LiCl on changes of the above-mentioned biomarkers were confirmed by immunofluorescence in both BV-2 and primary microglia. Additionally, NF-κB/p65 immunofluorescence was attenuated by DAPT and LiCl; as opposed to this, IκBα protein expression was increased. Taken together, it is suggested that Notch-1, NF-κB/p65 and GSK-3β operate in synergy to inhibit microglia activation. This may be effected via increased expression of phospho-GSK-3β (p-GSK-3β), phospho-protein kinase B (PKB) (p-AKT) and IκBα. It is concluded that the three signalling pathways are

  12. Isoliensinine, a Bioactive Alkaloid Derived from Embryos of Nelumbo nucifera, Induces Hepatocellular Carcinoma Cell Apoptosis through Suppression of NF-κB Signaling.

    PubMed

    Shu, Guangwen; Yue, Ling; Zhao, Wenhao; Xu, Chan; Yang, Jing; Wang, Shaobing; Yang, Xinzhou

    2015-10-14

    Isoliensinine (isolie) is an alkaloid produced by the edible plant Nelumbo nucifera. Here, we unveiled that isolie was able to provoke HepG2, Huh-7, and H22 hepatocellular carcinoma (HCC) cell apoptosis. Isolie decreased NF-κB activity and constitutive phosphorylation of NF-κB p65 subunit at Ser536 in HCC cells. Overexpression of p65 Ser536 phosphorylation mimics abrogated isolie-mediated HCC cell apoptosis. Furthermore, intraperitoneal injection of isolie inhibited the growth of Huh-7 xenografts in nude mice. Additionally, isolie given by both intraperitoneal injection and gavage diminished the proliferation of transplanted H22 cells in Kunming mice. Reduced tumor growth in vivo was associated with inhibited p65 phosphorylation at Ser536 and declined NF-κB activity in tumor tissues. Finally, we revealed that isolie was bioavailable in the blood of mice and exhibited no detectable toxic effects on tumor-bearing mice. Our data provided strong evidence for the anti-HCC effect of isolie.

  13. The flavonoid, fisetin, inhibits UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells.

    PubMed

    Yao, Ke; Zhang, Li; Zhang, Yidong; Ye, PanPan; Zhu, Ning

    2008-01-01

    Ultraviolet (UV) radiation-induced oxidative stress plays a significant role in the progression of cataracts. This study investigated the photoprotective effect of fisetin on UV radiation-induced oxidative stress in human lens epithelial cells and the possible molecular mechanism involved. SRA01/04 cells exposed to different doses of ultraviolet B (UVB) were cultured with various concentrations of fisetin and subsequently monitored for cell viability by the 4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of fisetin on the generation of reactive oxygen species (ROS) of SRA01/04 cells was determined by flow cytometry. Translocation of nuclear factor kappa-B (NF-kappaB) was examined by immunocytochemistry. Expression of NF-kappaB/P65, inhibiter kappa B (IkappaB), and mitogen activated protein kinase (MAPK) proteins were measured by western blot. Treatment of SRA01/04 cells with fisetin inhibited UVB-induced cell death and the generation of ROS. Fisetin inhibited UVB-induced activation and translocation of NF-kappaB/p65, which was mediated through an inhibition of the degradation and activation of IkappaB. Fisetin also inhibited UVB-induced phosphorylation of the p38 and c-Jun N-terminal kinase (JNK) proteins of the MAPK family at various time points studied. The flavonoid, fisetin, could be useful in attenuation of UV radiation-induced oxidative stress and the activation of NF-kappaB and MAPK signaling in human lens epithelial cells, which suggests that fisetin has a potential protective effect against cataractogenesis.

  14. Azadirachtin interacts with the tumor necrosis factor (TNF) binding domain of its receptors and inhibits TNF-induced biological responses.

    PubMed

    Thoh, Maikho; Kumar, Pankaj; Nagarajaram, Hampathalu A; Manna, Sunil K

    2010-02-19

    The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as adhesion molecules and cyclooxygenase 2. Azadirachtin inhibits the inhibitory subunit of NF-kappaB (IkappaB alpha) phosphorylation and thereby its degradation and RelA (p65) nuclear translocation. It blocks IkappaB alpha kinase (IKK) activity ex vivo, but not in vitro. Surprisingly, azadirachtin blocks NF-kappaB DNA binding activity in transfected cells with TNF receptor-associated factor (TRAF)2, TNF receptor-associated death domain (TRADD), IKK, or p65, but not with TNFR, suggesting its effect is at the TNFR level. Azadirachtin blocks binding of TNF, but not IL-1, IL-4, IL-8, or TNF-related apoptosis-inducing ligand (TRAIL) with its respective receptors. Anti-TNFR antibody or TNF protects azadirachtin-mediated down-regulation of TNFRs. Further, in silico data suggest that azadirachtin strongly binds in the TNF binding site of TNFR. Overall, our data suggest that azadirachtin modulates cell surface TNFRs thereby decreasing TNF-induced biological responses. Thus, azadirachtin exerts an anti-inflammatory response by a novel pathway, which may be beneficial for anti-inflammatory therapy.

  15. Targeted deletion of NF-κB p50 diminishes the cardioprotection of histone deacetylase inhibition

    PubMed Central

    Zhang, L. X.; Zhao, Y.; Cheng, G.; Guo, T. L.; Chin, Y. E.; Liu, P. Y.

    2010-01-01

    We have recently demonstrated that the inhibition of histone deacetylases (HDAC) protects the heart against ischemia-reperfusion (I/R) injury. The mechanism by which HDAC inhibition confers myocardial protection remains unknown. The purpose of this study is to investigate whether the disruption of NF-κB p50 would eliminate the protective effects of HDAC inhibition. Wild-type and NF-κB p50-deficient mice were treated with trichostatin A (TSA; 0.1 mg/kg ip), a potent inhibitor of HDACs. Twenty-four hours later, the hearts were perfused in Langendorff model and subjected to 30 min of ischemia and 30 min of reperfusion. Inhibition of HDACs by TSA in wild-type mice produced marked improvements in left ventricular end-diastolic pressure, left ventricular rate pressure product, and the reduction of infarct size compared with non-TSA-treated group. TSA-induced cardioprotection in wild-type animals was absent with genetic deletion of NF-κB p50 subunit. Notably, Western blot displayed a significant increase in nuclear NF-κB p50 and the immunoprecipitation demonstrated a remarkable acetylation of NF-κB p50 at lysine residues following HDAC inhibition. EMSA exhibited a subsequent increase in NF-κB DNA binding activity. Luciferase assay demonstrated an activation of NF-κB by HDAC inhibition. The pretreatment of H9c2 cardiomyoblasts with TSA (50 nmol/l) decreased cell necrosis and increased in cell viability in simulated ischemia. The resistance of H9c2 cardiomyoblasts to simulated ischemia by HDAC inhibition was eliminated by genetic knockdown of NF-κB p50 with transfection of NF-κB p50 short interfering RNA but not scrambled short interfering RNA. These results suggest that NF-κB p50 acetylation and activation play a pivotal role in HDAC inhibition-induced cardioprotection. PMID:20382965

  16. Direct covalent modification as a strategy to inhibit nuclear factor-kappa B.

    PubMed

    Pande, Vineet; Sousa, Sérgio F; Ramos, Maria João

    2009-01-01

    Nuclear Factor-KkappaB (NF-kappaB) is a transcription factor whose inappropriate activation may result in the development of a number of diseases including cancer, inflammation, neurodegeneration and AIDS. Recent studies on NF-kappaB mediated pathologies, made therapeutic interventions leading to its inhibition an emerging theme in pharmaceutical research. NF-kappaB resides in the cytoplasm and is activated by several time-dependent factors, leading to proteasome-dependent degradation of its inhibitory protein (IkappaB), resulting in free NF-kappaB (p50 and p65 subunits, involved in disease states), which binds to target DNA sites, further resulting in enhanced transcription of several disease associated proteins. The complex pathway of NF-kappaB, finally leading to its DNA binding, has attracted several approaches interfering with this pathway. One such approach is that of a direct covalent modification of NF-kappaB. In this article, we present a critical review on the pharmacological agents that have been studied as inhibitors of NF-kappaB by covalently modifying redox-regulated cysteine residues in its subunits, ultimately resulting in the inhibition of kappaB DNA recognition and binding. Beginning with a general overview of NF-kappaB pathway and several possibilities of chemical interventions, the significance of redox-regulation in NF-kappaB activation and DNA binding is presented. Further, protein S-thiolation, S-nitrosylation and irreversible covalent modification are described as regular biochemical events in the cell, having provided a guideline for the development of NF-kappaB inhibitors discussed further. Although just a handful of inhibitors, with most of them being alkylating agents have been studied in the present context, this approach presents potential for the development of a new class of NF-kappaB-inhibitors.

  17. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation

    PubMed Central

    Pearson, Jaclyn S; Riedmaier, Patrice; Marchès, Olivier; Frankel, Gad; Hartland, Elizabeth L

    2011-01-01

    Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors with unknown function for their capacity to prevent p65 nuclear translocation. We observed that ectopic expression of GFP–NleC in HeLa cells led to the degradation of p65. Delivery of NleC by the T3SS of EPEC also induced degradation of p65 in infected cells as well as other NF-κB components, c-Rel and p50. Recombinant His6-NleC induced p65 and p50 cleavage in HeLa cell lysates and mutation of a consensus zinc metalloprotease motif, HEIIH, abrogated NleC proteolytic activity. NleC inhibited IL-8 production during prolonged EPEC infection of HeLa cells in a protease activity-dependent manner. A double nleE/nleC mutant was further impaired for its ability to inhibit IL-8 secretion than either a single nleE or a single nleC mutant. We conclude that NleC is a type III effector protease that degrades NF-κB thereby contributing the arsenal of bacterial effectors that inhibit innate immune activation. PMID:21306441

  18. Lack of NF-kappaB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning.

    PubMed

    Kassed, C A; Willing, A E; Garbuzova-Davis, S; Sanberg, P R; Pennypacker, K R

    2002-08-01

    The roles of activated NF-kappaB subunits in the CNS remain to be discerned. Members of this family of transcription factors are essential to diverse physiological processes and can be activated by pathogens, stress, pharmacological agents, and trauma. We are particularly interested in long-term NF-kappaB activation and its involvement in neuroplastic changes in the brain resulting from acquisition of memory as well as injury. Here, we use lesioning by the limbic-specific neurotoxicant trimethyltin (TMT) as a model in which to examine activation of the NF-kappaB p50 subunit before, during, and after neuronal degeneration. Neurons in wild-type mice that survived TMT-induced injury contained activated p50 and did not label with Fluoro-Jade, a histochemical marker of degenerating neurons. Granule cells of the wild-type dentate gyrus subregion, an area particularly vulnerable to TMT-induced degeneration, contained less activated p50 protein than CA regions. We compared the extent of degeneration in wild-type and p50-null mice and found a fivefold increase in death of hippocampal neurons in mice lacking p50. The hippocampus is key to processes of learning and memory, and NF-kappaB has reported involvement in these processes. The enhanced hippocampal degeneration in p50-null mice prompted us to evaluate their basal learning abilities, and we discovered that difficulties in task acquisition were an additional consequence of p50 ablation. These results indicate that absence of p50 negatively modulates learning ability as well as hippocampal responsiveness to brain injury after a chemical-induced lesion.

  19. Magnesium isoglycyrrhizinate blocks fructose-induced hepatic NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder.

    PubMed

    Zhao, Xiao-Juan; Yang, Yan-Zi; Zheng, Yan-Jing; Wang, Shan-Chun; Gu, Hong-Mei; Pan, Ying; Wang, Shui-Juan; Xu, Hong-Jiang; Kong, Ling-Dong

    2017-08-15

    Magnesium isoglycyrrhizinate as a hepatoprotective agent possesses immune modulation and anti-inflammation, and treats liver diseases. But its effects on immunological-inflammatory and metabolic profiles for metabolic syndrome with liver injury and underlying potential mechanisms are not fully understood. In this study, magnesium isoglycyrrhizinate alleviated liver inflammation and lipid accumulation in fructose-fed rats with metabolic syndrome. It also suppressed hepatic inflammatory signaling activation by reducing protein levels of phosphorylation of nuclear factor-kappa B p65 (p-NF-κB p65), inhibitor of nuclear factor kappa-B kinase α/β (p-IKKα/β) and inhibitor of NF-κB α (p-IκBα) as well as nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and Caspase-1 in rats, being consistent with its reduction of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 levels. Furthermore, magnesium isoglycyrrhizinate modulated lipid metabolism-related genes characterized by up-regulating peroxisome proliferator-activated receptor-α (PPAR-α) and carnitine palmitoyl transferase-1 (CPT-1), and down-regulating sensor for fatty acids to control-1 (SREBP-1) and stearoyl-CoA desaturase 1 (SCD-1) in the liver of fructose-fed rats, resulting in the reduction of triglyceride and total cholesterol levels. These effective actions were further confirmed in fructose-exposed BRL-3A and HepG2 cells. The molecular mechanisms underpinning these observations suggest that magnesium isoglycyrrhizinate may inhibit NF-κB/NLRP3 inflammasome activation to reduce immunological-inflammatory response, which in turn may prevent liver lipid metabolic disorder and accumulation under high fructose condition. Thus, blockade of NF-κB/NLRP3 inflammasome activation and lipid metabolism disorder by magnesium isoglycyrrhizinate may be the potential therapeutic approach for improving fructose-induced liver injury with

  20. Time-lapse imaging of p65 and IκBα translocation kinetics following Ca2+-induced neuronal injury reveals biphasic translocation kinetics in surviving neurons.

    PubMed

    Schwamborn, Robert; Düssmann, Heiko; König, Hans-Georg; Prehn, Jochen H M

    2017-04-01

    The transcription factor nuclear factor-κB (NF-κB) regulates neuronal differentiation, plasticity and survival. It is well established that excitatory neurotransmitters such as glutamate control NF-κB activity. Glutamate receptor overactivation is also involved in ischemic- and seizure-induced neuronal injury and neurodegeneration. However, little is known at the single cell-level how NF-κB signaling relates to neuronal survival during excitotoxic injury. We found that silencing of p65/NF-κB delayed N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in hippocampal neurons, suggesting a functional role of p65 in excitotoxicity. Time-lapse imaging of p65 and its inhibitor IκBα using GFP and Cerulean fusion proteins revealed specific patterns of excitotoxic NF-κB activation. Nuclear translocation of p65 began on average 8±3min following 15min of NMDA treatment and was observed in up to two thirds of hippocampal neurons. Nuclear translocation of IκBα preceded that of p65 suggesting independent translocation processes. In surviving neurons, the onset of p65 nuclear export correlated with mitochondrial membrane potential recovery. Dying neurons exhibited persistent nuclear accumulation of p65-eGFP until plasma membrane permeabilization. Our data demonstrate an important role for p65 activation kinetics in neuronal cell death decisions following excitotoxic injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Zac1 is a histone acetylation-regulated NF-κB suppressor that mediates histone deacetylase inhibitor-induced apoptosis.

    PubMed

    Shu, G; Tang, Y; Zhou, Y; Wang, C; Song, J-G

    2011-12-01

    Histone deacetylase (HDAC) inhibitors are a class of promising anticancer reagents. They are able to induce apoptosis in embryonic carcinoma (EC) cells. However, the underlying mechanism remains poorly understood. Here we show that increased expression of zinc-finger protein regulator of apoptosis and cell-cycle arrest (Zac1) is implicated in HDAC inhibitor-induced apoptosis in F9 and P19 EC cells. By chromatin immunoprecipitation analysis we identified that increased Zac1 expression is mediated by histone acetylation of the Zac1 promoter region. Knockdown of Zac1 inhibited HDAC inhibitor-induced cell apoptosis. Moreover, HDAC inhibitors repressed nuclear factor-κB (NF-κB) activity, and this effect is abrogated by Zac1 knockdown. Consistently, Zac1 overexpression suppressed cellular NF-κB activity. Further investigation showed that Zac1 inhibits NF-κB activity by interacting with the C-terminus of the p65 subunit, which suppresses the phosphorylation of p65 at Ser468 and Ser536 residues. These results indicate that Zac1 is a histone acetylation-regulated suppressor of NF-κB, which is induced and implicated in HDAC inhibitor-mediated EC cell apoptosis.

  2. NF-κB Regulation of YY1 Inhibits Skeletal Myogenesis through Transcriptional Silencing of Myofibrillar Genes▿ †

    PubMed Central

    Wang, Huating; Hertlein, Erin; Bakkar, Nadine; Sun, Hao; Acharyya, Swarnali; Wang, Jingxin; Carathers, Micheal; Davuluri, Ramana; Guttridge, Denis C.

    2007-01-01

    NF-κB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-κB activity. Interestingly, even in proliferating myoblasts, the absence of NF-κB caused the pronounced induction of several myofibrillar genes, suggesting that NF-κB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-κB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-κB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-κB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-κB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-κB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-κB activity. Based on these results, we propose that NF-κB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-κB functions in myoblasts to modulate skeletal muscle differentiation. PMID:17438126

  3. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β

    PubMed Central

    Hernández-Jiménez, Enrique; Shokri, Rahman; Carmona-Rodríguez, Lorena; Mañes, Santos; Álvarez-Mon, Melchor; López-Collazo, Eduardo; Martínez-A, Carlos

    2016-01-01

    M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment. PMID:27427981

  4. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin.

    PubMed

    Westergaard, Majken; Henningsen, Jeanette; Johansen, Claus; Rasmussen, Sofie; Svendsen, Morten Lyhne; Jensen, Uffe Birk; Schrøder, Henrik Daa; Staels, Bart; Iversen, Lars; Bolund, Lars; Kragballe, Knud; Kristiansen, Karsten

    2003-11-01

    Abnormal epidermal proliferation and differentiation characterize the inflammatory skin disease psoriasis. Here we demonstrate that expression of PPARdelta mRNA and protein is markedly upregulated in psoriatic lesions and that lipoxygenase products accumulating in psoriatic lesions are potent activators of PPARdelta. The expression levels of NF-kappaB p50 and p65 were not significantly altered in lesional compared with nonlesional psoriatic skin. In the basal layer of normal epidermis both p50 and p65 were sequestered in the cytoplasm, whereas p50, but not p65, localized to nuclei in the suprabasal layers, and this distribution was maintained in lesional psoriatic skin. In normal human keratinocytes PPAR agonists neither impaired IL-1beta-induced translocation of p65 nor IL-1beta-induced NF-kappaB DNA binding. We show that PPARdelta physically interacts with the N-terminal Rel homology domain of p65. Irrespective of the presence of agonists none of the PPAR subtypes decreased p65-mediated transactivation in keratinocytes. In contrast p65, but not p50, was a potent repressor of PPAR-mediated transactivation. The p65-dependent repression of PPARdelta- but not PPARalpha- or PPARgamma-mediated transactivation was partially relieved by forced expression of the coactivators p300 or CBP. We suggest that deficient NF-kappaB activation in chronic psoriatic plaques permitting unabated PPARdelta-mediated transactivation contributes to the pathologic phenotype of psoriasis.

  5. Involvement of kinase PKC-zeta in the p62/p62(P392L)-driven activation of NF-κB in human osteoclasts.

    PubMed

    Chamoux, Estelle; McManus, Stephen; Laberge, Gino; Bisson, Martine; Roux, Sophie

    2013-03-01

    Mutations of the gene encoding sequestosome1 (SQSTM1/p62), clustering in or near the UBA domain, have been described in Paget's disease of bone (PDB); among these the P392L substitution is the most prevalent. Protein p62 mediates several cell functions, including the control of NF-κB signaling, and autophagy. This scaffolding protein interacts with atypical PKCζ in the RANKL-induced signaling complex. We have previously shown that osteoclasts (OCs) overexpressing the p62(P392L) variant were in a constitutively activated state, presenting activated kinase p-PKCζ/λ and activated NF-κB prior to RANKL stimulation. In the present study, we investigated the relationships between PKCζ and NF-κB activation in human OCs transfected with p62 variants. We showed that PKCζ and p-PKCζ/λ co-localize with p62, and that PKCζ is involved in the RANKL-induced NF-κB activation and in the RANKL-independent activation of NF-κB observed in p62(P392L)-transfected cells. We also observed a basal and RANKL-induced increase in IκBα levels in the presence of the p62(P392L) mutation that contrasted with the NF-κB activation. In this study we propose that PKCζ plays a role in the activation of NF-κB by acting as a p65 (RelA) kinase at Ser(536), independently of IκBα; this alternative pathway could be used preferentially in the presence of the p62(P392L) mutation, which may hinder the ubiquitin-proteasome pathway. Overall, our results highlight the importance of p62-associated PKCζ in the overactive state of pagetic OCs and in the activation of NF-κB, particularly in the presence of the p62(P392L) mutation. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Protective effects of organic acid component from Taraxacum mongolicum Hand.-Mazz. against LPS-induced inflammation: Regulating the TLR4/IKK/NF-κB signal pathway.

    PubMed

    Yang, Nan; Dong, Zibo; Tian, Gang; Zhu, Maomao; Li, Chao; Bu, Weiquan; Chen, Juan; Hou, Xuefeng; Liu, Ying; Wang, Gang; Jia, Xiaobin; Di, Liuqing; Feng, Liang

    2016-12-24

    TMHM is a type of Chinese medicine commonly used in medical practice and has multiple functions, including clearing heat, detoxification, reducing swelling, and tumor therapy. Previous research has demonstrated that the OAC of TMHM (TMHM-OAC) displays advantageous therapeutic action against respiratory inflammation. However, the effect of TMHM-OAC on inflammatory injury and its anti-inflammatory role requires further clarification. An in vitro inflammation damage model was employed using NHBE cells and 100ng/ml of (LPS). HPLC-DAD was conducted to analyze the components of TMHM-OAC. An ELISA was conducted to determine IL-1β, IL-6, TNF-α, and NO expression. An MTT assay was conducted to determine the cytotoxicity of TMHM-OAC. The levels of IL-1β, IL-6, TNF-α, caspase-3, caspase-8, iNOS, TLR4p-nuclear factor kappa-B kinase (p-IκκB), and p-NF-κB p65 in cellular protein, as well as the mRNA levels, were determined using WB, IF testing, and Q-PCR. TMHM-OAC significantly reduced LPS-induced NHBE cell inflammation, which was reflected in the reduced expression of relevant cytokines such as TNF-α, IL-1β, IL-6 and NO, caspase-3, and caspase-8. In addition, this component suppressed TLR4, p-IKKβ, and p-NF-κB p65 levels in both mRNA and cellular protein. TMHM-OAC can reduce LPS-induced inflammation in NHBE cells and this function could be linked to the regulation of the TLR4/IKK/NF-kB pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Treatment with 1,25(OH)2D3induced HDAC2 expression and reduced NF-κB p65 expression in a rat model of OVA-induced asthma

    PubMed Central

    Zhou, Y.; Wang, G.F.; Yang, L.; Liu, F.; Kang, J.Q.; Wang, R.L.; Gu, W.; Wang, C.Y.

    2015-01-01

    Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma. PMID:25923460

  8. Evidence for actin cytoskeleton-dependent and -independent pathways for RelA/p65 nuclear translocation in endothelial cells.

    PubMed

    Fazal, Fabeha; Minhajuddin, Mohd; Bijli, Kaiser M; McGrath, James L; Rahman, Arshad

    2007-02-09

    Activation of the transcription factor NF-kappaB involves its release from the inhibitory protein IkappaBalpha in the cytoplasm and subsequently, its translocation to the nucleus. Whereas the events responsible for its release have been elucidated, mechanisms regulating the nuclear transport of NF-kappaB remain elusive. We now provide evidence for actin cytoskeleton-dependent and -independent mechanisms of RelA/p65 nuclear transport using the proinflammatory mediators, thrombin and tumor necrosis factor alpha, respectively. We demonstrate that thrombin alters the actin cytoskeleton in endothelial cells and interfering with these alterations, whether by stabilizing or destabilizing the actin filaments, prevents thrombin-induced NF-kappaB activation and consequently, expression of its target gene, ICAM-1. The blockade of NF-kappaB activation occurs downstream of IkappaBalpha degradation and is associated with impaired RelA/p65 nuclear translocation. Importantly, thrombin induces association of RelA/p65 with actin and this interaction is sensitive to stabilization/destabilization of the actin filaments. In parallel studies, stabilizing or destabilizing the actin filaments fails to inhibit RelA/p65 nuclear accumulation and ICAM-1 expression by tumor necrosis factor alpha, consistent with its inability to induce actin filament formation comparable with thrombin. Thus, these studies reveal the existence of actin cytoskeleton-dependent and -independent pathways that may be engaged in a stimulus-specific manner to facilitate RelA/p65 nuclear import and thereby ICAM-1 expression in endothelial cells.

  9. A role for NRAGE in NF-κB activation through the non-canonical BMP pathway

    PubMed Central

    2010-01-01

    Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315

  10. Activation of aryl hydrocarbon receptor regulates the LPS/IFNγ-induced inflammatory response by inducing ubiquitin-proteosomal and lysosomal degradation of RelA/p65.

    PubMed

    Domínguez-Acosta, O; Vega, L; Estrada-Muñiz, E; Rodríguez, M S; Gonzalez, F J; Elizondo, G

    2018-06-21

    Several studies have identified the aryl hydrocarbon receptor (AhR) as a negative regulator of the innate and adaptive immune responses. However, the molecular mechanisms by which this transcription factor exerts such modulatory effects are not well understood. Interaction between AhR and RelA/p65 has previously been reported. RelA/p65 is the major NFκB subunit that plays a critical role in immune responses to infection. The aim of the present study was to determine whether the activation of AhR disrupted RelA/p65 signaling in mouse peritoneal macrophages by decreasing its half-life. The data demonstrate that the activation of AhR by TCDD and β-naphthoflavone (β-NF) decreased protein levels of the pro-inflammatory cytokines TFN-α, IL-6 and IL-12 after macrophage activation with LPS/IFNγ. In an AhR-dependent manner, TCDD treatment induces RelA/p65 ubiquitination and proteosomal degradation, an effect dependent on AhR transcriptional activity. Activation of AhR also induced lysosome-like membrane structure formation in mouse peritoneal macrophages and RelA/p65 lysosome-dependent degradation. In conclusion, these results demonstrate that AhR activation promotes RelA/p65 protein degradation through the ubiquitin proteasome system, as well as through the lysosomes, resulting in decreased pro-inflammatory cytokine levels in mouse peritoneal macrophages. Copyright © 2018. Published by Elsevier Inc.

  11. HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway

    PubMed Central

    Xie, Yuan; Yu, Nian; Chen, Yan; Zhang, Kang; Ma, Hai-Yan; Di, Qing

    2017-01-01

    Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE. PMID:28627626

  12. Rosmanol potently inhibits lipopolysaccharide-induced iNOS and COX-2 expression through downregulating MAPK, NF-kappaB, STAT3 and C/EBP signaling pathways.

    PubMed

    Lai, Ching-Shu; Lee, Jong Hun; Ho, Chi-Tang; Liu, Cheng Bin; Wang, Ju-Ming; Wang, Ying-Jan; Pan, Min-Hsiung

    2009-11-25

    Rosmanol is a natural polyphenol from the herb rosemary (Rosmarinus officinalis L.) with high antioxidant activity. In this study, we investigated the inhibitory effects of rosmanol on the induction of NO synthase (NOS) and COX-2 in RAW 264.7 cells induced by lipopolysaccharide (LPS). Rosmanol markedly inhibited LPS-stimulated iNOS and COX-2 protein and gene expression, as well as the downstream products, NO and PGE2. Treatment with rosmanol also reduced translocation of the nuclear factor-kappaB (NF-kappaB) subunits by prevention of the degradation and phosphorylation of inhibitor kappaB (IkappaB). Western blot analysis showed that rosmanol significantly inhibited translocation and phosphorylation of NF-kappaB, signal transducer and activator of transcription-3 (STAT3), and the protein expression of C/EBPbeta and C/EBPdelta. We also found that rosmanol suppressed LPS-induced phosphorylation of ERK1/2, p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)/Akt signaling. Our results demonstrate that rosmanol downregulates inflammatory iNOS and COX-2 gene expression by inhibiting the activation of NF-kappaB and STAT3 through interfering with the activation of PI3K/Akt and MAPK signaling. Taken together, rosmanol might contribute to the potent anti-inflammatory effect of rosemary and may have potential to be developed into an effective anti-inflammatory agent.

  13. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-inducedmore » PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.« less

  14. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  15. Differential regulation of p65 and c-Rel NF-kappaB transactivating activity by Cot, protein kinase C zeta and NIK protein kinases in CD3/CD28 activated T cells.

    PubMed

    Sánchez-Valdepeñas, Carmen; Punzón, Carmen; San-Antonio, Belén; Martin, Angel G; Fresno, Manuel

    2007-03-01

    It has been shown that phosphorylation of p65/RelA and c-Rel plays a role in the regulation of transcriptional activity of NF-kappaB independent on IkappaB degradation. In this study, we show that anti CD3/CD28 activation induces the transactivation activity of both p65/RelA and c-Rel in T cells using Gal4 dependent assays. Moreover, protein kinase C (PKC)zeta, Cot kinase and NF-kappaB-inducing kinase (NIK) seem to be involved in those processes in a different manner. Thus, transfection of dominant negative forms of Cot and PKCzeta inhibits CD3/CD28 induction of Gal4-p65 transactivation, whereas the kinase inactive versions of the 3 kinases inhibit induction of Gal4-c-Rel. Cot induction of Gal4-c-Rel transactivating activity seems to be mediated sequentially through PKCzeta and NIK activation, since dominant negative form of NIK blocks Cot and PKCzeta induction, whereas kinase inactive PKCzeta only blocks Cot activity. In contrast, the contribution of NIK to the transactivation function of p65/RelA seems to be negligible and more importantly NIK-KD did not inhibit induction by Cot and PKCzeta. Besides, the enhancing effect of Cot on Gal4-p65 was not decreased in mouse embryo fibroblasts from NIK deficient aly/aly mice in contrast with a greatest reduction on Gal4-c-Rel. By using Ser to Ala mutants in p65 and c-Rel transactivation domains, PKCzeta and NIK activities seem to be dependent of a restricted set of Ser in both proteins. In contrast, the enhancing effect of Cot seems to be less dependent of a particular set of Ser residues being partially abrogated by mutation of several Ser residues.

  16. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    PubMed

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  17. High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells.

    PubMed

    Chêne, L; Nugeyre, M T; Barré-Sinoussi, F; Israël, N

    1999-03-01

    We have previously demonstrated that interaction of infected thymocytes with autologous thymic epithelial cells (TEC) is a prerequisite for a high level of human immunodeficiency virus type 1 (HIV-1) replication in thymocytes (M. Rothe, L. Chêne, M. Nugeyre, F. Barré-Sinoussi, and N. Israël, J. Virol. 72:5852-5861, 1998). We report here that this activation of HIV replication takes place at the transcriptional level through activation of the Rel/NF-kappaB transcription factors. We first demonstrate that an HIV-1 provirus (SF-2 strain) very effectively replicates in thymocytes cocultured with TEC whereas this provirus, with kappaB sites deleted, fails to replicate. We provide evidence that several NF-kappaB complexes are constitutively found in the nuclei of thymocytes either freshly isolated from the thymus or maintained in coculture with autologous or heterologous TEC. The prevalent complex is the heterodimer p50-p65. NF-kappaB activity is tightly correlated with the transcriptional activity of a long terminal repeat (LTR) of HIV-1 transfected in thymocytes. The cotransfection of this LTR with a mutated IkappaBalpha molecule formally demonstrates that LTR transactivation is regulated by members of the Rel/NF-kappaB family in thymocytes. We also showed that tumor necrosis factor (TNF) and to a lesser extent interleukin-1 (IL-1), secreted within the coculture, induce NF-kappaB activity and a correlative LTR transactivation. However IL-7, a crucial factor for thymopoiesis that is secreted mainly by TEC, is a necessary cofactor for NF-kappaB activation elicited by TNF or IL-1. Together, these data indicate that NF-kappaB activation, required for a high level of HIV replication in thymocytes, is regulated in a specific manner in the thymic microenvironment which provides the necessary cytokines: TNF, IL-1, and IL-7.

  18. Src-family-tyrosine kinase Lyn is critical for TLR2-mediated NF-κB activation through the PI 3-kinase signaling pathway.

    PubMed

    Toubiana, Julie; Rossi, Anne-Lise; Belaidouni, Nadia; Grimaldi, David; Pene, Frederic; Chafey, Philippe; Comba, Béatrice; Camoin, Luc; Bismuth, Georges; Claessens, Yann-Erick; Mira, Jean-Paul; Chiche, Jean-Daniel

    2015-10-01

    TLR2 has a prominent role in host defense against a wide variety of pathogens. Stimulation of TLR2 triggers MyD88-dependent signaling to induce NF-κB translocation, and activates a Rac1-PI 3-kinase dependent pathway that leads to transactivation of NF-κB through phosphorylation of the P65 NF-κB subunit. This transactivation pathway involves tyrosine phosphorylations. The role of the tyrosine kinases in TLR signaling is controversial, with discrepancies between studies using only chemical inhibitors and knockout mice. Here, we show the involvement of the tyrosine-kinase Lyn in TLR2-dependent activation of NF-κB in human cellular models, by using complementary inhibition strategies. Stimulation of TLR2 induces the formation of an activation cluster involving TLR2, CD14, PI 3-kinase and Lyn, and leads to the activation of AKT. Lyn-dependent phosphorylation of the p110 catalytic subunit of PI 3-kinase is essential to the control of PI 3-kinase biological activity upstream of AKT and thereby to the transactivation of NF-κB. Thus, Lyn kinase activity is crucial in TLR2-mediated activation of the innate immune response in human mononuclear cells. © The Author(s) 2015.

  19. Celastrol attenuates incision-induced inflammation and pain associated with inhibition of the NF-κB signalling pathway via SARM.

    PubMed

    Chen, Xuhui; Zhang, Bo; Li, Jiayan; Feng, Miaomiao; Zhang, Yue; Yao, Wenlong; Zhang, Chuanhan; Wan, Li

    2018-05-08

    This study aimed to investigate whether celastrol (CEL) could alleviate incision-induced pain and decipher its possible mechanism. Sprague-Dawley rats were randomly divided into five groups: naïve, vehicle, CEL (5 μg/paw, 10 μg/paw and 20 μg/paw). CEL or vehicle was administered intraplantarly before plantar surgical incision. Histological examinations of skin tissues were performed after HE staining. Additionally, immunohistochemical staining, RT-PCR and western blot were performed to analyse macrophages, proinflammatory cytokines, SARM and NF-κB expression, respectively. Moreover, the previous mentioned factors were re-evaluated after suppressing SARM expression by shRNA. The plantar incision rats displayed pain-related behaviours and inflammatory infiltration in the skin. The mRNA levels of proinflammatory cytokines, such as IL-1β, IL-6, and TNFα were significantly upregulated in the skin of surgical rats. The expression of sterile α- and armadillo-motif-containing protein (SARM) was downregulated and nuclear factor kappa-B (NF-κB) was activated. Interestingly, CEL could partially restore the pain-related behavioural changes. Furthermore, molecular mechanism of CEL was explored, that included significantly reduction of proinflammatory cytokines mRNA expressions, a significant decrease of p-p65 and p65 levels and a markedly increase of SARM and IkBα expressions in skin tissues. However, supression SARM by shRNA partially eliminated those protective effect of CEL. Our data suggest that intraplantarly administration of CEL attenuates inflammatory and acute pain. This finding could be attributed to regulation of the NF-κB signalling pathway via SARM. These results provide pre-clinical evidence supporting the use of CEL in the treatment of surgical pain. Copyright © 2017. Published by Elsevier Inc.

  20. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes

    PubMed Central

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P.

    2016-01-01

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes. PMID:27574114

  1. Inhibition of nuclear factor kappaB proteins-platinated DNA interactions correlates with cytotoxic effectiveness of the platinum complexes.

    PubMed

    Brabec, Viktor; Kasparkova, Jana; Kostrhunova, Hana; Farrell, Nicholas P

    2016-08-30

    Nuclear DNA is the target responsible for anticancer activity of platinum anticancer drugs. Their activity is mediated by altered signals related to programmed cell death and the activation of various signaling pathways. An example is activation of nuclear factor kappaB (NF-κB). Binding of NF-κB proteins to their consensus sequences in DNA (κB sites) is the key biochemical activity responsible for the biological functions of NF-κB. Using gel-mobility-shift assays and surface plasmon resonance spectroscopy we examined the interactions of NF-κB proteins with oligodeoxyribonucleotide duplexes containing κB site damaged by DNA adducts of three platinum complexes. These complexes markedly differed in their toxic effects in tumor cells and comprised highly cytotoxic trinuclear platinum(II) complex BBR3464, less cytotoxic conventional cisplatin and ineffective transplatin. The results indicate that structurally different DNA adducts of these platinum complexes exhibit a different efficiency to affect the affinity of the platinated DNA (κB sites) to NF-κB proteins. Our results support the hypothesis that structural perturbations induced in DNA by platinum(II) complexes correlate with their higher efficiency to inhibit binding of NF-κB proteins to their κB sites and cytotoxicity as well. However, the full generalization of this hypothesis will require to evaluate a larger series of platinum(II) complexes.

  2. Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-KappaB Pathway.

    PubMed

    Yu, Nan; Wang, Sinian; Song, Xiujun; Gao, Ling; Li, Wei; Yu, Huijie; Zhou, Chuanchuan; Wang, Zhenxia; Li, Fengsheng; Jiang, Qisheng

    2018-04-01

    For dendritic cells (DCs) to initiate an immune response, their ability to migrate and to produce interleukin-12 (IL-12) is crucial. It has been previously shown that low-dose radiation (LDR) promoted IL-12 production by DCs, resulting in increased DC activity that contributed to LDR hormesis in the immune system. However, the molecular mechanism of LDR-induced IL-12 production, as well as the effect of LDR on DC migration capacity require further elucidation. Using the JAWSII immortalized mouse dendritic cell line, we showed that in vitro X-ray irradiation (0.2 Gy) of DCs significantly increased DC migration and IL-12 production, and upregulated CCR7. The neutralizing antibody against CCR7 has been shown to abolish LDR-enhanced DC migration, demonstrating that CCR7 mediates LDR-promoting DC migration. We identified nuclear factor kappaB (NF-κB) as the central signaling pathway that mediated LDR-enhanced expression of IL-12 and CCR7 based on findings that 0.2 Gy X-ray irradiation activated NF-κB, showing increased nuclear p65 translocation and NF-κB DNA-binding activity, while an NF-κB inhibitor blocked LDR-enhanced expression of IL-12 and CCR7, as well as DC migration. Finally, we demonstrated that 0.2 Gy X-ray irradiation promoted ATM phosphorylation and reactive oxygen species generation; however, only the ATM inhibitor abolished the LDR-induced NF-κB-mediated expression of IL-12 and CCR7. Altogether, our data show that exposure to LDR resulted in a hormetic effect on DCs regarding CCR7-mediated migration and IL-12 production by activating the ATM/NF-κB pathway.

  3. Novel insights into the role of NF-κB p50 in astrocyte-mediated fate specification of adult neural progenitor cells

    PubMed Central

    Bortolotto, Valeria; Grilli, Mariagrazia

    2017-01-01

    Within the CNS nuclear factor-kappa B (NF-κB) transcription factors are involved in a wide range of functions both in homeostasis and in pathology. Over the years, our and other groups produced a vast array of information on the complex involvement of NF-κB proteins in different aspects of postnatal neurogenesis. In particular, several extracellular signals and membrane receptors have been identified as being able to affect neural progenitor cells (NPC) and their progeny via NF-κB activation. A crucial role in the regulation of neuronal fate specification in adult hippocampal NPC is played by the NF-κB p50 subunit. NF-κB p50KO mice display a remarkable reduction in adult hippocampal neurogenesis which correlates with a selective defect in hippocampal-dependent short-term memory. Moreover absence of NF-κB p50 can profoundly affect the in vitro proneurogenic response of adult hippocampal NPC (ahNPC) to several endogenous signals and drugs. Herein we briefly review the current knowledge on the pivotal role of NF-κB p50 in the regulation of adult hippocampal neurogenesis. In addition we discuss more recent data that further extend the relevance of NF-κB p50 to novel astroglia-derived signals which can influence neuronal specification of ahNPC and to astrocyte-NPC cross-talk. PMID:28469638

  4. The Characteristic Long-Term Upregulation of Hippocampal NF-κB Complex in PTSD-Like Behavioral Stress Response Is Normalized by High-Dose Corticosterone and Pyrrolidine Dithiocarbamate Administered Immediately after Exposure

    PubMed Central

    Cohen, Hagit; Kozlovsky, Nitsan; Matar, Michael A; Zohar, Joseph; Kaplan, Zeev

    2011-01-01

    Nuclear factor-κB (NF-κB) is a ubiquitously expressed transcription factor for genes involved in cell survival, differentiation, inflammation, and growth. This study examined the role of NF-κB pathway in stress-induced PTSD-like behavioral response patterns in rats. Immunohistochemical technique was used to detect the expression of the NF-κB p50 and p65 subunits, I-κBα, p38, and phospho-p38 in the hippocampal subregions at 7 days after exposure to predator scent stress. Expression of p65 nuclear translocation was quantified by western blot as the level of NF-κB activation. The effects of intraperitoneally administered corticosterone or a selective NF-κB inhibitor (pyrrolidine dithiocarbamate (PDTC)) at 1 h post exposure on behavioral tests (elevated plus-maze and acoustic startle response) were evaluated 7 days later. Hippocampal expressions of those genes were subsequently evaluated. All data were analyzed in relation to individual behavior patterns. Extreme behavioral responder animals displayed significant upregulation of p50 and p65 with concomitant downregulation of I-κBα, p38, and phospho-p38 levels in hippocampal structures compared with minimal behavioral responders and controls. Immediate post-exposure treatment with high-dose corticosterone and PDTC significantly reduced prevalence rates of extreme responders and normalized the expression of those genes. Stress-induced upregulation of NF-κB complex in the hippocampus may contribute to the imbalance between what are normally precisely orchestrated and highly coordinated physiological and behavioral processes, thus associating it with stress-related disorders. PMID:21734649

  5. Cleavage of the NF-κB Family Protein p65/RelA by the Chlamydial Protease-like Activity Factor (CPAF) Impairs Proinflammatory Signaling in Cells Infected with Chlamydiae*

    PubMed Central

    Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg

    2010-01-01

    Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296

  6. Survival of Human Multiple Myeloma Cells Is Dependent on MUC1 C-Terminal Transmembrane Subunit Oncoprotein Function

    PubMed Central

    Yin, Li; Ahmad, Rehan; Kosugi, Michio; Kufe, Turner; Vasir, Baldev; Avigan, David; Kharbanda, Surender

    2010-01-01

    The MUC1 C-terminal transmembrane subunit (MUC1-C) oncoprotein is a direct activator of the canonical nuclear factor-κB (NF-κB) RelA/p65 pathway and is aberrantly expressed in human multiple myeloma cells. However, it is not known whether multiple myeloma cells are sensitive to the disruption of MUC1-C function for survival. The present studies demonstrate that peptide inhibitors of MUC1-C oligomerization block growth of human multiple myeloma cells in vitro. Inhibition of MUC1-C function also blocked the interaction between MUC1-C and NF-κB p65 and activation of the NF-κB pathway. In addition, inhibition of MUC1-C in multiple myeloma cells was associated with activation of the intrinsic apoptotic pathway and induction of late apoptosis/necrosis. Primary multiple myeloma cells, but not normal B-cells, were also sensitive to MUC1-C inhibition. Significantly, treatment of established U266 multiple myeloma xenografts growing in nude mice with a lead candidate MUC1-C inhibitor resulted in complete tumor regression and lack of recurrence. These findings indicate that multiple myeloma cells are dependent on intact MUC1-C function for constitutive activation of the canonical NF-κB pathway and for their growth and survival. PMID:20444960

  7. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB.

    PubMed

    Ma, Yunyun; Zhang, Bo; Wang, Dong; Qian, Lili; Song, Xianmei; Wang, Xueyin; Yang, Chaokuan; Zhao, Guoqiang

    2017-03-01

    Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.

  8. EVM005: an ectromelia-encoded protein with dual roles in NF-κB inhibition and virulence.

    PubMed

    van Buuren, Nicholas; Burles, Kristin; Schriewer, Jill; Mehta, Ninad; Parker, Scott; Buller, R Mark; Barry, Michele

    2014-08-01

    Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo.

  9. EVM005: An Ectromelia-Encoded Protein with Dual Roles in NF-κB Inhibition and Virulence

    PubMed Central

    Schriewer, Jill; Mehta, Ninad; Parker, Scott; Buller, R. Mark; Barry, Michele

    2014-01-01

    Poxviruses contain large dsDNA genomes encoding numerous open reading frames that manipulate cellular signalling pathways and interfere with the host immune response. The NF-κB signalling cascade is an important mediator of innate immunity and inflammation, and is tightly regulated by ubiquitination at several key points. A critical step in NF-κB activation is the ubiquitination and degradation of the inhibitor of kappaB (IκBα), by the cellular SCFβ-TRCP ubiquitin ligase complex. We show here that upon stimulation with TNFα or IL-1β, Orthopoxvirus-infected cells displayed an accumulation of phosphorylated IκBα, indicating that NF-κB activation was inhibited during poxvirus infection. Ectromelia virus is the causative agent of lethal mousepox, a natural disease that is fatal in mice. Previously, we identified a family of four ectromelia virus genes (EVM002, EVM005, EVM154 and EVM165) that contain N-terminal ankyrin repeats and C-terminal F-box domains that interact with the cellular SCF ubiquitin ligase complex. Since degradation of IκBα is catalyzed by the SCFβ-TRCP ubiquitin ligase, we investigated the role of the ectromelia virus ankyrin/F-box protein, EVM005, in the regulation of NF-κB. Expression of Flag-EVM005 inhibited both TNFα- and IL-1β-stimulated IκBα degradation and p65 nuclear translocation. Inhibition of the NF-κB pathway by EVM005 was dependent on the F-box domain, and interaction with the SCF complex. Additionally, ectromelia virus devoid of EVM005 was shown to inhibit NF-κB activation, despite lacking the EVM005 open reading frame. Finally, ectromelia virus devoid of EVM005 was attenuated in both A/NCR and C57BL/6 mouse models, indicating that EVM005 is required for virulence and immune regulation in vivo. PMID:25122471

  10. Antiinflammatory effects of glucocorticoids in brain cells, independent of NF-kappa B.

    PubMed

    Bourke, E; Moynagh, P N

    1999-08-15

    Glucocorticoids are potent antiinflammatory drugs. They inhibit the expression of proinflammatory cytokines and adhesion molecules. It has recently been proposed that the underlying basis to such inhibition is the induction of the protein I kappa B, which inhibits the transcription factor NF-kappa B. The latter is a key activator of the genes encoding cytokines and adhesion molecules. The present study shows that the synthetic glucocorticoid, dexamethasone, inhibits the induction of the proinflammatory cytokine IL-8 and the adhesion molecules VCAM-1 and ICAM-1 in human 1321N1 astrocytoma and SK.N.SH neuroblastoma cells. However, dexamethasone failed to induce I kappa B or inhibit activation of NF-kappa B by IL-1 in the two cell types. EMSA confirmed the identity of the activated NF-kappa B by demonstrating that an oligonucleotide, containing the wild-type NF-kappa B-binding motif, inhibited formation of the NF-kappa B-DNA complexes whereas a mutated form of the NF-kappa B-binding motif was ineffective. In addition, supershift analysis showed that the protein subunits p50 and p65 were prevalent components in the activated NF-kappa B complexes. The lack of effect of dexamethasone on the capacity of IL-1 to activate NF-kappa B correlated with its inability to induce I kappa B and the ability of IL-1 to cause degradation of I kappa B, even in the presence of dexamethasone. The results presented in this paper strongly suggest that glucocorticoids may exert antiinflammatory effects in cells of neural origin by a mechanism(s) independent of NF-kappa B.

  11. Potential down-regulation of salivary gland AQP5 by LPS via cross-coupling of NF-kappaB and p-c-Jun/c-Fos.

    PubMed

    Yao, Chenjuan; Purwanti, Nunuk; Karabasil, Mileva Ratko; Azlina, Ahmad; Javkhlan, Purevjav; Hasegawa, Takahiro; Akamatsu, Tetsuya; Hosoi, Toru; Ozawa, Koichiro; Hosoi, Kazuo

    2010-08-01

    The mRNA and protein levels of aquaporin (AQP)5 in the parotid gland were found to be potentially decreased by lipopolysaccharide (LPS) in vivo in C3H/HeN mice, but only weakly in C3H/HeJ, a TLR4 mutant mouse strain. In the LPS-injected mice, pilocarpine-stimulated saliva production was reduced by more than 50%. In a tissue culture system, the LPS-induced decrease in the AQP5 mRNA level was blocked completely by pyrrolidine dithiocarbamate, MG132, tyrphostin AG126, SP600125, and partially by SB203580, which are inhibitors for IkappaB kinase, 26S proteasome, ERK1/2, JNK, and p38 MAPK, respectively. In contrast, the expression of AQP1 mRNA was down-regulated by LPS and such down-regulation was blocked only by SP600125. The transcription factors NF-kappaB (p65 subunit), p-c-Jun, and c-Fos were increased by LPS given in vivo, whereas the protein-binding activities of the parotid gland extract toward the sequences for NF-kappaB but not AP-1-responsive elements present at the promoter region of the AQP5 gene were increased by LPS injection. Co-immunoprecipitation by using antibody columns suggested the physical association of the three transcription factors. These results suggest that LPS-induced potential down-regulation of expression of AQP5 mRNA in the parotid gland is mediated via a complex(es) of these two classes of transcription factors, NF-kappaB and p-c-Jun/c-Fos.

  12. NF-κB inhibition delays DNA damage–induced senescence and aging in mice

    PubMed Central

    Tilstra, Jeremy S.; Robinson, Andria R.; Wang, Jin; Gregg, Siobhán Q.; Clauson, Cheryl L.; Reay, Daniel P.; Nasto, Luigi A.; St Croix, Claudette M.; Usas, Arvydas; Vo, Nam; Huard, Johnny; Clemens, Paula R.; Stolz, Donna B.; Guttridge, Denis C.; Watkins, Simon C.; Garinis, George A.; Wang, Yinsheng; Niedernhofer, Laura J.; Robbins, Paul D.

    2012-01-01

    The accumulation of cellular damage, including DNA damage, is thought to contribute to aging-related degenerative changes, but how damage drives aging is unknown. XFE progeroid syndrome is a disease of accelerated aging caused by a defect in DNA repair. NF-κB, a transcription factor activated by cellular damage and stress, has increased activity with aging and aging-related chronic diseases. To determine whether NF-κB drives aging in response to the accumulation of spontaneous, endogenous DNA damage, we measured the activation of NF-κB in WT and progeroid model mice. As both WT and progeroid mice aged, NF-κB was activated stochastically in a variety of cell types. Genetic depletion of one allele of the p65 subunit of NF-κB or treatment with a pharmacological inhibitor of the NF-κB–activating kinase, IKK, delayed the age-related symptoms and pathologies of progeroid mice. Additionally, inhibition of NF-κB reduced oxidative DNA damage and stress and delayed cellular senescence. These results indicate that the mechanism by which DNA damage drives aging is due in part to NF-κB activation. IKK/NF-κB inhibitors are sufficient to attenuate this damage and could provide clinical benefit for degenerative changes associated with accelerated aging disorders and normal aging. PMID:22706308

  13. Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls.

    PubMed

    Baud, Véronique; Karin, Michael

    2009-01-01

    Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.

  14. Subunit arrangement in P2X receptors.

    PubMed

    Jiang, Lin-Hua; Kim, Miran; Spelta, Valeria; Bo, Xuenong; Surprenant, Annmarie; North, R Alan

    2003-10-01

    ATP-gated ionotropic receptors (P2X receptors) are distributed widely in the nervous system. For example, a hetero-oligomeric receptor containing both P2X2 and P2X3 subunits is involved in primary afferent sensation. Each subunit has two membrane-spanning domains. We have used disulfide bond formation between engineered cysteines to demonstrate close proximity between the outer ends of the first transmembrane domain of one subunit and the second transmembrane domain of another. After expression in HEK 293 cells of such modified P2X2 or P2X4 subunits, the disulfide bond formation is evident because an ATP-evoked channel opening requires previous reduction with dithiothreitol. In the hetero-oligomeric P2X2/3 receptor the coexpression of doubly substituted subunits with wild-type partners allows us to deduce that the hetero-oligomeric channel contains adjacent P2X3 subunits but does not contain adjacent P2X2 subunits. The results suggest a "head-to-tail" subunit arrangement in the quaternary structure of P2X receptors and show that a trimeric P2X2/3 receptor would have the composition P2X2(P2X3)2.

  15. Curcumin suppresses colon cancer cell invasion via AMPK-induced inhibition of NF-κB, uPA activator and MMP9.

    PubMed

    Tong, Weihua; Wang, Quan; Sun, Donghui; Suo, Jian

    2016-11-01

    Curcumin, an active nontoxic ingredient of turmeric, possesses potent anti-inflammatory, antioxidant and anti-cancer properties; however, the molecular mechanisms of curcumin are not fully understood. The transcription factor nuclear factor-κB (NF-κB) is key in cellular processes, and the expression/activation of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP9) are crucial for cell invasion. The present study investigated the hypothesis that curcumin inhibits colon cancer cell invasion by modulating NF-κB-mediated expression and activation of uPA and MMP9. Human colon cancer SW480 and LoVo cells were treated with various concentrations of curcumin. Curcumin was demonstrated to dose-dependently inhibit the adhesion and proliferation ability of LoVo and SW480 cells using Transwell and MTT assays, respectively. In addition, curcumin activated 5' AMP-activated protein kinase (AMPK) and suppressed p65 NF-κB phosphorylation, as shown by western blot analysis. Compound C, a potent AMPK inhibitor, abolished curcumin-induced inhibition of NF-κB, uPA and MMP9, suggesting that AMPK activation is responsible for curcumin-mediated NF-κB, uPA and MMP9 inhibition. The binding activity of NF-κB to DNA was examined and western blotting and quantitative polymerase reaction was performed to detect the effect of curcumin on the expression of uPA and MMP9. The present results revealed that curcumin significantly decreased the expression of uPA and MMP9 and NF-κB DNA binding activity. Furthermore, curcumin decreased the level of the p65 subunit of NF-κB binding to the promoter of the gene encoding uPA and MMP9, which suppressed transcriptional activation of uPA and MMP9. Overall, the present data suggest that curcumin inhibits colon cancer cell invasion via AMPK activation and subsequent inhibition of p65 NF-κB, uPA and MMP9. The therapeutic potential of curcumin for colon cancer metastasis required additional study.

  16. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  17. Inhibition of the promotion of hepatocarcinogenesis by 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) by the deletion of the p50 subunit of NF-{kappa}B in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glauert, Howard P.; Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40506; Tharappel, Job C.

    Polychlorinated biphenyls (PCBs) are persistent and ubiquitous environmental chemicals that bioaccumulate and have hepatic tumor promoting activity in rodents. The present study examined the effect of deleting the p50 subunit of NF-{kappa}B on the hepatic tumor promoting activity of 2,2',4,4',5,5'-hexachlorobiphenyl (PCB-153) in mice. Both wild-type and p50-/- male mice were injected i.p. with diethylnitrosamine (DEN, 90 mg/kg) and then subsequently injected biweekly with 20 i.p. injections of PCB-153 (300 {mu}mol/kg/injection). p50 deletion decreased the tumor incidence in both PCB- and vehicle-treated mice, whereas PCB-153 slightly (P = 0.09) increased the tumor incidence in wild-type and p50-/- mice. PCB-153 increased themore » total tumor volume in both wild-type and p50-/- mice, but the total tumor volume was not affected by p50 deletion in either PCB- or vehicle-treated mice. The volume of tumors that were positive for glutamine synthetase (GS), which is indicative of mutations in the beta-catenin gene, was increased in both wild-type and p50-/- mice administered PCB-153 compared to vehicle controls, and inhibited in p50-/- mice compared to wild-type mice (in both PCB- and vehicle-treated mice). The volume of tumors that were negative for GS was increased in p50-/- mice compared to wild-type mice but was not affected by PCB-153. PCB-153 increased cell proliferation in normal hepatocytes in wild-type but not p50-/- mice; this increase was inhibited in p50-/- mice. In hepatic tumors, the rate of cell proliferation was much higher than in normal hepatocytes, but was not affected by PCB treatment or p50 deletion. The rate of apoptosis, as measured by the TUNEL assay, was not affected by PCB-153 or p50 deletion in normal hepatocytes. In hepatic tumors, the rate of apoptosis was lower than in normal hepatocytes; PCB-153 slightly (P = 0.10) increased apoptosis in p50-/- but not wild-type mice; p50 deletion had no effect. Taken together, these data indicate that

  18. p100, a precursor of NF-κB2, inhibits c-Rel and reduces the expression of IL-23 in dendritic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mise-Omata, Setsuko, E-mail: smise@brc.riken.jp; Obata, Yuichi; Doi, Takahiro S.

    2014-10-24

    Highlights: • The deficiency of p100 enhances c-Rel-, not RelA-, dependent cytokine expression. • p100 associates with c-Rel in the steady state but dissociates after LPS stimulation. • The deficiency of p100 enhances the nuclear translocation of c-Rel. • p100 negatively regulates the c-Rel function. - Abstract: Nuclear factor κB regulates various genes involved in the immune response, inflammation, cell survival, and development. NF-κB activation is controlled by proteins possessing ankyrin repeats, such as IκBs. A precursor of the NF-κB2 (p52) subunit, p100, contains ankyrin repeats in its C-terminal portion and has been found to act as a cytoplasmic inhibitormore » of RelA in the canonical pathway of NF-κB activation. Here, we demonstrate that p100 also suppresses c-Rel function in dendritic cells. Expression of the p19 and p40 subunits of IL-23, a c-Rel-dependent cytokine, was enhanced in p100-deficient cells, although expression of a RelA-dependent cytokine, TNF-α, was reduced. Nuclear translocation of c-Rel was enhanced in p100-deficient cells. p100, and not the processed p52 form, associated with c-Rel in the steady state and dissociated immediately after lipopolysaccharide stimulation in wild-type dendritic cells. Four hours after the stimulation, p100 was newly synthesized and associated with c-Rel again. In cells expressing both c-Rel and RelA, c-Rel is preferentially suppressed by p100.« less

  19. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    PubMed

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantitative analysis reveals crosstalk mechanisms of heat shock-induced attenuation of NF-κB signaling at the single cell level.

    PubMed

    Kardyńska, Małgorzata; Paszek, Anna; Śmieja, Jarosław; Spiller, David; Widłak, Wiesława; White, Michael R H; Paszek, Pawel; Kimmel, Marek

    2018-04-01

    Elevated temperature induces the heat shock (HS) response, which modulates cell proliferation, apoptosis, the immune and inflammatory responses. However, specific mechanisms linking the HS response pathways to major cellular signaling systems are not fully understood. Here we used integrated computational and experimental approaches to quantitatively analyze the crosstalk mechanisms between the HS-response and a master regulator of inflammation, cell proliferation, and apoptosis the Nuclear Factor κB (NF-κB) system. We found that populations of human osteosarcoma cells, exposed to a clinically relevant 43°C HS had an attenuated NF-κB p65 response to Tumor Necrosis Factor α (TNFα) treatment. The degree of inhibition of the NF-κB response depended on the HS exposure time. Mathematical modeling of single cells indicated that individual crosstalk mechanisms differentially encode HS-mediated NF-κB responses while being consistent with the observed population-level responses. In particular "all-or-nothing" encoding mechanisms were involved in the HS-dependent regulation of the IKK activity and IκBα phosphorylation, while others involving transport were "analogue". In order to discriminate between these mechanisms, we used live-cell imaging of nuclear translocations of the NF-κB p65 subunit. The single cell responses exhibited "all-or-nothing" encoding. While most cells did not respond to TNFα stimulation after a 60 min HS, 27% showed responses similar to those not receiving HS. We further demonstrated experimentally and theoretically that the predicted inhibition of IKK activity was consistent with the observed HS-dependent depletion of the IKKα and IKKβ subunits in whole cell lysates. However, a combination of "all-or-nothing" crosstalk mechanisms was required to completely recapitulate the single cell data. We postulate therefore that the heterogeneity of the single cell responses might be explained by the cell-intrinsic variability of HS-modulated IKK

  1. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitor that is highly conserved among pathogenic orthopoxviruses.

    PubMed

    Mohamed, Mohamed R; Rahman, Masmudur M; Lanchbury, Jerry S; Shattuck, Donna; Neff, Chris; Dufford, Max; van Buuren, Nick; Fagan, Katharine; Barry, Michele; Smith, Scott; Damon, Inger; McFadden, Grant

    2009-06-02

    Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105. This represents the first direct interaction between a pathogen-encoded protein and NF-kappaB1/p105. Orthologs of G1R are present in a variety of pathogenic orthopoxviruses, but not in vaccinia virus, and expression of any one of these viral proteins blocks NF-kappaB signaling in human cells. Thus, proteomic screening of variola virus has the potential to uncover modulators of the human innate antiviral responses.

  2. p65 down-regulates DEPTOR expression in response to LPS stimulation in hepatocytes.

    PubMed

    Yu, Xiaoling; Jin, Dan; Yu, An; Sun, Jun; Chen, Xiaodong; Yang, Zaiqing

    2016-09-01

    DEPTOR, a novel endogenous inhibitor of mTOR, plays an important role in regulating the inflammatory response in vascular endothelial cells (ECs) and in mouse skeletal muscle. However, the regulatory mechanism of DEPTOR transcription and its effects on liver inflammation are unknown presently. Here we reported the role of DEPTOR in regulating inflammatory response in mouse liver-derived Hepa1-6 cells and in a mouse model with LPS-induced hepatic inflammation. The results revealed that DEPTOR over-expression in Hepa1-6 liver cells increased the mRNA levels of the pro-inflammatory cytokines interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1). Contrasting results were observed in Hepa1-6 cells with DEPTOR interference. Treatment Hepa1-6 cells with rapamycin, a specific inhibitor of mTORC1, increased MCP-1 mRNA, but have no significant effect on IL-6 mRNA. DEPTOR expression was down-regulated in Hepa1-6 cells with the treatment of inflammatory stimuli LPS or the over-expression of p65/NF-κB, a key inflammatory transcription factor. NF-κB antagonist (PDTC) and inhibitor (IκBα) blocked the effect of LPS on DEPTOR expression. The study in vivo showed that DEPTOR mRNA and protein were significantly reduced in a mouse model with LPS-induced hepatic inflammation, which was accompanied by a concurrent activation of the mTOR signaling pathway. Further, the transcriptional regulation of DEPTOR was explored, which revealed that DEPTOR promoter activity was significantly down-regulated by NF-κB. The progressive deletions and mutations demonstrated that the NF-κB binding motif situated at -145/-127 region is an essential component required for the DEPTOR promoter activity. Chromatin immunoprecipitation (ChIP) assays determined that p65 can directly interact with the DEPTOR promoter DNA. Those results indicate DEPTOR regulates liver inflammation at least partially via mTORC1 pathway, and is down-regulated by LPS through p65. Copyright © 2016 Elsevier B.V. All

  3. Curcumin improves the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cells via the NF-κB-p53-caspase-3 pathway.

    PubMed

    Dang, Yu-Ping; Yuan, Xiao-Ying; Tian, Rong; Li, Dong-Guang; Liu, Wei

    2015-04-01

    Paclitaxel, isolated from Taxus brevifolia , is considered to be an efficacious agent against a wide spectrum of human cancers, including human cervical cancer. However, dose-limiting toxicity and high cost limit its clinical application. Curcumin, a nontoxic food additive, has been reported to improve paclitaxel chemotherapy in mouse models of cervical cancer. However, the underlying mechanisms remain unclear. In this study, two human cervical cancer cell lines, CaSki [human papilloma virus (HPV)16-positive] and HeLa (HPV18-positive), were selected in which to investigate the effect of curcumin on the anticancer action of paclitaxel and further clarify the mechanisms. Flow cytometry and MTT analysis demonstrated that curcumin significantly promoted paclitaxel-induced apoptosis and cytotoxicity in the two cervical cell lines compared with that observed with paclitaxel alone (P<0.05). Reverse transcription-polymerase chain reaction indicated that the decline of HPV E6 and E7 gene expression induced by paclitaxel was also assisted by curcumin. The expression levels of p53 protein and cleaved caspase-3 were increased significantly in the curcumin plus paclitaxel-treated HeLa and CaSki cells compared with those in the cells treated with paclitaxel alone (P<0.01). Significant reductions in the levels of phosphorylation of IκBα and the p65-NF-κB subunit in CaSki cells treated with curcumin and paclitaxel were observed compared with those in cells treated with paclitaxel alone (P<0.05). This suggests that the combined effect of curcumin and paclitaxel was associated with the NF-κB-p53-caspase-3 pathway. In conclusion, curcumin has the ability to improve the paclitaxel-induced apoptosis of HPV-positive human cervical cancer cell lines via the NF-κB-p53-caspase-3 pathway. Curcumin in combination with paclitaxel may provide a superior therapeutic effect on human cervical cancer.

  4. Intestinal CCL11 and eosinophilic inflammation is regulated by myeloid cell-specific RelA/p65 in mice.

    PubMed

    Waddell, Amanda; Ahrens, Richard; Tsai, Yi-Ting; Sherrill, Joseph D; Denson, Lee A; Steinbrecher, Kris A; Hogan, Simon P

    2013-05-01

    In inflammatory bowel diseases (IBDs), particularly ulcerative colitis, intestinal macrophages (MΦs), eosinophils, and the eosinophil-selective chemokine CCL11, have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood. Our gene array analyses demonstrated elevated STAT-6- and NF-κB-dependent genes in pediatric ulcerative colitis colonic biopsies. Dextran sodium sulfate (DSS) exposure induced STAT-6 and NF-κB activation in mouse intestinal F4/80(+)CD11b(+)Ly6C(hi) (inflammatory) MΦs. DSS-induced CCL11 expression, eosinophilic inflammation, and histopathology were attenuated in RelA/p65(Δmye) mice, but not in the absence of STAT-6. Deletion of p65 in myeloid cells did not affect inflammatory MΦ recruitment or alter apoptosis, but did attenuate LPS-induced cytokine production (IL-6) and Ccl11 expression in purified F4/80(+)CD11b(+)Ly6C(hi) inflammatory MΦs. Molecular and cellular analyses revealed a link between expression of calprotectin (S100a8/S100a9), Ccl11 expression, and eosinophil numbers in the DSS-treated colon. In vitro studies of bone marrow-derived MΦs showed calprotectin-induced CCL11 production via a p65-dependent mechanism. Our results indicate that myeloid cell-specific NF-κB-dependent pathways play an unexpected role in CCL11 expression and maintenance of eosinophilic inflammation in experimental colitis. These data indicate that targeting myeloid cells and NF-κB-dependent pathways may be of therapeutic benefit for the treatment of eosinophilic inflammation and histopathology in IBD.

  5. Intestinal CCL11 and eosinophilic inflammation is regulated by myeloid cell-specific RelA/p65 in mice

    PubMed Central

    Waddell, Amanda; Ahrens, Richard; Tsai, Yi Ting; Sherrill, Joseph D.; Denson, Lee A.; Steinbrecher, Kris A.; Hogan, Simon P.

    2014-01-01

    In inflammatory bowel diseases (IBD), particularly ulcerative colitis (UC), intestinal macrophages (MΦs), eosinophils and the eosinophil-selective chemokine CCL11 have been associated with disease pathogenesis. MΦs, a source of CCL11, have been reported to be of a mixed classical (NF-κB-mediated) and alternatively activated (STAT-6-mediated) phenotype. The importance of NF-κB and STAT-6 pathways to the intestinal MΦ/CCL11 response and eosinophilic inflammation in the histopathology of experimental colitis is not yet understood. Our gene array analyses demonstrated elevated STAT-6- and NF-κB-dependent genes in pediatric UC colonic biopsies. Dextran sodium sulphate (DSS) exposure induced STAT-6 and NF-κB activation in mouse intestinal F4/80+CD11b+Ly6Chi (inflammatory) MΦs. DSS-induced CCL11 expression, eosinophilic inflammation and histopathology were attenuated in RelA/p65Δmye mice but not in the absence of STAT-6. Deletion of p65 in myeloid cells did not affect inflammatory MΦ recruitment or alter apoptosis, but did attenuate lipopolysaccharide-induced cytokine production (IL-6) and Ccl11 expression in purified F4/80+CD11b+Ly6Chi inflammatory MΦs. Molecular and cellular analyses revealed a link between expression of calprotectin (S100a8/S100a9), Ccl11 expression and eosinophil numbers in the DSS-treated colon. In vitro studies of bone marrow-derived MΦs showed calprotectin-induced CCL11 production via a p65-dependent mechanism. Our results indicate that myeloid cell-specific NF-κB-dependent pathways play an unexpected role in CCL11 expression and maintenance of eosinophilic inflammation in experimental colitis. These data indicate that targeting myeloid cells and NF-κB-dependent pathways may be of therapeutic benefit for the treatment of eosinophilic inflammation and histopathology in IBD. PMID:23562811

  6. NF-κB1, NF-κB2 and c-Rel differentially regulate susceptibility to colitis-associated adenoma development in C57BL/6 mice.

    PubMed

    Burkitt, Michael D; Hanedi, Abdalla F; Duckworth, Carrie A; Williams, Jonathan M; Tang, Joseph M; O'Reilly, Lorraine A; Putoczki, Tracy L; Gerondakis, Steve; Dimaline, Rod; Caamano, Jorge H; Pritchard, D Mark

    2015-07-01

    NF-κB signalling is an important factor in the development of inflammation-associated cancers. Mouse models of Helicobacter-induced gastric cancer and colitis-associated colorectal cancer have demonstrated that classical NF-κB signalling is an important regulator of these processes. In the stomach, it has also been demonstrated that signalling involving specific NF-κB proteins, including NF-κB1/p50, NF-κB2/p52, and c-Rel, differentially regulate the development of gastric pre-neoplasia. To investigate the effect of NF-κB subunit loss on colitis-associated carcinogenesis, we administered azoxymethane followed by pulsed dextran sodium sulphate to C57BL/6, Nfkb1(-/-), Nfkb2(-/-), and c-Rel(-/-) mice. Animals lacking the c-Rel subunit were more susceptible to colitis-associated cancer than wild-type mice, developing 3.5 times more colonic polyps per animal than wild-type mice. Nfkb2(-/-) mice were resistant to colitis-associated cancer, developing fewer polyps per colon than wild-type mice (median 1 compared to 4). To investigate the mechanisms underlying these trends, azoxymethane and dextran sodium sulphate were administered separately to mice of each genotype. Nfkb2(-/-) mice developed fewer clinical signs of colitis and exhibited less severe colitis and an attenuated cytokine response compared with all other groups following DSS administration. Azoxymethane administration did not fully suppress colonic epithelial mitosis in c-Rel(-/-) mice and less colonic epithelial apoptosis was also observed in this genotype compared to wild-type counterparts. These observations demonstrate different functions of specific NF-κB subunits in this model of colitis-associated carcinogenesis. NF-κB2/p52 is necessary for the development of colitis, whilst c-Rel-mediated signalling regulates colonic epithelial cell turnover following DNA damage. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain

  7. Induction of Fas receptor and Fas ligand by nodularin is mediated by NF-{kappa}B in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng Gong, E-mail: gong-feng@northwestern.edu; Anong Biotech Institute, Tianjin; Li Ying

    Nodularin is a natural toxin with multiple features, including inhibitor of protein phosphatases 1 and 2A as well as tumor initiator and promoter. One unique feature of nodularin is that this chemical is a hepatotoxin. It can accumulate into the liver after contact and lead to severe damage to hepatocyte, such as apoptosis. Fas receptor (Fas) and Fas ligand (FasL) system is a critical signaling network triggering apoptosis. In current study, we investigated whether nodularin can induce Fas and FasL expression in HepG2 cell, a well used in vitro model for the study of human hepatocytes. Our data showed nodularinmore » induced Fas and FasL expression, at both mRNA and protein level, in a time- and dose-dependent manner. We also found nodularin induced apoptosis at the concentration and incubation time that Fas and FasL were significantly induced. Neutralizing antibody to FasL reduced nodularin-induced apoptosis. Further studies demonstrated that nodularin promoted nuclear translocation and activation of p65 subunit of NF-{kappa}B. By applying siRNA targeting p65, which knocked down p65 in HepG2 cells, we successfully impaired the activation of NF-{kappa}B by nodularin. In these p65 knockdown cells, we observed that Fas and FasL expression and apoptosis induced by nodularin were significantly reduced. These findings suggest the induction of Fas and FasL expression and thus cell apoptosis in HepG2 cells by nodularin is mediated through NF-{kappa}B pathway.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Mingshan; Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical College, Xuzhou, Jiangsu; Department of Hematology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu

    Constitutive NF-κB activation is required for survival of activated B cell-like subtype of diffuse large B cell lymphoma (ABC-DLBCL). However, current NF-κB targeting strategies lack cancer cell specificity. Here, we identified a novel inhibitor, piperlongumine, features direct binding to NF-κB p65 subunit and suppression of p65 nuclear import. This was accompanied by NF-κB reporter activity suppression and NF-κB target gene downregulation. Moreover, mutation of Cys{sup 38} to Ser in p65 abolished this effect of piperlongumine on inhibition of p65 nuclear import. Furthermore, we show that piperlongumine selectively inhibited proliferation and induced apoptosis of ABC-DLBCL cells. Most notably, it has beenmore » reported that piperlongumine did not affect normal cells even at high doses and was nontoxic to animals. Hence, our current study provides new insight into piperlongumine's mechanism of action and novel approach to ABC-DLBCL target therapy. - Highlights: • Current NF-κB targeting strategies lack cancer cell specificity. • Piperlongumine inhibits NF-κB p65 subunit nuclear import via directly binding to p65. • Piperlongumine selectively inhibits proliferation of ABC-DLBCL cells. • This study provides a novel approach to ABC-DLBCL target therapy.« less

  9. The p40 Subunit of Interleukin (IL)-12 Promotes Stabilization and Export of the p35 Subunit

    PubMed Central

    Jalah, Rashmi; Rosati, Margherita; Ganneru, Brunda; Pilkington, Guy R.; Valentin, Antonio; Kulkarni, Viraj; Bergamaschi, Cristina; Chowdhury, Bhabadeb; Zhang, Gen-Mu; Beach, Rachel Kelly; Alicea, Candido; Broderick, Kate E.; Sardesai, Niranjan Y.; Pavlakis, George N.; Felber, Barbara K.

    2013-01-01

    IL-12 is a 70-kDa heterodimeric cytokine composed of the p35 and p40 subunits. To maximize cytokine production from plasmid DNA, molecular steps controlling IL-12p70 biosynthesis at the posttranscriptional and posttranslational levels were investigated. We show that the combination of RNA/codon-optimized gene sequences and fine-tuning of the relative expression levels of the two subunits within a cell resulted in increased production of the IL-12p70 heterodimer. We found that the p40 subunit plays a critical role in enhancing the stability, intracellular trafficking, and export of the p35 subunit. This posttranslational regulation mediated by the p40 subunit is conserved in mammals. Based on these findings, dual gene expression vectors were generated, producing an optimal ratio of the two subunits, resulting in a ∼1 log increase in human, rhesus, and murine IL-12p70 production compared with vectors expressing the wild type sequences. Such optimized DNA plasmids also produced significantly higher levels of systemic bioactive IL-12 upon in vivo DNA delivery in mice compared with plasmids expressing the wild type sequences. A single therapeutic injection of an optimized murine IL-12 DNA plasmid showed significantly more potent control of tumor development in the B16 melanoma cancer model in mice. Therefore, the improved IL-12p70 DNA vectors have promising potential for in vivo use as molecular vaccine adjuvants and in cancer immunotherapy. PMID:23297419

  10. Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester.

    PubMed

    Majumdar, Sekhar; Lamothe, Betty; Aggarwal, Bharat B

    2002-03-15

    Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.

  11. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    PubMed Central

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  12. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2.

    PubMed Central

    Duckett, C S; Gedrich, R W; Gilfillan, M C; Thompson, C B

    1997-01-01

    CD30 is a lymphoid cell-specific surface receptor which was originally identified as an antigen expressed on Hodgkin's lymphoma cells. Activation of CD30 induces the nuclear factor kappaB (NF-kappaB) transcription factor. In this study, we define the domains in CD30 which are required for NF-kappaB activation. Two separate elements of the cytoplasmic domain which were capable of inducing NF-kappaB independently of one another were identified. The first domain (domain 1) mapped to a approximately 120-amino-acid sequence in the membrane-proximal region of the CD30 cytoplasmic tail, between residues 410 and 531. A second, more carboxy-terminal region (domain 2) was identified between residues 553 and 595. Domain 2 contains two 5- to 10-amino-acid elements which can mediate the binding of CD30 to members of the tumor necrosis factor receptor-associated factor (TRAF) family of signal transducing proteins. Coexpression of CD30 with TRAF1 or TRAF2 but not TRAF3 augmented NF-kappaB activation through domain 2 but not domain 1. NF-kappaB induction through domain 2 was inhibited by coexpression of either full-length TRAF3 or dominant negative forms of TRAF1 or TRAF2. In contrast, NF-kappaB induction by domain 1 was not affected by alterations in TRAF protein levels. Together, these data support a model in which CD30 can induce NF-kappaB by both TRAF-dependent and -independent mechanisms. TRAF-dependent induction of NF-kappaB appears to be regulated by the relative levels of individual TRAF proteins in the cell. PMID:9032281

  13. Pentoxifylline and the proteasome inhibitor MG132 induce apoptosis in human leukemia U937 cells through a decrease in the expression of Bcl-2 and Bcl-XL and phosphorylation of p65.

    PubMed

    Bravo-Cuellar, Alejandro; Hernández-Flores, Georgina; Lerma-Díaz, José Manuel; Domínguez-Rodríguez, Jorge Ramiro; Jave-Suárez, Luis F; De Célis-Carrillo, Ruth; Aguilar-Lemarroy, Adriana; Gómez-Lomeli, Paulina; Ortiz-Lazareno, Pablo Cesar

    2013-02-28

    In Oncology, the resistance of the cancerous cells to chemotherapy continues to be the principal limitation. The nuclear factor-kappa B (NF-κB) transcription factor plays an important role in tumor escape and resistance to chemotherapy and this factor regulates several pathways that promote tumor survival including some antiapoptotic proteins such as Bcl-2 and Bcl-XL. In this study, we investigated, in U937 human leukemia cells, the effects of PTX and the MG132 proteasome inhibitor, drugs that can disrupt the NF-κB pathway. For this, we evaluated viability, apoptosis, cell cycle, caspases-3, -8, -9, cytochrome c release, mitochondrial membrane potential loss, p65 phosphorylation, and the modification in the expression of pro- and antiapoptotic genes, and the Bcl-2 and Bcl-XL antiapoptotic proteins. The two drugs affect the viability of the leukemia cells in a time-dependent manner. The greatest percentage of apoptosis was obtained with a combination of the drugs; likewise, PTX and MG132 induce G1 phase cell cycle arrest and cleavage of caspases -3,-8, -9 and cytochrome c release and mitochondrial membrane potential loss in U937 human leukemia cells. In these cells, PTX and the MG132 proteasome inhibitor decrease p65 (NF-κB subunit) phosphorylation and the antiapoptotic proteins Bcl-2 and Bcl-XL. We also observed, with a combination of these drugs overexpression of a group of the proapoptotic genes BAX, DIABLO, and FAS while the genes BCL-XL, MCL-1, survivin, IκB, and P65 were downregulated. The two drugs used induce apoptosis per se, this cytotoxicity was greater with combination of both drugs. These observations are related with the caspases -9, -3 cleavage and G1 phase cell cycle arrest, and a decrease in p65 phosphorylation and Bcl-2 and Bcl-XL proteins. As well as this combination of drugs promotes the upregulation of the proapoptotic genes and downregulation of antiapoptotic genes. These observations strongly confirm antileukemic potential.

  14. The Alternative NF-κB Pathway in Regulatory T Cell Homeostasis and Suppressive Function.

    PubMed

    Grinberg-Bleyer, Yenkel; Caron, Rachel; Seeley, John J; De Silva, Nilushi S; Schindler, Christian W; Hayden, Matthew S; Klein, Ulf; Ghosh, Sankar

    2018-04-01

    CD4 + Foxp3 + regulatory T cells (Tregs) are essential regulators of immune responses. Perturbation of Treg homeostasis or function can lead to uncontrolled inflammation and autoimmunity. Therefore, understanding the molecular mechanisms involved in Treg biology remains an active area of investigation. It has been shown previously that the NF-κB family of transcription factors, in particular, the canonical pathway subunits, c-Rel and p65, are crucial for the development, maintenance, and function of Tregs. However, the role of the alternative NF-κB pathway components, p100 and RelB, in Treg biology remains unclear. In this article, we show that conditional deletion of the p100 gene, nfkb2 , in Tregs, resulted in massive inflammation because of impaired suppressive function of nfkb2 -deficient Tregs. Surprisingly, mice lacking RelB in Tregs did not exhibit the same phenotype. Instead, deletion of both relb and nfkb2 rescued the inflammatory phenotype, demonstrating an essential role for p100 as an inhibitor of RelB in Tregs. Our data therefore illustrate a new role for the alternative NF-κB signaling pathway in Tregs that has implications for the understanding of molecular pathways driving tolerance and immunity. Copyright © 2018 by The American Association of Immunologists, Inc.

  15. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells

    PubMed Central

    Galardi, Silvia; Mercatelli, Neri; Farace, Maria G.; Ciafrè, Silvia A.

    2011-01-01

    MicroRNAs (miRNAs) are potent negative regulators of gene expression involved in all aspects of cell biology. They finely modulate virtually all physiological pathways in metazoans, and are deeply implicated in all main pathologies, among which cancer. Mir-221 and miR-222, two closely related miRNAs encoded in cluster from a genomic region on chromosome X, are strongly upregulated in several forms of human tumours. In this work, we report that the ectopic modulation of NF-kB modifies miR-221/222 expression in prostate carcinoma and glioblastoma cell lines, where we had previously shown their oncogenic activity. We identify two separate distal regions upstream of miR-221/222 promoter which are bound by the NF-kB subunit p65 and drive efficient transcription in luciferase reporter assays; consistently, the site-directed mutagenesis disrupting p65 binding sites or the ectopical inhibition of NF-kB activity significantly reduce luciferase activity. In the most distal enhancer region, we also define a binding site for c-Jun, and we show that the binding of this factor cooperates with that of p65, fully accounting for the observed upregulation of miR-221/222. Thus our work uncovers an additional mechanism through which NF-kB and c-Jun, two transcription factors deeply involved in cancer onset and progression, contribute to oncogenesis, by inducing miR-221/222 transcription. PMID:21245048

  16. Aralia elata inhibits neurodegeneration by downregulating O-GlcNAcylation of NF-κB in diabetic mice.

    PubMed

    Kim, Seong-Jae; Kim, Min-Jun; Choi, Mee-Young; Kim, Yoon-Sook; Yoo, Ji-Myong; Hong, Eun-Kyung; Ju, Sunmi; Choi, Wan-Sung

    2017-01-01

    To investigate the role of O-GlcNAcylation of nuclear factor-kappa B (NF-κB) in retinal ganglion cell (RGC) death and analysedthe effect of Aralia elata (AE) on neurodegeneration in diabetic mice. C57BL/6mice with streptozotocin-induced diabetes were fed daily with AE extract or control (CTL) diet at the onset of diabetes mellitus (DM). Two months after injection of streptozotocin or saline, the degree of cell death and the expression of O-GlcNAc transferase (OGT), N-acetyl-b-D-glucosaminidase (OGA), O-GlcNAcylated proteins, and O-GlcNAcylation of NF-κB were examined. AE did not affect the metabolic status of diabetic mice. The decrease in the inner retinal thickness ( P <0.001 vs CTL, P <0.01 vs DM) and increases in RGCs with terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling ( P <0.001 vs CTL, P <0.0001 vs DM), glial activation, and active caspase-3 ( P <0.0001 vs CTL, P <0.0001 vs DM) were blocked in diabetic retinas of AE extract-fed mice. Expression levels of protein O-GlcNAcylation and OGT were increased in diabetic retinas ( P <0.0001 vs CTL), and the level of O-GlcNAcylation of the NF-κB p65 subunit was higher in diabetic retinas than in controls ( P <0.0001 vs CTL). AE extract downregulated O-GlcNAcylation of NF-κB and prevented neurodegeneration induced by hyperglycemia ( P <0.0001 vs DM). O-GlcNAcylation of NF-κB is concerned in neuronal degeneration and that AE prevents diabetes-induced RGC apoptosis via downregulation of NF-κB O-GlcNAcylation. Hence, O-GlcNAcylation may be a new object for the treatment of DR, and AE may have therapeutic possibility to prevent diabetes-induced neurodegeneration.

  17. Selenium reduces the proapoptotic signaling associated to NF-kappaB pathway and stimulates glutathione peroxidase activity during excitotoxic damage produced by quinolinate in rat corpus striatum.

    PubMed

    Santamaría, Abel; Vázquez-Román, Beatriz; La Cruz, Verónica Pérez-De; González-Cortés, Carolina; Trejo-Solís, Ma Cristina; Galván-Arzate, Sonia; Jara-Prado, Aurelio; Guevara-Fonseca, Jorge; Ali, Syed F

    2005-12-15

    Quinolinate (QUIN) neurotoxicity has been attributed to degenerative events in nerve tissue produced by sustained activation of N-methyl-D-aspartate receptor (NMDAr) and oxidative stress. We have recently described the protective effects that selenium (Se), an antioxidant, produces on different markers of QUIN-induced neurotoxicity (Santamaría et al., 2003, J Neurochem 86:479-488.). However, the mechanisms by which Se exerts its protective actions remain unclear. Since some of these events are thought to be related with inhibition of deadly molecular cascades through the activation of antioxidant selenoproteins, in this study we investigated the effects of Se on QUIN-induced cell damage elicited by the nuclear factor kappaB (NF-kappaB) pathway, as well as the time-course response of striatal glutathione peroxidase (GPx) activity. Se (sodium selenite, 0.625 mg/kg/day, i.p.) was administered to rats for 5 days, and 120 min after the last administration, animals received a single striatal injection of QUIN (240 nmol/mul). Twenty-four hours later, their striata were tested for the expression of IkappaB-alpha (the NF-kappaB cytosolic binding protein), the immunohistochemical expression of NF-kappaB (evidenced as nuclear expression of P65), caspase-3-like activation, and DNA fragmentation. Additional groups were killed at 2, 6, and 24 h for measurement of GPx activity. Se reduced the QUIN-induced decrease in IkappaB-alpha expression, evidencing a reduction in its cytosolic degradation. Se also prevented the QUIN-induced increase in P65-immunoreactive cells, suggesting a reduction of NF-kappaB nuclear translocation. Caspase-3-like activation and DNA fragmentation produced by QUIN were also inhibited by Se. Striatal GPx activity was stimulated by Se at 2 and 6 h, but not at 24 h postlesion. Altogether, these data suggest that the protective effects exerted by Se on QUIN-induced neurotoxicity are partially mediated by the inhibition of proapoptotic events underlying Ikappa

  18. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  19. Evidence of functional cross talk between the Notch and NF-κB pathways in nonneoplastic hyperproliferating colonic epithelium.

    PubMed

    Ahmed, Ishfaq; Roy, Badal; Chandrakesan, Parthasarathy; Venugopal, Anand; Xia, Lijun; Jensen, Roy; Anant, Shrikant; Umar, Shahid

    2013-02-15

    The Notch and NF-κB signaling pathways regulate stem cell function and inflammation in the gut, respectively. We investigate whether a functional cross talk exists between the two pathways during transmissible murine colonic hyperplasia (TMCH) caused by Citrobacter rodentium (CR). During TMCH, NF-κB activity and subunit phosphorylation in colonic crypts of NIH Swiss mice at days 6 and 12 were associated with increases in downstream target CXC chemokine ligand (CXCL)-1/keratinocyte-derived chemokine (KC) expression. Blocking Notch signaling acutely for 5 days with the Notch blocker dibenzazepine (DBZ) failed to inhibit crypt NF-κB activity or CXCL-1/KC expression. Chronic DBZ administration for 10 days, however, blocked Notch and NF-κB signaling in the crypts and abrogated hyperplasia. Intriguingly, chronic Notch inhibition was associated with significant increases in IL-1α, granulocyte colony-stimulating factor, monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and KC in the crypt-denuded lamina propria or whole distal colon, with concomitant increases in myeloperoxidase activity. In core-3(-/-) mice, which are defective in intestinal mucin, DBZ administration replicated the results of NIH Swiss mice; in Apc(Min/+) mice, which are associated with CR-induced elevation of NF-κB-p65(276) expression, DBZ reversed the increase in NF-κB-p65(276), which may have blocked rapid proliferation of the mutated crypts. DBZ further blocked reporter activities involving the NF-κB-luciferase reporter plasmid or the Toll-like receptor 4/NF-κB/SEAPorter HEK-293 reporter cell line, while ectopic expression of Notch-N(ICD) reversed the inhibitory effect. Dietary bael (Aegle marmelos) extract (4%) and curcumin (4%) restored Notch and NF-κB cross talk in NIH Swiss mice, inhibited CR/DBZ-induced apoptosis in the crypts, and promoted crypt regeneration. Thus functional cross talk between the Notch and NF-κB pathways during TMCH regulates hyperplasia and

  20. Heteromeric assembly of P2X subunits

    PubMed Central

    Saul, Anika; Hausmann, Ralf; Kless, Achim; Nicke, Annette

    2013-01-01

    Transcripts and/or proteins of P2X receptor (P2XR) subunits have been found in virtually all mammalian tissues. Generally more than one of the seven known P2X subunits have been identified in a given cell type. Six of the seven cloned P2X subunits can efficiently form functional homotrimeric ion channels in recombinant expression systems. This is in contrast to other ligand-gated ion channel families, such as the Cys-loop or glutamate receptors, where homomeric assemblies seem to represent the exception rather than the rule. P2XR mediated responses recorded from native tissues rarely match exactly the biophysical and pharmacological properties of heterologously expressed homomeric P2XRs. Heterotrimerization of P2X subunits is likely to account for this observed diversity. While the existence of heterotrimeric P2X2/3Rs and their role in physiological processes is well established, the composition of most other P2XR heteromers and/or the interplay between distinct trimeric receptor complexes in native tissues is not clear. After a description of P2XR assembly and the structure of the intersubunit ATP-binding site, this review summarizes the distribution of P2XR subunits in selected mammalian cell types and the biochemically and/or functionally characterized heteromeric P2XRs that have been observed upon heterologous co-expression of P2XR subunits. We further provide examples where the postulated heteromeric P2XRs have been suggested to occur in native tissues and an overview of the currently available pharmacological tools that have been used to discriminate between homo- and heteromeric P2XRs. PMID:24391538

  1. Geraniol attenuates 4NQO-induced tongue carcinogenesis through downregulating the activation of NF-κB in rats.

    PubMed

    Madankumar, Arumugam; Tamilarasi, Sasivarnam; Premkumar, Thandavamoorthy; Gopikrishnan, Mani; Nagabhishek, Natesh; Devaki, Thiruvengadam

    2017-10-01

    Geraniol, an acyclic monoterpene found in lemon grass and aromatic herb oil, has been shown to exert antitumor and antioxidant activities against various cancer types. The objective of this study was to investigate the potential chemoprotective role of geraniol against 4-nitroquinoline-1-oxide (4NQO)-induced oral carcinogenesis in male Wistar rats and furthermore to study anti-inflammatory mechanisms of action through possible NF-κB signaling. 4NQO was administered to rats at the dose of 50 ppm through drinking water to induce tongue cancer in 20 weeks. 4NQO provoked inflammation by upregulating the expressions of the p65 subunit nuclear factor kappa-β (NF-κB) in the nucleus, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Additionally, staining for immature and mature mast cells in cancer niche by toluidine blue staining and alcian blue-safranin staining showed more accumulation. Co-treatment of geraniol 200 mg/kg b.w. showed a significant decrease in the level of p65 NF-κB in the nucleus, and this might be due to the inhibition of NF-κB activation/translocation into nucleus, which was further confirmed by decreased immature and mature mast cell density and the expression of inflammatory downstream mediators such as TNF-α, IL-1β, COX-2, and iNOS. Collectively, our results suggested that geraniol as a potential anti-inflammatory agent having the capability to obstruct 4NQO initiated NF-κB activation and modulated the expression of inflammatory mediators.

  2. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  3. Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells.

    PubMed

    Sarkar, Jaganmay; Chowdhury, Animesh; Chakraborti, Tapati; Chakraborti, Sajal

    2016-04-01

    Treatment of bovine pulmonary artery smooth muscle cells with endothelin-1 (ET-1) caused an increase in the expression and activation of proMMP-2 in the cells. The present study was undertaken to determine the underlying mechanisms involved in this scenario. We demonstrated that (i) pretreatment with NADPH oxidase inhibitor, apocynin; PKC-α inhibitor, Go6976; p(38)MAPK inhibitor SB203580 and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by ET-1; (ii) ET-1 treatment to the cells stimulated NADPH oxidase and PKCα activity, p(38)MAPK phosphorylation as well as NF-κB activation by translocation of NF-κBp65 subunit from cytosol to the nucleus, and subsequently by increasing its DNA-binding activity; (iii) ET-1 increases MT1-MMP expression, which was inhibited upon pretreatment with apocynin, Go6976, SB293580, and Bay 11-7082; (iv) ET-1 treatment to the cells downregulated TIMP-2 level. Although apocynin and Go6976 pretreatment reversed ET-1 effect on TIMP-2 level, yet pretreatment of the cells with SB203580 and Bay 11-7082 did not show any discernible change in TIMP-2 level by ET-1. Overall, our results suggest that ET-1-induced activation of proMMP-2 is mediated via cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NFκB-MT1MMP signaling pathways along with a marked decrease in TIMP-2 expression in the cells.

  4. Danshen attenuates osteoarthritis-related cartilage degeneration through inhibition of NF-κB signaling pathway in vivo and in vitro.

    PubMed

    Xu, Xilin; Lv, Hang; Li, Xiaodong; Su, Hui; Zhang, Xiaofeng; Yang, Jun

    2017-12-01

    Danshen (Salvia miltiorrhiza) is a traditional Chinese medicine herb that can alleviate the symptoms of osteoarthritis (OA) (Söder et al. 2006) in animals. However, the underlying mechanisms remain poorly understood and require further investigation. In this study, rabbits with experimentally induced OA were given an intra-articular injection of danshen (0.7 mL/day) for 5 weeks. In addition to attenuating the cartilage degeneration of OA in the rabbits, danshen decreased the expression and activity of matrix metalloproteinase 9 (MMP-9) and MMP-13, and increased the expression of their natural inhibitors: tissue inhibitor of matrix metalloproteinase 1 (TIMP-1) and TIMP-2. Apoptosis in osteoarthritic cartilage tissues was attenuated by danshen, accompanied with increased expression of B cell lymphoma 2 (Bcl-2) and decreased levels of Bcl-2-associated X protein (Bax). Further, danshen inhibited the nuclear accumulation of nuclear factor kappa-B (NF-κB) p65 in osteoarthritic cartilage. The therapeutic effects of danshen in vivo were comparable to that of sodium hyaluronate, which is a drug used clinically for the treatment OA. In vitro, sodium nitroprusside (SNP) was used to stimulate apoptosis in primary rabbit chondrocytes. We found that the SNP-induced apoptosis was mitigated by danshen. BAY11-7028, an inhibitor of the NF-κB pathway, augmented danshen's anti-apoptotic effects in cells exposed to SNP. When these results are considered together, they indicate that danshen alleviates the cartilage injury in rabbit OA through inhibition of the NF-κB signaling pathway.

  5. [Prostate specific antigen and NF-kB in prostatic disease: relation with malignancy].

    PubMed

    Cansino, J R; Vera, R; Rodríguez de Bethencourt, F; Bouraoui, Y; Rodríguez, G; Prieto, A; de la Peña, J; Paniagua, R; Royuela, M

    2011-01-01

    NF-kB (p50/p65) is a transcription factor involved in TNF-α-induced cell death resistance by promoting several antiapoptotic genes. We intend to relate the expression of NF-kB (p50 and p65) with serum levels of prostate-specific antigen (PSA), both in normal males and in those with pathologic conditions of the prostate. this study was carried out in 5 normal, 24 benign prostatic hyperplastic (BPH) and 19 patients with prostate cancer (PC). Immunohistochemical and Western blot analyses were performed on tissue and serum PSA was assayed by PSA DPC Immulite assays (Diagnostics Products Corporation, Los Angeles, CA). in controls, p65 NF-kB was not found and p50 was scantly detected in 60% normal samples in the cytoplasm of epithelial cells. Both p50 and p65 were expressed in 62.5% of the samples with BPH and in 63.2% of those with PC. Both increased its frequency of expression with higher PSA serum levels. Activation of NF-kB revealed by its nuclear translocation in prostate cancer could be related to cancer progression and elevated seric PSA levels. A better understanding of the biologic mechanism by which circulating PSA levels increase and its relation with NF-kB expression is needed. Possibly, NF-kB blockage could be used as a therapeutic target to counteract proliferation in prostate cancer. Copyright © 2010 AEU. Published by Elsevier Espana. All rights reserved.

  6. NF-{kappa}B inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Caiyun; Zhou Yamei; Pinkerton, Kent E.

    2008-07-15

    Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-{kappa}B) in this process. Exposure of rats to 80 mg/m{sup 3} tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-{kappa}Bmore » activity, noted by suppression of inhibitor of {kappa}B (I{kappa}B) kinase (IKK), accumulation of I{kappa}B{alpha}, decrease of NF-{kappa}B DNA binding activity, and downregulation of NF-{kappa}B-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-{kappa}B pathway in tobacco smoke-induced apoptosis.« less

  7. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and non-canonical NF-κB signalling

    PubMed Central

    Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379

  8. Differential requirement for the IKKβ/NF-κB signaling module in regulating TLR versus RLR-induced type 1 IFN expression in dendritic cells1

    PubMed Central

    Wang, Xingyu; Wang, Junmei; Zheng, Hong; Xie, Mengyu; Hopewell, Emily L.; Albrecht, Randy A.; Nogusa, Shoko; García-Sastre, Adolfo; Balachandran, Siddharth; Beg, Amer A.

    2014-01-01

    Host innate-immune responses are tailored by cell-type to control and eradicate specific infectious agents. For example, an acute RNA virus infection can result in high-level expression of type 1 interferons (IFNs) by both conventional (cDCs) and plasmacytoid dendritic cells (pDCs), but while cDCs preferentially utilize RIG-I-like Receptor (RLR) signaling to produce type 1 IFNs, pDCs predominantly employ Toll-like Receptors (TLR) to induce these cytokines. We previously found that the IKKβ/NF-κB pathway regulates early IFN-β expression but not the magnitude of type 1 IFN expression following RLR engagement. In this study, we use IKKβ inhibition and mice deficient in IKKβ or canonical NF-κB subunits (p50, RelA/p65 and cRel) to demonstrate that the IKKβ/NF-κB axis is critically important for virus-induced type 1 IFN expression in pDCs, but not in cDCs. We also reveal a crucial and more general requirement for IKKβ/NF-κB in TLR - but not RLR- induced expression of type 1 IFNs and inflammatory cytokines. Together, these findings reveal a previously unappreciated specificity of the IKKβ/NF-κB signaling axis in regulation of anti-microbial responses by different classes of PRR, and therefore by individual cell-types reliant on particular PRRs for their innate-immune transcriptional responses. PMID:25057006

  9. Triterpenoid Saponin W3 from Anemone flaccida Suppresses Osteoclast Differentiation through Inhibiting Activation of MAPKs and NF-κB Pathways.

    PubMed

    Kong, Xiangying; Yang, Yue; Wu, Wenbin; Wan, Hongye; Li, Xiaomin; Zhong, Michun; Su, Xiaohui; Jia, Shiwei; Lin, Na

    2015-01-01

    Excessive bone resorption by osteoclasts within inflamed joints is the most specific hallmark of rheumatoid arthritis. A. flaccida has long been used for the treatment of arthritis in folk medicine of China; however, the active ingredients responsible for the anti-arthritis effects of A. flaccida are still elusive. In this study, W3, a saponin isolated from the extract of A. flaccida was identified as the major active ingredient by using an osteoclast formation model induced by receptor activator of nuclear factor kappa-B ligand (RANKL). W3 dose-dependently suppressed the actin ring formation and lacunar resorption. Mechanistic investigation revealed that W3 inhibited the RANKL-induced TRAF6 expression, decreased phosphorylation of mitogen-activated protein kinases (MAPKs) and IκB-α, and suppressed NF-κB p65 DNA binding activity. Furthermore, W3 almost abrogated the expression of c-Fos and nuclear factor of activated T cells (NFATc1). Therefore, our results suggest that W3 is a potential agent for treating lytic bone diseases although further evaluation in vivo and in clinical trials is needed.

  10. Epidermal growth factor and tumor necrosis factor α cooperatively promote the motility of hepatocellular carcinoma cell lines via synergistic induction of fibronectin by NF-κB/p65.

    PubMed

    Liu, Zong-Cai; Ning, Fen; Wang, Hai-Fang; Chen, Dan-Yang; Cai, Yan-Na; Sheng, Hui-Ying; Lash, Gendie E; Liu, Li; Du, Jun

    2017-11-01

    The interaction between hepatocellular carcinoma (HCC) cells and their microenvironment plays a fundamental role in tumor metastasis. The HCC microenvironment is rich in epidermal growth factor (EGF) and tumor necrosis factor α (TNFα), which may cooperatively, rather than individually, interact with tumor cells to influence their biological behavior. Immunohistochemistry was performed to study the expression of EGF and TNFα in HCCs. Western blotting, immunofluorescence, qRT-PCR, wound healing scratch and invasion assay, and chromatin immunoprecipitation assays were used to study the combined roles of EGF and TNFα in the motility of HCC cells in vitro. We demonstrated that both EGF and TNFα were highly expressed in HCCs, and HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. In vitro, EGF and TNFα cooperatively promoted the motility of HCC cells mainly via synergistic induction of an extracellular matrix glycoprotein fibronectin (FN). Mechanistically, EGF and TNFα jointly increased the nuclear translocation and PKC mediated phosphorylation of NF-κB/p65 which could bind to the -356bp to -259bp fragment of the FN promoter, leading to a markedly increased activity of the FN promoter in HCC cells. HCCs with higher expression of both EGF and TNFα were more frequently rated as high-grade tumors. EGF and TNFα cooperatively promoted the motility of HCC cells mainly through NF-κB/p65 mediated synergistic induction of FN in vitro. These findings highlight the crosstalk between EGF and TNFα in promoting HCC, and provide potential targets for HCC prevention and treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-{kappa}B Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandur, Santosh K.; Deorukhkar, Amit; Pandey, Manoj K.

    2009-10-01

    Purpose: Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. Methods and Materials: Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-{kappa}B (NF-{kappa}B)more » activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. Results: Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-{kappa}B activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-{kappa}B activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of {kappa}B alpha, inhibition of inhibitor of {kappa}B kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-{kappa}B-regulated gene products (Bcl-2, Bcl-x{sub L}, inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). Conclusions: Our results suggest that transient inducible NF-{kappa}B activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.« less

  12. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay

    PubMed Central

    Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto

    2015-01-01

    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604

  13. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats.

    PubMed

    Hou, Jun; Zheng, Dezhi; Fung, Gabriel; Deng, Haoyu; Chen, Lin; Liang, Jiali; Jiang, Yan; Hu, Yonghe

    2016-03-01

    Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM.

  14. Fumaric Acid Esters Do Not Reduce Inflammatory NF-κB/p65 Nuclear Translocation, ICAM-1 Expression and T-Cell Adhesiveness of Human Brain Microvascular Endothelial Cells.

    PubMed

    Haarmann, Axel; Nehen, Mathias; Deiß, Annika; Buttmann, Mathias

    2015-08-13

    Dimethyl fumarate (DMF) is approved for disease-modifying treatment of patients with relapsing-remitting multiple sclerosis. Animal experiments suggested that part of its therapeutic effect is due to a reduction of T-cell infiltration of the central nervous system (CNS) by uncertain mechanisms. Here we evaluated whether DMF and its primary metabolite monomethyl fumarate (MMF) modulate pro-inflammatory intracellular signaling and T-cell adhesiveness of nonimmortalized single donor human brain microvascular endothelial cells at low passages. Neither DMF nor MMF at concentrations of 10 or 50 µM blocked the IL-1β-induced nuclear translocation of NF-κB/p65, whereas the higher concentration of DMF inhibited the nuclear entry of p65 in human umbilical vein endothelium cultured in parallel. DMF and MMF also did not alter the IL-1β-stimulated activation of p38 MAPK in brain endothelium. Furthermore, neither DMF nor MMF reduced the basal or IL-1β-inducible expression of ICAM-1. In accordance, both fumaric acid esters did not reduce the adhesion of activated Jurkat T cells to brain endothelium under basal or inflammatory conditions. Therefore, brain endothelial cells probably do not directly mediate a potential blocking effect of fumaric acid esters on the inflammatory infiltration of the CNS by T cells.

  15. Naringin rescued the TNF-α-induced inhibition of osteogenesis of bone marrow-derived mesenchymal stem cells by depressing the activation of NF-кB signaling pathway.

    PubMed

    Cao, Xvhai; Lin, Weilong; Liang, Chengwei; Zhang, Dong; Yang, Fengjian; Zhang, Yan; Zhang, Xuelin; Feng, Jianyong; Chen, Cong

    2015-07-01

    Naringin exhibits antiinflammatory activity and is shown to induce bone formation. Yet the impact of naringin on inflammation-affected bone marrow-derived mesenchymal stem cell (BM-MSC), a promising tool for the regenerative treatment of bone injury, remained to be investigated. We first cultured and characterized the BM-MSCs in vitro and observe the effects of treatments of TNF-α, naringin, or the combination of both on osteogenic differentiation. TNF-α administered at the concentration of 20 ng/ml results in significant reductions in MSC's cell survival, alkaline phosphatase activity and expressions of two osteogenic genes, Runx2 and Osx. Simultaneous treatment of both TNF-α and naringin is able to rescue such reductions. Further mechanistic studies indicate that TNF-α treatment activates the NF-кB signaling pathway, evidenced by elevated p-IкBα level as well as the increased nuclear fraction of NF-кB subunit, p65. Finally, treatment with both TNF-α and naringin decreases expressions of p-IкBα and nuclear p65, and thus represses NF-кB pathway activated by sole TNF-α treatment. Our findings provide a molecular basis by which naringin restores the TNF-α-induced damage in MSCs and provide novel insights into the application of naringin in the MSC-based treatments for inflammation-induced bone injury.

  16. Molecular cloning and developmental expression of the catalytic and 65-kDa regulatory subunits of protein phosphatase 2A in Drosophila.

    PubMed Central

    Mayer-Jaekel, R E; Baumgartner, S; Bilbe, G; Ohkura, H; Glover, D M; Hemmings, B A

    1992-01-01

    cDNA clones encoding the catalytic subunit and the 65-kDa regulatory subunit of protein phosphatase 2A (PR65) from Drosophila melanogaster have been isolated by homology screening with the corresponding human cDNAs. The Drosophila clones were used to analyze the spatial and temporal expression of the transcripts encoding these two proteins. The Drosophila PR65 cDNA clones contained an open reading frame of 1773 nucleotides encoding a protein of 65.5 kDa. The predicted amino acid sequence showed 75 and 71% identity to the human PR65 alpha and beta isoforms, respectively. As previously reported for the mammalian PR65 isoforms, Drosophila PR65 is composed of 15 imperfect repeating units of approximately 39 amino acids. The residues contributing to this repeat structure show also the highest sequence conservation between species, indicating a functional importance for these repeats. The gene encoding Drosophila PR65 was located at 29B1,2 on the second chromosome. A major transcript of 2.8 kilobase (kb) encoding the PR65 subunit and two transcripts of 1.6 and 2.5 kb encoding the catalytic subunit could be detected throughout Drosophila development. All of these mRNAs were most abundant during early embryogenesis and were expressed at lower levels in larvae and adult flies. In situ hybridization of different developmental stages showed a colocalization of the PR65 and catalytic subunit transcripts. The mRNA expression is high in the nurse cells and oocytes, consistent with a high equally distributed expression in early embryos. In later embryonal development, the expression remains high in the nervous system and the gonads but the overall transcript levels decrease. In third instar larvae, high levels of mRNA could be observed in brain, imaginal discs, and in salivary glands. These results indicate that protein phosphatase 2A transcript levels change during development in a tissue and in a time-specific manner. Images PMID:1320961

  17. The 11S Proteasome Subunit PSME3 Is a Positive Feedforward Regulator of NF-κB and Important for Host Defense against Bacterial Pathogens.

    PubMed

    Sun, Jinxia; Luan, Yi; Xiang, Dong; Tan, Xiao; Chen, Hui; Deng, Qi; Zhang, Jiaojiao; Chen, Minghui; Huang, Hongjun; Wang, Weichao; Niu, Tingting; Li, Wenjie; Peng, Hu; Li, Shuangxi; Li, Lei; Tang, Wenwen; Li, Xiaotao; Wu, Dianqing; Wang, Ping

    2016-02-02

    The NF-κB pathway plays important roles in immune responses. Although its regulation has been extensively studied, here, we report an unknown feedforward mechanism for the regulation of this pathway by Toll-like receptor (TLR) ligands in macrophages. During bacterial infections, TLR ligands upregulate the expression of the 11S proteasome subunit PSME3 via NF-κB-mediated transcription in macrophages. PSME3, in turn, enhances the transcriptional activity of NF-κB by directly binding to and destabilizing KLF2, a negative regulator of NF-κB transcriptional activity. Consistent with this positive role of PSME3 in NF-κB regulation and importance of the NF-κB pathway in host defense against bacterial infections, the lack of PSME3 in hematopoietic cells renders the hosts more susceptible to bacterial infections, accompanied by increased bacterial burdens in host tissues. Thus, this study identifies a substrate for PSME3 and elucidates a proteolysis-dependent, but ubiquitin-independent, mechanism for NF-κB regulation that is important for host defense and innate immunity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Lysosome-mediated Cell Death and Autophagy-Dependent Multidrug Resistance in Breast Cancer

    DTIC Science & Technology

    2008-10-01

    gene links mitochondria and cell death, the data suggests that Bcl2 may be involved in autophagic cell death and AD-MDR. GeneGo analysis also...GSK3 beta GSK3 beta E2A p53 p21 p21 E2F1 PPAR -gamma JNK1(MA PK8) JNK1(M APK8) ESR1 (nuclear) RARalpha Androgen receptor Androge n receptor p53...RelA (p65 NF-kB subunit) Erk (MAPK1/3 ) Erk (MAPK1/ 3) PPAR - gamma SOX9 Bcl-2 Bcl-2 RARalpha SP1 EGFR EGFR RelA (p65 NF- kB subunit) RARalpha RelA

  19. Cyanidin-3-o-β-Glucoside Induces Megakaryocyte Apoptosis via PI3K/Akt- and MAPKs-Mediated Inhibition of NF-κB Signalling.

    PubMed

    Ya, Fuli; Li, Qing; Wang, Dongliang; Xie, Shuangfeng; Song, Fenglin; Gallant, Reid C; Tian, Zezhong; Wan, Jianbo; Ling, Wenhua; Yang, Yan

    2018-06-04

    Apoptotic-like phase is an essential step in thrombopoiesis from megakaryocytes. Anthocyanins are natural flavonoid pigments that possess a wide range of biological activities, including protection against cardiovascular diseases and induction of tumour cell apoptosis. We investigated the effects and underlying mechanisms of cyanidin-3-o-β-glucoside (Cy-3-g, the major bioactive compound in anthocyanins) on the apoptosis of human primary megakaryocytes and Meg-01 cell line in vitro . We found that Cy-3-g dose-dependently increased the dissipation of the mitochondrial membrane potential, caspase-9 and caspase-3 activity in megakaryocytes from patients with newly diagnosed acute myeloid leukaemia but not in those from healthy volunteers. In Meg-01 cells, Cy-3-g regulated the distribution of Bak, Bax and Bcl-xL proteins in the mitochondria and cytosol, subsequently increasing cytochrome c release and stimulating caspase-9 and caspase-3 activation and phosphatidylserine exposure. However, Cy-3-g did not exert significant effects on factor-associated suicide (Fas), Fas ligand, caspase-8 or Bid expression. Cy-3-g inhibited nuclear factor kappa B (NF-κB) p65 activation by down-regulating inhibitor of NF-κB kinase (IKK)α and IKKβ expression, followed by the inhibition of inhibitor of NF-κB (IκB)α phosphorylation and degradation and subsequent inhibition of the translocation of the p65 sub-unit into the nucleus, and finally stimulating caspase-3 activation and phosphatidylserine exposure. The inhibitory effect of Cy-3-g on NF-κB activation was mediated by the activation of extracellular signal-regulated kinases (Erk1/2) and p38 mitogen-activated protein kinase (MAPK) and the inhibition of phosphoinositide 3-kinase (PI3K)/Akt signalling. U0126 (Erk1/2 inhibitor), SB203580 (p38 MAPK inhibitor) and 740 Y-P (PI3K agonist) significantly reversed Cy-3-g-reduced phosphorylation of p65. Taken together, our data indicate that Cy-3-g induces megakaryocyte apoptosis via the

  20. Yerba mate tea and mate saponins prevented azoxymethane-induced inflammation of rat colon through suppression of NF-κB p65ser(311) signaling via IκB-α and GSK-3β reduced phosphorylation.

    PubMed

    Puangpraphant, Sirima; Dia, Vermont P; de Mejia, Elvira Gonzalez; Garcia, Guadalupe; Berhow, Mark A; Wallig, Matthew A

    2013-01-01

    Yerba mate tea (YMT) has a chemopreventive role in a variety of inflammatory diseases. The objective was to determine the capability of YMT and mate saponins to prevent azoxymethane (AOM)-induced colonic inflammation in rats. YMT (2% dry leaves, w/v, as a source of drinking fluid) (n = 15) and mate saponins (0.01% in the diet, at a concentration present in one cup of YMT) (n = 15) were given ad libitum to rats 2 weeks prior to AOM-injection until the end of the study; while control rats (n = 15) received a basal diet and drinking water. After 8-weeks of study, total colonic mucosa was scraped (n = 3 rats/group) and the remaining colons (n =12 rats/group) were cut into three equal sections and aberrant crypt foci (ACF) were analyzed. YMT reduced ACF formation from 113 (control group) to 89 (P < 0.05). YMT and mate saponins reduced the expression of proinflammatory molecules COX-2 and iNOS with concomitant reduction in p-p65 (P < 0.05). Immunohistochemical analysis of the formalin-fixed middle colons showed that YMT and mate saponins reduced the expression of p-p65(ser311) by 45.7% and 43.1%, respectively, in comparison to the control (P < 0.05). In addition, the expression of molecules upstream of NF-κB such as p-IκB-α and p-GSK-3β(Y216) was downregulated by YMT 24.7% and 24.4%, respectively (P < 0.05). Results suggest the mechanism involved in the chemopreventive effect of YMT and mate saponin consumption in AOM induced-colonic inflammation in rats is through inhibition of NF-κB. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  1. Human T Cell Leukemia Virus Type 2 Tax-Mediated NF-κB Activation Involves a Mechanism Independent of Tax Conjugation to Ubiquitin and SUMO

    PubMed Central

    Journo, Chloé; Bonnet, Amandine; Favre-Bonvin, Arnaud; Turpin, Jocelyn; Vinera, Jennifer; Côté, Emilie; Chevalier, Sébastien Alain; Kfoury, Youmna; Bazarbachi, Ali

    2013-01-01

    Permanent activation of the NF-κB pathway by the human T cell leukemia virus type 1 (HTLV-1) Tax (Tax1) viral transactivator is a key event in the process of HTLV-1-induced T lymphocyte immortalization and leukemogenesis. Although encoding a Tax transactivator (Tax2) that activates the canonical NF-κB pathway, HTLV-2 does not cause leukemia. These distinct pathological outcomes might be related, at least in part, to distinct NF-κB activation mechanisms. Tax1 has been shown to be both ubiquitinated and SUMOylated, and these two modifications were originally proposed to be required for Tax1-mediated NF-κB activation. Tax1 ubiquitination allows recruitment of the IKK-γ/NEMO regulatory subunit of the IKK complex together with Tax1 into centrosome/Golgi-associated cytoplasmic structures, followed by activation of the IKK complex and RelA/p65 nuclear translocation. Herein, we compared the ubiquitination, SUMOylation, and acetylation patterns of Tax2 and Tax1. We show that, in contrast to Tax1, Tax2 conjugation to endogenous ubiquitin and SUMO is barely detectable while both proteins are acetylated. Importantly, Tax2 is neither polyubiquitinated on lysine residues nor ubiquitinated on its N-terminal residue. Consistent with these observations, Tax2 conjugation to ubiquitin and Tax2-mediated NF-κB activation is not affected by overexpression of the E2 conjugating enzyme Ubc13. We further demonstrate that a nonubiquitinable, non-SUMOylable, and nonacetylable Tax2 mutant retains a significant ability to activate transcription from a NF-κB-dependent promoter after partial activation of the IKK complex and induction of RelA/p65 nuclear translocation. Finally, we also show that Tax2 does not interact with TRAF6, a protein that was shown to positively regulate Tax1-mediated activation of the NF-κB pathway. PMID:23135727

  2. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis.

    PubMed

    Hou, Jiwei; Ma, Tan; Cao, Honghui; Chen, Yabing; Wang, Cong; Chen, Xiang; Xiang, Zou; Han, Xiaodong

    2018-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches. © 2017 Wiley Periodicals, Inc.

  3. Perinatal asphyxia leads to PARP-1 overactivity, p65 translocation, IL-1β and TNF-α overexpression, and apoptotic-like cell death in mesencephalon of neonatal rats: prevention by systemic neonatal nicotinamide administration.

    PubMed

    Neira-Peña, T; Rojas-Mancilla, E; Munoz-Vio, V; Perez, R; Gutierrez-Hernandez, M; Bustamante, D; Morales, P; Hermoso, M A; Gebicke-Haerter, P; Herrera-Marschitz, M

    2015-05-01

    Perinatal asphyxia (PA) is a leading cause of neuronal damage in newborns, resulting in long-term neurological and cognitive deficits, in part due to impairment of mesostriatal and mesolimbic neurocircuitries. The insult can be as severe as to menace the integrity of the genome, triggering the overactivation of sentinel proteins, including poly (ADP-ribose) polymerase-1 (PARP-1). PARP-1 overactivation implies increased energy demands, worsening the metabolic failure and depleting further NAD(+) availability. Using a global PA rat model, we report here evidence that hypoxia increases PARP-1 activity, triggering a signalling cascade leading to nuclear translocation of the NF-κB subunit p65, modulating the expression of IL-1β and TNF-α, pro-inflammatory molecules, increasing apoptotic-like cell death in mesencephalon of neonate rats, monitored with Western blots, qPCR, TUNEL and ELISA. PARP-1 activity increased immediately after PA, reaching a maximum 1-8 h after the insult, while activation of the NF-κB signalling pathway was observed 8 h after the insult, with a >twofold increase of p65 nuclear translocation. IL-1β and TNF-α mRNA levels were increased 24 h after the insult, together with a >twofold increase in apoptotic-like cell death. A single dose of the PARP-1 inhibitor nicotinamide (0.8 mmol/kg, i.p.), 1 h post delivery, prevented the effect of PA on PARP-1 activity, p65 translocation, pro-inflammatory cytokine expression and apoptotic-like cell death. The present study demonstrates that PA leads to PARP-1 overactivation, increasing the expression of pro-inflammatory cytokines and cell death in mesencephalon, effects prevented by systemic neonatal nicotinamide administration, supporting the idea that PARP-1 inhibition represents a therapeutic target against the effects of PA.

  4. Synergistic activation of NF-{kappa}B by nontypeable H. influenzae and S. pneumoniae is mediated by CK2, IKK{beta}-I{kappa}B{alpha}, and p38 MAPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kweon, Soo-Mi; Wang, Beinan; Rixter, Davida

    2006-12-15

    In review of the past studies on NF-{kappa}B regulation, most of them have focused on investigating how NF-{kappa}B is activated by a single inducer at a time. Given the fact that, in mixed bacterial infections in vivo, multiple inflammation inducers, including both nontypeable Haemophilus influenzae (NTHi) and Streptococcus pneumoniae, are present simultaneously, a key issue that has yet to be addressed is whether NTHi and S. pneumoniae simultaneously activate NF-{kappa}B and the subsequent inflammatory response in a synergistic manner. Here, we show that NTHi and S. pneumoniae synergistically induce NF-{kappa}B-dependent inflammatory response via activation of multiple signaling pathways in vitromore » and in vivo. The classical IKK{beta}-I{kappa}B{alpha} and p38 MAPK pathways are involved in synergistic activation of NF-{kappa}B via two distinct mechanisms, p65 nuclear translocation-dependent and -independent mechanisms. Moreover, casein kinase 2 (CK2) is involved in synergistic induction of NF-{kappa}B via a mechanism dependent on phosphorylation of p65 at both Ser536 and Ser276 sites. These studies bring new insights into the molecular mechanisms underlying the NF-{kappa}B-dependent inflammatory response in polymicrobial infections and may lead to development of novel therapeutic strategies for modulating inflammation in mixed infections for patients with otitis media and chronic obstructive pulmonary diseases.« less

  5. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR.

    PubMed

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L; Karn, Jonathan; Hauser, Kurt F; Tyagi, Mudit

    2015-09-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    PubMed Central

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira; Aiamkitsumrit, Benjamas; Fassnacht, Ryan; Kashanchi, Fatah; Ochem, Alex; Simon, Gary L.; Karn, Jonathan; Hauser, Kurt F.; Tyagi, Mudit

    2015-01-01

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-κB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-κB at 276th serine residue. These modifications enhance the interaction of NF-κB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. PMID:25980739

  7. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways

    NASA Astrophysics Data System (ADS)

    Hou, Yue; Li, Guoxun; Wang, Jian; Pan, Yingni; Jiao, Kun; Du, Juan; Chen, Ru; Wang, Bing; Li, Ning

    2017-04-01

    The EtOAc extract of Coreopsis tinctoria Nutt. significantly inhibited LPS-induced nitric oxide (NO) production, as judged by the Griess reaction, and attenuated the LPS-induced elevation in iNOS, COX-2, IL-1β, IL-6 and TNF-α mRNA levels, as determined by quantitative real-time PCR, when incubated with BV-2 microglial cells. Immunohistochemical results showed that the EtOAc extract significantly decreased the number of Iba-1-positive cells in the hippocampal region of LPS-treated mouse brains. The major effective constituent of the EtOAc extract, okanin, was further investigated. Okanin significantly suppressed LPS-induced iNOS expression and also inhibited IL-6 and TNF-α production and mRNA expression in LPS-stimulated BV-2 cells. Western blot analysis indicated that okanin suppressed LPS-induced activation of the NF-κB signaling pathway by inhibiting the phosphorylation of IκBα and decreasing the level of nuclear NF-κB p65 after LPS treatment. Immunofluorescence staining results showed that okanin inhibited the translocation of the NF-κB p65 subunit from the cytosol to the nucleus. Moreover, okanin significantly inhibited LPS-induced TLR4 expression in BV-2 cells. In summary, okanin attenuates LPS-induced activation of microglia. This effect may be associated with its capacity to inhibit the TLR4/NF-κB signaling pathways. These results suggest that okanin may have potential as a nutritional preventive strategy for neurodegenerative disorders.

  8. Small interfering RNA targeting nuclear factor kappa B to prevent vein graft stenosis in rat models.

    PubMed

    Meng, X B; Bi, X L; Zhao, H L; Feng, J B; Zhang, J P; Song, G M; Sun, W Y; Bi, Y W

    2013-01-01

    Intimal hyperplasia plays an important role in vein graft stenosis. Inflammatory injury, especially nuclear factor kappaB (NF-κB) gene activation, is highly involved in stenosis progression. We examined whether neointimal hyperplasia and vein graft stenosis could be inhibited by silencing the NF-κB gene with small interference RNA (siRNA). Sixty adult male Sprague-Dawley rats were randomly divided into a normal vein group, a vein graft group, a scrambled siRNA group, and an NF-κB siRNA group. We performed reverse interpositional grafting of the autologous external jugular vein to the abdominal aorta. Vein grafts were treated with liposome and gel complexes containing NF-κB siRNA or scrambled siRNA. The levels of monocyte chemoattractant protein -1, tumor necrosis factor-α, and NF-κB p65 in vessel tissues were evaluated after surgery for content of proliferating cell nuclear antigen (PCNA) and vascular wall thickness. NF-κB siRNA treated vein graft showed less neointimal formation and fewer positive PCNA cells (P < .05). In addition there were lower levels of, NF-κB p65 protein and of inflammatory mediators (P < .05) compared with the vein graft group. Our study suggested that siRNA transfection suppressed NF-κB expression, reduced inflammatory factors, lessened neointimal proliferation, and suppressed PCNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Histamine Induces Bovine Rumen Epithelial Cell Inflammatory Response via NF-κB Pathway.

    PubMed

    Sun, Xudong; Yuan, Xue; Chen, Liang; Wang, Tingting; Wang, Zhe; Sun, Guoquan; Li, Xiaobing; Li, Xinwei; Liu, Guowen

    2017-01-01

    Subacute ruminal acidosis (SARA) is a common disease in high-producing lactating cows. Rumenitis is the initial insult of SARA and is associated with the high concentrations of histamine produced in the rumen of dairy cows during SARA. However, the exact mechanism remains unclear. The objective of the current study is to investigate whether histamine induces inflammation of rumen epithelial cells and the underlying mechanism of this process. Bovine rumen epithelial cells were cultured and treated with different concentrations of histamine and pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) cultured in different pH medium (pH 7.2 or 5.5). qRT-PCR, Western-blotting, ELISA and immunocytofluorescence were used to evaluate whether histamine activated the NF-κB pathway and inflammatory cytokines. The results showed that histamine significantly increased the activity of IKK β and the phosphorylation levels of IκB α, as well as upregulated the mRNA and protein expression levels of NF-κB p65 in the rumen epithelial cells cultured in neutral (pH=7.2) and acidic (pH=5.5) medium. Furthermore, histamine treatment also significantly increased the transcriptional activity of NF-κB p65. High expression and transcriptional activity of NF-κB p65 significantly increased the mRNA expressions and concentrations of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin 1 beta (IL-1β), thereby inducing the inflammatory response in bovine rumen epithelial cells. However, inhibition of NF-κB p65 by PDTC significantly decreased the expressions and concentrations of the inflammatory cytokines induced by histamine in the rumen epithelial cells cultured in the neutral and acidic medium. The present data indicate that histamine induces the inflammatory response of bovine rumen epithelial cells through the NF-κB pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  10. Histone Deacetylase-1 Is Enriched at the Platelet-derived Growth Factor-D Promoter in Response to Interleukin-1β and Forms a Cytokine-inducible Gene-silencing Complex with NF-κB p65 and Interferon Regulatory Factor-1*

    PubMed Central

    Liu, Mary Y.; Khachigian, Levon M.

    2009-01-01

    Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519

  11. Intranuclear interactomic inhibition of NF-κB suppresses LPS-induced severe sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung-Dong; Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749; Cheon, So Yeong

    Suppression of nuclear factor-κB (NF-κB) activation, which is best known as a major regulator of innate and adaptive immune responses, is a potent strategy for the treatment of endotoxic sepsis. To inhibit NF-κB functions, we designed the intra-nuclear transducible form of transcription modulation domain (TMD) of RelA (p65), called nt-p65-TMD, which can be delivered effectively into the nucleus without influencing the cell viability, and work as interactomic inhibitors via disruption of the endogenous p65-mediated transcription complex. nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines, including TNF-α, IL-1β, or IL-6 from BV2 microglia cells stimulated by lipopolysaccharide (LPS). nt-p65-TMD did notmore » inhibit tyrosine phosphorylation of signaling mediators such as ZAP-70, p38, JNK, or ERK involved in T cell activation, but was capable of suppressing the transcriptional activity of NF-κB without the functional effect on that of NFAT upon T-cell receptor (TCR) stimulation. The transduced nt-p65-TMD in T cell did not affect the expression of CD69, however significantly inhibited the secretion of T cell-specific cytokines such as IL-2, IFN-γ, IL-4, IL-17A, or IL-10. Systemic administration of nt-p65-TMD showed a significant therapeutic effect on LPS-induced sepsis model by inhibiting pro-inflammatory cytokines secretion. Therefore, nt-p65-TMD can be a novel therapeutics for the treatment of various inflammatory diseases, including sepsis, where a transcription factor has a key role in pathogenesis, and further allows us to discover new functions of p65 under normal physiological condition without genetic alteration. - Highlights: • The nt-p65-TMD is intra-nuclear interactomic inhibitor of endogenous p65. • The nt-p65-TMD effectively inhibited the secretion of pro-inflammatory cytokines. • The excellent therapeutic potential of nt-p65-TMD was confirmed in sepsis model.« less

  12. Time-dependent modulation of thioredoxin reductase activity might contribute to sulforaphane-mediated inhibition of NF-kappaB binding to DNA.

    PubMed

    Heiss, Elke; Gerhäuser, Clarissa

    2005-01-01

    The chemopreventive agent sulforaphane (SFN) exerts anti-inflammatory activity by thiol-dependent inhibition of nuclear factor kappaB (NF-kappaB) DNA binding. To further analyze the underlying mechanisms, we focused on the thioredoxin/thioredoxin reductase (TrxR) system as a key redox mechanism regulating NF-kappaB DNA binding. Using cultured Raw 264.7 mouse macrophages as a model, 1-chloro-2,4-dinitrobenzene (CDNB), a known inhibitor of TrxR, was identified as an inhibitor of lipopolysaccharide (LPS)-mediated nitric oxide (NO) production and of NF-kappaB DNA binding. CDNB and SFN acted synergistically with respect to inhibition of LPS-induced NO release, and we consequently identified SFN as a novel inhibitor of TrxR enzymatic activity in vitro. Short-term treatment of Raw macrophages with SFN or CDNB resulted in the inhibition of TrxR activity in vivo with half-maximal inhibitory concentration of 25.0 +/- 3.5 microM and 9.4 +/- 3.7 microM, respectively, whereas after a 24-h treatment with 25 microM SFN, TrxR activity was >1.5-fold elevated. In additional experiments, we could exclude that inhibition of trans-activating activity of NF-kappaB contributed to the reduced expression of pro-inflammatory proteins by SFN, based on transient transfection experiments with a (kappaB)(2)- chloramphenicol acetyltransferase construct and a lack of inhibition of protein kinase A activity. These findings further emphasize the importance of redox modulation or thiol reactivity for the regulation of NF-kappaB-dependent transcription by SFN. Antioxid. Redox Signal. 7, 1601-1611. Antioxid. Redox Signal. 7, 1601-1611.

  13. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP

  14. Cinnamoyloxy-mammeisin Isolated from Geopropolis Attenuates Inflammatory Process by Inhibiting Cytokine Production: Involvement of MAPK, AP-1, and NF-κB.

    PubMed

    Franchin, Marcelo; Rosalen, Pedro Luiz; da Cunha, Marcos Guilherme; Silva, Rangel Leal; Colón, David F; Bassi, Gabriel Shimizu; de Alencar, Severino Matias; Ikegaki, Masaharu; Alves-Filho, José C; Cunha, Fernando Q; Beutler, John A; Cunha, Thiago Mattar

    2016-07-22

    Chemical compounds belonging to the class of coumarins have promising anti-inflammatory potential. Cinnamoyloxy-mammeisin (CNM) is a 4-phenylcoumarin that can be isolated from Brazilian geopropolis. To our knowledge, its anti-inflammatory activity has never been studied. Therefore, the present study investigated the anti-inflammatory activity of CNM and elucidated its mechanism of action on isolated macrophages. Pretreatment with CNM reduced neutrophil migration into the peritoneal and joint cavity of mice. Likewise, CNM reduced the in vitro and in vivo release of TNF-α and CXCL2/MIP-2. Regarding the possible molecular mechanism of action, CNM reduced the phosphorylation of proteins ERK 1/2, JNK, p38 MAPK, and AP-1 (subunit c-jun) in PG-stimulated macrophages. Pretreatment with CNM also reduced NF-κB activation in RAW 264.7 macrophages stably expressing the NF-κB-luciferase reporter gene. On the other hand, it did not alter IκBα degradation or nuclear translocation of p65. Thus, the results of this study demonstrate promising anti-inflammatory activity of CNM and provide an explanation of its mechanism of action in macrophages via inhibition of MAPK signaling, AP-1, and NF-κB.

  15. Anti-neuroinflammatory effects of grossamide from hemp seed via suppression of TLR-4-mediated NF-κB signaling pathways in lipopolysaccharide-stimulated BV2 microglia cells.

    PubMed

    Luo, Qian; Yan, Xiaoli; Bobrovskaya, Larisa; Ji, Mei; Yuan, Huiqing; Lou, Hongxiang; Fan, Peihong

    2017-04-01

    Grossamide, a representative lignanamide in hemp seed, has been reported to possess potential anti-inflammatory effects. However, the potential anti-neuroinflammatory effects and underlying mechanisms of action of grossamide are still unclear. Therefore, the present study investigated the possible effects and underlying mechanisms of grossamide against lipopolysaccharide (LPS)-induced inflammatory response in BV2 microglia cells. BV2 microglia cells were pre-treated with various concentrations of grossamide before being stimulated with LPS to induce inflammation. The levels of pro-inflammatory cytokines were determined using the enzyme-linked immunoassay (ELISA) and mRNA expression levels were measured by real-time PCR. The translocation of nuclear factor-kappa B (NF-κB) and contribution of TLR4-mediated NF-κB activation on inflammatory effects were evaluated by immunostaining and Western blot analysis. This study demonstrated that grossamide significantly inhibited the secretion of pro-inflammatory mediators such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α), and decreased the level of LPS-mediated IL-6 and TNF-α mRNA. In addition, it significantly reduced the phosphorylation levels of NF-κB subunit p65 in a concentration-dependent manner and suppressed translocation of NF-κB p65 into the nucleus. Furthermore, grossamide markedly attenuated the LPS-induced expression of Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Taken together, these data suggest that grossamide could be a potential therapeutic candidate for inhibiting neuroinflammation in neurodegenerative diseases.

  16. NF-κB signaling participates in both Receptor Activator of NF-κB Ligand- (RANKL) and interleukin-4- (IL-4) induced macrophage fusion: Receptor cross-talk leads to alterations in NF-κB pathways

    PubMed Central

    Yu, Minjun; Qi, Xiulan; Moreno, Jose L.; Farber, Donna L.; Keegan, Achsah D.

    2011-01-01

    NF-κB activation is essential for RANKL-induced osteoclast formation. IL-4 is known to inhibit the RANKL-induced osteoclast differentiation, while at the same time promote macrophage fusion to form multinucleated giant cells (MNG). Several groups have proposed that IL-4 inhibition of osteoclastogenesis is mediated by suppressing the RANKL-induced activation of NF-κB. However, we found that IL-4 did not block proximal, canonical NF-κB signaling. Instead, we found that IL-4 inhibited alternative NF-κB signaling and induced p105/50 expression. Interestingly, in nfκb1−/− bone marrow macrophages (BMM), the formation of both multinucleated osteoclast and MNG induced by RANKL or IL-4 respectively was impaired. This suggests that NF-κB signaling also plays an important role in IL-4-induced macrophage fusion. Indeed, we found that the RANKL-induced and IL-4-induced macrophage fusion were both inhibited by the NF-κB inhibitors IKK2 inhibitor, and NEMO inhibitory peptide. Furthermore, overexpression of p50, p65, p52 and RelB individually in nfκb1−/− or nfκb1+/+ BMM enhanced both giant osteoclast and MNG formation. Interestingly, knockdown of nfκb2 in wild type BMM dramatically enhanced both osteoclast and MNG formation. In addition, both RANKL- and IL-4-induced macrophage fusion were impaired in NIK−/− BMM. These results suggest IL-4 influences NF-κB pathways by increasing p105/p50 and suppressing RANKL-induced p52 translocation, and that NF-κB pathways participate in both RANKL- and IL-4- induced giant cell formation. PMID:21734075

  17. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs.

    PubMed

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-08

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The crystal structure of the PR65/Aalpha subunit, at 2.3 A resolution, reveals the conformation of its 15 tandemly repeated HEAT sequences, degenerate motifs of approximately 39 amino acids present in a variety of proteins, including huntingtin and importin beta. Individual motifs are composed of a pair of antiparallel alpha helices that assemble in a mainly linear, repetitive fashion to form an elongated molecule characterized by a double layer of alpha helices. Left-handed rotations at three interrepeat interfaces generate a novel left-hand superhelical conformation. The protein interaction interface is formed from the intrarepeat turns that are aligned to form a continuous ridge.

  18. Fisetin, a bioactive flavonol, attenuates allergic airway inflammation through negative regulation of NF-κB.

    PubMed

    Goh, Fera Y; Upton, Nadine; Guan, Shouping; Cheng, Chang; Shanmugam, Muthu K; Sethi, Gautam; Leung, Bernard P; Wong, W S Fred

    2012-03-15

    Persistent activation of nuclear factor-κB (NF-κB) has been associated with the development of asthma. Fisetin (3,7,3',4'-tetrahydroxyflavone), a naturally occurring bioactive flavonol, has been shown to inhibit NF-κB activity. We hypothesized that fisetin may attenuate allergic asthma via negative regulation of the NF-κB activity. Female BALB/c mice sensitized and challenged with ovalbumin developed airway inflammation. Bronchoalveolar lavage fluid was assessed for total and differential cell counts, and cytokine and chemokine levels. Lung tissues were examined for cell infiltration and mucus hypersecretion, and the expression of inflammatory biomarkers. Airway hyperresponsiveness was monitored by direct airway resistance analysis. Fisetin dose-dependently inhibited ovalbumin-induced increases in total cell count, eosinophil count, and IL-4, IL-5 and IL-13 levels recovered in bronchoalveolar lavage fluid. It attenuated ovalbumin-induced lung tissue eosinophilia and airway mucus production, mRNA expression of adhesion molecules, chitinase, IL-17, IL-33, Muc5ac and inducible nitric oxide synthase in lung tissues, and airway hyperresponsiveness to methacholine. Fisetin blocked NF-κB subunit p65 nuclear translocation and DNA-binding activity in the nuclear extracts from lung tissues of ovalbumin-challenged mice. In normal human bronchial epithelial cells, fisetin repressed TNF-α-induced NF-κB-dependent reporter gene expression. Our findings implicate a potential therapeutic value of fisetin in the treatment of asthma through negative regulation of NF-κB pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages.

    PubMed

    Salari, Samira; Seibert, Tara; Chen, Yong-Xiang; Hu, Tieqiang; Shi, Chunhua; Zhao, Xiaoling; Cuerrier, Charles M; Raizman, Joshua E; O'Brien, Edward R

    2013-01-01

    Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.

  20. Effect of low extracellular pH on NF-κB activation in macrophages.

    PubMed

    Gerry, A B; Leake, D S

    2014-04-01

    Many diseases, including atherosclerosis, involve chronic inflammation. The master transcription factor for inflammation is NF-κB. Inflammatory sites have a low extracellular pH. Our objective was to demonstrate the effect of pH on NF-κB activation and cytokine secretion. Mouse J774 macrophages or human THP-1 or monocyte-derived macrophages were incubated at pH 7.0-7.4 and inflammatory cytokine secretion and NF-κB activity were measured. A pH of 7.0 greatly decreased pro-inflammatory cytokine secretion (TNF or IL-6) by J774 macrophages, but not THP-1 or human monocyte-derived macrophages. Upon stimulation of mouse macrophages, the levels of IκBα, which inhibits NF-κB, fell but low pH prevented its later increase, which normally restores the baseline activity of NF-κB, even though the levels of mRNA for IκBα were increased. pH 7.0 greatly increased and prolonged NF-κB binding to its consensus promoter sequence, especially the anti-inflammatory p50:p50 homodimers. Human p50 was overexpressed using adenovirus in THP-1 macrophages and monocyte-derived macrophages to see if it would confer pH sensitivity to NF-κB activity in human cells. Overexpression of p50 increased p50:p50 DNA-binding and in THP-1 macrophages inhibited considerably TNF and IL-6 secretion, but there was still no effect of pH on p50:p50 DNA binding or cytokine secretion. A modest decrease in pH can sometimes have marked effects on NF-κB activation and cytokine secretion and might be one reason to explain why mice normally develop less atherosclerosis than do humans. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Redox Regulation of NF-κB p50 and M1 Polarization in Microglia

    PubMed Central

    Taetzsch, Thomas; Levesque, Shannon; McGraw, Constance; Brookins, Savannah; Luqa, Rafy; Bonini, Marcelo G.; Mason, Ronald P.; Oh, Unsong; Block, Michelle L.

    2014-01-01

    Redox-signaling is implicated in deleterious microglial activation underlying CNS disease, but how ROS program aberrant microglial function is unknown. Here, the oxidation of NF-κB p50 to a free radical intermediate is identified as a marker of dysfunctional M1 (pro-inflammatory) polarization in microglia. Microglia exposed to steady fluxes of H2O2 showed altered NF-κB p50 protein-protein interactions, decreased NF-κB p50 DNA binding, and augmented late-stage TNFα expression, indicating that H2O2 impairs NF-κB p50 function and prolongs amplified M1 activation. NF-κB p50−/− mice and cultures exhibited a disrupted M2 (alternative) response and impaired resolution of the M1 response. Persistent neuroinflammation continued 1 week after LPS (1mg/kg, IP) administration in the NF-κB p50−/− mice. However, peripheral inflammation had already resolved in both strains of mice. Treatment with the spin-trap DMPO mildly reduced LPS-induced 22 h TNFα in the brain in NF-κB p50+/+ mice. Interestingly, DMPO failed to reduce and strongly augmented brain TNFα production in NF-κB p50−/− mice, implicating a fundamental role for NF-κB p50 in the regulation of chronic neuroinflammation by free radicals. These data identify NF-κB p50 as a key redox-signaling mechanism regulating the M1/M2 balance in microglia, where loss of function leads to a CNS-specific vulnerability to chronic inflammation. PMID:25331559

  2. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling.

    PubMed

    He, Yating; Ma, Xiaofeng; Li, Daojing; Hao, Junwei

    2017-08-01

    Inflammatory responses are accountable for secondary injury induced by acute ischemic stroke (AIS). Previous studies indicated that O-GlcNAc modification (O-GlcNAcylation) is involved in the pathology of AIS, and increase of O-GlcNAcylation by glucosamine attenuated the brain damage after ischemia/reperfusion. Inhibition of β-N-acetylglucosaminidase (OGA) with thiamet G (TMG) is an alternative option for accumulating O-GlcNAcylated proteins. In this study, we investigate the neuroprotective effect of TMG in a mouse model of experimental stroke. Our results indicate that TMG administration either before or after middle cerebral artery occlusion (MCAO) surgery dramatically reduced infarct volume compared with that in untreated controls. TMG treatment ameliorated the neurological deficits and improved clinical outcomes in neurobehavioral tests by modulating the expression of pro-inflammatory and anti-inflammatory cytokines. Additionally, TMG administration reduced the number of Iba1 + cells in MCAO mice, decreased expression of the M1 markers, and increased expression of the M2 markers in vivo. In vitro, M1 polarization of BV2 cells was inhibited by TMG treatment. Moreover, TMG decreased the expression of iNOS and COX2 mainly by suppressing NF-κB p65 signaling. These results suggest that TMG exerts a neuroprotective effect and could be useful as an anti-inflammatory agent for ischemic stroke therapy.

  3. Essential Role of Cofilin-1 in Regulating Thrombin-induced RelA/p65 Nuclear Translocation and Intercellular Adhesion Molecule 1 (ICAM-1) Expression in Endothelial Cells*

    PubMed Central

    Fazal, Fabeha; Bijli, Kaiser M.; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N.; Rahman, Arshad

    2009-01-01

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-κB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-κB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser3 phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-κB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-κB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-κB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-κB activity and ICAM-1 expression occurred downstream of IκBα degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells. PMID:19483084

  4. Essential role of cofilin-1 in regulating thrombin-induced RelA/p65 nuclear translocation and intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

    PubMed

    Fazal, Fabeha; Bijli, Kaiser M; Minhajuddin, Mohd; Rein, Theo; Finkelstein, Jacob N; Rahman, Arshad

    2009-07-31

    Activation of RhoA/Rho-associated kinase (ROCK) pathway and the associated changes in actin cytoskeleton induced by thrombin are crucial for activation of NF-kappaB and expression of its target gene ICAM-1 in endothelial cells. However, the events acting downstream of RhoA/ROCK to mediate these responses remain unclear. Here, we show a central role of cofilin-1, an actin-binding protein that promotes actin depolymerization, in linking RhoA/ROCK pathway to dynamic alterations in actin cytoskeleton that are necessary for activation of NF-kappaB and thereby expression of ICAM-1 in these cells. Stimulation of human umbilical vein endothelial cells with thrombin resulted in Ser(3) phosphorylation/inactivation of cofilin and formation of actin stress fibers in a ROCK-dependent manner. RNA interference knockdown of cofilin-1 stabilized the actin filaments and inhibited thrombin- and RhoA-induced NF-kappaB activity. Similarly, constitutively inactive mutant of cofilin-1 (Cof1-S3D), known to stabilize the actin cytoskeleton, inhibited NF-kappaB activity by thrombin. Overexpression of wild type cofilin-1 or constitutively active cofilin-1 mutant (Cof1-S3A), known to destabilize the actin cytoskeleton, also impaired thrombin-induced NF-kappaB activity. Additionally, depletion of cofilin-1 was associated with a marked reduction in ICAM-1 expression induced by thrombin. The effect of cofilin-1 depletion on NF-kappaB activity and ICAM-1 expression occurred downstream of IkappaBalpha degradation and was a result of impaired RelA/p65 nuclear translocation and consequently, RelA/p65 binding to DNA. Together, these data show that cofilin-1 occupies a central position in RhoA-actin pathway mediating nuclear translocation of RelA/p65 and expression of ICAM-1 in endothelial cells.

  5. Double-edged swords as cancer therapeutics: novel, orally active, small molecules simultaneously inhibit p53-MDM2 interaction and the NF-κB pathway.

    PubMed

    Zhuang, Chunlin; Miao, Zhenyuan; Wu, Yuelin; Guo, Zizhao; Li, Jin; Yao, Jianzhong; Xing, Chengguo; Sheng, Chunquan; Zhang, Wannian

    2014-02-13

    Simultaneous inactivation of p53 and hyperactivation of nuclear factor-κB (NF-κB) is a common occurrence in human cancer. Currently, antitumor agents are being designed to selectively activate p53 or inhibit NF-κB. However, there is no concerted effort yet to deliberately design inhibitors that can simultaneously do both. This paper provided a proof-of-concept study that p53-MDM2 interaction and NF-κB pathway can be simultaneously targeted by a small-molecule inhibitor. A series of pyrrolo[3,4-c]pyrazole derivatives were rationally designed and synthesized as the first-in-class inhibitors of p53-MDM2 interaction and NF-κB pathway. Most of the compounds were identified to possess nanomolar p53-MDM2 inhibitory activity. Compounds 5q and 5s suppressed NF-κB activation through inhibition of IκBα phosphorylation and elevation of the cytoplasmic levels of p65 and phosphorylated IKKα/β. Biochemical assay for the kinases also supported the fact that pyrrolo[3,4-c]pyrazole compounds directly targeted the NF-κB pathway. In addition, four compounds (5j, 5q, 5s, and 5u) effectively inhibited tumor growth in the A549 xenograft model. Further pharmacokinetic study revealed that compound 5q exhibited excellent oral bioavailability (72.9%).

  6. NF-κB regulates neuronal ankyrin-G via a negative feedback loop.

    PubMed

    König, Hans-Georg; Schwamborn, Robert; Andresen, Silke; Kinsella, Sinéad; Watters, Orla; Fenner, Beau; Prehn, Jochen H M

    2017-02-09

    The axon initial segment (AIS) is a neuronal compartment defined by ankyrin-G expression. We here demonstrate that the IKK-complex co-localizes and interacts with the cytoskeletal anchor protein ankyrin-G in immunoprecipitation and proximity-ligation experiments in cortical neurons. Overexpression of the 270 kDa variant of ankyrin-G suppressed, while gene-silencing of ankyrin-G expression increased nuclear factor-κB (NF-κB) activity in primary neurons, suggesting that ankyrin-G sequesters the transcription factor in the AIS. We also found that p65 bound to the ank3 (ankyrin-G) promoter sequence in chromatin immunoprecipitation analyses thereby increasing ank3 expression and ankyrin-G levels at the AIS. Gene-silencing of p65 or ankyrin-G overexpression suppressed ank3 reporter activity. Collectively these data demonstrate that p65/NF-κB controls ankyrin-G levels via a negative feedback loop, thereby linking NF-κB signaling with neuronal polarity and axonal plasticity.

  7. Anti-inflammatory effect of sophoraflavanone G isolated from Sophora flavescens in lipopolysaccharide-stimulated mouse macrophages.

    PubMed

    Wun, Zih-Yi; Lin, Chwan-Fwu; Huang, Wen-Chung; Huang, Yu-Ling; Xu, Pei-Yin; Chang, Wei-Tien; Wu, Shu-Ju; Liou, Chian-Jiun

    2013-12-01

    Sophoraflavanone G (SG; 5,7,D, 2',4'-tetrahydroxy-8-lavandulylflavanone) has been isolated from Sophora flavescens and found to be effective against bacteria and to decrease cyclooxygenase (COX)-2 expression in RAW 264.7 macrophage. However, the anti-inflammatory mechanisms of SG are not well understood. RAW 264.7 cells were pretreated with various concentrations of SG (2.5-20 μM) and inflammatory responses were induced with lipopolysaccharide. Using enzyme-linked immunosorbent assay, the levels of pro-inflammatory cytokines and prostaglandin E2 (PGE2) were determined. Western blot was used to examine the protein expression of inducible nitric oxide synthase (iNOS), COX-2, and heme oxygenase-1 (HO-1). To investigate the molecular mechanism, we analyzed inflammatory-associated signaling pathways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK). SG inhibited the levels of nitric oxide and PGE2 and decreased the production of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor α. The expression of iNOS and COX-2 was also suppressed. However, SG increased HO-1 production in a concentration-dependent manner and significantly decreased MAPK activation and inhibited NF-κB subunit p65 proteins to translocate into the nucleus. These results suggest that SG has an anti-inflammatory effect, inhibiting pro-inflammatory cytokines and mediators production via interruption of the NF-κB and MAPK signaling pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation.

    PubMed

    Hung, Yu-Chun; Hsu, Chun-Chieh; Chung, Ching-Hu; Huang, Tur-Fu

    2016-07-01

    In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.

  9. Negative Regulation of NF-κB by the ING4 Tumor Suppressor in Breast Cancer

    PubMed Central

    Byron, Sara A.; Min, Elizabeth; Thal, Tanya S.; Hostetter, Galen; Watanabe, Aprill T.; Azorsa, David O.; Little, Tanya H.; Tapia, Coya; Kim, Suwon

    2012-01-01

    Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer. PMID

  10. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield

    PubMed Central

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-01-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1–T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20–30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. PMID:26220082

  11. The nuclear-factor kappaB pathway is activated in pterygium.

    PubMed

    Siak, Jay Jyh Kuen; Ng, See Liang; Seet, Li-Fong; Beuerman, Roger W; Tong, Louis

    2011-01-05

    Pterygium is a prevalent ocular surface disease with unknown pathogenesis. The authors investigated the role of nuclear factor kappa B (NF-κB) transcription factors in pterygium. Surgically excised primary pterygia were studied compared with uninvolved conjunctiva tissues. NF-κB activation was evaluated using Western blot analysis, ELISA, and DNA-binding assays. Primary pterygium fibroblasts were treated with TNF-α (20 ng/mL), and NF-κB activation was evaluated using immunocytochemistry, Western blot analysis, phospho-IκBα ELISA, and DNA-binding assays. TNF-α stimulation of NF-κB target genes RelB, NFKB2, RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 in pterygium fibroblasts was compared with that in primary tenon fibroblasts by real-time PCR. Phosphorylation of IκBα (Ser32) was increased in pterygia tissues compared with uninvolved conjunctiva tissues, as determined by Western blot analysis and ELISA. IκBα expression was decreased, whereas nuclear RelA and p50 DNA-binding capacities were increased. Within 30 minutes of treatment with TNF-α, pterygium fibroblasts showed increased IκBα phosphorylation and nuclear translocation of RelA and p50. Treatment with TNF-α beyond 12 hours resulted in increased nuclear expression of RelB, p100, and p52. Furthermore, the upregulation of RANTES, MCP-1, ENA-78, MMP-1, MMP-2, and MMP-3 expression was more pronounced in TNF-α-treated pterygium fibroblasts than in tenon fibroblasts. The NF-κB pathway is shown for the first time to be activated in pterygia tissues compared with normal conjunctiva tissues. Stimulation by the inflammatory cytokine TNF-α can activate both canonical and noncanonical NF-κB pathways in pterygium fibroblasts with concomitant upregulation of NF-κB target genes.

  12. NF-E2 p45 Is Important for Establishing Normal Function of Platelets

    PubMed Central

    Fujita, Rie; Takayama-Tsujimoto, Mariko; Satoh, Hironori; Gutiérrez, Laura; Aburatani, Hiroyuki; Fujii, Satoshi; Sarai, Akinori; Bresnick, Emery H.

    2013-01-01

    NF-E2 is a heterodimeric transcription factor consisting of p45 and small Maf subunits. Since p45−/− mice display severe thrombocytopenia, p45 is recognized as a critical regulator of platelet production from megakaryocytes. To identify direct p45 target genes in megakaryocytes, we used chromatin immunoprecipitation (ChIP) sequencing to analyze the genome-wide chromatin occupancy of p45 in primary megakaryocytes. p45 target gene candidates obtained from the analysis are implicated in the production and function of platelets. Two of these genes, Selp and Myl9, were verified as direct p45 targets through multiple approaches. Since P-selectin, encoded by Selp, plays a critical role in platelet function during thrombogenesis, we tested whether p45 determines the intrinsic reactivity and potency of platelets generated from megakaryocytes. Mice expressing a hypomorphic p45 mutant instead of wild-type p45 in megakaryocytes (p45−/−:ΔNTD-Tg mice) displayed platelet hypofunction accompanied by mild thrombocytopenia. Furthermore, lung metastasis of melanoma cells, which requires platelet activation, was repressed in p45−/−:ΔNTD-Tg mice compared to control mice, validating the impaired function of platelets produced from p45−/−:ΔNTD-Tg megakaryocytes. By activating genes in megakaryocytes that mediate platelet production and function, p45 determines the quantity and quality of platelets. PMID:23648484

  13. Dual effects of ouabain on the regulation of proliferation and apoptosis in human umbilical vein endothelial cells: involvement of Na(+)-K(+)-ATPase α-subunits and NF-κB.

    PubMed

    Ren, Yan-Ping; Zhang, Ming-Juan; Zhang, Ting; Huang, Ruo-Wen

    2014-01-01

    To elucidate the effect of ouabain on the regulation of proliferation and apoptosis of HUVECs and involvement of different Na(+)-K(+)-ATPase α-subunits and NF-κB. HUVECs were isolated by collagenase perfusion, and MTT assays and cell cycle analysis were performed to study proliferation. NF-κB expression and function were examined by immunohistochemical staining and western blotting. Na(+)-K(+)-ATPase activity was determined by measuring released ouabain inhibitable inorganic phosphate (Pi). The expression of different α-subunits was investigated by real RT-PCR, western blotting and cell immunofluorescence. 0.3 nM ouabain treatment for 0.5 h triggered the proliferation of HUVECs, peaking at 1-2 h. At 1.8 nM for 0.5 h, ouabain induced an increase of cell proliferation for a short time, and then triggered a decrease after 1 h. Cell cycle analysis show that 37% of HUVECs were in G2/M phase of the cell cycle following incubation with 1.8 nM ouabain, compared with 18% with 0.3 nM ouabain. NF-κB activity was assessed by western blot analysis of IκB expression, which was significantly reduced with 0.3 nM ouabain treatment; there was no different between 1.8 nM ouabain treatment and untreated cells. Na(+)-K(+)-ATPase activity in HUVECs was markedly reduced after treatment with 0.3 nM and 1.8 nM ouabain. Real RT-PCR and western blotting indicated that Na(+)-K(+)-ATPase α1-subunit mRNA expression levels increased after 0.3 nM ouabain treatment and decreased after 1.8 nM ouabain treatment. However, α2- and α3-subunit mRNA decreased after 0.3 nM ouabain treatment and increased after 1.8 nM ouabain treatment. Ouabain at different concentrations caused dual effects on proliferation and apoptosis in HUVECs.

  14. Berberine improves airway inflammation and inhibits NF-κB signaling pathway in an ovalbumin-induced rat model of asthma.

    PubMed

    Li, Zhenghao; Zheng, Jie; Zhang, Ning; Li, Chengde

    2016-12-01

    Berberine has been reported for its various activities including anti-inflammatory effects and has been used in treating many diseases. However, its effects on airway inflammation in asthma have not been investigated. This study mainly aimed to detect its effects on the airway inflammation and the nuclear factor-κB (NF-κB) signaling pathway activity in a rat model of asthma. Asthma was induced by ovalbumin (OVA) sensitization and challenge. The asthmatic rats were respectively treated with vehicle PBS or berberine (100 mg/kg or 200 mg/kg) for 28 days. The control rats were treated with PBS. Inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted and the lung inflammation was scored. Levels of NF-κB p65 (mRNA and protein), phosphorylated NF-κB p65 (p-NF-κB p65), inhibitory κB alpha (IκBα) (mRNA and protein) and phosphorylated IκBα (p-IκBα), as well as NF-κB p65 DNA-binding activity, were measured to assess the activity of NF-κB signaling pathway. Levels of the downstream inflammatory mediators of NF-κB signaling, IL-1β, IL-4, IL-5, IL-6, IL-13 and IL-17 in BALF, were measured. Besides, the serum levels of OVA-specific immunoglobulin (Ig)E were measured. Results showed that OVA increased the number of inflammatory cells in BALF, elevated lung inflammation scores, enhanced the NF-κB signaling activity and promoted the production of IgE in rats. Berberine dose-dependently reversed the alterations induced by OVA in the asthmatic rats. The findings suggested a therapeutic potential of berberine on OVA- induced airway inflammation. The ameliorative effects on the OVA-induced airway inflammation might be associated with the inhibition of the NF-κB signaling pathway.

  15. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65

    PubMed Central

    Snow, Wanda M.; Pahlavan, Payam S.; Djordjevic, Jelena; McAllister, Danielle; Platt, Eric E.; Alashmali, Shoug; Bernstein, Michael J.; Suh, Miyoung; Albensi, Benedict C.

    2015-01-01

    Research has identified several transcription factors that regulate activity-dependent plasticity and memory, with cAMP-response element binding protein (CREB) being the most well-studied. In neurons, CREB activation is influenced by the transcription factor nuclear factor kappa B (NF-κB), considered central to immunity but more recently implicated in memory. The transcription factor early growth response-2 (Egr-2), an NF-κB gene target, is also associated with learning and memory. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), an antioxidant transcription factor linked to NF-κB in pathological conditions, has not been studied in normal memory. Given that numerous transcription factors implicated in activity-dependent plasticity demonstrate connections to NF-κB, this study simultaneously evaluated protein levels of NF-κB, CREB, Egr-2, Nrf2, and actin in hippocampi from young (1 month-old) weanling CD1 mice after training in the Morris water maze, a hippocampal-dependent spatial memory task. After a 6-day acquisition period, time to locate the hidden platform decreased in the Morris water maze. Mice spent more time in the target vs. non-target quadrants of the maze, suggestive of recall of the platform location. Western blot data revealed a decrease in NF-κB p50 protein after training relative to controls, whereas NF-κB p65, Nrf2 and actin increased. Nrf2 levels were correlated with platform crosses in nearly all tested animals. These data demonstrate that training in a spatial memory task results in alterations in and associations with particular transcription factors in the hippocampus, including upregulation of NF-κB p65 and Nrf2. Training-induced increases in actin protein levels caution against its use as a loading control in immunoblot studies examining activity-dependent plasticity, learning, and memory. PMID:26635523

  16. miR-342-3p affects hepatocellular carcinoma cell proliferation via regulating NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Liang; Zhang, Yubao, E-mail: zhyb880077@sina.com

    2015-02-13

    Recent research indicates that non-coding microRNAs (miRNAs) help regulate basic cellular processes in many types of cancer cells. We hypothesized that overexpression of miR-342-3p might affect proliferation of hepatocellular carcinoma (HCC) cells. After confirming overexpression of miR-342-3p with qRT-PCR, MTT assay showed that HCC cell proliferation was significantly inhibited by miR-342-3p, and that it significantly decreased BrdU-positive cell proliferation by nearly sixfold. Searching for targets using three algorithms we found that miR-342-3p is related to the NF-κB pathway and luciferase assay found that IKK-γ, TAB2 and TAB3 are miR-342-3p target genes. Results of western blot on extracted nuclear proteins ofmore » HepG2 and HCT-116 cells showed that miR-342-3p reduced and miR-342-3p-in increased p65 nuclear levels and qRT-PCR found that NF-κB pathway downstream genes were downregulated by miR-342-3p and upregulated by miR-342-3p-in, confirming that miR-342 targets NF-κB pathway. Overexpression of Ikk-γ, TAB2 and TAB3 partially rescued HCC cells proliferation inhibited by miR-342-3p. Using the GSE54751 database we evaluated expression from 10 HCC samples, which strongly suggested downregulation of miR-342-3p and we also found inverse expression between miR-342-3p and its targets IKK-γ, TAB2 and TAB3 from 71 HCC samples. Our results show that miR-342-3p has a significant role in HCC cell proliferation and is suitable for investigation of therapeutic targets. - Highlights: • MiR-342-3p suppresses hepatocellular carcinoma cell proliferation. • MiR-342-3p targets IKK-γ, TAB2 and TAB3 genes. • MiR-342-3p downregulates NF-kB signaling pathway. • MiR-342-3p is downregulated in clinical hepatocellular carcinoma samples. • The expression of miR-342-3p and its target gene is inversely related.« less

  17. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  18. MafK/NF-E2 p18 is required for beta-globin genes activation by mediating the proximity of LCR and active beta-globin genes in MEL cell line.

    PubMed

    Du, Mei-Jun; Lv, Xiang; Hao, De-Long; Zhao, Guo-Wei; Wu, Xue-Song; Wu, Feng; Liu, De-Pei; Liang, Chih-Chuan

    2008-01-01

    Evidences indicate that locus control region (LCR) of beta-globin spatially closes to the downstream active gene promoter to mediate the transcriptional activation by looping. DNA binding proteins may play an important role in the looping formation. NF-E2 is one of the key transcription factors in beta-globin gene transcriptional activation. To shed light on whether NF-E2 is involved in this process, DS19MafKsiRNA cell pools were established by specifically knocked down the expression of MafK/NF-E2 p18, one subunit of NF-E2 heterodimer. In the above cell pools, it was observed that the occupancy efficiency of NF-E2 on beta-globin gene locus and the expression level of beta-globin genes were decreased. H3 acetylation, H3-K4 methylation and the deposition of RNA polymerase II, but not the recruitment of GATA-1, were also found reduced at the beta-globin gene cluster. Chromosome Conformation Capture (3C) assay showed that the cross-linking frequency between the main NF-E2 binding site HS2 and downstream structural genes was reduced compared to the normal cell. This result demonstrated that MafK/NF-E2 p18 recruitment was involved in the physical proximity of LCR and active beta-globin genes upon beta-globin gene transcriptional activation.

  19. The role of mmu-miR-155-5p-NF-κB signaling in the education of bone marrow-derived mesenchymal stem cells by gastric cancer cells.

    PubMed

    Wang, Mei; Yang, Fang; Qiu, Rong; Zhu, Mengchu; Zhang, Huiling; Xu, Wenrong; Shen, Bo; Zhu, Wei

    2018-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are important precursors of tumor stromal cells. Previously, we have demonstrated that miR-155-5p inhibition directly induced transition of BM-MSCs into gastric cancer-associated MSCs. Whether miR-155-5p is involved in the education of BM-MSCs by gastric cancer cells has not been established. Murine BM-MSCs (mMSCs) were isolated and grown in conditioned medium derived from gastric cancer cell line MFC (MFC-CM). The tumor-promoting phenotype and function of mMSCs were detected by immunofluorescence staining, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), cell colony formation assay, transwell migration, and invasion assays. Luciferase reporter assays and western blot analyses were conducted to reveal the relationship between nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and mmu-miR-155-5p. miRNA mimics, inhibitor, and the NF-κB inhibitor pyrrolidine dithiocarbamic acid (PDTC) were used to evaluate the role of miR-155-5p-NF-κB signaling in the education of mMSCs by MFC-CM. We successfully established the education model of mMSCs by MFC-CM and found that mmu-miR-155-5p expression levels were reduced in mMSCs. Mimicking this deregulation by transfecting miRNA inhibitor into mMSCs produced a similar effect as that of MFC-CM on mMSCs. NF-κB p65 was validated as a target of mmu-miR-155-5p, which also negatively regulated NF-κB activation. Inhibition of NF-κB activation by PDTC abolished the effect of the miRNA inhibitor on mMSCs. mmu-miR-155-5p overexpression partially blocked the effect of MFC-CM in educating mMSCs, while PDTC treatment completely eliminated MFC-CM activity. These results indicate that miR-155-5p is not the sole miRNA mediating the education of BM-MSCs by gastric cancer cells, but downstream NF-κB signaling is indispensable for this process. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  20. Two novel kinases phosphorylate tau and the KSP site of heavy neurofilament subunits in high stoichiometric ratios.

    PubMed

    Roder, H M; Ingram, V M

    1991-11-01

    We have identified, purified, and characterized two neurofilament/tau kinases from bovine brain, PK36 and PK40, with apparent Mr of 36,000 and 40,000 and with novel biochemical properties. A specially designed immunoassay for phosphorylated epitopes in neurofilament (NF) proteins was used in the early stages of the purification. Neither kinase is closely associated with the cytoskeleton. Both kinases phosphorylate bovine intermediate (NF-M) and heavy (NF-H) NF subunits and also bovine tau at the expected KSP sequences, though other sites cannot be ruled out. In human paired helical filaments, tau, phosphorylated at these same KSP sites, is a major characterized constituent. Neither kinase is activated by the usual second messengers. Tau and the above NF subunits are phosphorylated in high stoichiometric ratios. In the intermediate NF subunit, all the expected sites appear to be phosphorylated, but in the heavy NF subunit only 7 out of the greater than 40 expected sites can be phosphorylated by our kinases. We demonstrate that both kinases can induce considerable shifts of apparent Mr with SDS-PAGE for tau and, for the first time in vitro, also for the intermediate NF subunit. Interestingly, PK36 and particularly PK40 are strongly inhibited by an excess of free ATP. We propose that during normal aging, and in Alzheimer's disease, age-related mitochondrial dysfunction would reduce ATP levels, which in turn might release the neurofilament/tau kinase from inhibition with consequent paired helical filament formation.

  1. Inhibitor of p52 NF-κB subunit and androgen receptor (AR) interaction reduces growth of human prostate cancer cells by abrogating nuclear translocation of p52 and phosphorylated ARser81

    PubMed Central

    Mehraein-Ghomi, Farideh; Church, Dawn R.; Schreiber, Cynthia L.; Weichmann, Ashley M.; Basu, Hirak S.; Wilding, George

    2015-01-01

    Accumulating evidence shows that androgen receptor (AR) activation and signaling plays a key role in growth and progression in all stages of prostate cancer, even under low androgen levels or in the absence of androgen in the castration-resistant prostate cancer. Sustained activation of AR under androgen-deprived conditions may be due to its interaction with co-activators, such as p52 NF-κB subunit, and/or an increase in its stability by phosphorylation that delays its degradation. Here we identified a specific inhibitor of AR/p52 interaction, AR/p52-02, via a high throughput screen based on the reconstitution of Gaussia Luciferase. We found that AR/p52-02 markedly inhibited growth of both castration-resistant C4-2 (IC50 ∼6 μM) and parental androgen-dependent LNCaP (IC50 ∼4 μM) human prostate cancer cells under low androgen conditions. Growth inhibition was associated with significantly reduced nuclear p52 levels and DNA binding activity, as well as decreased phosphorylation of AR at serine 81, increased AR ubiquitination, and decreased AR transcriptional activity as indicated by decreased prostate-specific antigen (PSA) mRNA levels in both cell lines. AR/p52-02 also caused a reduction in levels of p21WAF/CIP1, which is a direct AR targeted gene in that its expression correlates with androgen stimulation and mitogenic proliferation in prostate cancer under physiologic levels of androgen, likely by disrupting the AR signaling axis. The reduced level of cyclinD1 reported previously for this compound may be due to the reduction in nuclear presence and activity of p52, which directly regulates cyclinD1 expression, as well as the reduction in p21WAF/CIP1, since p21WAF/CIP1 is reported to stabilize nuclear cyclinD1 in prostate cancer. Overall, the data suggest that specifically inhibiting the interaction of AR with p52 and blocking activity of p52 and pARser81 may be an effective means of reducing castration-resistant prostate cancer cell growth. PMID:26622945

  2. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB.

    PubMed

    Dam, Sharmistha; Kracht, Michael; Pleschka, Stephan; Schmitz, M Lienhard

    2016-09-01

    The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays an antiviral

  3. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB

    PubMed Central

    Dam, Sharmistha; Kracht, Michael; Pleschka, Stephan

    2016-01-01

    ABSTRACT The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. IMPORTANCE This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays

  4. The effects of dexamethasone on rat brain cortical nuclear factor kappa B (NF-{kappa}B) in endotoxic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhi; Kang Jinsong; Li Yang

    2006-08-01

    To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less

  5. Hyperbaric Oxygen and Ginkgo Biloba Extract Ameliorate Cognitive and Memory Impairment via Nuclear Factor Kappa-B Pathway in Rat Model of Alzheimer's Disease

    PubMed Central

    Zhang, Li-Da; Ma, Li; Zhang, Li; Dai, Jian-Guo; Chang, Li-Gong; Huang, Pei-Lin; Tian, Xiao-Qiang

    2015-01-01

    Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimer's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25–35 into the hippocampus. All animals were divided into six groups: Normal, sham, AD model, HBO (2 atmosphere absolute; 60 min/d), EGB 761 (20 mg·kg−1·d−1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats; TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761) was superior to either HBO or EGB 761 alone. In line, reduced apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons. PMID:26608991

  6. Diesel exhaust particles up-regulate interleukin-17A expression via ROS/NF-κB in airway epithelium.

    PubMed

    Weng, Chih-Ming; Lee, Meng-Jung; He, Jung-Re; Chao, Ming-Wei; Wang, Chun-Hua; Kuo, Han-Pin

    2018-05-01

    IL-17A is implicated in many aspects of pathogenesis of severe asthma, including inducing neutrophilic inflammation, airway hyperresponsiveness, steroid insensitivity and airway remodeling. Diesel exhaust particles (DEP) emission from vehicles has been shown to expand Th17 cells to increase IL-17A release that contributes to DEP-mediated exacerbation of asthma severity. It is not known whether non-immune cells in airways may also release IL-17A in response to DEP exposure. In this study, We found IL-17A expression was upregulated in the epithelium of severe allergic asthma patients from high road traffic pollution areas compared to those in low. Furthermore, we found DEP concentration-dependently increased IL-17A synthesis and release by 122.3 ± 15.72% and 235.5 ± 18.37%, respectively in primary bronchial epithelial cells (PBEC), accompanied with increased ROS production. Pretreatment of ROS scavenger (NAC) significantly inhibited DEP-induced IL-17A mRNA expression. DEP-induced IκBα degradation can be inhibited by NAC. We also found DEP increased p65 and RelB subunits expression, and pretreatment of NF-κB inhibitor (SN50) also inhibited DEP-induced IL-17A expression. We further found DEP increased NF-κB subunit RelB recruitment to IL-17A promoter in PBEC and airway tissue of severe allergic asthma patients from high road traffic pollution areas. These results indicate DEP stimulates IL-17A expression in airway epithelium through ROS/NF-κB pathway, and provide a possible link between traffic pollution exposure and IL-17A-related responses in severe allergic asthma patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Geetaram; Farley, Kalamo; El-Hage, Nazira

    Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcriptionmore » elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication. - Highlights: • Cocaine induces the initiation phase of HIV transcription by activating NF-ĸB. • Cocaine induced NF-ĸB phosphorylation promotes its interaction with P300. • Cocaine enhances the elongation phase of HIV transcription by stimulating MSK1. • Cocaine activated MSK1 catalyzes the phosphorylation of histone H3 at its Ser10. • Cocaine induced H3S10 phosphorylation facilitates the recruitment of P-TEFb at LTR.« less

  8. Cloning, promoter analysis and expression in response to bacterial exposure of sea bass (Dicentrarchus labrax L.) interleukin-12 p40 and p35 subunits.

    PubMed

    Nascimento, Diana S; do Vale, Ana; Tomás, Ana M; Zou, Jun; Secombes, Christopher J; dos Santos, Nuno M S

    2007-03-01

    Interleukin-12 (IL-12) is a heterodimeric cytokine pivotal in resistance to microbial and viral infections. In the search for immunoregulatory genes in sea bass the genes for the two IL-12 subunits p40 and p35 were cloned and sequenced. Molecular characterization of these two genes was performed at both the cDNA and genomic levels. Sea bass IL-12 p40 and p35 conserve most cysteines involved in the intra-chain disulfide bonds of human IL-12 subunits as well as the important structural residues for human IL-12 heterodimerization. The gene organization of sea bass IL-12 p40 is similar to the human orthologue, whilst the sea bass IL-12 p35 gene structure, as reported for pufferfish, differs from the human one in containing an additional exon and lacking a second copy of a duplicated exon present in the mammalian genes. The promoter analysis of both sea bass and pufferfish IL-12 genes showed the presence of the main cis-acting elements involved in the transcriptional regulation of human and mouse orthologues. The involvement of IL-12 in sea bass anti-bacterial immune responses was demonstrated by investigating the expression profiles of IL-1beta, IL-12 p40 and p35 in the head-kidney and spleen following intraperitoneal injection of UV-killed and live Photobacterium damselae ssp. piscicida (Phdp). Finally, the importance of nuclear factor (NF)-kappaB on UV-killed Phdp-induced IL-12 p40 and p35 gene transcription was shown by the use of pyrrolidine dithiocarbamate (PDTC).

  9. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.

    PubMed

    Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan

    2016-07-01

    We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.

  10. Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Liang; Hu, Jia; Weng, Yuxiong

    Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptionalmore » activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity. - Highlights: • SIRT6 expression is decreased in degenerative nucleus pulposus (NP) tissues. • SIRT6 overexpression lowers IL-1β-induced matrix degradation of NP. • SIRT6 inhibition induces matrix degradation of NP. • SIRT6 prevents matrix degradation of NP via the NF-κB signaling pathway.« less

  11. Constitutive overexpression of the TaNF-YB4 gene in transgenic wheat significantly improves grain yield.

    PubMed

    Yadav, Dinesh; Shavrukov, Yuri; Bazanova, Natalia; Chirkova, Larissa; Borisjuk, Nikolai; Kovalchuk, Nataliya; Ismagul, Ainur; Parent, Boris; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2015-11-01

    Heterotrimeric nuclear factors Y (NF-Ys) are involved in regulation of various vital functions in all eukaryotic organisms. Although a number of NF-Y subunits have been characterized in model plants, only a few have been functionally evaluated in crops. In this work, a number of genes encoding NF-YB and NF-YC subunits were isolated from drought-tolerant wheat (Triticum aestivum L. cv. RAC875), and the impact of the overexpression of TaNF-YB4 in the Australian wheat cultivar Gladius was investigated. TaNF-YB4 was isolated as a result of two consecutive yeast two-hybrid (Y2H) screens, where ZmNF-YB2a was used as a starting bait. A new NF-YC subunit, designated TaNF-YC15, was isolated in the first Y2H screen and used as bait in a second screen, which identified two wheat NF-YB subunits, TaNF-YB2 and TaNF-YB4. Three-dimensional modelling of a TaNF-YB2/TaNF-YC15 dimer revealed structural determinants that may underlie interaction selectivity. The TaNF-YB4 gene was placed under the control of the strong constitutive polyubiquitin promoter from maize and introduced into wheat by biolistic bombardment. The growth and yield components of several independent transgenic lines with up-regulated levels of TaNF-YB4 were evaluated under well-watered conditions (T1-T3 generations) and under mild drought (T2 generation). Analysis of T2 plants was performed in large deep containers in conditions close to field trials. Under optimal watering conditions, transgenic wheat plants produced significantly more spikes but other yield components did not change. This resulted in a 20-30% increased grain yield compared with untransformed control plants. Under water-limited conditions transgenic lines maintained parity in yield performance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Silica nanoparticles induce cytokine responses in lung epithelial cells through activation of a p38/TACE/TGF-α/EGFR-pathway and NF-κΒ signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skuland, Tonje, E-mail: tonje.skuland@fhi.no; Øvrevik, Johan; Låg, Marit

    2014-08-15

    Amorphous silica nanoparticles (SiNPs) have previously been shown to induce marked cytokine (interleukin-6; IL-6 and interleukin-8; CXCL8/IL-8) responses independently of particle uptake in human bronchial epithelial BEAS-2B cells. In this study the involvement of the mitogen-activated protein kinases (MAP-kinases), nuclear factor-kappa Β (NF-κΒ) and in particular tumour necrosis factor-α converting enzyme (TACE) and—epidermal growth factor receptor (EGFR) signalling pathways were examined in triggering of IL-6 and CXCL8 release after exposure to a 50 nm silica nanoparticle (Si50). Exposure to Si50 increased phosphorylation of NF-κΒ p65 and MAP-kinases p38 and JUN-N-terminal protein kinase pathways (JNK), but not extracellular signal regulated kinasesmore » (ERK). Inhibition of NF-κΒ and p38 reduced the cytokine responses to Si50, whereas neither JNK- nor ERK-inhibition exerted any significant effect on the responses to Si50. Increases in membrane-bound transforming growth factor-α (TGF-α) release and EGFR phosphorylation were also observed after Si50 exposure, and pre-treatment with inhibitors of these pathways reduced the release of IL-6 and CXCL8, but did not affect the Si50-induced phosphorylation of p38 and p65. In contrast, p38-inhibition partially reduced Si50-induced TGF-α release, while the p65-inhibition was without effect. Overall, our results indicate that Si50-induced IL-6 and CXCL8 responses in BEAS-2B cells were regulated through combined activation of several pathways, including NF-κΒ and p38/TACE/TGF-α/EGFR signalling. The study identifies critical, initial events in the triggering of pro-inflammatory responses by nanoparticles. - Highlights: • Silica nanoparticles induce IL-6 and CXCL8 via NFκB and MAPKinase p38 in BEAS-2B • Silica nanoparticles induce release of the EGF-receptor ligand TGF-α • TGF-α release contributes to the IL-6 and CXCL8 release • Phosphorylation of p38 is involved in release of TGF-α.« less

  13. Strategies of NF-κB signaling modulation by ectromelia virus in BALB/3T3 murine fibroblasts.

    PubMed

    Struzik, Justyna; Szulc-Dąbrowska, Lidia; Winnicka, Anna; Niemiałtowski, Marek

    2015-10-01

    Nuclear factor κB (NF-κB) is a pleiotropic transcription factor that regulates the expression of immune response genes. NF-κB signaling can be disrupted by pathogens that prevent host immune response. In this work, we examined the influence of ectromelia (mousepox) virus (ECTV) on NF-κB signaling in murine BALB/3T3 fibroblasts. Activation of NF-κB via tumor necrosis factor (TNF) receptor 1 (TNFR1) in these cells induces proinflammatory cytokine secretion. We show that ECTV does not recruit NF-κB to viral factories or induce NF-κB nuclear translocation in BALB/3T3 cells. Additionally, ECTV counteracts TNF-α-induced p65 NF-κB nuclear translocation during the course of infection. Inhibition of TNF-α-induced p65 nuclear translocation was also observed in neighboring cells that underwent fusion with ECTV-infected cells. ECTV inhibits the key step of NF-κB activation, i.e. Ser32 phosphorylation and degradation of inhibitor κBα (IκBα) induced by TNF-α. We also observed that ECTV prevents TNF-α-induced Ser536 of p65 phosphorylation in BALB/3T3 cells. Studying TNFR1 signaling provides information about regulation of inflammatory response and cell survival. Unraveling poxviral immunomodulatory strategies may be helpful in drug target identification as well as in vaccine development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Expression of apoptosis related proteins: RAIDD, ZIP kinase, Bim/BOD, p21, Bax, Bcl-2 and NF-kappaB in brains of patients with Down syndrome.

    PubMed

    Engidawork, E; Gulesserian, T; Seidl, R; Cairns, N; Lubec, G

    2001-01-01

    Down syndrome (DS) is a genetic disease that exhibits significant neuropathological parallels with Alzheimer's disease (AD). One of the features of DS, neuronal loss, has been hypothesized to occur as a result of apoptosis. An increasing number of proteins are implicated in apoptosis and several of them were shown to be altered in AD, however, the knowledge in DS is far from complete. To further substantiate the hypothesis that apoptosis is the underlying mechanism for neuronal loss and contribute towards the current knowledge of apoptosis in DS, we analyzed the expression of apoptosis related proteins in frontal cortex and cerebellum of DS by western blot and ELISA techniques. Quantitative analysis revealed a significant increase in DS frontal (P < 0.0001) and cerebellar (P < 0.05) Bim/BOD (Bcl-2 interacting mediator of cell death/Bcl-2 related ovarian death gene), cerebellar Bcl-2 (P < 0.01) as well as p21 (P < 0.05) levels compared to controls. No significant change was detected in Bax, RAIDD (receptor interacting protein (RIP)-associated ICH-1/CED-3-homologus protein with death domain), ZIP (Zipper interacting protein) kinase and NF-kappaB p65 levels in both regions, although frontal cortex levels of RAIDD, Bcl-2 and p21 levels tended to increase. In addition, a 45 kDa truncated form of NF-kappaB p65 displayed a significant elevation (P < 0.05) in DS cerebellum. No significant correlation had been obtained between postmortem interval and level of the proteins analyzed. With regard to age, it was only NF-kappaB p65 that showed significant correlation (r = -0.8964, P = 0.0155, n = 9) in frontal cortex of controls. These findings provide further evidence that apoptosis indeed accounts for the neuronal loss in DS but Bax and RAIDD do not appear to take part in this process.

  15. Tangeretin Inhibits IL-12 Expression and NF-κB Activation in Dendritic Cells and Attenuates Colitis in Mice.

    PubMed

    Eun, Su-Hyeon; Woo, Je-Te; Kim, Dong-Hyun

    2017-04-01

    In the preliminary study, tangeretin (5,6,7,8,4'-pentamethoxy flavone), a major constituent of the pericarp of Citrus sp., inhibited TNF- α , IL-12, and IL-23 expression and nuclear factor kappa-B activation in lipopolysaccharide-stimulated dendritic cells; however, it did not affect IL-10 expression. Furthermore, tangeretin (5, 10, and 20 µM) suppressed the activation and translocation of nuclear factor kappa-B (p65) into the nuclei in vitro by inhibiting the binding of lipopolysaccharide on dendritic cells. Oral administration of tangeretin (10 and 20 mg/kg) suppressed the inflammatory responses, such as nuclear factor kappa-B and mitogen-activated protein kinase activation and myeloperoxidase activity, in the colon of mice with 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed expression of tight junction proteins occludin, claudin-1, and ZO-1. Tangeretin also inhibited 2,4,6-trinitrobenzene sulfonic acid-induced differentiation of Th1 and Th17 cells as well as the expression of T-bet, ROR γ t, interferon- γ , IL-12, IL-17, and TNF- α . However, tangeretin increased 2,4,6-trinitrobenzene sulfonic acid-suppressed differentiation of regulatory T cells as well as the expression of Foxp3 and IL-10. These results suggest that oral administration of tangeretin may attenuate colitis by suppressing IL-12 and TNF- α expression and nuclear factor kappa-B activation through the inhibition of lipopolysaccharide binding on immune cells such as dendritic cells. Georg Thieme Verlag KG Stuttgart · New York.

  16. The IκBα/NF-κB complex has two hot spots, one at either end of the interface

    PubMed Central

    Bergqvist, Simon; Ghosh, Gourisankar; Komives, Elizabeth A.

    2008-01-01

    IκBα binds to and inhibits the transcriptional activity of NF-κB family members via its ankyrin repeat (AR) domain. The binding affinity of IκBα with NF-κB(p50/p65) heterodimers and NF-κB(p65/65) homodimers is in the picomolar range, and in the cell, this results in long half-lives of the complexes. Direct binding experiments have been performed using surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) on a series of truncations and mutations in order to understand what regions of the interface are most important for the tight binding affinity of this complex. We previously showed that interactions between residues 305 and 321 of NF-κB(p65) with the first AR of IκBα are critical for the binding energy. Interactions in this region are responsible for more than 7 kcal/mol of the binding energy. Here we show equally drastic consequences for the binding energy occur upon truncation of even a few residues at the C terminus of IκBα. Thus, the interface actually has two hot spots, one at either end of the elongated and large surface of interaction. These results suggest a “squeeze” mechanism that leads to the extremely high affinity of the IκBα•NF-κB complex through stabilization of the ankyrin repeat domain. PMID:18824506

  17. Regulation of IFN regulatory factor 4 expression in human T cell leukemia virus-I-transformed T cells.

    PubMed

    Sharma, Sonia; Grandvaux, Nathalie; Mamane, Yael; Genin, Pierre; Azimi, Nazli; Waldmann, Thomas; Hiscott, John

    2002-09-15

    IFN regulatory factor (IRF)-4 is a lymphoid/myeloid-restricted member of the IRF transcription factor family that plays an essential role in the homeostasis and function of mature lymphocytes. IRF-4 expression is tightly regulated in resting primary T cells and is transiently induced at the mRNA and protein levels after activation by Ag-mimetic stimuli such as TCR cross-linking or treatment with phorbol ester and calcium ionophore (PMA/ionomycin). However, IRF-4 is constitutively upregulated in human T cell leukemia virus type I (HTLV-I) infected T cells as a direct gene target for the HTLV-I Tax oncoprotein. In this study we demonstrate that chronic IRF-4 expression in HTLV-I-infected T lymphocytes is associated with a leukemic phenotype, and we examine the mechanisms by which continuous production of IRF-4 is achieved in HTLV-I-transformed T cells. IRF-4 expression in HTLV-1-infected cells is driven through activation of the NF-kappaB and NF-AT pathways, resulting in the binding of p50, p65, and c-Rel to the kappaB1 element and p50, c-Rel, and NF-ATp to the CD28RE element within the -617 to -209 region of the IRF-4 promoter. Furthermore, mutation of either the kappaB1 or CD28RE sites blocks Tax-mediated transactivation of the human IRF-4 promoter in T cells. These experiments constitute the first detailed analysis of human IRF-4 transcriptional regulation within the context of HTLV-I infection and transformation of CD4(+) T lymphocytes.

  18. Acetaminophen-induced hepatotoxicity is associated with early changes in NF-kB and NF-IL6 DNA binding activity.

    PubMed

    Blazka, M E; Germolec, D R; Simeonova, P; Bruccoleri, A; Pennypacker, K R; Luster, M I

    Nuclear transcription factors, such as NF-kB and NF-IL6, are believed to play an important role in regulating the expression of genes that encode for products involved in tissue damage and inflammation and, thus, may represent early biomarkers for chemical toxicities. In the present study changes in DNA binding activity of these factors were examined in livers of mice administered hepatotoxic doses of acetaminophen (APAP). NF-kB and NF-IL6 DNA binding occurred constitutively in control mouse liver. However, within 4 hr following administration of hepatotoxic doses of APAP, their binding activities were transiently lost and is in contrast to AP-1 transcription factor where activation occurs under similar conditions. These changes corresponded with increased release of inflammatory mediators (IL-6, serum amyloid A) and increased levels of enzymatic markers of hepatocyte damage. Similarly, treatment of mice with gadolinium chloride, an inhibitor of Kupffer cell activation and known to protect against APAP-induced hepatotoxicity, reduced the observed pathophysiological response in the liver while altering the APAP-associated changes in NF-kB DNA binding activity. NF-kB was found predominantly in parenchymal and endothelial cells and was composed primarily of relatively inactive p50 homodimer subunits in control liver. Taken together, these studies suggest that hepatotoxicity is associated with early and complex changes in DNA binding activities of specific transcription factors. In particular, NF-kB and NF-IL6 may serve as negative regulators of hepatocyte-derived inflammatory mediators and is analogous to that previously observed in certain other cell systems such as B lymphocytes.

  19. SIRT1 overexpression protects non-small cell lung cancer cells against osteopontin-induced epithelial-mesenchymal transition by suppressing NF-κB signaling.

    PubMed

    Li, Xuejiao; Jiang, Zhongxiu; Li, Xiangmin; Zhang, Xiaoye

    2018-01-01

    Osteopontin (OPN) is a promoter for tumor progression. It has been reported to promote non-small cell lung cancer (NSCLC) progression via the activation of nuclear factor-κB (NF-κB) signaling. As the increased acetylation of NF-κB p65 is linked to NF-κB activation, the regulation of NF-κB p65 acetylation could be a potential treatment target for OPN-induced NSCLC progression. Sirtuin 1 (SIRT1) is a deacetylase, and the role of SIRT1 in tumor progression is still controversial. The effect and mechanism of SIRT1 on OPN-induced tumor progression remains unknown. The results presented in this research demonstrated that OPN inhibited SIRT1 expression and promoted NF-κB p65 acetylation in NSCLC cell lines (A549 and NCI-H358). In this article, overexpression of SIRT1 was induced by infection of SIRT1-overexpressing lentiviral vectors. The overexpression of SIRT1 protected NSCLC cells against OPN-induced NF-κB p65 acetylation and epithelial-mesenchymal transition (EMT), as indicated by the reduction of OPN-induced changes in the expression levels of EMT-related markers and cellular morphology. Furthermore, SIRT1 overexpression significantly attenuated OPN-induced cell proliferation, migration and invasion. Moreover, overexpression of SIRT1 inhibited OPN-induced NF-κB activation. As OPN induced NSCLC cell EMT through activation of NF-κB signaling, OPN-induced SIRT1 downregulation may play an important role in NSCLC cell EMT via NF-κB signaling. The results suggest that SIRT1 could be a tumor suppressor to attenuate OPN-induced NSCLC progression through the regulation of NF-κB signaling.

  20. Anti-Inflammatory Effects of Gingerol on Lipopolysaccharide-Stimulated RAW 264.7 Cells by Inhibiting NF-κB Signaling Pathway.

    PubMed

    Liang, Na; Sang, Yaxin; Liu, Weihua; Yu, Wenlong; Wang, Xianghong

    2018-03-05

    Gingerol was the main functional substance of Zingiberaceous plant which has been known as traditional medicine for thousands of years. The purpose of this experiment was to explore anti-inflammatory effects of gingerol and study the possible mechanism in lipopolysaccharide (LPS)-stimulated RAW246.7 cells. The cells were treated with 10 μg/mL LPS and 300, 200, 100, and 50 μg/mL gingerol for 24 h. The cytotoxicity of gingerol was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zoliumbromide (MTT) method. Nitric oxide (NO) production was observed using Griess assays. Prostaglandin E 2 (PGE 2 ) and pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 have been analyzed by ELISA. Real-time PCR was used to detect the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6, and IL-1β in LPS-induced RAW246.7 cells. Nuclear transcription factor kappa-B (NF-κB) signaling pathway-related proteins have been assessed by western blot assays. The determination of MTT showed that cell viability was not significantly affected by up to 300 μg/mL gingerol. Compared with LPS group, 50, 100, 200, and 300 μg/mL gingerol can inhibit the production of NO and the inhibitory rate was 10.4, 29.1, 58.9, and 62.4%, respectively. The results indicated gingerol existed anti-inflammatory effect. In addition, gingerol also observably inhibited LPS-induced TNF-α, IL-1β, IL-6, and PGE 2 (p < 0.01) expression and secretion in a dose-dependent manner. At the genetic level, after the intervention of gingerol, mRNA transcriptions of iNOS, COX-2, IL-6, and IL-1β were all decreased. The protein expressions of iNOS, NF-κB, p-p65, and p-IκB were significantly increased in LPS-induced cells, while these changes were reversed by the treatment with gingerol. This study suggested that gingerol exerts its anti-inflammatory activities in LPS-induced macrophages which can inhibit the production of

  1. Nmd3p Is a Crm1p-Dependent Adapter Protein for Nuclear Export of the Large Ribosomal Subunit

    PubMed Central

    Ho, Jennifer Hei-Ngam; Kallstrom, George; Johnson, Arlen W.

    2000-01-01

    In eukaryotic cells, nuclear export of nascent ribosomal subunits through the nuclear pore complex depends on the small GTPase Ran. However, neither the nuclear export signals (NESs) for the ribosomal subunits nor the receptor proteins, which recognize the NESs and mediate export of the subunits, have been identified. We showed previously that Nmd3p is an essential protein from yeast that is required for a late step in biogenesis of the large (60S) ribosomal subunit. Here, we show that Nmd3p shuttles and that deletion of the NES from Nmd3p leads to nuclear accumulation of the mutant protein, inhibition of the 60S subunit biogenesis, and inhibition of the nuclear export of 60S subunits. Moreover, the 60S subunits that accumulate in the nucleus can be coimmunoprecipitated with the NES-deficient Nmd3p. 60S subunit biogenesis and export of truncated Nmd3p were restored by the addition of an exogenous NES. To identify the export receptor for Nmd3p we show that Nmd3p shuttling and 60S export is blocked by the Crm1p-specific inhibitor leptomycin B. These results identify Crm1p as the receptor for Nmd3p export. Thus, export of the 60S subunit is mediated by the adapter protein Nmd3p in a Crm1p-dependent pathway. PMID:11086007

  2. Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia.

    PubMed

    Cascallana, Jose Luis; Bravo, Ana; Donet, Eva; Leis, Hugo; Lara, Maria Fernanda; Paramio, Jesús M; Jorcano, José L; Pérez, Paloma

    2005-06-01

    Hypohidrotic ectodermal dysplasia is a human syndrome defined by maldevelopment of one or more ectodermal-derived tissues, including the epidermis and cutaneous appendices, teeth, and exocrine glands. The molecular bases of this pathology converge in a dysfunction of the transcription factor nuclear factor of the kappa-enhancer in B cells (NF-kappaB), which is essential to epithelial homeostasis and development. A number of mouse models bearing disruptions in NF-kappaB signaling have been reported to manifest defects in ectodermal derivatives. In ectoderm-targeted transgenic mice overexpressing the glucocorticoid receptor (GR) [keratin 5 (K5)-GR mice], the NF-kappaB activity is greatly decreased due to functional antagonism between GR and NF-kappaB. Here, we report that K5-GR mice exhibit multiple epithelial defects in hair follicle, tooth, and palate development. Additionally, these mice lack Meibomian glands and display underdeveloped sweat and preputial glands. These phenotypic features appear to be mediated specifically by ligand-activated GR because the synthetic analog dexamethasone induced similar defects in epithelial morphogenesis, including odontogenesis, in wild-type mice. We have focused on tooth development in K5-GR mice and found that an inhibitor of steroid synthesis partially reversed the abnormal phenotype. Immunostaining revealed reduced expression of the inhibitor of kappaB kinase subunits, IKKalpha and IKKgamma, and diminished p65 protein levels in K5-GR embryonic tooth, resulting in a significantly reduced kappaB-binding activity. Remarkably, altered NF-kappaB activity elicited by GR overexpression correlated with a dramatic decrease in the protein levels of DeltaNp63 in tooth epithelia without affecting Akt, BMP4, or Foxo3a. Given that many of the 170 clinically distinct ectodermal dysplasia syndromes still remain without cognate genes, deciphering the molecular mechanisms of this mouse model with epithelial NF-kappaB and p63 dysfunction may

  3. Shikonin reduces oedema induced by phorbol ester by interfering with IκBα degradation thus inhibiting translocation of NF-κB to the nucleus

    PubMed Central

    Andújar, I; Recio, MC; Bacelli, T; Giner, RM; Ríos, JL

    2010-01-01

    Background and purpose: In the present paper we studied the effect of shikonin on ear oedema induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), and determined the mechanisms through which shikonin might exert its topical anti-inflammatory action. Experimental approach: Acute ear oedema was induced in mice by topical application of TPA. The in vitro assays used macrophages RAW 264.7 cells stimulated with lipopolysaccharide. Cyclooxygenase-2, inducible nitric oxide synthase, protein kinase Cα, extracellular signal-regulated protein kinase (ERK), phosphorylated ERK (pERK), c-Jun N-terminal kinase (JNK), pJNK, p38, p-p38, p65, p-p65, inhibitor protein of nuclear factor-κB (NF-κB) (IκBα) and pIκBα were measured by Western blotting, activation and binding of NF-κB to DNA was detected by reporter gene and electrophoretic mobility shift assay, respectively, and NF-κB p65 localization was detected by immunocytochemistry. Key results: Shikonin reduced the oedema (inhibitory dose 50 = 1.0 mg per ear), the expression of cyclooxygenase-2 (70%) and of inducible nitric oxide synthase (100%) in vivo. It significantly decreased TPA-induced translocation of protein kinase Cα, the phosphorylation and activation of ERK, the nuclear translocation of NF-κB and the TPA-induced NF-κB-DNA-binding activity in mouse skin. Moreover, in RAW 264.7 cells, shikonin significantly inhibited the binding of NF-κB to DNA in a dose-dependent manner and the nuclear translocation of p65. Conclusions and implications: Shikonin exerted its topical anti-inflammatory action by interfering with the degradation of IκBα, thus inhibiting the activation of NF-κB. PMID:20423347

  4. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB.

    PubMed

    Rushworth, Stuart A; Bowles, Kristian M; Barrera, Lawrence N; Murray, Megan Y; Zaitseva, Lyubov; MacEwan, David J

    2013-01-01

    Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIP(L) and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The IKK complex contributes to the induction of autophagy.

    PubMed

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-02-03

    In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.

  6. Interaction between AT1 receptor and NF-κB in hypothalamic paraventricular nucleus contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.

    PubMed

    Yu, Xiao-Jing; Suo, Yu-Ping; Qi, Jie; Yang, Qing; Li, Hui-Hua; Zhang, Dong-Mei; Yi, Qiu-Yue; Zhang, Jian; Zhu, Guo-Qing; Zhu, Zhiming; Kang, Yu-Ming

    2013-12-01

    Angiotensin II type 1 receptor (AT1-R) and nuclear factor-kappaB (NF-κB) in the paraventricular nucleus (PVN) play important roles in heart failure (HF); however, the central mechanisms by which AT1-R and NF-κB contribute to sympathoexcitation in HF are yet unclear. In this study, we determined whether interaction between AT1-R and NF-κB in the PVN modulates neurotransmitters and contributes to NAD(P)H oxidase-dependent oxidative stress and sympathoexcitation in HF. Rats were implanted with bilateral PVN cannulae and subjected to coronary artery ligation or sham surgery (SHAM). Subsequently, animals were treated for 4 weeks through bilateral PVN infusion with either vehicle or losartan (LOS, 10 μg/h), an AT1-R antagonist; or pyrrolidine dithiocarbamate (PDTC, 5 μg/h), a NF-κB inhibitor via osmotic minipump. Myocardial infarction (MI) rats had higher levels of glutamate (Glu), norepinephrine (NE) and NF-κB p65 activity, lower levels of gamma-aminobutyric acid (GABA), and more positive neurons for phosphorylated IKKβ and gp91(phox) (a subunit of NAD(P)H oxidase) in the PVN when compared to SHAM rats. MI rats also had higher levels of renal sympathetic nerve activity (RSNA) and plasma proinflammatory cytokines (PICs), NE and epinephrine. PVN infusions of LOS or PDTC attenuated the decreases in GABA and the increases in gp91(phox), NF-κB activity, Glu and NE, in the PVN of HF rats. PVN infusions of LOS or PDTC also attenuated the increases in RSNA and plasma PICs, NE and epinephrine in MI rats. These findings suggest that interaction between AT1 receptor and NF-κB in the PVN contributes to oxidative stress and sympathoexcitation by modulating neurotransmitters in heart failure.

  7. Subunit interactions in horse spleen apoferritin. Dissociation by extremes of pH

    PubMed Central

    Crichton, Robert R.; Bryce, Charles F. A.

    1973-01-01

    1. The dissociation of horse spleen apoferritin as a function of pH was analysed by sedimentation-velocity techniques. The oligomer is stable in the range pH2.8–10.6. Between pH2.8 and 1.6 and 10.6 and 13.0 both oligomer and subunits can be detected. At pH values between 1.6 and 1.0 the subunit is the only species observed, although below pH1.0 aggregation of the subunits to a particle sedimenting much faster than the oligomer occurs. 2. When apoferritin is first dissociated into subunits at low pH values and then dialysed into buffers of pH1.5–5.0, the subunit reassociates to oligomer in the pH range 3.1–4.3. 3. U.v.-difference spectroscopy was used to study conformational changes occurring during the dissociation process. The difference spectrum in acid can be accounted for by the transfer of four to five tyrosine residues/subunit from the interior of the protein into the solvent. This process is reversed on reassociation, but shows the same hysteresis as found by sedimentation techniques. The difference spectrum in alkali is more complex, but is consistent with the deprotonation of tyrosine residues, which appear to have rather high pK values. 4. In addition to the involvement of tyrosine residues in the conformational change at low pH values, spectral evidence is presented that one tryptophan residue/subunit also changes its environment before dissociation and subsequent to reassociation. 5. Analysis of the dissociation and reassociation of apoferritin at low pH values suggests that this is a co-operative process involving protonation and deprotonation of at least two carboxyl functions of rather low intrinsic pK. The dissociation at alkaline pH values does not appear to be co-operative. 6. Of the five tyrosine residues/subunit only one can be nitrated with tetranitromethane. Guanidination of lysine residues results in the modification of seven out of a total of nine residues/subunit. Nine out of the ten arginine residues/subunit react with

  8. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factor κB p65.

    PubMed

    Shi, Le; Zhao, Daina; Hou, Chen; Peng, Yunhua; Liu, Jing; Zhang, Shuangxi; Liu, Jiankang; Long, Jiangang

    2017-08-01

    Alzheimer's disease (AD) is considered a multifactorial disease that affects the central nervous system and periphery. A decline in brain glucose metabolism is an early feature of AD and is accompanied by a phenotypic shift from aerobic glycolysis to ketogenesis. The liver is responsible for the generation of the ketone body. However, the mechanism that underlies hepatic ketogenesis in AD remains unclear. Here, we investigated hepatic ketogenesis during the early stage of AD pathogenesis in amyloid precursor protein (APP SWE ) and presenilin (PSEN1dE9) (APP/PS1) mice. We observed that β-hydroxybutyric acid was increased in the brain of the postmortem mild cognitive impairment and AD subjects and in 3-month-old APP/PS1 AD mice. A rise in 3-hydroxy-3-methylglutary-CoA synthase 2 (HMGCS2), a key enzyme for catalyzing β-hydroxybutyric acid production, was observed in early AD mice. We further showed that proinflammatory cytokines were activated in the liver prior to their activation in the brain of 3-month-old APP/PS1 mice. Among the cytokines, interleukin-6 significantly activated HMGCS2 through the binding of nuclear factor κB (NF-κB) p65 to the HMGCS2 promoter. Additionally, interleukin-6 stimulated phosphorylation of p38 mitogen activated protein kinases, an upstream molecule for NF-κB p65 signaling. We have demonstrated that a hepatic inflammatory factor enhances ketogenesis through HMGCS2 signaling activation by p38/NF-κB p65. These results provide a novel peripheral metabolic mechanism for enhanced ketone production and suggest a plausible early AD phenotype to diagnose AD. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cloning and characterization of two novel zebrafish P2X receptor subunits.

    PubMed

    Diaz-Hernandez, Miguel; Cox, Jane A; Migita, Keisuke; Haines, William; Egan, Terrance M; Voigt, Mark M

    2002-07-26

    In this report we describe the cloning and characterization of two P2X receptor subunits cloned from the zebrafish (Danio rerio). Primary sequence analysis suggests that one cDNA encodes an ortholog of the mammalian P2X(4) subunit and the second cDNA encodes the ortholog of the mammalian P2X(5) subunit. The zP2X(4) subunit forms a homo-oligomeric receptor that displays a low affinity for ATP (EC(50)=274+/-48 microM) and very low affinity (EC(50)>500 microM) for other purinergic ligands such as alphabetameATP, suramin, and PPADS. As seen with the mammalian orthologs, the zP2X(5) subunit forms a homo-oligomeric receptor that yields very small whole-cell currents (<20pA), making determination of an EC(50) problematic. Both subunit genes were physically mapped onto the zebrafish genome using radiation hybrid analysis of the T51 panel, with the zp2x4 localized to LG21 and zp2x5 to LG5.

  10. O-GlcNAcylation of NF-κB Promotes Lung Metastasis of Cervical Cancer Cells via Upregulation of CXCR4 Expression.

    PubMed

    Ali, Akhtar; Kim, Sung Hwan; Kim, Min Jun; Choi, Mee Young; Kang, Sang Soo; Cho, Gyeong Jae; Kim, Yoon Sook; Choi, Jun-Young; Choi, Wan Sung

    2017-07-31

    C-X-C chemokine receptor 4 (CXCR4) stimulates cancer metastasis. NF-κB regulates CXCR4 expression in cancer cells, and O-GlcNAc modification of NF-κB promotes its transcriptional activity. Here, we determined whether CXCR4 expression is affected by O-GlcNAcylation of NF-κB in lung metastasis of cervical cancer. We found elevated levels of O-linked-N-actylglucosamine transferase (OGT) and O-GlcNAcylation in cervical cancer cells compared to those in non-malignant epithelial cells and detected increased expression of NF-κB p65 (p65) and CXCR4 in cervical cancer cells. Knockdown of OGT inhibited the O-GlcNAcylation of p65 and decreased CXCR4 expression levels in HeLa cells. Thiamet G treatment increased O-GlcNAcylated p65, which subsequently enhanced CXCR4 expression levels. Inhibition of O-GlcNAcylation by 6-Diazo-5-oxo-L-norleucine (DON) treatment decreased p65 activation, eventually inhibiting CXCR4 expression in HeLa cells. Lung tissues from mice engrafted with OGT-knockdown HeLa cells (shOGT) exhibited lower expression of Ki-67 and HPV E6 and E7 oncogenes compared to lung tissues from mice engrafted with control HeLa cells (shCTL). In addition, lung tissues from mice engrafted with shOGT cells exhibited lower p65 and CXCR4 immunoreactivity compared to tissues from mice engrafted with shCTL cells. Taken together, our data suggest that p65 O-GlcNAcylation promotes lung metastasis of cervical cancer cells by activating CXCR4 expression.

  11. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways

    PubMed Central

    Pan, Qing; Zhang, Qiang; Chu, Jun; Pais, Roshan; Liu, Shanshan; He, Cheng; Eko, Francis O.

    2017-01-01

    The polymorphic membrane protein D (Pmp18D) is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1) as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s) involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs) were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs) was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88), nuclear factor kappa beta (NF-κB p50/p65), and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly (p ≤ 0.001) enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1β cytokine

  12. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-kappaB pathway.

    PubMed

    Lu, Mei; Xu, Ling; Li, Baoying; Zhang, Weidong; Zhang, Chengmei; Feng, Hong; Cui, Xiaopei; Gao, Haiqing

    2010-01-01

    Diabetic encephalopathy is a severe complication in patients with long-term hyperglycemia. Oxidative stress is thought to be closely implicated in this disorder, so in this study, we examined whether grape seed proanthocyanidin extract (GSPE), a naturally occurring antioxidant derived from grape seeds, could reduce the injuries in the cerebral cortex of diabetic rats by modulating advanced glycation end products (AGEs)/the receptor for AGEs (RAGE)/nuclear factor-kappa B p65 (NF-kappaB p65) pathway, which is crucial in oxidative stress. Body weight and serum AGEs were tested; cerebral cortexes were isolated for morphological observations and the pyramidal cell layers were immunohistochemically stained for the detection of RAGE, NF-kappaB p65, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) as well. For RAGE and NF-kappaB p65, quantitative reverse transcriptase coupled to polymerase chain reaction (RT-PCR) was employed for determination of mRNA levels, and western blot was used to detect protein expression. Our results showed that long term hyperglycemia in diabetic rats caused the degeneration of neurons and the up-regulation of serum AGEs, and also the up-regulation of RAGE, NF-kappaB p65, VCAM-1 and ICAM-1 in the brain. We found that GSPE treatment improved the pathological changes of diabetic rats by modulating the AGEs/RAGE/NF-kappaB p65 pathway. This study enables us to further understand the key role that the AGEs/RAGE/NF-kappaB pathway plays in the pathogenesis of diabetic encephalopathy, and confirms that GSPE might be a therapeutical means to the prevention and treatment of this disorder.

  13. The PPE18 protein of Mycobacterium tuberculosis inhibits NF-κB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating suppressor of cytokine signaling 3 protein.

    PubMed

    Nair, Shiny; Pandey, Akhilesh Datt; Mukhopadhyay, Sangita

    2011-05-01

    Mycobacterium tuberculosis bacteria are known to suppress proinflammatory cytokines like IL-12 and TNF-α for a biased Th2 response that favors a successful infection and its subsequent intracellular survival. However, the signaling pathways targeted by the bacilli to inhibit production of these cytokines are not fully understood. In this study, we demonstrate that the PPE18 protein of M. tuberculosis inhibits LPS-induced IL-12 and TNF-α production by blocking nuclear translocation of p50, p65 NF-κB, and c-rel transcription factors. We found that PPE18 upregulates the expression as well as tyrosine phosphorylation of suppressor of cytokine signaling 3 (SOCS3), and the phosphorylated SOCS3 physically interacts with IκBα-NF-κB/rel complex, inhibiting phosphorylation of IκBα at the serine 32/36 residues by IκB kinase-β, and thereby prevents nuclear translocation of the NF-κB/rel subunits in LPS-activated macrophages. Specific knockdown of SOCS3 by small interfering RNA enhanced IκBα phosphorylation, leading to increased nuclear levels of NF-κB/rel transcription factors vis-a-vis IL-12 p40 and TNF-α production in macrophages cotreated with PPE18 and LPS. The PPE18 protein did not affect the IκB kinase-β activity. Our study describes a novel mechanism by which phosphorylated SOCS3 inhibits NF-κB activation by masking the phosphorylation site of IκBα. Also, this study highlights the possible mechanisms by which the M. tuberculosis suppresses production of proinflammatory cytokines using PPE18.

  14. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism

    PubMed Central

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L.; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E.; McDonald, Christine; Stark, George R.; Welle, Stephen; Naga Prasad, Sathyamangla V.; Dasarathy, Srinivasan

    2013-01-01

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB–dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients. PMID:24145431

  15. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism.

    PubMed

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E; McDonald, Christine; Stark, George R; Welle, Stephen; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2013-11-05

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.

  16. p55PIK regulates alpha-fetoprotein expression through the NF-κB signaling pathway.

    PubMed

    Ye, Guoguo; Sun, Ge; Cheng, Zhikui; Zhang, Lei; Hu, Kanghong; Xia, Xianmin; Zhou, Yin

    2017-12-15

    Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. NF-kappaB activation in hypothalamic pro-opiomelanocortin neurons is essential in illness- and leptin-induced anorexia.

    PubMed

    Jang, Pil-Geum; Namkoong, Cherl; Kang, Gil Myoung; Hur, Man-Wook; Kim, Seung-Whan; Kim, Geun Hyang; Kang, Yeoungsup; Jeon, Min-Jae; Kim, Eun Hee; Lee, Myung-Shik; Karin, Michael; Baik, Ja-Hyun; Park, Joong-Yeol; Lee, Ki-Up; Kim, Young-Bum; Kim, Min-Seon

    2010-03-26

    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-kappaB (NF-kappaB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-kappaB. In vitro, NF-kappaB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-kappaB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-kappaB and melanocortin. Furthermore, disruption of I kappaB kinase-beta, an upstream kinase of NF-kappaB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-kappaB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-kappaB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-kappaB also serves as a downstream signaling pathway of leptin.

  18. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells.

    PubMed

    Oh, Young Taek; Lee, Jung Yeon; Lee, Jinhwa; Lee, Ju Hie; Kim, Ja-Eun; Ha, Joohun; Kang, Insug

    2010-05-03

    Oleamide (cis-9-octadecenamide) is an endogenous sleep-inducing fatty acid amide that accumulates in the cerebrospinal fluid of the sleep-deprived animals. Microglia are the major immune cells involved in neuroinflammation causing brain damage during infection, ischemia, and neurodegenerative disease. In this study, we examined the effects of oleamide on LPS-induced production of proinflammatory mediators and the mechanisms involved in BV2 microglia. Oleamide inhibited LPS-induced production of NO and prostaglandin E2 as well as expression of iNOS and COX-2. We showed that oleamide blocked LPS-induced NF-kappaB activation and phosphorylation of inhibitor kappaB kinase (IKK). We also showed that oleamide inhibited LPS-induced phosphorylation of Akt, p38 MAPK, and ERK, activation of PI 3-kinase, and accumulation of reactive oxygen species (ROS). Finally, we showed that a specific antagonist of the CB2 receptor, AM630, blocked the inhibitory effects of oleamide on LPS-induced production of proinflammatory mediators and activation of NF-kappaB. Taken together, our results suggest that oleamide shows an anti-inflammatory effect through inhibition of NF-kappaB activation in LPS-stimulated BV2 microglia. 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Amorfrutin A inhibits TNF-α-induced NF-κB activation and NF-κB-regulated target gene products.

    PubMed

    Shi, Hui; Ma, Juan; Mi, Chunliu; Li, Jing; Wang, Fei; Lee, Jung Joon; Jin, Xuejun

    2014-07-01

    The nuclear factor-κB (NF-κB) transcription factors control many physiological processes including inflammation, immunity, apoptosis, and angiogenesis. In our search for NF-κB inhibitors from natural resources, we identified amorfrutin A as an inhibitor of NF-κB activation from the fruits of Amorpha fruticosa L. In present study, this compound significantly inhibited the TNF-α-induced expression of NF-κB reporter gene. Further analysis revealed that amorfrutin A was a potent inhibitor of NF-κB activation by the suppression of TNF-α-induced inhibitor of κBα (IκBα) degradation, p65 nuclear translocation, and DNA-binding activity of NF-κB. We also demonstrated that pretreatment of cells with this compound prevented the TNF-α-induced expression of NF-κB target genes, such as antiapoptosis (cIAP-1 and FLIP), proliferation (COX-2 and cyclinD1), invasion (MMP-9), angiogenesis (VEGF), and major inflammatory cytokines (TNF-α, IL-8, and MCP1). Furthermore, our results suggest that amorfrutin A potentiates TNF-α-induced apoptosis. Taken together, amorfrutin A could be a valuable candidate for the intervention of NF-κB-dependent pathological conditions such as inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Anti-inflammatory Mechanism of Geniposide: Inhibiting the Hyperpermeability of Fibroblast-Like Synoviocytes via the RhoA/p38MAPK/NF-κB/F-Actin Signal Pathway

    PubMed Central

    Deng, Ran; Li, Feng; Wu, Hong; Wang, Wen-yu; Dai, Li; Zhang, Zheng-rong; Fu, Jun

    2018-01-01

    Geniposide (GE) is the extraction and purification of iridoid glycosides from the Gardenia jasminoides Ellis, which is a promising anti-inflammatory drug, but its mechanism of actions on rheumatoid arthritis (RA) has not been clarified. This study investigated the molecular mechanism behind GE reduced the high permeability of fibroblast-like synoviocytes (FLSs) derived from SD rats with adjuvant arthritis (AA), with the aims of observing the action of GE in AA rats and exploring new therapeutic strategies for RA treatment. The CCK-8 method was used to detect FLSs proliferation. The pro-inflammatory cytokines levels and anti-inflammatory cytokines levels in FLSs were determined by ELISA kits. FLSs permeability assay was performed on Transwell. Immunofluorescence was used to assay the arrangement and morphology of F-actin. The expression of the key molecules related to FLSs permeability (RhoA, p-p38MAPK, NF-κB p-p65 and F-actin) was detected by western blotting. After treatment with lipopolysaccharide (LPS), the proliferation and the permeability of the cells increased significantly (all P < 0.05). The expression of RhoA, p-p38MAPK, NF-κB p-p65 and F-actin in FLSs was higher compared with the control group, and F-actin was redistributed, with the formation of additional stress fibers. But, these conditions were moderated after treatment with GE. We demonstrated that the treatment of different concentrations of GE (25, 50, and 100 μg/mL) had a significant inhibitory effect on the proliferation and permeability of FLSs in vitro. Furthermore, the levels of interleukin (IL)-1β and IL-17 secreted by FLSs were decreased in different doses of GE groups, and the levels of anti-inflammatory cytokines (IL-4, TGF-β1) were increased. Under treatment with GE, low expression of RhoA downregulated expression of p-p38MAPK, NF-κB p-p65, and F-actin while compared with control group, and restored the hyperpermeability of FLSs due to LPS treatment. Taken together, GE might play

  1. Chalepin: A Compound from Ruta angustifolia L. Pers Exhibits Cell Cycle Arrest at S phase, Suppresses Nuclear Factor-Kappa B (NF-κB) Pathway, Signal Transducer and Activation of Transcription 3 (STAT3) Phosphorylation and Extrinsic Apoptotic Pathway in Non-small Cell Lung Cancer Carcinoma (A549).

    PubMed

    Richardson, Jaime Stella Moses; Aminudin, Norhaniza; Abd Malek, Sri Nurestri

    2017-10-01

    transducer and activation of transcription 3, and extrinsic apoptotic pathway and also its ability to arrest cell cycle in S phase. This compound was from the leaves of Ruta angustifolia L. Pers. It provides new insight on the ability of this plant in suppressing certain cancers, especially the nonsmall cell lung carcinoma according to this study. Abbreviations used: °C: Degree Celsius, ANOVA: Analysis of variance, ATCC: American Type Culture Collection, BCL-2: B-Cell CLL/Lymphoma 2, Bcl-xL: B-cell lymphoma extra-large, BH3: Bcl-2 homology 3, BID: BH3-interacting domain death agonist, BIR: Baculovirus inhibitor of apoptosis protein repeat, Caspases: Cysteinyl aspartate-specific proteases, CDK: Cyclin-dependent kinase, CO 2 : Carbon dioxide, CST: Cell signaling technologies, DISC: Death-inducing signaling complex, DMSO: Dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DR4: Death receptor 4, DR5: Death receptor 5, E1a: Adenovirus early region 1A, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, etc.: Etcetera, FADD: Fas-associated protein with death domain, FBS: Fetal bovine serum, FITC: Fluorescein isothiocyanate, G1: Gap 1, G2: Gap 2, HPLC: High-performance liquid chromatography, HRP: Horseradish peroxidase, IAPs: Inhibitor of apoptosis proteins, IC50: Inhibitory concentration at half maximal inhibitory, IKK-α: Inhibitor of nuclear factor kappa-B kinase subunit alpha, IKK-β: Inhibitor of nuclear factor kappa-B kinase subunit beta, IKK-γ: Inhibitor of nuclear factor kappa-B kinase subunit gamma, IKK: IκB kinase, IkBα: Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha, m: Meter, M: Mitotic, mm: Millimeter, mRNA: Messenger ribonucleic acid, NaCl: Sodium chloride, NaVO4: Sodium orthovanadate, NEMO: NF-Kappa-B essential modulator, NF-κB: Nuclear factor kappa-light chain-enhancer of activated B cells, NSCLC: Nonsmall cell lung carcinoma, PBS: Phosphate buffered saline, PGE2

  2. Functional analyses of the interaction of chicken interleukin 23 subunit p19 with IL-12 subunit p40 to form the IL-23 complex.

    PubMed

    Truong, Anh Duc; Hoang, Cong Thanh; Hong, Yeojin; Lee, Janggeun; Lee, Kyungbaek; Lillehoj, Hyun S; Hong, Yeong Ho

    2017-12-01

    This study represents the first description of the cloning of chicken IL-23p19 (ChIL-23α) and the function of the IL-23 complex in birds. Multiple alignment of ChIL-23α with other known IL-23α amino acid sequences revealed regions of amino acid conservation. The homologies of ChIL-23α, IL-12p35, and similar mammalian subunits ranged between 26% and 42%. ChIL-23α consisted of four exons and three introns; similar to those in humans and mice, and limited conservation of synteny between the human and chicken genomes was observed. Using bioinformatics tools, we identified the NF-κB, C/EBPα-β, c-Jun, c-Rel, AP-1, GATA-1, and ER promoter sites in ChIL-23α. Moreover, IL-23α mRNA was more highly expressed than IL-12p40 and IL-12p35 mRNA in several organs of chickens infected with Salmonella. In addition, ChIL-23 complex are associated with IL-23R, IL-12Rβ1 receptors; activate the JAK2/TYK2, STAT1/3, SOCS1 genes, and induced proinflammatory cytokines in immune cells. Collectively, these results indicate that ChIL-23 is a member of the IL-12 family, has proinflammatory properties related to IL-23R and IL-12Rβ1 receptor expression, and activates the JAK/STAT signaling pathway that results in the interaction of ChIL-23α with ChIL-12p40 to form the novel ChIL-23 complex. Our results provide novel insights into the regulation of immunity, inflammation, and immunopathology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  4. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  5. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  6. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  7. 27 CFR 21.92 - Denaturants listed as U.S.P. or N.F.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....P. or N.F. 21.92 Section 21.92 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... for Denaturants § 21.92 Denaturants listed as U.S.P. or N.F. Denaturing materials and products listed in this part as “U.S.P.” or “N.F.” shall meet the specifications set forth in the current United...

  8. Nuclear NF-κB Expression Correlates With Outcome Among Patients With Head and Neck Squamous Cell Carcinoma Treated With Primary Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balermpas, Panagiotis; Michel, Yvonne; Wagenblast, Jens

    2013-07-15

    Background: To examine whether nuclear NF-κB expression correlates with outcome in patients with head and neck squamous cell carcinoma (HNSCC) treated with primary chemoradiation therapy (CRT). Methods and Materials: Between 2007 and 2010, 101 patients with locally advanced primary HNSCC were treated with definitive simultaneous CRT. Pretreatment biopsy specimens were analyzed for NF-κB p65 (RelA) nuclear immunoreactivity. A sample was assigned to be positive with more than 5% positive nuclear expression. The predictive relevance of NF-κB and clinicopathologic factors for overall survival (OS), progression-free survival (PFS), local progression-free survival (LPFS), and metastasis-free survival (DMFS) was examined by univariate and multivariatemore » analysis. Results: No significant differences between the groups were observed with regard to age, sex, total radiation dose, fractionation mode, total chemotherapy applied, T stage or grading. Patients with p65 nuclear positive biopsy specimens showed significantly a higher rate of lymph node metastasis (cN2c or cN3 status, P=.034). Within a mean follow-up time of 25 months (range, 2.33-62.96 months) OS, PFS, and DMFS were significantly poorer in the p65 nuclear positive group (P=.008, P=.027, and P=.008, respectively). These correlations remained significant in multivariate analysis. Conclusion: NF-κB/p65 nuclear expression is associated with increased lymphatic and hematogenous tumor dissemination and decreased survival in HNSCC patients treated with primary CRT. Our results may foster further investigation of a predictive relevance of NF-κB/p65 and its role as a suitable target for a molecular-based targeted therapy in HNSCC cancer.« less

  9. Particulate wear debris activates protein tyrosine kinases and nuclear factor kappaB, which down-regulates type I collagen synthesis in human osteoblasts.

    PubMed

    Vermes, C; Roebuck, K A; Chandrasekaran, R; Dobai, J G; Jacobs, J J; Glant, T T

    2000-09-01

    Particulate wear debris generated mechanically from prosthetic materials is phagocytosed by a variety of cell types within the periprosthetic space including osteoblasts, which cells with an altered function may contribute to periprosthetic osteolysis. Exposure of osteoblast-like osteosarcoma cells or bone marrow-derived primary osteoblasts to either metallic or polymeric particles of phagocytosable sizes resulted in a marked decrease in the steady-state messenger RNA (mRNA) levels of procollagen alpha1[I] and procollagen alpha1[III]. In contrast, no significant effect was observed for the osteoblast-specific genes, such as osteonectin and osteocalcin (OC). In kinetic studies, particles once phagocytosed, maintained a significant suppressive effect on collagen gene expression and type I collagen synthesis for up to five passages. Large particles of a size that cannot be phagocytosed also down-regulated collagen gene expression suggesting that an initial contact between cells and particles can generate gene responsive signals independently of the phagocytosis process. Concerning such signaling, titanium particles rapidly increased protein tyrosine phosphorylation and nuclear transcription factor kappaB (NF-kappaB) binding activity before the phagocytosis of particles. Protein tyrosine kinase (PTK) inhibitors such as genistein and the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) significantly reduced the suppressive effect of titanium on collagen gene expression suggesting particles suppress collagen gene expression through the NF-kappaB signaling pathway. These results provide a mechanism by which particulate wear debris can antagonize the transcription of the procollagen alpha1[I] gene in osteoblasts, which may contribute to reduced bone formation and progressive periprosthetic osteolysis.

  10. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway.

    PubMed

    Jiang, Kang-Feng; Zhao, Gan; Deng, Gan-Zhen; Wu, Hai-Chong; Yin, Nan-Nan; Chen, Xiu-Ying; Qiu, Chang-Wei; Peng, Xiu-Li

    2017-02-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.

  11. Anticancer activity of Astragalus polysaccharide in human non-small cell lung cancer cells.

    PubMed

    Wu, Chao-Yan; Ke, Yuan; Zeng, Yi-Fei; Zhang, Ying-Wen; Yu, Hai-Jun

    2017-01-01

    We have reported that Chinese herbs Astragalus polysaccharide (APS) can inhibit nuclear factor kappaB (NF-κB) activity during the development of diabetic nephropathy in mice. NF-κB plays important roles in genesis, growth, development and metastasis of cancer. NF-κB is also involved in the development of treatment resistance in tumors. Here we investigated the antitumor activity of APS in human non-small cell lung cells (A549 and NCI-H358) and the related mechanisms of action. The dose-effect and time-effect of antitumor of APS were determined in human lung cancer cell line A549 and NCI-H358. The inhibition effect of APS on the P65 mRNA and protein was detected by reverse transcriptase-PCR (RT-PCR) and Western blot in A549 cells respectively. The inhibition effect of APS on the p50, CyclinD1 and Bcl-xL protein was detected by Western blot in A549 cells respectively. The effect of APS on NF-κB transcription activity was measured with NF-κB luciferase detection. Finally, the nude mice A549 xenograft was introduced to confirm the antitumor activity of APS in vivo. Cell viability detection results indicated that APS can inhibit the proliferation of human lung cancer cell line A549 and NCI-H358 in the concentration of 20 and 40 mg/mL. NF-κB activator Phorbol 12-myristate13-acetate (PMA) can attenuate the antitumor activity of APS in both cell lines, but NF-κB inhibitor BAY 11-7082 (Bay) can enhance the effect of APS in both cell lines. In vivo APS can delay the growth of A549 xenograft in BALB/C nude mice. APS can down-regulate the expression of P65 mRNA and protein of A549 cells and decrease the expression of p50, CyclinD1 and Bcl-xL protein. The luciferase detection showed that the APS could reduce the P65 transcription activity in A549 cells. PMA can partially alleviate the inhibition activity of P65 transcription activity of APS in A549 cells, and Bay can enhance the down-regulation of the P65 transcription activity induced by APS in A549 cells. APS has a

  12. IKK phosphorylation of NF-κB at serine 536 contributes to acquired cisplatin resistance in head and neck squamous cell cancer

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Lapidus, Rena G; Liu, Xuefeng; Cullen, Kevin J; Dan, Han C

    2015-01-01

    Current treatment methods for advanced head and neck squamous cell carcinoma (HNSCC) include surgery, radiation therapy and chemotherapy. For recurrent and metastatic HNSCC, cisplatin is the most common treatment option, but most of patients will eventually develop cisplatin resistance. Therefore, it is imperative to define the mechanisms involved in cisplatin resistance and find novel therapeutic strategies to overcome this deadly disease. In order to determine the role of nuclear factor-kappa B (NF-κB) in contributing to acquired cisplatin resistance in HNSCC, the expression and activity of NF-κB and its upstream kinases, IKKα and IKKβ, were evaluated and compared in three pairs of cisplatin sensitive and resistant HNSCC cell lines, including a pair of patient derived HNSCC cell line. The experiments revealed that NF-κB p65 activity was elevated in cisplatin resistant HNSCC cells compared to that in their parent cells. Importantly, the phosphorylation of NF-κB p65 at serine 536 and the phosphorylation of IKKα and IKKβ at their activation loops were dramatically elevated in the resistant cell lines. Furthermore, knockdown of NF-κB or overexpression of p65-S536 alanine (p65-S536A) mutant sensitizes resistant cells to cisplatin. Additionally, the novel IKKβ inhibitor CmpdA has been shown to consistently block the phosphorylation of NF-κB at serine 536 while also dramatically improving the efficacy of cisplatin in inhibition of cell proliferation and induction of apoptosis in the cisplatin resistant cancer cells. These results indicated that IKK/NF-κB plays a pivotal role in controlling acquired cisplatin resistance and that targeting the IKK/NF-κB signaling pathway may provide a possible therapeutic method to overcome the acquired resistance to cisplatin in HNSCC. PMID:26693062

  13. TRIM65 negatively regulates p53 through ubiquitination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Ma, Chengyuan; Zhou, Tong

    2016-04-22

    Tripartite-motif protein family member 65 (TRIM65) is an important protein involved in white matter lesion. However, the role of TRIM65 in human cancer remains less understood. Through the Cancer Genome Atlas (TCGA) gene alteration database, we found that TRIM65 is upregulated in a significant portion of non-small cell lung carcinoma (NSCLC) patients. Our cell growth assay revealed that TRIM65 overexpression promotes cell proliferation, while knockdown of TRIM65 displays opposite effect. Mechanistically, TRIM65 binds to p53, one of the most critical tumor suppressors, and serves as an E3 ligase toward p53. Consequently, TRIM65 inactivates p53 through facilitating p53 poly-ubiquitination and proteasome-mediatedmore » degradation. Notably, chemotherapeutic reagent cisplatin induction of p53 is markedly attenuated in response to ectopic expression of TRIM65. Cell growth inhibition by TRIM65 knockdown is more significant in p53 positive H460 than p53 negative H1299 cells, and knockdown of p53 in H460 cells also shows compromised cell growth inhibition by TRIM65 knockdown, indicating that p53 is required, at least in part, for TRIM65 function. Our findings demonstrate TRIM65 as a potential oncogenic protein, highly likely through p53 inactivation, and provide insight into development of novel approaches targeting TRIM65 for NSCLC treatment, and also overcoming chemotherapy resistance. - Highlights: • TRIM65 expression is elevated in NSCLC. • TRIM65 inactivates p53 through mediating p53 ubiquitination and degradation. • TRIM65 attenuates the response of NSCLC cells to cisplatin.« less

  14. Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway

    PubMed Central

    Gupta, Subash C.; Singh, Ramesh; Pochampally, Radhika; Watabe, Kounosuke; Mo, Yin-Yuan

    2014-01-01

    It is well known that acidic microenvironment promotes tumorigenesis, however, the underlying mechanism remains largely unknown. In the present study, we show that acidosis promotes invasiveness of breast cancer cells through a series of signaling events. First, our study indicates that NF-κB is a key factor for acidosis-induced cell invasion. Acidosis activates NF-κB without affecting STAT3 activity; knockdown of NF-κB p65 abrogates the acidosis-induced invasion activity. Next, we show that the activation of NF-κB is mediated through phosphorylation and degradation of IκBα; and phosphorylation and nuclear translocation of p65. Upstream to NF-κB signaling, AKT is activated under acidic conditions. Moreover, acidosis induces generation of reactive oxygen species (ROS) which can be suppressed by ROS scavengers, reversing the acidosis-induced activation of AKT and NF-κB, and invasiveness. As a negative regulator of AKT, PTEN is oxidized and inactivated by the acidosis-induced ROS. Finally, inhibition of NADPH oxidase (NOX) suppresses acidosis-induced ROS production, suggesting involvement of NOX in acidosis-induced signaling cascade. Of considerable interest, acidosis-induced ROS production and activation of AKT and NF-κB can be only detected in cancer cells, but not in non-malignant cells. Together, these results demonstrate a cancer specific acidosis-induced signaling cascade in breast cancer cells, leading to cell invasion. PMID:25504433

  15. Escherichia coli K1 inhibits proinflammatory cytokine induction in monocytes by preventing NF-kappaB activation.

    PubMed

    Selvaraj, Suresh K; Prasadarao, Nemani V

    2005-08-01

    Phagocytes are well-known effectors of the innate immune system to produce proinflammatory cytokines and chemokines such as tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1beta, and IL-8 during infections. Here, we show that infection of monocytes with wild-type Escherichia coli K1, which causes meningitis in neonates, suppresses the production of cytokines and chemokines (TNF-alpha, regulated on activation, normal T expressed and secreted, macrophage-inflammatory protein-1beta, IL-1beta, and IL-8). In contrast, infection of monocytes with a mutant E. coli, which lacks outer membrane protein A (OmpA- E. coli) resulted in robust production of cytokines and chemokines. Wild-type E. coli K1 (OmpA+ E. coli) prevented the phosphorylation and its degradation of inhibitor of kappaB, thereby blocking the translocation of nuclear factor (NF)-kappaB to the nucleus. OmpA+ E. coli-infected cells, subsequently subjected to lipopolysaccharide challenge, were crippled severely in their ability to activate NF-kappaB to induce cytokine/chemokine production. Selective inhibitors of the extracellular signal-regulated kinase (ERK) 1/2 pathway and p38 mitogen-activated protein kinase (MAPK), but not Jun N-terminal kinase, significantly reduced the activation of NF-kappaB and the production of cytokines and chemokines induced by OmpA- E. coli, indicating a role for these kinases in the NF-kappaB/cytokine pathway. It is interesting that the phosphorylation of ERK 1/2 and p38 MAPK was notably reduced in monocytes infected with OmpA+ E. coli when compared with monocytes infected with OmpA- E. coli, suggesting that the modulation of upstream events common for NF-kappaB and MAPKs by the bacterium is possible. The ability of OmpA+ E. coli K1 to inhibit the macrophage response temporarily may enable bacterial survival and growth within the host for the onset of meningitis by E. coli K1.

  16. Genistein Promotes Proliferation of Human Cervical Cancer Cells Through Estrogen Receptor-Mediated PI3K/Akt-NF-κB Pathway

    PubMed Central

    Chen, Hai-Hong; Chen, Shu-Ping; Zheng, Qiu-Ling; Nie, Shao-Ping; Li, Wen-Juan; Hu, Xiao-Juan; Xie, Ming-Yong

    2018-01-01

    Phytoestrogens are polyphenol compounds which have similar structure to 17β-estradiol (E2), a kind of main estrogen in women. Thus, phytoestrogens may affect the reproductive and endocrine systems, leading to the development of estrogen-related cancers. The effect of genistein (Gen), one of the most studied phytoestrogens, on human cervical cancer cells (HeLa) was investigated in this study. It was found that Gen at concentrations of 0.001, 0.01, 0.1 and 1 µmol·L-1 promoted the proliferation of HeLa cells in a dose-dependent manner. Gen increased the portion of HeLa cells in S phase and decreased the portion of the cells in G1 phase. Besides, apoptosis rate of the cells was significantly lower when treated with Gen compared with the control group. It was also found that the expression of ERα, Akt or nuclear NF-κB p65 protein was activated by Gen. The correlation between these three proteins may be as following: ERα was the upstream, followed by Akt, and then nuclear NF-κB p65 protein. In addition, the downstream genes of activated nuclear NF-κB p65 were found to be associated with cell cycle and apoptosis of cancer cells. Our results suggested that Gen may stimulate cell proliferation partially through the estrogen receptor-mediated PI3K/Akt-NF-κB pathway and the further activation of the downstream genes of nuclear NF-κB p65. PMID:29344275

  17. Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3',4'-didemethylnobiletin, derived from nobiletin.

    PubMed

    Lai, Ching-Shu; Li, Shiming; Chai, Chee-Yin; Lo, Chih-Yu; Dushenkov, Slavik; Ho, Chi-Tang; Pan, Min-Hsiung; Wang, Ying-Jan

    2008-12-01

    We reported previously that 3',4'-didemethylnobiletin (DDMN) is the major metabolite of nobiletin in mouse urine. In this study, we examined DDMN's molecular mechanism of action and its anti-inflammatory and antitumor properties. We demonstrated that topical application of DDMN effectively inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated transcription of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and ornithine decarboxylase (ODC) messenger RNA and protein expression in mouse skin. Pretreatment with DDMN has resulted in the reduction of TPA-induced nuclear translocation of the nuclear factor-kappa B (NF-kappaB) subunit. DDMN also reduced DNA binding by blocking phosphorylation of inhibitor kappaB (IkappaB) alpha and p65 and caused subsequent degradation of IkappaBalpha. DDMN inhibited TPA-induced phosphorylation and nuclear translocation of the signal transducer and activator of transcription 3. Moreover, DDMN suppressed TPA-induced activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt and protein kinase C that are upstream of NF-kappaB and activator protien-1. We also found that DDMN significantly inhibited TPA-induced mouse skin inflammation by decreasing inflammatory parameters. Furthermore, DDMN significantly inhibited 7,12-dimethylbenz[a]anthracene/TPA-induced skin tumor formation measured by the tumor multiplicity of papillomas at 20 weeks. Presented data for the first time reveal that DDMN is an effective antitumor agent that functions by downregulating inflammatory iNOS, COX-2 and ODC gene expression in mouse skin. It is suggested that DDMN is a novel functional agent capable of preventing inflammation-associated tumorigenesis.

  18. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor

    NASA Astrophysics Data System (ADS)

    Vonderach, Matthias; Byrne, Dominic P.; Barran, Perdita E.; Eyers, Patrick A.; Eyers, Claire E.

    2018-06-01

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKAc) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKAc- and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKAc-regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA.

  19. DNA Binding and Phosphorylation Regulate the Core Structure of the NF-κB p50 Transcription Factor.

    PubMed

    Vonderach, Matthias; Byrne, Dominic P; Barran, Perdita E; Eyers, Patrick A; Eyers, Claire E

    2018-06-05

    The NF-κB transcription factors are known to be extensively phosphorylated, with dynamic site-specific modification regulating their ability to dimerize and interact with DNA. p50, the proteolytic product of p105 (NF-κB1), forms homodimers that bind DNA but lack intrinsic transactivation function, functioning as repressors of transcription from κB promoters. Here, we examine the roles of specific phosphorylation events catalysed by either protein kinase A (PKA c ) or Chk1, in regulating the functions of p50 homodimers. LC-MS/MS analysis of proteolysed p50 following in vitro phosphorylation allows us to define Ser328 and Ser337 as PKA c - and Chk1-mediated modifications, and pinpoint an additional four Chk1 phosphosites: Ser65, Thr152, Ser242 and Ser248. Native mass spectrometry (MS) reveals Chk1- and PKA c -regulated disruption of p50 homodimer formation through Ser337. Additionally, we characterise the Chk1-mediated phosphosite, Ser242, as a regulator of DNA binding, with a S242D p50 phosphomimetic exhibiting a > 10-fold reduction in DNA binding affinity. Conformational dynamics of phosphomimetic p50 variants, including S242D, are further explored using ion-mobility MS (IM-MS). Finally, comparative theoretical modelling with experimentally observed p50 conformers, in the absence and presence of DNA, reveals that the p50 homodimer undergoes conformational contraction during electrospray ionisation that is stabilised by complex formation with κB DNA. Graphical Abstract ᅟ.

  20. Glycyrrhetinic acid suppressed NF-κB activation in TNF-α-induced hepatocytes.

    PubMed

    Chen, Hong-Jhang; Kang, Shih-Pei; Lee, I-Jung; Lin, Yun-Lian

    2014-01-22

    Tumor necrosis factor-alpha (TNF-α) is a crucial inflammatory cytokine when hepatocytes are damaged. Glycyrrhiza uralensis Fisch. (Chinese licorice) has been widely used in Chinese herbal prescriptions for the treatment of liver diseases and as a food additive. Nuclear factor-kappa B (NF-κB) reporter gene assay in TNF-α-induced HepG2 was used as a screening platform. IκBα phosphorylation and p65 translocation were measured by Western blotting, and nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression were further confirmed in rat primary hepatocytes. Results showed that TNF-α enhanced NF-κB activity was significantly attenuated by glycyrrhetinic acid in a concentration-dependent manner in the NF-κB reporter gene assay. Glycyrrhetinic acid decreased the gene expression of iNOS through inhibited IκBα phosphorylation and p65 translocation in protein level. Furthermore, NO production and iNOS expression were reduced by glycyrrhetinic acid in TNF-α-induced rat primary hepatocytes. These results suggest that glycyrrhetinic acid may provide hepatoprotection against chronic liver inflammation through attenuating NF-κB activation to alleviate the inflammation.

  1. Prevalence of mutations in hepatitis C virus core protein associated with alteration of NF-kappaB activation.

    PubMed

    Mann, Elizabeth A; Stanford, Sandra; Sherman, Kenneth E

    2006-10-01

    The hepatitis C virus (HCV) core protein is a key structural element of the virion but also affects a number of cellular pathways, including nuclear factor kappaB (NF-kappaB) signaling. NF-kappaB is a transcription factor that regulates both anti-apoptotic and pro-inflammatory genes and its activation may contribute to HCV-mediated pathogenesis. Amino acid sequence divergence in core is seen at the genotype level as well as within patient isolates. Recent work has implicated amino acids 9-11 of core in the modulation of NF-kappaB activation. We report that the sequence RKT is highly conserved (93%) at this position across all HCV genotypes, based on sequences collected in the Los Alamos HCV database. Of the 13 types of variants present in the database, the two most prevalent substitutions are RQT and RKP. We further show that core encoding RKP fails to activate NF-kappaB signaling in vitro while NF-kappaB activation by core encoding RQT does not differ from control RKT core. The effect of RKP core is specific to NF-kappaB signaling as activator protein 1 (AP-1) activity is not altered. Further studies are needed to assess potential associations between specific amino acid substitutions at positions 9-11 and liver disease progression and/or response to treatment in individual patients.

  2. Induction of Apoptosis by Berberine in Hepatocellular Carcinoma HepG2 Cells via Downregulation of NF-κB.

    PubMed

    Li, Min; Zhang, Mao; Zhang, Zhi-Lang; Liu, Ning; Han, Xiao-Yu; Liu, Qin-Cheng; Deng, Wei-Jun; Liao, Cai-Xian

    2017-01-26

    Hepatocellular carcinoma (HCC) is highly resistant to traditional chemotherapeutic approaches, which causes difficulty in the development of effective drugs for the treatment of HCC. Berberine, a major ingredient of Rhizoma coptidis, is a natural alkaloid used in traditional Chinese medicine. Berberine exhibits potent antitumor activity against HCC due to its high efficiency and low toxicity. In the present study, we found that berberine sensitized HepG cells to NF-κB-mediated apoptosis. Berberine exhibited a significant antiproliferation effect on the HepG2 cells and promoted apoptosis. Both qRT-PCR and immunofluorescence staining revealed that berberine reduced the NF-κB p65 levels in HepG2 cells. Moreover, p65 overexpression rescued berberine-induced cell proliferation and prevented HepG2 cells from undergoing apoptosis. These results suggest that berberine inhibits the growth of HepG2 cells by promoting apoptosis through the NF-κB p65 pathway.

  3. TNFα- and IKKβ-mediated TANK/I-TRAF phosphorylation: implications for interaction with NEMO/IKKγ and NF-κB activation

    PubMed Central

    Bonif, Marianne; Meuwis, Marie-Alice; Close, Pierre; Benoit, Valérie; Heyninck, Karen; Chapelle, Jean-Paul; Bours, Vincent; Merville, Marie-Paule; Piette, Jacques; Beyaert, Rudi; Chariot, Alain

    2005-01-01

    Pro-inflammatory cytokines trigger signalling cascades leading to NF-κB (nuclear factor-κB)-dependent gene expression through IKK [IκB (inhibitory κB) kinase]-dependent phosphorylation and subsequent degradation of the IκB proteins and via induced phosphorylation of p65. These signalling pathways rely on sequentially activated kinases which are assembled by essential and non-enzymatic scaffold proteins into functional complexes. Here, we show that the pro-inflammatory cytokine TNFα (tumour necrosis factor α) promotes TANK [TRAF (TNF receptor-associated factor) family member associated NF-κB activator] recruitment to the IKK complex via a newly characterized C-terminal zinc finger. Moreover, we show that TANK is phosphorylated by IKKβ upon TNFα stimulation and that this modification negatively regulates TANK binding to NEMO (NF-κB essential modulator). Interestingly, reduced TANK expression by RNA interference attenuates TNFα-mediated induction of a subset of NF-κB target genes through decreased p65 transactivation potential. Therefore the scaffold protein TANK is required for the cellular response to TNFα by connecting upstream signalling molecules to the IKKs and p65, and its subsequent IKKβ-mediated phosphorylation may be a mechanism to terminate the TANK-dependent wave of NF-κB activation. PMID:16336209

  4. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    PubMed

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  5. Similarities and differences in the p53-mdm2 and NF-kB feedback loops

    NASA Astrophysics Data System (ADS)

    Krishna, Sandeep

    2008-03-01

    Ultradian oscillations in the p53 and NF-kB signalling systems are produced using similar mechanisms: a negative feedback loop combined with an effective time delay. However, seemingly small differences in the molecular implementation of this mechanism mean that the NF-kB system is in equilibrium in the resting state, while the p53 system is far from equilibrium. I will discuss how this affects the dynamical response of the systems. In particular, I will argue that the nonequilibrium driving makes the p53 system respond much faster to external stimuli than the NF-kB system. The interesting question then is whether this makes sense physiologically, and is consistent with the fact that p53 triggers cell-cycle arrest and apoptosis, while NF-kB triggers the immune response.

  6. Stevia and stevioside protect against cisplatin nephrotoxicity through inhibition of ERK1/2, STAT3, and NF-κB activation.

    PubMed

    Potočnjak, Iva; Broznić, Dalibor; Kindl, Marija; Kropek, Matija; Vladimir-Knežević, Sanda; Domitrović, Robert

    2017-09-01

    We investigated the effect of natural sweetener Stevia rebaudiana and its constituent stevioside in cisplatin (CP)-induced kidney injury. Male BALB/cN mice were orally administered 10, 20, and 50 mg/kg body weight of Stevia rebaudiana ethanol extract (SE) or stevioside 50 mg/kg, 48 h after intraperitoneal administration of CP (13 mg/kg). Two days later, CP treatment resulted in histopathological changes showing kidney injury. Increased expression of 4-hydroxynonenal (4-HNE), 3-nitrotyrosine (3-NT), and heme oxygenase-1 (HO-1) in mice kidneys suggested oxidative stress. CP treatment also increased renal expression of nuclear factor-kappaB (NF-κB) p65 subunit and phosphorylated inhibitor of NF-κB (IκBα), as well as expression of pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α). Induction of apoptosis and inhibition of the cell cycle in kidneys was evidenced by increased expression of p53, Bax, caspase-9, and p21, proteolytic cleavage of poly (ADP-ribose) polymerase (PARP), with concomitant suppression of Bcl-2 and cyclin D1 expression. The number of apoptotic cells in kidneys was also assessed. CP administration resulted in activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3). Both SE and stevioside attenuated CP nephrotoxicity by suppressing oxidative stress, inflammation, and apoptosis through mechanism involving ERK1/2, STAT3, and NF-κB suppression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members.

    PubMed

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role.

  8. Functional and Transcriptome Analysis Reveals an Acclimatization Strategy for Abiotic Stress Tolerance Mediated by Arabidopsis NF-YA Family Members

    PubMed Central

    Leyva-González, Marco Antonio; Ibarra-Laclette, Enrique; Cruz-Ramírez, Alfredo; Herrera-Estrella, Luis

    2012-01-01

    Nuclear Factor Y (NF-Y) is a heterotrimeric complex formed by NF-YA/NF-YB/NF-YC subunits that binds to the CCAAT-box in eukaryotic promoters. In contrast to other organisms, in which a single gene encodes each subunit, in plants gene families of over 10 members encode each of the subunits. Here we report that five members of the Arabidopsis thaliana NF-YA family are strongly induced by several stress conditions via transcriptional and miR169-related post-transcriptional mechanisms. Overexpression of NF-YA2, 7 and 10 resulted in dwarf late-senescent plants with enhanced tolerance to several types of abiotic stress. These phenotypes are related to alterations in sucrose/starch balance and cell elongation observed in NF-YA overexpressing plants. The use of transcriptomic analysis of transgenic plants that express miR169-resistant versions of NF-YA2, 3, 7, and 10 under an estradiol inducible system, as well as a dominant-repressor version of NF-YA2 revealed a set of genes, whose promoters are enriched in NF-Y binding sites (CCAAT-box) and that may be directly regulated by the NF-Y complex. This analysis also suggests that NF-YAs could participate in modulating gene regulation through positive and negative mechanisms. We propose a model in which the increase in NF-YA transcript levels in response to abiotic stress is part of an adaptive response to adverse environmental conditions in which a reduction in plant growth rate plays a key role. PMID:23118940

  9. TRIM44 Is a Poor Prognostic Factor for Breast Cancer Patients as a Modulator of NF-κB Signaling.

    PubMed

    Kawabata, Hidetaka; Azuma, Kotaro; Ikeda, Kazuhiro; Sugitani, Ikuko; Kinowaki, Keiichi; Fujii, Takeshi; Osaki, Akihiko; Saeki, Toshiaki; Horie-Inoue, Kuniko; Inoue, Satoshi

    2017-09-08

    Many of the tripartite motif (TRIM) proteins function as E3 ubiquitin ligases and are assumed to be involved in various events, including oncogenesis. In regard to tripartite motif-containing 44 (TRIM44), which is an atypical TRIM family protein lacking the RING finger domain, its pathophysiological significance in breast cancer remains unknown. We performed an immunohistochemical study of TRIM44 protein in clinical breast cancer tissues from 129 patients. The pathophysiological role of TRIM44 in breast cancer was assessed by modulating TRIM44 expression in MCF-7 and MDA-MB-231 breast cancer cells. TRIM44 strong immunoreactivity was significantly associated with nuclear grade ( p = 0.033), distant disease-free survival ( p = 0.031) and overall survival ( p = 0.027). Multivariate analysis revealed that the TRIM44 status was an independent prognostic factor for distant disease-free survival ( p = 0.005) and overall survival ( p = 0.002) of patients. siRNA-mediated TRIM44 knockdown significantly decreased the proliferation of MCF-7 and MDA-MB-231 cells and inhibited the migration of MDA-MB-231 cells. Microarray analysis and qRT-PCR showed that TRIM44 knockdown upregulated CDK19 and downregulated MMP1 in MDA-MB-231 cells. Notably, TRIM44 knockdown impaired nuclear factor-kappa B (NF-κB)-mediated transcriptional activity stimulated by tumor necrosis factor α (TNFα). Moreover, TRIM44 knockdown substantially attenuated the TNFα-dependent phosphorylation of the p65 subunit of NF-κB and IκBα in both MCF-7 and MDA-MB-231 cells. TRIM44 would play a role in the progression of breast cancer by promoting cell proliferation and migration, as well as by enhancing NF-κB signaling.

  10. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  11. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jian; Tan Juan; Zhang Xihui

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may bemore » responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription.« less

  12. BFV activates the NF-kappaB pathway through its transactivator (BTas) to enhance viral transcription.

    PubMed

    Wang, Jian; Tan, Juan; Zhang, Xihui; Guo, Hongyan; Zhang, Qicheng; Guo, Tingting; Geng, Yunqi; Qiao, Wentao

    2010-05-10

    Multiple families of viruses have evolved sophisticated strategies to regulate nuclear factor-kappaB (NF-kappaB) signaling, which plays a pivotal role in diverse cellular events, including virus-host interactions. In this study, we report that bovine foamy virus (BFV) is able to activate the NF-kappaB pathway through the action of its transactivator, BTas. Both cellular IKKbeta and IkappaBalpha also participate in this activation. In addition, we demonstrate that BTas induces the processing of p100, which implies that BTas can activate NF-kappaB through a noncanonical pathway as well. Co-immunoprecipitation analysis shows that BTas interacts with IKK catalytic subunits (IKKalpha and IKKbeta), which may be responsible for regulation of IKK kinase activity and persistent NF-kappaB activation. Furthermore, our results indicate that the level of BTas-mediated LTR transcription correlates with the activity of cellular NF-kappaB. Together, this study suggests that BFV activates the NF-kappaB pathway through BTas to enhance viral transcription. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Pomegranate protects liver against cecal ligation and puncture-induced oxidative stress and inflammation in rats through TLR4/NF-κB pathway inhibition.

    PubMed

    Makled, Mirhan N; El-Awady, Mohammed S; Abdelaziz, Rania R; Atwan, Nadia; Guns, Emma T; Gameil, Nariman M; Shehab El-Din, Ahmed B; Ammar, Elsayed M

    2016-04-01

    Acute liver injury secondary to sepsis is a major challenge in intensive care unit. This study was designed to investigate potential protective effects of pomegranate against sepsis-induced acute liver injury in rats and possible underlying mechanisms. Pomegranate was orally given (800mg/kg/day) for two weeks before sepsis induction by cecal ligation and puncture (CLP). Pomegranate improved survival and attenuated liver inflammatory response, likely related to downregulation of mRNA expression of toll like recptor-4, reduced nuclear translocation and DNA binding activity of proinflammatory transcription factor NF-κB subunit p65, decreased mRNA and protein expression of tumor necrosis factor-alpha and reduction in myeloperoxidase activity and mRNA expression. Pomegranate also decreased CLP-induced oxidative stress as reflected by decreased malondialdehyde content, and increased reduced glutathione level and superoxide dismutase activity. These results confirm the antiinflammatory and antioxidant effects of pomegranate in CLP-induced acute liver injury mediated through inhibiting TLR4/NF-κB pathway, lipid peroxidation and neutrophil infiltration. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Tocotrienols promote apoptosis in human breast cancer cells by inducing poly(ADP-ribose) polymerase cleavage and inhibiting nuclear factor kappa-B activity.

    PubMed

    Loganathan, R; Selvaduray, K R; Nesaretnam, K; Radhakrishnan, A K

    2013-04-01

    Tocotrienols and tocopherols are members of the vitamin E family, with similar structures; however, only tocotrienols have been reported to achieve potent anti-cancer effects. The study described here has evaluated anti-cancer activity of vitamin E to elucidate mechanisms of cell death, using human breast cancer cells. Anti-cancer activity of a tocotrienol-rich fraction (TRF) and a tocotrienol-enriched fraction (TEF) isolated from palm oil, as well as pure vitamin E analogues (α-tocopherol, α-, δ- and γ-tocotrienols) were studied using highly aggressive triple negative MDA-MB-231 cells and oestrogen-dependent MCF-7 cells, both of human breast cancer cell lines. Cell population growth was evaluated using a Coulter particle counter. Cell death mechanism, poly(ADP-ribose) polymerase cleavage and levels of NF-κB were determined using commercial ELISA kits. Tocotrienols exerted potent anti-proliferative effects on both types of cell by inducing apoptosis, the underlying mechanism of cell death being ascertained using respective IC50 concentrations of all test compounds. There was marked induction of apoptosis in both cell lines by tocotrienols compared to treatment with Paclitaxel, which was used as positive control. This activity was found to be associated with cleavage of poly(ADP-ribose) polymerase (a DNA repair protein), demonstrating involvement of the apoptotic cell death signalling pathway. Tocotrienols also inhibited expression of nuclear factor kappa-B (NF-κB), which in turn can increase sensitivity of cancer cells to apoptosis. Tocotrienols induced anti-proliferative and apoptotic effects in association with DNA fragmentation, poly(ADP-ribose) polymerase cleavage and NF-κB inhibition in the two human breast cancer cell lines. © 2013 Blackwell Publishing Ltd.

  15. Increased p50/p50 NF-κB Activation in Human Papillomavirus Type 6- or Type 11-Induced Laryngeal Papilloma Tissue

    PubMed Central

    Vancurova, Ivana; Wu, Rong; Miskolci, Veronika; Sun, Shishinn

    2002-01-01

    We have observed elevated NF-κB DNA-binding activity in nuclear extracts from human papillomavirus type 6- and 11-infected laryngeal papilloma tissues. The predominant DNA-binding species is the p50/p50 homodimer. The elevated NF-κB activity could be correlated with a reduced level of cytoplasmic IκBβ and could be associated with the overexpression of p21CIP1/WAF1 in papilloma cells. Increased NF-κB activity and cytoplasmic accumulation of p21CIP1/WAF1 might counteract death-promoting effects elicited by overexpressed PTEN and reduced activation of Akt and STAT3 previously noted in these tissues. PMID:11773428

  16. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Hua; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029; Bauman, William A.

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 inmore » NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed

  17. 18β-Glycyrrhetinic acid suppresses TNF-α induced matrix metalloproteinase-9 and vascular endothelial growth factor by suppressing the Akt-dependent NF-κB pathway.

    PubMed

    Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Park, Sang Rul; Choi, Yung Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kim, Gi-Young

    2014-08-01

    Little is known about the molecular mechanism through which 18β-glycyrrhetinic acid (GA) inhibits metastasis and invasion of cancer cells. Therefore, this study aimed to investigate the effects of GA on the expression of matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) in various types of cancer cells. We found that treatment with GA reduces tumor necrosis factor-α (TNF-α)-induced Matrigel invasion with few cytotoxic effects. Our findings also showed that MMP-9 and VEGF expression increases in response to TNF-α; however, GA reverses their expression. In addition, GA inhibited inhibitory factor kappa B degradation, sustained nuclear factor-kappa B (NF-κB) subunits, p65 and p50, in the cytosol compartments, and consequently suppressed the TNF-α-induced DNA-binding activity and luciferase activity of NF-κB. Specific NF-κB inhibitors, pyrrolidine dithiocarbamate, MG132, and PS-1145, also attenuated TNF-α-mediated MMP-9 and VEGF expression as well as activity by suppressing their regulatory genes. Furthermore, phosphorylation of TNF-α-induced phosphatidyl-inositol 3 kinase (PI3K)/Akt was significantly downregulated in the presence of GA accompanying with the inhibition of NF-κB activity, and as presumed, the specific PI3K/Akt inhibitor LY294002 significantly decreased MMP-9 and VEGF expression as well as activity. These results suggest that GA operates as a potential anti-invasive agent by downregulating MMP-9 and VEGF via inhibition of PI3K/Akt-dependent NF-κB activity. Taken together, GA might be an effective anti-invasive agent by suppressing PI3K/Akt-mediated NF-κB activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Geniposide promotes autophagy to inhibit insulin resistance in HepG2 cells via P62/NF-κB/GLUT-4

    PubMed Central

    Jiang, Hongwei; Ma, Yujin; Yan, Junqiang; Liu, Jie; Li, Liping

    2017-01-01

    Insulin resistance (IR) is known to be an important factor, which can lead to the onset of type 2 diabetes. Autophagy is a cellular process, which sequesters senescent or damaged proteins in autophagosomes for recycling of their products. Insulin and intracellular molecules, including mammalian target of rapamycin (mTOR), are well-known inhibitors of autophagy. In patients with type 2 diabetes, the expression levels of glucose transporter 4 (GLUT-4) in skeletal muscles are significantly decreased, indicating decreased glucose-processing ability. Geniposide is an iridoid compound isolated from Gardenia jasminoides Ellis. Previously, it was reported that geniposide significantly promoted glucose uptake. In the present study, a HepG2 cell model of IR was constructed to determine whether geniposide can promote autophagy to inhibit insulin resistance in HepG2 cells via P62/nuclear factor (NF)-κB/GLUT-4. Cell proliferation was analyzed by performing an MTT assay, and the mRNA expression levels of NF-κB and GLUT-4 were assessed using semi-quantitative polymerase chain reaction and immunohistochemical staining. In addition, the protein levels of GLUT-4, P62 and phosphorylated-P65 were assessed by western blotting. The expression of GLUT-4 was initially increased following geniposide treatment, decreasing in time to its lowest level at 8 h. The expression levels of NF-κB and GLUT-4 in the IR cells treated with and without geniposide were significantly different, compared with those in the control group. Geniposide promoted autophagy in the IR HepG2 cells and significantly improved IR in the HepG2 cells, which may be associated with the dynamic regulation of the P62/NF-κB/GLUT-4 pathway. PMID:28944847

  19. Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, X.; Mueller, G; Cuneo, M

    2010-01-01

    The dimerization of HIV reverse transcriptase (RT), required to obtain the active form of the enzyme, is influenced by mutations, non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleotide substrates, Mg ions, temperature, and specifically designed dimerization inhibitors. In this study, we have utilized nuclear magnetic resonance (NMR) spectroscopy of the [methyl-{sup 13}C]methionine-labeled enzyme and small-angle X-ray scattering (SAXS) to investigate how several of these factors influence the dimerization behavior of the p51 subunit. The {sup 1}H-{sup 13}C HSQC spectrum of p51 obtained at micromolar concentrations indicates that a significant fraction of the p51 adopts a 'p66-like' conformation. SAXS data obtained for p51more » samples were used to determine the fractions of monomer and dimer in the sample and to evaluate the conformation of the fingers/thumb subdomain. All of the p51 monomer observed was found to adopt the compact, 'p51C' conformation observed for the p51 subunit in the RT heterodimer. The NMR and SAXS data indicate that the p51 homodimer adopts a structure that is similar to the p66/p51 heterodimer, with one p51C subunit and a second p51 subunit in an extended, 'p51E' conformation that resembles the p66 subunit of the heterodimer. The fractional dimer concentration and the fingers/thumb orientation are found to depend strongly on the experimental conditions and exhibit a qualitative dependence on nevirapine and ionic strength (KCl) that is similar to the behavior reported for the heterodimer and the p66 homodimer. The L289K mutation interferes with p51 homodimer formation as it does with formation of the heterodimer, despite its location far from the dimer interface. This effect is readily interpreted in terms of a conformational selection model, in which p51{sub L289K} has a much greater preference for the compact, p51C conformation. A reduced level of dimer formation then results from the reduced ratio of the p51E{sub L289K} to p

  20. Effect of Bmi-1-mediated NF-κB signaling pathway on the stem-like properties of CD133+ human liver cancer cells.

    PubMed

    Ma, De-Qiang; Zhang, Yin-Hua; Ding, De-Ping; Li, Juan; Chen, Lin-Li; Tian, You-You; Ao, Kang-Jian

    2018-05-11

    To investigate the impact of Bmi-1-mediated NF-κB pathway on the biological characteristics of CD133+ liver cancer stem cells (LCSCs). Flow cytometry was used to isolate CD133+ LCSC cells from Huh7, Hep3B, SK-hep1, and PLC/PRF-5 cells. CD133+ Huh7 cells were divided into Control, Blank, Bmi-1 siRNA, JSH-23 (NF-κB pathway inhibitor), and Bmi-1 + JSH-23 groups. The properties of CD133+ Huh7 cells were detected by the colony-formation and sphere-forming assays. Besides, Transwell assay was applied for the measurement of cell invasion and migration, immunofluorescence staining for the detection of NF-κB p65 nuclear translocation, and qRT-PCR and Western blotting for the determination of SOX2, NANOG, OCT4, Bmi-1, and NF-κB p65 expression. CD133+ Huh-7 cells were chosen as the experiment subjects after flow cytometry. Compared with CD133- Huh-7 cells, the expression of CD133, OCT4, SOX2, NANOG, Bmi-1, and NF-κB p65, the nuclear translocation of NF-κB p65, the number of cell colonies and Sphere formation, as well as the abilities of invasion and migration were observed to be increased in CD133+ Huh-7 cells, which was inhibited after treated with Bmi-1 siRNA or JSH-23, meanwhile, the cell cycle was arrested at the G0/G1 and S phases with apparently enhanced cell apoptosis. Importantly, no significant differences in the biological characteristics of CD133 + Huh-7 cells were found between the Blank group and Bmi-1 + JSH-23 group. Down-regulating Bmi-1 may inhibit the biological properties of CD133+ LCSC by blocking NF-κB signaling pathway, which lays a scientific foundation for the clinical treatment of liver cancer.

  1. Tanreqing Injection Attenuates Lipopolysaccharide-Induced Airway Inflammation through MAPK/NF-κB Signaling Pathways in Rats Model

    PubMed Central

    Liu, Wei; Jiang, Hong-li; Cai, Lin-li; Yan, Min; Dong, Shou-jin; Mao, Bing

    2016-01-01

    Background. Tanreqing injection (TRQ) is a commonly used herbal patent medicine for treating inflammatory airway diseases in view of its outstanding anti-inflammatory properties. In this study, we explored the signaling pathways involved in contributions of TRQ to LPS-induced airway inflammation in rats. Methods/Design. Adult male Sprague Dawley (SD) rats randomly divided into different groups received intratracheal instillation of LPS and/or intraperitoneal injection of TRQ. Bronchoalveolar Lavage Fluid (BALF) and lung samples were collected at 24 h, 48 h, and 96 h after TRQ administration. Protein and mRNA levels of tumor necrosis factor- (TNF-) α, Interleukin- (IL-) 1β, IL-6, and IL-8 in BALF and lung homogenate were observed by ELISA and real-time PCR, respectively. Lung sections were stained for p38 MAPK and NF-κB detection by immunohistochemistry. Phospho-p38 MAPK, phosphor-extracellular signal-regulated kinases ERK1/2, phospho-SAPK/JNK, phospho-NF-κB p65, phospho-IKKα/β, and phospho-IκB-α were measured by western blot analysis. Results. The results showed that TRQ significantly counteracted LPS-stimulated release of TNF-α, IL-1β, IL-6, and IL-8, attenuated cells influx in BALF, mitigated mucus hypersecretion, suppressed phosphorylation of NF-κB p65, IκB-α, ΙKKα/β, ERK1/2, JNK, and p38 MAPK, and inhibited p38 MAPK and NF-κB p65 expression in rat lungs. Conclusions. Results of the current research indicate that TRQ possesses potent exhibitory effects in LPS-induced airway inflammation by, at least partially, suppressing the MAPKs and NF-κB signaling pathways, in a general dose-dependent manner. PMID:27366191

  2. Tumor necrosis factor alpha induces gamma-glutamyltransferase expression via nuclear factor-kappaB in cooperation with Sp1.

    PubMed

    Reuter, Simone; Schnekenburger, Michael; Cristofanon, Silvia; Buck, Isabelle; Teiten, Marie-Hélène; Daubeuf, Sandrine; Eifes, Serge; Dicato, Mario; Aggarwal, Bharat B; Visvikis, Athanase; Diederich, Marc

    2009-02-01

    Gamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed. We found that the proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) induced GGT promoter transactivation, mRNA and protein synthesis, as well as enzymatic activity. Remicade, a clinically used anti-TNFalpha antibody, small interfering RNA (siRNA) against p50 and p65 nuclear factor-kappaB (NF-kappaB) isoforms, curcumin, a well characterized natural NF-kappaB inhibitor, as well as a dominant negative inhibitor of kappaB alpha (IkappaBalpha), prevented GGT activation at various levels, illustrating the involvement of this signaling pathway in TNFalpha-induced stimulation. Over-expression of receptor of TNFalpha-1 (TNFR1), TNFR-associated factor-2 (TRAF2), TNFR-1 associated death domain (TRADD), dominant negative (DN) IkappaBalpha or NF-kappaB p65 further confirmed GGT promoter activation via NF-kappaB. Linker insertion mutagenesis of 536 bp of the proximal GGT promoter revealed NF-kappaB and Sp1 binding sites at -110 and -78 relative to the transcription start site, responsible for basal GGT transcription. Mutation of the NF-kappaB site located at -110 additionally inhibited TNFalpha-induced promoter induction. Chromatin immunoprecipitation (ChIP) assays confirmed mutagenesis results and further demonstrated that TNFalpha treatment induced in vivo binding of both NF-kappaB and Sp1, explaining increased GGT expression, and led to RNA polymerase II recruitment under inflammatory conditions.

  3. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice.

    PubMed

    Kim, Soon-Kap; Park, Hyo-Young; Jang, Yun Hee; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-03-01

    OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.

  4. Inhibition of inhibitor of kappaB kinases stimulates hepatic stellate cell apoptosis and accelerated recovery from rat liver fibrosis.

    PubMed

    Oakley, Fiona; Meso, Muriel; Iredale, John P; Green, Karen; Marek, Carylyn J; Zhou, Xiaoying; May, Michael J; Millward-Sadler, Harry; Wright, Matthew C; Mann, Derek A

    2005-01-01

    Resolution of liver fibrosis is associated with clearance of hepatic myofibroblasts by apoptosis; development of strategies that promote this process in a selective way is therefore important. The aim of this study was to determine whether the inhibitor of kappaB kinase suppressor sulfasalazine stimulates hepatic myofibroblast apoptosis and recovery from fibrosis. Hepatic myofibroblasts were generated by culture activation of rat and human hepatic stellate cells. Fibrosis was established in rat livers by chronic injury with carbon tetrachloride followed by recovery with or without sulfasalazine (150 mg/kg) treatment. Treatment of hepatic stellate cells with sulfasalazine (0.5-2.0 mmol/L) induced apoptosis of activated rat and human hepatic stellate cells. A single in vivo administration of sulfasalazine promoted accelerated recovery from fibrosis as assessed by improved fibrosis score, selective clearance of smooth muscle alpha-actin-positive myofibroblasts, reduced hepatic procollagen I and tissue inhibitor of metalloproteinase 1 messenger RNA expression, and increased matrix metalloproteinase 2 activity. Mechanistic studies showed that sulfasalazine selectively blocks nuclear factor-kappaB-dependent gene transcription, inhibits hepatic stellate cell expression of Gadd45beta, stimulates phosphorylation of Jun N-terminal kinase 2, and promotes apoptosis by a mechanism that is prevented by the Jun N-terminal kinase inhibitor SP600125. As further evidence for a survival role for the inhibitor of kappaB kinase/nuclear factor-kappaB pathway in activated hepatic stellate cells, a highly selective cell-permeable peptide inhibitor of kappaB kinase activation also stimulated hepatic stellate cell apoptosis via a Jun N-terminal kinase-dependent mechanism. Inhibition of the inhibitor of kappaB kinase/nuclear factor-kappaB pathway is sufficient to increase the rate at which activated hepatic stellate cells undergo apoptosis both in vitro and in vivo, and drugs that

  5. Divergent Effects of Arsenic on NF-κB Signaling in Different Cells or Tissues: A Systematic Review and Meta-Analysis.

    PubMed

    Wei, Meng; Liu, Jiaming; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Guo, Shuxia

    2016-01-26

    Arsenic is ubiquitously present in human lives, including in the environment and organisms, and has divergent effects between different cells and tissues and between different exposure times and doses. These observed effects have been attributed to the nuclear transcription factor kappa B(NF-κB) signaling pathway. Herein, a meta-analysis was performed by independently searching databases including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze effects of arsenic exposure on NF-κB signaling. Compared to controls, in the exposed group, p-IκB levels were found to be 8.13-fold higher (95% CI, 2.40-13.85; Z = 2.78; p = 0.005), IκB levels were 16.19-fold lower (95% CI, -27.44--4.94; Z = 2.78; p = 0.005), and NF-κBp65 levels were 0.77-fold higher (95% CI, 0.13-1.42; Z = 2.34; p = 0.02) for normal cells and tissue, while NF-κBp65 levels were 4.90-fold lower (95% CI, -8.49-1.31; Z = 2.62; p = 0.009), NF-κB activity was 2.45-fold lower (95% CI, -3.66-1.25; Z = 4.00; p < 0.0001), and DNA-binding activity of NF-κB was 9.75-fold lower (95% CI, -18.66-4.54; Z = 2.15; p = 0.03) for abnormal cells and tissue. Short exposure to high arsenic doses activated the NF-κB signaling pathway, while long exposure to low arsenic doses suppressed NF-κB signaling pathway activation. These findings may provide a theoretical basis for injurious and therapeutic mechanisms of divergent effects of arsenic.

  6. EWS-FLI1 inhibits TNF{alpha}-induced NF{kappa}B-dependent transcription in Ewing sarcoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagirand-Cantaloube, Julie, E-mail: julie.cantaloube@crbm.cnrs.fr; Laud, Karine, E-mail: karine.laud@curie.fr; Institut Curie, Genetique et biologie des cancers, Paris

    2010-09-03

    Research highlights: {yields} EWS-FLI1 interferes with TNF-induced activation of NF{kappa}B in Ewing sarcoma cells. {yields} EWS-FLI1 knockdown in Ewing sarcoma cells increases TNF-induced NF{kappa}B binding to DNA. {yields} EWS-FLI1 reduces TNF-stimulated NF{kappa}B-dependent transcriptional activation. {yields} Constitutive NF{kappa}B activity is not affected by EWS-FLI1. {yields} EWS-FLI1 physically interacts with NF{kappa}B p65 in vivo. -- Abstract: Ewing sarcoma is primarily caused by a t(11;22) chromosomal translocation encoding the EWS-FLI1 fusion protein. To exert its oncogenic function, EWS-FLI1 acts as an aberrant transcription factor, broadly altering the gene expression profile of tumor cells. Nuclear factor-kappaB (NF{kappa}B) is a tightly regulated transcription factor controllingmore » cell survival, proliferation and differentiation, as well as tumorigenesis. NF{kappa}B activity is very low in unstimulated Ewing sarcoma cells, but can be induced in response to tumor necrosis factor (TNF). We wondered whether NF{kappa}B activity could be modulated by EWS-FLI1 in Ewing sarcoma. Using a knockdown approach in Ewing sarcoma cells, we demonstrated that EWS-FLI1 has no influence on NF{kappa}B basal activity, but impairs TNF-induced NF{kappa}B-driven transcription, at least in part through inhibition of NF{kappa}B binding to DNA. We detected an in vivo physical interaction between the fusion protein and NF{kappa}B p65, which could mediate these effects. Our findings suggest that, besides directly controlling the activity of its primary target promoters, EWS-FLI1 can also indirectly influence gene expression in tumor cells by modulating the activity of key transcription factors such as NF{kappa}B.« less

  7. The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation

    PubMed Central

    Mancone, Carmine; Regazzo, Giulia; Spagnuolo, Manuela; Alonzi, Tonino; Carlomosti, Fabrizio; Lucia, Maria Dell’Anna; Dell, Giulia 'Omo; Picardo, Mauro; Ciana, Paolo; Capogrossi, Maurizio C; Tripodi, Marco; Magenta, Alessandra; Giulia, Maria Rizzo; Gurtner, Aymone; Piaggio, Giulia

    2017-01-01

    Lamin A is a component of the nuclear matrix that also controls proliferation by largely unknown mechanisms. NF-Y is a ubiquitous protein involved in cell proliferation composed of three subunits (-YA -YB -YC) all required for the DNA binding and transactivation activity. To get clues on new NF-Y partner(s) we performed a mass spectrometry screening of proteins that co-precipitate with the regulatory subunit of the complex, NF-YA. By this screening we identified lamin A as a novel putative NF-Y interactor. Co-immunoprecipitation experiments and confocal analysis confirmed the interaction between the two endogenous proteins. Interestingly, this association occurs on euchromatin regions, too. ChIP experiments demonstrate lamin A enrichment in several promoter regions of cell cycle related genes in a NF-Y dependent manner. Gain and loss of function experiments reveal that lamin A counteracts NF-Y transcriptional activity. Taking advantage of a recently generated transgenic reporter mouse, called MITO-Luc, in which an NF-Y–dependent promoter controls luciferase expression, we demonstrate that lamin A counteracts NF-Y transcriptional activity not only in culture cells but also in living animals. Altogether, our data demonstrate the occurrence of lamin A/NF-Y interaction and suggest a possible role of this protein complex in regulation of NF-Y function in cell proliferation. PMID:27793050

  8. Hydrogen Sulfide Suppresses Oxidized Low-density Lipoprotein (Ox-LDL)-stimulated Monocyte Chemoattractant Protein 1 generation from Macrophages via the Nuclear Factor κB (NF-κB) Pathway*

    PubMed Central

    Du, Junbao; Huang, Yaqian; Yan, Hui; Zhang, Qiaoli; Zhao, Manman; Zhu, Mingzhu; Liu, Jia; Chen, Stella X.; Bu, Dingfang; Tang, Chaoshu; Jin, Hongfang

    2014-01-01

    This study was designed to examine the role of hydrogen sulfide (H2S) in the generation of oxidized low-density lipoprotein (ox-LDL)-stimulated monocyte chemoattractant protein 1 (MCP-1) from macrophages and possible mechanisms. THP-1 cells and RAW macrophages were pretreated with sodium hydrosulfide (NaHS) and hexyl acrylate and then treated with ox-LDL. The results showed that ox-LDL treatment down-regulated the H2S/cystathionine-β-synthase pathway, with increased MCP-1 protein and mRNA expression in both THP-1 cells and RAW macrophages. Hexyl acrylate promoted ox-LDL-induced inflammation, whereas the H2S donor NaHS inhibited it. NaHS markedly suppressed NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter in ox-LDL-treated macrophages. Furthermore, NaHS decreased the ratio of free thiol groups in p65, whereas the thiol reductant DTT reversed the inhibiting effect of H2S on the p65 DNA binding activity. Most importantly, site-specific mutation of cysteine 38 to serine in p65 abolished the effect of H2S on the sulfhydration of NF-κB and ox-LDL-induced NF-κB activation. These results suggested that endogenous H2S inhibited ox-LDL-induced macrophage inflammation by suppressing NF-κB p65 phosphorylation, nuclear translocation, DNA binding activity, and recruitment to the MCP-1 promoter. The sulfhydration of free thiol group on cysteine 38 in p65 served as a molecular mechanism by which H2S inhibited NF-κB pathway activation in ox-LDL-induced macrophage inflammation. PMID:24550391

  9. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells

    PubMed Central

    Mencalha, Andre L.; Ferreira, Gerson M.; de Souza, Waldemir F.; Morgado-Díaz, José A.; Maia, Amanda M.; Corrêa, Stephany; Abdelhay, Eliana S. F. W.

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment. PMID:28107418

  10. NF-kappaB Is Involved in the Regulation of EMT Genes in Breast Cancer Cells.

    PubMed

    Pires, Bruno R B; Mencalha, Andre L; Ferreira, Gerson M; de Souza, Waldemir F; Morgado-Díaz, José A; Maia, Amanda M; Corrêa, Stephany; Abdelhay, Eliana S F W

    2017-01-01

    The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.

  11. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB.

    PubMed

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-10-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling.

  12. Thymoquinone chemosensitizes colon cancer cells through inhibition of NF-κB

    PubMed Central

    Zhang, Lida; Bai, Yangqiu; Yang, Yuxiu

    2016-01-01

    In the present study, the effects and molecular mechanisms of thymoquinone (TQ) on colon cancer cells were investigated. Cell viability was determined using a Cell Counting Kit-8 assay, and the results revealed that treatment with TQ significantly decreased cell viability in COLO205 and HCT116 cells in a dose-dependent manner. TQ treatment additionally sensitized COLO205 and HCT116 cells to cisplatin therapy in a concentration-dependent manner. To investigate the molecular mechanisms of TQ action, western blot analysis was used to determine the levels of phosphorylated p65 and nuclear factor-κB (NF-κB)-regulated gene products vascular endothelial growth factor (VEGF), c-Myc and B-cell lymphoma 2 (Bcl-2). The results indicated that TQ treatment significantly decreased the level of phosphorylated p65 in the nucleus, which indicated the inhibition of NF-κB activation by TQ treatment. Treatment with TQ also decreased the expression levels of VEGF, c-Myc and Bcl-2. In addition, the inhibition of NF-κB activation with a specific inhibitor, pyrrolidine dithiocarbamate, potentiated the induction of cell death and caused a chemosensitization effect of TQ in colon cancer cells. Overall, the results of the present study suggested that TQ induced cell death and chemosensitized colon cancer cells by inhibiting NF-κB signaling. PMID:27698868

  13. Activation of the NF-κB pathway by the STAT3 inhibitor JSI-124 in human glioblastoma cells

    PubMed Central

    McFarland, Braden C.; Gray, G. Kenneth; Nozell, Susan E.; Hong, Suk W.; Benveniste, Etty N.

    2013-01-01

    Glioblastoma tumors are characterized by their invasiveness and resistance to therapies. The transcription factor STAT3 was recently identified as a master transcriptional regulator in the mesenchymal subtype of GBM, which has generated an increased interest in targeting STAT3. We have evaluated more closely the mechanism of action of one particular STAT3 inhibitor, JSI-124 (cucurbitacin I). In this study, we confirmed that JSI-124 inhibits both constitutive and stimulus-induced JAK2 and STAT3 phosphorylation, and decreases cell proliferation while inducing apoptosis in cultured GBM cells. However, we discovered that prior to the inhibition of STAT3, JSI-124 activates the NF-κB pathway, via NF-κB p65 phosphorylation and nuclear translocation. In addition, JSI-124 treatment induces the expression of IL-6, IL-8 and SOCS3 mRNA, which leads to a corresponding increase in IL-6, IL-8 and SOCS3 protein expression. Moreover, the NF-κB driven SOCS3 expression acts as a negative regulator of STAT3, abrogating any subsequent STAT3 activation and provides a mechanism of STAT3 inhibition following JSI-124 treatment. Chromatin immunoprecipitation analysis confirms that NF-κB p65 in addition to other activating co-factors are found at the promoters of IL-6, IL-8 and SOCS3, following JSI-124 treatment. Using pharmacological inhibition of NF-κB and inducible knockdown of NF-κB p65, we found that JSI-124-induced expression of IL-6, IL-8 and SOCS3 was significantly inhibited, demonstrating an NF-κB dependent mechanism. Our data indicate that although JSI-124 may demonstrate potential anti-tumor effects through inhibition of STAT3, other off-target pro-inflammatory pathways are activated, emphasizing that more careful and thorough pre-clinical investigations must be implemented to prevent potential harmful effects. PMID:23386688

  14. Emodin Inhibition of Influenza A Virus Replication and Influenza Viral Pneumonia via the Nrf2, TLR4, p38/JNK and NF-kappaB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xua; Chen, Cheng; Li, Wei-Zhong; Wang, Ge-Fei; Li, Kang-Sheng

    2017-10-18

    Lasting activations of toll-like receptors (TLRs), MAPK and NF-κB pathways can support influenza A virus (IAV) infection and promote pneumonia. In this study, we have investigated the effect and mechanism of action of emodin on IAV infection using qRT-PCR, western blotting, ELISA, Nrf2 luciferase reporter, siRNA and plaque inhibition assays. The results showed that emodin could significantly inhibit IAV (ST169, H1N1) replication, reduce IAV-induced expressions of TLR2/3/4/7, MyD88 and TRAF6, decrease IAV-induced phosphorylations of p38/JNK MAPK and nuclear translocation of NF-κB p65. Emodin also activated the Nrf2 pathway, decreased ROS levels, increased GSH levelss and GSH/GSSG ratio, and upregulated the activities of SOD, GR, CAT and GSH-Px after IAV infection. Suppression of Nrf2 via siRNA markedly blocked the inhibitory effects of emodin on IAV-induced activations of TLR4, p38/JNK, and NF-κB pathways and on IAV-induced production of IL-1β, IL-6 and expression of IAV M2 protein. Emodin also dramatically increased the survival rate of mice, reduced lung edema, pulmonary viral titer and inflammatory cytokines, and improved lung histopathological changes. In conclusion, emodin can inhibit IAV replication and influenza viral pneumonia, at least in part, by activating Nrf2 signaling and inhibiting IAV-induced activations of the TLR4, p38/JNK MAPK and NF-κB pathways.

  15. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    PubMed

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  16. p38 mitogen-activated protein kinase-induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury.

    PubMed

    Jiang, Shao-Yun; Zou, Yuan-Yuan; Wang, Jian-Tao

    2012-01-01

    In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. These findings provide evidence of crosstalk between p38 MAPK and NF-κB p65 and

  17. p38 mitogen-activated protein kinase–induced nuclear factor kappa-light-chain-enhancer of activated B cell activity is required for neuroprotection in retinal ischemia/reperfusion injury

    PubMed Central

    Jiang, Shao-Yun; Zou, Yuan-Yuan

    2012-01-01

    Purpose In our previous study, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) played a neuroprotective role in retinal ischemia/reperfusion (I/R) injury in rats. However, the mechanism of NF-κB neuroprotection is still unclear. We hypothesize that p38 mitogen-activated protein kinase (MAPK) is expressed and NF-κB activity induced by p38 MAPK plays a neuroprotective role through antiapoptotic genes (B-cell lymphoma [Bcl]-2 and Bcl-XL) in retinal cells in retinal I/R injury. Methods Retinal ischemia was induced by elevating intraocular pressure in rats. After retinal I/R, the p38 MAPK, NF-κB p65, Bcl-2, and Bcl-XL mRNA levels were measured with real-time polymerase chain reaction. NF-κB p65 activity was assessed with NF-κB enzyme-linked immunosorbent assay in retinal I/R injury and after application of the p38 MAPK inhibitor (SB203580). Furthermore, SB203580 and NF-κB p65 short interfering RNA (siRNA) were used in retinal I/R injury to examine the effects on Bcl-2 and Bcl-XL levels and nucleosome release in the retina and cell survival in the ganglion cell layer. Results The mRNA levels of NF-κB p65 and p38 MAPK reached a peak at 6 h after retinal I/R and then decreased gradually. The mRNA levels of Bcl-2 and Bcl-XL significantly increased at 2, 4, and 6 h, peaked at 8 h, and decreased gradually, but remained at a higher level compared with the normal control, which was accompanied by an increase in NF-κB p65 in nuclear extracts. After application of SB203580, the increase in the NF-κB p65 levels in the nucleus induced with I/R was completely abolished, and the mRNA expression of Bcl-2 and Bcl-XL decreased significantly compared with the I/R controls. In addition, NF-κB p65 siRNA inhibited Bcl-2 and Bcl-XL expression. Inhibition of the p38 MAPK-NF-κB pathway (using SB203580 or NF-κB p65 siRNA) increased retinal nucleosome release and decreased the number of ganglion cells. Conclusions These findings provide evidence of crosstalk

  18. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation.

    PubMed

    Zhou, Hong Yu; Shin, Eun Myoung; Guo, Lian Yu; Youn, Ui Joung; Bae, KiHwan; Kang, Sam Sik; Zou, Li Bo; Kim, Yeong Shik

    2008-05-31

    The extracts or constituents from the bark of Magnolia (M.) obovata are known to have many pharmacological activities. 4-Methoxyhonokiol, a neolignan compound isolated from the stem bark of M. obovata, was found to exhibit a potent anti-inflammatory effect in different experimental models. Pretreatment with 4-methoxyhonokiol (i.p.) dose-dependently inhibited the dye leakage and paw swelling in an acetic-acid-induced vascular permeability assay and a carrageenan-induced paw edema assay in mice, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, 4-methoxyhonokiol significantly inhibited plasma nitric oxide (NO) release in mice. To identify the mechanisms underlying this anti-inflammatory action, we investigated the effect of 4-methoxyhonokiol on LPS-induced responses in a murine macrophage cell line, RAW 264.7. The results demonstrated that 4-methoxyhonokiol significantly inhibited LPS-induced NO production as well as the protein and mRNA expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, 4-methoxyhonokiol inhibited LPS-mediated nuclear factor-kappaB (NF-kappaB) activation via the prevention of inhibitor kappaB (IkappaB) phosphorylation and degradation. 4-Methoxyhonokiol had no effect on the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), whereas it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun NH2-terminal kinase (JNK) in a concentration-dependent manner. Taken together, our data suggest that 4-methoxyhonokiol is an active anti-inflammatory constituent of the bark of M. obovata, and that its anti-inflammatory property might be a function of the inhibition of iNOS and COX-2 expression via down-regulation of the JNK and p38 MAP kinase signal pathways and inhibition of NF-kappaB activation in RAW 264.7 macrophages.

  19. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors

    PubMed Central

    Fleming, Joseph D.; Pavesi, Giulio; Benatti, Paolo; Imbriano, Carol; Mantovani, Roberto; Struhl, Kevin

    2013-01-01

    NF-Y, a trimeric transcription factor (TF) composed of two histone-like subunits (NF-YB and NF-YC) and a sequence-specific subunit (NF-YA), binds to the CCAAT motif, a common promoter element. Genome-wide mapping reveals 5000–15,000 NF-Y binding sites depending on the cell type, with the NF-YA and NF-YB subunits binding asymmetrically with respect to the CCAAT motif. Despite being characterized as a proximal promoter TF, only 25% of NF-Y sites map to promoters. A comparable number of NF-Y sites are located at enhancers, many of which are tissue specific, and nearly half of the NF-Y sites are in select subclasses of HERV LTR repeats. Unlike most TFs, NF-Y can access its target DNA motif in inactive (nonmodified) or polycomb-repressed chromatin domains. Unexpectedly, NF-Y extensively colocalizes with FOS in all genomic contexts, and this often occurs in the absence of JUN and the AP-1 motif. NF-Y also coassociates with a select cluster of growth-controlling and oncogenic TFs, consistent with the abundance of CCAAT motifs in the promoters of genes overexpressed in cancer. Interestingly, NF-Y and several growth-controlling TFs bind in a stereo-specific manner, suggesting a mechanism for cooperative action at promoters and enhancers. Our results indicate that NF-Y is not merely a commonly used proximal promoter TF, but rather performs a more diverse set of biological functions, many of which are likely to involve coassociation with FOS. PMID:23595228

  20. Chamomile: an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity.

    PubMed

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-12-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we investigated the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and explored its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β, IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ, the upstream kinase regulating NF-κB/Rel activity, and degradation of inhibitory factor-κB. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent.

  1. Formononetin attenuates osteoclastogenesis via suppressing the RANKL-induced activation of NF-κB, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 signaling pathway.

    PubMed

    Huh, Jeong-Eun; Lee, Wong In; Kang, Jung Won; Nam, Dongwoo; Choi, Do-Young; Park, Dong-Suk; Lee, Sang Hoon; Lee, Jae-Dong

    2014-11-26

    Formononetin (1), a plant-derived phytoestrogen, possesses bone protective properties. To address the potential therapeutic efficacy and mechanism of action of 1, we investigated its antiosteoclastogenic activity and its effect on nuclear factor-kappaB ligand (RANKL)-induced bone-marrow-derived macrophages (BMMs). Compound 1 markedly inhibited RANKL-induced osteoclast differentiation in the absence of cytotoxicity, by regulating the expression of osteoprotegerin (OPG) and RANKL in BMMs and in cocultured osteoblasts. Compound 1 significantly inhibited RANKL-induced tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation normal T cell expressed and secreted (RANTES), and macrophage inflammatory protein-1α (MIP-1α) in a concentration-dependent manner. These effects were accompanied by a decrease in RANKL-induced activation of the NF-κB p65 subunit, degradation of inhibitor κBα (IκBα), induction of NF-κB, and phosphorylation of AKT, extracellular-signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). NF-κB siRNA suppressed AKT, ERK, JNK, and p38 MAPK phosphorylation. Furthermore, 1 significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), key transcription factors during osteoclastogenesis. SP600125, a specific inhibitor of JNK, reduced RANKL-induced expression of phospho-c-Jun, c-Fos, and NFATc1 and inhibited osteoclast formation. These results suggested that 1 acted as an antiresorption agent by blocking osteoclast activation.

  2. Role of IKKs and Transcription Factor NF-kB in Prostate Tumorigenesis

    DTIC Science & Technology

    2006-05-01

    PS1145-induced apoptosis, was more pronounced than in DU145 cells (data not shown). This may potentially explain known higher resistance of PC3 cells...in solid tumors is the subject of many debates. RelA exhibits strong transactivation potential , however, alteration of RelA expression/function in...of p65/RelA-containing NF-κB complexes with the highest transactivation potential among other NF-κB dimers, was specific for PC cell lines and

  3. Dietary Blue Pigments Derived from Genipin, Attenuate Inflammation by Inhibiting LPS-Induced iNOS and COX-2 Expression via the NF-κB Inactivation

    PubMed Central

    Wang, Qiang-Song; Xiang, Yaozu; Cui, Yuan-Lu; Lin, Ke-Ming; Zhang, Xin-Fang

    2012-01-01

    Background and Purpose The edible blue pigments produced by gardenia fruits have been used as value-added colorants for foods in East Asia for 20 years. However, the biological activity of the blue pigments derived from genipin has not been reported. Methodology/Principal Findings The anti-inflammatory effect of blue pigments was studied in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophage in vitro. The secretions of nitric oxide (NO) and prostaglandin E2 (PGE2) were inhibited in concentration-dependent manner by blue pigments. Real-time reverse-transcription polymerase chain reaction (Real-time RT-PCR) analyses demonstrated that the mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor alpha (TNF-α) was inhibited, moreover, ELISA results showed that the productions of IL-6 and TNF-α were inhibited. Cell-based ELISA revealed the COX-2 protein expression was inhibited. The proteome profiler array showed that 12 cytokines and chemokines involved in the inflammatory process were down-regulated by blue pigments. Blue pigments inhibited the nuclear transcription factor kappa-B (NF-κB) activation induced by LPS, and this was associated with decreasing the DNA-binding activity of p65 and p50. Furthermore, blue pigments suppressed the degradation of inhibitor of κB (IκB) α, Inhibitor of NF-κB Kinase (IKK) α, IKK-β, and phosphorylation of IκB-α. The anti-inflammatory effect of blue pigments in vivo was studied in carrageenan-induced paw edema and LPS-injecting ICR mice. Finally, blue pigments significantly inhibited paw swelling and reduced plasma TNF-α and IL-6 production in vivo. Conclusions and Implications These results suggest that the anti-inflammatory properties of blue pigments might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1β, and TNF-α expression through the down-regulation of NF-κB activation, which will provide strong scientific evidence for the

  4. Human papillomavirus type 16 E6 and E 7 proteins alter NF-kB in cultured cervical epithelial cells and inhibition of NF-kB promotes cell growth and immortalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandermark, Erik R.; Deluca, Krysta A.; Gardner, Courtney R.

    2012-03-30

    The NF-kB family of transcription factors regulates important biological functions including cell growth, survival and the immune response. We found that Human Papillomavirus type 16 (HPV-16) E7 and E6/E7 proteins inhibited basal and TNF-alpha-inducible NF-kB activity in human epithelial cells cultured from the cervical transformation zone, the anatomic region where most cervical cancers develop. In contrast, HPV-16 E6 regulated NF-kB in a cell type- and cell growth-dependent manner. NF-kB influenced immortalization of cervical cells by HPV16. Inhibition of NF-kB by an IkB alpha repressor mutant increased colony formation and immortalization by HPV-16. In contrast, activation of NF-kB by constitutive expressionmore » of p65 inhibited proliferation and immortalization. Our results suggest that inhibition of NF-kB by HPV-16 E6/E7 contributes to immortalization of cells from the cervical transformation zone.« less

  5. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway.

    PubMed

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-02-01

    To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.

  6. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi, E-mail: wangyi2004a@126.com; Wang, Xiang; Sun, Minghui

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kBmore » (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF

  7. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    PubMed

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  8. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling.

    PubMed

    Feng, Guijuan; Zheng, Ke; Cao, Tong; Zhang, Jinlong; Lian, Min; Huang, Dan; Wei, Changbo; Gu, Zhifeng; Feng, Xingmei

    2018-02-26

    Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.

  9. Apoptosis induced by β,β-dimethylacrylshikonin is associated with Bcl-2 and NF-κB in human breast carcinoma MCF-7 cells

    PubMed Central

    XIONG, YAO; MA, XIU-YING; ZHANG, ZIRAN; SHAO, ZHEN-JUN; ZHANG, YUAN-YUAN; ZHOU, LI-MING

    2013-01-01

    β,β-dimethylacrylshikonin (DA) is a natural naphthoquinone derivative compound of Lithospermum erythrorhizon with various biological activities. The present study aimed to investigate the inhibitory effects and underlying mechanisms of DA in human breast carcinoma MCF-7 cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that DA inhibited the proliferation of MCF-7 cells in a dose- and time-dependent manner. The half maximal inhibitory concentration of DA with regard to the proliferation of MCF-7 cells was 0.050±0.016 mM. The characteristics of cell apoptosis, including cell shrinkage, nuclear pyknosis and chromatin condensation, were all observed in DA-treated cells. DA decreased the expression levels of Bcl-2 and increased the expression of Bax and caspase-3 compared with those in the control. DA inhibited the activity of the nuclear factor (NF)-κB pathway, by downregulating the expression of the p65 subunit, and inhibited the Iκb phosphorylation. DA inhibits the proliferation of MCF-7 cells in vitro by inducing apoptosis through the downregulation of Bcl-2, upregulation of Bax and partial inactivation of the NF-κB pathway. PMID:24260077

  10. Inhibition of Canonical NF-κB Signaling by a Small Molecule Targeting NEMO-Ubiquitin Interaction

    PubMed Central

    Vincendeau, Michelle; Hadian, Kamyar; Messias, Ana C.; Brenke, Jara K.; Halander, Jenny; Griesbach, Richard; Greczmiel, Ute; Bertossi, Arianna; Stehle, Ralf; Nagel, Daniel; Demski, Katrin; Velvarska, Hana; Niessing, Dierk; Geerlof, Arie; Sattler, Michael; Krappmann, Daniel

    2016-01-01

    The IκB kinase (IKK) complex acts as the gatekeeper of canonical NF-κB signaling, thereby regulating immunity, inflammation and cancer. It consists of the catalytic subunits IKKα and IKKβ and the regulatory subunit NEMO/IKKγ. Here, we show that the ubiquitin binding domain (UBAN) in NEMO is essential for IKK/NF-κB activation in response to TNFα, but not IL-1β stimulation. By screening a natural compound library we identified an anthraquinone derivative that acts as an inhibitor of NEMO-ubiquitin binding (iNUB). Using biochemical and NMR experiments we demonstrate that iNUB binds to NEMOUBAN and competes for interaction with methionine-1-linked linear ubiquitin chains. iNUB inhibited NF-κB activation upon UBAN-dependent TNFα and TCR/CD28, but not UBAN-independent IL-1β stimulation. Moreover, iNUB was selectively killing lymphoma cells that are addicted to chronic B-cell receptor triggered IKK/NF-κB activation. Thus, iNUB disrupts the NEMO-ubiquitin protein-protein interaction interface and thereby inhibits physiological and pathological NF-κB signaling. PMID:26740240

  11. Reciprocal inhibition between miR-26a and NF-κB regulates obesity-related chronic inflammation in chondrocytes.

    PubMed

    Xie, Qingyun; Wei, Meng; Kang, Xia; Liu, Da; Quan, Yi; Pan, Xianming; Liu, Xiling; Liao, Dongfa; Liu, Jinbiao; Zhang, Bo

    2015-04-25

    Obesity is causally linked to osteoarthritis (OA), with the mechanism being not fully elucidated. miRNAs (miRs) are pivotal regulators of various diseases in multiple tissues, including inflammation in the chondrocytes. In the present study, we for the first time identified the expression of miR-26a in mouse chondrocytes. Decreased level of miR-26a was correlated to increased chronic inflammation in the chondrocytes and circulation in obese mouse model. Mechanistically, we demonstrated that miR-26a attenuated saturated free fatty acid-induced activation of NF-κB (p65) and production of proinflammatory cytokines in chondrocytes. Meanwhile, NF-κB (p65) also suppressed miR-26a production by directly binding to a predicted NF-κB binding element in the promoter region of miR-26a. Finally, we observed a negative correlation between NF-κB and miR-26a in human patients with osteoarthritis. Thus, we identified a reciprocal inhibition between miR-26a and NF-κB downstream of non-esterified fatty acid (NEFA) signalling in obesity-related chondrocytes. Our findings provide a potential mechanism linking obesity to cartilage inflammation. © 2015 Authors.

  12. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma.

    PubMed

    Uffort, Deon G; Grimm, Elizabeth A; Ellerhorst, Julie A

    2009-01-01

    Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.

  13. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    PubMed

    Chun, Jin Mi; Nho, Kyoung Jin; Kim, Hyo Seon; Lee, A Yeong; Moon, Byeong Cheol; Kim, Ho Kyoung

    2014-07-10

    Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator's expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways.

  14. PRAS40 promotes NF-κB transcriptional activity through association with p65. | Office of Cancer Genomics

    Cancer.gov

    PRAS40 has been shown to have a crucial role in the repression of mammalian target of rapamycin (mTOR). Nonetheless, PRAS40 appears to have an oncogenic function in cancer cells. Whether PRAS40 mediates signaling independent of mTOR inhibition in cancer cells remains elusive. Here PRAS40 overexpression in lung adenocarcinoma and cutaneous melanoma was significantly correlated to worse prognosis. And we identified an unexpected role for PRAS40 in the regulation of nuclear factor (NF)-κB signaling.

  15. 27 CFR 17.132 - U.S.P., N.F., and H.P.U.S. preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... NONBEVERAGE PRODUCTS Formulas and Samples Approval of Formulas § 17.132 U.S.P., N.F., and H.P.U.S..., formulas for compounds in which alcohol is a prescribed quantitative ingredient, which are stated in the... formulas and may be used as formulas for drawback products without the filing of TTB Form 5154.1. (b...

  16. 27 CFR 17.132 - U.S.P., N.F., and H.P.U.S. preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... NONBEVERAGE PRODUCTS Formulas and Samples Approval of Formulas § 17.132 U.S.P., N.F., and H.P.U.S..., formulas for compounds in which alcohol is a prescribed quantitative ingredient, which are stated in the... formulas and may be used as formulas for drawback products without the filing of TTB Form 5154.1. (b...

  17. 27 CFR 17.132 - U.S.P., N.F., and H.P.U.S. preparations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... NONBEVERAGE PRODUCTS Formulas and Samples Approval of Formulas § 17.132 U.S.P., N.F., and H.P.U.S..., formulas for compounds in which alcohol is a prescribed quantitative ingredient, which are stated in the... formulas and may be used as formulas for drawback products without the filing of TTB Form 5154.1. (b...

  18. 27 CFR 17.132 - U.S.P., N.F., and H.P.U.S. preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... NONBEVERAGE PRODUCTS Formulas and Samples Approval of Formulas § 17.132 U.S.P., N.F., and H.P.U.S..., formulas for compounds in which alcohol is a prescribed quantitative ingredient, which are stated in the... formulas and may be used as formulas for drawback products without the filing of TTB Form 5154.1. (b...

  19. 27 CFR 17.132 - U.S.P., N.F., and H.P.U.S. preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... NONBEVERAGE PRODUCTS Formulas and Samples Approval of Formulas § 17.132 U.S.P., N.F., and H.P.U.S..., formulas for compounds in which alcohol is a prescribed quantitative ingredient, which are stated in the... formulas and may be used as formulas for drawback products without the filing of TTB Form 5154.1. (b...

  20. Vernolide-A, a sesquiterpene lactone from Vernonia cinerea, induces apoptosis in B16F-10 melanoma cells by modulating p53 and caspase-3 gene expressions and regulating NF-κB-mediated bcl-2 activation.

    PubMed

    Pratheeshkumar, Poyil; Kuttan, Girija

    2011-07-01

    In this study, we investigated the effect of vernolide-A on the induction of apoptosis as well as its regulatory effect on the activation of transcription factors in B16F-10 melanoma cells. Treatment of B16F-10 cells with nontoxic concentrations of vernolide-A showed the presence of apoptotic bodies and induced DNA fragmentation in a dose-dependent manner. Cell-cycle analysis and TUNEL assays also confirmed the observation. The proapoptotic genes, p53, Bax, caspase-9, and caspase-3, were upregulated in vernolide-A-treated cells, whereas the antiapoptotic gene, Bcl-2, was downregulated. vernolide-A treatment also showed a downregulation of cyclin D1 expression and upregulated p21 and p27 gene expression in B16F-10 melanoma cells. The study also reveals that vernolide-A treatment could alter the production and expression of proinflammatory cytokines and could inhibit the activation and nuclear translocation of p65, p50, and c-Rel subunits of nuclear factor-κB and other transcription factors, such as c-fos, activated transcription factor-2, and cyclic adenosine monophosphate response-element-binding protein in B16F-10 melanoma cells. These results suggest that vernolide-A induces apoptosis via activation of p53-induced, caspase-3-mediated proapoptotic signaling and suppression of NF-κB-induced, bcl-2-mediated survival signaling.

  1. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling.

    PubMed

    Sahu, Bidya Dhar; Kumar, Jerald Mahesh; Sistla, Ramakrishna

    2016-02-01

    Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)-DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Coxiella burnetii Employs the Dot/Icm Type IV Secretion System to Modulate Host NF-κB/RelA Activation

    PubMed Central

    Mahapatra, Saugata; Gallaher, Brandi; Smith, Sydni Caet; Graham, Joseph G.; Voth, Daniel E.; Shaw, Edward I.

    2016-01-01

    Coxiella burnetii is the causative agent of Q fever and an obligate intracellular pathogen in nature that survives and grows in a parasitophorous vacuole (PV) within eukaryotic host cells. C. burnetii promotes intracellular survival by subverting apoptotic and pro-inflammatory signaling pathways that are typically regulated by nuclear transcription factor-κB (NF-κB). We and others have demonstrated that C. burnetii NMII proteins inhibit expression of pro-inflammatory cytokines and induce expression of anti-apoptotic genes during infection. Here, we demonstrate that C. burnetii promotes intracellular survival by modulating NF-κB subunit p65 (RelA) phosphorylation, and thus activation, in a Type Four B Secretion System (T4BSS)-dependent manner. Immunoblot analysis of RelA phosphorylated at serine-536 demonstrated that C. burnetii increases NF-κB activation via the canonical pathway. However, RelA phosphorylation levels were even higher in infected cells where bacterial protein or mRNA synthesis was inhibited. Importantly, we demonstrate that inhibition of RelA phosphorylation impairs PV formation and C. burnetii growth. We found that a T4BSS-defective mutant (CbΔdotA) elicited phosphorylated RelA levels similar to those of wild type C. burnetii infection treated with Chloramphenicol. Moreover, cells infected with CbΔdotA or wild type C. burnetii treated with Chloramphenicol showed similar levels of GFP-RelA nuclear localization, and significantly increased localization compared to wild type C. burnetii infection. These data indicate that without de novo protein synthesis and a functional T4BSS, C. burnetii is unable to modulate NF-κB activation, which is crucial for optimal intracellular growth. PMID:28066723

  3. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen.

    PubMed

    Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew

    2017-04-11

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.

  4. The protective effect of lidocaine on lipopolysaccharide-induced acute lung injury in rats through NF-κB and p38 MAPK signaling pathway and excessive inflammatory responses.

    PubMed

    Chen, L-J; Ding, Y-B; Ma, P-L; Jiang, S-H; Li, K-Z; Li, A-Z; Li, M-C; Shi, C-X; Du, J; Zhou, H-D

    2018-04-01

    Acute lung injury is a severe disease with a high rate of mortality, leading to more important illness. We aimed at exploring the protective role and potential mechanisms of lidocaine on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Sprague Dawley (SD) rats were randomly assigned to control group receiving 0.9% saline solution, LPS group treated with 4 mg/kg LPS i.p., LPS + lidocaine(treated with 4 mg/kg LPS i.p. followed by giving 1 mg/kg, 3 mg/kg, 5 mg/kg of lidocaine i.v.). Lung specimens and the bronchoalveolar lavage fluid (BALF) were collected for histopathological examination and biochemical analyze 12 h after LPS induction. The cytokines expression of TNF-α, IL-6 and MCP-1 was measured by ELISA. In addition, the malondialdehyde (MDA) content, the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in lung tissues were also detected using ELISA. The protein expressions of p38, p-p38, p65, p-p65 and IκB were analyzed by Western blot. The results indicated that after lidocaine treatment was able to decrease significantly wet-to-dry (W/D) ratio and ameliorate the histopathologic damage. Additionally, total protein content and the number of leukocytes in BALF significantly decreased. ELISA result indicated that the levels of TNF-α, IL-6 and MCP-1 in BALF were markedly suppressed. Meanwhile, the activities of T-AOC and SOD in lung tissues significantly increased, while the content of MDA significantly decreased after treatment with lidocaine. Moreover, Western blot suggested that lidocaine inhibited phosphorylation of NF-κB p65 and p38 MAPK. Therefore, lidocaine could ameliorate the LPS-induced lung injury via NF-κB/p38 MAPK signaling and excessive inflammatory responses, providing a potential for becoming the anti-inflammatory agent against lung injury.

  5. D4F alleviates macrophage-derived foam cell apoptosis by inhibiting the NF-κB-dependent Fas/FasL pathway.

    PubMed

    Tian, Hua; Yao, Shu-Tong; Yang, Na-Na; Ren, Jie; Jiao, Peng; Zhang, Xiangjian; Li, Dong-Xuan; Zhang, Gong-An; Xia, Zhen-Fang; Qin, Shu-Cun

    2017-08-04

    This study was designed to explore the protective effect of D4F, an apolipoprotein A-I mimetic peptide, on nuclear factor-κB (NF-κB)-dependent Fas/Fas ligand (FasL) pathway-mediated apoptosis in macrophages induced by oxidized low-density lipoprotein (ox-LDL). Our results showed that ox-LDL induced apoptosis, NF-κB P65 nuclear translocation and the upregulation of Fas/FasL pathway-related proteins, including Fas, FasL, Fas-associated death domain proteins (FADD), caspase-8 and caspase-3 in RAW264.7 macrophages, whereas silencing of Fas blocked ox-LDL-induced macrophage apoptosis. Furthermore, silencing of P65 attenuated macrophage apoptosis and the upregulation of Fas caused by ox-LDL, whereas P65 expression was not significantly affected by treatment with Fas siRNA. D4F attenuated the reduction of cell viability and the increase in lactate dehydrogenase leakage and apoptosis. Additionally, D4F inhibited ox-LDL-induced P65 nuclear translocation and upregulation of Fas/FasL pathway-related proteins in RAW264.7 cells and in atherosclerotic lesions of apoE -/- mice. However, Jo2, a Fas-activating monoclonal antibody, reversed the inhibitory effect of D4F on ox-LDL-induced cell apoptosis and upregulation of Fas, FasL and FADD. These data indicate that NF-κB mediates Fas/FasL pathway activation and apoptosis in macrophages induced by ox-LDL and that D4F protects macrophages from ox-LDL-induced apoptosis by suppressing the activation of NF-κB and the Fas/FasL pathway.

  6. Dihydroartemisinin inhibits catabolism in rat chondrocytes by activating autophagy via inhibition of the NF-κB pathway

    PubMed Central

    Jiang, Li-Bo; Meng, De-Hua; Lee, Soo-Min; Liu, Shu-Hao; Xu, Qin-Tong; Wang, Yang; Zhang, Jian

    2016-01-01

    Osteoarthritis is a disease with inflammatory and catabolic imbalance in cartilage. Dihydroartemisinin (DHA), a natural and safe anti-malarial agent, has been reported to inhibit inflammation, but its effects on chondrocytes have yet to be elucidated. We investigated the effects of DHA on catabolism in chondrocytes. Viability of SD rats chondrocytes was analyzed. Autophagy levels were determined via expression of autophagic markers LC3 and ATG5, GFP-LC3 analysis, acridine orange staining, and electron microscopy. ATG5 siRNA induced autophagic inhibition. Catabolic gene and chemokine expression was evaluated using qPCR. The NF-κB inhibitor SM7368 and p65 over-expression were used to analyze the role of NF-κB pathway in autophagic activation. A concentration of 1 μM DHA without cytotoxicity increased LC3-II and ATG5 levels as well as autophagosomal numbers in chondrocytes. DHA inhibited TNF-α-induced expression of MMP-3 and -9, ADAMTS5, CCL-2 and -5, and CXCL1, which was reversed by autophagic inhibition. TNF-α-stimulated nuclear translocation and degradation of the p65 and IκBα proteins, respectively, were attenuated in DHA-treated chondrocytes. NF-κB inhibition activated autophagy in TNF-α-treated chondrocytes, but p65 over-expression reduced the autophagic response to DHA. These results indicate that DHA might suppress the levels of catabolic and inflammatory factors in chondrocytes by promoting autophagy via NF-κB pathway inhibition. PMID:27941926

  7. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  8. [The expression and significance of receptor activator of nuclear factor kappaB ligand and osteoprotegerin in periapical cyst and periapical granuloma].

    PubMed

    Zhang, Meihua; Yu, Yunzhi; Miao, Yu

    2012-08-01

    To investigate the expression of receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) in periapical cyst and periapical granuloma by comparison with the expression in the normal periodontal tissue as control, and to identify their functional mechanism in the bone destruction of periapical cyst and granuloma. 20 periapical cyst tissues (cyst group), 20 periapical granuloma tissues (granuloma group), and 20 normal periodontal tissues (control group) were collected respectively. Immunohistochemical technology was performed to detect the expression of RANKL and OPG in above three groups. In cyst group, granuloma group and control group, the expression of RANKL were 75.00 +/- 7.54, 68.40 +/- 6.74 and 29.40 +/- 2.46, respectively. The expression of OPG were 38.10 +/- 7.09, 47.65 +/- 13.85 and 58.60 +/- 5.88, respectively. The differences among the three groups were statistically significant (P<0.05). RANKL and OPG in cysts group were negatively correlated (r=-0.56, P=0.01) and were not correlated with granuloma and control group (P>0.05). RANKL and OPG play roles in the bone absorption of periapical disease. In periapical disease, abnormal expression of RANKL and OPG are detected, RANKL significantly increase, OPG decrease, bone absorption accelerate and osteolytic lesion are observed. In periapical cyst, the bone absorption is more active compared with periapical granuloma.

  9. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension.

    PubMed

    Huang, Xiaodong; Wang, Yanchun; Ren, Kuang

    2015-08-01

    The paraventricular nucleus (PVN) has been shown to play a critical role in regulating blood pressure and sympathetic activity in obesity hypertension (OH). Salusin-β is a bioactive peptide with potential roles in mediating cardiovascular activity. The study was designed to test the hypothesis that salusin-β in the PVN can modulate sympathetic activity and blood pressure in OH. Male Sprague-Dawley rats were used to induce OH by a 12-week feeding of a high-fat diet (42% kcal as fat). Microinjection of salusin-β into the PVN increased the renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) in a dose-dependent manner, whereas salusin-β antibody elicited significant decreases in RSNA, MAP and HR, and abolished the effects of salusin-β only in the OH rats. As expected, the OH rats had a higher norepinephrine level, which was further increased by salusin-β. Furthermore, salusin-β in the PVN accelerated the nuclear translocation of the p65 subunit of nuclear factor kappa B (NF-KB) and the degradation of IKB-α (an endogenous inhibitor of NF-KB). Pretreatment with pyrrolidine dithiocarbamate (an exogenous inhibitor of NF-KB) decreased RSNA, MAP and HR, and abolished the effects of salusin-β in the PVN in the OH rats. We concluded that salusin-β in the PVN markedly increased sympathetic outflow and blood pressure in diet-induced OH rats via NF-κB signaling.

  10. Tangeretin exerts anti-neuroinflammatory effects via NF-κB modulation in lipopolysaccharide-stimulated microglial cells.

    PubMed

    Shu, Zunpeng; Yang, Bingyou; Zhao, Hong; Xu, Bingqing; Jiao, Wenjuan; Wang, Qiuhong; Wang, Zhibin; Kuang, Haixue

    2014-04-01

    Increasing evidence suggests that tangeretin, a flavonoid from citrus fruit peels, exhibits anti-inflammatory properties and neuroprotective effects in animal disease models. However, the underlying molecular mechanisms are not clearly understood. In this study, we investigated whether tangeretin suppresses excessive microglial activation implicated in the resulting neurotoxicity following stimulation with lipopolysaccharide (LPS) in primary rat microglia and BV-2 microglial cell culture models. The results showed that tangeretin decreased the production of nitric oxide (NO), prostaglandin E₂ (PGE₂), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6), in a dose-dependent manner. Additionally, it inhibited the LPS-induced expression of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) (examined at the protein level) as well as TNF-α, IL-1β, and IL-6 (examined at the mRNA level) in microglial cells. To explore the possible mechanisms underlying these inhibitions by tangeretin, we examined the mitogen-activated protein kinase (MAPK) protein levels and the NF-κB protein signaling pathway. Tangeretin clearly inhibited LPS-induced phosphorylation of ERK, N-terminal Kinase (JNK), and p38. In addition, tangeretin markedly reduced LPS-stimulated phosphorylation of IκB-α and IKK-β, as well as the nuclear translocation of the p65 subunit of pro-inflammatory transcription factor NF-κB. Taken together, these results support further exploration of the therapeutic potential and molecular mechanism of tangeretin in relation to neuroinflammation and neurodegenerative diseases accompanied by microglial activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Functional conservation of rice OsNF-YB/YC and Arabidopsis AtNF-YB/YC proteins in the regulation of flowering time.

    PubMed

    Hwang, Yoon-Hyung; Kim, Soon-Kap; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-04-01

    Rice Os NF - YB and Os NF - YC complement the late flowering phenotype of Arabidopsis nf - yb double and nf - yc triple mutants, respectively. In addition, OsNF-YB and OsNF-YC interact with AtNF-YC and AtNF-YB, respectively. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors play important roles in plant development and abiotic stress. In Arabidopsis thaliana, two NF-YB (AtNF-YB2 and AtNF-YB3) and five NF-YC (AtNF-YC1, AtNF-YC2, AtNF-YC3, AtNF-YC4, and AtNF-YC9) genes regulate photoperiodic flowering by interacting with other AtNF-Y subunit proteins. Three rice NF-YB (OsNF-YB8, OsNF-YB10, and OsNF-YB11) and five rice OsNF-YC (OsNF-YC1, OsNF-YC2, OsNF-YC4, OsNF-YC6, and OsNF-YC7) genes are clustered with two AtNF-YB and five AtNF-YC genes, respectively. To investigate the functional conservation of these NF-YB and NF-YC genes in rice and Arabidopsis, we analyzed the flowering phenotypes of transgenic plants overexpressing the respective OsNF-YB and OsNF-YC genes in Arabidopsis mutants. Overexpression of OsNF-YB8/10/11 and OsNF-YC2 complemented the late flowering phenotype of Arabidopsis nf-yb2 nf-yb3 and nf-yc3 nf-yc4 nf-yc9 mutants, respectively. The rescued phenotype of 35S::OsNF-YC2 nf-yc3 nf-yc4 nf-yc9 plants was attributed to the upregulation of FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). In vitro and in planta protein-protein analyses revealed that OsNF-YB8/10/11 and OsNF-YC1/2/4/6/7 interact with AtNF-YC3/4/9 and AtNF-YB2/3, respectively. Our data indicate that some OsNF-YB and OsNF-YC genes are functional equivalents of AtNF-YB2/3 and AtNF-YC3/4/9 genes, respectively, and suggest functional conservation of Arabidopsis and rice NF-Y genes in the control of flowering time.

  12. Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice.

    PubMed

    Hsu, Cheng-Chin; Yang, Hui-Ting; Ho, Jing-Jing; Yin, Mei-Chin; Hsu, Jen-Ying

    2016-03-01

    The anti-glycative and anti-oxidative effects from Houttuynia cordata leaves aqueous extract (HCAE) in heart and kidney of diabetic mice were examined. HCAE, at 1 or 2 %, was supplied in drinking water for 8 weeks. Plasma glucose and blood urea nitrogen (BUN) levels and creatine phosphokinase (CPK) activity were measured. The production of oxidative and inflammatory factors was determined. Activity and protein expression of associated enzymes or regulators were analyzed. HCAE intake at both doses lowered plasma glucose and BUN levels, and CPK activity and also restored creatinine clearance rate in diabetic mice. HCAE intake, only at 2 %, retained plasma insulin levels (P < 0.05). HCAE reduced reactive oxygen species, protein carbonyl, interleukin-6, tumor necrosis factor-alpha, N (ε) -(carboxymethyl)-lysine, pentosidine and fructose levels, and reserved glutathione content in heart and kidney of diabetic mice (P < 0.05). Diabetes enhanced aldose reductase (AR) activity and protein expression in heart and kidney (P < 0.05). HCAE intake at both doses decreased renal AR activity and protein expression, but only at 2 % lowered cardiac AR activity and protein expression (P < 0.05). Diabetes increased protein expression of RAGE, p47(phox) and gp91(phox), nuclear factor kappa-B (NF-κB) p50, NF-κB p65 and mitogen-activated protein kinase in heart and kidney (P < 0.05). HCAE intake only at 2 % limited RAGE expression, but at 1 and 2 % downregulated p47(phox), NF-κB p65 and p-p38 expression in these organs (P < 0.05). These findings suggest that Houttuynia cordata leaves aqueous extract could ameliorate cardiac and renal injury under diabetic condition.

  13. Cepharanthine attenuates lipopolysaccharide-induced mice mastitis by suppressing the NF-κB signaling pathway.

    PubMed

    Ershun, Zhou; Yunhe, Fu; Zhengkai, Wei; Yongguo, Cao; Naisheng, Zhang; Zhengtao, Yang

    2014-04-01

    Cepharanthine (CEP), a biscoclaurine alkaloid isolated from Stephania cepharantha Hayata, has been reported to have potent anti-inflammatory properties. However, the anti-inflammatory effects of CEP on a mouse model of lipopolysaccharide (LPS)-induced mastitis and its underlying molecular mechanisms remain to be elucidated. The purpose of the present study was to investigate the effects of CEP on LPS-induced mouse mastitis. The mouse model of mastitis was induced by inoculation of LPS through the canals of the mammary gland. CEP was administered intraperitoneally at 1 h before and 12 h after induction of LPS. The results show that CEP significantly attenuates the infiltration of neutrophils, suppresses myeloperoxidase activity, and reduces the levels of TNF-α, IL-1β, and IL-6 in LPS-induced mouse mastitis. Furthermore, CEP inhibited the phosphorylation of NF-κB p65 subunit and the degradation of its inhibitor IκBα. All the results suggest that CEP exerts potent anti-inflammatory effects on LPS-induced mouse mastitis. Accordingly, CEP might be a potential therapeutic agent for mastitis.

  14. Effusanin E suppresses nasopharyngeal carcinoma cell growth by inhibiting NF-κB and COX-2 signaling.

    PubMed

    Zhuang, Mingzhu; Zhao, Mouming; Qiu, Huijuan; Shi, Dingbo; Wang, Jingshu; Tian, Yun; Lin, Lianzhu; Deng, Wuguo

    2014-01-01

    Rabdosia serra is well known for its antibacterial, anti-inflammatory and antitumor activities, but no information has been available for the active compounds derived from this plant in inhibiting human nasopharyngeal carcinoma (NPC) cell growth. In this study, we isolated and purified a natural diterpenoid from Rabdosia serra and identified its chemical structure as effusanin E and elucidated its underlying mechanism of action in inhibiting NPC cell growth. Effusanin E significantly inhibited cell proliferation and induced apoptosis in NPC cells. Effusanin E also induced the cleavage of PARP, caspase-3 and -9 proteins and inhibited the nuclear translocation of p65 NF-κB proteins. Moreover, effusanin E abrogated the binding of NF-κB to the COX-2 promoter, thereby inhibiting the expression and promoter activity of COX-2. Pretreatment with a COX-2 or NF-κB-selective inhibitor (celecoxib or ammonium pyrrolidinedithiocarbamate) had an additive effect on the effusanin E-mediated inhibition of proliferation, while pretreatment with an activator of NF-κB/COX-2 (lipopolysaccharides) abrogated the effusanin E-mediated inhibition of proliferation. Effusanin E also significantly suppressed tumor growth in a xenograft mouse model without obvious toxicity, furthermore, the expression of p50 NF-κB and COX-2 were down-regulated in the tumors of nude mice. These data suggest that effusanin E suppresses p50/p65 proteins to down-regulate COX-2 expression, thereby inhibiting NPC cell growth. Our findings provide new insights into exploring effusanin E as a potential therapeutic compound for the treatment of human nasopharyngeal carcinoma.

  15. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} induces renal epithelial cell death through NF-{kappa}B-dependent and MAPK-independent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Dae Sik; Kwon, Chae Hwa; Park, Ji Yeon

    2006-11-01

    The peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) ligand 15d-PGJ{sub 2} induces cell death in renal proximal tubular cells. However, the underlying molecular mechanism(s) remains unidentified. The present study was undertaken to examine the roles of reactive oxygen species (ROS), mitogen-activated protein kinase, and NF-{kappa}B in opossum kidney (OK) cell death induced by 15d-PGJ{sub 2}. Treatment of OK cells with 15d-PGJ{sub 2} resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. 15d-PGJ{sub 2} increased ROS production and the effect was inhibited by catalase and N-acetylcysteine. The 15d-PGJ{sub 2}-induced cell death was also prevented by these antioxidants, suggesting thatmore » the cell death was associated with ROS generation. The PPAR{gamma} antagonist GW9662 did not prevent the 15d-PGJ{sub 2}-induced cell death. 15d-PGJ{sub 2} caused a transient activation of extracellular signal-regulated kinase (ERK). However, inhibitors (PD98059 and U0126) of MEK, an ERK upstream kinase, did not alter the 15d-PGJ{sub 2}-induced cell death. Transfection with constitutively active MEK and dominant-negative MEK had no effect on the cell death. 15d-PGJ{sub 2} inhibited the NF-{kappa}B transcriptional activity, which was accompanied by an inhibition of nuclear translocation of the NF-{kappa}B subunit p65 and impairment in DNA binding. Inhibition of NF-{kappa}B with a NF-{kappa}B specific inhibitor pyrrolidinecarbodithioate and transfection with I{kappa}B{alpha} (S32A/36A) caused cell death. These results suggest that the 5d-PGJ{sub 2}-induced OK cell death was associated with ROS production and NF-{kappa}B inhibition, but not with MAPK activation.« less

  16. Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac

    PubMed Central

    Tao, Min; Liu, Lu; Shen, Meng; Zhi, Qiaoming; Gong, Fei-Ran; Zhou, Binhua P.; Wu, Yadi; Liu, Haiyan; Chen, Kai; Shen, Bairong; Wu, Meng-Yao; Shou, Liu-Mei; Li, Wei

    2016-01-01

    ABSTRACT Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway–dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB–dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway–dependent PP2Ac repression. PMID:26761431

  17. Sedanolide induces autophagy through the PI3K, p53 and NF-κB signaling pathways in human liver cancer cells.

    PubMed

    Hsieh, Shu-Ling; Chen, Chi-Tsai; Wang, Jyh-Jye; Kuo, Yu-Hao; Li, Chien-Chun; Hsieh, Lan-Chi; Wu, Chih-Chung

    2015-12-01

    Sedanolide (SN), a phthalide-like compound from celery seed oil, possesses antioxidant effects. However, the effect of SN on cell death in human liver cancer cells has yet to be determined. In this study, cell viability determination, monodansylcadaverine (MDC) fluorescent staining and immunoblot analysis were performed to determine autophagy induction and autophagy-induced protein expression changes via molecular examination after human liver cancer (J5) cells were treated with SN. Our studies demonstrate that SN suppressed J5 cell viability by inducing autophagy. Phosphoinositide 3-kinase (PI3K)-I, mammalian target of rapamycin (mTOR) and Akt protein levels decreased, whereas PI3K-III, LC3-II and Beclin-1 protein levels increased following SN treatment in J5 cells. In addition, SN treatment upregulated nuclear p53 and damage-regulated autophagy modulator (DRAM) and downregulated cytosolic p53 and Tp53-induced glycolysis and apoptosis regulator (TIGAR) expression in J5 cells. Furthermore, the cytosolic phosphorylation of inhibitor of kappa B (IκB) and nuclear p65 and the DNA-binding activity of NF-κB increased after SN treatment. These results suggest that SN induces J5 cell autophagy by regulating PI3K, p53 and NF-κB autophagy-associated signaling pathways in J5 cells.

  18. TXNIP/TRX/NF-κB and MAPK/NF-κB pathways involved in the cardiotoxicity induced by Venenum Bufonis in rats.

    PubMed

    Bi, Qi-Rui; Hou, Jin-Jun; Qi, Peng; Ma, Chun-Hua; Feng, Rui-Hong; Yan, Bing-Peng; Wang, Jian-Wei; Shi, Xiao-Jian; Zheng, Yuan-Yuan; Wu, Wan-Ying; Guo, De-An

    2016-03-10

    Venenum Bufonis (VB) is a widely used traditional medicine with serious cardiotoxic effects. The inflammatory response has been studied to clarify the mechanism of the cardiotoxicity induced by VB for the first time. In the present study, Sprague Dawley (SD) rats, were administered VB (100, 200, and 400 mg/kg) intragastrically, experienced disturbed ECGs (lowered heart rate and elevated ST-segment), increased levels of serum indicators (creatine kinase (CK), creatine kinase isoenzyme-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST)) and serum interleukin (IL-6, IL-1β, TNF-α) at 2 h, 4 h, 6 h, 8 h, 24 h, and 48 h, which reflected that an inflammatory response, together with cardiotoxicity, were involved in VB-treated rats. In addition, the elevated serum level of MDA and the down-regulated SOD, CAT, GSH, and GPx levels indicated the appearance of oxidative stress in the VB-treated group. Furthermore, based on the enhanced expression levels of TXNIP, p-NF-κBp65, p-IκBα, p-IKKα, p-IKKβ, p-ERK, p-JNK, and p-P38 and the obvious myocardial degeneration, it is proposed that VB-induced cardiotoxicity may promote an inflammatory response through the TXNIP/TRX/NF-κB and MAPK/NF-κB pathways. The observed inflammatory mechanism induced by VB may provide a theoretical reference for the toxic effects and clinical application of VB.

  19. STAT3/NF-κB interactions determine the level of haptoglobin expression in male rats exposed to dietary restriction and/or acute phase stimuli.

    PubMed

    Uskoković, Aleksandra; Dinić, Svetlana; Mihailović, Mirjana; Grdović, Nevena; Arambašić, Jelena; Vidaković, Melita; Bogojević, Desanka; Ivanović-Matić, Svetlana; Martinović, Vesna; Petrović, Miodrag; Poznanović, Goran; Grigorov, Ilijana

    2012-01-01

    Haptoglobin is a constitutively expressed protein which is predominantly synthesized in the liver. During the acute-phase (AP) response haptoglobin is upregulated along with other AP proteins. Its upregulation during the AP response is mediated by cis-trans interactions between the hormone-responsive element (HRE) residing in the haptoglobin gene and inducible transcription factors STAT3 and C/EBP β. In male rats that have been subjected to chronic 50% dietary restriction (DR), the basal haptoglobin serum level is decreased. The aim of this study was to characterize the trans-acting factor(s) responsible for the reduction of haptoglobin expression in male rats subjected to 50% DR for 6 weeks. Protein-DNA interactions between C/EBP and STAT families of transcription factors and the HRE region of the haptoglobin gene were examined in livers of male rats subjected to DR, as well as during the AP response that was induced by turpentine administration. In DR rats, we observed associations between the HRE and C/EBPα/β, STAT5b and NF-κB p50, and the absence of interactions between STAT3 and NF-kB p65. Subsequent induction of the AP response in DR rats by turpentine administration elicited a normal, almost 2-fold increase in the serum haptoglobin level that was accompanied by HRE-binding of C/EBPβ, STAT3/5b and NF-kB p65/p50, and the establishment of interaction between STAT3 and NF-κB p65. These results suggest that STAT3 and NF-κB p65 crosstalk plays a central role while C/EBPβ acquires an accessory role in establishing the level of haptoglobin gene expression in male rats exposed to DR and AP stimuli.

  20. Pre-S2 Start Codon Mutation of Hepatitis B Virus Subgenotype B3 Effects on NF-κB Expression and Activation in Huh7 Cell Lines.

    PubMed

    Siburian, Marlinang Diarta; Suriapranata, Ivet Marita; Wanandi, Septelia Inawati

    2018-03-19

    A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.

  1. Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients

    PubMed Central

    Rhoads, Mary G.; Kandarian, Susan C.; Pacelli, Fabio; Doglietto, Giovan Battista; Bossola, Maurizio

    2011-01-01

    The mechanisms eliciting cancer cachexia are not well understood. Wasting of skeletal muscle is problematic because it is responsible for the clinical deterioration in cancer patients and the ability to tolerate cancer treatment. Animal studies suggest that nuclear factor of kappa B (NF-κB) signaling is important in the progression of muscle wasting due to several types of tumors. However, there are no published studies in humans on a role for NF-κB in cancer cachexia. In this project we studied the rectus abdominis muscle from patients with gastric tumors (n=14) and age matched control subjects (n=10) for markers of NF-κB activation. Nuclear levels of p65, p50, and Bcl-3 were the same in both groups of subjects. However, phospho-p65 was elevated by 25% in muscles of cancer patients. In addition, expression of the inhibitor of kappa B alpha (IκBα), was decreased by 25% in cancer patients. Decreased expression of IκBα reflects its degradation by one of the IκBα kinases and is a marker of NF-κB activation. Interestingly, there was no correlation between the stage of cancer and the extent of IκBα decrease, nor was there a correlation between the degree of cachexia and decreased IκBα levels. This suggests that the activation of NF-κB is an early and sustained event in gastric cancer. The work implicates the NF-κB signaling in the initiation and progression of cancer cachexia in humans and demonstrates the need for additional study of this pathway; it also recommends NF-κB signaling as a therapeutic target for the amelioration of cachexia as has been suggested from rodent studies. PMID:19857958

  2. Overexpression of microRNA-125b inhibits human acute myeloid leukemia cells invasion, proliferation and promotes cells apoptosis by targeting NF-κB signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Tang, Ping; Chen, Yanli

    microRNA-125b has been reported to play an novel biological function in the progression and development of several kinds of leukemia. However, the detail role of miR-125b in acute myeloid leukemia (AML) is remains largely unknown. The present study aimed to investigate the biological role of miR-125b in AML and the potential molecular mechanism involved in this process. Our results showed that overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis in a dose-dependent manner, while the miR-NC did not show the same effect. In addition, miR-125b induced AML cells G2/M cell cycle arrest in vitro. Overexpression of miR-125bmore » resulted in a significant decrease of the expression of p-IκB-α and inhibition of IκB-α degradation, and the nuclear translocation of NF-κB subunit p65 was abrogated by miR-125b simutaneously. To further verify that miR-125b targeted NF-κB signaling pathway, the NF-κB-regulated downstream genes that were associated with cell cycle arrest and apoptosis was also determined. The results showed that, miR-125b also affect NF-κB-regulated genes expression involved in cell cycle arrest and apoptosis. In conclusion, the present work certificates that miR-125b can significantly inhibit human AML cells invasion, proliferation and promotes cells apoptosis by targeting the NF-κB signaling pathway, and thus it can be viewed as an promising therapeutic target for AML. - Highlights: • Overexpression of miR-125b suppressed AML cells proliferation, invasion and promotes cells apoptosis. • miR-125b induced AML cells G2/M cell cycle arrest in vitro. • miR-125b suppressed AML cells tumorigenicity and promoted cells apoptosis by targeting NF-κB pathway.« less

  3. Transdermal anti-nuclear kappaB siRNA therapy for atopic dermatitis using a combination of two kinds of functional oligopeptide.

    PubMed

    Ibaraki, Hisako; Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki; Seta, Yasuo

    2018-05-05

    Nucleic acid-based targeting of nuclear factor kappaB (NF-κB) is gaining attention as a treatment option for skin diseases like atopic dermatitis (AD). Transdermal administration improves patient quality of life because of non-invasive; however, siRNA delivery into the skin can be challenging owing to the barrier of tight junctions in the granular layer. Therefore, we aimed to develop a delivery system of siRNA for topical skin application using functional peptides. We previously reported that combined treatment with a cytoplasm-responsive stearylated-arginine-rich peptide (STR-CH 2 R 4 H 2 C) and a tight junction opening peptide (AT1002) showed high siRNA permeability in the skin of AD-induced and normal mice. Here, we used murine macrophage RAW264.7 cells to examine siRNA permeation and the therapeutic effect of anti-NF-κB (RelA) siRNA (siRelA) complexed with STR-CH 2 R 4 H 2 C and AT1002 for AD-induced mice. We showed that significantly higher siRNA cellular uptake occurs after this treatment as well as decreased TNF-α and IL-6 expression. Additionally, we showed that effective siRNA transdermal delivery occurs with the suppression of the tight junction protein ZO-1. Moreover, topical skin application of siRelA with STR-CH 2 R 4 H 2 C and AT1002 improved AD-like symptoms in model mice. Thus, the combined treatment of STR-CH 2 R 4 H 2 C and AT1002 could serve as an effective transdermal siRNA therapeutic system for AD. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. IKK is a therapeutic target in KRAS-Induced lung cancer with disrupted p53 activity.

    PubMed

    Bassères, Daniela S; Ebbs, Aaron; Cogswell, Patricia C; Baldwin, Albert S

    2014-04-01

    Activating mutations in KRAS are prevalent in cancer, but therapies targeted to oncogenic RAS have been ineffective to date. These results argue that targeting downstream effectors of RAS will be an alternative route for blocking RAS-driven oncogenic pathways. We and others have shown that oncogenic RAS activates the NF-κB transcription factor pathway and that KRAS-induced lung tumorigenesis is suppressed by expression of a degradation-resistant form of the IκBα inhibitor or by genetic deletion of IKKβ or the RELA/p65 subunit of NF-κB. Here, genetic and pharmacological approaches were utilized to inactivate IKK in human primary lung epithelial cells transformed by KRAS, as well as KRAS mutant lung cancer cell lines. Administration of the highly specific IKKβ inhibitor Compound A (CmpdA) led to NF-κB inhibition in different KRAS mutant lung cells and siRNA-mediated knockdown of IKKα or IKKβ reduced activity of the NF-κB canonical pathway. Next, we determined that both IKKα and IKKβ contribute to oncogenic properties of KRAS mutant lung cells, particularly when p53 activity is disrupted. Based on these results, CmpdA was tested for potential therapeutic intervention in the Kras-induced lung cancer mouse model (LSL-Kras (G12D)) combined with loss of p53 (LSL-Kras (G12D)/p53 (fl/fl)). CmpdA treatment was well tolerated and mice treated with this IKKβ inhibitor presented smaller and lower grade tumors than mice treated with placebo. Additionally, IKKβ inhibition reduced inflammation and angiogenesis. These results support the concept of targeting IKK as a therapeutic approach for oncogenic RAS-driven tumors with altered p53 activity.

  5. Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit.

    PubMed

    Ligat, G; Jacquet, C; Chou, S; Couvreux, A; Alain, S; Hantz, S

    2017-08-18

    The human cytomegalovirus (HCMV) terminase complex consists of several components acting together to cleave viral DNA into unit length genomes and translocate them into capsids, a critical process in the production of infectious virions subsequent to DNA replication. Previous studies suggest that the carboxyl-terminal portion of the pUL56 subunit interacts with the pUL89 subunit. However, the specific interacting residues of pUL56 remain unknown. We identified a conserved sequence in the C-terminal moiety of pUL56 ( 671 WMVVKYMGFF 680 ). Overrepresentation of conserved aromatic amino acids through 20 herpesviruses homologues of pUL56 suggests an involvement of this short peptide into the interaction between the larger pUL56 terminase subunit and the smaller pUL89 subunit. Use of Alpha technology highlighted an interaction between pUL56 and pUL89 driven through the peptide 671 WMVVKYMGFF 680 . A deletion of these residues blocks viral replication. We hypothesize that it is the consequence of the disruption of the pUL56-pUL89 interaction. These results show that this motif is essential for HCMV replication and could be a target for development of new small antiviral drugs or peptidomimetics.

  6. Chamomile, an anti-inflammatory agent inhibits inducible nitric oxide synthase expression by blocking RelA/p65 activity

    PubMed Central

    Bhaskaran, Natarajan; Shukla, Sanjeev; Srivastava, Janmejai K; Gupta, Sanjay

    2010-01-01

    Chamomile has long been used in traditional medicine for the treatment of inflammation-related disorders. In this study we aimed to investigate the inhibitory effects of chamomile on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression, and to explore its potential anti-inflammatory mechanisms using RAW 264.7 macrophages. Chamomile treatment inhibited LPS-induced NO production and significantly blocked IL-1β , IL-6 and TNFα-induced NO levels in RAW 264.7 macrophages. Chamomile caused reduction in LPS-induced iNOS mRNA and protein expression. In RAW 264.7 macrophages, LPS-induced DNA binding activity of RelA/p65 was significantly inhibited by chamomile, an effect that was mediated through the inhibition of IKKβ , the upstream kinase regulating NF-κ B/Rel activity, and degradation of inhibitory factor-κ B. These results demonstrate that chamomile inhibits NO production and iNOS gene expression by inhibiting RelA/p65 activation and supports the utilization of chamomile as an effective anti-inflammatory agent. PMID:21042790

  7. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  8. Advanced oxidation protein products induce inflammatory response in fibroblast-like synoviocytes through NADPH oxidase -dependent activation of NF-κB.

    PubMed

    Zheng, Shuai; Zhong, Zhao-Ming; Qin, Shuai; Chen, Guo-Xian; Wu, Qian; Zeng, Ji-Huan; Ye, Wen-Bin; Li, Wei; Yuan, Kai; Yao, Ling; Chen, Jian-Ting

    2013-01-01

    Advanced oxidation protein products (AOPPs), a marker of oxidative stress, are prevalent in many kinds of disorders. Rheumatoid arthritis (RA), mainly resulting from the dysfunction of fibroblast-like synoviocytes (FLSs), is related to oxidative stress. Although the increased levels of AOPPs in RA patients were reported, the effect of AOPPs on FLSs function still remains unclear. Therefore, our study aims to investigate whether AOPPs have an effect on the inflammatory response of FLSs in vitro. FLSs obtained from both knees of rats were treated with or without AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. The mRNA and protein expression of tumor necrosis factor (TNF)-α, interleukin(IL)-1β, matrix metalloproteinases(MMP)-3, MMP-13 and vascular endothelial growth factor (VEGF) were measured by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA), respectively. Reactive oxygen species (ROS) generation was detected by fluorescent microscope and fluorescence microplate reader. Immunoprecipitation, Co-Immunoprecipitation and western blot were performed to examine the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and nuclear factor kappa B (NF-κB). Exposure of FLSs to AOPPs upregulated the mRNA and protein expression of TNF-α, IL-1β, MMP-3, MMP-13 and VEGF in a concentration dependent manner. AOPPs treatment triggered ROS production in FLSs, which was significantly abolished by ROS scavenger N-acetyl-L-cysteine (NAC), superoxide dismutase (SOD), NADPH oxidase inhibitors diphenyleneiodonium (DPI) and apocynin. Challenged AOPPs induced phosphorylation of p47(phox), triggered an interaction between p47(phox), p22(phox) and gp91(phox), and significantly upregulated expression of NADPH oxidase subunits p47(phox), p22(phox) and gp91(phox). IκB degradation and nuclear translocation of NF-κB p65 induced by AOPPs were significantly blocked by SOD, NAC, DPI and apocynin. These data indicate that

  9. Modulation of NF-κB activation by resveratrol in LPS treated human intestinal cells results in downregulation of PGE2 production and COX-2 expression.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Cavallo, Pasqua; Dragone, Teresa; Carofiglio, Vito; Panaro, Maria Antonietta

    2012-10-01

    Resveratrol is a natural phytoalexin present in a variety of plant species, such as grapes and red wine, that is well known for its anti-inflammatory effects. In addition, a cancer chemotherapeutic activity of resveratrol has been described. Here we evaluated the effect of resveratrol on COX-2 and prostaglandin E(2) production in human intestinal cells Caco-2 cells treated with lipopolysaccharide (LPS). Resveratrol concentration-dependently inhibited the expression of COX-2 mRNA in the LPS-treated cells, as well as protein expression, resulting in a decreased production of PGE(2). In order to investigate the mechanisms through which resveratrol exhibited these anti-inflammatory effects, we examined the activation of IκB in LPS-stimulated intestinal cells. Results demonstrated that resveratrol inhibited the translocation of NF-κB p65 subunits from the cytosol to the nucleus, which correlated with its inhibitory effects on IκBα phosphorylation and degradation. These results suggest that the down-regulation of COX-2 and PGE(2) by resveratrol may be related to NF-κB inhibition through the negative regulation of IKK phosphorylation in intestinal cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Lactobacillus acidophilus Induces Cytokine and Chemokine Production via NF-κB and p38 Mitogen-Activated Protein Kinase Signaling Pathways in Intestinal Epithelial Cells

    PubMed Central

    Lü, Xuena; Man, Chaoxin; Han, Linlin; Shan, Yi; Qu, Xingguang; Liu, Ying; Yang, Shiqin; Xue, Yuqing; Zhang, Yinghua

    2012-01-01

    Intestinal epithelial cells can respond to certain bacteria by producing an array of cytokines and chemokines which are associated with host immune responses. Lactobacillus acidophilus NCFM is a characterized probiotic, originally isolated from human feces. This study aimed to test the ability of L. acidophilus NCFM to stimulate cytokine and chemokine production in intestinal epithelial cells and to elucidate the mechanisms involved in their upregulation. In experiments using intestinal epithelial cell lines and mouse models, we observed that L. acidophilus NCFM could rapidly but transiently upregulate a number of effector genes encoding cytokines and chemokines such as interleukin 1α (IL-1α), IL-1β, CCL2, and CCL20 and that cytokines showed lower expression levels with L. acidophilus NCFM treatment than chemokines. Moreover, L. acidophilus NCFM could activate a pathogen-associated molecular pattern receptor, Toll-like receptor 2 (TLR2), in intestinal epithelial cell lines. The phosphorylation of NF-κB p65 and p38 mitogen-activated protein kinase (MAPK) in intestinal epithelial cell lines was also enhanced by L. acidophilus NCFM. Furthermore, inhibitors of NF-κB (pyrrolidine dithiocarbamate [PDTC]) and p38 MAPK (SB203580) significantly reduced cytokine and chemokine production in the intestinal epithelial cell lines stimulated by L. acidophilus NCFM, suggesting that both NF-κB and p38 MAPK signaling pathways were important for the production of cytokines and chemokines induced by L. acidophilus NCFM. PMID:22357649

  11. [Relationship between the expression levels of PAPP-A metalloproteinase and growth and transcriptional factors in endometrial cancer].

    PubMed

    Iunusova, N V; Spirina, L V; Kondakova, L A; Kolomiets, A L; Chernyshova, A L; Koval', V D; Nedosekov, V V; Savenkova, O V

    2013-01-01

    We have examined for the first time the relationship between the expression of PAPP-A metalloproteinase and insulin-like growth factors (IGF-I, IGF-II, VEGF) and transcription factors (NF-kappaB, HIF-1) playing an important role in pathogenesis of cancer. We also demonstrated a positive association between the level of PAPP-A metalloproteinase and the level of growth (VEGF and IGF-I) and transcription factors (NF-kappaB p50, NF-kappaB p65, HIF-1alpha). The current findings suggest an important role of PAPP-A in regulation of bioavailability of IGF-I, VEGF, activated forms of NF-kappaB, and alpha-subunits of HIF-1 in endometrial tumors.

  12. Rosiglitazone, a Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, Attenuates Inflammation Via NF-κB Inhibition in Lipopolysaccharide-Induced Peritonitis.

    PubMed

    Zhang, Yun-Fang; Zou, Xun-Liang; Wu, Jun; Yu, Xue-Qing; Yang, Xiao

    2015-12-01

    We assessed the anti-inflammatory effect of peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, in a lipopolysaccharide (LPS)-induced peritonitis rat model. LPS was intraperitoneally injected into rats to establish peritonitis model. Male Sprague-Dawley (SD) rats were assigned to normal saline (the solvent of LPS), LPS, rosiglitazone plus LPS, and rosiglitazone alone. A simple peritoneal equilibrium test was performed with 20 ml 4.25 % peritoneal dialysis fluid. We measured the leukocyte count in dialysate and ultrafiltration volume. Peritoneal membrane histochemical staining was performed, and peritoneal thickness was assessed. CD40 and intercellular adhesion molecule-1 messenger RNA (ICAM-1 mRNA) levels in rat visceral peritoneum were detected by reverse transcription (RT)-PCR. IL-6 in rat peritoneal dialysis effluent was measured using enzyme-linked immunosorbent assay. The phosphorylation of NF-κB-p65 and IκBα was analyzed by Western blot. LPS administration resulted in increased peritoneal thickness and decreased ultrafiltration volume. Rosiglitazone pretreatment significantly decreased peritoneal thickness. In addition to CD40 and ICAM-1 mRNA expression, the IL-6, p-p65, and p-IκBα protein expressions were enhanced in LPS-administered animals. Rosiglitazone pretreatment significantly decreased ICAM-1 mRNA upregulation, secretion of IL-6 protein, and phosphorylation of NF-κB-p65 and IκBα without decreasing CD40 mRNA expression. Rosiglitazone has a protective effect in peritonitis, simultaneously decreasing NF-κB phosphorylation, suggesting that NF-κB signaling pathway mediated peritoneal inflammation induced by LPS. PPAR-γ might be considered a potential therapeutic target against peritonitis.

  13. Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women

    PubMed Central

    Nair, K. Sreekumaran; Daniels, Janice K.; Basal, Eati; Schimke, Jill M.

    2012-01-01

    Hyperandrogenism and chronic low-grade inflammation are related in polycystic ovary syndrome (PCOS), but it is unknown whether hyperandrogenemia can activate inflammation. We determined the effect of oral androgen administration on fasting and glucose-stimulated nuclear factor-κB (NF-κB) activation and expression and related markers of inflammation in mononuclear cells (MNC) of lean reproductive-age women. Sixteen lean, ovulatory reproductive-age women were treated with 130 mg of DHEA or placebo (n = 8 each) for 5 days in a randomized, controlled, double-blind fashion. Nuclear activation of NF-κB, p65 and p105 NF-κB subunit RNA, TNFα and IL-1β mRNA, and NF-κB p65 and inhibitory-κB (IκB) protein were quantified from MNC obtained while fasting and 2 h after glucose ingestion, before and after DHEA or placebo administration. Before treatment, subjects receiving DHEA or placebo exhibited no differences in androgens or any inflammatory markers while fasting and after glucose ingestion. Compared with placebo, DHEA administration raised levels of testosterone, androstenedione, and DHEA-S, increased the percent change in fasting and glucose-challenged activated NF-κB, p65, p105, TNFα, and IL-1β RNA and p65 protein, and decreased the percent change in fasting and glucose-challenged IκB protein. We conclude that elevation of circulating androgens to the range observed in PCOS upregulates the NF-κB inflammation pathway in lean reproductive-age women. Thus, hyperandrogenemia activates and sensitizes MNC to glucose in this population. PMID:22045316

  14. Hyperandrogenism sensitizes mononuclear cells to promote glucose-induced inflammation in lean reproductive-age women.

    PubMed

    González, Frank; Nair, K Sreekumaran; Daniels, Janice K; Basal, Eati; Schimke, Jill M

    2012-02-01

    Hyperandrogenism and chronic low-grade inflammation are related in polycystic ovary syndrome (PCOS), but it is unknown whether hyperandrogenemia can activate inflammation. We determined the effect of oral androgen administration on fasting and glucose-stimulated nuclear factor-κB (NF-κB) activation and expression and related markers of inflammation in mononuclear cells (MNC) of lean reproductive-age women. Sixteen lean, ovulatory reproductive-age women were treated with 130 mg of DHEA or placebo (n = 8 each) for 5 days in a randomized, controlled, double-blind fashion. Nuclear activation of NF-κB, p65 and p105 NF-κB subunit RNA, TNFα and IL-1β mRNA, and NF-κB p65 and inhibitory-κB (IκB) protein were quantified from MNC obtained while fasting and 2 h after glucose ingestion, before and after DHEA or placebo administration. Before treatment, subjects receiving DHEA or placebo exhibited no differences in androgens or any inflammatory markers while fasting and after glucose ingestion. Compared with placebo, DHEA administration raised levels of testosterone, androstenedione, and DHEA-S, increased the percent change in fasting and glucose-challenged activated NF-κB, p65, p105, TNFα, and IL-1β RNA and p65 protein, and decreased the percent change in fasting and glucose-challenged IκB protein. We conclude that elevation of circulating androgens to the range observed in PCOS upregulates the NF-κB inflammation pathway in lean reproductive-age women. Thus, hyperandrogenemia activates and sensitizes MNC to glucose in this population.

  15. Gelam Honey Attenuates Carrageenan-Induced Rat Paw Inflammation via NF-κB Pathway

    PubMed Central

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2013-01-01

    The activation of nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of a number of inflammatory diseases. In this study, we investigated the anti-inflammatory mechanism of Gelam honey in inflammation induced rats via NF-κB signalling pathway. Rats paw edema was induced by subplantar injection of 1% carrageenan into the right hind paw. Rats were pre-treated with Gelam honey at different doses (1 or 2 g/kg, p.o.) and NSAID Indomethacin (10 mg/kg, p.o.), in two time points (1 and 7 days). Our results showed that Gelam honey at both concentrations suppressed the gene expressions of NF-κB (p65 & p50) and IκBα in inflamed rats paw tissues. In addition, Gelam honey inhibited the nuclear translocation and activation of NF-κB and decreased the cytosolic degradation of IκBα dose dependently in inflamed rats paw tissues. The immunohistochemical expressions of pro-inflammatory mediators COX-2 and TNF-α were also decreased in inflamed rats paw tissues when treated with Gelam honey. The results of our findings suggest that Gelam honey exhibits its inhibitory effects by attenuating NF-κB translocation to the nucleus and inhibiting IκBα degradation, with subsequent decrease of inflammatory mediators COX-2 and TNF-α. PMID:24015236

  16. INTERFERON α ACTIVATES NF-κ B IN JAK1-DEFICIENT CELLS THROUGH A TYK2-DEPENDENT PATHWAY

    PubMed Central

    Yang, Chuan He; Murti, Aruna; Valentine, William J.; Du, Ziyun; Pfeffer, Lawrence M.

    2005-01-01

    In addition to activating members of the STAT transcription factor family, IFN α/β activates the NF-κ B transcription factor. To determine the role of the JAK-STAT pathway in NF-κ B activation by IFN, we examined NF-κ B activation in JAK1-deficient mutant human fibrosarcoma cells. In wild-type fibrosarcoma cells (2fTGH) IFN activates STAT1, STAT2 and STAT3, as well as NF-κB complexes comprised of p50 and p65. In contrast, in JAK1-deficient cells IFN induces NF-κB activation and NF-κB dependent gene transcription, but does not activate these STAT proteins and has no effect on STAT-dependent gene transcription. Expression of a catalytically-inactive TYK2 tyrosine kinase in JAK1-deficient cells, as well as in the highly IFN-sensitive Daudi lymphoblastoid cell line, abrogates NF-κB activation by IFN. Moreover, IFN does not promote NF-κB activation in TYK2-deficient mutant fibrosarcoma cells. Our results demonstrate a dichotomy between the classical JAK-STAT pathway and the NF-κB signaling pathway. In the IFN signaling pathway leading to STAT activation both JAK1 and TYK2 are essential, while NF-κB activation requires only TYK2. PMID:15883164

  17. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zeng, Zhi; Wu, Teng

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. Thesemore » results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN.« less

  18. Down-regulation of PKHD1 induces cell apoptosis through PI3K and NF-{kappa}B pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Liping; Wang, Shixuan; Hu, Chaofeng

    2011-04-15

    Mutations in PKHD1 (polycystic kidney and hepatic disease gene 1) gene cause the autosomal recessive polycystic kidney disease (ARPKD). Fibrocystin/polyductin (FPC), encoded by PKHD1, is a membrane-associated receptor-like protein. Although it is widely accepted that cystogenesis is mostly due to aberrant cell proliferation and apoptosis, it is still unclear how apoptosis is regulated. The aim of this study is to analyze the relationship among apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor {kappa}B (NF-{kappa}B) in FPC knockdown kidney cells. We show that PKHD1-silenced HEK293 cells demonstrate a higher PI3K/Akt activity. Selective inhibition of PI3K/Akt using LY294002 or wortmannin in these cellsmore » increases serum starvation-induced HEK293 cell apoptosis with a concomitant decrease in cell proliferation and higher caspase-3 activity. PI3K/Akt inhibition also leads to increased NF-{kappa}B activity in these cells. We conclude that the PI3K/Akt pathway is involved in apoptotic function in PKHD1-silenced cells, and PI3K/Akt inhibition correlates with upregulation of NF-{kappa}B activity. These observations provide a potential platform for determining FPC function and therapeutic investigation of ARPKD.« less

  19. Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway.

    PubMed

    Shi, Meiyan; He, Xiaodan; Wei, Wei; Wang, Juan; Zhang, Ti; Shen, Xiaohong

    2015-06-01

    As a glycol-protein located in extracellular matrix (ECM), tenascin-C (TNC) is absent in most normal adult tissues but is highly expressed in the majority of malignant solid tumors. Pancreatic cancer is characterized by an abundant fibrous tissue rich in TNC. Although it was reported that TNC's expression increased in the progression from low-grade precursor lesions to invasive cancer and was associated with tumor differentiation in human pancreatic cancer, studies on the relations between TNC and tumor progression in pancreatic cancer were rare. In this study, we performed an analysis to determine the effects of TNC on modulating cell apoptosis and chemo-resistance and explored its mechanisms involving activation in pancreatic cancer cell. The expressions of TNC, ERK1/2/p-ERK1/2, Bcl-xL and Bcl-2 were detected by immunohistochemistry and western blotting. Then the effects of exogenous and endogenous TNC on the regulation of tumor proliferation, apoptosis and gemcitabine cytotoxicity were investigated. The associations among the TNC knockdown, TNC stimulation and expressions of ERK1/2/NF-κB/p65 and apoptotic regulatory proteins were also analyzed in cell lines. The mechanism of TNC on modulating cancer cell apoptosis and drug resistant through activation of ERK1/2/NF-κB/p65 signals was evaluated. The effect of TNC on regulating cell cycle distribution was also tested. TNC, ERK1/2/p-ERK1/2, and apoptotic regulatory proteins Bcl-xL and Bcl-2 were highly expressed in human pancreatic cancer tissues. In vitro, exogenous TNC promoted pancreatic cancer cell growth also mediates basal as well as starved and drug-induced apoptosis in pancreatic cancer cells. The effects of TNC on anti-apoptosis were induced by the activation state of ERK1/2/NF-κB/p65 signals in pancreatic cell. TNC phosphorylate ERK1/2 to induce NF-κB/p65 nucleus translocation. The latter contributes to promote Bcl-xL, Bcl-2 protein expressions and reduce caspase activity, which inhibit cell apoptotic

  20. The equine LH/CGβ subunit combines divergent intracellular traits of the human LHβ and CGβ subunits

    PubMed Central

    Cohen, Limor; Bousfield, George R; Ben-Menahem, David

    2017-01-01

    The pituitary LHβ and placental CGβ subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHβ is replaced by a longer O-glycosylated carboxy-terminal peptide (CTP) in hCGβ. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGβ and LHβ subunits are products of the same gene expressed in the placenta and pituitary (eLH/CGβ), and both contain a CTP. This unusual expression pattern intrigued us and led to our study of eLH/CGβ subunit secretion by transfected CHO and MDCK cells. In continuous labeling and pulse chase experiments, the secretion of the eLH/CGβ subunit from the transfected CHO cells was inefficient (medium recovery of 16–25%) and slow (t1/2 >6.5 hrs). This indicated that, the secretion of the eLH/CGβ subunit resembles that of hLHβ rather than hCGβ. In MDCK cells grown on Transwell filters, the eLH/CGβ subunit was preferentially secreted from the apical side, similar to the hCGβ subunit secretory route (~65% of the total protein secreted). Taken together, these data suggested that secretion of the eLH/CGβ subunit integrates features of both hLHβ and hCGβ subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the eLH/CGβ subunit in the pituitary as well as in the placenta. PMID:25796287

  1. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF

  2. Direct non transcriptional role of NF-Y in DNA replication.

    PubMed

    Benatti, Paolo; Belluti, Silvia; Miotto, Benoit; Neusiedler, Julia; Dolfini, Diletta; Drac, Marjorie; Basile, Valentina; Schwob, Etienne; Mantovani, Roberto; Blow, J Julian; Imbriano, Carol

    2016-04-01

    NF-Y is a heterotrimeric transcription factor, which plays a pioneer role in the transcriptional control of promoters containing the CCAAT-box, among which genes involved in cell cycle regulation, apoptosis and DNA damage response. The knock-down of the sequence-specific subunit NF-YA triggers defects in S-phase progression, which lead to apoptotic cell death. Here, we report that NF-Y has a critical function in DNA replication progression, independent from its transcriptional activity. NF-YA colocalizes with early DNA replication factories, its depletion affects the loading of replisome proteins to DNA, among which Cdc45, and delays the passage from early to middle-late S phase. Molecular combing experiments are consistent with a role for NF-Y in the control of fork progression. Finally, we unambiguously demonstrate a direct non-transcriptional role of NF-Y in the overall efficiency of DNA replication, specifically in the DNA elongation process, using a Xenopus cell-free system. Our findings broaden the activity of NF-Y on a DNA metabolism other than transcription, supporting the existence of specific TFs required for proper and efficient DNA replication. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The neurofilament middle molecular mass subunit carboxyl-terminal tail domains is essential for the radial growth and cytoskeletal architecture of axons but not for regulating neurofilament transport rate

    PubMed Central

    Rao, Mala V.; Campbell, Jabbar; Yuan, Aidong; Kumar, Asok; Gotow, Takahiro; Uchiyama, Yasuo; Nixon, Ralph A.

    2003-01-01

    The phosphorylated carboxyl-terminal “tail” domains of the neurofilament (NF) subunits, NF heavy (NF-H) and NF medium (NF-M) subunits, have been proposed to regulate axon radial growth, neurofilament spacing, and neurofilament transport rate, but direct in vivo evidence is lacking. Because deletion of the tail domain of NF-H did not alter these axonal properties (Rao, M.V., M.L. Garcia, Y. Miyazaki, T. Gotow, A. Yuan, S. Mattina, C.M. Ward, N.S. Calcutt, Y. Uchiyama, R.A. Nixon, and D.W. Cleveland. 2002. J. Cell Biol. 158:681–693), we investigated possible functions of the NF-M tail domain by constructing NF-M tail–deleted (NF-MtailΔ) mutant mice using an embryonic stem cell–mediated “gene knockin” approach that preserves normal ratios of the three neurofilament subunits. Mutant NF-MtailΔ mice exhibited severely inhibited radial growth of both motor and sensory axons. Caliber reduction was accompanied by reduced spacing between neurofilaments and loss of long cross-bridges with no change in neurofilament protein content. These observations define distinctive functions of the NF-M tail in regulating axon caliber by modulating the organization of the neurofilament network within axons. Surprisingly, the average rate of axonal transport of neurofilaments was unaltered despite these substantial effects on axon morphology. These results demonstrate that NF-M tail–mediated interactions of neurofilaments, independent of NF transport rate, are critical determinants of the size and cytoskeletal architecture of axons, and are mediated, in part, by the highly phosphorylated tail domain of NF-M. PMID:14662746

  4. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    PubMed Central

    2014-01-01

    Background Houttuynia cordata Thunb. (Saururaceae) has been used in traditional medicine for treatment of inflammatory diseases. This study evaluated the anti-inflammatory effects of an ethyl acetate fraction derived from a Houttuynia cordata extract (HCE-EA) on the production of inflammatory mediators and the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods To measure the effects of HCE-EA on pro-inflammatory cytokine and inflammatory mediator’s expression in RAW 264.7 cells, we used the following methods: cell viability assay, Griess reagent assay, enzyme-linked immunosorbent assay, real-time polymerase chain reaction and western blotting analysis. Results HCE-EA downregulated nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin (IL-6) production in the cells, as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Furthermore, HCE-EA suppressed nuclear translocation of the NF-κB p65 subunit, which correlated with an inhibitory effect on IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha) phosphorylation. HCE-EA also attenuated the activation of MAPKs (p38 and JNK). Conclusions Our results suggest that the anti-inflammatory properties of HCE-EA may stem from the inhibition of pro-inflammatory mediators via suppression of NF-κB and MAPK signaling pathways. PMID:25012519

  5. The Purification of the Chlamydomonas reinhardtii chloroplast ClpP complex: additional subunits and structural features

    PubMed Central

    Derrien, Benoît; Majeran, Wojciech; Effantin, Grégory; Ebenezer, Joseph; Friso, Giulia; van Wijk, Klaas J.; Steven, Alasdair C.; Maurizi, Michael R.; Vallon, Olivier

    2012-01-01

    The ClpP peptidase is a major constituent of the proteolytic machinery of bacteria and organelles. The chloroplast ClpP complex is unusual, in that it associates a large number of subunits, one of which (ClpP1) is encoded in the chloroplast, the others in the nucleus. The complexity of these large hetero-oligomeric complexes has been a major difficulty in their overproduction and biochemical characterization. In this paper, we describe the purification of native chloroplast ClpP complex from the green alga Chlamydomonas reinhardtii, using a strain that carries the Strep-tag II at the C-terminus of the ClpP1 subunit. Similar to land plants, the algal complex comprises active and inactive subunits (3 ClpP and 5 ClpR, respectively). Evidence is presented that a sub-complex can be produced by dissociation, comprising ClpP1 and ClpR1, 2, 3 and 4, similar to the ClpR-ring described in land plants. Our Chlamydomonas ClpP preparation also contains two ClpT subunits, ClpT3 and ClpT4, which like the land plant ClpT1 and ClpT2 show 2 Clp-N domains. ClpTs are believed to function in substrate binding and/or assembly of the two heptameric rings. Phylogenetic analysis indicates that ClpT subunits have appeared independently in Chlorophycean algae, in land plants and in dispersed cyanobacterial genomes. Negative staining electron microscopy shows that the Chlamydomonas complex retains the barrel-like shape of homo-oligomeric ClpPs, with 4 additional peripheral masses that we speculate represent either the additional IS1 domain of ClpP1 (a feature unique to algae) or ClpTs or extensions of ClpR subunits PMID:22772861

  6. Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport

    PubMed Central

    Rao, Mala V.; Garcia, Michael L.; Miyazaki, Yukio; Gotow, Takahiro; Yuan, Aidong; Mattina, Salvatore; Ward, Chris M.; Calcutt, Nigel A.; Uchiyama, Yasuo; Nixon, Ralph A.; Cleveland, Don W.

    2002-01-01

    The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine–serine–proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits. PMID:12186852

  7. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells.

    PubMed

    Kim, Hye Jin; Kim, Jin Chul; Min, Jung Sun; Kim, Mi-Jee; Kim, Ji Ae; Kor, Myung Ho; Yoo, Hwa Seung; Ahn, Jeong Keun

    2011-06-14

    A medicinal herb Tribulus terrestris Linn has been used to treat various diseases including hepatocellular carcinoma. The aim of the present study was to investigate the anticancer activity of Tribulus terrestris Linn (TT) in liver cancer cells. The antitumor activity of aqueous TT extract was analyzed by testing the cytotoxicity and the effect on clonogenecity in HepG2 cells. Apoptosis and cell cycle arrest induced by TT were dissected by flow cytometry and its inhibitory effect on NF-κB activity was determined by analyzing the expression levels of NF-κB/IκB subunit proteins. The suppression of NF-κB-regulated gene expression by TT was assessed by RT-PCR. TT extract repressed clonogenecity and proliferation, induced apoptosis, and enhanced accumulation in the G0/G1 phase of liver cancer cells. It also turned out that TT extract inhibited NF-κB-dependent reporter gene expression and NF-κB subunit p50 expression, while it enhanced the cellular level of IκBα by inhibiting the phosphorylation and degradation of IκBα. In addition, IKK activity was inhibited in a dose-dependent manner. Furthermore, TT extract suppressed the transcription of genes associated with cell cycle regulation, anti-apoptosis, and invasion. These data showed that TT extract blocks proliferation and induces apoptosis in human liver cancer cells through the inhibition of NF-κB signaling. Aqueous TT extract can be used as an anticancer drug for hepatocellular carcinoma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Molecular basis for the unique deubiquitinating activity of the NF-kappaB inhibitor A20.

    PubMed

    Lin, Su-Chang; Chung, Jee Y; Lamothe, Betty; Rajashankar, Kanagalaghatta; Lu, Miao; Lo, Yu-Chih; Lam, Amy Y; Darnay, Bryant G; Wu, Hao

    2008-02-15

    Nuclear factor kappaB (NF-kappaB) activation in tumor necrosis factor, interleukin-1, and Toll-like receptor pathways requires Lys63-linked nondegradative polyubiquitination. A20 is a specific feedback inhibitor of NF-kappaB activation in these pathways that possesses dual ubiquitin-editing functions. While the N-terminal domain of A20 is a deubiquitinating enzyme (DUB) for Lys63-linked polyubiquitinated signaling mediators such as TRAF6 and RIP, its C-terminal domain is a ubiquitin ligase (E3) for Lys48-linked degradative polyubiquitination of the same substrates. To elucidate the molecular basis for the DUB activity of A20, we determined its crystal structure and performed a series of biochemical and cell biological studies. The structure reveals the potential catalytic mechanism of A20, which may be significantly different from papain-like cysteine proteases. Ubiquitin can be docked onto a conserved A20 surface; this interaction exhibits charge complementarity and no steric clash. Surprisingly, A20 does not have specificity for Lys63-linked polyubiquitin chains. Instead, it effectively removes Lys63-linked polyubiquitin chains from TRAF6 without dissembling the chains themselves. Our studies suggest that A20 does not act as a general DUB but has the specificity for particular polyubiquitinated substrates to assure its fidelity in regulating NF-kappaB activation in the tumor necrosis factor, interleukin-1, and Toll-like receptor pathways.

  9. Development of novel NEMO-binding domain mimetics for inhibiting IKK/NF-κB activation.

    PubMed

    Zhao, Jing; Zhang, Lei; Mu, Xiaodong; Doebelin, Christelle; Nguyen, William; Wallace, Callen; Reay, Daniel P; McGowan, Sara J; Corbo, Lana; Clemens, Paula R; Wilson, Gabriela Mustata; Watkins, Simon C; Solt, Laura A; Cameron, Michael D; Huard, Johnny; Niedernhofer, Laura J; Kamenecka, Theodore M; Robbins, Paul D

    2018-06-11

    Nuclear factor κB (NF-κB) is a transcription factor important for regulating innate and adaptive immunity, cellular proliferation, apoptosis, and senescence. Dysregulation of NF-κB and its upstream regulator IκB kinase (IKK) contributes to the pathogenesis of multiple inflammatory and degenerative diseases as well as cancer. An 11-amino acid peptide containing the NF-κB essential modulator (NEMO)-binding domain (NBD) derived from the C-terminus of β subunit of IKK, functions as a highly selective inhibitor of the IKK complex by disrupting the association of IKKβ and the IKKγ subunit NEMO. A structure-based pharmacophore model was developed to identify NBD mimetics by in silico screening. Two optimized lead NBD mimetics, SR12343 and SR12460, inhibited tumor necrosis factor α (TNF-α)- and lipopolysaccharide (LPS)-induced NF-κB activation by blocking the interaction between IKKβ and NEMO and suppressed LPS-induced acute pulmonary inflammation in mice. Chronic treatment of a mouse model of Duchenne muscular dystrophy (DMD) with SR12343 and SR12460 attenuated inflammatory infiltration, necrosis and muscle degeneration, demonstrating that these small-molecule NBD mimetics are potential therapeutics for inflammatory and degenerative diseases.

  10. Trastuzumab-Resistant Luminal B Breast Cancer Cells Show Basal-Like Cell Growth Features Through NF-κB-Activation

    PubMed Central

    Kanzaki, Hirotaka; Mukhopadhya, Nishit K.; Cui, Xiaojiang; Ramanujan, V. Krishnan

    2016-01-01

    A major clinical problem in the treatment of breast cancer is mortality due to metastasis. Understanding the molecular mechanisms associated with metastasis should aid in designing new therapeutic approaches for breast cancer. Trastuzumab is the main therapeutic option for HER2+ breast cancer patients; however, the molecular basis for trastuzumab resistance (TZR) and subsequent metastasis is not known. Earlier, we found expression of basal-like molecular markers in TZR tissues from patients with invasive breast cancer.(1) The basal-like phenotype is a particularly aggressive form of breast cancer. This observation suggests that TZR might contribute to an aggressive phenotype. To understand if resistance to TZR can lead to basal-like phenotype, we generated a trastuzumab-resistant human breast cancer cell line (BT-474-R) that maintained human epidermal growth factor receptor 2 (HER2) overexpression and HER2 mediated signaling. Analysis showed that nuclear factor-kappa B (NF-κB) was constitutively activated in the BT-474-R cells, a feature similar to the basal-like tumor phenotype. Pharmacologic inhibition of NF-κB improved sensitivity of BT-474-R cells to trastuzumab. Interestingly, activation of HER2 independent NF-κB is not shown in luminal B breast cancer cells. Our study suggests that by activating the NF-κB pathway, luminal B cells may acquire a HER2+ basal-like phenotype in which NF-κB is constitutively activated; this notion is consistent with the recently proposed “progression through grade” or “evolution of resistance” hypothesis. Furthermore, we identified IKK-α/IKK-β and nuclear accumulation of RelA/p65 as the major determinants in the resistant cells. Thus our study additionally suggests that the nuclear accumulation of p65 may be a useful marker for identifying metastasis-initiating tumor cells and targeting RelA/p65 may limit metastasis of breast and other cancers associated with NF-κB activation. PMID:26871511

  11. Subunits of the Saccharomyces cerevisiae signal recognition particle required for its functional expression.

    PubMed Central

    Brown, J D; Hann, B C; Medzihradszky, K F; Niwa, M; Burlingame, A L; Walter, P

    1994-01-01

    The signal recognition particle (SRP) is an evolutionarily conserved ribonucleoprotein (RNP) complex that functions in protein targeting to the endoplasmic reticulum (ER) membrane. Only two protein subunits of the SRP, Srp54p and Sec65p, and the RNA subunit, scR1, were previously known in the yeast Saccharomyces cerevisiae. Purification of yeast SRP by immunoaffinity chromatography revealed five additional proteins. Amino acid sequencing and cloning of the genes encoding four of these proteins demonstrated that the yeast SRP contains homologs (termed Srp14p, Srp68p and Srp72p) of the SRP14, SRP68 and SRP72 subunits found in mammalian SRP. The yeast SRP also contains a 21 kDa protein (termed Srp21p) that is not homologous to any protein in mammalian SRP. An additional 7 kDa protein may correspond to the mammalian SRP9. Disruption of any one of the four genes encoding the newly identified SRP proteins results in slow cell growth and inefficient protein translocation across the ER membrane. These phenotypes are indistinguishable from those resulting from the disruption of genes encoding SRP components identified previously. These data indicate that a lack of any of the analyzed SRP components results in loss of SRP function. ScR1 RNA and SRP proteins are at reduced levels in cells lacking any one of the newly identified proteins. In contrast, SRP components are present at near wild type levels and SRP subparticles are present in cells lacking either Srp54p or Sec65p. Thus Srp14p, Srp21p, Srp68p and Srp72p, but not Sec65p or Srp54p, are required for stable expression of the yeast SRP. Images PMID:7925282

  12. Neuroprotection by triptolide against cerebral ischemia/reperfusion injury through the inhibition of NF-κB/PUMA signal in rats.

    PubMed

    Zhang, Bin; Song, Cunfeng; Feng, Bo; Fan, Weibing

    2016-01-01

    Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent antitumor activity. Recently, triptolide was found to have protective effects against acute cerebral ischemia/reperfusion (I/R) injury through inhibition of cell apoptosis. However, the regulatory mechanism of the effect remains unclear. We hypothesize that the regulatory mechanisms of triptolide are mediated by nuclear factor κB (NF-κB) and p53-upregulated-modulator-of-apoptosis signal inhibition. To verify this hypothesis, we occluded the middle cerebral artery in male rats to establish focal cerebral I/R model. The rats received triptolide or vehicle at the onset of reperfusion following middle cerebral artery occlusion. At 24 hours after reperfusion, neurological deficits, infarct volume, and cell apoptosis were evaluated. The expression levels of NF-κBp65, PUMA, and caspase-3 were determined by Western blot. Real-time polymerase chain reaction was used to determine the levels of NF-κBp65 mRNA, PUMA mRNA, and caspase-3 mRNA. NF-κB activity was determined by electrophoretic mobility shift assay. Apoptotic cells were detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. In I/R group, neurological deficit scores, cerebral infarct volume, expression of NF-κBp65, PUMA, caspase-3, NF-κB activity, and TUNEL-positive cells were found to be increased at 24 hours after I/R injury. The I/R/triptolide rats showed significantly better neurological deficit scores, decreased neural apoptosis, and reduced cerebral infarct volume. In addition, the expression of NF-κBp65, PUMA, caspase-3, and NF-κB activity was suppressed in the I/R/triptolide rats. These results indicate that the neuroprotective effects of triptolide during acute cerebral I/R injury are possibly related to the inhibition of apoptosis through suppression of NF-κB/PUMA signaling pathway.

  13. A positive feedback loop involving EGFR/Akt/mTORC1 and IKK/NF-κB regulates head and neck squamous cell carcinoma proliferation

    PubMed Central

    Li, Zhipeng; Yang, Zejia; Passaniti, Antonino; Lapidus, Rena G.; Liu, Xuefeng; Cullen, Kevin J.; Dan, Han C.

    2016-01-01

    The overexpression or mutation of epidermal growth factor receptor (EGFR) has been associated with a number of cancers, including head and neck squamous cell carcinoma (HNSCC). Increasing evidence indicates that both the phosphatidylinositol-3-kinase (PI3K)-Akt-mammalian target of Rapamycin (mTOR) and the nuclear factor-kappa B (NF-κB) are constitutively active and contribute to aggressive HNSCC downstream of EGFR. However, whether these two oncogenic signaling pathways exhibit molecular and functional crosstalk in HNSCC is unclear. Our results now reveal that mTORC1, not mTORC2, contributes to NF-κB activation downstream of EGFR/PI3K/Akt signaling. Mechanistically, mTORC1 enhances the inhibitor of nuclear factor kappa-B kinase (IKK) activity to accelerate NF-κB signaling. Concomitantly, activated NF-κB/IKK up-regulates EGFR expression through positive feedback regulation. Blockage of NF-κB/IKK activity by the novel IKKβ specific inhibitor, CmpdA, leads to significant inhibition of cell proliferation and induction of apoptosis. CmpdA also sensitizes intrinsic cisplatin-resistant HNSCC cells to cisplatin treatment. Our findings reveal a new mechanism by which EGFR/PI3K/Akt/mTOR signaling promotes head and neck cancer progression and underscores the need for developing a therapeutic strategy for targeting IKK/NF-κB either as a single agent or in combination with cisplatin in head and neck cancer. PMID:26895469

  14. Sulfasalazine inhibits inflammation and fibrogenesis in pancreas via NF-κB signaling pathway in rats with oxidative stress-induced pancreatic injury.

    PubMed

    Wang, Ya-Ru; Tian, Fei-Long; Yan, Ming-Xian; Fan, Jin-Hua; Wang, Li-Yun; Kuang, Rong-Guang; Li, Yan-Qing

    2016-01-01

    Pathogenesis and effective therapeutics of chronic pancreatic inflammation and fibrosis remain uncertain. To investigate the effects of sulfasalazine (SF) on pancreatic inflammation and fibrogenesis. Chronic pancreatic injury in rats was induced by diethyldithiocarbamate (DDC) and interfered by SF through intraperitoneal injection. The rats were divided into five groups: group N, normal control group, rats were treated with dilated water only; group DS1, rats received SF (10 mg/kg) 2 hours before DDC treatment; group DS2, rats were treated with DDC and then SF (100 mg/kg, twice a week); group DS3, rats were treated with DDC, then SF (100 mg/kg, thrice a week); and group DDC, rats were treated with DDC only. Pancreatic inflammation and fibrosis were determined by hematoxylin and eosin staining and Sirius red staining. The genes and proteins related to NF-κB pathway and fibrogenesis including NF-κB/p65, TNF-α, ICAM-1, α-SMA, and Con 1 were detected by immunohistochemical staining, reverse transcription polymerase chain reaction, and Western blotting. Rats in the DDC and DS1 groups showed the highest histological scores after DDC treatment, but the scores of DS2 and DS3 groups decreased significantly when compared with the DDC group. Sirius red staining showed collagen formation clearly in DDC and DS1 rats rather than in DS2 and DS3 rats. NF-κB/p65, ICAM-1, and α-SMA were strongly expressed in DDC and DS1 rats, while DS2 and DS3 rats showed mild to moderate expression by immunohistochemistry. Reverse transcription polymerase chain reaction showed increased levels of NF-κB/p65, ICAM-1, TNF-α, α-SMA, and Con 1 mRNA in DDC and DS1 rats in comparison to normal controls. The mRNA levels of these molecules in DS2 and DS3 rats were significantly lower than those in DS1 and DDC rats. Western blotting demonstrated that the NF-κB/p65, ICAM-1, and α-SMA expressions in pancreatic tissues of the rats of the DDC group were more clear than those of the normal control, DS2

  15. Ghrelin accelerates wound healing through GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways in combined radiation and burn injury in rats.

    PubMed

    Liu, Cong; Huang, Jiawei; Li, Hong; Yang, Zhangyou; Zeng, Yiping; Liu, Jing; Hao, Yuhui; Li, Rong

    2016-06-07

    The therapeutic effect of ghrelin on wound healing was assessed using a rat model of combined radiation and burn injury (CRBI). Rat ghrelin, anti-rat tumor necrosis factor (TNF) α polyclonal antibody (PcAb), or selective antagonists of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and growth hormone secretagogue receptor (GHS-R) 1a (SB203580, SP600125, and [D-Lys3]-GHRP-6, respectively), were administered for seven consecutive days. Levels of various signaling molecules were assessed in isolated rat peritoneal macrophages. The results showed that serum ghrelin levels and levels of macrophage glucocorticoid receptor (GR) decreased, while phosphorylation of p38MAPK, JNK, and p65 nuclear factor (NF) κB increased. Ghrelin inhibited the serum induction of proinflammatory mediators, especially TNF-α, and promoted wound healing in a dose-dependent manner. Ghrelin treatment decreased phosphorylation of p38MAPK, JNK, and p65NF-κB, and increased GR levels in the presence of GHS-R1a. SB203580 or co-administration of SB203580 and SP600125 decreased TNF-α level, which may have contributed to the inactivation of p65NF-κB and increase in GR expression, as confirmed by western blotting. In conclusion, ghrelin enhances wound recovery in CRBI rats, possibly by decreasing the induction of TNF-α or other proinflammatory mediators that are involved in the regulation of GHS-R1a-mediated MAPK-NF-κB/GR signaling pathways.

  16. Common bean (Phaseolus vulgaris L.) hydrolysates inhibit inflammation in LPS-induced macrophages through suppression of NF-κB pathways.

    PubMed

    Oseguera-Toledo, Miguel E; de Mejia, Elvira Gonzalez; Dia, Vermont P; Amaya-Llano, Silvia L

    2011-08-01

    The objectives of this study were to evaluate the antioxidant capacity of protein hydrolysates of the common bean (Phaseolus vulgaris L.) varieties Negro 8025 and Pinto Durango and determine their effect on the markers of inflammation in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Cell viability was determined and the percentage of viable cells was calculated and concentrations that allowed >80% cell viability were used to determine the markers of inflammation. Alcalase hydrolysates and pepsin-pancreatin hydrolysates showed the highest antioxidant capacity after 80 and 120min of hydrolysis, respectively. Alcalase hydrolysates of the common bean Pinto Durango at 120min inhibited inflammation, with IC50 values of 34.9±0.3, 13.9±0.3, 5.0±0.1 and 3.7±0.2μM, while var. Negro needed 43.6±0.2, 61.3±0.3, 14.2±0.3 and 48.2±0.1μM for the inhibition of cyclooxygenase-2 expression, prostaglandin E2 production, inducible nitric oxide synthase expression and nitric oxide production, respectively. Also, hydrolysates significantly inhibited the transactivation of NF-κB and the nuclear translocation of the NF-κB p65 subunit. In conclusion, hydrolysates from the common bean can be used to combat inflammatory and oxidative-associated diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Involvement of nuclear factor {kappa}B in platelet CD40 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hachem, Ahmed; Yacoub, Daniel; Centre Hospitalier Universite de Montreal, 264 boul. Rene-Levesque est, Montreal, Quebec, Canada H2X 1P1

    Highlights: Black-Right-Pointing-Pointer sCD40L induces TRAF2 association to CD40 and NF-{kappa}B activation in platelets. Black-Right-Pointing-Pointer I{kappa}B{alpha} phosphorylation downstream of CD40L/CD40 signaling is independent of p38 MAPK phosphorylation. Black-Right-Pointing-Pointer I{kappa}B{alpha} is required for sCD40L-induced platelet activation and potentiation of aggregation. -- Abstract: CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-{kappa}B). Givenmore » that platelets contain NF-{kappa}B, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of I{kappa}B{alpha}, which are abolished by CD40L blockade. Inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced I{kappa}B{alpha} phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on I{kappa}B{alpha} phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of I{kappa}B{alpha} phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-{kappa}B activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against

  18. Neutrophils induce macrophage anti-inflammatory reprogramming by suppressing NF-κB activation.

    PubMed

    Marwick, John A; Mills, Ross; Kay, Oliver; Michail, Kyriakos; Stephen, Jillian; Rossi, Adriano G; Dransfield, Ian; Hirani, Nikhil

    2018-06-04

    Apoptotic cells modulate the function of macrophages to control and resolve inflammation. Here, we show that neutrophils induce a rapid and sustained suppression of NF-κB signalling in the macrophage through a unique regulatory relationship which is independent of apoptosis. The reduction of macrophage NF-κB activation occurs through a blockade in transforming growth factor β-activated kinase 1 (TAK1) and IKKβ activation. As a consequence, NF-κB (p65) phosphorylation is reduced, its translocation to the nucleus is inhibited and NF-κB-mediated inflammatory cytokine transcription is suppressed. Gene Set Enrichment Analysis reveals that this suppression of NF-κB activation is not restricted to post-translational modifications of the canonical NF-κB pathway, but is also imprinted at the transcriptional level. Thus neutrophils exert a sustained anti-inflammatory phenotypic reprogramming of the macrophage, which is reflected by the sustained reduction in the release of pro- but not anti- inflammatory cytokines from the macrophage. Together, our findings identify a novel apoptosis-independent mechanism by which neutrophils regulate the mediator profile and reprogramming of monocytes/macrophages, representing an important nodal point for inflammatory control.

  19. High expression of Bruton's tyrosine kinase (BTK) is required for EGFR-induced NF-κB activation and predicts poor prognosis in human glioma.

    PubMed

    Yue, Chenglong; Niu, Mingshan; Shan, Qian Qian; Zhou, Ting; Tu, Yiming; Xie, Peng; Hua, Lei; Yu, Rutong; Liu, Xuejiao

    2017-09-25

    Malignant glioma is the most common primary brain tumor in adults and has a poor prognosis. However, there are no effective targeted therapies for glioma patients. Thus, the development of novel targeted therapeutics for glioma is urgently needed. In this study, we examined the prognostic significance BTK expression in patients with glioma. Furthermore, we investigated the mechanism and therapeutic potential of ibrutinib in the treatment of human glioma in vitro and in vivo. Our data demonstrate that high expression of BTK is a novel prognostic marker for poor survival in patients with glioma. BTK-specific inhibitor ibrutinib effectively inhibits the proliferation, migration and invasion ability of glioma cells. Furthermore, ibrutinib can induce G1 cell-cycle arrest by regulating multiple cell cycle-associated proteins. More importantly, we found that BTK inhibition significantly blocks the degradation of IκBα and prevents the nuclear accumulation of NF-κB p65 subunit induced by EGF in glioma cells. Taken together, our study suggests that BTK is a novel prognostic marker and molecular therapeutic target for glioma. BTK is required for EGFR-induced NF-κB activation in glioma cells. These findings provide the basis for future clinical studies of ibrutinib for the treatment of glioma.

  20. Immunomodulatory Effect of Flavonoids of Blueberry (Vaccinium corymbosum L.) Leaves via the NF-κB Signal Pathway in LPS-Stimulated RAW 264.7 Cells.

    PubMed

    Shi, Dazhi; Xu, Mengyi; Ren, Mengyue; Pan, Enshan; Luo, Chaohua; Zhang, Wei; Tang, Qingfa

    2017-01-01

    This study aimed to explore the immunoregulatory effect of flavonoids of blueberry ( Vaccinium corymbosum L.) leaves (FBL). The flavonoids of blueberry leaves were prepared with 70% ethanol and were identified by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-Tof-MS). The immunoregulatory effect and possible regulatory mechanisms of FBL were investigated in lipopolysaccharide- (LPS-) induced RAW 264.7 cells. According to the results of UPLC/Q-Tof-MS, nine flavonoids of blueberry leaves were identified. FBL showed a significant reduction in the production of TNF- α in LPS-stimulated RAW 264.7 cells. FBL significantly decreased the expression of NF- κ B p65 and P-NF- κ B p65 in LPS-induced RAW 264.7 cells in a dose-dependent manner. Our study showed the immunoregulatory effect of FBL through the suppression of TNF- α via the NF- κ B signal pathway.

  1. Peristalsis is impaired in the small intestine of mice lacking the P2X3 subunit

    PubMed Central

    Bian, Xiaochun; Ren, Jianhua; De Vries, Matthew; Schnegelsberg, Birthe; Cockayne, Debra A; Ford, Anthony P D W; Galligan, James J

    2003-01-01

    P2X receptors are ATP-gated cation channels composed of one or more of seven different subunits. P2X receptors participate in intestinal neurotransmission but the subunit composition of enteric P2X receptors is unknown. In this study, we used tissues from P2X3 wild-type (P2X3+/+) mice and mice in which the P2X3 subunit gene had been deleted (P2X3−/−) to investigate the role of this subunit in neurotransmission in the intestine. RT-PCR analysis of mRNA from intestinal tissues verified P2X3 gene deletion. Intracellular electrophysiological methods were used to record synaptic and drug-induced responses from myenteric neurons in vitro. Drug-induced longitudinal muscle contractions were studied in vitro. Intraluminal pressure-induced reflex contractions (peristalsis) of ileal segments were studied in vitro using a modified Trendelenburg preparation. Gastrointestinal transit was measured as the progression in 30 min of a liquid radioactive marker administered by gavage to fasted mice. Fast excitatory postsynaptic potentials recorded from S neurons (motoneurons and interneurons) were similar in tissues from P2X3+/+ and P2X3−/− mice. S neurons from P2X3+/+ and P2X3−/− mice were depolarized by application of ATP but not α,β-methylene ATP, an agonist of P2X3 subunit-containing receptors. ATP and α,β-methylene ATP induced depolarization of AH (sensory) neurons from P2X3+/+ mice. ATP, but not α,β-methylene ATP, caused depolarization of AH neurons from P2X3−/− mice. Peristalsis was inhibited in ileal segments from P2X3−/− mice but longitudinal muscle contractions caused by nicotine and bethanechol were similar in segments from P2X3+/+ and P2X3−/− mice. Gastrointestinal transit was similar in P2X3+/+ and P2X3−/− mice. It is concluded that P2X3 subunit-containing receptors participate in neural pathways underlying peristalsis in the mouse intestine in vitro. P2X3 subunits are localized to AH (sensory) but not S neurons. P2X3 receptors may

  2. In vitro anticancer property of a novel thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells.

    PubMed

    Li, Min; Sun, Wan; Yang, Ya-ping; Xu, Bo; Yi, Wen-yuan; Ma, Yan-xia; Li, Zhong-jun; Cui, Jing-rong

    2009-01-01

    To investigate the anticancer property and possible mechanism of action of a novel sugar-substituted thalidomide derivative (STA-35) on HL-60 cells in vitro. TNF-alpha-induced NF-kappaB activation was determined using a reporter gene assay. The MTT assay was used to measure cytotoxicity of the compound. The appearance of apoptotic Sub-G1 cells was detected by flow cytometry analysis. PARP cleavage and protein expression of NF-kappaB p65 and its inhibitor IkappaB were viewed by Western blotting. TA-35 (1-20 micromol/L) suppressed TNF-alpha-induced NF-kappaB activation in transfected cells (HEK293/pNiFty-SEAP) in a dose- (1-20 micromol/L) and time-dependent (0-48 h) manner. It was also shown that STA-35 exerted a dose-dependent inhibitory effect on HL-60 cell proliferation with an IC(50) value of 9.05 micromol/L. In addition, STA-35 induced apoptosis in HL-60 cells, as indicated by the appearance of a Sub-G1 peak in the cell cycle distribution, as well as poly ADP-ribose polymerase (PARP) cleavage. Subsequently, both NF-kappaB p65 and its inhibitor IkappaB gradually accumulated in cytoplasmic extracts in a dose- and time-dependent manner, indicating the blockage of NF-kappaB translocation induced by TNF-alpha from the cytoplasm to the nucleus. A novel sugar-substituted thalidomide derivative, STA-35, is potent toward HL-60 cells in vitro and induces apoptosis by the suppression of NF-kappaB activation.

  3. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation

    PubMed Central

    Leonard, Antony; Marando, Catherine; Rahman, Arshad

    2013-01-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser536, a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation. PMID:24039253

  4. Thrombin selectively engages LIM kinase 1 and slingshot-1L phosphatase to regulate NF-κB activation and endothelial cell inflammation.

    PubMed

    Leonard, Antony; Marando, Catherine; Rahman, Arshad; Fazal, Fabeha

    2013-11-01

    Endothelial cell (EC) inflammation is a central event in the pathogenesis of many pulmonary diseases such as acute lung injury and its more severe form acute respiratory distress syndrome. Alterations in actin cytoskeleton are shown to be crucial for NF-κB regulation and EC inflammation. Previously, we have described a role of actin binding protein cofilin in mediating cytoskeletal alterations essential for NF-κB activation and EC inflammation. The present study describes a dynamic mechanism in which LIM kinase 1 (LIMK1), a cofilin kinase, and slingshot-1Long (SSH-1L), a cofilin phosphatase, are engaged by procoagulant and proinflammatory mediator thrombin to regulate these responses. Our data show that knockdown of LIMK1 destabilizes whereas knockdown of SSH-1L stabilizes the actin filaments through modulation of cofilin phosphorylation; however, in either case thrombin-induced NF-κB activity and expression of its target genes (ICAM-1 and VCAM-1) is inhibited. Further mechanistic analyses reveal that knockdown of LIMK1 or SSH-1L each attenuates nuclear translocation and thereby DNA binding of RelA/p65. In addition, LIMK1 or SSH-1L depletion inhibited RelA/p65 phosphorylation at Ser(536), a critical event conferring transcriptional competency to the bound NF-κB. However, unlike SSH-1L, LIMK1 knockdown also impairs the release of RelA/p65 by blocking IKKβ-dependent phosphorylation/degradation of IκBα. Interestingly, LIMK1 or SSH-1L depletion failed to inhibit TNF-α-induced RelA/p65 nuclear translocation and proinflammatory gene expression. Thus this study provides evidence for a novel role of LIMK1 and SSH-1L in selectively regulating EC inflammation associated with intravascular coagulation.

  5. CD40-Mediated NF-κB Activation in B Cells Is Increased in Multiple Sclerosis and Modulated by Therapeutics.

    PubMed

    Chen, Ding; Ireland, Sara J; Remington, Gina; Alvarez, Enrique; Racke, Michael K; Greenberg, Benjamin; Frohman, Elliot M; Monson, Nancy L

    2016-12-01

    CD40 interacts with CD40L and plays an essential role in immune regulation and homeostasis. Recent research findings, however, support a pathogenic role of CD40 in a number of autoimmune diseases. We previously showed that memory B cells from relapsing-remitting multiple sclerosis (RRMS) patients exhibited enhanced proliferation with CD40 stimulation compared with healthy donors. In this study, we used a multiparameter phosflow approach to analyze the phosphorylation status of NF-κB and three major MAPKs (P38, ERK, and JNK), the essential components of signaling pathways downstream of CD40 engagement in B cells from MS patients. We found that memory and naive B cells from RRMS and secondary progressive MS patients exhibited a significantly elevated level of phosphorylated NF-κB (p-P65) following CD40 stimulation compared with healthy donor controls. Combination therapy with IFN-β-1a (Avonex) and mycophenolate mofetil (Cellcept) modulated the hyperphosphorylation of P65 in B cells of RRMS patients at levels similar to healthy donor controls. Lower disease activity after the combination therapy correlated with the reduced phosphorylation of P65 following CD40 stimulation in treated patients. Additionally, glatiramer acetate treatment also significantly reduced CD40-mediated P65 phosphorylation in RRMS patients, suggesting that reducing CD40-mediated p-P65 induction may be a general mechanism by which some current therapies modulate MS disease. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells

    PubMed Central

    Vaughan, Catherine; Mohanraj, Lathika; Singh, Shilpa; Dumur, Catherine I.; Ramamoorthy, Mahesh; Garrett, Carleton T.; Windle, Brad; Yeudall, W. Andrew; Deb, Sumitra

    2011-01-01

    The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2

  7. MHY884, a newly synthesized tyrosinase inhibitor, suppresses UVB-induced activation of NF-κB signaling pathway through the downregulation of oxidative stress.

    PubMed

    Choi, Yeon Ja; Uehara, Yohei; Park, Ji Young; Kim, Seong Jin; Kim, So Ra; Lee, Hee Won; Moon, Hyung Ryong; Chung, Hae Young

    2014-03-01

    The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. An Abnormal Nitric Oxide Metabolism Contributes to Brain Oxidative Stress in the Mouse Model for the Fragile X Syndrome, a Possible Role in Intellectual Disability

    PubMed Central

    Lima-Cabello, Elena; Garcia-Guirado, Francisco; Calvo-Medina, Rocio; el Bekay, Rajaa; Perez-Costillas, Lucia; Quintero-Navarro, Carolina; Sanchez-Salido, Lourdes

    2016-01-01

    Background. Fragile X syndrome is the most common genetic cause of mental disability. Although many research has been performed, the mechanism underlying the pathogenesis is unclear and needs further investigation. Oxidative stress played major roles in the syndrome. The aim was to investigate the nitric oxide metabolism, protein nitration level, the expression of NOS isoforms, and furthermore the activation of the nuclear factor NF-κB-p65 subunit in different brain areas on the fragile X mouse model. Methods. This study involved adult male Fmr1-knockout and wild-type mice as controls. We detected nitric oxide metabolism and the activation of the nuclear factor NF-κBp65 subunit, comparing the mRNA expression and protein content of the three NOS isoforms in different brain areas. Results. Fmr1-KO mice showed an abnormal nitric oxide metabolism and increased levels of protein tyrosine nitrosylation. Besides that, nuclear factor NF-κB-p65 and inducible nitric oxide synthase appeared significantly increased in the Fmr1-knockout mice. mRNA and protein levels of the neuronal nitric oxide synthase appeared significantly decreased in the knockout mice. However, the epithelial nitric oxide synthase isoform displayed no significant changes. Conclusions. These data suggest the potential involvement of an abnormal nitric oxide metabolism in the pathogenesis of the fragile X syndrome. PMID:26788253

  9. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells.

    PubMed

    Ogut, Deniz; Reel, Buket; Gonen Korkmaz, Ceren; Arun, Mehmet Zuhuri; Cilaker Micili, Serap; Ergur, Bekir Ugur

    2016-01-01

    Matrix metalloproteinase enzymes (MMPs) play important role in inflammation, malignant cell proliferation, invasion and angiogenesis by mediating extracellular matrix degradation. Doxycycline, a synthetic tetracycline, behaves as a MMP inhibitor at a subantimicrobial dose and inhibits tumor cell proliferation, invasion and angiogenesis. The aberrant activity of nuclear factor kappa B (NF-κB) causes activation of MMPs and thereby proliferation and invasion of cancer cells. The aim of this study was to investigate the effects of doxycycline on the expression of MMPs in lipopolysaccharide (LPS)-induced PC3 human prostate cancer cells and the possible role of NF-κB signaling. PC3 cells were incubated with LPS (0.5 μg/mL) for 24 h in the presence or absence of doxycycline (5 μg/mL). The effects of LPS and doxycycline on the expressions of MMP-2, MMP-8, MMP-9, MMP-10, NF-κB/p65, IκB-α, p-IκB-α, IKK-β were examined by Western blotting and immunohistochemistry in PC3 cells. Furthermore, relative proteinase activities of MMP-2 and MMP-9 were determined by gelatin zymography. LPS increased expression and activity of MMP-9 and expression of MMP-8, MMP-10, NF-κB /p65, p-IκB-α, IKK-β and doxycycline down-regulated its effects with the exception of MMP-10 expression. The expression of MMP-2 and IκB-α was affected by neither LPS nor doxycycline. Our findings indicate that doxycycline inhibits the expression of various MMPs and NF-κB signaling may play a role in the regulation of MMPs expression in LPS-induced PC3 human prostate cancer cells.

  10. 1,25(OH)2D3 promotes chondrocyte apoptosis and restores physical function in rheumatoid arthritis through the NF-κB signal pathway.

    PubMed

    Tian, Run; Li, Xiaofang; Li, Yue; Wang, Kunzheng; Wang, Chunsheng; Yang, Pei

    2018-06-26

    We explored the modulatory effect of 1,25(OH) 2 D 3 on chondrocytes and physical function in rats with RA and its mechanism underlying the regulation of NF-κB signal pathway. RA patients and healthy volunteers were selected. Sprague-Dawley (SD) rats were used to establish RA models. The paw volume of rats was estimated. Chondrocytes were isolated from RA rats. The protein levels in both cartilage tissues and chondrocytes were determined using western blotting. Apoptosis was evaluated using TUNEL assay. Serum levels of IL-1β, IL-6, IL-10 and IL-17 were measured by enzyme-linked immunosorbent assay (ELISA). Serum levels of 1,25(OH) 2 D 3 were lower in RA patients than in healthy volunteers. Rats in the RA + VD 3 group were lighter than those in normal and PBS groups, with an increased paw volume, severer joint swelling, higher expression levels of p-IκBα, p-p65, IL-1β, IL-6, and IL-17, and lower expression level of IL-10, while those in RA and RA + VD 3 + NF-κB group differed more significantly. In addition, by comparing RA rats and RA + NF-κB rats, we found that TNF-α stimulation exacerbated RA, increased expression levels of p-IκBα, p-p65, IL-1β, IL-6, and IL-17, and decreased the expression level of IL-10. Compared with RA chondrocytes, chondrocytes from RA + VD 3 rats exhibited lower expression levels of p-IκBα and p-p65, and had more apoptotic cells, while those from RA + NF-κB rats showed an opposite trend. Taken together, 1,25(OH) 2 D 3 accelerates chondrocyte apoptosis and improve physical function in rats with RA by the inhibition of NF-κB signal pathway. Copyright © 2018. Published by Elsevier Masson SAS.

  11. A contralateral repeated bout effect attenuates induction of NF-κB DNA binding following eccentric exercise.

    PubMed

    Xin, Ling; Hyldahl, Robert D; Chipkin, Stuart R; Clarkson, Priscilla M

    2014-06-01

    We investigated the existence of contralateral repeated bout effect and tested if the attenuation of nuclear factor-kappa B (NF-κB; an important regulator of muscle inflammation) induction following eccentric exercise is a potential mechanism. Thirty-one healthy men performed two bouts of knee extension eccentric exercise, initially with one leg and then with the opposite leg 4 wk later. Vastus lateralis muscle biopsies of both exercised and control legs were taken 3 h postexercise. Knee extension isometric and isokinetic strength (60°/sec and 180°/sec) were measured at baseline, pre-exercise, immediately postexercise, and 1/day for 5 days postexercise. Serum creatine kinase (CK) activity and muscle soreness were assessed at baseline and 1/day for 5 days postexercise. NF-κB (p65) DNA-binding activity was measured in the muscle biopsies. Isometric strength loss was lower in bout 2 than in bout 1 at 24, 72, and 96 h postexercise (P < 0.05). Isokinetic strength (60°/s and 180°/s) was reduced less in bout 2 than in bout 1 at 72 h postexercise (P < 0.01). There were no significant differences between bouts for postexercise CK activity or muscle soreness. p65 DNA-binding activity was increased following eccentric exercise (compared with the control leg) in bout 1 (122.9% ± 2.6%; P < 0.001) and bout 2 (109.1% ± 3.0%; P < 0.05). Compared with bout 1, the increase in NF-κB DNA-binding activity postexercise was attenuated after bout 2 (P = 0.0008). Repeated eccentric exercise results in a contralateral repeated bout effect, which could be due to the attenuated increase in NF-κB activity postexercise. Copyright © 2014 the American Physiological Society.

  12. Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-{kappa}B acetylation in fibroblast-like synoviocyte MH7A cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong, Ah-Reum; Yoo, Jung-Yoon; Choi, KyungChul

    Highlights: {yields} Delphinidin is a novel inhibitor of p300/CBP histone acetyltransferase. {yields} Delphinidin prevents the hyperacetylation of p65 by inhibiting the HAT activity of p300/CBP. {yields} Delphinidin efficiently suppresses the expression of inflammatory cytokines in MH7A cells via hypoacetylation of NF-{kappa}B. {yields} Delphinidin inhibits cytokine release in the Jurkat T lymphocyte cell line. -- Abstract: Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymesmore » (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKB{alpha}. Accordingly, DP treatment inhibited TNF{alpha}-stimulated increases in NF-{kappa}B function and expression of NF-{kappa}B target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.« less

  13. Bergenin, Acting as an Agonist of PPARγ, Ameliorates Experimental Colitis in Mice through Improving Expression of SIRT1, and Therefore Inhibiting NF-κB-Mediated Macrophage Activation.

    PubMed

    Wang, Kai; Li, Yun-Fan; Lv, Qi; Li, Xi-Ming; Dai, Yue; Wei, Zhi-Feng

    2017-01-01

    Bergenin, isolated from the herb of Saxifraga stolonifera Curt. (Hu-Er-Cao), has anti-inflammatory, antitussive and wound healing activities. The aim of the present study was to identify the effect of bergenin on experimental colitis, and explored the related mechanisms. Our results showed that oral administration of bergenin remarkably alleviated disease symptoms of mice with dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced DAI scores, shortening of colon length, MPO activity and pathologic abnormalities in colons. Bergenin obviously inhibited the mRNA and protein expressions of IL-6 and TNF-α in colon tissues, but not that of mucosal barrier-associated proteins occludin, E -cadherin and MUC-2. In vitro , bergenin significantly inhibited the expressions of IL-6 and TNF-α as well as nuclear translocation and DNA binding activity of NF-κB-p65 in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and RAW264.7 cells, which was almost reversed by addition of PPARγ antagonist GW9662 and siPPARγ. Subsequently, bergenin was identified as a PPARγ agonist. It could enter into macrophages, bind with PPARγ, promote nuclear translocation and transcriptional activity of PPARγ, and increase mRNA expressions of CD36, LPL and ap2. In addition, bergenin significantly up-regulated expression of SIRT1, inhibited acetylation of NF-κB-p65 and increased association NF-κB-p65 and IκBα. Finally, the correlation between activation of PPARγ and attenuation of colitis, inhibition of IL-6 and TNF-α expressions, NF-κB-p65 acetylation and nuclear translocation, and up-regulation of SIRT1 expression by bergenin was validated in mice with DSS-induced colitis and/or LPS-stimulated macrophages. In summary, bergenin could ameliorate colitis in mice through inhibiting the activation of macrophages via regulating PPARγ/SIRT1/NF-κB-p65 pathway. The findings can provide evidence for the further development of bergenin as an anti-UC drug, and offer a paradigm

  14. NF-Y loss triggers p53 stabilization and apoptosis in HPV18-positive cells by affecting E6 transcription.

    PubMed

    Benatti, Paolo; Basile, Valentina; Dolfini, Diletta; Belluti, Silvia; Tomei, Margherita; Imbriano, Carol

    2016-07-19

    The expression of the high risk HPV18 E6 and E7 oncogenic proteins induces the transformation of epithelial cells, through the disruption of p53 and Rb function. The binding of cellular transcription factors to cis-regulatory elements in the viral Upstream Regulatory Region (URR) stimulates E6/E7 transcription. Here, we demonstrate that the CCAAT-transcription factor NF-Y binds to a non-canonical motif within the URR and activates viral gene expression. In addition, NF-Y indirectly up-regulates HPV18 transcription through the transactivation of multiple cellular transcription factors. NF-YA depletion inhibits the expression of E6 and E7 genes and re-establishes functional p53. The activation of p53 target genes in turn leads to apoptotic cell death. Finally, we show that NF-YA loss sensitizes HPV18-positive cells toward the DNA damaging agent Doxorubicin, via p53-mediated transcriptional response.

  15. Hantaan virus nucleocapsid protein binds to importin alpha proteins and inhibits tumor necrosis factor alpha-induced activation of nuclear factor kappa B.

    PubMed

    Taylor, Shannon L; Frias-Staheli, Natalia; García-Sastre, Adolfo; Schmaljohn, Connie S

    2009-02-01

    Hantaviruses such as Hantaan virus (HTNV) and Andes virus cause two human diseases, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome, respectively. For both, disease pathogenesis is thought to be immunologically mediated and there have been numerous reports of patients with elevated levels of proinflammatory and inflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), in their sera. Multiple viruses have developed evasion strategies to circumvent the host cell inflammatory process, with one of the most prevalent being the disruption of nuclear factor kappa B (NF-kappaB) activation. We hypothesized that hantaviruses might also moderate host inflammation by interfering with this pathway. We report here that the nucleocapsid (N) protein of HTNV was able to inhibit TNF-alpha-induced activation of NF-kappaB, as measured by a reporter assay, and the activation of endogenous p65, an NF-kappaB subunit. Surprisingly, there was no defect in the degradation of the inhibitor of NF-kappaB (IkappaB) protein, nor was there any alteration in the level of p65 expression in HTNV N-expressing cells. However, immunofluorescence antibody staining demonstrated that cells expressing HTNV N protein and a green fluorescent protein-p65 fusion had limited p65 nuclear translocation. Furthermore, we were able to detect an interaction between HTNV N protein and importin alpha, a nuclear import molecule responsible for shuttling NF-kappaB to the nucleus. Collectively, our data suggest that HTNV N protein can sequester NF-kappaB in the cytoplasm, thus inhibiting NF-kappaB activity. These findings, which were obtained using cells transfected with cDNA representing the HTNV N gene, were confirmed using HTNV-infected cells.

  16. Subunit Conformations and Assembly States of a DNA Translocating Motor: The Terminase of Bacteriophage P22

    PubMed Central

    Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.

    2007-01-01

    Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256

  17. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocytemore » diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of

  18. 5-Hydroxy-3,6,7,8,3'4'-hexamethoxyflavone inhibits nitric oxide production in lipopolysaccharide-stimulated BV2 microglia via NF-κB suppression and Nrf-2-dependent heme oxygenase-1 induction.

    PubMed

    Kang, Chang-Hee; Kim, Min Jeong; Seo, Min Jeong; Choi, Yung Hyun; Jo, Wol Soon; Lee, Kyung-Tae; Jeong, Yong Kee; Kim, Gi-Young

    2013-07-01

    In this study, we found that 5-hydroxy-3,6,7,8,3'4'-hexamethoxyflavone (5HHMF) from Hizikia fusiforme considerably inhibits lipopolysaccharide (LPS)-stimulated NO production by suppressing the expression of inducible NO synthase (iNOS) in BV2 microglia. In addition, 5HHMF blocked LPS-induced phosphorylation of IκB, resulting in suppression of the nuclear translocation of nuclear factor-κB (NF-κB) subunits, namely p65 and p50, which are important molecules involved in the regulation of iNOS expression. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, along with 20S proteasome inhibitor (PSI) significantly inhibited LPS-induced iNOS expression, which indirectly suggested that 5HHMF downregulated iNOS expression by suppressing NF-κB activity. Thus, we found that 5HHMF enhances heme oxygenase-1 (HO-1) expression via nuclear factor-erythroid 2-related factor 2 (Nrf2) activation. In addition, cobalt protoporphyrin (CoPP), a specific HO-1 inducer, predominantly suppressed LPS-induced NO production. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, showed a partial suppressive effect of 5HHMF on LPS-induced NO production. Further, 5HHMF increased specific DNA-binding activity of Nrf2, and transient knockdown with Nrf2 siRNA subsequently reversed 5HHMF-induced NO inhibition, which was followed by suppression of HO-1 activity. Taken together, our findings indicate that 5HHMF suppresses NO production through modulation of iNOS, consequently suppressing NF-κB activity and induction of Nrf2-dependent HO-1 activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Modulation of proinflammatory NF-κB signaling by ectromelia virus in RAW 264.7 murine macrophages.

    PubMed

    Struzik, Justyna; Szulc-Dąbrowska, Lidia; Papiernik, Diana; Winnicka, Anna; Niemiałtowski, Marek

    2015-09-01

    Macrophages are antigen-presenting cells (APCs) that play a crucial role in the innate immune response and may be involved in both clearance and spread of viruses. Stimulation of macrophages via Toll-like receptors (TLRs) results in activation of nuclear factor κB (NF-κB) and synthesis of proinflammatory cytokines. In this work, we show modulation of proinflammatory NF-κB signaling by a member of the family Poxviridae, genus Orthopoxvirus--ectromelia virus (ECTV)--in RAW 264.7 murine macrophages. ECTV interfered with p65 NF-κB nuclear translocation induced by TLR ligands such as lipopolysaccharide (LPS) (TLR4), polyinosinic-polycytidylic acid (poly(I:C)) (TLR3) and diacylated lipopeptide Pam2CSK4 (TLR2/6). We observed that ECTV modulates phosphorylation of Ser32 of inhibitor of κB (IκBα) and Ser536 of p65. Interference of ECTV with TLR signaling pathways implied that proinflammatory cytokine synthesis was inhibited. Our studies provide new insights into the strategies of proinflammatory signaling modulation by orthopoxviruses during their replication cycle in immune cells. Understanding important immune interactions between viral pathogens and APCs might contribute to the identification of drug targets and the development of vaccines.

  20. Immunomodulatory Effect of Flavonoids of Blueberry (Vaccinium corymbosum L.) Leaves via the NF-κB Signal Pathway in LPS-Stimulated RAW 264.7 Cells

    PubMed Central

    Shi, Dazhi; Xu, Mengyi; Pan, Enshan; Luo, Chaohua

    2017-01-01

    Objective This study aimed to explore the immunoregulatory effect of flavonoids of blueberry (Vaccinium corymbosum L.) leaves (FBL). Methods The flavonoids of blueberry leaves were prepared with 70% ethanol and were identified by ultraperformance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-Tof-MS). The immunoregulatory effect and possible regulatory mechanisms of FBL were investigated in lipopolysaccharide- (LPS-) induced RAW 264.7 cells. Results According to the results of UPLC/Q-Tof-MS, nine flavonoids of blueberry leaves were identified. FBL showed a significant reduction in the production of TNF-α in LPS-stimulated RAW 264.7 cells. FBL significantly decreased the expression of NF-κB p65 and P-NF-κB p65 in LPS-induced RAW 264.7 cells in a dose-dependent manner. Conclusion Our study showed the immunoregulatory effect of FBL through the suppression of TNF-α via the NF-κB signal pathway. PMID:29445755

  1. Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation

    PubMed Central

    Srinivasan, Mythily; Blackburn, Corinne; Lahiri, Debomoy K

    2014-01-01

    Glucocorticoid-induced leucine zipper (GILZ) is a glucocorticoid responsive protein that links the nuclear factor-kappa B (NFκB) and the glucocorticoid signaling pathways. Functional and binding studies suggest that the proline-rich region at the carboxy terminus of GILZ binds the p65 subunit of NFκB and suppresses the immunoinflammatory response. A widely-used strategy in the discovery of peptide drugs involves exploitation of the complementary surfaces of naturally occurring binding partners. Previously, we observed that a synthetic peptide (GILZ-P) derived from the proline-rich region of GILZ bound activated p65 and ameliorated experimental encephalomyelitis. Here we characterize the secondary structure of GILZ-P by circular dichroic analysis. GILZ-P adopts an extended polyproline type II helical conformation consistent with the structural conformation commonly observed in interfaces of transient intermolecular interactions. To determine the potential application of GILZ-P in humans, we evaluated the toxicity and efficacy of the peptide drug in mature human macrophage-like THP-1 cells. Treatment with GILZ-P at a wide range of concentrations commonly used for peptide drugs was nontoxic as determined by cell viability and apoptosis assays. Functionally, GILZ-P suppressed proliferation and glutamate secretion by activated macrophages by inhibiting nuclear translocation of p65. Collectively, our data suggest that the GILZ-P has therapeutic potential in chronic CNS diseases where persistent inflammation leads to neurodegeneration such as multiple sclerosis and Alzheimer’s disease. PMID:25584020

  2. Basal shuttle of NF-κB/IκBα in resting T lymphocytes regulates HIV-1 LTR dependent expression

    PubMed Central

    Coiras, Mayte; López-Huertas, María Rosa; Rullas, Joaquín; Mittelbrunn, Maria; Alcamí, José

    2007-01-01

    Background In HIV-infected T lymphocytes, NF-κB/Rel transcription factors are major elements involved in the activation of LTR-dependent transcription from latency. Most NF-κB heterodimer p65/p50 is sequestered as an inactive form in the cytoplasm of resting T lymphocytes via its interaction with IκB inhibitors. In these cells, both absolute HIV latency and low level ongoing HIV replication have been described. These situations could be related to differences in the balance between NF-κB and IκBα ratio. Actually, control of IκBα by cellular factors such as Murr-1 plays a critical role in maintaining HIV latency in unstimulated T lymphocytes. Formerly, our group demonstrated the presence of nuclear IκBα in T cells after PMA activation. Now we attempt to determine the dynamics of NF-κB/IκBα nucleocytosolic transport in absence of activation as a mechanism to explain both the maintenance of latency and the existence of low level ongoing HIV replication in resting CD4+ T lymphocytes. Results and conclusion We show that the inhibition of the nuclear export by leptomycin B in resting CD4+ T cells resulted in nuclear accumulation of both IκBα and p65/RelA, as well as formation of NF-κB/IκBα complexes. This proves the existence of a rapid shuttling of IκBα between nucleus and cytosol even in absence of cellular activation. The nuclear accumulation of IκBα in resting CD4+ T lymphocytes results in inhibition of HIV-LTR dependent transcription as well as restrains HIV replication in CD4+ T lymphocytes. On the other hand, basal NF-κB activity detected in resting CD4+ T lymphocytes was related to low level HIV replication in these cells. PMID:17686171

  3. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Cryptic glucocorticoid receptor-binding sites pervade genomic NF-κB response elements.

    PubMed

    Hudson, William H; Vera, Ian Mitchelle S de; Nwachukwu, Jerome C; Weikum, Emily R; Herbst, Austin G; Yang, Qin; Bain, David L; Nettles, Kendall W; Kojetin, Douglas J; Ortlund, Eric A

    2018-04-06

    Glucocorticoids (GCs) are potent repressors of NF-κB activity, making them a preferred choice for treatment of inflammation-driven conditions. Despite the widespread use of GCs in the clinic, current models are inadequate to explain the role of the glucocorticoid receptor (GR) within this critical signaling pathway. GR binding directly to NF-κB itself-tethering in a DNA binding-independent manner-represents the standing model of how GCs inhibit NF-κB-driven transcription. We demonstrate that direct binding of GR to genomic NF-κB response elements (κBREs) mediates GR-driven repression of inflammatory gene expression. We report five crystal structures and solution NMR data of GR DBD-κBRE complexes, which reveal that GR recognizes a cryptic response element between the binding footprints of NF-κB subunits within κBREs. These cryptic sequences exhibit high sequence and functional conservation, suggesting that GR binding to κBREs is an evolutionarily conserved mechanism of controlling the inflammatory response.

  5. Inhibiting the NF-kappaB pathway to assess its function in the cellular response to space radiation

    NASA Astrophysics Data System (ADS)

    Koch, Kristina; Baumstark-Khan, Christa; Hellweg, Christine; Testard, Isabelle; Reitz, Guenther

    2012-07-01

    Radiation is regarded as one of the limiting factors for space missions. Therefore the cellular radiation response needs to be studied in order to estimate risks and to develop appropriate countermeasures. Exposure of human cells to ionizing radiation can provoke cell cycle arrest, leading to cellular senescence or premature differentiation, and different types of cell death. Previous heavy ion experiments have shown that the Nuclear Factor κB (NF-κB) pathway is activated by fluences that can be reached during long-term missions and thereby NF-κB was identified as an important modulating factor in the cellular radiation response. It could improve cellular survival after exposure to high radiation doses and influence the cancer risk of astronauts. The classical and the genotoxic stress induced NF-κB pathway result in nuclear translocation of the p65/p50 dimer. Both pathways might contribute to the cellular radiation response. Chemical inhibitors were tested to suppress the NF-κB pathway in recombinant HEK-pNF-κB-d2EGFP/Neo cells. The efficacy and cytotoxicity of the inhibitors targeting different elements of the NF-κB pathway were analyzed and found mostly inappropriate as inhibitors were partly cytotoxic or unspecific. Alternatively a functional knock-out of RelA (p65) was used to identify the contribution of the NF-κB pathway to different cellular outcomes. Small hairpin RNA constructs (shRNA) were transfected into the HEK-pNF-κB-d2EGFP/Neo cell line. Their functionality was assessed by quantitative Reverse Transcriptase real-time PCR (qRT-PCR) to verify that the RelA mRNA amount was reduced by more than 80% in the knock-down cells The original cell line had been stably transfected with a reporter system to monitor NF-κB activation by measuring destabilized Enhanced Green Fluorescent Protein (d2EGFP)-expression. It was shown that after 18 hours d2EGFP reaches its highest expression level after activation of NF-κB and can be measured by FACS analysis

  6. [Gallic acid inhibits inflammatory response of RAW264.7 macrophages by blocking the activation of TLR4/NF-κB induced by LPS].

    PubMed

    Huang, Lihua; Hou, Lin; Xue, Hainan; Wang, Chunjie

    2016-12-01

    Objective To observe the influence of gallic acid on Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway in the RAW264.7 macrophages stimulated by lipopolysaccharide (LPS). Methods RAW264.7 macrophages were divided into the following groups: control group, LPS group, LPS combined with gallic acid group, LPS combined with pyrrolidine dithiocarbamate (PDTC) group and LPS combined with dexamethasone (DM) group. RAW264.7 cells were cultured for 24 hours after corresponding treatments. The levels of tumor necrosis factor α (TNF-α), interleukin-1 (IL-1) and IL-6 were detected by ELISA. The levels of TLR4 and NF-κB mRNAs were tested by real-time PCR. The levels of p-IκBα, p65, p-p65 and TLR4 proteins were examined by Western blotting. Results The expression levels of TNF-α, IL-1 and IL-6 were up-regulated in the RAW264.7 macrophages after stimulated by LPS. Gallic acid could reduce the elevated expression levels of TNF-α, IL-1 and IL-6 induced by LPS. The expression of TLR4 significantly increased after stimulated by LPS and NF-κB was activated. Gallic acid could reverse the above changes and prevent the activation of NF-κB. Conclusion Gallic acid could inhibit LPS-induced inflammatory response in RAW264.7 macrophages via TLR4/NF-κB pathway.

  7. Curcumin suppresses the production of interleukin-6 in Prevotella intermedia lipopolysaccharide-activated RAW 264.7 cells

    PubMed Central

    2011-01-01

    Purpose Curcumin is known to exert numerous biological effects including anti-inflammatory activity. In this study, we investigated the effects of curcumin on the production of interleukin-6 (IL-6) by murine macrophage-like RAW 264.7 cells stimulated with lipopolysaccharide (LPS) from Prevotella intermedia, a major cause of inflammatory periodontal disease, and sought to determine the underlying mechanisms of action. Methods LPS was prepared from lyophilized P. intermedia ATCC 25611 cells by the standard hot phenol-water method. Culture supernatants were collected and assayed for IL-6. We used real-time polymerase chain reaction to detect IL-6 mRNA expression. IκB-α degradation, nuclear translocation of NF-κB subunits, and STAT1 phosphorylation were characterized via immunoblotting. DNA-binding of NF-κB was also analyzed. Results Curcumin strongly suppressed the production of IL-6 at both gene transcription and translation levels in P. intermedia LPS-activated RAW 264.7 cells. Curcumin did not inhibit the degradation of IκB-α induced by P. intermedia LPS. Curcumin blocked NF-κB signaling through the inhibition of nuclear translocation of NF-κB p50 subunit. Curcumin also attenuated DNA binding activity of p50 and p65 subunits and suppressed STAT1 phosphorylation. Conclusions Although further study is required to explore the detailed mechanism of action, curcumin may contribute to blockade of the host-destructive processes mediated by IL-6 and appears to have potential therapeutic values in the treatment of inflammatory periodontal disease. PMID:21811692

  8. RelB is required for Peyer’s patch development: differential regulation of p52–RelB by lymphotoxin and TNF

    PubMed Central

    Yilmaz, Z.Buket; Weih, Debra S.; Sivakumar, Vallabhapurapu; Weih, Falk

    2003-01-01

    Targeted disruption of the Rel/NF-κB family members NF-κB2, encoding p100/p52, and RelB in mice results in anatomical defects of secondary lymphoid tissues. Here, we report that development of Peyer’s patch (PP)-organizing centers is impaired in both NF-κB2- and RelB-deficient animals. IL-7-induced expression of lymphotoxin (LT) in intestinal cells, a crucial step in PP development, is not impaired in RelB-deficient embryos. LTβ receptor (LTβR)-deficient mice also lack PPs, and we demonstrate that LTβR signaling induces p52–RelB and classical p50–RelA heterodimers, while tumor necrosis factor (TNF) activates only RelA. LTβR-induced binding of p52–RelB requires the degradation of the inhibitory p52 precursor, p100, which is mediated by the NF-κB-inducing kinase (NIK) and the IκB kinase (IKK) complex subunit IKKα, but not IKKβ or IKKγ. Activation of RelA requires all three IKK subunits, but is independent of NIK. Finally, we show that TNF increases p100 levels, resulting in the specific inhibition of RelB DNA binding via the C-terminus of p100. Our data indicate an important role of p52–RelB heterodimers in lymphoid organ development downstream of LTβR, NIK and IKKα. PMID:12505990

  9. 27 CFR 21.65 - Formula No. 38-B.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Cinnamic aldehyde, N.F. IX. Cinnamon oil, N.F. Citronella oil, natural. Clove oil, N.F. Coal tar, U.S.P..., terpeneless. Spike lavender oil, natural. Storax, U.S.P. Thyme oil, N.F. XII. Thymol, N.F. Tolu balsam, U.S.P... the denaturant for analysis. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations...

  10. 27 CFR 21.65 - Formula No. 38-B.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Cinnamic aldehyde, N.F. IX. Cinnamon oil, N.F. Citronella oil, natural. Clove oil, N.F. Coal tar, U.S.P..., terpeneless. Spike lavender oil, natural. Storax, U.S.P. Thyme oil, N.F. XII. Thymol, N.F. Tolu balsam, U.S.P... the denaturant for analysis. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations...

  11. 27 CFR 21.65 - Formula No. 38-B.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Cinnamic aldehyde, N.F. IX. Cinnamon oil, N.F. Citronella oil, natural. Clove oil, N.F. Coal tar, U.S.P..., terpeneless. Spike lavender oil, natural. Storax, U.S.P. Thyme oil, N.F. XII. Thymol, N.F. Tolu balsam, U.S.P... the denaturant for analysis. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations...

  12. 27 CFR 21.65 - Formula No. 38-B.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Cinnamic aldehyde, N.F. IX. Cinnamon oil, N.F. Citronella oil, natural. Clove oil, N.F. Coal tar, U.S.P..., terpeneless. Spike lavender oil, natural. Storax, U.S.P. Thyme oil, N.F. XII. Thymol, N.F. Tolu balsam, U.S.P... the denaturant for analysis. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations...

  13. 27 CFR 21.65 - Formula No. 38-B.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Cinnamic aldehyde, N.F. IX. Cinnamon oil, N.F. Citronella oil, natural. Clove oil, N.F. Coal tar, U.S.P..., terpeneless. Spike lavender oil, natural. Storax, U.S.P. Thyme oil, N.F. XII. Thymol, N.F. Tolu balsam, U.S.P... the denaturant for analysis. (b) Authorized uses. (1) As a solvent: 111.Hair and scalp preparations...

  14. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  15. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-09-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E₂ (PGE₂), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells.

  16. Identification and characterization of NF-YB family genes in tung tree.

    PubMed

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  17. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells.

    PubMed

    Salazar, G; Huang, J; Feresin, R G; Zhao, Y; Griendling, K K

    2017-07-01

    The role of oxidative stress and inflammation in the development and progression of cardiovascular diseases (CVD) is well established. Increases in oxidative stress can further exacerbate the inflammatory response and lead to cellular senescence. We previously reported that angiotensin II (Ang II) and zinc increase reactive oxygen species (ROS) and cause senescence of vascular smooth muscle cells (VSMCs) and that senescence induced by Ang II is a zinc-dependent process. Zinc stimulated NADPH oxidase (Nox) activity; however, the role of Nox isoforms in zinc effects was not determined. Here, we show that downregulation of Nox1, but not Nox4, by siRNA prevented both Ang II- and zinc-induced senescence in VSMCs. On the other hand, overexpression of Nox1 induced senescence, which was associated with reduced proliferation, reduced expression of telomerase and increased DNA damage. Zinc increased Nox1 protein expression, which was inhibited by chelation of zinc with TPEN and by overexpression of the zinc exporters ZnT3 and ZnT10. These transporters work to reduce cytosolic zinc, suggesting that increased cytosolic zinc mediates Nox1 upregulation. Other metals including copper, iron, cobalt and manganese failed to upregulate Nox1, suggesting that this pathway is zinc specific. Nox1 upregulation was inhibited by actinomycin D (ACD), an inhibitor of transcription, by inhibition of NF-κB, a known Nox1 transcriptional regulator and by N-acetyl cysteine (NAC) and MitoTEMPO, suggesting that NF-κB and mitochondrial ROS mediate zinc effects. Supporting this idea, we found that zinc increased NF-κB activation in the cytosol, stimulated the translocation of the p65 subunit to the nucleus, and that zinc accumulated in mitochondria increasing mitochondrial ROS, measured using MitoSox. Further, zinc-induced senescence was reduced by inhibition of NF-κB or reduction of mitochondrial ROS with MitoTEMPO. NF-κB activity was also reduced by MitoTEMPO, suggesting that mitochondrial ROS

  18. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  19. Characterization of a novel curcumin analog P1 as potent inhibitor of the NF-κB signaling pathway with distinct mechanisms

    PubMed Central

    Peng, Yan-min; Zheng, Jian-bin; Zhou, Yu-bo; Li, Jia

    2013-01-01

    Aim: Curcumin has shown promising anticancer activity, which relies on its inhibition on NF-κB pathway. In this study, we characterized the pharmacological profile of a novel curcumin analog P1 and elucidate the related mechanisms. Methods: HEK293/NF-κB cells, stably transfected with an NF-κB-responsive luciferase reporter plasmid, were generated for high-throughput screen (HTS). Eight cancer cell lines, including PC3, COLO 205, HeLa cells etc. were tested. Cell viability was assessed using the sulforhodamine B (SRB) assays. Cell apoptosis was evaluated using FACS, immunocytochemistry, and Western blotting. H2-DCFDA and MitoSOX Red were used to detect cellular and mitochondrial reactive oxygen species (ROS). The mitochondrial function was evaluated using mitochondrial oxygen consumption assay. Results: P1, a tropinone curcumin, was found in HTS targeting the NF-κB pathway. Its IC50 value in inhibition of TNF-α-induced NF-κB activation was 0.8 μmol/L, whereas its IC50 values in inhibiting the growth of A549 and HeLa cells were 1.24 and 0.69 μmol/L, respectively, which was 20- to 30-fold more potent than curcumin. The inhibition of P1 on the NF-κB pathway was further addressed in HeLa cells. The compound up to 10 μmol/L did not affect the binding of NF-κB to DNA, but markedly inhibited NF-κB nuclear translocation, IκB degradation and IκB kinase phosphorylation. The compound (1 and 3 μmol/L) concentration-dependently induced ROS generation, whereas curcumin up to 20 μmol/L had no effect. P1-induced ROS generation was mainly localized in mitochondria, and reversed by NAC. Moreover, the compound significantly enhanced TNF-α-induced apoptosis. Conclusion: P1 is a novel curcumin analog with potent anticancer activities, which exerts a distinct inhibition on the NF-κB pathway. PMID:23603982

  20. Distinct roles of NF-{kappa}B p50 in the regulation of acetaminophen-induced inflammatory mediator production and hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dambach, Donna M.; Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, NJ 08543; Durham, Stephen K.

    2006-03-01

    Oxidative stress plays an important role in acetaminophen (APAP)-induced hepatotoxicity. In addition to inducing direct cellular damage, oxidants can activate transcription factors including NF-{kappa}B, which regulate the production of inflammatory mediators implicated in hepatotoxicity. Here, we investigated the role of APAP-induced oxidative stress and NF-{kappa}B in inflammatory mediator production. Treatment of mice with APAP (300 mg/kg, i.p.) resulted in centrilobular hepatic necrosis and increased serum aminotransferase levels. This was correlated with depletion of hepatic glutathione and CuZn superoxide dismutase (SOD). APAP administration also increased expression of the proinflammatory mediators, interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF{alpha}), macrophage chemotactic protein-1 (MCP-1), andmore » KC/gro, and the anti-inflammatory cytokine, interleukin-10 (IL-10). Pretreatment of mice with the antioxidant, N-acetylcysteine (NAC) prevented APAP-induced depletion of glutathione and CuZnSOD, as well as hepatotoxicity. NAC also abrogated APAP-induced increases in TNF{alpha}, KC/gro, and IL-10, but augmented expression of the anti-inflammatory cytokines interleukin-4 (IL-4) and transforming growth factor-{beta} (TGF{beta}). No effects were observed on IL-1{beta} or MCP-1 expression. To determine if NF-{kappa}B plays a role in regulating mediator production, we used transgenic mice with a targeted disruption of the gene for NF-{kappa}B p50. As observed with NAC pretreatment, the loss of NF-{kappa}B p50 was associated with decreased ability of APAP to upregulate TNF{alpha}, KC/gro, and IL-10 expression and increased expression of IL-4 and TGF{beta}. However, in contrast to NAC pretreatment, the loss of p50 had no effect on APAP-induced hepatotoxicity. These data demonstrate that APAP-induced cytokine expression in the liver is influenced by oxidative stress and that this is dependent, in part, on NF-{kappa}B. However, NF-{kappa}B p50

  1. Chemopreventive activity of GEN-27, a genistein derivative, in colitis-associated cancer is mediated by p65-CDX2-β-catenin axis

    PubMed Central

    Wang, Hong; Fan, Huimin; Li, Yan; Wang, Jianing; Zhang, Xu; Lu, Jinrong; Ji, Hui; Hu, Rong

    2016-01-01

    Nonresolving inflammation in the intestine predisposes individuals to colitis-associated colorectal cancer (CAC), which leads to high morbidity and mortality. Here we show that genistein-27 (GEN-27), a derivative of genistein, inhibited proliferation of human colorectal cancer cells through inhibiting β-catenin activity. Our results showed that GEN-27 increased expressions of adenomatous polyposis coli (APC) and axis inhibition protein 2 (AXIN2), and reduced β-catenin nuclear localization, which resulted from the inhibition of NF-κB/p65 nuclear localization and up-regulation of caudal-related homeobox transcription factor 2 (CDX2). Furthermore, GEN-27 decreased binding of p65 to the silencer region of CDX2 and increased binding of CDX2 to the promoter regions of APC and AXIN2, thus inhibiting the activation of β-catenin induced by TNF-α. Importantly, GEN-27 protected mice from azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon carcinogenesis, with reduced mortality, tumor number and tumor volume. Histopathology, immunohistochemistry and flow cytometry revealed that dietary GEN-27 significantly decreased secretion of proinflammatory cytokines and macrophage infiltration. Moreover, GEN-27 inhibited AOM/DSS-induced p65 and β-catenin nuclear translocation, while promoted the expression of CDX2, APC, and AXIN2. Taken together, our findings demonstrate that the anti-proliferation effect of GEN-27 in vitro and the prevention of CAC in vivo is mediated by p65-CDX2-β-catenin axis via inhibiting β-catenin target genes. Our results imply that GEN-27 could be a promising candidate for the chemoprevention of CAC. PMID:26910375

  2. BAG3 protects against hyperthermic stress by modulating NF-κB and ERK activities in human retinoblastoma cells.

    PubMed

    Yunoki, Tatsuya; Tabuchi, Yoshiaki; Hayashi, Atsushi; Kondo, Takashi

    2015-03-01

    BCL2-associated athanogene 3 (BAG3), a co-chaperone of HSP70, is a cytoprotective and anti-apoptotic protein that acts against various stresses, including heat stress. Here, we examined the effect of BAG3 on the sensitivity of human retinoblastoma cells to hyperthermia (HT). We examined the effects of BAG3 knockdown on the sensitivity of Y79 and WERI-Rb-1cells to HT (44 °C, 1 h) by evaluating apoptosis and cell proliferation using western blotting, real-time quantitative PCR (qPCR), flow cytometry, and a WST-8 assay kit. Furthermore, we examined the effects of activating nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) using western blotting and real time qPCR. HT induced considerable apoptosis along with the activation of caspase-3 and chromatin condensation. The sensitivity of Y79 and WERI-Rb-1 cells to HT was significantly enhanced by BAG3 knockdown. Compared to HT alone, the combination of BAG3 knockdown and HT reduced phosphorylation of the inhibitors of kappa B α (IκBα) and p65, a subunit of NF-κB, and degraded IκB kinase γ (IKKγ) during the recovery period after HT. Furthermore, BAG3 knockdown increased the HT-induced phosphorylation of ERK after HT treatment, and the ERK inhibitor U0126 significantly improved the viability of the cells treated with a combination of BAG3 knockdown and HT. The silencing of BAG3 seems to enhance the effects of HT, at least in part, by maintaining HT-induced inactivity of NF-κB and the phosphorylation of ERK. These findings indicate that BAG3 may be a potential molecular target for modifying the outcomes of HT in retinoblastoma.

  3. Genome-wide characterization and expression analysis of citrus NUCLEAR FACTOR-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance.

    PubMed

    Pereira, Suzam L S; Martins, Cristina P S; Sousa, Aurizangela O; Camillo, Luciana R; Araújo, Caroline P; Alcantara, Grazielle M; Camargo, Danielle S; Cidade, Luciana C; de Almeida, Alex-Alan F; Costa, Marcio G C

    2018-01-01

    Nuclear factor Y (NF-Y) is a ubiquitous transcription factor found in eukaryotes. It is composed of three distinct subunits called NF-YA, NF-YB and NF-YC. NF-Ys have been identified as key regulators of multiple pathways in the control of development and tolerance to biotic and abiotic factors. The present study aimed to identify and characterize the complete repertoire of genes coding for NF-Y in citrus, as well as to perform the functional characterization of one of its members, namely CsNFYA5, in transgenic tobacco plants. A total of 22 genes coding for NF-Y were identified in the genomes of sweet orange (Citrus sinensis) and Clementine mandarin (C. clementina), including six CsNF-YAs, 11 CsNF-YBs and five CsNF-YCs. Phylogenetic analyses showed that there is a NF-Y orthologous in the Clementine genome for each sweet orange NF-Y gene; this was not observed when compared to Arabidopsis thaliana. CsNF-Y proteins shared the same conserved domains with their orthologous proteins in other organisms, including mouse. Analysis of gene expression by RNA-seq and EST data demonstrated that CsNF-Ys have a tissue-specific and stress inducible expression profile. qRT-PCR analysis revealed that CsNF-YA5 exhibits differential expression in response to water deficit in leaves and roots of citrus plants. Overexpression of CsNF-YA5 in transgenic tobacco plants contributed to the reduction of H2O2 production under dehydration conditions and increased plant growth and photosynthetic rate under normal conditions and drought stress. These biochemical and physiological responses to drought stress promoted by CsNF-YA5 may confer a productivity advantage in environments with frequent short-term soil water deficit.

  4. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  5. NF-κB oscillations translate into functionally related patterns of gene expression

    PubMed Central

    Zambrano, Samuel; De Toma, Ilario; Piffer, Arianna; Bianchi, Marco E; Agresti, Alessandra

    2016-01-01

    Several transcription factors (TFs) oscillate, periodically relocating between the cytoplasm and the nucleus. NF-κB, which plays key roles in inflammation and cancer, displays oscillations whose biological advantage remains unclear. Recent work indicated that NF-κB displays sustained oscillations that can be entrained, that is, reach a persistent synchronized state through small periodic perturbations. We show here that for our GFP-p65 knock-in cells NF-κB behaves as a damped oscillator able to synchronize to a variety of periodic external perturbations with no memory. We imposed synchronous dynamics to prove that transcription of NF-κB-controlled genes also oscillates, but mature transcript levels follow three distinct patterns. Two sets of transcripts accumulate fast or slowly, respectively. Another set, comprising chemokine and chemokine receptor mRNAs, oscillates and resets at each new stimulus, with no memory of the past. We propose that TF oscillatory dynamics is a means of segmenting time to provide renewing opportunity windows for decision. DOI: http://dx.doi.org/10.7554/eLife.09100.001 PMID:26765569

  6. Extracts of Bauhinia championii (Benth.) Benth. inhibit NF-B-signaling in a rat model of collagen-induced arthritis and primary synovial cells.

    PubMed

    Xu, Wei; Huang, Mingqing; Zhang, Yuqin; Li, Huang; Zheng, Haiyin; Yu, Lishuang; Chu, Kedan

    2016-06-05

    Bauhinia championii (Benth.) Benth. is used in Chinese traditional medicine to treat arthritis, especially has been used a long time ago on rheumatoid arthritis (RA) in She ethnic minority group. To investigate the anti-RA effect of Bauhinia championii (Benth.) Benth ethyl acetate extract (BCBEE) and the molecular bases of it. BCBEE was studied on a rat model of RA induced by Ⅱcollagen in vivo, as well as on primary synovial cells in vitro. After BCBEE treatment, in vivo, it was showed that paw and joint edema was inhibited, pathological joint changes was ameliorated and the levels of interleukin (IL)-1β and tumor necrosis factor-(TNF-α) was decreased significantly. The protein and mRNA expressions of nuclear factor-B (NF-κB)(p65), IκB, p-IκB and IκB kinase beta (IκKβ) were also down-regulated. Moreover, the in vitro study revealed that BCBEE treatment inhibited primary synovial cells proliferation, and promoted down-regulation of NF-κB(p65), IκB, p-IκB and IκKβ. Taken together, the present study demonstrates that BCBEE produces a protection in a rat model of RA induced by Ⅱcollagen via inhibiting paw and joint edema, ameliorating pathological joint changes and regulating the levels of cytokines and its action mechanism maybe is via down-regulating NF-κB(p65), IκB, p-IκB and IκKβ expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways.

    PubMed

    Chen, Xiao-Wen; Liu, Wen-Ting; Wang, Yu-Xian; Chen, Wen-Jing; Li, Hong-Yu; Chen, Yi-Hua; Du, Xiao-Yan; Peng, Fen-Fen; Zhou, Wei-Dong; Xu, Zhao-Zhong; Long, Hai-Bo

    2016-07-01

    The aim of this research was to investigate the effects of cyclopropanyldehydrocostunolide (also named LJ), a derivative of sesquiterpene lactones (SLs), on high glucose (HG)-induced podocyte injury and the associated molecular mechanisms. Differentiated mouse podocytes were incubated in different treatments. The migration and albumin filtration of podocytes were examined by Transwell filters. The protein and mRNA levels of MCP-1 were measured using enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR (q-PCR). Protein expression and phosphorylation were detected by western blot, and the nuclear translocation of NF-κB was performed with a confocal microscope. The gene expression of the receptor activator for NF-κB (RANK) was silenced by small interfering RNA (siRNA). Our results showed that HG enhanced migration, albumin filtration and MCP-1 expression in podocytes. At the molecular level, HG promoted the phosphorylation of NF-κB/p65, IKKβ, IκBα, mitogen-activated protein kinase (MAPK) and the nuclear translocation of p65. LJ reversed the effects of HG in a dose-dependent manner. Furthermore, our data provided the first demonstration that the receptor activator for NF-κB ligand (RANKL) and its cognate receptor RANK were overexpressed in HG-induced podocytes and were downregulated by LJ. RANK siRNA also attenuated HG-induced podocyte injury and markedly inhibited the activation of NF-κB and MAPK signaling pathways. LJ attenuates HG-induced podocyte injury by suppressing RANKL/RANK-mediated NF-κB and MAPK signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes.

    PubMed

    Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun

    2015-07-01

    Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. SCFβ-TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase

    PubMed Central

    Orian, Amir; Gonen, Hedva; Bercovich, Beatrice; Fajerman, Ifat; Eytan, Esther; Israël, Alain; Mercurio, Frank; Iwai, Kazuhiro; Schwartz, Alan L.; Ciechanover, Aaron

    2000-01-01

    Processing of the p105 precursor to form the active subunit p50 of the NF-κB transcription factor is a unique case in which the ubiquitin system is involved in limited processing rather than in complete destruction of the target substrate. A glycine-rich region along with a downstream acidic domain have been demonstrated to be essential for processing. Here we demonstrate that following IκB kinase (IκK)-mediated phosphorylation, the C-terminal domain of p105 (residues 918–934) serves as a recognition motif for the SCFβ-TrCP ubiquitin ligase. Expression of IκKβ dramatically increases processing of wild-type p105, but not of p105-Δ918–934. Dominant-negative β-TrCP inhibits IκK-dependent processing. Furthermore, the ligase and wild-type p105 but not p105-Δ918–934 associate physically following phosphorylation. In vitro, SCFβ-TrCP specifically conjugates and promotes processing of phosphorylated p105. Importantly, the TrCP recognition motif in p105 is different from that described for IκBs, β-catenin and human immunodeficiency virus type 1 Vpu. Since p105-Δ918–934 is also conjugated and processed, it appears that p105 can be recognized under different physiological conditions by two different ligases, targeting two distinct recognition motifs. PMID:10835356

  10. NOS1-derived nitric oxide promotes NF-κB transcriptional activity through inhibition of suppressor of cytokine signaling-1

    PubMed Central

    Baig, Mirza Saqib; Zaichick, Sofia V.; Mao, Mao; de Abreu, Andre L.; Bakhshi, Farnaz R.; Hart, Peter C.; Saqib, Uzma; Deng, Jing; Chatterjee, Saurabh; Block, Michelle L.; Vogel, Stephen M.; Malik, Asrar B.; Consolaro, Marcia E.L.; Christman, John W.; Minshall, Richard D.

    2015-01-01

    The NF-κB pathway is central to the regulation of inflammation. Here, we demonstrate that the low-output nitric oxide (NO) synthase 1 (NOS1 or nNOS) plays a critical role in the inflammatory response by promoting the activity of NF-κB. Specifically, NOS1-derived NO production in macrophages leads to proteolysis of suppressor of cytokine signaling 1 (SOCS1), alleviating its repression of NF-κB transcriptional activity. As a result, NOS1−/− mice demonstrate reduced cytokine production, lung injury, and mortality when subjected to two different models of sepsis. Isolated NOS1−/− macrophages demonstrate similar defects in proinflammatory transcription on challenge with Gram-negative bacterial LPS. Consistently, we found that activated NOS1−/− macrophages contain increased SOCS1 protein and decreased levels of p65 protein compared with wild-type cells. NOS1-dependent S-nitrosation of SOCS1 impairs its binding to p65 and targets SOCS1 for proteolysis. Treatment of NOS1−/− cells with exogenous NO rescues both SOCS1 degradation and stabilization of p65 protein. Point mutation analysis demonstrated that both Cys147 and Cys179 on SOCS1 are required for its NO-dependent degradation. These findings demonstrate a fundamental role for NOS1-derived NO in regulating TLR4-mediated inflammatory gene transcription, as well as the intensity and duration of the resulting host immune response. PMID:26324446

  11. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Jana V., E-mail: Jana.maier@kit.edu; Volz, Yvonne; Berger, Caroline

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulatemore » the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.« less

  12. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells

    PubMed Central

    Govindasamy, Kanimozhi; Ramasamy, Karthikeyan; Muthusamy, Ganesan; Shanmugam, Mohana; Thangaiyan, Radhiga; Robert, Beaulah Mary; Ponniresan, Veeramani kandan; Rathinaraj, Pierson

    2017-01-01

    Ultraviolet-B radiation (285–320 nm) elicits a number of cellular signaling elements. We investigated the preventive effect of linalool, a natural monoterpene, against UVB-induced oxidative imbalance, activation of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signaling in HDFa cells. We observed that linalool treatment (30 μM) prevented acute UVB-irradiation (20 mJ/cm2) mediated loss of activities of antioxidant enzymes in HDFa cells. The comet assay results illustrate that linalool significantly prevents UVB-mediated 8-deoxy guanosine formation (oxidative DNA damage) rather than UVB-induced cyclobutane pyrimidine (CPD) formation. This might be due to its ability to prevent UVB-induced ROS formation and to restore the oxidative imbalance of cells. This has been reflected in UVB-induced overexpression of MAPK and NF-κB signaling. We observed that linalool inhibited UVB-induced phosphorylation of ERK1, JNK and p38 proteins of MAPK family. Linalool inhibited UVB-induced activation of NF-κB/p65 by activating IκBa. We further observed that UVB-induced expression of TNF-α, IL6, IL-10, MMP-2 and MMP-9 was modulated by linalool treatment in HDFa cells. Thus, linalool protects the human skin cells from the oxidative damages of UVB radiation and modulates MAPK and NF-κB signaling in HDFa cells. The present findings substantiate that linalool may act as a photoprotective agent against UVB-induced skin damages. PMID:28467450

  13. Structural Motifs Involved in Ubiquitin-Mediated Processing of the NF-κB Precursor p105: Roles of the Glycine-Rich Region and a Downstream Ubiquitination Domain

    PubMed Central

    Orian, Amir; Schwartz, Alan L.; Israël, Alain; Whiteside, Simon; Kahana, Chaim; Ciechanover, Aaron

    1999-01-01

    The ubiquitin proteolytic system plays a major role in a variety of basic cellular processes. In the majority of these processes, the target proteins are completely degraded. In one exceptional case, generation of the p50 subunit of the transcriptional regulator NF-κB, the precursor protein p105 is processed in a limited manner: the N-terminal domain yields the p50 subunit, whereas the C-terminal domain is degraded. The identity of the mechanisms involved in this unique process have remained elusive. It has been shown that a Gly-rich region (GRR) at the C-terminal domain of p50 is an important processing signal. Here we show that the GRR does not interfere with conjugation of ubiquitin to p105 but probably does interfere with the processing of the ubiquitin-tagged precursor by the 26S proteasome. Structural analysis reveals that a short sequence containing a few Gly residues and a single essential Ala is sufficient to generate p50. Mechanistically, the presence of the GRR appears to stop further degradation of p50 and to stabilize the molecule. It appears that the localization of the GRR within p105 plays an important role in directing processing: transfer of the GRR within p105 or insertion of the GRR into homologous or heterologous proteins is not sufficient to promote processing in most cases, which is probably due to the requirement for an additional specific ubiquitination and/or recognition domain(s). Indeed, we have shown that amino acid residues 441 to 454 are important for processing. In particular, both Lys 441 and Lys 442 appear to serve as major ubiquitination targets, while residues 446 to 454 are independently important for processing and may serve as the ubiquitin ligase recognition motif. PMID:10207090

  14. Lapatinib-induced NF-kappaB activation sensitizes triple-negative breast cancer cells to proteasome inhibitors.

    PubMed

    Chen, Yun-Ju; Yeh, Ming-Hsin; Yu, Meng-Chieh; Wei, Ya-Ling; Chen, Wen-Shu; Chen, Jhen-Yu; Shih, Chih-Yu; Tu, Chih-Yen; Chen, Chia-Hung; Hsia, Te-Chun; Chien, Pei-Hsuan; Liu, Shu-Hui; Yu, Yung-Luen; Huang, Wei-Chien

    2013-11-12

    Triple-negative breast cancer (TNBC), a subtype of breast cancer with negative expressions of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2), is frequently diagnosed in younger women and has poor prognosis for disease-free and overall survival. Due to the lack of known oncogenic drivers for TNBC proliferation, clinical benefit from currently available targeted therapies is limited, and new therapeutic strategies are urgently needed. Triple-negative breast cancer cell lines were treated with proteasome inhibitors in combination with lapatinib (a dual epidermal growth factor receptor (EGFR)/HER2 tyrosine kinase inhibitor). Their in vitro and in vivo viability was examined by MTT assay, clonogenic analysis, and orthotopic xenograft mice model. Luciferase reporter gene, immunoblot, and RT-qPCR, immunoprecipitation assays were used to investigate the molecular mechanisms of action. Our data showed that nuclear factor (NF)-κB activation was elicited by lapatinib, independent of EGFR/HER2 inhibition, in TNBCs. Lapatinib-induced constitutive activation of NF-κB involved Src family kinase (SFK)-dependent p65 and IκBα phosphorylations, and rendered these cells more vulnerable to NF-κB inhibition by p65 small hairpin RNA. Lapatinib but not other EGFR inhibitors synergized the anti-tumor activity of proteasome inhibitors both in vitro and in vivo. Our results suggest that treatment of TNBCs with lapatinib may enhance their oncogene addiction to NF-κB, and thus augment the anti-tumor activity of proteasome inhibitors. These findings suggest that combination therapy of a proteasome inhibitor with lapatinib may benefit TNBC patients.

  15. The protective effects of PCPA against monocrotaline-induced pulmonary arterial hypertension are mediated through the downregulation of NFAT-1 and NF-κB.

    PubMed

    Bai, Yang; Li, Zhong-Xia; Wang, Huai-Liang; Lian, Guo-Chao; Wang, Yun

    2017-07-01

    Inflammation and remodeling play a role in the pathogenesis of pulmonary arterial hypertension (PAH). Nuclear factor-κB (NF-κB) and nuclear factor of activated T cells-1 (NFAT-1) participate in inflammation and remodeling in a number of diseases. As a tryptophan hydroxylase inhibitor, 4-chloro-DL-phenylalanine (PCPA) had been reported to exert anti-inflammatory and remodeling effects. Therefore, we hypothesized that PCPA may attenuate monocrotaline (MCT)-induced PAH through the NFAT-1 and NF-κB signaling pathways. In order to confirm our hypothesis, we divided 68 Sprague-Dawley male rats into 4 groups as follows: the control, MCT, MCT + P1 and MCT + P2 groups. MCT was administered at a dose of 60 mg/kg once via intraperitoneal injection. PCPA was administered via intraperitoneal injection at a dose of 50 or 100 mg/kg once daily for 21 consecutive days. We then measured the hemodynamic index and morphological analysis was carried out on the lung tissues. Western blot analysis and immunohistochemistry were used to examine the levels of NFAT-1 and NF-κB p-65. The expression levels of phosphorylated inhibitor of NF-κB kinase (p-IKK), IKK, phosphorylated extracellular signal‑regulated kinase (p-ERK), ERK, intercellular adhesion molecule-1 (ICAM-1) and inter-leukin-6 (IL-6) were examined by western blot analysis. MCT was found to significantly induce PAH, with inflammation and remodeling of the lung tissues. This was associatd with an increased expression of NFAT-1, p-IKK, p-ERK and nuclear p65. PCPA significantly attenuated MCT-induced inflammation and arterial remodeling, and decreased the expression of NFAT-1, as well as that of relevant proteins of the NF-κB signaling pathway. The above-mentioned findings suggest that the inhibitory effects of PCPA on MCT-induced inflammation and arterial remodeling are related to the downregulation of the NFAT-1 and NF-κB signaling pathways in rats with PAH.

  16. IL-1β upregulates Muc5ac expression via NF-κB-induced HIF-1α in asthma.

    PubMed

    Wu, Shouzhen; Li, Hailong; Yu, Lijuan; Wang, Ning; Li, Xu; Chen, Wei

    2017-12-01

    The manifest and important feature in respiratory diseases, including asthma and COPD (chronic obstructive pulmonary disease), is the increased numbers and hypersecretion of goblet cells and overexpression of mucins, especially Muc5ac. Many proinflammatory cytokines play important roles in goblet cell metaplasia and overproduction of Muc5ac. However, the effect of IL-1β on Muc5ac expression in asthma remains unknown. Here, we detected the correlation between IL-1β and Muc5ac in asthma patients and further explored the mechanism of IL-1β-induced Muc5ac overexpression. Our results showed that Muc5ac and IL-1β were up-regulated in 41 patients with asthma and that Muc5ac overexpression was related with IL-1β in asthma (R 2 =0.668, p≪0.001). Furthermore, the correlation between IL-1β and Muc5ac is higher in severe group than that in moderate group. In vitro experiments with normal human bronchial epithelial cells (NHBECs) showed that IL-1β up-regulated Muc5ac expression in NHBEC in a time- and dosage-dependent manner. Hypoxia-induced HIF-1α was responsible for Muc5ac expression mediated by IL-1β. Knocking down HIF-1α by siRNA decreased Muc5ac expression under hypoxia even in IL-1β-treated NHBEC cells. Luciferase reporter assay showed that HIF-1α enhanced Muc5ac promoter activity in HEK293T cells. HIF-1α could specifically bind to the promoter of Muc5ac by EMSA. The correlation among IL-1β, HIF-1α and Muc5ac was observed in patients with asthma. Mechanically, NF-κB activation was essential to IL-1β-induced HIF-1α upregulation via the canonical pathway of NF-κB. The level of nuclear p65, a subunit of NF-κB, was obviously increased in NHBEC cells under IL-1β treatment. IL-1β did not change either HIF-1α or Muc5ac expression when inhibiting NF-κB signaling with Bay11-7082, an inhibitor of NF-κB. Collectively, we concluded that IL-1β up-regulated Muc5ac expression via NF-κB-induced HIF-1α in asthma and provided a potential therapeutic target for

  17. Interference with Intraepithelial TNF-α Signaling Inhibits CD8+ T-Cell-Mediated Lung Injury in Influenza Infection

    PubMed Central

    Srikiatkhachorn, Anon; Chintapalli, Jyothi; Liu, Jun; Jamaluddin, Mohammad; Harrod, Kevin S.; Whitsett, Jeffrey A.; Enelow, Richard I.

    2010-01-01

    Abstract CD8+ T-cell-mediated pulmonary immunopathology in respiratory virus infection is mediated in large part by antigen-specific TNF-α expression by antiviral effector T cells, which results in epithelial chemokine expression and inflammatory infiltration of the lung. To further define the signaling events leading to lung epithelial chemokine production in response to CD8+ T-cell antigen recognition, we expressed the adenoviral 14.7K protein, a putative inhibitor of TNF-α signaling, in the distal lung epithelium, and analyzed the functional consequences. Distal airway epithelial expression of 14.7K resulted in a significant reduction in lung injury resulting from severe influenza pneumonia. In vitro analysis demonstrated a significant reduction in the expression of an important mediator of injury, CCL2, in response to CD8+ T-cell recognition, or to TNF-α. The inhibitory effect of 14.7K on CCL2 expression resulted from attenuation of NF-κB activity, which was independent of Iκ-Bα degradation or nuclear translocation of the p65 subunit. Furthermore, epithelial 14.7K expression inhibited serine phosphorylation of Akt, GSK-3β, and the p65 subunit of NF-κB, as well as recruitment of NF-κB for DNA binding in vivo. These results provide insight into the mechanism of 14.7K inhibition of NF-κB activity, as well as further elucidate the mechanisms involved in the induction of T-cell-mediated immunopathology in respiratory virus infection. PMID:21142450

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jue-Yeon; Seo, Yoo-Na; Park, Hyun-Jung

    Highlights: Black-Right-Pointing-Pointer HBP sequence identified from HB-EGF has cell penetration activity. Black-Right-Pointing-Pointer HBP inhibits the NF-{kappa}B dependent inflammatory responses. Black-Right-Pointing-Pointer HBP directly blocks phosphorylation and degradation of I{kappa}B{alpha}. Black-Right-Pointing-Pointer HBP inhibits nuclear translocation of NF-{kappa}B p65 subunit. -- Abstract: A heparin-binding peptide (HBP) sequence from human heparin-binding epidermal growth factor-like growth factor (HB-EGF) was identified and was shown to exhibit cell penetration activity. This cell penetration induced an anti-inflammatory reaction in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. HBP penetrated the cell membrane during the 10 min treatment and reduced the LPS-induced production of nitric oxide (NO), inducible nitric oxide synthase (iNOS),more » and cytokines (TNF-{alpha} and IL-6) in a concentration-dependent manner. Additionally, HBP inhibited the LPS-induced upregulation of cytokines, including TNF-{alpha} and IL-6, and decreased the interstitial infiltration of polymorphonuclear leukocytes in a lung inflammation model. HBP inhibited NF-{kappa}B-dependent inflammatory responses by directly blocking the phosphorylation and degradation of I{kappa}B{alpha} and by subsequently inhibiting the nuclear translocation of the p65 subunit of NF-{kappa}B. Taken together, this novel HBP may be potentially useful candidate for anti-inflammatory treatments and can be combined with other drugs of interest to transport attached molecules into cells.« less

  19. NF-κB Directly Regulates Fas Transcription to Modulate Fas-mediated Apoptosis and Tumor Suppression*

    PubMed Central

    Liu, Feiyan; Bardhan, Kankana; Yang, Dafeng; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Liles, Georgia B.; Lee, Jeffrey R.; Liu, Kebin

    2012-01-01

    Fas is a member of the death receptor family. Stimulation of Fas leads to induction of apoptotic signals, such as caspase 8 activation, as well as “non-apoptotic” cellular responses, notably NF-κB activation. Convincing experimental data have identified NF-κB as a critical promoter of cancer development, creating a solid rationale for the development of antitumor therapy that suppresses NF-κB activity. On the other hand, compelling data have also shown that NF-κB activity enhances tumor cell sensitivity to apoptosis and senescence. Furthermore, although stimulation of Fas activates NF-κB, the function of NF-κB in the Fas-mediated apoptosis pathway remains largely undefined. In this study, we observed that deficiency of either Fas or FasL resulted in significantly increased incidence of 3-methylcholanthrene-induced spontaneous sarcoma development in mice. Furthermore, Fas-deficient mice also exhibited significantly greater incidence of azoxymethane and dextran sodium sulfate-induced colon carcinoma. In addition, human colorectal cancer patients with high Fas protein in their tumor cells had a longer time before recurrence occurred. Engagement of Fas with FasL triggered NF-κB activation. Interestingly, canonical NF-κB was found to directly bind to the FAS promoter. Blocking canonical NF-κB activation diminished Fas expression, whereas blocking alternate NF-κB increased Fas expression in human carcinoma cells. Moreover, although canonical NF-κB protected mouse embryo fibroblast (MEF) cells from TNFα-induced apoptosis, knocking out p65 diminished Fas expression in MEF cells, resulting in inhibition of FasL-induced caspase 8 activation and apoptosis. In contrast, knocking out p52 increased Fas expression in MEF cells. Our observations suggest that canonical NF-κB is a Fas transcription activator and alternate NF-κB is a Fas transcription repressor, and Fas functions as a suppressor of spontaneous sarcoma and colon carcinoma. PMID:22669972

  20. Variation in GABA-A subunit gene copy number in an autistic patient with mosaic 4 p duplication (p12p16).

    PubMed

    Kakinuma, Hiroaki; Ozaki, Mamoru; Sato, Hitoshi; Takahashi, Hiroaki

    2008-09-05

    Autism has been associated with chromosomal aberrations, including duplications at chromosome 4, and the identification of genetic factors contributing to the etiology of this disease is the focus of much research. Here we report a Japanese girl with mosaic of chromosome 4p duplication, mos 46,XX,dup(4)(p12p16)[54]/46,XX[6], who was diagnosed with autism at 3 years of age. Fluorescence in situ hybridization (FISH) with probes covering the region spanning a cluster of the gamma aminobutyric acid A (GABA-A) receptor subunit genes in the proximal short arm of chromosome 4 demonstrated total three signals for the GABRG1, GABRA4, and GABRA2 genes, but only two signals for GABRB1. This suggests that aberrant copy number of the GABA-A receptor subunit genes may contribute to the etiology of autism in this patient. 2007 Wiley-Liss, Inc.

  1. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene

    PubMed Central

    Nakayama, Keiko; Hatakeyama, Shigetsugu; Maruyama, Shun-ichiro; Kikuchi, Akira; Onoé, Kazunori; Good, Robert A.; Nakayama, Keiichi I.

    2003-01-01

    β-TrCP1 (also known as Fbw1a or FWD1) is the F-box protein component of an Skp1/Cul1/F-box (SCF)-type ubiquitin ligase complex. Although biochemical studies have suggested that β-TrCP1 targets inhibitory subunit of NF-κB(IκB) proteins and β-catenin for ubiquitylation, the physiological role of β-TrCP1 in mammals has remained unclear. We have now generated mice deficient in β-TrCP1 and shown that the degradation of IκBα and IκBβ is reproducibly, but not completely, impaired in the cells of these animals. The nuclear translocation and DNA-binding activity of NF-κB as well as the ability of this transcription factor to activate a luciferase reporter gene were also inhibited in β-TrCP1–/– cells compared with those apparent in wild-type cells. The subcellular localization of β-catenin was altered markedly in β-TrCP1–/– cells. Furthermore, the rate of proliferation was reduced and both cell size and the percentage of polyploid cells were increased in embryonic fibroblasts derived from β-TrCP1–/– mice pared with the corresponding wild-type cells. These results suggest that β-TrCP1 contributes to, but is not absolutely required for, the degradation of IκB and β-catenin and the consequent regulation of the NF-κB and Wnt signaling pathways, respectively. In addition, they implicate β-TrCP1 in the maintenance of ploidy during cell-cycle progression. PMID:12843402

  2. PC4/Tis7/IFRD1 Stimulates Skeletal Muscle Regeneration and Is Involved in Myoblast Differentiation as a Regulator of MyoD and NF-κB*

    PubMed Central

    Micheli, Laura; Leonardi, Luca; Conti, Filippo; Maresca, Giovanna; Colazingari, Sandra; Mattei, Elisabetta; Lira, Sergio A.; Farioli-Vecchioli, Stefano; Caruso, Maurizia; Tirone, Felice

    2011-01-01

    In skeletal muscle cells, the PC4 (Tis7/Ifrd1) protein is known to function as a coactivator of MyoD by promoting the transcriptional activity of myocyte enhancer factor 2C (MEF2C). In this study, we show that up-regulation of PC4 in vivo in adult muscle significantly potentiates injury-induced regeneration by enhancing myogenesis. Conversely, we observe that PC4 silencing in myoblasts causes delayed exit from the cell cycle, accompanied by delayed differentiation, and we show that such an effect is MyoD-dependent. We provide evidence revealing a novel mechanism underlying the promyogenic actions of PC4, by which PC4 functions as a negative regulator of NF-κB, known to inhibit MyoD expression post-transcriptionally. In fact, up-regulation of PC4 in primary myoblasts induces the deacetylation, and hence the inactivation and nuclear export of NF-κB p65, in concomitance with induction of MyoD expression. On the contrary, PC4 silencing in myoblasts induces the acetylation and nuclear import of p65, in parallel with a decrease of MyoD levels. We also observe that PC4 potentiates the inhibition of NF-κB transcriptional activity mediated by histone deacetylases and that PC4 is able to form trimolecular complexes with p65 and HDAC3. This suggests that PC4 stimulates deacetylation of p65 by favoring the recruitment of HDAC3 to p65. As a whole, these results indicate that PC4 plays a role in muscle differentiation by controlling the MyoD pathway through multiple mechanisms, and as such, it positively regulates regenerative myogenesis. PMID:21127072

  3. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models.

    PubMed

    Nie, Jiarui; Chang, Yaning; Li, Yujia; Zhou, Yingjun; Qin, Jiawen; Sun, Zhen; Li, Haibin

    2017-10-18

    Caffeic acid phenethyl ester (CAPE), extracted from propolis, was evaluated for the ameliorative effects on insulin resistance and the mechanisms were identified, using non-insulin-dependent diabetes mellitus (NIDDM) model mice and insulin resistance (IR) model cells. After 5 weeks of CAPE supplementation, insulin sensitivity, hyperlipidemia, and peroxisome proliferator-activated receptor-α (PPAR-α) levels were improved in mice. Proinflammatory cytokines in serum and the expressions of tumor necrosis factor-alpha (TNF-α) mRNA in tissues were markedly downregulated from CAPE-treated mice. In vitro, CAPE supplement significantly improved glucose consumption, glucose uptake, glycogen content, and oxidative stress and decreased expression of glucose-6-phosphatase (G6Pase) mRNA in cells. Both in vivo and in vitro, CAPE enhanced p-Akt (Ser473) and p-insulin receptor substrate (IRS)-1 (Tyr612), but inhibited p-JNK (Thr183/Tyr185), p-NF-κB p65 (Ser536), and nuclear translocation of p-NF-κB p65 (Ser536). In summary, CAPE can ameliorate insulin resistance through modulation of JNK and NF-κB signaling pathway in mice and HepG2 cells.

  4. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation.

    PubMed

    Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D

    2015-01-01

    Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.

  5. Interaction between nuclear insulin receptor substrate-2 and NF-κB in IGF-1 induces response in breast cancer cells.

    PubMed

    Wu, Shufang; Zhou, Bo; Xu, Lin; Sun, Hongzhi

    2010-12-01

    Despite significant homology between IRS-1 and IRS-2, recent studies have revealed distinct functions for these adaptor proteins in regulating breast cancer progression. Thus far, most of the studies on breast cancer have focused upon IRS-1, the biological pattern of IRS-2 is limited. We demonstrated that depletion of endogenous IRS-2 by antisense strategies impaired cell proliferation after serum withdrawal, blunted PI3K/Akt and NF-κB activation in IGF-1 induced response in MCF-7 and BT-20 breast cancer cells. In addition, IGF-1 promote nuclear translocation of IRS-2 and NF-κB in MCF-7 and BT-20 cells. Nuclear IRS-2 interaction with NF-κB-p65 and PI3K binding tyrosine residues of IRS-2 are crucial for the NF-κB activities. Moreover, nuclear IRS-2 is recruited to the cyclin D1 promoter both in MCF-7 and BT-20 cells. The selective inhibition of NF-κB-65 abolished the occupancy of IRS-2 to the cyclin D1 promoters. Our studies suggest that IRS-2 plays a significant role by activating, at least in part, NF-κB via PI3K/Akt pathway in IGF-1-induced responses in breast cancer cells and the crosstalk between nuclear IRS-2 and NF-κB might be responsible for transcriptional progression of the breast cancer cells.

  6. Blood-based NfL

    PubMed Central

    Janelidze, Shorena; Hall, Sara; Magdalinou, Nadia; Lees, Andrew J.; Andreasson, Ulf; Norgren, Niklas; Linder, Jan; Forsgren, Lars; Constantinescu, Radu; Zetterberg, Henrik; Blennow, Kaj

    2017-01-01

    Objective: To determine if blood neurofilament light chain (NfL) protein can discriminate between Parkinson disease (PD) and atypical parkinsonian disorders (APD) with equally high diagnostic accuracy as CSF NfL, and can therefore improve the diagnostic workup of parkinsonian disorders. Methods: The study included 3 independent prospective cohorts: the Lund (n = 278) and London (n = 117) cohorts, comprising healthy controls and patients with PD, progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), as well as an early disease cohort (n = 109) of patients with PD, PSP, MSA, or CBS with disease duration ≤3 years. Blood NfL concentration was measured using an ultrasensitive single molecule array (Simoa) method, and the diagnostic accuracy to distinguish PD from APD was investigated. Results: We found strong correlations between blood and CSF concentrations of NfL (ρ ≥ 0.73–0.84, p ≤ 0.001). Blood NfL was increased in patients with MSA, PSP, and CBS (i.e., all APD groups) when compared to patients with PD as well as healthy controls in all cohorts (p < 0.001). Furthermore, in the Lund cohort, blood NfL could accurately distinguish PD from APD (area under the curve [AUC] 0.91) with similar results in both the London cohort (AUC 0.85) and the early disease cohort (AUC 0.81). Conclusions: Quantification of blood NfL concentration can be used to distinguish PD from APD. Blood-based NfL might consequently be included in the diagnostic workup of patients with parkinsonian symptoms in both primary care and specialized clinics. Classification of evidence: This study provides Class III evidence that blood NfL levels discriminate between PD and APD. PMID:28179466

  7. RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-κB2 processing by IKKα.

    PubMed

    Taniguchi, Rei; Fukushima, Hidefumi; Osawa, Kenji; Maruyama, Toshimasa; Yasuda, Hisataka; Weih, Falk; Doi, Takahiro; Maki, Kenshi; Jimi, Eijiro

    2014-03-14

    The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing.

  8. RelB-induced Expression of Cot, an MAP3K Family Member, Rescues RANKL-induced Osteoclastogenesis in Alymphoplasia Mice by Promoting NF-κB2 Processing by IKKα*

    PubMed Central

    Taniguchi, Rei; Fukushima, Hidefumi; Osawa, Kenji; Maruyama, Toshimasa; Yasuda, Hisataka; Weih, Falk; Doi, Takahiro; Maki, Kenshi; Jimi, Eijiro

    2014-01-01

    The alternative nuclear factor-κB (NF-κB) pathway, mainly the RelB-p52 heterodimer, plays important roles in bone metabolism through an unknown mechanism. We have previously reported that alymphoplasia (aly/aly) mice, which lack active NF-κB-inducing kinase (NIK), show mild osteopetrosis due to the inhibition of osteoclastogenesis. p100 retains RelB in the cytoplasm and inhibits RANKL-induced osteoclastogenesis in aly/aly cells. Furthermore, the overexpression of RelB in aly/aly cells rescues RANKL-induced osteoclastogenesis by inducing p100 processing. In contrast, the overexpression of p65 in aly/aly cells has no effect. However, the overexpression of RelB fails to rescue RANKL-induced osteoclastogenesis in the presence of p100ΔGRR, which cannot be processed to p52, suggesting that p100 processing is a key step in RelB-rescued, RANKL-induced osteoclastogenesis in aly/aly cells. In this study, Cot (cancer Osaka thyroid), an MAP3K, was up-regulated by RelB overexpression. Analysis of the Cot promoter demonstrated that p65 and RelB bound to the distal NF-κB-binding site and that RelB but not p65 bound to the proximal NF-κB-binding site in the Cot promoter. The knocking down of Cot expression significantly reduced the RANKL-induced osteoclastogenesis induced by RelB overexpression. The phosphorylation of IKKα at threonine 23 and its kinase activity were indispensable for the processing of p100 and osteoclastogenesis by RelB-induced Cot. Finally, constitutively activated Akt enhanced osteoclastogenesis by RelB-induced Cot, and a dominant-negative form of Akt significantly inhibited it. Taken together, these results indicate that the overexpression of RelB restores RANKL-induced osteoclastogenesis by activation of Akt/Cot/IKKα-induced p100 processing. PMID:24488495

  9. Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus).

    PubMed

    De Zoysa, Mahanama; Nikapitiya, Chamilani; Oh, Chulhong; Whang, Ilson; Lee, Jae-Seong; Jung, Sung-Ju; Choi, Cheol Young; Lee, Jehee

    2010-01-01

    The lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel family nuclear factor kappaB (Rel/NF-kB) are two important transcription factors which play major roles in the regulating inflammatory cytokine, apoptosis and immune related genes. Here, we report the discovery of disk abalone LITAF (AbLITAF) and Rel/NF-kB (AbRel/NF-kB) homologues and their immune responses. Full-length cDNA of AbLITAF consists of 441 bp open reading frame (ORF) that translates into putative peptide of 147 aa. Analysis of AbLITAF sequence showed it has characteristic LITAF (Zn(+2)) binding domain with two CXXC motifs. Phylogenetic analysis results further revealed that AbLITAF is a member of LITAF family. AbRel/NF-kB is 584 aa protein that contains several characteristic motifs including Rel homology domain (RHD), Rel protein signature, DNA binding motif, nuclear localization signal (NLS) and transcription factor immunoglobulin - like fold (TIG) similar to their invertebrate and vertebrate counterparts. Tissue specific analysis results showed that both AbLITAF and AbRel/NF-kB mRNA was expressed ubiquitously in all selected tissues in constitutive manner. However, constitutive expression of AbLITAF was higher than AbRel/NF-kB in all tissues except mantle. Upon immune challenge by bacteria (Vibrio alginolyticus, Vibrio parahemolyticus and Lysteria monocytogenes) and viral hemoragic septicemia virus (VHSV), AbLITAF showed the significant up-regulation in gills while AbRel/NF-kB transcription was not change significantly. Based on transcriptional response against immune challenge, we could suggest that regulation of TNF-alpha expression may have occurred mainly by LITAF activation rather than NF-kB in disk abalone. The cumulative data from other molluscs and our data with reference to TNF-alpha, LITAF and Rel/NF-kB from disk abalone provide strong evidence that LITAF and NF-kB are independent pathways likely to occur throughout the Phylum mollusca. 2010 Elsevier Ltd. All rights reserved.

  10. Ectodomain shedding of TNF receptor 1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogura, Hirotsugu; Tsukumo, Yoshinori; Department of Bioengineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501

    2008-04-01

    The transcription factor nuclear factor {kappa}B (NF-{kappa}B) plays a major role in the inducible resistance to death receptor-mediated apoptosis. It has been established that the protein synthesis inhibitor cycloheximide (CHX) sensitizes many types of cells to tumor necrosis factor (TNF)-{alpha}-induced apoptosis, mainly due to its ability to block de novo synthesis of cellular FLICE-inhibitory protein (c-FLIP). Nevertheless, we have surprisingly found that CHX, as well as its structural analogue acetoxycycloheximide (Ac-CHX), prevents TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8 in human lung carcinoma A549 cells. Both CHX and Ac-CHX reduced the expression of cell surface TNF receptor 1 (TNF-R1) in amore » dose-dependent manner, while Ac-CHX was approximately 100-fold more effective than CHX. Consistent with this observation, Ac-CHX induced the proteolytic cleavage of TNF-R1 and its release into the culture medium. CHX and Ac-CHX profoundly decreased constitutive and inducible expression of c-FLIP, whereas these compounds potentiated TNF-{alpha}-induced caspase-8 activation only when metalloprotease inhibitors were present. Thus, our results indicate that ectodomain shedding of TNF-R1 induced by protein synthesis inhibitors regulates TNF-{alpha}-mediated activation of NF-{kappa}B and caspase-8.« less

  11. Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice.

    PubMed

    Zhu, Tao; Wu, Xiao-Ling; Zhang, Wei; Xiao, Min

    2015-08-26

    Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.

  12. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  13. The Nuclear Signaling of NF-κB – Current Knowledge, New Insights, and Future Perspectives

    PubMed Central

    Wan, Fengyi; Lenardo, Michael J.

    2011-01-01

    The nuclear factor-kappa B (NF-κB) transcription factor plays a critical role in diverse cellular processes associated with proliferation, cell death, development, as well as innate and adaptive immune responses. NF-κB is normally sequestered in the cytoplasm by a family of inhibitory proteins known as IκBs. The signal pathways leading to the liberation and nuclear accumulation of NF-κB, which can be activated by a wide variety of stimuli, have been extensively studied in the past two decades. After gaining access to the nucleus, NF-κB must be actively regulated to execute its fundamental function as a transcription factor. Recent studies have highlighted the importance of nuclear signaling in the regulation of NF-κB transcriptional activity. A non-Rel subunit of NF-κB, ribosomal protein S3 (RPS3), and numerous other nuclear regulators of NF-κB including Akirin, Nurr1, SIRT6, and others, have recently been identified, unveiling novel and exciting layers of regulatory specificity for NF-κB in the nucleus. Further insights into the nuclear events that govern NF-κB function will deepen our understanding of the elegant control of its transcriptional activity and better inform the potential rational design of therapeutics for NF-κB-associated diseases. PMID:19997086

  14. Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARγ Signalling in Cigarette Smoke–Stimulated Macrophages

    PubMed Central

    Simone, Rossella E.; Russo, Marco; Catalano, Assunta; Monego, Giovanni; Froehlich, Kati; Boehm, Volker; Palozza, Paola

    2011-01-01

    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages. PMID:21625550

  15. Overexpression of StNF-YB3.1 reduces photosynthetic capacity and tuber production, and promotes ABA-mediated stomatal closure in potato (Solanum tuberosum L.).

    PubMed

    Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming

    2017-08-01

    Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Coriolus versicolor mushroom polysaccharides exert immunoregulatory effects on mouse B cells via membrane Ig and TLR-4 to activate the MAPK and NF-κB signaling pathways.

    PubMed

    Yang, Shu-fa; Zhuang, Tai-feng; Si, Yan-mei; Qi, Ke-yan; Zhao, Juan

    2015-03-01

    This study aimed to characterize the immunopotentiating effects and immune receptors for Coriolus versicolor mushroom polysaccharides (CVP), a Chinese medicinal fungus that exerts anti-tumor activities by enhancing host immunity. Proliferation assays were used to determine whether CVP could activate splenocytes. Flow cytometry analysis and IgM and IgG detection were used to characterize CVP-binding cells. Immune receptors were analyzed in immunoprecipitation and western blot assays. The downstream signaling pathways were identified by western blotting or immunostaining. CVP significantly stimulated the proliferation of mouse splenocytes. Fluorescence-labeled CVP (fl-CVP) selectively stained mouse B cells, but not T cells. CVP induced the production of IgM and IgG1 with or without exogenous IL-4. Membrane Ig (B cell antigen-receptor, BCR) was identified as a CVP-binding protein in immunoprecipitation and western blot experiments. CVP-induced B cell proliferation could be significantly inhibited by anti-mouse immunoglobulin (Ig) blocking antibody (Fab) or in cells from TLR4-mutant mice (C3H/HeJ). Phosphorylation of ERK-1/2 and p38 MAPK were clearly increased in a time-dependent manner, as was the nuclear translocation of the cytosolic NF-κB p65 subunit after CVP stimulation. Together, we demonstrate that CVP can bind and induce B cell activation using membrane Ig and TLR-4 as potential immune receptors. CVP activates mouse B cells through the MAPK and NF-κB signaling pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Suppression of NF-κB activation by PDLIM2 restrains hepatic lipogenesis and inflammation in high fat diet induced mice.

    PubMed

    Hao, Ya-Rong; Tang, Feng-Juan; Zhang, Xue; Wang, Hui

    2018-05-28

    Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance, dyslipidemia and a systemic pro-inflammatory response, a leading cause of cirrhosis and hepatocellular carcinoma. Here, we showed that PDZ-LIM domain-containing protein 2 (PDLIM2) was an effective suppressor of steatohepatitis. After 16 weeks on a high fat diet (HFD), obesity, insulin resistance, hepatic dyslipidemia and inflammation were markedly aggravated in PDLIM2-knockout (KO) mice. PDLIM2 deletion resulted in lipid accumulation in liver tissue samples of HFD-induced mice, as evidenced by the significant increase of hepatic TG and TC through reducing the expression of lipogenesis- and transcriptional regulators of lipid metabolism-related genes and enhancing fatty acid oxidation-associated molecules. In addition, PDLIM2-ablation promoted the expression of pro-inflammatory cytokines by activating nuclear factor kappa-B (NF-κB) signaling pathway, as supported by the remarkable increase of phosphorylated IKKβ, IκBα and NF-κB expressions in liver of HFD-fed mice. Of note, the in vitro study demonstrated that PDLIM2 ablation-enhanced inflammatory response and disorder of lipid metabolism were abrogated by suppressing NF-κB activity. Collectively, the findings could lead to the development of potential therapeutic strategy to prevent NAFLD and associated metabolic disorders by targeting PDLIM2. Copyright © 2018. Published by Elsevier Inc.

  18. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    PubMed

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  19. RRM2 induces NF-{kappa}B-dependent MMP-9 activation and enhances cellular invasiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duxbury, Mark S.; Whang, Edward E.

    2007-03-02

    Ribonucleotide reductase is a dimeric enzyme that catalyzes conversion of ribonucleotide 5'-diphosphates to their 2'-deoxynucleotide forms, a rate-limiting step in the production of 2'-deoxyribonucleoside 5'-triphosphates required for DNA synthesis. The ribonucleotide reductase M2 subunit (RRM2) is a determinant of malignant cellular behavior in a range of human cancers. We examined the effect of RRM2 overexpression on pancreatic adenocarcinoma cellular invasiveness and nuclear factor-{kappa}B (NF-{kappa}B) transcription factor activity. RRM2 overexpression increases pancreatic adenocarcinoma cellular invasiveness and MMP-9 expression in a NF-{kappa}B-dependent manner. RNA interference (RNAi)-mediated silencing of RRM2 expression attenuates cellular invasiveness and NF-{kappa}B activity. NF-{kappa}B is a key mediator ofmore » the invasive phenotypic changes induced by RRM2 overexpression.« less

  20. Coordination of NF-kappaB and NFAT antagonism by the forkhead transcription factor Foxd1.

    PubMed

    Lin, Ling; Peng, Stanford L

    2006-04-15

    Forkhead transcription factors play critical roles in the maintenance of immune homeostasis. In this study, we demonstrate that this regulation most likely involves intricate interactions between the forkhead family members and inflammatory transcription factors: the forkhead member Foxd1 coordinates the regulation of the activity of two key inflammatory transcription factors, NF-AT and NF-kappaB, with Foxd1 deficiency resulting in multiorgan, systemic inflammation, exaggerated Th cell-derived cytokine production, and T cell proliferation in autologous MLRs. Foxd1-deficient T cells possess increased activity of both NF-AT and NF-kappaB: the former correlates with the ability of Foxd1 to regulate casein kinase 1, an NF-AT inhibitory kinase; the latter with the ability of Foxd1 to regulate Foxj1, which regulates the NF-kappaB inhibitory subunit IkappaB beta. Thus, Foxd1 modulates inflammatory reactions and prevents autoimmunity by directly regulating anti-inflammatory regulators of the NF-AT pathway, and by coordinating the suppression of the NF-kappaB pathway via Foxj1. These findings indicate the presence of a general network of forkhead proteins that enforce T cell quiescence.