Sample records for nf-kb expression ameliorates

  1. Role of TGR-B1-Mediated Down Regulation of NF-kB/Rel Activity During Growth Arrest of Breast Cancer Cells

    DTIC Science & Technology

    2001-05-01

    gallate ( EGCG ), which has been shown to inhibit the induction of NF-KB and growth of breast cancer cell lines in vitro. EGCG reduced NF-KB levels in the...demonstrated activation of NF-KB is induced upon over-expression of Her-2/neu. Thus, studies were initiated with green tea pholyphenol, epigallocatechin -3...NF639 cell line derived from an MMTV-Her-2/neu mouse tumor. NF639 clonal isolates resistant to EGCG appear to display elevated levels of NF-KB. Overall

  2. New Epigenetic Therapeutic Intervention for Metastatic Breast Cancer

    DTIC Science & Technology

    2016-04-01

    transcription factor Twist are markedly over-expressed in TNBC but not luminal breast cancer cells. We also discovered that constitutively activated NF -kB in...transcription factors Twist and NF -kB in gene activation require lysine acetylation, which signs to activate the transcriptional machinery in chromatin...including Twist, NF -kB and STAT3. b. Define the molecular basis of the BET BrDs’ selective interactions with effector proteins through structure-guided

  3. Inhibition of Breast Cancer by Repression of Angiogenic Hypoxia-Inducible Transcription Factors

    DTIC Science & Technology

    2003-09-01

    cancer cells to death receptor-induced apoptosis by inhibition ofNF-KB: Synergistic action of Apo2L/TRAIL, Interferon-y, Aspirin and Apigenin . (Abstract...of !KK0 (with ::leety! ,~81iCy!iC ::H~irl" ASA), and CK2 (with the plant flavonoid, apigenin ), results in loss of NF-KB-dependent expression of BcI...reduction of NF-KS-induced survival proteins by ASA and apigenin synergizes with interferon-y-mediated elevation of death signaling proteins to

  4. ARSENITE ACTIVATES KB-DEPENDENT IL-8 GENE EXPRESSION IN AIRWAY EPITHELIM IN THE ABSENCE OF NUCLEAR TRANSLOCATION OF NF-KB

    EPA Science Inventory

    Airway epithelial cells respond to certain environmental stresses by mounting a proinflammatory response, which is characterized by enhanced synthesis and release of the neutrophil chemotactic and activating factor interleukin-8 (IL-8). IL-8 expression is regulated at the transcr...

  5. [Effect of shenluotong decoction on renal interstitial fibrosis in rats with obstructive nephropathy].

    PubMed

    Wang, Zheng; Liang, Li-juan; Wang, Cong-hui; Wang, Rui; Jiang, Guo-wang; Zhang, Xiao-man; An, Ya-juan; Xu, Qing-you

    2014-10-01

    To observe the effect of Shenluotong Decoction (SD) on serum levels of aldosterone, monocyte chemoattractant protein-1 (MCP-1), α-smooth muscle protein (α-SMA), and nuclear factor-KB (NF-κB) in obstructive nephropathy rats, and to explore the initial mechanism of SD for inhibiting renal interstitial fibrosis. Totally 48 healthy Wistar rats were randomly divided into the sham-operation group (n =12) and the model group (n =36). Renal interstitial fibrosis rat model was established by unilateral ureteral obstruction (UUO). After successful modeling, 36 rats were randomly divided into the model group, the Chinese medicine group, and the Western medicine group, 12 in each group. Eplerenone was added in the forage at the daily dose of 100 mg/kg for rats in the Western medicine group. Chinese medicine was added in the forage at the daily dose of 26 g/kg for rats in the Chinese medicine group. Equal volume of normal saline was administered to rats in the sham-operation group and the model group. All medication was performed once daily. The obstructive kidneys were extracted ten days after medication. The pathomorphological changes were observed. The contents of serum aldosterone and MCP-1, and the protein or mRNA expression of MCP-1, α-SMA, and NF-KB were detected. Compared with the sham-operation group, infiltration of a large amount of inflammatory cells and collagen deposition significantly increased, serum contents of aldosterone and MCP-1 obviously increased (P < 0.01), the expression of MCP-1 mRNA and protein were significantly up-regulated (P <0.01), the protein expression of α-SMA and NF-KB were significantly enhanced in the model group (P <0.01). Com- pared with the model group, infiltration of inflammatory cells and renal collagen deposition were attenua- ted in the Chinese medicine group and the Western medicine group, the serum MCP-1 level were reduced, and the mRNA and protein expression of MCP-1 were significantly down-regulated (P <0.01), the protein expression of α-SMA and NF-KB were obviously inhibited (P <0. 01). At the same time, serum aldosterone level was reduced in the Chinese medicine group (P <0.01). inflammatory lesions of the renal tissue could promote the progress of interstitial fibrosis in rats with obstructive nephropathy. SD could attenuate interstitial fibrosis through reducing serum contents of aldosterone and MCP-1, down-regulating MCP-1/ NF-KB, and inhibiting the expression of α-SMA.

  6. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice.

    PubMed

    Ryu, Hoon; Smith, Karen; Camelo, Sandra I; Carreras, Isabel; Lee, Junghee; Iglesias, Antonio H; Dangond, Fernando; Cormier, Kerry A; Cudkowicz, Merit E; Brown, Robert H; Ferrante, Robert J

    2005-06-01

    Multiple molecular defects trigger cell death in amyotrophic lateral sclerosis (ALS). Among these, altered transcriptional activity may perturb many cellular functions, leading to a cascade of secondary pathological effects. We showed that pharmacological treatment, using the histone deacetylase inhibitor sodium phenylbutyrate, significantly extended survival and improved both the clinical and neuropathological phenotypes in G93A transgenic ALS mice. Phenylbutyrate administration ameliorated histone hypoacetylation observed in G93A mice and induced expression of nuclear factor-kappaB (NF-kappaB) p50, the phosphorylated inhibitory subunit of NF-kappaB (pIkappaB) and beta cell lymphoma 2 (bcl-2), but reduced cytochrome c and caspase expression. Curcumin, an NF-kappaB inhibitor, and mutation of the NF-kappaB responsive element in the bcl-2 promoter, blocked butyrate-induced bcl-2 promoter activity. We provide evidence that the pharmacological induction of NF-kappaB-dependent transcription and bcl-2 gene expression is neuroprotective in ALS mice by inhibiting programmed cell death. Phenylbutyrate acts to phosphorylate IkappaB, translocating NF-kappaB p50 to the nucleus, or to directly acetylate NF-kappaB p50. NF-kappaB p50 transactivates bcl-2 gene expression. Up-regulated bcl-2 blocks cytochrome c release and subsequent caspase activation, slowing motor neuron death. These transcriptional and post-translational pathways ultimately promote motor neuron survival and ameliorate disease progression in ALS mice. Phenylbutyrate may therefore provide a novel therapeutic approach for the treatment of patients with ALS.

  7. PPARγ and NF-κB regulate the gene promoter activity of their shared repressor, TNIP1

    PubMed Central

    Gurevich, Igor; Zhang, Carmen; Encarnacao, Priscilla C.; Struzynski, Charles P.; Livings, Sarah E.; Aneskievich, Brian J.

    2011-01-01

    Human TNFAIP3 interacting protein 1 (TNIP1) has diverse functions including support of HIV replication through its interaction with viral Nef and matrix proteins, reduction of TNFα-induced signaling through its interaction with NF-κB pathway proteins, and corepression of agonist-bound retinoic acid receptors and peroxisome proliferator-activated receptors (PPAR). The wide tissue distribution of TNIP1 provides the opportunity to influence numerous cellular responses in these roles and defining control of TNIP1 expression would be central to improved understanding of its impact on cell function. We cloned 6kb of the human TNIP1 promoter and performed predictive and functional analyses to identify regulatory elements. The promoter region proximal to the transcription start site is GC-rich without a recognizable TATA box. In contrast to this proximal ~500bp region, 6kb of the promoter increased reporter construct constitutive activity over five-fold. Throughout the 6kb length, in silico analysis identified several potential binding sites for both constitutive and inducible transcription factors; among the latter were candidate NF-κB binding sequences and peroxisome proliferator response elements (PPREs). We tested NF-κB and PPAR regulation of the endogenous TNIP1 gene and cloned promoter by expression studies, electrophoretic mobility shift assays, and chromatin immunoprecipitations. We validated NF-κB sites in the TNIP1 promoter proximal and distal regions as well as one PPRE in the distal region. The ultimate control of the TNIP1 promoter is likely to be a combination of constitutive transcription factors and those subject to activation such as NF-κB and PPAR. PMID:22001530

  8. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway

    PubMed Central

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-01-01

    Aim: To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Methods: Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Results: Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Conclusion: Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway. PMID:24335838

  9. Exendin-4 ameliorates oxidized-LDL-induced inhibition of macrophage migration in vitro via the NF-κB pathway.

    PubMed

    Ma, Ge-fei; Chen, Song; Yin, Lei; Gao, Xiang-dong; Yao, Wen-bing

    2014-02-01

    To investigate the effects of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 on oxidized low-density lipoprotein (ox-LDL)-induced inhibition of macrophage migration and the mechanisms underlying the effects of exendin-4. Primary peritoneal macrophages were extracted from the peritoneal cavity of mice treated with 3% thioglycollate (2 mL, ip). Migration of the macrophages was examined using a cell migration assay. Macrophage migration-related factors including leptin-like ox-LDL receptor (LOX-1), cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin-1 (IL-1)β, matrix metalloproteinase-2 (MMP-2), intercellular adhesion molecule (ICAM)-1 and macrophage migration inhibitory factor (MIF) were measured using semi-quantitative RT-PCR. Expression of MIF and ICAM-1 proteins was examined with ELISA. Gelatin zymography was used to evaluate the activity of MMP-9. Activation of the NF-κB pathway was determined by confocal laser scanning microscopy. Treatment of the macrophages with ox-LDL (50 μg/mL) markedly suppressed the macrophage migration. Furthermore, ox-LDL treatment substantially increased the expression of the macrophage migration-related factors, the activity of MMP-9 and the translocation of the NF-κB p65 subunit. These effects of ox-LDL were significantly ameliorated by pretreatment with the specific NF-κB inhibitor ammonium pyrrolidine dithiocarbamate (100 μmol/L). These effects of ox-LDL were also significantly ameliorated by pretreatment with exendin-4 (25 and 50 nmol/L). Exendin-4 ameliorates the inhibition of ox-LDL on macrophage migration in vitro, via suppressing ox-LDL-induced expression of ICAM-1 and MIF, which is probably mediated by the NF-κB pathway.

  10. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Guohua; Shi Lingfang; Qiu Daoming

    2005-05-01

    NF45/ILF2 associates with NF90/ILF3 in the nucleus and regulates IL-2 gene transcription at the antigen receptor response element (ARRE)/NF-AT DNA target sequence (P.N. Kao, L. Chen, G. Brock, J. Ng, A.J. Smith, B. Corthesy, J. Biol. Chem. 269 (1994) 20691-20699). NF45 is widely expressed in normal tissues, especially testis, brain, and kidney, with a predominantly nuclear distribution. NF45 mRNA expression is increased in lymphoma and leukemia cell lines. The human and murine NF45 proteins differ only by substitution of valine by isoleucine at amino acid 142. Fluorescence in situ hybridization localized the human NF45 gene to chromosome 1q21.3, and mousemore » NF45 gene to chromosome 3F1. Promoter analysis of 2.5 kB of the murine NF45 gene reveals that significant activation is conferred by factors, possible including NF-Y, that bind to the CCAAT-box sequence. The function of human NF45 in regulating IL-2 gene expression was characterized in Jurkat T-cells stably transfected with plasmids directing expression of NF45 cDNA in sense or antisense orientations. NF45 sense expression increased IL-2 luciferase reporter gene activity 120-fold, and IL-2 protein expression 2-fold compared to control cells. NF45 is a highly conserved, regulated transcriptional activator, and one target gene is IL-2.« less

  11. NF-{kappa}B regulates Lef1 gene expression in chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Kangsun; Choi, Yoo Duk; Nam, Jong Hee

    The relation of Wnt/{beta}-catenin signaling to osteoarthritis progression has been revealed with little information on the underlying molecular mechanism. In this study we found overexpression of Lef1 in cartilage tissue of osteoarthritic patients and elucidated molecular mechanism of NF-{kappa}B-mediated Lef1 gene regulation in chondrocytes. Treatment of IL-1{beta} augmented Lef1 upregulation and nuclear translocation of NF-{kappa}B in chondrocytes. Under IL-1{beta} signaling, treatment of NF-{kappa}B nuclear translocation inhibitor SN-50 reduced Lef1 expression. A conserved NF-{kappa}B-binding site between mouse and human was selected through bioinformatic analysis and mapped at the 14 kb upstream of Lef1 transcription initiation site. NF-{kappa}B binding to the sitemore » was confirmed by chromatin immunoprecipitation assay. Lef1 expression was synergistically upregulated by interactions of NF-{kappa}B with Lef1/{beta}-catenin in chondrocytes. Our results suggest a pivotal role of NF-{kappa}B in Lef1 expression in arthritic chondrocytes or cartilage degeneration.« less

  12. Valsartan ameliorates KIR2.1 in rats with myocardial infarction via the NF-κB-miR-16 pathway.

    PubMed

    Li, Xinran; Hu, Hesheng; Wang, Ye; Xue, Mei; Li, Xiaolu; Cheng, Wenjuan; Xuan, Yongli; Yin, Jie; Yang, Na; Yan, Suhua

    2016-09-30

    MicroRNAs have an important role in regulating arrhythmogenesis. MicroRNA-16 (miR-16) is predicted to target KCNJ2. The regulation of miR-16 is primarily due to NF-κB. Whether valsartan could downregulate miR-16 via the inhibition of NF-κB after MI and whether miR-16 targets KCNJ2 remain unclear. MI rats received valsartan or saline for 7days. The protein levels of NF-κB p65, inhibitor κBα (IκBα), and Kir2.1 were detected by Western blot analysis. The mRNA levels of Kir2.1 and miR-16 were examined by quantitative real-time PCR. Whole cell patch-clamp techniques were applied to record IK1. MiR-16 expression was higher in the infarct border, and was accompanied by a depressed IK1/KIR2.1 level. Additionally, miR-16 overexpression suppressed KCNJ2/KIR2.1 expression. In contrast, miR-16 inhibition or binding-site mutation enhanced KCNJ2/KIR2.1 expression, establishing KCNJ2 as a miR-16 target. In the MI rats, compared to saline treatment, valsartan reduced NF-κB p65 and miR-16 expression and increased IκBα and Kir2.1 expression. In vitro, angiotensin II increased miR-16 expression and valsartan inhibited it. Overexpressing miR-16 in cells treated with valsartan abrogated its beneficial effect on KCNJ2/Kir2.1. NF-κB activation directly upregulates miR-16 expression. miR-16 controls KCNJ2 expression, and valsartan ameliorates Kir2.1 after MI partly depending on the NF-κB-miR-16 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Caffeic Acid Phenethyl Ester (Propolis Extract) Ameliorates Insulin Resistance by Inhibiting JNK and NF-κB Inflammatory Pathways in Diabetic Mice and HepG2 Cell Models.

    PubMed

    Nie, Jiarui; Chang, Yaning; Li, Yujia; Zhou, Yingjun; Qin, Jiawen; Sun, Zhen; Li, Haibin

    2017-10-18

    Caffeic acid phenethyl ester (CAPE), extracted from propolis, was evaluated for the ameliorative effects on insulin resistance and the mechanisms were identified, using non-insulin-dependent diabetes mellitus (NIDDM) model mice and insulin resistance (IR) model cells. After 5 weeks of CAPE supplementation, insulin sensitivity, hyperlipidemia, and peroxisome proliferator-activated receptor-α (PPAR-α) levels were improved in mice. Proinflammatory cytokines in serum and the expressions of tumor necrosis factor-alpha (TNF-α) mRNA in tissues were markedly downregulated from CAPE-treated mice. In vitro, CAPE supplement significantly improved glucose consumption, glucose uptake, glycogen content, and oxidative stress and decreased expression of glucose-6-phosphatase (G6Pase) mRNA in cells. Both in vivo and in vitro, CAPE enhanced p-Akt (Ser473) and p-insulin receptor substrate (IRS)-1 (Tyr612), but inhibited p-JNK (Thr183/Tyr185), p-NF-κB p65 (Ser536), and nuclear translocation of p-NF-κB p65 (Ser536). In summary, CAPE can ameliorate insulin resistance through modulation of JNK and NF-κB signaling pathway in mice and HepG2 cells.

  14. The potential of mangosteen (Garcinia mangostana) peel extract, combined with demineralized freeze-dried bovine bone xenograft, to reduce ridge resorption and alveolar bone regeneration in preserving the tooth extraction socket.

    PubMed

    Kresnoadi, Utari; Ariani, Maretaningtias Dwi; Djulaeha, Eha; Hendrijantini, Nike

    2017-01-01

    Following the extraction of a tooth, bone resorption can cause significant problems for a subsequent denture implant and restorative dentistry. Thus, the tooth extraction socket needs to be maintained to reduce the chance of any alveolar ridge bone resorption. The objective of this study is to determine whether the administration of mangosteen peel extracts (MPEs), combined with demineralized freeze-dried bovine bone xenograft (DFBBX) materials for tooth extraction socket preservation, could potentially reduce inflammation by decreased the expression of nuclear factor κβ (NfKb) and receptor activator of nuclear factor-κβ ligand (RANKL), to inhibit alveolar bone resorption, and increased of bone morphogenetic protein-2 (BMP2) expressions to accelerate alveolar bone regeneration. This study consists of several stages. First, a dosage of MPE combined with graft materials was applied to a preserved tooth extraction socket of a Cavia cobaya . Second, the C. cobaya was examined using immune histochemical expression of NfKb, RANKL, BMP2, as well as histology of osteoblasts and osteoclasts. The research was statistically analyzed, using an analysis of variance test and Tukey honest significant difference test. The results of this research were that it was determined that MPEs combined with graft materials on a preserved tooth extraction socket can reduce NfKb, RANK, and osteoclasts also increase of BMP2 and osteoblast. The induction of MPEs and DFBBX is effective in reducing inflammation, lowering osteoclasts, decreasing alveolar bone resorption, and also increasing BMP2 expression and alveolar bone regeneration.

  15. Slit2 ameliorates renal inflammation and fibrosis after hypoxia-and lipopolysaccharide-induced epithelial cells injury in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiangjun; Yao, Qisheng, E-mail: yymcyqs@126.com; Sun, Xinbo

    Hypoxic acute kidney injury (AKI) is often incompletely repaired and leads to chronic kidney disease (CKD), which is characterized by tubulointerstitial inflammation and fibrosis. The Slit2 family of secreted glycoproteins is expressed in the kidney, it has been shown to exert an anti-inflammatory activity and prevent ischemic renal injury in vivo. However, whether Slit2 reduces renal fibrosis and inflammation after hypoxic and inflammatory epithelial cells injury in vitro remains unknown. In this study, we aimed to evaluate whether Slit2 ameliorated fibrosis and inflammation in two renal epithelial cells line challenged with hypoxia and lipopolysaccharide (LPS). Renal epithelial cells were treatedmore » with hypoxia and LPS to induce cell injury. Hoechst staining and Western blot analysis was conducted to examine epithelial cells injury. Immunofluorescence staining and Western blot analysis was performed to evaluate tubulointerstitial fibrosis. Real-time polymerase chain reaction (PCR) tested the inflammatory factor interleukin (IL)−1β and tumor necrosis factor (TNF)-α, and Western blot analysis determined the hypoxia-inducible factor (HIF)−1α, Toll-like receptor 4 (TLR4) and nuclear factor (NF)-κB. Results revealed that hypoxia induced epithelial cells apoptosis, inflammatory factor IL-1β and TNF-α release and tubulointerstitial fibrosis. LPS could exacerbate hypoxia -induced epithelial cells apoptosis, IL-1β and TNF-α release and fibrosis. Slit2 reduced the expression of fibronectin, the rate of epithelial cell apoptosis, and the expression of inflammatory factor. Slit2 could also inhibit the expression of TLR4 and NF-κB, but not the expression of HIF-1α. Therefore, Slit2 attenuated inflammation and fibrosis after LPS- and hypoxia-induced epithelial cells injury via the TLR4/NF-κB signaling pathway, but not depending on the HIF-1α signaling pathway. - Highlights: • Slit2 ameliorates inflammation after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates fibrosis after hypoxia-and LPS-induced epithelial cells injury. • Slit2 ameliorates inflammation and fibrosis after hypoxia-and LPS-induced renal epithelial cells injury via TLR4/NF-κB.« less

  16. New Epigenetic Therapeutic Intervention for Metastatic Breast Cancer

    DTIC Science & Technology

    2016-04-01

    also discovered that constitutively activated NF -kB in TNBC sustains prolonged activation of pro-inflammatory cytokines, enabling rapid spread...metastasis) of TNBC tumors. Notably, the functions of both transcription factors Twist and NF -kB in gene activation require lysine acetylation, which signs...proteins including Twist, NF -kB and STAT3. b. Define the molecular basis of the BET BrDs’ selective interactions with effector proteins through structure

  17. [Expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte of chronic gastritis patients of different syndrome patterns].

    PubMed

    Hu, Ling; Zheng, Xiao-Feng; Yan, Xue-Hui

    2012-09-01

    To study the expressions of heat shock protein 70 (HSP 70) and nuclear factor-kappa B (NF-kappaB) in the peripheral blood lymphocyte of chronic gastritis (CG) patients of Pi-Wei hygropyrexia syndrome (PWHS) and Pi-qi deficiency syndrome (PQDS), and to explore their correlation with Helicobacter pylori (Hp) infection. Recruited were totally 86 CG patients who visited at the clinics of gastroenterology, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, including 67 patients of PWHS (30 of predominant-dampness, 30 of equal dampness and heat, and 30 of predominant-heat) and 19 patients of PQDS. Another 12 volunteers from healthy employees and students of Guangzhou University of Traditional Chinese Medicine were recruited as the control group. Their peripheral blood was collected. The Hp infection was detected using ASSURE Hp rapid test. The expressions of HSP 70 and NF-kappaB in the peripheral blood lymphocyte were detected using flow cytometry. The Hp infection rate was 37. 31% in the GS patients of PWHS and 36. 84% in the GS patients of PQDS (P>0.05). Compared with the control group, the expression of HSP 70 decreased in the PWHS predominant-heat group, and the expression of NF-kappaB increased in the PWHS predominant-heat group and the PQDS group (P<0.05). The expression of NF-kappaB were higher in the positive Hp infection patients of PWHS and PQDS than in the control group (P<0.05). The expression of HSP 70 was higher in the positive Hp infection patients of PQDS than in the negative Hp infection patients of PQDS (P<0.05). Besides, the coefficient correlation was -0. 023 between HSP 70 and Hp infection, and 0. 027 between NF-KB and Hp infection (P>0.05). The increased expression of NF-KB in the peripheral blood lymphocyte of CG patients of PWHS and PQDS might reflect the pathogenic roles of "inner evil" in Chinese medicine theories. The increased expression of HSP 70 in CG patients of PQDS and decreased expression of HSP 70 in CG patients of PWHS might reflect "vital qi fighting against evils" and "exuberance evils and feeble vital qi" in the body. Hp infection might not be the only factor resulting in the occurrence of PWHS or PQDS.

  18. Protein kinase CK2α catalytic subunit ameliorates diabetic renal inflammatory fibrosis via NF-κB signaling pathway.

    PubMed

    Huang, Junying; Chen, Zhiquan; Li, Jie; Chen, Qiuhong; Li, Jingyan; Gong, Wenyan; Huang, Jiani; Liu, Peiqing; Huang, Heqing

    2017-05-15

    Activation of casein kinase 2 (CK2) is closely linked to the body disturbance of carbohydrate metabolism and inflammatory reaction. The renal chronic inflammatory reaction in the setting of diabetes is one of the important hallmarks of diabetic renal fibrosis. However, it remains unknown whether CK2 influences the process of diabetic renal fibrosis. The current study is aimed to investigate if CK2α ameliorates renal inflammatory fibrosis in diabetes via NF-κB pathway. To explore potential regulatory mechanism of CK2α, the expression and activity of CK2α, which were studied by plasmid transfection, selective inhibitor, small-interfering RNA (siRNA) and adenovirus infection in vitro or in vivo, were analyzed by means of western blotting (WB), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The following findings were observed: (1) Expression of CK2α was upregulated in kidneys of db/db and KKAy diabetic mice; (2) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression suppressed high glucose-induced expressions of FN and ICAM-1 in glomerular mesangial cells (GMCs); (3) Inhibition of CK2α kinase activity or knockdown of CK2α protein expression not only restrained IκB degradation, but also suppressed HG-induced nuclear accumulation, transcriptional activity and DNA binding activity of NF-κB in GMCs; (4) Treatment of TBB or CK2α RNAi adenovirus infection ameliorated renal fibrosis in diabetic animals; (5) Treatment of TBB or CK2α RNAi adenovirus infection suppressed IκB degradation and NF-κB nuclear accumulation in glomeruli of diabetic animals. This study indicates the essential role of CK2α in regulating the diabetic renal pathological process of inflammatory fibrosis via NF-κB pathway, and inhibition of CK2α may serve as a promising therapeutic strategy for diabetic nephropathy. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Effects of different nuclear factor kappaB dimers on the survival of immortalized neural progenitor cells].

    PubMed

    Gui, Ling-Li; Zhang, Chuan-Han; Liu, Zhi-Heng; Chen, Zhao-Jun; Zhu, Chang

    2008-04-01

    To investigate the effects of different nuclear factor (NF)-KB dimers on the survival of immortalized neural progenitor cells (INPCs). The control vector RC/CMV, containing the promoter of cytomegalovirus (CMV), and the expression vectors, RcCMV-p50 and RcCMV-p65, containing the coding regions of NF-KB subunits p50 and p65 genes, were transfected into the INPCs by liposome respectively. Stably transfected clones were screened out following G418 selection. Subsequently, the plasmid RcCMV-p50 was transiently transfected into the INPCs which had been stably transfected with the plasmid RcCMV-p65. The expression of p50 or p65 gene was detected in each cell strain by Western blotting. And the NF-KB DNA binding activity in the cell nuclear extracts was measured by electrophoresis mobility shift assay (EMSA). The expression of IkappaBalpha in the cytoplasm was detected by Western blotting. After oxygen and glucose deprivation for 13 h, the cell survival rate was measured by MTT assay. After gene transfection, five different cell strains were obtained: INPC, INPC/CMV, INPC/p50, INPC/p65, and INPC/p50p65. p50 or p65 gene was translated correctly and efficiently in the cell strains which had been transfected with the corresponding plasmids. EMSA showed that the INPC/p50, INPC/p65, and INPC/p50p65 cells all gave rise to NF-kappaB specific bands, which were composed of p50 homodimer, p65 homodimer, and p50 p65 heterodimer and p50 homodimer respectively. The expression of IkappaBbeta was increased significantly in the cytoplasm of the INPC/p65 and INPC/p50p65 cells. Games-Howell test showed that after oxygen and glucose deprivation for 13 h, the survival rates of the NPC/p65 and INPC/p50p65 cells were (6.0 +/- 1.0)% and (4.6 +/- 0.6)% respectively, both significantly lower than those of the INPC, INPC/CMV, and INPC/p50 cells [(72.5 +/- 6.2)%, (70.1 +/- 4.3)%, and (70.4 +/- 7.3)% respectively, all P < 0.05]. Overexpression of p50 gene and p65 gene directly enhance the DNA binding activities of different NF-kappaB dimers in the nuclei. In neural progenitor cells, NF-kappaB dimers with transcriptive activity decreases the cellular survival after oxygen and glucose deprivation, but NF-kappaB dimers without transcriptive activity don't prevent the cells from death.

  20. A Role for the NF-kb/Rel Transcription Factors in Human Breast Cancer

    DTIC Science & Technology

    1998-07-01

    binding proteins present in a series of nuclear extracts from cell lines and from breast tumor tissues as well as normal mammary epithelium. Finally, we...RelA is nuclear in several examples. Our recent data on nuclear extracts of breast tumors shows that there is a significant increase in NF-KB binding...Figure 2 in the appendix). Additionally, immunoblotting of nuclear extracts versus adjacent tissue controls showed that NF-KB p50, p52 and c-Rel were

  1. Possible mechanisms for arsenic-induced proliferative diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A.

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hourmore » of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.« less

  2. [NF-kappaB-induced gp96 up-regulation promotes hepatocyte growth, cell cycle progression and transition].

    PubMed

    Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong

    2014-10-04

    To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.

  3. Pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang increase LκB-α expression and ameliorate ulcerative colitis.

    PubMed

    Miao, X P; Sun, X N; Wei, H; Liu, Z J; Cui, L J; Deng, T Z

    2015-02-01

    The therapeutic potential of pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang in ulcerative colitis were investigated. This study showed that pectic polysaccharides extracted from Rauvolfia verticillata (Lour.) Baill. var. hainanensis Tsiang ameliorated ulcerative colitis and were proposed to exhibit anti-inflammatory effects via increased expression of IκB-α proteins and suppressing NF-αB translocation.

  4. Lactobacillus johnsonii HY7042 ameliorates Gardnerella vaginalis-induced vaginosis by killing Gardnerella vaginalis and inhibiting NF-κB activation.

    PubMed

    Joo, Hyun-Min; Hyun, Yang-Jin; Myoung, Kil-Sun; Ahn, Young-Tae; Lee, Jung-Hee; Huh, Chul-Sung; Han, Myung Joo; Kim, Dong-Hyun

    2011-11-01

    Hydrogen peroxide-producing lactic acid bacteria (LAB) were isolated from women's vaginas and their anti-inflammatory effects against Gardnerella vaginalis-induced vaginosis were examined in β-estradiol-immunosuppressed mice. Oral and intravaginal treatment with five LABs significantly decreased viable G. vaginalis numbers in vaginal cavities and myeloperoxidase activity in mouse vaginal tissues. Of the LABs examined, Lactobacillus johnsonii HY7042 (LJ) most potently inhibited G. vaginalis-induced vaginosis. This LAB also inhibited the expressions of IL-1β, IL-6, TNF-α, COX-2, and iNOS, and the activation of NF-κB in vaginal tissues, but increased IL-10 expression. Orally administered LJ (0.2×10(8) CFU/mouse) also inhibited the expression of TNF-α by 91.7% in β-estradiol-immunosuppressed mice intraperitoneally injected with LPS. However, it increased IL-10 expression by 63.3% in these mice. Furthermore, LJ inhibited the expressions of the pro-inflammatory cytokines, TNF-α and IL-1β, and the activation of NF-κB in lipopolysaccharide-stimulated peritoneal macrophages. LJ also killed G. vaginalis attached with and without HeLa cells. These findings suggest that LJ inhibits bacterial vaginosis by inhibiting the expressions of COX-2, iNOS, IL-1β, and TNF-α by regulating NF-κB activation and by killing G. vaginalis, and that LJ could ameliorate bacterial vaginosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    PubMed

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  6. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism.

    PubMed Central

    Lázaro, C; Gaona, A; Lynch, M; Kruyer, H; Ravella, A; Estivill, X

    1995-01-01

    Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germline mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5' breakpoint. The 5' and 3' breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. Images Figure 1 Figure 3 PMID:7485153

  7. Intake of Fish and Omega-3 (N-3) Fatty Acid: Effect on Humans during Actual and Simulated Weightlessness

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Mehta, Satish K.; Pierson, Duane L.; Zwart, Sara R.

    2009-01-01

    Space flight has many negative effects on human physiology, including bone and muscle loss. These are some of the systems on which intakes of fish and n-3 fatty acids have positive effects. These effects are likely to occur through inhibition of inflammatory cytokines (such as TNFalpha) and thus inhibition of downstream NF-KB activation. We documented this effect in a 3D cell culture model, where NF-KB activation in osteoclasts was inhibited by eicosapentaenoic acid, an n-3 fatty acid. We have extended these studies and report here (a) NF-KB expression in peripheral blood mononuclear cells of Space Shuttle crews on 2-wk missions, (b) the effects of n-3 fatty acid intake after 60 d of bed rest (a weightlessness analog), and (c) the effects of fish intake in astronauts after 4 to 6 mo on the International Space Station. After Shuttle flights of 2 wk, NFKB p65 expression at landing was increased (P less than 0.001). After 60 d of bed rest, higher intake of n-3 fatty acids was associated with less N-telopeptide excretion (Pearson r = -0.62, P less than 0.05). Higher consumption of fish during flight was associated with higher bone mineral density (Pearson r = -0.46, P less than 0.05). Together with our earlier findings, these data provide mechanistic cellular and preliminary human evidence of the potential for n-3 fatty acids to counteract bone loss associated with spaceflight. This study was supported by the NASA Human Research Program.

  8. Artemisia princeps Pamp. Essential oil and its constituents eucalyptol and α-terpineol ameliorate bacterial vaginosis and vulvovaginal candidiasis in mice by inhibiting bacterial growth and NF-κB activation.

    PubMed

    Trinh, Hien-Trung; Lee, In-Ah; Hyun, Yang-Jin; Kim, Dong-Hyun

    2011-12-01

    To investigate the inhibitory effects of Artemisia princeps Pamp. (family Asteraceae) essential oil (APEO) and its main constituents against bacterial vaginosis and vulvovaginal candidiasis, their antimicrobial activities against Gardnerella vaginalis and Candida albicans in vitro and their anti-inflammatory effects against G. vaginalis-induced vaginosis and vulvovaginal candidiasis were examined in mice. APEO and its constituents eucalyptol and α-terpineol were found to inhibit microbe growths. α-Terpineol most potently inhibited the growths of G. vaginalis and C. albicans with MIC values of 0.06 and 0.125 % (v/v), respectively. The antimicrobial activity of α-terpineol was found to be comparable to that of clotrimazole. Intravaginal treatment with APEO, eucalyptol, or α-terpineol significantly decreased viable G. vaginalis and C. albicans numbers in the vaginal cavity and myeloperoxidase activity in mouse vaginal tissues compared with controls. These agents also inhibited the expressions of proinflammatory cytokines (IL-1 β, IL-6, TNF- α), COX-2, iNOS, and the activation of NF- κB and increased expression of the anti-inflammatory cytokine IL-10. In addition, they inhibited the expressions of proinflammatory cytokines and the activation of NF- κB in lipopolysaccharide-stimulated peritoneal macrophages, and α-terpineol most potently inhibited the expressions of proinflammatory cytokines and NF- κB activation. Based on these findings, APEO and its constituents, particularly α-terpineol, ameliorate bacterial vaginosis and vulvovaginal candidiasis by inhibiting the growths of vaginal pathogens and the activation of NF- κB. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jun, E-mail: hustzhj@hust.edu.cn; Xu, Gang; Ma, Shuai

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressionsmore » of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. - Highlights: • Catalpol ameliorates high-fat diet (HFD)-induced insulin resistance in mice. • Catalpol reduces adipose tissue macrophage infiltration in HFD-fed mice. • Catalpol regulates M1 and M2 inflammatory gene expression in obese adipose tissue. • Catalpol suppresses the JNK and NF-κB signaling pathways in obese adipose tissue.« less

  10. Bergenin, Acting as an Agonist of PPARγ, Ameliorates Experimental Colitis in Mice through Improving Expression of SIRT1, and Therefore Inhibiting NF-κB-Mediated Macrophage Activation.

    PubMed

    Wang, Kai; Li, Yun-Fan; Lv, Qi; Li, Xi-Ming; Dai, Yue; Wei, Zhi-Feng

    2017-01-01

    Bergenin, isolated from the herb of Saxifraga stolonifera Curt. (Hu-Er-Cao), has anti-inflammatory, antitussive and wound healing activities. The aim of the present study was to identify the effect of bergenin on experimental colitis, and explored the related mechanisms. Our results showed that oral administration of bergenin remarkably alleviated disease symptoms of mice with dextran sulfate sodium (DSS)-induced colitis, evidenced by reduced DAI scores, shortening of colon length, MPO activity and pathologic abnormalities in colons. Bergenin obviously inhibited the mRNA and protein expressions of IL-6 and TNF-α in colon tissues, but not that of mucosal barrier-associated proteins occludin, E -cadherin and MUC-2. In vitro , bergenin significantly inhibited the expressions of IL-6 and TNF-α as well as nuclear translocation and DNA binding activity of NF-κB-p65 in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and RAW264.7 cells, which was almost reversed by addition of PPARγ antagonist GW9662 and siPPARγ. Subsequently, bergenin was identified as a PPARγ agonist. It could enter into macrophages, bind with PPARγ, promote nuclear translocation and transcriptional activity of PPARγ, and increase mRNA expressions of CD36, LPL and ap2. In addition, bergenin significantly up-regulated expression of SIRT1, inhibited acetylation of NF-κB-p65 and increased association NF-κB-p65 and IκBα. Finally, the correlation between activation of PPARγ and attenuation of colitis, inhibition of IL-6 and TNF-α expressions, NF-κB-p65 acetylation and nuclear translocation, and up-regulation of SIRT1 expression by bergenin was validated in mice with DSS-induced colitis and/or LPS-stimulated macrophages. In summary, bergenin could ameliorate colitis in mice through inhibiting the activation of macrophages via regulating PPARγ/SIRT1/NF-κB-p65 pathway. The findings can provide evidence for the further development of bergenin as an anti-UC drug, and offer a paradigm for the recognization of anti-UC mechanisms of compound with similar structure occurring in traditional Chinese medicines.

  11. γ-Oryzanol suppresses COX-2 expression by inhibiting reactive oxygen species-mediated Erk1/2 and Egr-1 signaling in LPS-stimulated RAW264.7 macrophages.

    PubMed

    Shin, Soon Young; Kim, Heon-Woong; Jang, Hwan-Hee; Hwang, Yu-Jin; Choe, Jeong-Sook; Kim, Jung-Bong; Lim, Yoongho; Lee, Young Han

    2017-09-16

    Cyclooxygenase (COX)-2 produces prostanoids, which contribute to inflammatory responses. Nuclear factor (NF)-κB is a key transcription factor mediating COX-2 expression. γ-Oryzanol is an active component in rice bran oil, which inhibits lipopolysaccharide (LPS)-mediated COX-2 expression by inhibiting NF-κB. However, the inhibition of COX-2 expression by γ-oryzanol independently of NF-κB is poorly understood. We found that LPS upregulated Egr-1 expression at the transcriptional level. Forced expression of Egr-1 trans-activated the Cox-2 promoter independently of NF-κB. In contrast, silencing of Egr-1 abrogated LPS-mediated COX-2 expression. LPS produced reactive oxygen species (ROS), which, in turn, induced Egr-1 expression via the Erk1/2 MAPK pathway. ROS scavenging activity of γ-oryzanol suppressed Egr-1 expression by inhibiting the Erk1/2 MAPK pathway. Our results suggest that γ-oryzanol inhibits LPS-mediated COX-2 expression by suppressing Erk1/2-mediated Egr-1 expression. This study supports that γ-oryzanol may be useful for ameliorating LPS-mediated inflammatory responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: Possible mechanism of nephroprotection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrialmore » NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100 mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. - Highlights: • Naringin ameliorated gentamicin-induced nephrotoxicity in rats. • Naringin treatment attenuated gentamicin-induced renal apoptosis in rats. • Naringin ameliorated gentamicin-induced renal mitochondrial dysfunction in rats. • Naringin decreased NF-κB activation and pro-inflammatory cytokine release. • U-HPLC-MS data revealed that naringin did not alter the renal uptake of gentamicin.« less

  13. Deletions spanning the neurofibromatosis I gene: Identification and phenotype of five patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayes, L.M.; Burke, W.; Bennett, R.

    Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder characterized by marked variation in clinical severity. To investigate the contribution to variability by genes either contiguous to or contained within the NF1 gene, the authors screened six NF1 patients with mild facial dysmorphology, mental retardation, and/or learning disabilities, for DNA rearrangement of the NF1 region. Five of the six patients had NF1 gene deletions on the basis of quantitative densitometry, locus hemizygosity, and analysis of somatic cell hybrid lines. Analysis of hybrid lines carrying each of the patient's chromosomes 17, with 15 regional DNA markers, demonstrated that each of themore » five patients carried a deletion >700 kb in size. Minimally, each of the deletions involved the entire 350-kb NF1 gene; the three genes - EVI2A, EVI2B, and OMG-that are contained within an NF1 intron; and considerable flanking DNA. For four of the patients, the deletions mapped to the same interval; the deletion in the fifth patient was larger, extending farther in both directions. The remaining NF1 allele presumably produced functional neurofibromin; no gene rearrangements were detected, and RNA-PCR demonstrated that it was transcribed. These data provide compelling evidence that the NF1 disorder results from haploid insufficiency of neurofibromin. Of the three documented de novo deletion cases, two involved the paternal NF1 allele and one the maternal allele. The parental origin of the single remaining expresses NF1 allele had no dramatic effect on patient phenotype. The deletion patients exhibited a variable number of physical anomalies that were not correlated with the extent of their deletion. All five patients with deletions were remarkable for exhibiting a large number of neurfibromas for their age, suggesting that deletion of an unknown gene in the NF1 region may affect tumor initiation or development. 69 refs., 5 figs., 1 tab.« less

  14. Mangiferin ameliorates colitis by inhibiting IRAK1 phosphorylation in NF-κB and MAPK pathways.

    PubMed

    Jeong, Jin-Ju; Jang, Se-Eun; Hyam, Supriya R; Han, Myung Joo; Kim, Dong-Hyun

    2014-10-05

    Mangiferin, a main constituent of the root of Anemarrhena asphodeloides and the leaves of Mangifera indica, inhibits NF-κB activation in macrophages. Therefore, we investigated effect of mangiferin on 2,3,4-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice and its anti-inflammatory mechanism in lipolysaccharide (LPS)- or peptidoglycan-stimulated mouse peritoneal macrophages. Mangiferin inhibited phosphorylation of nuclear factor-kappaB (NF-κB), interleukin-1 receptor-associated kinase 1 (IRAK1), and mitogen-activated protein kinases (MAPK) in peptidoglycan- or LPS-stimulated peritoneal macrophages. Mangiferin in the presence of SN50 inhibited LPS-stimulated NF-κB activation more potently than mangiferin alone. Mangiferin inhibited interaction of fluorescent p-IRAK1 antibody to LPS-stimulated peritoneal macrophages, but increased binding of fluorescent IRAK1 antibody. Mangiferin did not influence interaction of fluorescent LPS to toll-like receptor-4 on the macrophages. Molecular peak of mangiferin bound to IRAK1 was detected in the macrophages by mass analysis. Mangiferin (10 μM) inhibited LPS-stimulated expression of TNF-α, IL-1β and IL-6 by 81.0%, 89.5% and 88.3%, respectively, whereas it increased IL-10 expression by 131.8% compared to LPS-nontreated group. Mangiferin furthermore inhibited colon shortening, macroscopic score, and colonic myeloperoxidase activity in TNBS-induced colitic mice. Mangiferin inhibited TNBS-induced IRAK1 phosphorylation and NF-κB activation. Mangiferin suppressed TNBS-induced up-regulation of cyclooxygenase-2 and inducible NO synthase. Furthermore, mangiferin (20mg/kg) significantly inhibited TNF-α by 78%, IL-1β by 82%, and IL-6 expressions by 88% (P<0.05), but induced IL-10 expression to 79% of the normal control group (P<0.05). Based on these findings, mangiferin may ameliorate inflammatory diseases such as colitis by regulating NF-κB and MAPK signaling pathways through the inhibition of IRAK1 phosphorylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chien-Sheng; Division of Thoracic Surgery, Department of Surgery, Taipei-Veterans General Hospital and National Yang-Ming University School of Medicine, Taipei, Taiwan; Kawamura, Tomohiro

    Highlights: {yields} Hydrogen is a regulatory molecule with antiinflammatory and antiapoptotic protective effects. {yields} There is very limited information on the pathways regulated in vivo by the hydrogen. {yields} Antiapoptotic abilities of hydrogen were explained by upregulation of the antiapoptotic gene. {yields} NF{kappa}B activation during hydrogen treatment was correlated with elevated antiapoptotic protein. {yields} NF{kappa}B activation associated with increase Bcl-2 may contribute to cytoprotection of hydrogen. -- Abstract: We recently demonstrated the inhalation of hydrogen gas, a novel medical therapeutic gas, ameliorates ventilator-induced lung injury (VILI); however, the molecular mechanisms by which hydrogen ameliorates VILI remain unclear. Therefore, we investigatedmore » whether inhaled hydrogen gas modulates the nuclear factor-kappa B (NF{kappa}B) signaling pathway. VILI was generated in male C57BL6 mice by performing a tracheostomy and placing the mice on a mechanical ventilator (tidal volume of 30 ml/kg or 10 ml/kg without positive end-expiratory pressure). The ventilator delivered either 2% nitrogen or 2% hydrogen in balanced air. NF{kappa}B activation, as indicated by NF{kappa}B DNA binding, was detected by electrophoretic mobility shift assays and enzyme-linked immunosorbent assay. Hydrogen gas inhalation increased NF{kappa}B DNA binding after 1 h of ventilation and decreased NF{kappa}B DNA binding after 2 h of ventilation, as compared with controls. The early activation of NF{kappa}B during hydrogen treatment was correlated with elevated levels of the antiapoptotic protein Bcl-2 and decreased levels of Bax. Hydrogen inhalation increased oxygen tension, decreased lung edema, and decreased the expression of proinflammatory mediators. Chemical inhibition of early NF{kappa}B activation using SN50 reversed these protective effects. NF{kappa}B activation and an associated increase in the expression of Bcl-2 may contribute, in part, to the cytoprotective effects of hydrogen against apoptotic and inflammatory signaling pathway activation during VILI.« less

  16. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  17. In vitro study on reversal of ovarian cancer cell resistance to cisplatin by naringin via the nuclear factor-κB signaling pathway.

    PubMed

    Zhu, Hong; Gao, Jun; Wang, Lei; Qian, Ke-Jian; Cai, Li-Ping

    2018-03-01

    The aim of the present study was to investigate the mechanism of action by which naringin reverses the resistance of ovarian cancer cells to cisplatin. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting assays were used to detect the effects of different concentrations of naringin on the expressions of nuclear factor (NF)-κB and P-glycoprotein (P-gp) in the SKOV3/CDDP cell line. Small interfering RNA (siRNA) targeting NF-κB was designed and synthesized to silence NF-κB, and recombinant plasmid vectors overexpressing NF-κB were constructed to transfect cells. RT-qPCR and western blotting assays were subsequently performed to detect the effects of NF-κB on the expression of P-gp at the mRNA and protein levels. Naringin was added to the NF-κB-overexpressing SKOV3/CDDP cells and cultured for 48 h, followed by the detection of the expression of P-gp. RT-PCR and western blotting results demonstrated that the gene and protein expressions of NF-κB and P-gp were significantly decreased in a dose-dependent manner by naringin treatment (P<0.05). In cells overexpressing NF-κB, P-gp expression was significantly elevated (P<0.05), and the expression of P-gp was significantly decreased when NF-κB was silenced (P<0.05). Treatment with naringin was able to significantly ameliorate the NF-κB-induced overexpression of P-gp (P<0.05). These results indicate that naringin is able to inhibit the expression of NF-κB and P-gp in SKOV3/CDDP cells. Such an inhibitory effect may increase gradually with concentration, and is associated with blockade of the NF-κB signaling pathway. This pathway may represent one of the mechanisms of action by which Naringin reverses resistance to platinum-based agents in ovarian cancer cells.

  18. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    PubMed Central

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed microglial cells (N9 cells) and documented relative pathways. Methods N9 cells were pretreated with or without recombinant murine MFG-E8 (rmMFG-E8), curcumin and an antibody of toll-like receptor 4 (anti-TLR4), and subsequently treated with EMF or a sham exposure. Their phagocytic ability was evaluated using phosphatidylserine-containing fluorescent bioparticles. The pro-inflammatory activation of microglia was assessed via CD11b immunoreactivity and the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and nitric oxide (NO) via the enzyme-linked immunosorbent assay or the Griess test. We evaluated the ability of curcumin to ameliorate the phagocytic ability of EMF-exposed N9 cells, including checking the expression of MFG-E8, αvβ3 integrin, TLR4, nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) using Western blotting. Results EMF exposure dramatically enhanced the expression of CD11b and depressed the phagocytic ability of N9 cells. rmMFG-E8 could clearly ameliorate the phagocytic ability of N9 cells after EMF exposure. We also found that EMF exposure significantly increased the secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and the production of NO; however, these increases were efficiently chilled by the addition of curcumin to the culture medium. This reduction led to the amelioration of the phagocytic ability of EMF-exposed N9 cells. Western blot analysis revealed that curcumin and naloxone restored the expression of MFG-E8 but had no effect on TLR4 and cytosolic STAT3. Moreover, curcumin significantly reduced the expression of NF-κB p65 in nuclei and phospho-STAT3 (p-STAT3) in cytosols and nuclei. Conclusions This study indicates that curcumin ameliorates the depressed MFG-E8 expression and the attenuated phagocytic ability of EMF-exposed N9 cells, which is attributable to the inhibition of the pro-inflammatory response through the NF-κB and STAT3 pathways. PMID:24645646

  19. Nobiletin and tangeretin ameliorate scratching behavior in mice by inhibiting the action of histamine and the activation of NF-κB, AP-1 and p38.

    PubMed

    Jang, Se-Eun; Ryu, Kwon-Ryeol; Park, Sung-Hwan; Chung, Suna; Teruya, Yuto; Han, Myung Joo; Woo, Je-Tae; Kim, Dong-Hyun

    2013-11-01

    Nobiletin and tangeretin are polymethoxy flavonoids that are abundantly present in the pericarp of Citrus unshiu (family Rutaceae) and the fruit of Citrus depressa (family Rutaceae). They exhibit various biological activities, including anti-inflammatory and anti-asthmatic effects. To evaluate the anti-allergic effects of nobiletin and tangeretin, we measured their inhibitory effects in histamine- or compound 48/80-induced scratching behavioral mice. Nobiletin and tangeretin potently inhibited scratching behavior, as well as histamine-induced vascular permeability. Furthermore, they inhibited the expression of the allergic cytokines, IL-4 and TNF-α as well as the activation of their transcription factors NF-κB, AP-1 and p38 in histamine-stimulated skin tissues. They also inhibited the expression of IL-4 and TNF-α and the activation of NF-κB and c-jun in PMA-stimulated RBL-2H3 cells. Furthermore, nobiletin and tangeretin inhibited protein kinase C (PKC) activity and the IgE-induced degranulation of RBL-2H3 cells. These agents showed potent anti-histamine effect through the Magnus test when guinea pig ileum was used. Based on these results, nobiletin and tangeretin may ameliorate scratching behavioral reactions by inhibiting the action of histamine as well as the activation of the transcription factors NF-κB and AP-1 via PKC. © 2013.

  20. Erhuang Formula ameliorates renal damage in adenine-induced chronic renal failure rats via inhibiting inflammatory and fibrotic responses.

    PubMed

    Zhang, Chun-Yan; Zhu, Jian-Yong; Ye, Ying; Zhang, Miao; Zhang, Li-Jun; Wang, Su-Juan; Song, Ya-Nan; Zhang, Hong

    2017-11-01

    The present study aimed to evaluate the protective effects of Erhuang Formula (EHF) and explore its pharmacological mechanisms on adenine-induced chronic renal failure (CRF). The compounds in EHF were analyzed by HPLC/MS. Adenine-induced CRF rats were administrated by EHF. The effects were evaluated by renal function examination and histology staining. Immunostaining of some proteins related cell adhesion was performedin renal tissues, including E-cadherin, β-catenin, fibronectin and laminin. The qRT-PCR was carried out determination of gene expression related inflammation and fibrosis including NF-κB, TNF-α, TGF-β1, α-SMA and osteopontin (OPN). Ten compounds in EHF were identified including liquiritigenin, farnesene, vaccarin, pachymic acid, cycloastragenol, astilbin, 3,5,6,7,8,3',4'-heptemthoxyflavone, physcion, emodin and curzerene. Abnormal renal function and histology had significant improvements by EHF treatment. The protein expression of β-catenin, fibronectin and laminin were significantly increased and the protein expression of E-cadherin significantly decreased in CRF groups. However, these protein expressions were restored to normal levels in EHF group. Furthermore, low expression of PPARγ and high expression of NF-κB, TNF-α, TGF-β1, α-SMA and OPN were substantially restored by EHF treatment in a dose-dependent manner. EHF ameliorated renal damage in adenine-induced CRF rats, and the mechanisms might involve in the inhibition of inflammatory and fibrotic responses and the regulation of PPARγ, NF-κB and TGF-β signaling pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Emodin attenuates high glucose-induced TGF-β1 and fibronectin expression in mesangial cells through inhibition of NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jie; Zeng, Zhi; Wu, Teng

    The activation of nuclear factor-κB (NF-κB) and the subsequent overexpression of its downstream targets transforming growth factor-β1 (TGF-β1) and fibronectin (FN) are among the hallmarks for the progressive diabetic nephropathy. Our previous studies demonstrated that emodin ameliorated renal injury and inhibited extracellular matrix accumulation in kidney and mesangial cells under diabetic condition. However, the molecular mechanism has not been fully elucidated. Here, we showed that emodin significantly attenuated high glucose-induced NF-κB nuclear translocation in mesangial cells. Interestingly, emodin also inhibited the DNA-binding activity and transcriptional activity of NF-κB. Furthermore, NF-κB-mediated TGF-β1 and FN expression was significantly decreased by emodin. Thesemore » results demonstrated that emodin suppressed TGF-β1 and FN overexpression through inhibition of NF-κB activation, suggesting that emodin-mediated inhibition of the NF-κB pathway could protect against diabetic nephropathy. - Highlights: • Emodin decreased high glucose-induced p65 phosphorylation in MCs. • Emodin decreased high glucose-induced IκB-α degradation in MCs. • Emodin decreased high glucose-induced p65 translocation in MCs. • Emodin blocked high glucose-induced NF-κB activity. • Emodin blocked high glucose-induced the expression of TGF-β1 and FN.« less

  2. New therapeutic aspect for carvedilol: Antifibrotic effects of carvedilol in chronic carbon tetrachloride-induced liver damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamdy, Nadia; El-Demerdash, Ebtehal, E-mail: ebtehal_dm@yahoo.com

    2012-06-15

    Portal hypertension is a common complication of chronic liver diseases associated with liver fibrosis and cirrhosis. At present, beta-blockers such as carvedilol remain the medical treatment of choice for protection against variceal bleeding and other complications. Since carvedilol has powerful antioxidant properties we assessed the potential antifibrotic effects of carvedilol and the underlying mechanisms that may add further benefits for its clinical usefulness using a chronic model of carbon tetrachloride (CCl4)-induced hepatotoxicity. Two weeks after CCl4 induction of chronic hepatotoxicity, rats were co-treated with carvedilol (10 mg/kg, orally) daily for 6 weeks. It was found that treatment of animals withmore » carvedilol significantly counteracted the changes in liver function and histopathological lesions induced by CCl4. Also, carvedilol significantly counteracted lipid peroxidation, GSH depletion, and reduction in antioxidant enzyme activities; glutathione-S-transferase and catalase that was induced by CCl4. In addition, carvedilol ameliorated the inflammation induced by CCl4 as indicated by reducing the serum level of acute phase protein marker; alpha-2-macroglobulin and the liver expression of nuclear factor-kappa B (NF-κB). Finally, carvedilol significantly reduced liver fibrosis markers including hydroxyproline, collagen accumulation, and the expression of the hepatic stellate cell (HSC) activation marker; alpha smooth muscle actin. In conclusion, the present study provides evidences for the promising antifibrotic effects of carvedilol that can be explained by amelioration of oxidative stress through mainly, replenishment of GSH, restoration of antioxidant enzyme activities and reduction of lipid peroxides as well as amelioration of inflammation and fibrosis by decreasing collagen accumulation, acute phase protein level, NF-κB expression and finally HSC activation. -- Highlights: ► Carvedilol is a beta blocker with antioxidant and antifibrotic properties. ► It restores GSH and antioxidant enzyme activities and reduces lipid peroxidation. ► It ameliorates inflammation and nuclear factor kappa-B expression. ► It ameliorates fibrosis by decreasing collagen accumulation and HSC activation.« less

  3. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  4. Branches of the NF-κB signaling pathway regulate proliferation of oval cells in rat liver regeneration.

    PubMed

    Zhao, W M; Qin, Y L; Niu, Z P; Chang, C F; Yang, J; Li, M H; Zhou, Y; Xu, C S

    2016-03-24

    The NF-kB (nuclear factor kB) pathway is involved in the proliferation of many cell types. To explore the mechanism of the NF-kB signaling pathway underlying the oval cell proliferation during rat liver regeneration, the Rat Genome 230 2.0 Array was used to detect expression changes of NF-kB signaling pathway-related genes in oval cells. The results revealed that the expression levels of many genes in the NF-kB pathway were significantly changed. This included 48 known genes and 16 homologous genes, as well as 370 genes and 85 homologous genes related to cell proliferation. To further understand the biological significance of these changes, an expression profile function was used to analyze the potential biological processes. The results showed that the NF-kB pathway promoted oval cell proliferation mainly through three signaling branches; the tumor necrosis factor alpha branch (TNF-a pathway), the growth factor branch, and the chemokine branch. An integrated statistics method was used to define the key genes in the NF-kB pathway. Seven genes were identified to play vital roles in the NF-kB pathway. To confirm these results, the protein content, including two key genes (TNF and FGF11) and two non-key genes (CCL2 and TNFRSF12A), were analyzed using two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry. The results were generally consistent with those of the array data. To conclude, three branches and seven key genes were involved in the NF-kB signaling pathway that regulates oval cell proliferation during rat liver regeneration.

  5. c-Kit modifies the inflammatory status of smooth muscle cells

    PubMed Central

    Song, Lei; Martinez, Laisel; Zigmond, Zachary M.; Hernandez, Diana R.; Lassance-Soares, Roberta M.; Selman, Guillermo

    2017-01-01

    Background c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. Methods High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W–v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. Results The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Discussion Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation. PMID:28626608

  6. c-Kit modifies the inflammatory status of smooth muscle cells.

    PubMed

    Song, Lei; Martinez, Laisel; Zigmond, Zachary M; Hernandez, Diana R; Lassance-Soares, Roberta M; Selman, Guillermo; Vazquez-Padron, Roberto I

    2017-01-01

    c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (Kit W/W-v ) and control (Kit +/+ ) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.

  7. Structured DAG oil ameliorates renal injury in streptozotocin-induced diabetic rats through inhibition of NF-κB and activation of Nrf2 pathway.

    PubMed

    Das, Kankana; Ghosh, Mahua

    2017-02-01

    Accumulating evidence suggested that inflammatory processes are involved in the development of diabetic nephropathy (DN). Here, we have tested the hypothesis that Caprylic Acid (Cy)-diacylglycerol (DAG) oil (Cy-DAG), a novel structurally formulated lipid with high nutritional value, ameliorated DN in streptozotocin (STZ)-induced diabetic rats through the anti-inflammatory mechanisms. Basic hematological, biochemical parameters, immunoblotting, immunofluorescence and flow cytometry analysis were performed to observe the anti-inflammatory potential of Cy-DAG oil. The data revealed that STZ significantly increased the renal oxidative stress markers and decreased the levels of renal enzymatic and non-enzymatic antioxidants. Moreover, renal nitric oxide (NO), tissue necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were also increased in the renal tissue of STZ-treated rats. Further, DAG oil pretreatment produced a significant improvement in renal antioxidant status, reduced the lipid peroxidation and the levels of inflammatory markers in STZ-treated kidney. Similarly, results of protein expression showed that DAG oil pretreatment normalized the renal expression of Nrf2/Keap1 and its downstream regulatory proteins in STZ-treated condition. Immunohistochemical observations provided further evidence that DAG oil effectively protected the kidney from STZ-mediated oxidative damage. These results suggested that the DAG oil ameliorated STZ-induced oxidative renal injury by the activation of AKT/Nrf2/HO-1 pathway and the inhibition of ROS/MAPK/NF-κB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. [Inhibitory effect of kukoamine B on lung inflammatory responses in mice with sepsis].

    PubMed

    Zhang, Jinli; Qin, Weiting; Lyu, Wanghui; Shen, Weichang; Wang, Xu; Sun, Bingwei

    2014-07-01

    To investigate the inhibitory effect of kukoamine B (KB) on lung inflammatory responses in mice with sepsis and its possible molecular mechanism. Twenty-eight male mice were randomly divided into control group (n=8), lipopolysaccharide (LPS) group (n=10), and LPS + KB group (n=10). Sepsis model was reproduced by intra-peritoneal injection of 20 mg/kg LPS, while equivalent normal saline was given in control group, and 20 μg/kg KB was injected through caudal vein 4 hours after LPS challenge in LPS + KB group. After 8 hours of LPS challenge, the concentration of LPS in plasma and the activity of myeloperoxidase (MPO) in the lung tissue were determined. The contents of tumor necrosis factor-α (TNF-α) and interleukin-1β(IL-1β) in plasma, alveolar lavage fluid and lung tissue homogenates were assessed by enzyme linked immunosorbent assay (ELISA). The activation of nuclear factor-ΚB (NF-ΚB) and the expression of inducible nitric oxide synthase (iNOS) in lung tissue were determined by Western Blot. The pathological changes in lung tissues were observed with hematoxylin-eosin (HE) staining. The expression of intercellular adhesion molecule-1 (ICAM-1) in lung tissue was determined by immunohistochemistry. Compared with control group, the concentration of LPS in plasma (1 155.650±147.149 kEU/L vs. 31.390±18.859 kEU/L), MPO activity (1.177±0.093 U/g vs. 0.775±0.166 U/g), NF-ΚB activity (gray value: 1.557±0.105 vs. 0.824±0.032) and the expression of iNOS (gray value: 0.650±0.129 vs. 0.392±0.097) were significantly increased in LPS group (all P<0.05). After KB intervention, the concentration of LPS (624.461±149.012 kEU/L), MPO activity (0.919±0.023 U/g), NF-ΚB activity (1.127±0.074) and the expression of iNOS (0.425±0.066) were significantly lowered (all P<0.05). Compared with control group, the contents of TNF-α (47.325±13.864 ng/L vs. 6.534±0.544 ng/L, 13.382±2.231 ng/L vs. 3.748±0.692 ng/L, 31.127±7.399 ng/L vs. 14.948±4.673 ng/L) and IL-1β (74.329±11.890 ng/L vs. 29.921±6.487 ng/L, 9.422±2.674 ng/L vs. 1.105±0.364 ng/L, 528.509±32.073 ng/L vs. 109.945±13.561 ng/L) in plasma, alveolar lavage fluid and lung tissue homogenates were obviously enhanced in LPS group (all P<0.05). With KB intervention, the contents of TNF-α (20.331±7.789 ng/L, 7.145±1.202 ng/L, 15.966±2.946 ng/L) and IL-1β (57.707±8.098 ng/L, 2.212±0.878 ng/L, 426.154±11.270 ng/L) were markedly reduced (plasma TNF-α: F=16.052, P=0.002; IL-1β: F=20.649, P=0.000; lung tissue homogenates TNF-α: F=31.134, P=0.001; IL-1β: F=22.792, P=0.002; alveolar lavage fluid TNF-α: F=10.013, P=0.009; IL-1β: F=319.857, P=0.000). In addition, leukocyte infiltration to the lung tissue was attenuated, and the expression of ICAM-1 was reduced by KB in histological examination. KB, as a neutralizer of LPS, can inhibit the release of inflammatory mediators, reduce the pulmonary inflammatory response and protect the function of lung in septic mice.

  9. Valsartan attenuates bleomycin-induced pulmonary fibrosis by inhibition of NF-κB expression and regulation of Th1/Th2 cytokines.

    PubMed

    Mojiri-Forushani, Hoda; Hemmati, Ali Asghar; Khodadadi, Ali; Rashno, Mohammad

    2018-06-01

    Pulmonary fibrosis (PF) is a chronic respiratory system disease. The role of inflammation and angiotensin in the development and progression of PF has previously been demonstrated. Alternation in antifibrotic/profibrotic mediators and NF-κB activation have important roles in PF development. NF-κB, a nuclear factor, induces the transcription of inflammatory and pro-inflammatory cytokines. The aim of this study was to evaluate the effect of valsartan as an angiotensin receptor blocker on IL-4, INF-γ, and NF-κB expression in the treatment of PF. Rats were divided into five groups: groups I (bleomycin) and II (control) received a single injection of bleomycin (7.5 IU/kg) or vehicle, respectively. Groups III-V received valsartan (20, 40, and 80 mg/kg, respectively) orally a week before and for 3 weeks after the bleomycin injection. Serum levels of IL-4 and INF- γ were then measured. Relative NF-κB expression was investigated by real-time PCR. Histopathological examination showed the anti-inflammation effect of valsartan. Bleomycin significantly increased IL-4 serum level and decreased that of INF-γ in the serum. Valsartan could restore their levels to normal. Valsartan raised the decreased ratio of INF-γ/IL-4. Exposure to bleomycin elevated NF-κB expression; and valsartan decreased the increased gene expression. Valsartan as an angiotensin receptor antagonist presumably by blocking angiotensin receptor causes to ameliorated PF, which was at least partly due to antifibrotic/profibrotic cytokine regulation and reduced NF-κB expression. Valsartan showed a significant protective effect against bleomycin-induced PF.

  10. Carica papaya ameliorates allergic asthma via down regulation of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS levels.

    PubMed

    Inam, Asma; Shahzad, Muhammad; Shabbir, Arham; Shahid, Hira; Shahid, Khadija; Javeed, Aqeel

    2017-08-15

    Natural products have a prime importance as an essential source for new drug discovery. Carica papaya leaves (CPL) have been used to treat inflammation in traditional system of medicine. Current study evaluates the anti-inflammatory and immunomodulatory effects of CPL extract using mouse model of ovalbumin- (OVA) induced allergic asthma. All the mice were intraperitoneally sensitized and subsequently given intranasal challenge with OVA except the control group. Group-III and -IV were treated for seven consecutive days with CPL extract and methylprednisolone (MP), respectively. At the end of study, histopathological examination of the lungs was performed and inflammatory cell counts were done in blood as well as bronchoalveolar lavage fluid (BALF). The mRNA expression levels of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS were measured using reverse transcription polymerase chain reaction (RT-PCR). Results showed significant attenuation of lung infiltration of inflammatory cells, alveolar thickening, and goblet cell hyperplasia after treatment with CPL extract. We also found significant suppression of total and differential leukocyte counts in both blood and BALF samples of CPL extract treated group. CPL extract also alleviated the expression levels of IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS. Similarly, treatment with MP, used as a reference drug, also significantly ameliorated all the pro-inflammatory markers. Current study shows that CPL extract possesses anti-inflammatory effect in mouse model of allergic airway inflammation by down-regulating IL-4, IL-5, eotaxin, TNF-α, NF-ĸB, and iNOS expression levels. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Amelioration of collagen-induced arthritis using antigen-loaded dendritic cells modified with NF-κB decoy oligodeoxynucleotides

    PubMed Central

    Jiang, Hongmei; Hu, Henggui; Zhang, Yali; Yue, Ping; Ning, Lichang; Zhou, Yan; Shi, Ping; Yuan, Rui

    2017-01-01

    Dendritic cells (DCs) play an important role in the initiation of autoimmunity in rheumatoid arthritis (RA); therefore, the use of DCs needs to be explored to develop new therapeutic approaches for RA. Here, we investigated the therapeutic effect of bovine type II collagen (BIIC)-loaded DCs modified with NF-κB decoy oligodeoxynucleotides (ODNs) on collagen-induced arthritis (CIA) in rats and explored the underlying mechanisms. DCs treated with BIIC and NF-κB decoy ODNs exhibited features of immature DCs with low levels of costimulatory molecule (CD80 and CD86) expression. The development of arthritis in rats with CIA injected with BIIC + NF-κB decoy ODN-propagated DCs (BIIC–decoy DCs) was significantly ameliorated compared to that in rats injected with BIIC-propagated DCs or phosphate-buffered saline. We also found that the BIIC–decoy DCs exerted antiarthritis effects by inhibiting self-lymphocyte proliferative response and suppressing IFN-γ and anti-BIIC antibody production and inducing IL-10 antibody production. Additionally, antihuman serum antibodies were successfully produced in the rats treated with BIIC–decoy DCs but not in those treated with NF-κB decoy ODN-propagated DCs; moreover, the BIIC–decoy DCs did not affect immune function in the normal rats. These findings suggested that NF-κB decoy ODN-modified DCs loaded with a specific antigen might offer a practical method for the treatment of human RA. PMID:29075103

  12. Exploring a Link Between NF-KB and G2/M Cell Cycle Arrest in Breast Cancer Cells

    DTIC Science & Technology

    2005-04-01

    studies with esophageal squamous cell carcinom a lines have shown that IR induced p21waf1/ ciP ’ and a G2 cell cycle arrest that could als o be...i AD Award Number : DAMD17-02-1-062 3 TITLE : Exploring a Link Between NF-KB and G 2 /M Cell Cycle Arres t in Breast Cancer Cell s PRINCIPAL...Mar 2005 ) 4 . TITLE AND SUBTITL E Exploring a Link Between NF-kB and G 2 /M Cell Cycle Arres t in Breast Cancer Cells 5. FUND/NG NUMBERS DAMD17-02-1

  13. Activating PXR by Imperatorin Attenuates Dextran Sulphate Sodium-Induced Colitis in Mice.

    PubMed

    Liu, Meijing; Zhang, Guohui; Zheng, Chunge; Song, Meng; Liu, Fangle; Huang, Xiaotao; Bai, Shasha; Huang, Xinan; Lin, Chaozhan; Zhu, Chenchen; Hu, Yingjie; Mi, Suiqing; Liu, Changhui

    2018-06-26

    The activation of human pregnane X receptor (PXR) has potential therapeutic uses for inflammatory bowel disease (IBD). Imperatorin (IMP), a naturally-occurring coumarin, is the main bioactive ingredient of Angelica dahurica Radix, which is regularly used to treat the common cold and intestinal disorders. However, there are no data on the protective effects of IMP against IBD. The effects of IMP on PXR-modulated cytochrome P450 3A4 (CYP3A4) expression were assessed using a PXR transactivation assay, a mammalian two-hybrid assay, a competitive ligand-binding assay, analysis of CYP3A4 mRNA and protein expression levels, and measurement of CYP3A4 activity using a cell-based reporter gene assay and in vitro model. The inhibitory effects of IMP on NF-κB activity was evaluated by a reporter assay and NF-κB p65 nuclear translocation. The anti-IBD effects of IMP were investigated in a dextran sulphate sodium (DSS)-induced colitis mouse model. Colon inflammatory cytokines were assessed by ELISA. IMP activated CYP3A4 promoter activity, recruited steroid receptor coactivator 1 (SRC-1) to the ligand-binding domain of PXR, and increased the expression and activity of CYP3A4. However, PXR knockdown substantially reduced PXR-mediated CYP3A4 expression. Furthermore, IMP-mediated PXR activation suppressed NF-κB nuclear translocation and downregulated lipopolysaccharide-induced proinflammatory gene expression. Nevertheless, PXR knockdown partially reduced the IMP-mediated inhibition of NF-κB. IMP ameliorated DSS-induced colitis by PXR/NF-κB signalling. IMP serves as a PXR agonist to attenuate DSS-induced colitis by the suppression of the NF-κB-mediated proinflammatory response in a PXR/NF-κB- dependent manner. This article is protected by copyright. All rights reserved.

  14. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Extracts of Bauhinia championii (Benth.) Benth. inhibit NF-B-signaling in a rat model of collagen-induced arthritis and primary synovial cells.

    PubMed

    Xu, Wei; Huang, Mingqing; Zhang, Yuqin; Li, Huang; Zheng, Haiyin; Yu, Lishuang; Chu, Kedan

    2016-06-05

    Bauhinia championii (Benth.) Benth. is used in Chinese traditional medicine to treat arthritis, especially has been used a long time ago on rheumatoid arthritis (RA) in She ethnic minority group. To investigate the anti-RA effect of Bauhinia championii (Benth.) Benth ethyl acetate extract (BCBEE) and the molecular bases of it. BCBEE was studied on a rat model of RA induced by Ⅱcollagen in vivo, as well as on primary synovial cells in vitro. After BCBEE treatment, in vivo, it was showed that paw and joint edema was inhibited, pathological joint changes was ameliorated and the levels of interleukin (IL)-1β and tumor necrosis factor-(TNF-α) was decreased significantly. The protein and mRNA expressions of nuclear factor-B (NF-κB)(p65), IκB, p-IκB and IκB kinase beta (IκKβ) were also down-regulated. Moreover, the in vitro study revealed that BCBEE treatment inhibited primary synovial cells proliferation, and promoted down-regulation of NF-κB(p65), IκB, p-IκB and IκKβ. Taken together, the present study demonstrates that BCBEE produces a protection in a rat model of RA induced by Ⅱcollagen via inhibiting paw and joint edema, ameliorating pathological joint changes and regulating the levels of cytokines and its action mechanism maybe is via down-regulating NF-κB(p65), IκB, p-IκB and IκKβ expression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Phloretin ameliorates chemokines and ICAM-1 expression via blocking of the NF-κB pathway in the TNF-α-induced HaCaT human keratinocytes.

    PubMed

    Huang, Wen-Chung; Dai, Yi-Wen; Peng, Hui-Ling; Kang, Chiao-Wei; Kuo, Chun-Yu; Liou, Chian-Jiun

    2015-07-01

    Previous studies found that phloretin had anti-oxidant, anti-inflammatory, and anti-tumor properties. In this study, we investigated whether phloretin could suppress the production of the intercellular adhesion molecule (ICAM)-1 and chemokines through downregulation of the nuclear transcription factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in TNF-α-stimulated HaCaT human keratinocytes. HaCaT cells were treated with phloretin and then the cells were stimulated by TNF-α. Phloretin treatment decreased the production of IL-6, IL-8, CCL5, MDC, and TARC. Phloretin decreased ICAM-1 protein and mRNA expression, and also suppressed the adhesion of monocyte THP-1 cells to inflammatory HaCaT cells. Phloretin inhibited NF-κB translocation into the nucleus and also suppressed the phosphorylation of Akt and MAPK signal. In addition, phloretin increased heme oxygenase-1 production in a concentration-dependent manner. These results demonstrated that phloretin has anti-inflammatory effects to inhibit chemokines and ICAM-1 expressions through suppression of the NF-κB and MAPK pathways in human keratinocytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Chlorogenic Acid Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/NF-κB Signal Pathway.

    PubMed

    Ye, Han-Yang; Jin, Jian; Jin, Ling-Wei; Chen, Yan; Zhou, Zhi-Hong; Li, Zhan-Yuan

    2017-04-01

    Chlorogenic acid (CGA), a polyphenolic compound, exists widely in medicinal herbs, which has been shown a strong antioxidant and anti-inflammatory effect. This study investigated the protective effects and mechanism of CGA on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Treatment of CGA successfully ameliorates LPS-induced renal function and pathological damage. Moreover, CGA dose-dependently suppressed LPS-induced blood urea nitrogen (BUN), creatinine levels, and inflammatory cytokines TNF-α, IL-6, and IL-1β in serum and tissue. The relative proteins' expression of TLR4/NF-κB signal pathway was assessed by western blot analysis. Our results showed that CGA dose-dependently attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels. CGA also suppressed LPS-induced TNF-α, IL-6, and IL-1β production both in serum and kidney tissues. Furthermore, our results showed that CGA significantly inhibited the LPS-induced expression of phosphorylated NF-κB p65 and IκB as well as the expression of TLR4 signal. In conclusion, our results provide a mechanistic explanation for the anti-inflammatory effects of CGA in LPS-induced AKI mice through inhibiting TLR4/NF-κB signaling pathway.

  18. Distinct signaling pathways leading to the induction of human β-defensin 2 by stimulating an electrolyticaly-generated acid functional water and double strand RNA in oral epithelial cells.

    PubMed

    Gojoubori, Takahiro; Nishio, Yukina; Asano, Masatake; Nishida, Tetsuya; Komiyama, Kazuo; Ito, Koichi

    2014-04-01

    Defensins, a major family of cationic antimicrobial peptides, play important roles in innate immunity. In the present study, we investigated whether double-stranded RNA (dsRNA), a by-product of RNA virus replication, can induce human β-defensins-2 (hBD-2) expression in oral epithelial cells (OECs). We also examined the hBD-2-inducible activity of acid-electrolyzed functional water (FW). The results indicated that both dsRNA- and FW-induced hBD-2 expression in OECs. The induction efficiency was much higher for FW than for dsRNA. FW-induced production of hBD-2 was clearly observed by immunofluorescence staining. A luciferase assay was performed with 1.2 kb of the 5'-untranslated region (5'-UTR) of the hBD-2 gene. The results indicated that the nuclear factor-kappa B (NF-κB)-binding site proximal to the translation initiation site was indispensable for dsRNA-stimulated hBD-2 expression, but not in the case of FW. Moreover, FW-stimulated hBD-2 expression did not depend on NF-κB activity; instead, FW inhibited NF-κB activity. Pretreatment of the cells with specific inhibitors against NF-κB further confirmed NF-κB-independent hBD-2 induction by FW. In analogy to the results for intestinal epithelial cells (IECs), the dsRNA signal, but not FW, was sensed by toll-like receptor 3 (TLR3) in OECs. These results suggested that hBD-2 expression induced by dsRNA and FW is regulated by distinct mechanisms in OECs.

  19. A semisynthetic diterpenoid lactone inhibits NF-κB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, J.C.-W.

    Andrographolide (AGP) and 14-deoxy-11,12-didehydroandrographolide (DDAG), two main diterpenoid constituents of Andrographis paniculata were previously shown to ameliorate asthmatic symptoms in a mouse model. However, due to inadequacies of both compounds in terms of drug-likeness, DDAG analogues were semisynthesised for assessment of their anti-asthma activity. A selected analogue, 3,19-diacetyl-14-deoxy-11,12-didehydroandrographolide (SRS27), was tested for inhibitory activity of NF-κB activation in TNF-α-induced A549 cells and was subsequently evaluated in a mouse model of ovalbumin (OVA)-induced asthma. Female BALB/c mice, 6–8 weeks old were sensitized on days 0 and 14, and challenged on days 22, 23 and 24 with OVA. Compound or vehicle (3%more » dimethyl sulfoxide) was administered intraperitoneally 1 h before and 11 h after each OVA aerosol challenge. On day 25, pulmonary eosinophilia, airway hyperresponsiveness, mucus hypersecretion, inflammatory cytokines such as IL-4, -5 and -13 in BAL fluid, gene expression of inflammatory mediators such as 5-LOX, E-selectin, VCAM-1, CCL5, TNF-α, AMCase, Ym2, YKL-40, Muc5ac, CCL2 and iNOS in animal lung tissues, and serum IgE were determined. SRS27 at 30 μM was found to suppress NF-κB nuclear translocation in A549 cells. In the ovalbumin-induced mouse asthma model, SRS27 at 3 mg/kg displayed a substantial decrease in pulmonary eosinophilia, BAL fluid inflammatory cytokines level, serum IgE production, mucus hypersecretion and gene expression of inflammatory mediators in lung tissues. SRS27 is the first known DDAG analogue effective in ameliorating inflammation and airway hyperresponsiveness in the ovalbumin-induced mouse asthma model. - Highlights: • SRS27 was synthesised to overcome inadequacies of its parent compound in terms of drug-likeness. • SRS27 was tested in TNF-α-induced A549 lung cells and ovalbumin (OVA)-induced mouse asthma model. • SRS27 suppressed NF-κB nuclear translocation in A549 cells. • SRS27 alleviated lung inflammation and airway hyperresponsiveness in mouse asthma model. • SRS27 is the first known DDAG analogue tested positive in ameliorating asthma.« less

  20. Electroacupuncture ameliorates cognitive impairment through inhibition of NF-κB-mediated neuronal cell apoptosis in cerebral ischemia-reperfusion injured rats.

    PubMed

    Feng, Xiaodong; Yang, Shanli; Liu, Jiao; Huang, Jia; Peng, Jun; Lin, Jiumao; Tao, Jing; Chen, Lidian

    2013-05-01

    Cognitive impairment is a serious mental deficit following stroke that severely affects the quality of life of stroke survivors. Nuclear factor‑κB (NF-κB)-mediated neuronal cell apoptosis is involved in the development of post-stroke cognitive impairment; therefore, it has become a promising target for the treatment of impaired cognition. Acupuncture at the Baihui (DU20) and Shenting (DU24) acupoints is commonly used in China to clinically treat post‑stroke cognitive impairment; however, the precise mechanism of its action is largely unknown. In the present study, we evaluated the therapeutic efficacy of electroacupuncture against post-stroke cognitive impairment and investigated the underlying molecular mechanisms using a rat model of focal cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture at Baihui and Shenting was identified to significantly ameliorate neurological deficits and reduce cerebral infarct volume. Additionally, electroacupuncture improved learning and memory ability in cerebral I/R injured rats, demonstrating its therapeutic efficacy against post-stroke cognitive impairment. Furthermore, electroacupuncture significantly suppressed the I/R-induced activation of NF-κB signaling in ischemic cerebral tissues. The inhibitory effect of electroacupuncture on NF-κB activation led to the inhibition of cerebral cell apoptosis. Finally, electroacupuncture markedly downregulated the expression of pro-apoptotic Bax and Fas, two critical downstream target genes of the NF-κB pathway. Collectively, our findings suggest that inhibition of NF-κB‑mediated neuronal cell apoptosis may be one mechanism via which electroacupuncture at Baihui and Shenting exerts a therapeutic effect on post-stroke cognitive impairment.

  1. The effect of chemical carcinogenesis on rat glutathione S-transferase P1 gene transcriptional regulation.

    PubMed

    Liu, D; Liao, M; Zuo, J; Henner, W D; Fan, F

    2001-03-01

    To investigate mechanisms of rat glutathione S-transferase P1 gene (rGSTP1) expression regulation during chemical carcinogenesis. we studied enhancer elements located in the region between -2.5 kb to -2.2 kb. The region was upstream from the start site of transcription and was divided into two major fragments, GPEI and GPEII. The GPEII fragment was further divided into two smaller fragments, GPEII- I and GPEII-2. Using a luciferase reporter system, we identified a strong enhancer of GPEI and a weak enhancer of GPEII in HeLa and a rat hepatoma cell line CBRH79 19 cell. The enhancer of GPEII was located within the GPEII-I region. Chemical stimulation by glycidyl methatylate (GMA) and phorbol 12-o-tetradecanoate 13-acetate (TPA) analysis revealed that induction of rGSTP1 expression was mainly through GPEI. Although H2O2 could enhance GPEII enhancer activity, the enhancement is not mediated by the NF-kappaB factor that bound the NF-kappaB site in GPEII. Using electrophoretic mobility shift assays (EMSA) and the UV cross-linking assays, we found that HeLa and CBRH7919 cells had proteins that specifically bound GPEI core sequence and a 64 kDa protein that interacted with GPEII-1. The cells from normal rat liver did not express the binding proteins. Therefore, the trans-acting factors seem to be closely related to GPEI, GPEII enhancer activities and may play an important role in high expression of rGSTPI gene.

  2. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis.

    PubMed

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-06-07

    To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. We demonstrated that BIFICO, which contains a mixture of Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus, was tolerant to the mouse stomach environment and was able to survive both the 8-h and 3-d courses of administration. Although BIFICO treatment had no effect on the colonization of H. pylori in the mouse stomach, it ameliorated H. pylori-induced gastritis by significantly inhibiting the expression of cytokines and chemokines such as TNF-α, IL-1β, IL-10, IL-6, G-CSF and MIP-2 (P < 0.05). These results led us to hypothesize that BIFICO treatment would diminish the H. pylori-induced inflammatory response in gastric mucosal epithelial cells in vitro via the NF-κB and MAPK signaling pathways. Indeed, we observed a decrease in the expression of the NF-κB subunit p65 and in the phosphorylation of IκB-α, ERK and p38. Moreover, there was a significant decrease in the production of IL-8, TNF-α, G-CSF and GM-CSF (P < 0.05), and the increased expression of TLR2, TLR4 and MyD88 induced by H. pylori in the stomach was also significantly reduced following BIFICO treatment (P < 0.05). Our results suggest that the probiotic cocktail BIFICO can ameliorate H. pylori-induced gastritis by inhibiting the inflammatory response in gastric epithelial cells.

  3. Probiotic BIFICO cocktail ameliorates Helicobacter pylori induced gastritis

    PubMed Central

    Yu, Hong-Jing; Liu, Wei; Chang, Zhen; Shen, Hui; He, Li-Juan; Wang, Sha-Sha; Liu, Lu; Jiang, Yuan-Ying; Xu, Guo-Tong; An, Mao-Mao; Zhang, Jun-Dong

    2015-01-01

    AIM: To determine the protective effect of triple viable probiotics on gastritis induced by Helicobacter pylori (H. pylori) and elucidate the possible mechanisms of protection. METHODS: Colonization of BIFICO strains in the mouse stomach was determined by counting colony-forming units per gram of stomach tissue. After treatment with or without BIFICO, inflammation and H. pylori colonization in the mouse stomach were analyzed by hematoxylin and eosin and Giemsa staining, respectively. Cytokine levels were determined by enzyme-linked immunosorbent assay and Milliplex. The activation of nuclear factor (NF)-κB and MAPK signaling in human gastric epithelial cells was evaluated by Western blot analysis. Quantitative reverse transcription-polymerase chain reaction was used to quantify TLR2, TLR4 and MyD88 mRNA expression in the mouse stomach. RESULTS: We demonstrated that BIFICO, which contains a mixture of Enterococcus faecalis, Bifidobacterium longum and Lactobacillus acidophilus, was tolerant to the mouse stomach environment and was able to survive both the 8-h and 3-d courses of administration. Although BIFICO treatment had no effect on the colonization of H. pylori in the mouse stomach, it ameliorated H. pylori-induced gastritis by significantly inhibiting the expression of cytokines and chemokines such as TNF-α, IL-1β, IL-10, IL-6, G-CSF and MIP-2 (P < 0.05). These results led us to hypothesize that BIFICO treatment would diminish the H. pylori-induced inflammatory response in gastric mucosal epithelial cells in vitro via the NF-κB and MAPK signaling pathways. Indeed, we observed a decrease in the expression of the NF-κB subunit p65 and in the phosphorylation of IκB-α, ERK and p38. Moreover, there was a significant decrease in the production of IL-8, TNF-α, G-CSF and GM-CSF (P < 0.05), and the increased expression of TLR2, TLR4 and MyD88 induced by H. pylori in the stomach was also significantly reduced following BIFICO treatment (P < 0.05). CONCLUSION: Our results suggest that the probiotic cocktail BIFICO can ameliorate H. pylori-induced gastritis by inhibiting the inflammatory response in gastric epithelial cells. PMID:26074694

  4. Telomere erosion in NF1 tumorigenesis.

    PubMed

    Jones, Rhiannon E; Grimstead, Julia W; Sedani, Ashni; Baird, Duncan; Upadhyaya, Meena

    2017-06-20

    Neurofibromatosis type 1 (NF1; MIM# 162200) is a familial cancer syndrome that affects 1 in 3,500 individuals worldwide and is inherited in an autosomal dominant fashion. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) represent a significant cause of morbidity and mortality in NF1 and currently there is no treatment or definite prognostic biomarkers for these tumors. Telomere shortening has been documented in numerous tumor types. Short dysfunctional telomeres are capable of fusion and it is considered that the ensuing genomic instability may facilitate clonal evolution and the progression to malignancy. To evaluate the potential role of telomere dysfunction in NF1-associated tumors, we undertook a comparative analysis of telomere length in samples derived from 10 cutaneous and 10 diffused plexiform neurofibromas, and 19 MPNSTs. Telomere length was determined using high-resolution Single Telomere Length Analysis (STELA). The mean Xp/Yp telomere length detected in MPNSTs, at 3.282 kb, was significantly shorter than that observed in both plexiform neurofibromas (5.793 kb; [p = 0.0006]) and cutaneous neurofibromas (6.141 kb; [p = 0.0007]). The telomere length distributions of MPNSTs were within the length-ranges in which telomere fusion is detected and that confer a poor prognosis in other tumor types. These data indicate that telomere length may play a role in driving genomic instability and clonal progression in NF1-associated MPNSTs.

  5. Regulation Of Nf=kb And Mnsod In Low Dose Radiation Induced Adaptive Protection Of Mouse And Human Skin Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Li

    2012-11-07

    A sampling of publications resulting from this grant is provided. One is on the subject of NF-κB-Mediated HER2 Overexpression in Radiation-Adaptive Resistance. Another is on NF-κB-mediated adaptive resistance to ionizing radiation.

  6. Genomic organization of the neurofibromatosis 1 gene (NF1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; O`Connell, P.; Huntsman Breidenbach, H.

    Neurofibromatosis 1 maps to chromosome band 17q11.2, and the NF1 locus has been partially characterized. Even though the full-length NF1 cDNA has been sequenced, the complete genomic structure of the NF1 gene has not been elucidated. The 5{prime} end of NF1 is embedded in a CpG island containing a NotI restriction site, and the remainder of the gene lies in the adjacent 350-kb NotI fragment. In our efforts to develop a comprehensive screen for NF1 mutations, we have isolated genomic DNA clones that together harbor the entire NF1 cDNA sequence. We have identified all intron-exon boundaries of the coding regionmore » and established that it is composed of 59 exons. Furthermore, we have defined the 3{prime}-untranslated region (3{prime}-UTR) of the NF1 gene; it spans approximately 3.5 kb of genomic DNA sequence and is continuous with the stop codon. Oligonucleotide primer pairs synthesized from exon-flanking DNA sequences were used in the polymerase chain reaction with cloned, chromosome 17-specific genomic DNA as template to amplify NF1 exons 1 through 27b and the exon containing the 3{prime}-UTR separately. This information should be useful for implementing a comprehensive NF1 mutation screen using genomic DNA as template. 41 refs., 3 figs., 2 tabs.« less

  7. Betaine recovers hypothalamic neural injury by inhibiting astrogliosis and inflammation in fructose-fed rats.

    PubMed

    Li, Jian-Mei; Ge, Chen-Xu; Xu, Min-Xuan; Wang, Wei; Yu, Rong; Fan, Chen-Yu; Kong, Ling-Dong

    2015-02-01

    Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis, and inflammation were explored to address its improvement of fructose-induced metabolic syndrome. Rats or astrocytes were exposed to fructose and then treated with betaine. Neural injury, proinflammatory markers, Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway, and histone deacetylases 3 (HDAC3) expressions were evaluated. The reduction of pro-opiomelanocortin and melanocortin 4 receptor positive neurons in fructose-fed rats was ameliorated by betaine. Moreover, fructose induced astrogliosis and proinflammatory cytokine production by increasing TLR4, MyD88 (where MyD88 is myeloid differentiation factor 88), and NF-κB expression in rat hypothalamus and astrocytes. HDAC3 overexpression preserved the prolonged inflammation in fructose-stimulated astrocytes by regulating nuclear NF-κB-dependent transcription. Betaine suppressed TLR4/NF-κB pathway activation and HDAC3 expression, contributing to its inhibition of hypothalamic astrogliosis and inflammation in animal and cell models. These findings suggest that betaine inhibits fructose-caused astrogliosis and inflammation by the suppression of TLR4/NF-κB pathway activation and HDAC3 expression to protect against hypothalamic neural injury, which, at least partly, contributes to the improvement of fructose-induced metabolic syndrome. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The pharmacological efficacy of the anti-IL17 scFv and sTNFR1 bispecific fusion protein in inflammation mouse stimulated by LPS.

    PubMed

    Yang, Yongbi; Zhang, Teng; Cao, Hongxue; Yu, Dan; Zhang, Tong; Zhao, Shaojuan; Jing, Xiaohui; Song, Liying; Liu, Yunye; Che, Ruixiang; Liu, Xin; Li, Deshan; Ren, Guiping

    2017-08-01

    Acute lung injury (ALI) is still a leading cause of morbidity and mortality in critically ill patients. Recently, our study found that a bispecific fusion protein treatment can ameliorate the lung injury induced by LPS. However, the molecular mechanisms which bispecific fusion protein ameliorates acute lung injury remain unclear. In this study, we found that the bispecific fusion protein treatment inhibited the nuclear transcription of NF-κB in confocal laser scanning fluorescence microscopy, the bispecific fusion protein exert protective effects in the cell model of ALI induced by lipopolysaccharide (LPS) via inhibiting the nuclear factor κB (NF-κB) signaling pathway and mediate inflammation. Moreover, the treatment of the bispecific fusion protein show its efficacy in animal models stimulated by LPS, the results of real-time PCR and ELISA demonstrate that bispecific fusion protein treatment effectively inhibited the over-expression of inflammatory cytokines(tumor necrosis factor α, interleukin 1β and interleukin 17). In addition, LPS-challenged mice exhibited significant lung injury characterized by the deterioration of histopathology, which was meliorated by bispecific fusion protein treatment. Collectively, these results demonstrate that bispecific fusion protein treatment ameliorates LPS-induced ALI through reducing inflammatory cytokines and lung inflammation, which may be associated with the decreased the nuclear transcription of NF-κB. The bispecific fusion protein may be useful as a novel therapy to treat ALI. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Expression of NF-kappaB and IkappaB proteins in skeletal muscle of gastric cancer patients

    PubMed Central

    Rhoads, Mary G.; Kandarian, Susan C.; Pacelli, Fabio; Doglietto, Giovan Battista; Bossola, Maurizio

    2011-01-01

    The mechanisms eliciting cancer cachexia are not well understood. Wasting of skeletal muscle is problematic because it is responsible for the clinical deterioration in cancer patients and the ability to tolerate cancer treatment. Animal studies suggest that nuclear factor of kappa B (NF-κB) signaling is important in the progression of muscle wasting due to several types of tumors. However, there are no published studies in humans on a role for NF-κB in cancer cachexia. In this project we studied the rectus abdominis muscle from patients with gastric tumors (n=14) and age matched control subjects (n=10) for markers of NF-κB activation. Nuclear levels of p65, p50, and Bcl-3 were the same in both groups of subjects. However, phospho-p65 was elevated by 25% in muscles of cancer patients. In addition, expression of the inhibitor of kappa B alpha (IκBα), was decreased by 25% in cancer patients. Decreased expression of IκBα reflects its degradation by one of the IκBα kinases and is a marker of NF-κB activation. Interestingly, there was no correlation between the stage of cancer and the extent of IκBα decrease, nor was there a correlation between the degree of cachexia and decreased IκBα levels. This suggests that the activation of NF-κB is an early and sustained event in gastric cancer. The work implicates the NF-κB signaling in the initiation and progression of cancer cachexia in humans and demonstrates the need for additional study of this pathway; it also recommends NF-κB signaling as a therapeutic target for the amelioration of cachexia as has been suggested from rodent studies. PMID:19857958

  10. Fumaric acid attenuates the eotaxin-1 expression in TNF-α-stimulated fibroblasts by suppressing p38 MAPK-dependent NF-κB signaling.

    PubMed

    Roh, Kyung-Baeg; Jung, Eunsun; Park, Deokhoon; Lee, Jongsung

    2013-08-01

    Eotaxin-1 is a potent chemoattractant for eosinophils and a critical mediator during the development of eosinophilic inflammation. Fumaric acid is an intermediate product of the citric acid cycle, which is source of intracellular energy. Although fumaric acid ameliorates psoriasis and multiple sclerosis, its involvement in eotaxin-1-mediated effects has not been assessed. In this study, we investigated the effects of fumaric acid on eotaxin-1 expression in a mouse fibroblast cell line. We found that fumaric acid significantly inhibited tumor necrosis factor-α (TNF-α-induced eotaxin-1 expression. This fumaric acid effect was mediated through the inhibition of p38 mitogen-activated protein kinase (MAPK)-dependent nuclear factor (NF)-κB signaling. We also found that fumaric acid operates downstream of MEKK3 during TNF-α-induced NF-κB signaling, which upregulated eotaxin-1 expression. In addition, fumaric acid attenuated expression of CC-chemokine receptor 3 (CCR3), an eotaxin-1 receptor, and adhesion molecules that play important roles in eosinophil binding to induce allergic inflammation. Taken together, these findings indicate that inhibiting TNF-α-induced eotaxin-1 expression by fumaric acid occurs primarily through suppression of NF-κB signaling, which is mediated by inhibiting p38 MAPK and suggest that fumaric acid may be used as a complementary treatment option for eotaxin-1-mediated diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    PubMed

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  12. Antifibrotic Mechanism of Pinocembrin: Impact on Oxidative Stress, Inflammation and TGF-β /Smad Inhibition in Rats.

    PubMed

    Said, Marwa M; Azab, Samar S; Saeed, Noha M; El-Demerdash, Ebtehal

    2018-03-01

    The present study aimed to elucidate the potential antifibrotic effects of pinocembrin (PIN), a flavanone found abundantly in honey and propolis, by studying its effect on different oxidative stress, inflammatory and fibrosis markers in an experimental model of CCl4-induced liver fibrosis. PIN (20 mg/kg) was given orally 3 times/week for 6 consecutive weeks alternating with CCl4 (0.5 mL/kg, 1:1 mixture with corn oil, i. p.) twice weekly. Different hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. PIN significantly restored liver transaminases and total cholesterol to normal levels. Also, PIN ameliorated oxidative stress injury evoked by CCl4 as evidenced by inhibition of reduced glutathione depletion and lipid peroxidation as well as elevation of antioxidant enzyme superoxide dismutase (SOD). Further, PIN upregulated the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective enzyme hemeoxygenase-1 (HO-1). Moreover, PIN alleviated pro-inflammatory cytokines such as TNF-α via inhibiting nuclear factor-κB (NF-κB) activation. As markers of fibrosis, collagen and α-SMA expression increased markedly in the CCl4 group and PIN prevented these alterations. In addition, PIN down-regulated TGFβ1 and p-Smad2/3, thereby inhibiting TGFβ1/Smad signaling pathway. These results suggest that PIN possess potent antifibrotic effects that can be explained on its antioxidant properties. It ameliorates oxidative stress and inflammation during induction of fibrogenesis via its ability to augment celular antioxidant defenses, activating Nrf2-mediated HO-1 expression and modulating NF-κB and TGF-β1/Smad signaling pathway.

  13. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection.

    PubMed

    Sahu, Bidya Dhar; Tatireddy, Srujana; Koneru, Meghana; Borkar, Roshan M; Kumar, Jerald Mahesh; Kuncha, Madhusudana; Srinivas, R; Shyam Sunder, R; Sistla, Ramakrishna

    2014-05-15

    Gentamicin-induced nephrotoxicity has been well documented, although its underlying mechanisms and preventive strategies remain to be investigated. The present study was designed to investigate the protective effect of naringin, a bioflavonoid, on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific renal function parameters (blood urea nitrogen and creatinine) and histopathology of kidney tissues were evaluated to assess the gentamicin-induced nephrotoxicity. Renal oxidative stress (lipid peroxidation, protein carbonylation, enzymatic and non-enzymatic antioxidants), inflammatory (NF-kB [p65], TNF-α, IL-6 and MPO) and apoptotic (caspase 3, caspase 9, Bax, Bcl-2, p53 and DNA fragmentation) markers were also evaluated. Significant decrease in mitochondrial NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase and mitochondrial redox activity indicated the gentamicin-induced mitochondrial dysfunction. Naringin (100mg/kg) treatment along with gentamicin restored the mitochondrial function and increased the renal endogenous antioxidant status. Gentamicin induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65) and NF-κB-DNA binding activity and myeloperoxidase (MPO) activity were significantly decreased upon naringin treatment. In addition, naringin treatment significantly decreased the amount of cleaved caspase 3, Bax, and p53 protein expression and increased the Bcl-2 protein expression. Naringin treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. U-HPLS-MS data revealed that naringin co-administration along with gentamicin did not alter the renal uptake and/or accumulation of gentamicin in kidney tissues. These findings suggest that naringin treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, mitochondrial dysfunction, inflammation and apoptosis in the kidney. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The ethanol extract of Zingiber zerumbet rhizomes mitigates vascular lesions in the diabetic retina.

    PubMed

    Hong, Tang-Yao; Tzeng, Thing-Fong; Liou, Shorong-Shii; Liu, I-Min

    2016-01-01

    Diabetic retinopathy (DR) is a common diabetic eye disease which is well-known as the result of microvascular retinal changes. Although the ethanol extract from Zingiber zerumbet (L.) Smith rhizome (EEZZR) has been indicated to ameliorate hyperglycemia in diabetes, its protective effect on DR remains unclear. The aim of this study was to determine the effects of EEZZR on DR in streptozotocin (STZ) diabetic rats. Diabetic rats were treated orally with EEZZR (200, 300 mg/kg per day) or calcium dobesilate (CD; 500 mg/kg per day) for 12 weeks. EEZZR displayed similar characteristics to CD in reducing blood-retinal barrier permeability in diabetic rats. Retinal histopathological observation showed that retinal vessels were decreased in EEZZR-treated diabetic rats. EEZZR decreased the increased retinal expression of vascular endothelial growth factor (VEGF) and upregulate the expressions of renal pigment epithelium-derived factor (PEDF) in diabetic rats. Retinal mRNA expression of tumor necrosis factor-α, interleukin (IL)-1, IL-6, monocyte chemotactic proteins-1, intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 were all decreased in EEZZR-treated diabetic rats. Moreover, EEZZR could attenuate phosphorylation of nuclear factor Kappa B (NF-κB) p65 and extracellular signal-regulated kinase (ERK)1/2 as well as inhibit the nuclear translocation of pNF-κB p65 induced by diabetes. In conclusion, restoring the balance between stimulators and inhibitors of angiogenesis may be associated with the protective effect of EEZZR on DR. In addition, EEZZR can ameliorate retinal inflammation via transrepression of NF-κB and inhibition of ERK1/2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro.

    PubMed

    Sárvári, Anitta K; Veréb, Zoltán; Uray, Iván P; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice

    PubMed Central

    Kishi, Noriyuki; MacDonald, Jessica L.; Ye, Julia; Molyneaux, Bradley J.; Azim, Eiman; Macklis, Jeffrey D.

    2016-01-01

    Mutations in the transcriptional regulator Mecp2 cause the severe X-linked neurodevelopmental disorder Rett syndrome (RTT). In this study, we investigate genes that function downstream of MeCP2 in cerebral cortex circuitry, and identify upregulation of Irak1, a central component of the NF-κB pathway. We show that overexpression of Irak1 mimics the reduced dendritic complexity of Mecp2-null cortical callosal projection neurons (CPN), and that NF-κB signalling is upregulated in the cortex with Mecp2 loss-of-function. Strikingly, we find that genetically reducing NF-κB signalling in Mecp2-null mice not only ameliorates CPN dendritic complexity but also substantially extends their normally shortened lifespan, indicating broader roles for NF-κB signalling in RTT pathogenesis. These results provide new insight into both the fundamental neurobiology of RTT, and potential therapeutic strategies via NF-κB pathway modulation. PMID:26821816

  17. Curcumin attenuates quinocetone induced apoptosis and inflammation via the opposite modulation of Nrf2/HO-1 and NF-kB pathway in human hepatocyte L02 cells.

    PubMed

    Dai, Chongshan; Li, Bin; Zhou, Yan; Li, Daowen; Zhang, Shen; Li, Hui; Xiao, Xilong; Tang, Shusheng

    2016-09-01

    The potential toxicity of quinocetone (QCT) has raised widely concern, but its mechanism is still unclear. This study aimed to investigate the protective effect of curcumin on QCT induced apoptosis and the underlying mechanism in human hepatocyte L02 cells. The results showed that QCT treatment significantly decreased the cell viability of L02 cell and increased the release of lactate dehydrogenase (LDH), which was attenuated by curcumin pre-treatment at 1.25, 2.5 and 5 μM. Compared to the QCT alone group, curcumin pre-treatment significantly attenuated QCT induced oxidative stress, mitochondrial dysfunction and apoptosis. In addition, curcumin pretreatment markedly attenuated QCT-induced increase of iNOS activity and NO production in a dose-dependent manner. Meanwhile, curcumin pretreatment markedly down-regulated the expression of nuclear factor -kB (NF-kB) and iNOS mRNAs, but up-regulated the expressions of Nrf2 and HO-1 mRNAs, compared to the QCT alone group. Zinc protoporphyrin IX, a HO-1 inhibitor, markedly partly abolished the cytoprotective effect of curcumin against QCT-induced caspase activation, NF-kB mRNA expression. These results indicate that curcumin could effectively inhibit QCT induced apoptosis and inflammatory response in L02 cells, which may involve the activation of Nrf2/HO-1 and inhibition of NF-kB pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Acrylamide-induced oxidative stress and inflammatory response are alleviated by N-acetylcysteine in PC12 cells: Involvement of the crosstalk between Nrf2 and NF-κB pathways regulated by MAPKs.

    PubMed

    Pan, Xiaoqi; Wu, Xu; Yan, Dandan; Peng, Cheng; Rao, Chaolong; Yan, Hong

    2018-05-15

    Acrylamide (ACR) is a classic neurotoxin in animals and humans. However, the mechanism underlying ACR neurotoxicity remains controversial, and effective prevention and treatment measures against this condition are scarce. This study focused on clarifying the crosstalk between the involved signaling pathways in ACR-induced oxidative stress and inflammatory response and investigating the protective effect of antioxidant N-acetylcysteine (NAC) against ACR in PC12 cells. Results revealed that ACR exposure led to oxidative stress characterized by significant increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels and glutathione (GSH) consumption. Inflammatory response was observed based on the dose-dependently increased levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6). NAC attenuated ACR-induced enhancement of MDA and ROS levels and TNF-α generation. In addition, ACR activated nuclear transcription factor E2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. Knockdown of Nrf2 by siRNA significantly blocked the increased NF-κB p65 protein expression in ACR-treated PC12 cells. Down-regulation of NF-κB by specific inhibitor BAY11-7082 similarly reduced ACR-induced increase in Nrf2 protein expression. NAC treatment increased Nrf2 expression and suppressed NF-κB p65 expression to ameliorate oxidative stress and inflammatory response caused by ACR. Further results showed that mitogen-activated protein kinases (MAPKs) pathway was activated prior to the activation of Nrf2 and NF-κB pathways. Inhibition of MAPKs blocked Nrf2 and NF-κB pathways. Collectively, ACR activated Nrf2 and NF-κB pathways which were regulated by MAPKs. A crosstalk between Nrf2 and NF-κB pathways existed in ACR-induced cell damage. NAC protected against oxidative damage and inflammatory response induced by ACR by activating Nrf2 and inhibiting NF-κB pathways in PC12 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. 6-Shogaol ameliorates diabetic nephropathy through anti-inflammatory, hyperlipidemic, anti-oxidative activity in db/db mice.

    PubMed

    Xu, Yun; Bai, Liwei; Chen, Xuehui; Li, Yan; Qin, Yan; Meng, Xiangyu; Zhang, Qinggui

    2018-01-01

    The prevalence of type 2 diabetes mellitus has been increasing worldwide and more than two thirds of the patients may develop diabetic nephropathy (DN). However, the efficiency of existing approaches on DN progression is limited. 6-Shogaol (6-SG), a major dehydrated derivative of gingerols, possesses various biological properties. The present study was designed to evaluate the possible effects of 6-SG on DN in db/db mice and to investigate the mechanisms. We revealed that 6-SG reduced the levels of fasting blood glucose, serum insulin, C-peptide, glycosylated hemoglobin A1c, and systolic blood pressure. 6-SG decreased the levels of blood urea nitrogen (BUN), serum creatinine, urinary albumin content and albumin/creatinine ratio (ACR), ameliorated the pathological injuries of kidneys, reduced the surface area of Bowman's capsule, Bowman's space, glomerular tuft, and decreased the expression of collagen IV and fibronectin in kidneys of db/db mice. The high levels of systemic and renal triglyceride and cholesterol were decreased by 6-SG. Moreover, 6-SG exhibited anti-inflammatory effects, as reflected by reduction of tumor necrosis factor ɑ (TNFɑ), monocyte chemotactic protein-1 (MCP-1), and IL-6 levels in circulation and kidneys, and decrease of NF-κB expression. Furthermore, 6-SG also inhibited oxidative stress and restored the expression of NF-E2-related factor 2 (Nrf2) in kidneys of db/db mice. In conclusion, we have demonstrated that 6-SG exhibits anti-diabetic and renal protective effects against DN, in which effect the anti-inflammatory, hyperlipidemic, anti-oxidative activities may be involved. Overall, 6-SG could be a promising therapeutic treatment to ameliorate diabetes and the development of DN. Copyright © 2017. Published by Elsevier Masson SAS.

  20. San-Cao Granule () ameliorates hepatic fibrosis through high mobility group box-1 protein/smad signaling pathway.

    PubMed

    Wei, Shi-Zhang; Luo, Sheng-Qiang; Wang, Jian; Wang, Jia-Bo; Li, Rui-Sheng; Zhang, Xiao-Mei; Guo, Yan-Lei; Chen, Chang; Ma, Xiao; Chen, Zhe; Liu, Hong-Hong; Yang, Zhi-Rui; Li, Jian-Yu; Wang, Rui-Lin; Zhang, Ya-Ming; Yang, Hui-Yin; Xiao, Xiao-He; Zhao, Yan-Ling

    2015-12-19

    To investigate the possible mechanism of San-Cao Granule (SCG, ) mediating antiliver fifibrosis. A total of 60 male Sprague-Dawley rats were randomly divided into the normal control group, porcine serum-treated group, ursodesoxycholic acid (UDCA, 60 mg/kg), SCG (3.6 g/kg) group, SCG (1.8 g/kg) group and SCG (0.9 g/kg) group, with 10 rats in each group. Liver fifibrosis was induced with porcine serum by intraperitoneal injection for 8 weeks, except for the normal control group. Then, the rats in the three SCG-treated groups and UDCA group were administered SCG and UDCA respectively for 4 weeks. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), albumin (ALB), total bilirubin (TBIL), hyaluronic acid (HA), laminin (LN), and type IVcollagen (IVC) were examined using commercial kits and hepatic histopathology was examined with hematoxylin and eosin and Masson staining. Moreover, the protein expression levels of high mobility group box-1 protein (HMGB1), transforming growth factor β1 (TGF-β1), phosphorylated mothers against decapentaplegic homolog 3 (p-Smad3), Smad7, toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-kappa B (NF-κB) and α-smooth muscle actin (α-SMA) were determined by western blot, immunohistochemistry and real time quantitativereverse transcription polymerase. Both SCG (3.6 and 1.8 g/kg) and UDCA signifificantly ameliorated the liver fifibrosis induced by porcine serum as indicated by retarding the serum levels increasing of ALT, AST, TBIL, HA, LN and IVC and preventing the serum level reducing of ALB compared with the model group (all P<0.01). Meanwhile, the collagen deposition was attenuated by SCG and UDCA treatment. Furthermore, SCG markedly reduced the expressions of HMGB1, TGF-β1, p-Smad3, TLR4, MyD88, NF-κB and α-SMA, and enhanced the expression of the Smad7 compared with the model group (all P<0.01). SCG ameliorates hepatic fifibrosis possibly through inhibiting HMGB1, TLR4/NF-κB and TGF-β1/Smad signaling pathway.

  1. Celastrol ameliorates HIV-1 Tat-induced inflammatory responses via NF-kappaB and AP-1 inhibition and heme oxygenase-1 induction in astrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youn, Gi Soo; Kwon, Dong-Joo; Ju, Sung Mi

    HIV-1 Tat causes extensive neuroinflammation that may progress to AIDS-related encephalitis and dementia. Celastrol possesses various biological activities such as anti-oxidant, anti-tumor, and anti-inflammatory activities. In this study, we investigated the modulatory effects of celastrol on HIV-1 Tat-induced inflammatory responses and the molecular mechanisms underlying its action in astrocytes. Pre-treatment of CRT-MG human astroglioma cells with celastrol significantly inhibited HIV-1 Tat-induced expression of ICAM-1/VCAM-1 and subsequent monocyte adhesiveness in CRT-MG cells. In addition, celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory chemokines, such as CXCL10, IL-8, and MCP-1. Celastrol decreased HIV-1 Tat-induced activation of JNK MAPK, AP-1, and NF-κB. Furthermore, celastrolmore » induced mRNA and protein expression of HO-1 as well as Nrf2 activation. Blockage of HO-1 expression using siRNA reversed the inhibitory effect of celastrol on HIV-1 Tat-induced inflammatory responses. These results suggest that celastrol has regulatory effects on HIV-1 Tat-induced inflammatory responses by blocking the JNK MAPK-AP-1/NF-κB signaling pathways and inducing HO-1 expression in astrocytes. - Highlights: • Celastrol suppressed HIV-1 Tat-induced expression of pro-inflammatory genes. • Celastrol inhibited HIV-1 Tat -induced activation of JNK MAPK. • Celastrol inhibited HIV-1 Tat-induced activation of both NF-κB and AP-1. • Celastrol inhibited HIV-1 Tat-induced inflammatory responses via HO-1 induction.« less

  2. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis.

    PubMed

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis.

  3. Identification of hamster inducible nitric oxide synthase (iNOS) promoter sequences that influence basal and inducible iNOS expression

    PubMed Central

    Saldarriaga, Omar A.; Travi, Bruno L.; Choudhury, Goutam Ghosh; Melby, Peter C.

    2012-01-01

    IFN-γ/LPS-activated hamster (Mesocricetus auratus) macrophages express significantly less iNOS (NOS2) than activated mouse macrophages, which contributes to the hamster's susceptibility to intracellular pathogens. We determined a mechanism responsible for differences in iNOS promoter activity in hamsters and mice. The HtPP (1.2 kb) showed low basal and inducible promoter activity when compared with the mouse, and sequences within a 100-bp region (−233 to −133) of the mouse and hamster promoters influenced this activity. Moreover, within this 100 bp, we identified a smaller region (44 bp) in the mouse promoter, which recovered basal promoter activity when swapped into the hamster promoter. The mouse homolog (100-bp region) contained a cis-element for NF-IL-6 (−153/−142), which was absent in the hamster counterpart. EMSA and supershift assays revealed that the hamster sequence did not support the binding of NF-IL-6. Introduction of a functional NF-IL-6 binding sequence into the hamster promoter or its alteration in the mouse promoter revealed the critical importance of this transcription factor for full iNOS promoter activity. Furthermore, the binding of NF-IL-6 to the iNOS promoter (−153/−142) in vivo was increased in mouse cells but was reduced in hamster cells after IFN-γ/LPS stimulation. Differences in the activity of the iNOS promoters were evident in mouse and hamster cells, so they were not merely a result of species-specific differences in transcription factors. Thus, we have identified unique DNA sequences and a critical transcription factor, NF-IL-6, which contribute to the overall basal and inducible expression of hamster iNOS. PMID:22517919

  4. Deleterious effect of salusin-β in paraventricular nucleus on sympathetic activity and blood pressure via NF-κB signaling in a rat model of obesity hypertension.

    PubMed

    Huang, Xiaodong; Wang, Yanchun; Ren, Kuang

    2015-08-01

    The paraventricular nucleus (PVN) has been shown to play a critical role in regulating blood pressure and sympathetic activity in obesity hypertension (OH). Salusin-β is a bioactive peptide with potential roles in mediating cardiovascular activity. The study was designed to test the hypothesis that salusin-β in the PVN can modulate sympathetic activity and blood pressure in OH. Male Sprague-Dawley rats were used to induce OH by a 12-week feeding of a high-fat diet (42% kcal as fat). Microinjection of salusin-β into the PVN increased the renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) in a dose-dependent manner, whereas salusin-β antibody elicited significant decreases in RSNA, MAP and HR, and abolished the effects of salusin-β only in the OH rats. As expected, the OH rats had a higher norepinephrine level, which was further increased by salusin-β. Furthermore, salusin-β in the PVN accelerated the nuclear translocation of the p65 subunit of nuclear factor kappa B (NF-KB) and the degradation of IKB-α (an endogenous inhibitor of NF-KB). Pretreatment with pyrrolidine dithiocarbamate (an exogenous inhibitor of NF-KB) decreased RSNA, MAP and HR, and abolished the effects of salusin-β in the PVN in the OH rats. We concluded that salusin-β in the PVN markedly increased sympathetic outflow and blood pressure in diet-induced OH rats via NF-κB signaling.

  5. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway.

    PubMed

    Chen, Haiming; Lu, Chuanjian; Liu, Huazhen; Wang, Maojie; Zhao, Hui; Yan, Yuhong; Han, Ling

    2017-07-01

    Quercetin (QC) is a dietary flavonoid abundant in many natural plants. A series of studies have shown that it has been shown to exhibit several biological properties, including anti-inflammatory, anti-oxidant, cardio-protective, vasodilatory, liver-protective and anti-cancer activities. However, so far the possible therapeutic effect of QC on psoriasis has not been reported. The present study was undertaken to evaluate the potential beneficial effect of QC in psoriasis using a generated imiquimod (IMQ)-induced psoriasis-like mouse model, and to further elucidate its underlying mechanisms of action. Effects of QC on PASI scores, back temperature, histopathological changes, oxidative/anti-oxidative indexes, pro-inflammatory cytokines and NF-κB pathway in IMQ-induced mice were investigated. Our results showed that QC could significantly reduce the PASI scores, decrease the temperature of the psoriasis-like lesions, and ameliorate the deteriorating histopathology in IMQ-induced mice. Moreover, QC effectively attenuated levels of TNF-α, IL-6 and IL-17 in serum, increased activities of GSH, CAT and SOD, and decreased the accumulation of MDA in skin tissue induced by IMQ in mice. The mechanism may be associated with the down-regulation of NF-κB, IKKα, NIK and RelB expression and up-regulation of TRAF3, which were critically involved in the non-canonical NF-κB pathway. In conclusion, our present study demonstrated that QC had appreciable anti-psoriasis effects in IMQ-induced mice, and the underlying mechanism may involve the improvement of antioxidant and anti-inflammatory status and inhibition on the activation of the NF-κB signaling. Hence, QC, a naturally occurring flavone with potent anti-psoriatic effects, has the potential for further development as a candidate for psoriasis treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A Mitochondrial-Targeted Coenzyme Q Analog Prevents Weight Gain and Ameliorates Hepatic Dysfunction in High-Fat–Fed Mice

    PubMed Central

    Fink, Brian D.; Herlein, Judith A.; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J.; Yu, Liping; Grobe, Justin L.; Rahmouni, Kamal; Kerns, Robert J.

    2014-01-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. PMID:25301169

  7. A mitochondrial-targeted coenzyme q analog prevents weight gain and ameliorates hepatic dysfunction in high-fat-fed mice.

    PubMed

    Fink, Brian D; Herlein, Judith A; Guo, Deng Fu; Kulkarni, Chaitanya; Weidemann, Benjamin J; Yu, Liping; Grobe, Justin L; Rahmouni, Kamal; Kerns, Robert J; Sivitz, William I

    2014-12-01

    We hypothesized that the mitochondrial-targeted antioxidant, mitoquinone (mitoQ), known to have mitochondrial uncoupling properties, might prevent the development of obesity and mitigate liver dysfunction by increasing energy expenditure, as opposed to reducing energy intake. We administered mitoQ or vehicle (ethanol) to obesity-prone C57BL/6 mice fed high-fat (HF) or normal-fat (NF) diets. MitoQ (500 µM) or vehicle (ethanol) was added to the drinking water for 28 weeks. MitoQ significantly reduced total body mass and fat mass in the HF-fed mice but had no effect on these parameters in NF mice. Food intake was reduced by mitoQ in the HF-fed but not in the NF-fed mice. Average daily water intake was reduced by mitoQ in both the NF- and HF-fed mice. Hypothalamic expression of neuropeptide Y, agouti-related peptide, and the long form of the leptin receptor were reduced in the HF but not in the NF mice. Hepatic total fat and triglyceride content did not differ between the mitoQ-treated and control HF-fed mice. However, mitoQ markedly reduced hepatic lipid hydroperoxides and reduced circulating alanine aminotransferase, a marker of liver function. MitoQ did not alter whole-body oxygen consumption or liver mitochondrial oxygen utilization, membrane potential, ATP production, or production of reactive oxygen species. In summary, mitoQ added to drinking water mitigated the development of obesity. Contrary to our hypothesis, the mechanism involved decreased energy intake likely mediated at the hypothalamic level. MitoQ also ameliorated HF-induced liver dysfunction by virtue of its antioxidant properties without altering liver fat or mitochondrial bioenergetics. U.S. Government work not protected by U.S. copyright.

  8. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats.

    PubMed

    Hou, Jun; Zheng, Dezhi; Fung, Gabriel; Deng, Haoyu; Chen, Lin; Liang, Jiali; Jiang, Yan; Hu, Yonghe

    2016-03-01

    Given the importance of the aggregation of advanced glycation end products (AGEs) and cardiac inflammation in the onset and progression of diabetic cardiomyopathy (DCM), our objective in this study was to demonstrate the cardioprotective effect of mangiferin, an antidiabetic and anti-inflammatory agent, on diabetic rat model. The DCM model was established by a high-fat diet and a low dose of streptozotocin. DCM rats were treated orally with mangiferin (20 mg/kg) for 16 weeks. Serum and left ventricular myocardium were collected for determination of inflammatory cytokines. AGEs mRNA and protein expression of nuclear factor kappa B (NF-κB) and receptor for AGEs (RAGE) in myocardium were assayed by real-time PCR and Western blot. ROS levels were measured by dihydroethidium fluorescence staining. NF-κB binding activity was assayed by TransAM NF-κB p65 ELISA kit. Chronic treatment with mangiferin decreased the levels of myocardial enzymes (CK-MB, LDH) and inflammatory mediators (TNF-α, IL-1β). Meanwhile, NF-κB is inhibited by the reduction of nuclear translocation of p65 subunit, and mangiferin reduced AGE production and decreased the mRNA and protein expression of RAGE in DCM rats. Our data indicated that mangiferin could significantly ameliorate DCM by preventing the release of inflammatory cytokines, and inhibiting ROS accumulation, AGE/RAGE production, and NF-κB nuclear translocation, suggesting that mangiferin treatment might be beneficial in DCM.

  9. Recurrance of sporadic neurofibromatosis type 1 due to germline mosaicism in the unaffected father

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazaro, C.; Gaona, A.; Lynch, M.

    Neurofibromatosis type 1 (NF1) or von Recklinghausen disease is one of the most common autosomal dominant disorders in man. In this report we describe a kindred with two affected offspring, in which neither of the parents fulfills the diagnostic criteria of NF1. DNA from peripheral blood was obtained from the family members and from the father`s spermatozoa. Several microsatellite markers, located in intronic regions of the NF1 gene, NF1 cDNA probes, and individual NF1 exons, were analyzed. NF1 microsatellite analysis in the family showed that there was no inheritance of paternal alleles for marker IVS38GT53.0 in the two affected siblings,more » while they inherited alleles from both parents for other intragenic markers. Hybridization of DNA from the family members with intragenic probes detected abnormal fragments in the lymphocytes from the NF1 individuals and in 10% of father`s spermatozoa, but not in lymphocytes from the parents. The restriction map was consistent with an interstitial deletion of 12 kb. So, we have detected hemizygosity for a microsatellite marker within the NF1 gene, and demonstrated that severe NF1 in a family with recurrence of the diseas, is due to the inheritance of a 12-kb deletion from the clinically unaffected father, who is mosaic for the deletion in his germline cells. This is the first time that germline mosaicism has been demonstrated in NF1. The analysis of the specific NF1 mutation in the sperm of the parent in de novo cases might help in the detection of mosaicism, facilitating genetic counseling.« less

  10. No Amelioration of Uromodulin Maturation and Trafficking Defect by Sodium 4-Phenylbutyrate in Vivo

    PubMed Central

    Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger

    2014-01-01

    Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention. PMID:24567330

  11. Clotrimazole ameliorates intestinal inflammation and abnormal angiogenesis by inhibiting interleukin-8 expression through a nuclear factor-kappaB-dependent manner.

    PubMed

    Thapa, Dinesh; Lee, Jong Suk; Park, Su-Young; Bae, Yun-Hee; Bae, Soo-Kyung; Kwon, Jun Bum; Kim, Kyoung-Jin; Kwak, Mi-Kyoung; Park, Young-Joon; Choi, Han Gon; Kim, Jung-Ae

    2008-11-01

    Increased interleukin (IL)-8 plays an important role not only in activation and recruitment of neutrophils but also in inducing exaggerated angiogenesis at the inflamed site. In the present study, we investigated the fact that clotrimazole (CLT) inhibits intestinal inflammation, and the inhibitory action is mediated through suppression of IL-8 expression. In the trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model, CLT dose-dependently protected from the TNBS-induced weight loss, colon ulceration, and myeloperoxidase activity increase. In the lesion site, CLT also suppressed the TNBS-induced angiogenesis, IL-8 expression, and nuclear factor (NF)-kappaB activation. In a cellular model of colitis using tumor necrosis factor (TNF)-alpha-stimulated HT29 colon epithelial cells, treatment with CLT significantly suppressed TNF-alpha-mediated IL-8 induction and NF-kappaB transcriptional activity revealed by a luciferase reporter gene assay. Furthermore, cotreatment with CLT and pyrrolidine dithiocarbamate, a NF-kappaB inhibitor, synergistically reduced the NF-kappaB transcriptional activity as well as IL-8 expression. In an in vitro angiogenesis assay, CLT suppressed IL-8-induced proliferation, tube formation, and invasion of human umbilical vein endothelial cells. The in vivo angiogenesis assay using chick chorioallantoic membrane also showed that CLT significantly inhibited the IL-8-induced formation of new blood vessels. Taken together, these results suggest that CLT may prevent the progression of intestinal inflammation by not only down-regulating IL-8 expression but also inhibiting the action of IL-8 in both colon epithelial and vascular endothelial cells during pathogenesis of intestinal inflammation.

  12. Preconditioning with Endoplasmic Reticulum Stress Ameliorates Endothelial Cell Inflammation

    PubMed Central

    Leonard, Antony; Paton, Adrienne W.; El-Quadi, Monaliza; Paton, James C.; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability. PMID:25356743

  13. Preconditioning with endoplasmic reticulum stress ameliorates endothelial cell inflammation.

    PubMed

    Leonard, Antony; Paton, Adrienne W; El-Quadi, Monaliza; Paton, James C; Fazal, Fabeha

    2014-01-01

    Endoplasmic Reticulum (ER) stress, caused by disturbance in ER homeostasis, has been implicated in several pathological conditions such as ischemic injury, neurodegenerative disorders, metabolic diseases and more recently in inflammatory conditions. Our present study aims at understanding the role of ER stress in endothelial cell (EC) inflammation, a critical event in the pathogenesis of acute lung injury (ALI). We found that preconditioning human pulmonary artery endothelial cells (HPAEC) to ER stress either by depleting ER chaperone and signaling regulator BiP using siRNA, or specifically cleaving (inactivating) BiP using subtilase cytotoxin (SubAB), alleviates EC inflammation. The two approaches adopted to abrogate BiP function induced ATF4 protein expression and the phosphorylation of eIF2α, both markers of ER stress, which in turn resulted in blunting the activation of NF-κB, and restoring endothelial barrier integrity. Pretreatment of HPAEC with BiP siRNA inhibited thrombin-induced IκBα degradation and its resulting downstream signaling pathway involving NF-κB nuclear translocation, DNA binding, phosphorylation at serine536, transcriptional activation and subsequent expression of adhesion molecules. However, TNFα-mediated NF-κB signaling was unaffected upon BiP knockdown. In an alternative approach, SubAB-mediated inactivation of NF-κB was independent of IκBα degradation. Mechanistic analysis revealed that pretreatment of EC with SubAB interfered with the binding of the liberated NF-κB to the DNA, thereby resulting in reduced expression of adhesion molecules, cytokines and chemokines. In addition, both knockdown and inactivation of BiP stimulated actin cytoskeletal reorganization resulting in restoration of endothelial permeability. Together our studies indicate that BiP plays a central role in EC inflammation and injury via its action on NF-κB activation and regulation of vascular permeability.

  14. Restoring conjunctival tolerance by topical nuclear factor-κB inhibitors reduces preservative-facilitated allergic conjunctivitis in mice.

    PubMed

    Guzmán, Mauricio; Sabbione, Florencia; Gabelloni, María Laura; Vanzulli, Silvia; Trevani, Analía Silvina; Giordano, Mirta Nilda; Galletti, Jeremías Gastón

    2014-09-04

    To evaluate the role of nuclear factor-κB (NF-κB) activation in eye drop preservative toxicity and the effect of topical NF-κB inhibitors on preservative-facilitated allergic conjunctivitis. Balb/c mice were instilled ovalbumin (OVA) combined with benzalkonium chloride (BAK) and/or NF-κB inhibitors in both eyes. After immunization, T-cell responses and antigen-induced ocular inflammation were evaluated. Nuclear factor-κB activation and associated inflammatory changes also were assessed in murine eyes and in an epithelial cell line after BAK exposure. Benzalkonium chloride promoted allergic inflammation and leukocyte infiltration of the conjunctiva. Topical NF-κB inhibitors blocked the disruptive effect of BAK on conjunctival immunological tolerance and ameliorated subsequent ocular allergic reactions. In line with these findings, BAK induced NF-κB activation and the secretion of IL-6 and granulocyte-monocyte colony-stimulating factor in an epithelial cell line and in the conjunctiva of instilled mice. In addition, BAK favored major histocompatibility complex (MHC) II expression in cultured epithelial cells in an NF-κB-dependent fashion after interaction with T cells. Benzalkonium chloride triggers conjunctival epithelial NF-κB activation, which seems to mediate some of its immune side effects, such as proinflammatory cytokine release and increased MHC II expression. Breakdown of conjunctival tolerance by BAK favors allergic inflammation, and this effect can be prevented in mice by topical NF-κB inhibitors. These results suggest a new pharmacological target for preservative toxicity and highlight the importance of conjunctival tolerance in ocular surface homeostasis. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  15. [TOLL-LIKE RECEPTORS IN COSMONAUT'S PERIPHERAL BLOOD CELLS AFTER LONG-DURATION MISSIONS TO THE INTERNATIONAL SPACE STATION].

    PubMed

    Berendeeva, T A; Ponomarev, S A; Antropova, E N; Rykova, M P

    2015-01-01

    Studies of Toll-like receptors (TLR) in 20 cosmonauts-members of long-duration (124-199-day) missions to the International space station evidenced changes in relative and absolute counts of peripheral blood monocytes with TLR2, TLR4 and TLR6 on the surface, expression of TLR2 and TLR6 genes, and genes of molecules involved in the TLR signaling pathway and TLR-related NF-KB-, JNK/p38- and IRF pathways on the day of return to Earth. The observed changes displayed individual variability.

  16. Constitutive Activation of NF-Kb in Prostate Carcinoma Cells through a Positive Feedback Loop: Implication of Inducible IKK-Related Kinase (Ikki)

    DTIC Science & Technology

    2007-08-01

    mens retrieved from the two independent repositories. Overall, we evaluated GR expression in 35 high-grade prostatic intraepithelial neoplasia (HGPIN...NaCl, were incubated with AR antibody (1:500, BD Biosciences). DNA/protein complexes were isolated on salmon sperm DNA agarose and extracted with 1% SDS...NFjB is chiefly regulated via cytoplasmic retention by IjB-a. However, the IjB- a levels in the AR(1) cells showed only modest increase, after Dox

  17. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sárvári, Anitta K., E-mail: anittasarvari@med.unideb.hu; Veréb, Zoltán, E-mail: jzvereb@gmail.com; Uray, Iván P., E-mail: ipuray@mdanderson.org

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism andmore » proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin and adiponectin, suggesting that both glucose and fat metabolism may be affected by these drugs. These data further suggest that antipsychotic treatments in patients alter the gene expression patterns in adipocytes in a coordinated fashion and priming them for a low-level inflammatory state.« less

  18. Prodigiosin inhibits gp91{sup phox} and iNOS expression to protect mice against the oxidative/nitrosative brain injury induced by hypoxia-ischemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chia-Che; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan

    2011-11-15

    This study aimed to explore the mechanisms by which prodigiosin protects against hypoxia-induced oxidative/nitrosative brain injury induced by middle cerebral artery occlusion/reperfusion (MCAo/r) injury in mice. Hypoxia in vitro was modeled using oxygen-glucose deprivation (OGD) followed by reoxygenation of BV-2 microglial cells. Our results showed that treatment of mice that have undergone MCAo/r injury with prodigiosin (10 and 100 {mu}g/kg, i.v.) at 1 h after hypoxia ameliorated MCAo/r-induced oxidative/nitrosative stress, brain infarction, and neurological deficits in the mice, and enhanced their survival rate. MCAo/r induced a remarkable production in the mouse brains of reactive oxygen species (ROS) and a significantmore » increase in protein nitrosylation; this primarily resulted from enhanced expression of NADPH oxidase 2 (gp91{sup phox}), inducible nitric oxide synthase (iNOS), and the infiltration of CD11b leukocytes due to breakdown of blood-brain barrier (BBB) by activation of nuclear factor-kappa B (NF-{kappa}B). All these changes were significantly diminished by prodigiosin. In BV-2 cells, OGD induced ROS and nitric oxide production by up-regulating gp91{sup phox} and iNOS via activation of the NF-{kappa}B pathway, and these changes were suppressed by prodigiosin. In conclusion, our results indicate that prodigiosin reduces gp91{sup phox} and iNOS expression possibly by impairing NF-{kappa}B activation. This compromises the activation of microglial and/or inflammatory cells, which then, in turn, mediates prodigiosin's protective effect in the MCAo/r mice. -- Highlights: Black-Right-Pointing-Pointer Prodigiosin ameliorated brain infarction and deficits. Black-Right-Pointing-Pointer Prodigiosin protected against hypoxia/reperfusion-induced brain injury. Black-Right-Pointing-Pointer Prodigiosin diminished oxidative/nitrosativestress and leukocytes infiltration. Black-Right-Pointing-Pointer Prodigiosin reduced BBB breakdown. Black-Right-Pointing-Pointer Prodigiosin down-regulated gp91{sup phox} and iNOS by inhibiting NF-{kappa}B activation.« less

  19. Bone marrow mesenchymal stem cells ameliorate lung injury through anti-inflammatory and antibacterial effect in COPD mice.

    PubMed

    Liu, Hong-Mei; Liu, Yi-Tong; Zhang, Jing; Ma, Li-Jun

    2017-08-01

    The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.

  20. B7-H3 Augments Inflammatory Responses and Exacerbates Brain Damage via Amplifying NF-κB p65 and MAPK p38 Activation during Experimental Pneumococcal Meningitis

    PubMed Central

    Chen, Xuqin; Li, Yan; Blankson, Siobhan; Liu, Min; Huang, Danping; Redmond, H. Paul; Huang, Jing; Wang, Jiang Huai; Wang, Jian

    2017-01-01

    The costimulatory protein B7-H3 has been shown to play a contributory role in the development and progression of experimental pneumococcal meningitis by augmentation of the innate immunity-associated inflammatory response via a TLR2-dependent manner. This study aimed to clarify the component(s) of TLR2-mediated signal transduction pathways responsible for B7-H3-augmented inflammatory response and subsequent brain damage during experimental pneumococcal meningitis. Administration of B7-H3 did not augment expression of TLR2 and other TLR2 upstream components, but led to an enhanced formation of MyD88-IRAK immunocomplex in the brain of S. pneumoniae-infected mice. Furthermore, B7-H3 substantially augmented S. pneumoniae-induced activation of TLR2 downstream NF-κB p65 and MAPK p38 pathways in the brain of S. pneumoniae-infected mice. Notably, blockage of NF-κB p65 and/or MAPK p38 with their specific inhibitors strongly attenuated B7-H3-amplified inflammatory response with significantly reduced proinflammatory cytokine and chemokine production, and markedly ameliorated B7-H3-exacerbated disruption of blood-brain barrier and severity of disease status in S. pneumoniae-infected mice. These results indicate that targeting NF-κB p65 and/or MAPK p38 may represent a promising therapeutic option for amelioration of overwhelming inflammatory response-associated brain injury frequently observed during pneumococcal meningitis. PMID:28141831

  1. Baicalin Ameliorates Liver Injury Induced by Chronic plus Binge Ethanol Feeding by Modulating Oxidative Stress and Inflammation via CYP2E1 and NRF2 in Mice

    PubMed Central

    He, Ping; Wu, Yafeng; Shun, Jianchao; Liang, Yaodong; Cheng, Mingliang

    2017-01-01

    Alcoholic liver injury leads to serious complication including death. The potential role of baicalin at the transcription level in mice model of alcohol injury is not known yet. In this study, we examined the effect of baicalin against chronic plus binge ethanol model in mice and understanding the mechanism of protection. Liver function, histology, steatosis, inflammation, NF-κB activity, oxidative stress sources, nuclear translocation of NRF2 transcription factor, and cell death were assessed. Treatment with baicalin ameliorated ethanol-induced oxidative stress, inflammation, and cell death. Baicalin attenuated ethanol-induced proinflammatory molecules such as TNF-α, IL-1β, MIP-2, and MCP-1 and reversed redox-sensitive transcription factor NF-κB activation. Baicalin also modulated Kupffer cell activation in vitro. Baicalin inhibited ethanol-induced expression of reactive oxygen species (ROS) generating enzymes NOX2, p67phox, xanthine oxidase, and iNOS in addition to CYP2E1 activities. Baicalin also enhanced ethanol-induced NRF2 nuclear translocation and increased downstream target gene HO-1 as antioxidant defense. Finally, baicalin reduced significant apoptotic and necrotic cell death. Our study suggests that baicalin ameliorates chronic plus binge ethanol-induced liver injury involving molecular crosstalk of multiple pathways at the transcriptional level and through upregulation of antioxidant defense mechanism. PMID:28951767

  2. β-Cryptoxanthin ameliorates metabolic risk factors by regulating NF-κB and Nrf2 pathways in insulin resistance induced by high-fat diet in rodents.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Akdemir, Fatih; Tuzcu, Mehmet; Sahin, Nurhan; Yılmaz, Ismet; Juturu, Vijaya

    2017-09-01

    The aim of this experiment was to determine the effects of β-cryptoxanthin (BCX) on the cardiometabolic health risk factors and NF-κB and Nrf2 pathway in insulin resistance induced by high-fat diet (HFD) in rodents. Twenty-eight Sprague-Dawley rats were allocated into four groups: (1) Control, rats fed a standard diet for 12 weeks; (2) BCX, rats fed a standard diet and supplemented with BCX (2.5 mg/kg BW) for 12 weeks; (3) HFD, rats fed a HFD for 12 weeks, (4) HFD + BCX, rats fed a HFD and supplemented with BCX for 12 weeks. BCX reduced cardio-metabolic health markers and decreased inflammatory markers (P < 0.001). Rats fed a HFD had the lower total antioxidant capacity and antioxidant enzymes activities and higher MDA concentration than control rats (P < 0.001 for all). Comparing with the HFD group, BCX in combination with HFD inhibited liver NF-κB and TNF-α expression by 22% and 14% and enhanced liver Nrf2, HO-1, PPAR-α, and p-IRS-1 by 1.43, 1.41, 3.53, and 1.33 fold, respectively (P < 0.001). Furthermore, in adipose tissue, BCX up-regulated Nrf2, HO-1, PPAR-α, and p-IRS-1 expression, whereas, down-regulated NF-κB and TNF-α expression. In conclusion, BCX decreased visceral fat and cardiometabolic health risk factors through modulating expressions of nuclear transcription factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Flavocoxid counteracts muscle necrosis and improves functional properties in mdx mice: a comparison study with methylprednisolone.

    PubMed

    Messina, Sonia; Bitto, Alessandra; Aguennouz, M'hammed; Mazzeo, Anna; Migliorato, Alba; Polito, Francesca; Irrera, Natasha; Altavilla, Domenica; Vita, Gian Luca; Russo, Massimo; Naro, Antonino; De Pasquale, Maria Grazia; Rizzuto, Emanuele; Musarò, Antonio; Squadrito, Francesco; Vita, Giuseppe

    2009-12-01

    Muscle degeneration in dystrophic muscle is exacerbated by the endogenous inflammatory response and increased oxidative stress. A key role is played by nuclear factor(NF)-kappaB. We showed that NF-kappaB inhibition through compounds with also antioxidant properties has beneficial effects in mdx mice, the murine model of Duchenne muscular dystrophy (DMD), but these drugs are not available for clinical studies. We evaluated whether flavocoxid, a mixed flavonoid extract with anti-inflammatory, antioxidant and NF-kappaB inhibiting properties, has beneficial effects in mdx mice in comparison with methylprednisolone, the gold standard treatment for DMD patients. Five-week-old mdx mice were treated for 5 weeks with flavocoxid, methylprednisolone or vehicle. The evaluation of in vivo and ex vivo functional properties and morphological parameters was performed. Serum samples were assayed for oxidative stress markers, creatine-kinase (CK) and leukotriene B-4. Cyclooxygenase-2 (COX-2), 5-lipoxygenase (5-LOX), tumor necrosis factor-alpha, p-38, JNK1 expression was evaluated in muscle by western blot analysis. NF-kappaB binding activity was investigated by electrophoresis mobility shift assay. The administration of flavocoxid: (1) ameliorated functional properties in vivo and ex vivo; (2) reduced CK; (3) reduced the expression of oxidative stress markers and of inflammatory mediators; (4) inhibited NF-kappaB and mitogen-activated protein kinases (MAPKs) signal pathways; (5) reduced muscle necrosis and enhanced regeneration. Our results highlight the detrimental effects of oxidative stress and NF-kappaB, MAPKs and COX/5-LOX pathways in the dystrophic process and show that flavocoxid is more effective in mdx mice than methylprednisolone.

  4. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression

    PubMed Central

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-01-01

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction. PMID:26596471

  5. SENP1-mediated NEMO deSUMOylation in adipocytes limits inflammatory responses and type-1 diabetes progression.

    PubMed

    Shao, Lan; Zhou, Huanjiao Jenny; Zhang, Haifeng; Qin, Lingfeng; Hwa, John; Yun, Zhong; Ji, Weidong; Min, Wang

    2015-11-24

    Adipocyte dysfunction correlates with the development of diabetes. Here we show that mice with a adipocyte-specific deletion of the SUMO-specific protease SENP1 gene develop symptoms of type-1 diabetes mellitus (T1DM), including hyperglycaemia and glucose intolerance with mild insulin resistance. Peri-pancreatic adipocytes from SENP1-deficient mice exhibit heightened NF-κB activity and production of proinflammatory cytokines, which induce CCL5 expression in adjacent pancreatic islets and direct cytotoxic effects on pancreatic islets. Mechanistic studies show that SENP1 deletion in adipocytes enhances SUMOylation of the NF-κB essential molecule, NEMO, at lysine 277/309, leading to increased NF-κB activity, cytokine production and pancreatic inflammation. We further show that NF-κB inhibitors could inhibit pre-diabetic cytokine production, β-cell damages and ameliorate the T1DM phenotype in SENP1-deficient mice. Feeding a high-fat diet augments both type-1 and type-2 diabetes phenotypes in SENP1-deficient mice, consistent with the effects on adipocyte-derived NF-κB and cytokine signalling. Our study reveals previously unrecognized mechanism regulating the onset and progression of T1DM associated with adipocyte dysfunction.

  6. Momordica charantia polysaccharides ameliorate oxidative stress, hyperlipidemia, inflammation, and apoptosis during myocardial infarction by inhibiting the NF-κB signaling pathway.

    PubMed

    Raish, Mohammad

    2017-04-01

    The polysaccharide extract of Momordica charantia has various biological activities; however, its effect on endothelial dysfunction in myocardial infarction remains unclear. To elucidate this, myocardial infarction was induced in rats using isoproterenol (ISP). Pretreatment with M. charantia polysaccharides (MCP; 150 or 300mg/kg) for 25days significantly inhibited increases in heart weight, the heart-weight-to-body-weight ratio, and infarction size, and ameliorated the increased serum levels of aspartate transaminase, creatine kinase, lactate dehydrogenase, total cholesterol, triglycerides, very-low-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. In addition, MCP enhanced the activity of superoxide dismutase, catalase, and non-protein sulfhydryls, and decreased the level of lipid peroxidation. Moreover, MCP pretreatment downregulated the expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin (IL)-6, and IL-10), inflammatory markers (nitric oxide, myeloperoxidase, and inducible nitric oxide synthase), and apoptotic markers (caspase-3 and BAX), and upregulated Bcl-2 expression. Pretreatment with MCP reduced myonecrosis, edema, and inflammatory cell infiltration, and restored cardiomyocytes architecture. This myocardial protective effect could be related to the enhancement of the antioxidant defense system through the nuclear factor kappa B (NF-kB) pathways, and to anti-apoptosis through regulation of Bax, caspase-3, and Bcl-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Immunosuppressive effects of fisetin in ovalbumin-induced asthma through inhibition of NF-κB activity.

    PubMed

    Wu, Mei-Yao; Hung, Shih-Kai; Fu, Shu-Ling

    2011-10-12

    Fisetin, a flavonoid compound commonly present in fruits and vegetables, can exert anti-inflammation activities via inhibition of the NF-κB-signaling pathway. This study aims to evaluate the antiasthma activity of fisetin and investigate its possible molecular mechanisms. We found that fisetin attenuated lung inflammation, goblet cell hyperplasia, and airway hyperresponsiveness in ovalbumin-induced asthma and decreased eosinophils and lymphocytes in bronchoalveolar lavage fluid. Fisetin treatment reduced expression of the key initiators of allergic airway inflammation (eotaxin-1 and TSLP), Th2-associated cytokines (IL-4, IL-5, and IL-13) in lungs, and Th2-predominant transcription factor GATA-3 and cytokines in thoracic lymph node cells and splenocytes. Notably, fisetin treatment impaired NF-κB activation in OVA-stimulated lung tissues and TNF-α-stimulated bronchial epithelial cells. Collectively, this study demonstrated the beneficial effect of fisetin in the amelioration of asthmatic phenotypes. The antiasthma activity of fisetin is associated with reduction of Th2 responses as well as suppression of NF-κB and its downstream chemokines.

  8. No amelioration of uromodulin maturation and trafficking defect by sodium 4-phenylbutyrate in vivo: studies in mouse models of uromodulin-associated kidney disease.

    PubMed

    Kemter, Elisabeth; Sklenak, Stefanie; Rathkolb, Birgit; Hrabě de Angelis, Martin; Wolf, Eckhard; Aigner, Bernhard; Wanke, Ruediger

    2014-04-11

    Uromodulin (UMOD)-associated kidney disease (UAKD) belongs to the hereditary progressive ER storage diseases caused by maturation defects of mutant UMOD protein. Current treatments of UAKD patients are symptomatic and cannot prevent disease progression. Two in vitro studies reported a positive effect of the chemical chaperone sodium 4-phenylbutyrate (4-PBA) on mutant UMOD maturation. Thus, 4-PBA was suggested as a potential treatment for UAKD. This study evaluated the effects of 4-PBA in two mouse models of UAKD. In contrast to previous in vitro studies, treatment with 4-PBA did not increase HSP70 expression or improve maturation and trafficking of mutant UMOD in vivo. Kidney function of UAKD mice was actually deteriorated by 4-PBA treatment. In transfected tubular epithelial cells, 4-PBA did not improve maturation but increased the expression level of both mutant and wild-type UMOD protein. Activation of NF-κB pathway in thick ascending limb of Henle's loop cells of UAKD mice was detected by increased abundance of RelB and phospho-IκB kinase α/β, an indirect activator of NF-κB. Furthermore, the abundance of NF-κB1 p105/p50, NF-κB2 p100/p52, and TRAF2 was increased in UAKD. NF-κB activation was identified as a novel disease mechanism of UAKD and might be a target for therapeutic intervention.

  9. [Protective effects of agmatine on lipopolysaccharide -induced acute hepatic injury in mice].

    PubMed

    Li, Xuan -fei; Fan, Xia; Zheng, Zhi-hua; Yang, Xue; Liu, Zheng; Gong, Jian-ping; Liang, Hua-ping

    2013-12-01

    To observe the effect of agmatine ( AGM) on lipopolysaccharide ( LPS )-induced acute hepatic injury in mice, and to explore its related mechanism. Sixty C57BU6 mice were randomly divided into control group ( n = 20, with intra-peritoneal injection of phosphate buffer saline 10 mg/kg), model group ( n = 20, with intra-peritoneal injection of LPS 10 mg/kg), and AGM group (n=20, with intra-peritoneal injection of LPS 10 mg/kg and AGM 200 mg/kg). Ten mice in each group were sacrificed at 6 hours and 24 hours, respectively, after modeling, blood samples were collected for the determination of tumor necrosis factor-a ( TNF -a) and interleukin ( IL-113 and IL-6) by enzyme linked immunosorbent assay (ELISA) at 6 hours after modeling , and for determination of alanine aminotransferase (ALT), aspartate transaminase (AST) and total bilirubin (TBil) by automatic biochemistry analyzer at 24 hours after modeling. Hepatic homogenate was also collected for determining the endo nuclear nuclear factor-KB ( NF -KB) p65 by Western blotting at 6 hours after modeling, and for observation of pathological changes at 24 hours after modeling. At 6 hours after modeling, .the mice in model group became lethargic and quiet, and their food and water assumption was reduced, but AGM was found to be able to greatly improve the general status of animals in AGM group. AGM was found to lower the contents of serum TNF-a ( IJ.g/L: 296.3 ± 42.5 vs. 627.2 ± 81.3, t=7.327, P=0.002), IL-113 ( f.Lg/L: 109.1 ± 12.3 vs. 264.2 ± 18.8, t= 11.958, P=0.001), IL-6 ( mg/L: 11.4 ± 1.9 vs. 23.6 ± 2.5, t=6.729, P=0.003), ALT (U!L: 107.9 ± 8.5 vs. 189.9 ± 13.6, t=8.856, P=0.001 ), AST (UIL: 347.4 ± 24.9 vs. 716.8 ± 60.4, t=9.793, P=0.001) and TBil ( f.Lmol!L: 8.3 ± 0.9 vs. 10.6 ± 0.5, t=3.869, P=0.018) in mice with acute hepatic injury induced by LPS. AGM also depressed TNF -a ( ng/g: 287.4 ± 32.5 vs. 461.5 ± 31.4, t=6.673, P= 0.003), IL-113 (pg/g: 146.7 ± 13.5 vs. 351.6 ± 28.7, t=11.190, P=0.001) and intranuclear NF-KB p65 level (NF-KBp65/TBP: 0.515 ± 0.060 vs. 0.853 ± 0.080, t=5.849, P=0.004) in liver tissue. Histological examination demonstrated that AGM significantly reduced liver injury caused by LPS, as manifested in amelioration of hepatocytes swelling, necrosis and neutrophil infiltration. Agmatine can reduce LPS-induced acute hepatic injury in mice via suppressing NF-κB translocation and reduction of the synthesis and release of cytokines.

  10. Targeting TNF-α and NF-κB Activation by Bee Venom: Role in Suppressing Adjuvant Induced Arthritis and Methotrexate Hepatotoxicity in Rats

    PubMed Central

    Darwish, Samar F.; El-Bakly, Wesam M.; Arafa, Hossam M.; El-Demerdash, Ebtehal

    2013-01-01

    Low dose methotrexate is the cornerstone for the treatment of rheumatoid arthritis. One of its major drawbacks is hepatotoxicity, resulting in poor compliance of therapy. Dissatisfied arthritis patients are likely to seek the option of complementary and alternative medicine such as bee venom. The combination of natural products with modern medicine poses the possibility of potential interaction between the two groups and needs investigation. The present study was aimed to investigate the modulatory effect of bee venom acupuncture on efficacy, toxicity, and pharmacokinetics and tissue disposition of methotrexate. Complete Freund's adjuvant induced arthritic rats were treated for 3 weeks with methotrexate and/or bee venom. Arthritic score, ankle diameter, paw volume and tissue expression of NF-κB and TNF-α were determined to assess anti-arthritic effects, while anti-nociceptive effects were assessed by gait score and thermal hyperalgesia. Methotrexate toxicity was assessed by measuring serum TNF-α, liver enzymes and expression of NF-κB in liver. Combination therapy of bee venom with methotrexate significantly improved arthritic parameters and analgesic effect as compared to methotrexate alone. Bee venom ameliorated serum TNF-α and liver enzymes elevations as well as over expression of NF-κB in liver induced by methotrexate. Histological examination supported the results. And for the first time bee venom acupuncture was approved to increase methotrexate bioavailability with a significant decrease in its elimination. Conclusion: bee venom potentiates the anti-arthritic effects of methotrexate, possibly by increasing its bioavailability. Also, it provides a potent anti-nociceptive effect. Furthermore, bee venom protects against methotrexate induced hepatotoxicity mostly due to its inhibitory effect on TNF-α and NF-κB. PMID:24278124

  11. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  12. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.

    PubMed

    Yang, Chao-Qiang; Xu, Jing-Hua; Yan, Dan-Dan; Liu, Bao-Lin; Liu, Kang; Huang, Fang

    2017-09-01

    Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  13. Silencing of CD40 in vivo reduces progression of experimental atherogenesis through an NF-κB/miR-125b axis and reveals new potential mediators in the pathogenesis of atherosclerosis.

    PubMed

    Hueso, Miguel; De Ramon, Laura; Navarro, Estanislao; Ripoll, Elia; Cruzado, Josep M; Grinyo, Josep M; Torras, Joan

    2016-12-01

    CD40/CD40L signaling exerts a critical role in the development of atherosclerosis, and microRNAs (miRNAs) are key regulators in vascular inflammation and plaque formation. In this work, we investigated mRNA/miRNA expression during progression of atherosclerotic lesions through CD40 silencing. We silenced CD40 with a specific siRNA in ApoE -/- mice and compared expression of mRNA/miRNA in ascending aorta with scrambled treated mice. siRNA-CD40 treated mice significantly reduced the extension and severity of atherosclerotic lesions, as well as the number of F4/80 + , galectin-3 + macrophages and NF-κB + cells in the intima. Genome-wide mRNA/miRNA profiling allowed the identification of transcripts, which were significantly upregulated during atherosclerosis; among them, miR-125b and miR-30a, Xpr1, a regulator of macrophage differentiation, Taf3, a core transcription factor and the NF-κB activator Ikkβ, whereas, the NF-κB inhibitor Ikbα was downregulated during disease progression. All those changes were reversed upon CD40 silencing. Interestingly, TAF3, XPR1 and miR-125b were also overexpressed in human atherosclerotic plaques. Murine Taf3 and Xpr1 were detected in the perivascular adipose tissue (PVAT), and Taf3 also in intimal foam cells. Finally, expression of miR-125b was regulated by the CD40-NF-κB signaling axis in RAW264.7 macrophages. CD40 silencing with a specific siRNA ameliorates progression of experimental atherosclerosis in ApoE -/- mice, and evidences a role for NF-κB, Taf3, Xpr1, and miR-125b in the pathogenesis of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Han; Sun, Yan Ping; Li, Yang

    2010-03-05

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreasmore » were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.« less

  15. Gallium nitrate ameliorates type II collagen-induced arthritis in mice.

    PubMed

    Choi, Jae-Hyeog; Lee, Jong-Hwan; Roh, Kug-Hwan; Seo, Su-Kil; Choi, Il-Whan; Park, Sae-Gwang; Lim, Jun-Goo; Lee, Won-Jin; Kim, Myoung-Hun; Cho, Kwang-rae; Kim, Young-Jae

    2014-05-01

    Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease. Gallium nitrate has been reported to reserve immunosuppressive activities. Therefore, we assessed the therapeutic effects of gallium nitrate in the mouse model of developed type II collagen-induced arthritis (CIA). CIA was induced by bovine type II collagen with Complete Freund's adjuvant. CIA mice were intraperitoneally treated from day 36 to day 49 after immunization with 3.5mg/kg/day, 7mg/kg/day gallium nitrate or vehicle. Gallium nitrate ameliorated the progression of mice with CIA. The clinical symptoms of collagen-induced arthritis did not progress after treatment with gallium nitrate. Gallium nitrate inhibited the increase of CD4(+) T cell populations (p<0.05) and also inhibited the type II collagen-specific IgG2a-isotype autoantibodies (p<0.05). Gallium nitrate reduced the serum levels of TNF-α, IL-6 and IFN-γ (p<0.05) and the mRNA expression levels of these cytokine and MMPs (MMP2 and MMP9) in joint tissues. Western blotting of members of the NF-κB signaling pathway revealed that gallium nitrate inhibits the activation of NF-κB by blocking IκB degradation. These data suggest that gallium nitrate is a potential therapeutic agent for autoimmune inflammatory arthritis through its inhibition of the NF-κB pathway, and these results may help to elucidate gallium nitrate-mediated mechanisms of immunosuppression in patients with RA. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Amelioration of renal ischaemia–reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells

    PubMed Central

    Rogers, NM; Stephenson, MD; Kitching, AR; Horowitz, JD; Coates, PTH

    2012-01-01

    BACKGROUND AND PURPOSE Renal ischaemia–reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. EXPERIMENTAL APPROACH We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. KEY RESULTS Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. CONCLUSIONS AND IMPLICATIONS Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. PMID:21745189

  17. Amelioration of renal ischaemia-reperfusion injury by liposomal delivery of curcumin to renal tubular epithelial and antigen-presenting cells.

    PubMed

    Rogers, N M; Stephenson, M D; Kitching, A R; Horowitz, J D; Coates, P T H

    2012-05-01

    Renal ischaemia-reperfusion (IR) injury is an inevitable consequence of renal transplantation, causing significant graft injury, increasing the risk of rejection and contributing to poor long-term graft outcome. Renal injury is mediated by cytokine and chemokine synthesis, inflammation and oxidative stress resulting from activation of the NF-κB pathway. We utilized liposomal incorporation of a potent inhibitor of the NF-κB pathway, curcumin, to target delivery to renal tubular epithelial and antigen-presenting cells. Liposomes containing curcumin were administered before bilateral renal ischaemia in C57/B6 mice, with subsequent reperfusion. Renal function was assessed from plasma levels of urea and creatinine, 4 and 24 h after reperfusion. Renal tissue was examined for NF-κB activity and oxidative stress (histology, immunostaining) and for apoptosis (TUNEL). Cytokines and chemokines were measured by RT-PCR and Western blotting. Liposomal curcumin significantly improved serum creatinine, reduced histological injury and cellular apoptosis and lowered Toll-like receptor-4, heat shock protein-70 and TNF-α mRNA expression. Liposomal curcumin also reduced neutrophil infiltration and diminished inflammatory chemokine expression. Curcumin liposomes reduced intracellular superoxide generation and increased superoxide dismutase levels, decreased inducible NOS mRNA expression and 3-nitrotyrosine staining consistent with limitations in nitrosative stress and inhibited renal tubular mRNA and protein expression of thioredoxin-interacting protein. These actions of curcumin were mediated by inhibition of NF-κB, MAPK and phospho-S6 ribosomal protein. Liposomal delivery of curcumin promoted effective, targeted delivery of this non-toxic compound that provided cytoprotection via anti-inflammatory and multiple antioxidant mechanisms following renal IR injury. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  18. Protective effects of puerarin on acute lung and cerebrum injury induced by hypobaric hypoxia via the regulation of aquaporin (AQP) via NF-κB signaling pathway.

    PubMed

    Wang, Chi; Yan, Muyang; Jiang, Hui; Wang, Qi; Guan, Xu; Chen, Jingwen; Wang, Chengbin

    2016-11-01

    Hypobaric hypoxia, frequently encountered at high altitude, may lead to lung and cerebrum injury. Our study aimed to investigate whether puerarin could exert ameliorative effects on rats exposed to hypobaric hypoxia via regulation of aquaporin (AQP) and NF-κB signaling pathway in lung and cerebrum. 40 Sprague Dawley rats were divided into four groups (normal control group, hypobaric hypoxia group, puerarin group and dexamethasone group). Wet/dry ratio, blood gas, pathological changes of lung and cerebrum and spatial memory were observed in each group. Inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were determined with ELISA and expression of AQP1, AQP4, NF-κB signaling pathway in lung and cerebrum with western blot RESULTS: Puerarin showed significant preventative effects on tissue injury and behavioral changes, as evidenced by histopathological findings and Morris water maze. In addition, levels of inflammatory cytokines in BALF decreased in the two preventative groups compared with those of hypobaric hypoxia group. AQP in lung and cerebrum increased under the condition of hypobaric hypoxia while was down regulated in both two preventative groups. NF-κB and IκB was also inhibited by puerarin. Our study suggested that lung and cerebrum injury, increased inflammatory cytokines in BALF and increased AQP1, AQP4 and NF-κB signaling pathway occurred under the condition of hypobaric hypoxia. Moreover, puerarin could prevent lung and cerebrum injury of rats exposed to hypobaric hypoxia via down-regulation of inflammatory cytokines, AQP1 and AQP4 expression and NF-κB signaling pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Betulinic acid ameliorates experimental diabetic-induced renal inflammation and fibrosis via inhibiting the activation of NF-κB signaling pathway.

    PubMed

    Wang, Shaogui; Yang, Zhiying; Xiong, Fengxiao; Chen, Cheng; Chao, Xiaojuan; Huang, Junying; Huang, Heqing

    2016-10-15

    Diabetic nephropathy (DN) is the leading cause of end-stage renal failure and is characterized by excessive deposition of extracellular matrix (ECM) proteins such as fibronectin (FN), in the glomerular mesangium and tubulointerstitium. Betulinic acid (BA), a pentacyclic triterpene derived from the bark of the white birch tree, has been demonstrated to have many pharmacological activities. However, the effect of BA on DN has not been fully elucidated. To explore the possible anti-inflammatory effects of BA and their underlying mechanisms, we used streptozotocin-induced diabetic rat kidneys and high glucose-treated glomerular mesangial cells. Our study showed BA could inhibit the degradation of IκBα and the activity of NF-κB in diabetic rat kidneys and high glucose-induced mesangial cells, resulting in reduction of FN expression. In addition, BA suppressed the DNA binding activity and transcriptional activity of NF-κB in high glucose-induced glomerular mesangial cells (GMCs). Furthermore, BA enhanced the interaction between IκBα and β-arrestin2 in mesangial cells. Taken together, our data suggest BA inhibits NF-κB activation through stabilizing NF-κB inhibitory protein IκBα, thereby preventing diabetic renal fibrosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Extract from Periostracum cicadae Inhibits Oxidative Stress and Inflammation Induced by Ultraviolet B Irradiation on HaCaT Keratinocytes

    PubMed Central

    Tsen, Jen-Horng; Yen, Hsuan; Yang, Ting-Ya

    2017-01-01

    Periostracum cicadae is widely used for the treatment of skin diseases such as eczema, pruritus, and itching. The current study sought to evaluate the effect of P. cicadae extract on ultraviolet B (UVB) irradiation and identify the mechanisms involved. Photodamage-protective activity of P. cicadae extracts against oxidative challenge was screened using HaCaT keratinocytes. P. cicadae extracts did not affect cell viability but decreased reactive oxygen species (ROS) production. The extract attenuates the expression of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2), and MMP-9 in UVB-treated HaCaT cells. Also, P. cicadae abrogated UVB-induced activation of NF-κB, p53, and activator protein-1 (AP-1). The downmodulation of IL-6 by P. cicadae was inhibited by the p38 inhibitor (SB203580) or JNK inhibitor (SP600125). Moreover, the extract attenuated the expression of NF-κB and induced thrombomodulin in keratinocytes and thereby effectively downregulated inflammatory responses in the skin. The nuclear accumulation and expression of NF-E2-related factor (Nrf2) were increased by P. cicadae treatment. Furthermore, treatment with P. cicadae remarkably ameliorated the skin's structural damage induced by irradiation. This study demonstrates that P. cicadae may protect skin cells against oxidative insult by modulating ROS concentration, IL-6, MMPs generation, antioxidant enzymes activity, and cell signaling pathways. PMID:28465707

  1. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways.

    PubMed

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-02-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury.

  2. Berberine inhibits the ischemia-reperfusion injury induced inflammatory response and apoptosis of myocardial cells through the phosphoinositide 3-kinase/RAC-α serine/threonine-protein kinase and nuclear factor-κB signaling pathways

    PubMed Central

    Wang, Lixin; Ma, Hao; Xue, Yan; Shi, Haiyan; Ma, Teng; Cui, Xiaozheng

    2018-01-01

    Myocardial ischemia-reperfusion injury is one of the most common cardiovascular diseases, and can lead to serious damage and dysfunction of the myocardial tissue. Previous studies have demonstrated that berberine exhibits ameliorative effects on cardiovascular disease. The present study further investigated the efficacy and potential mechanism underlying the effects of berberine on ischemia-reperfusion injury in a mouse model. Inflammatory markers were measured in the serum and levels of inflammatory proteins in myocardial cells were investigated after treatment with berberine. In addition, the apoptosis of myocardial cells was investigated after berberine treatment. Apoptosis-associated gene expression levels and apoptotic signaling pathways were analyzed in myocardial cells after treatment with berberine. The phosphoinositide 3-kinase (PI3K)/RAC-α serine/threonine-protein kinase (AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in myocardial cells after treatment with berberine. Histological analysis was used to analyze the potential benefits of berberine in ischemia-reperfusion injury. The present study identified that inflammatory responses and inflammatory factors were decreased in the myocardial cells of the mouse model of ischemia-reperfusion injury. Mechanism analysis demonstrated that berberine inhibited apoptotic protease-activating factor 1, caspase-3 and caspase-9 expression in myocardial cells. The expression of Bcl2-associated agonist of cell death, Bcl-2-like protein 1 and cellular tumor antigen p53 was upregulated. Expression of NF-κB p65, inhibitor of NF-κB kinase subunit β (IKK-β), NF-κB inhibitor α (IκBα), and NF-κB activity, were inhibited in myocardial cells in the mouse model of ischemia-reperfusion injury. In conclusion, the results of the present study indicate that berberine inhibits inflammatory responses through the NF-κB signaling pathway and suppresses the apoptosis of myocardial cells via the PI3K/AKT signaling pathway in a mouse model of ischemia-reperfusion injury. These results suggest that berberine is a potential drug for the treatment of patients with ischemia-reperfusion injury. PMID:29403554

  3. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy.

    PubMed

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H; Zhang, Keqing; Thomas, Gail D; Duan, Dongsheng

    2013-09-15

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 10(12) viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30-50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients.

  4. Fisetin inhibits the generation of inflammatory mediators in interleukin-1β-induced human lung epithelial cells by suppressing the NF-κB and ERK1/2 pathways.

    PubMed

    Peng, Hui-Ling; Huang, Wen-Chung; Cheng, Shu-Chen; Liou, Chian-Jiun

    2018-07-01

    Fisetin, a flavone that can be isolated from fruits and vegetables, has anti-tumor and anti-oxidative properties and ameliorates airway hyperresponsiveness in asthmatic mice. This study investigated whether fisetin can suppress the expression of inflammatory mediators and intercellular adhesion molecule 1 (ICAM-1) in A549 human lung epithelial cells that were stimulated with interleukin-1β (IL-1β) to induce inflammatory responses. A549 cells were treated with fisetin (3-30 μM) and then with IL-1β. Fisetin significantly inhibited COX-2 expression and reduced prostaglandin E 2 production, and it suppressed the levels of IL-8, CCL5, monocyte chemotactic protein 1, tumor necrosis factor α, and IL-6. Fisetin also significantly attenuated the expression of chemokine and inflammatory cytokine genes and decreased the expression of ICAM-1, which mediates THP-1 monocyte adhesion to inflammatory A549 cells. Fisetin decreased the translocation of nuclear transcription factor kappa-B (NF-κB) subunit p65 into the nucleus and inhibited the phosphorylation of proteins in the ERK1/2 pathway. Co-treatment of IL-1β-stimulated A549 cells with ERK1/2 inhibitors plus fisetin reduced ICAM-1 expression. Furthermore, fisetin significantly increased the effects of the protective antioxidant pathway by promoting the expression of nuclear factor erythroid-2-related factor-2 and heme oxygenase 1. Taken together, these data suggest that fisetin has anti-inflammatory effects and that it suppresses the expression of chemokines, inflammatory cytokines, and ICAM-1 by suppressing the NF-κB and ERK1/2 signaling pathways in IL-1β-stimulated human lung epithelial A549 cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Houttuynia cordata aqueous extract attenuated glycative and oxidative stress in heart and kidney of diabetic mice.

    PubMed

    Hsu, Cheng-Chin; Yang, Hui-Ting; Ho, Jing-Jing; Yin, Mei-Chin; Hsu, Jen-Ying

    2016-03-01

    The anti-glycative and anti-oxidative effects from Houttuynia cordata leaves aqueous extract (HCAE) in heart and kidney of diabetic mice were examined. HCAE, at 1 or 2 %, was supplied in drinking water for 8 weeks. Plasma glucose and blood urea nitrogen (BUN) levels and creatine phosphokinase (CPK) activity were measured. The production of oxidative and inflammatory factors was determined. Activity and protein expression of associated enzymes or regulators were analyzed. HCAE intake at both doses lowered plasma glucose and BUN levels, and CPK activity and also restored creatinine clearance rate in diabetic mice. HCAE intake, only at 2 %, retained plasma insulin levels (P < 0.05). HCAE reduced reactive oxygen species, protein carbonyl, interleukin-6, tumor necrosis factor-alpha, N (ε) -(carboxymethyl)-lysine, pentosidine and fructose levels, and reserved glutathione content in heart and kidney of diabetic mice (P < 0.05). Diabetes enhanced aldose reductase (AR) activity and protein expression in heart and kidney (P < 0.05). HCAE intake at both doses decreased renal AR activity and protein expression, but only at 2 % lowered cardiac AR activity and protein expression (P < 0.05). Diabetes increased protein expression of RAGE, p47(phox) and gp91(phox), nuclear factor kappa-B (NF-κB) p50, NF-κB p65 and mitogen-activated protein kinase in heart and kidney (P < 0.05). HCAE intake only at 2 % limited RAGE expression, but at 1 and 2 % downregulated p47(phox), NF-κB p65 and p-p38 expression in these organs (P < 0.05). These findings suggest that Houttuynia cordata leaves aqueous extract could ameliorate cardiac and renal injury under diabetic condition.

  6. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK

    PubMed Central

    Huang, Shujie; Zhu, Pengli

    2016-01-01

    Inflammation and reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerosis. Resveratrol has been shown to possess anti-inflammatory and antioxidative stress activities, but the underlying mechanisms are not fully understood. In the present study, we investigated the molecular basis associated with the protective effects of resveratrol on tumor necrosis factor-alpha (TNF-α)-induced injury in human umbilical endothelial cells (HUVECs) using a variety of approaches including a cell viability assay, reverse transcription and quantitative polymerase chain reaction, western blot, and immunofluorescence staining. We showed that TNF-α induced CD40 expression and ROS production in cultured HUVECs, which were attenuated by resveratrol treatment. Also, resveratrol increased the expression of sirtuin 1 (SIRT1); and repression of SIRT1 by small-interfering RNA (siRNA) and the SIRT1 inhibitor Ex527 reduced the inhibitory effects of resveratrol on CD40 expression and ROS generation. In addition, resveratrol downregulated the levels of p65 and phospho-p38 MAPK, but this inhibitory effect was attenuated by the suppression of SIRT1 activity. Moreover, the p38 MAPK inhibitor SD203580 and the nuclear factor (NF)-κB inhibitor pyrrolidine dithiocarbamate (PDTC) achieved similar repressive effects as resveratrol on TNF-α-induced ROS generation and CD40 expression. Thus, our study provides a mechanistic link between resveratrol and the activation of SIRT1, the latter of which is involved in resveratrol-mediated repression of the p38 MAPK/NF-κB pathway and ROS production in TNF-α-treated HUVECs. PMID:26799794

  7. NZ suppresses TLR4/NF-κB signalings and NLRP3 inflammasome activation in LPS-induced RAW264.7 macrophages.

    PubMed

    Xiang, Pengjun; Chen, Tong; Mou, Yi; Wu, Hui; Xie, Peng; Lu, Guo; Gong, Xiaojian; Hu, Qinghua; Zhang, Yihua; Ji, Hui

    2015-10-01

    The purpose of the present study was to evaluate the potential therapeutic effects of NZ on lipopolysaccharide (LPS)-induced RAW264.7 cells and explore its underlying mechanisms. The effect of NZ on NO generation in LPS-activated macrophage was measured by Griess assay. The concentrations of TNF-α, IL-18, IL-1β were analyzed with ELISA kits. The LPS-induced production of reactive oxygen species (ROS) was determined by flow cytometry. The protein expressions of TLR4, NF-κB and NLRP3 signaling pathway were investigated with Western blot analysis. It was shown that NZ significantly reduced the production of NO and the generation of pro-inflammatory cytokines in LPS-induced RAW264.7 cells. In addition, NZ markedly inhibited the up-regulation of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and the activation of nuclear factor kappa B (NF-κB) in LPS-stimulated RAW 264.7 macrophages. Of note, NZ suppressed the expression of the inflammasome component such as NOD-like receptor 3(NLRP3), apoptosis-associated speck-like protein containing CARD(ASC), as well as the levels of cytokines including Interleukin-18(IL-18) and Interleukin-1β(IL-1β). These results indicated that NZ inhibited the generations of NO and pro-inflammatory cytokines by suppressing TLR4/MyD88/NF-κB pathway, suggesting that NZ could be an effective candidate for ameliorating LPS-induced inflammatory responses.

  8. Total glucosides of paeony (TGP) inhibits the production of inflammatory cytokines in oral lichen planus by suppressing the NF-κB signaling pathway.

    PubMed

    Wang, Yanni; Zhang, Han; Du, Guanhuan; Wang, Yufeng; Cao, Tianyi; Luo, Qingqiong; Chen, Junjun; Chen, Fuxiang; Tang, Guoyao

    2016-07-01

    Total glucosides of paeony (TGP) is a bioactive compound extracted from paeony roots and has been widely used to ameliorate inflammation in several autoimmune and inflammatory diseases. However, the anti-inflammatory effect of TGP on oral lichen planus (OLP), a chronic inflammatory oral condition characterized by T-cell infiltration and abnormal epithelial keratinization cycle remains unclear. In this study, we found that TLR4 was highly expressed and activation of the NF-κB signaling pathway was obviously observed in the OLP tissues. Moreover, there was significant higher mRNA expression of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in OLP keratinocytes than normal oral epithelial keratinocytes. With the help of the cell culture model by stimulating the keratinocyte HaCaT cells with lipopolysaccharides (LPS), we mimicked the local inflammatory environment of OLP. And we further confirmed that TGP could inhibit LPS-induced production of IL-6 and TNF-α in HaCaT cells via a dose-dependent manner. TGP treatment decreased the phosphorylation of IκBα and NF-κB p65 proteins, thus leading to less nuclear translocation of NF-κB p65 in HaCaT cells. Therefore, our data suggested that TGP may be a new potential candidate for the therapy of OLP. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/nitrative stress, and cell death

    PubMed Central

    Mukhopadhyay, Partha; Rajesh, Mohanraj; Horváth, Béla; Bátkai, Sándor; Park, Ogyi; Tanashian, Galin; Gao, Rachel Y; Patel, Vivek; Wink, David A.; Liaudet, Lucas; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2011-01-01

    Ischemia-reperfusion (I/R) is a pivotal mechanism of liver damage following liver transplantation or hepatic surgery. We have investigated the effects of cannabidiol(CBD), the non-psychotropic constituent of marijuana, in a mouse model of hepatic I/R injury. I/R triggered time-dependent increases/changes in markers of liver injury (serum transaminases), hepatic oxidative/nitrative stress (4-hydroxy-2-nonenal, nitrotyrosine content/staining, gp91phox and inducible nitric oxide synthase mRNA), mitochondrial dysfunction (decreased complex I activity), inflammation (tumor necrosis factor alpha (TNF-α), cyclooxygenase 2, macrophage inflammatory protein-1α/2, inter-cellular adhesion molecule 1 mRNA levels, tissue neutrophil infiltration, nuclear factor kappa B (NF-KB) activation), stress signaling (p38MAPK and JNK) and cell death (DNA fragmentation, PARP activity, and TUNEL). CBD significantly reduced the extent of liver inflammation, oxidative/nitrative stress and cell death, and also attenuated the bacterial endotoxin-triggered NF-KB activation and TNF-α production in isolated Kupffer cells, likewise the adhesion molecules expression in primary human liver sinusoidal endothelial cells stimulated with TNF-α, and attachment of human neutrophils to the activated endothelium. These protective effects were preserved in CB2 knockout mice and were not prevented by CB1/2 antagonists in vitro. Thus, CBD may represent a novel, protective strategy against I/R injury by attenuating key inflammatory pathways and oxidative/nitrative tissue injury, independent from classical CB1/2 receptors. PMID:21362471

  10. The protective effect of lidocaine on lipopolysaccharide-induced acute lung injury in rats through NF-κB and p38 MAPK signaling pathway and excessive inflammatory responses.

    PubMed

    Chen, L-J; Ding, Y-B; Ma, P-L; Jiang, S-H; Li, K-Z; Li, A-Z; Li, M-C; Shi, C-X; Du, J; Zhou, H-D

    2018-04-01

    Acute lung injury is a severe disease with a high rate of mortality, leading to more important illness. We aimed at exploring the protective role and potential mechanisms of lidocaine on lipopolysaccharide (LPS)-induced acute lung injury (ALI). Sprague Dawley (SD) rats were randomly assigned to control group receiving 0.9% saline solution, LPS group treated with 4 mg/kg LPS i.p., LPS + lidocaine(treated with 4 mg/kg LPS i.p. followed by giving 1 mg/kg, 3 mg/kg, 5 mg/kg of lidocaine i.v.). Lung specimens and the bronchoalveolar lavage fluid (BALF) were collected for histopathological examination and biochemical analyze 12 h after LPS induction. The cytokines expression of TNF-α, IL-6 and MCP-1 was measured by ELISA. In addition, the malondialdehyde (MDA) content, the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in lung tissues were also detected using ELISA. The protein expressions of p38, p-p38, p65, p-p65 and IκB were analyzed by Western blot. The results indicated that after lidocaine treatment was able to decrease significantly wet-to-dry (W/D) ratio and ameliorate the histopathologic damage. Additionally, total protein content and the number of leukocytes in BALF significantly decreased. ELISA result indicated that the levels of TNF-α, IL-6 and MCP-1 in BALF were markedly suppressed. Meanwhile, the activities of T-AOC and SOD in lung tissues significantly increased, while the content of MDA significantly decreased after treatment with lidocaine. Moreover, Western blot suggested that lidocaine inhibited phosphorylation of NF-κB p65 and p38 MAPK. Therefore, lidocaine could ameliorate the LPS-induced lung injury via NF-κB/p38 MAPK signaling and excessive inflammatory responses, providing a potential for becoming the anti-inflammatory agent against lung injury.

  11. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats.

    PubMed

    Liu, Yuanyuan; Yang, Jinying; Bao, Junjie; Li, Xiaolan; Ye, Aihua; Zhang, Guozheng; Liu, Huishu

    2017-01-01

    Preeclampsia (PE) exerts a more intense systemic inflammatory response than normal pregnancy. Recently, the role of the cholinergic anti-inflammatory pathway (CAP) in regulating inflammation has been extensively studied. The aim of this study was to investigate the effect of nicotine, a selective cholinergic agonist, on lipopolysaccharide (LPS)-induced preeclampsia-like symptoms in pregnant rats and to determine the molecular mechanism underlying it. Rats were administered LPS (1.0 μg/kg) via tail vein injection on gestational day 14 to induce preeclampsia-like symptoms. Nicotine (1.0 mg/kg/d) and α-bungarotoxin (1.0 μg/kg/d) were injected subcutaneously into the rats from gestational day 14-19. Clinical symptoms were recorded. Serum and placentas were collected to determine cytokine levels using Luminex. The mRNA and protein expression levels of α7 nicotinic acetylcholine receptor (α7nAChR) were determined using Real time-PCR and Western blot analysis. Immunohistochemistry was performed to determine the level of activation of nuclear factor-κB (NF-κB) in placentas. Nicotine significantly ameliorated LPS-induced preeclampsia-like symptoms in pregnant rats (P < 0.05). Nicotine treatment decreased the levels of LPS-induced pro-inflammatory cytokines in the serum (P < 0.05) and placenta (P < 0.05). Nicotine significantly increased the expression of α7nAChR (P < 0.01) and attenuated the activation of NF-κB p65 in the placenta in LPS-induced preeclampsia (P < 0.01). Meanwhile, these protective effects of nicotine were abolished by the administration of the cholinergic antagonist α-bungarotoxin in preeclampsia rats. Our findings suggest that the activation of α7nAChR by nicotine attenuates preeclampsia-like symptoms, and this protective effect is likely the result of the inhibition of inflammation via the NF-κB p65 pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis by inhibiting the activation of nuclear factor-kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Jian; Zhang, Lin; Dai, Weiqi

    Aim: This study aimed to investigate the effect and underlying mechanism of ghrelin on intestinal barrier dysfunction in dextran sulfate sodium (DSS)-induced colitis. Methods and results: Acute colitis was induced in C57BL/6J mice by administering 2.5% DSS. Saline or 25, 125, 250 μg/kg ghrelin was administrated intraperitoneally (IP) to mice 1 day before colitis induction and on days 4, 5, and 6 after DSS administration. IP injection of a ghrelin receptor antagonist, [D-lys{sup 3}]-GHRP-6, was performed immediately prior to ghrelin injection. Ghrelin (125 or 250 μg/kg) could reduce the disease activity index, histological score, and myeloperoxidase activities in experimental colitis, and alsomore » prevented shortening of the colon. Ghrelin could prevent the reduction of transepithelial electrical resistance and tight junction expression, and bolstered tight junction structural integrity and regulated cytokine secretion. Ultimately, ghrelin inhibited nuclear factor kappa B (NF-κB), inhibitory κB-α, myosin light chain kinase, and phosphorylated myosin light chain 2 activation. Conclusions: Ghrelin prevented the breakdown of intestinal barrier function in DSS-induced colitis. The protective effects of ghrelin on intestinal barrier function were mediated by its receptor GHSR-1a. The inhibition of NF-κB activation might be part of the mechanism underlying the effects of ghrelin that protect against barrier dysfunction. - Highlights: • Ghrelin ameliorates intestinal barrier dysfunction in experimental colitis. • The effect of ghrelin is mediated by GHSR-1a. • Inhibition of NF-κB activation.« less

  13. Paeoniflorin ameliorates cholestasis via regulating hepatic transporters and suppressing inflammation in ANIT-fed rats.

    PubMed

    Zhao, Yanling; He, Xuan; Ma, Xiao; Wen, Jianxia; Li, Pengyan; Wang, Jiabo; Li, Ruisheng; Zhu, Yun; Wei, Shizhang; Li, Haotian; Zhou, Xuelin; Li, Kun; Liu, Honghong; Xiao, Xiaohe

    2017-05-01

    Paeoniflorin has shown the obvious effect on cholestasis according to our previous research. However, its mechanism has not been absolutely explored yet. This study aims at evaluating the potential effect of paeoniflorin on alpha-naphthylisothiocyanate (ANIT) -induced cholestasis by inhibiting nuclear factor kappa-B (NF-κB) and simultaneously regulating hepatocyte transporters. Cholestasis was induced by administration of ANIT. The effect of paeoniflorin on serum indices such as total bilirubin (TBIL), direct bilirubin (DBIL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyltranspeptidase (γ-GT), total bile acid (TBA) and histopathology of liver were determined. Liver protein levels of NF-κB, interleukin 1β (IL-1β) and the hepatocyte transporters such as Na + /taurocholate cotransporting polypeptide (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) and cholesterol 7α-hydroxylase (Cyp7a1) were investigated by western blotting. The results demonstrated that paeoniflorin could decrease serum ALT, AST, ALP, γ-GT, TBIL, DBIL and TBA in ANIT-treated rats. Histological examination revealed that rats treated with paeoniflorin represented fewer neutrophils infiltration, edema and necrosis in liver tissue compared with ANIT rats. Moreover, paeoniflorin significantly reduced the over expressions of NF-κB and IL-1β induced by ANIT in liver tissue. In addition, the relative protein expressions of NTCP, BSEP, MRP2 but not Cyp7a1 were also restored by paeoniflorin. The potential mechanism of paeoniflorin in alleviating ANIT-induced cholestasis seems to be related to reduce the over expressions of NF-κB and hepatocyte transporters such as NTCP, BSEP as well as MRP2. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Sulfasalazine Blocks the Development of Tactile Allodynia in Diabetic Rats

    PubMed Central

    Berti-Mattera, Liliana N.; Kern, Timothy S.; Siegel, Ruth E.; Nemet, Ina; Mitchell, Rochanda

    2008-01-01

    OBJECTIVE—Diabetic neuropathy is manifested either by loss of nociception (painless syndrome) or by mechanical hyperalgesia and tactile allodynia (pain in response to nonpainful stimuli). While therapies with vasodilators or neurotrophins reverse some functional and metabolic abnormalities in diabetic nerves, they only partially ameliorate neuropathic pain. The reported link between nociception and targets of the anti-inflammatory drug sulfasalazine prompted us to investigate its effect on neuropathic pain in diabetes. RESEARCH DESIGN AND METHODS—We examined the effects of sulfasalazine, salicylates, and the poly(ADP-ribose) polymerase-1 inhibitor PJ34 on altered nociception in streptozotocin-induced diabetic rats. We also evaluated the levels of sulfasalazine targets in sciatic nerves and dorsal root ganglia (DRG) of treated animals. Finally, we analyzed the development of tactile allodynia in diabetic mice lacking expression of the sulfasalazine target nuclear factor-κB (NF-κB) p50. RESULTS—Sulfasalazine completely blocked the development of tactile allodynia in diabetic rats, whereas relatively minor effects were observed with other salicylates and PJ34. Along with the behavioral findings, sciatic nerves and DRG from sulfasalazine-treated diabetic rats displayed a decrease in NF-κB p50 expression compared with untreated diabetic animals. Importantly, the absence of tactile allodynia in diabetic NF-κB p50−/− mice supported a role for NF-κB in diabetic neuropathy. Sulfasalazine treatment also increased inosine levels in sciatic nerves of diabetic rats. CONCLUSIONS—The complete inhibition of tactile allodynia in experimental diabetes by sulfasalazine may stem from its ability to regulate both NF-κB and inosine. Sulfasalazine might be useful in the treatment of nociceptive alterations in diabetic patients. PMID:18633115

  15. Intestinal exposure to PCB 153 induces inflammation via the ATM/NEMO pathway.

    PubMed

    Phillips, Matthew C; Dheer, Rishu; Santaolalla, Rebeca; Davies, Julie M; Burgueño, Juan; Lang, Jessica K; Toborek, Michal; Abreu, Maria T

    2018-01-15

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that adversely affect human health. PCBs bio-accumulate in organisms important for human consumption. PCBs accumulation in the body leads to activation of the transcription factor NF-κB, a major driver of inflammation. Despite dietary exposure being one of the main routes of exposure to PCBs, the gut has been widely ignored when studying the effects of PCBs. We investigated the effects of PCB 153 on the intestine and addressed whether PCB 153 affected intestinal permeability or inflammation and the mechanism by which this occurred. Mice were orally exposed to PCB 153 and gut permeability was assessed. Intestinal epithelial cells (IECs) were collected and evaluated for evidence of genotoxicity and inflammation. A human IEC line (SW480) was used to examine the direct effects of PCB 153 on epithelial function. NF-кB activation was measured using a reporter assay, DNA damage was assessed, and cytokine expression was ascertained with real-time PCR. Mice orally exposed to PCB 153 had an increase in intestinal permeability and inflammatory cytokine expression in their IECs; inhibition of NF-кB ameliorated both these effects. This inflammation was associated with genotoxic damage and NF-кB activation. Exposure of SW480 cells to PCB 153 led to similar effects as seen in vivo. We found that activation of the ATM/NEMO pathway by genotoxic stress was upstream of NF-kB activation. These results demonstrate that oral exposure to PCB 153 is genotoxic to IECs and induces downstream inflammation and barrier dysfunction in the intestinal epithelium. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Carbachol ameliorates lipopolysaccharide-induced intestinal epithelial tight junction damage by down-regulating NF-κβ and myosin light-chain kinase pathways.

    PubMed

    Zhang, Ying; Li, Jianguo

    2012-11-16

    Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption of tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-κβ) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the α7 nicotinic acetylcholine receptor (α7nAchR) antagonist α-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-κβ and MLCK pathways in an α7nAchR-dependent manner. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Regulation of Hepatocellular Fatty Acid Uptake in Mouse Models of Fatty Liver Disease with and without Functional Leptin Signaling: Roles of NfKB and SREBP-1C and the Effects of Spexin.

    PubMed

    Ge, Jasmine F; Walewski, J L; Anglade, D; Berk, P D

    2016-09-01

    The processes causing increased hepatic triglycerides (TGs) in mouse models of hepatic steatosis (HS) due to high fat diet (HFD)-induced obesity (DIO), EtOH consumption, or obesity mutations ( ob/ob, db/db ) are uncertain. This report summarizes two studies. Study 1 focused on regulation by five transcription factors (TFs) (NfKb, Srebp-lc, AMPK, PPARα, PPARγ) of seven, much-studied hepatic long-chain fatty acid (LCFA) transporters (FABPpm, CD36, FATPl, FATP2, FATP4, FATP5, & Caveolin-1 [CAV-1]), and expression of genes for enzymes of LCFA synthesis (SCD-1, FASN) in mice with HS from various causes. Study 2 examined the effects of spexin, a novel adipokine, on obesity, type 2 diabetes mellitus (T2DM), and HS in these mice. Study 1 showed that: (1) processes underlying HS differed in mice with normal leptin signaling (DIO, EtoH-fed) versus those without it ( ob/ob, db/db ). Increased hepatocellular LCFA uptake was the principal cause of HS in the former, but increased hepatocellular LCFA synthesis predominated in the latter. (2) Expression of individual transporters was variable in the HS models studied, but strong correlations between TF expression and mean expression of four transporter genes across multiple HS models suggested regulatory interaction, and support the postulate that complexes of several different transporters mediate hepatic LCFA uptake. Study 2 indicated (1) that obese DIO mice often also have T2DM and/or nonalcoholic fatty liver disease (NAFLD); (2) confirmed that spexin treatment caused weight loss in DIO mice; (3) in DIO mice with T2DM, spexin also improved glucose tolerance, decreasing insulin resistance and HbAlc. Incubation with spexin directly inhibited LCFA uptake by hepatocytes isolated from DIO mice with HS/NAFLD by ≤70%. Spexin treatment in vivo for 4 weeks reduced hepatic lipids by 60%, and reduced serum alanine and aspartate aminotransferases. These studies in mice with DIO, T2DM, and HS/NAFLD suggest spexin may be an effective treatment for all three conditions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1

    PubMed Central

    Wu, Qing Qing; Wang, Yanxia; Senitko, Martin; Meyer, Colin; Wigley, W. Christian; Ferguson, Deborah A.; Grossman, Eric; Chen, Jianlin; Zhou, Xin J.; Hartono, John; Winterberg, Pamela; Chen, Bo; Agarwal, Anapam

    2011-01-01

    Ischemic acute kidney injury (AKI) triggers expression of adaptive (protective) and maladaptive genes. Agents that increase expression of protective genes should provide a therapeutic benefit. We now report that bardoxolone methyl (BARD) ameliorates ischemic murine AKI as assessed by both renal function and pathology. BARD may exert its beneficial effect by increasing expression of genes previously shown to protect against ischemic AKI, NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ), and heme oxygenase 1 (HO-1). Although we found that BARD alone or ischemia-reperfusion alone increased expression of these genes, the greatest increase occurred after the combination of both ischemia-reperfusion and BARD. BARD had a different mode of action than other agents that regulate PPARγ and Nrf2. Thus we report that BARD regulates PPARγ, not by acting as a ligand but by increasing the amount of PPARγ mRNA and protein. This should increase ligand-independent effects of PPARγ. Similarly, BARD increased Nrf2 mRNA; this increased Nrf2 protein by mechanisms in addition to the prolongation of Nrf2 protein half-life previously reported. Finally, we localized expression of these protective genes after ischemia and BARD treatment. Using double-immunofluorescence staining for CD31 and Nrf2 or PPARγ, we found increased Nrf2 and PPARγ on glomerular endothelia in the cortex; Nrf2 was also present on cortical peritubular capillaries. In contrast, HO-1 was localized to different cells, i.e., tubules and interstitial leukocytes. Although Nrf2-dependent increases in HO-1 have been described, our data suggest that BARD's effects on tubular and leukocyte HO-1 during ischemic AKI may be Nrf2 independent. We also found that BARD ameliorated cisplatin nephrotoxicity. PMID:21289052

  19. Bardoxolone methyl (BARD) ameliorates ischemic AKI and increases expression of protective genes Nrf2, PPARγ, and HO-1.

    PubMed

    Wu, Qing Qing; Wang, Yanxia; Senitko, Martin; Meyer, Colin; Wigley, W Christian; Ferguson, Deborah A; Grossman, Eric; Chen, Jianlin; Zhou, Xin J; Hartono, John; Winterberg, Pamela; Chen, Bo; Agarwal, Anapam; Lu, Christopher Y

    2011-05-01

    Ischemic acute kidney injury (AKI) triggers expression of adaptive (protective) and maladaptive genes. Agents that increase expression of protective genes should provide a therapeutic benefit. We now report that bardoxolone methyl (BARD) ameliorates ischemic murine AKI as assessed by both renal function and pathology. BARD may exert its beneficial effect by increasing expression of genes previously shown to protect against ischemic AKI, NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ), and heme oxygenase 1 (HO-1). Although we found that BARD alone or ischemia-reperfusion alone increased expression of these genes, the greatest increase occurred after the combination of both ischemia-reperfusion and BARD. BARD had a different mode of action than other agents that regulate PPARγ and Nrf2. Thus we report that BARD regulates PPARγ, not by acting as a ligand but by increasing the amount of PPARγ mRNA and protein. This should increase ligand-independent effects of PPARγ. Similarly, BARD increased Nrf2 mRNA; this increased Nrf2 protein by mechanisms in addition to the prolongation of Nrf2 protein half-life previously reported. Finally, we localized expression of these protective genes after ischemia and BARD treatment. Using double-immunofluorescence staining for CD31 and Nrf2 or PPARγ, we found increased Nrf2 and PPARγ on glomerular endothelia in the cortex; Nrf2 was also present on cortical peritubular capillaries. In contrast, HO-1 was localized to different cells, i.e., tubules and interstitial leukocytes. Although Nrf2-dependent increases in HO-1 have been described, our data suggest that BARD's effects on tubular and leukocyte HO-1 during ischemic AKI may be Nrf2 independent. We also found that BARD ameliorated cisplatin nephrotoxicity.

  20. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis.

    PubMed

    Liu, Yunxin; Liu, Xiang; Hua, Weiwei; Wei, Qingyan; Fang, Xianjun; Zhao, Zheng; Ge, Chun; Liu, Chao; Chen, Chen; Tao, Yifu; Zhu, Yubing

    2018-04-01

    Berberine has been reported to have protective effects in colitis treatment. However, the detailed mechanisms remain unclear. Herein, we demonstrated that berberine could protect against dextran sulfate sodium (DSS)-induced colitis in mice by regulating macrophage polarization. In the colitis mouse model, berberine ameliorated DSS-induced colon shortening and colon tissue injury. Moreover, berberine-treated mice showed significant reduction in the disease activity index (DAI), pro-inflammatory cytokines expression and macrophages infiltration compared with the DSS-treated mice. Notably, berberine significantly reduced the percentage of M1 macrophages. In vitro analysis also confirmed the inhibitory effects of berberine on macrophages M1 polarization in RAW267.4 cells. Further investigation showed that berberine promoted AKT1 expression in mRNA and protein level. Silence of AKT1 abolished the inhibitory effect of berberine on macrophages M1 polarization. The berberine-induced AKT1 expression promoted suppressers of cytokine signaling (SOCS1) activation, which inhibited nuclear factor-kappa B (NF-κB) phosphorylation. In addition, we also found that berberine activated AKT1/SOCS1 signaling pathway but inhibited p65 phosphorylation in macrophages in vivo. Therefore, we concluded that berberine played a regulatory role in macrophages M1 polarization in DSS-induced colitis via AKT1/SOCS1/NF-κB signaling pathway. This unexpected property of berberine may provide a potential explanation for its protective effects in colitis treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Phloretin attenuates LPS-induced acute lung injury in mice via modulation of the NF-κB and MAPK pathways.

    PubMed

    Huang, Wen-Chung; Lai, Ching-Long; Liang, Yuan-Ting; Hung, Hui-Chih; Liu, Hui-Chia; Liou, Chian-Jiun

    2016-11-01

    Phloretin, which can be isolated from apple trees, has demonstrable anti-inflammatory and anti-oxidant effects in macrophages. We previously reported that phloretin could inhibit the inflammatory response and reduce intercellular adhesion molecule 1 (ICAM-1) expression in interleukin (IL)-1β-activated human lung epithelial cells. In the present study we now evaluate whether phloretin exposure could ameliorate lipopolysaccharide (LPS)-induced acute lung injury in mice. Intra-peritoneal injections of phloretin were administered to mice for 7 consecutive days, prior to the induction of lung injury by intra-tracheal administration of LPS. Our subsequent analyses demonstrated that phloretin could significantly suppress LPS-induced neutrophil infiltration of lung tissue, and reduce the levels of IL-6 and tumor necrosis factor (TNF)-α in serum and bronchoalveolar lavage fluid. We also found that phloretin modulated myeloperoxidase activity and superoxide dismutase activity, with decreased gene expression levels for chemokines, proinflammatory cytokines, and ICAM-1 in inflamed lung tissue. Phloretin also significantly reduced the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK), thus limiting the inflammatory response, while promoting expression of heme oxygenase (HO)-1 and nuclear factor erythroid 2-related factor 2, both of which are cytoprotective. Our findings suggest that, mechanistically, phloretin attenuates the inflammatory and oxidative stress pathways that accompany lung injury in mice via blockade of the NF-κB and MAPK pathways. Copyright © 2016. Published by Elsevier B.V.

  2. Involvement of brain-gut axis in treatment of cerebral infarction by β-asaron and paeonol.

    PubMed

    He, Xiaogang; Cai, Qiufang; Li, Jianxiang; Guo, Weifeng

    2018-02-14

    Cerebral infarction (CI) causes severe brain damage with high incidence. This study aimed to investigate the involvement of brain-gut axis in the treatment of CI by combined administration of β-asaron and paeonol. Rat middle cerebral artery occlusion (MCAO) model was established, the interleukin-1beta (IL-1β) and tumor necrosis factor α (TNF-α) in the rat peripheral blood were determined by ELISA assay, and brain tissue damage was evaluated by TUNNEL assay. The correlation of cholecystokinin (CCK) and nuclear factor-kappaB (NF-κB) signaling components between intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol were analyzed by quantitative RT-PCR and western blotting. In vitro transwell co-culture was performed to confirm the correlated expression. The expression of CCK and NF-κB signaling components were closely correlated between the intestinal mucosa and prefrontal cortex of MCAO rats treated with β-asaron and paeonol. The combined administration also regulates the IL-1β and TNF-α in the MCAO rat peripheral blood and ameliorate the brain damage in MCAO rats. Elevated expression of related genes was observed in the cortical neurons co-cultured with intestinal mucosal epithelial cells treated by β-asaron and paeonol. The brain-gut axis mediates the therapeutic effect of β-asaron and paeonol for cerebral infarction through CCK and NF-κB signaling. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Production of proinflammatory mediators in activated microglia is synergistically regulated by Notch-1, glycogen synthase kinase (GSK-3β) and NF-κB/p65 signalling.

    PubMed

    Cao, Qiong; Karthikeyan, Aparna; Dheen, S Thameem; Kaur, Charanjit; Ling, Eng-Ang

    2017-01-01

    Microglia activation and associated inflammatory response are involved in the pathogenesis of different neurodegenerative diseases. We have reported that Notch-1 and NF-κB/p65 signalling pathways operate in synergy in regulating the production of proinflammatory mediators in activated microglia. In the latter, there is also evidence by others that glycogen synthase kinase 3β (GSK-3β) mediates the release of proinflammatory cytokines but the interrelationships between the three signalling pathways have not been fully clarified. This is an important issue as activated microglia are potential therapeutic target for amelioration of microglia mediated neuroinflammation. Here we show that blocking of Notch-1 with N-[(3,5-Difluorophenyl) acetyl]-L-alanyl-2-phenylglycine-1,1-dimethylethyl ester (DAPT) in LPS activated BV-2 microglia not only suppressed Notch intracellular domain (NICD) and Hes-1 protein expression, but also that of GSK-3β. Conversely, blocking of the latter with lithium chloride (LiCl) decreased NICD expression in a dose-dependent manner; moreover, Hes-1 immunofluorescence was attenuated. Along with this, the protein expression level of p-GSK-3β and p-AKT protein expression was significantly increased. Furthermore, DAPT and LiCl decreased production of IL-1β, TNF-α, IL-6, iNOS, Cox2 and MCP-1; however, IL-10 expression was increased notably in LiCl treated cells. The effects of DAPT and LiCl on changes of the above-mentioned biomarkers were confirmed by immunofluorescence in both BV-2 and primary microglia. Additionally, NF-κB/p65 immunofluorescence was attenuated by DAPT and LiCl; as opposed to this, IκBα protein expression was increased. Taken together, it is suggested that Notch-1, NF-κB/p65 and GSK-3β operate in synergy to inhibit microglia activation. This may be effected via increased expression of phospho-GSK-3β (p-GSK-3β), phospho-protein kinase B (PKB) (p-AKT) and IκBα. It is concluded that the three signalling pathways are functionally interlinked in regulating microglia activation.

  4. Thalidomide inhibits lipopolysaccharide-induced tumor necrosis factor-alpha production via down-regulation of MyD88 expression.

    PubMed

    Noman, Abu Shadat M; Koide, Naoki; Hassan, Ferdaus; I-E-Khuda, Imtiaz; Dagvadorj, Jargalsaikhan; Tumurkhuu, Gantsetseg; Islam, Shamima; Naiki, Yoshikazu; Yoshida, Tomoaki; Yokochi, Takashi

    2009-02-01

    The effect of thalidomide on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-alpha production was studied by using RAW 264.7 murine macrophage-like cells. Thalidomide significantly inhibited LPS-induced TNF-alpha production. Thalidomide prevented the activation of nuclear factor (NF)-KB by down-regulating phosphorylation of inhibitory KB factor (IKB), and IKB kinase (IKK)-alpha and IKK-beta Moreover, thalidomide inhibited LPS-induced phosphorylation of AKT, p38 and stress-activated protein kinase (SAPK)/JNK. The expression of myeloid differentiation factor 88 (MyD88) protein and mRNA was markedly reduced in thalidomide-treated RAW 264.7 cells but there was no significant alteration in the expression of interleukin-1 receptor-associated kinase (IRAK) 1 and TNF receptor-associated factor (TRAF) 6 in the cells. Thalidomide did not affect the cell surface expression of Toll-like receptor (TLR) 4 and CD14, suggesting the impairment of intracellular LPS signalling in thalidomide-treated RAW 264.7 cells. Thalidomide significantly inhibited the TNF-alpha production in response to palmitoyl-Cys(RS)-2,3-di(palmitoyloxy) propyl)-Ala-Gly-OH (Pam(3)Cys) as a MyD88-dependent TLR2 ligand. Therefore, it is suggested that thalidomide might impair LPS signalling via down-regulation of MyD88 protein and mRNA and inhibit LPS-induced TNF-alpha production. The putative mechanism of thalidomide-induced MyD88 down-regulation is discussed.

  5. LincRNA-Gm4419 knockdown ameliorates NF-κB/NLRP3 inflammasome-mediated inflammation in diabetic nephropathy.

    PubMed

    Yi, Hong; Peng, Rui; Zhang, Lu-Yu; Sun, Yan; Peng, Hui-Min; Liu, Han-Deng; Yu, Li-Juan; Li, Ai-Ling; Zhang, Ya-Juan; Jiang, Wen-Hao; Zhang, Zheng

    2017-02-02

    Diabetic nephropathy (DN) as the primary cause of end-stage kidney disease is a common complication of diabetes. Recent researches have shown the activation of nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) and NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome are associated with inflammation in the progression of DN, but the exact mechanism is unclear. Long noncoding RNAs (lncRNAs) have roles in the development of many diseases including DN. However, the relationship between lncRNAs and inflammation in DN remains largely unknown. Our previous study has revealed that 14 lncRNAs are abnormally expressed in DN by RNA sequencing and real-time quantitative PCR (qRT-PCR) in the renal tissues of db/db DN mice. In this study, these lncRNAs were verified their expressions by qRT-PCR in mesangial cells (MCs) cultured under high- and low-glucose conditions. Twelve lncRNAs displayed the same expressional tendencies in both renal tissues and MCs. In particular, long intergenic noncoding RNA (lincRNA)-Gm4419 was the only one associating with NF-κB among these 12 lncRNAs by bioinformatics methods. Moreover, Gm4419 knockdown could obviously inhibit the expressions of pro-inflammatory cytokines and renal fibrosis biomarkers, and reduce cell proliferation in MCs under high-glucose condition, whereas overexpression of Gm4419 could increase the inflammation, fibrosis and cell proliferation in MCs under low-glucose condition. Interestingly, our results showed that Gm4419 could activate the NF-κB pathway by directly interacting with p50, the subunit of NF-κB. In addition, we found that p50 could interact with NLRP3 inflammasome in MCs. In conclusion, our findings suggest lincRNA-Gm4419 may participate in the inflammation, fibrosis and proliferation in MCs under high-glucose condition through NF-κB/NLRP3 inflammasome signaling pathway, and may provide new insights into the regulation of Gm4419 during the progression of DN.

  6. PPAR-{gamma} agonist protects against intestinal injury during necrotizing enterocolitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baregamian, Naira; Mourot, Joshua M.; Ballard, Amie R.

    2009-02-06

    Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-{gamma} in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-{gamma} agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min withmore » variable periods of reperfusion. I/R injury resulted in early induction of PPAR-{gamma} expression and activation of NF-{kappa}B in small intestine. Pretreatment with PPAR-{gamma} agonist, 15d-PGJ{sub 2}, attenuated intestinal NF-{kappa}B response and I/R-induced gut injury. Activation of PPAR-{gamma} demonstrated a protective effect on small bowel during I/R-induced gut injury.« less

  7. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis[S

    PubMed Central

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.

    2016-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992

  8. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway.

    PubMed

    Jiang, Kang-Feng; Zhao, Gan; Deng, Gan-Zhen; Wu, Hai-Chong; Yin, Nan-Nan; Chen, Xiu-Ying; Qiu, Chang-Wei; Peng, Xiu-Li

    2017-02-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.

  9. A study comparing the efficacy of antimicrobial agents versus enzyme (P-gp) inducers in the treatment of 2,4,6 trinitrobenzenesulfonic acid-induced colitis in rats.

    PubMed

    Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A

    2013-08-01

    The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-κB and TNF-α, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances from the tissue.

  10. The role of adipose-derived inflammatory cytokines in type 1 diabetes

    PubMed Central

    Shao, Lan; Feng, Boya; Zhang, Yuying; Zhou, Huanjiao; Ji, Weidong; Min, Wang

    2016-01-01

    ABSTRACT Adipose tissue dysfunction correlates with the development of diabetes. Mice with an adipocyte-specific deletion of the SUMO-specific protease SENP1 develop symptoms of type-1 diabetes mellitus (T1DM). Peri-pancreatic adipocytes (PATs) exert both systemic and paracrine effects on pancreases function. Our recent studies report that PATs of SENP1-deficient mice have increased proinflammatory cytokine production compared with other adipose depots. Proinflammatory cytokines produced from PATs not only have direct cytotoxic effects on pancreatic islets, but also increase CCL5 expression in adjacent pancreatic islets, which induces persistent inflammation in pancreases by acquisition of Th1 and Th17 effector T cell subsets. Small ubiquitin-like modifier (SUMO) can post-translationally conjugate to cellular proteins (SUMOylation) and modulate their biological functions. Several components in SUMOylation associate with T1DM susceptibility. We find that SUMOylation of NF-κB essential molecule NEMO augments NF-κB activity, NF-κB-dependent cytokine production and pancreatic inflammation. NF-κB inhibitor should provide therapeutic approach to block PAT inflammation and ameliorate the T1DM phenotype. We further propose that adipocytes in PATs may play a primary role in establishing pancreatic immune regulation at onset of diabetes, providing new insights into the molecular pathogenesis of type 1 diabetes. PMID:27617172

  11. Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways.

    PubMed

    Sandireddy, Reddemma; Yerra, Veera Ganesh; Komirishetti, Prashanth; Areti, Aparna; Kumar, Ashutosh

    2016-08-01

    The current study is aimed to assess the therapeutic potential of fisetin, a phytoflavonoid in streptozotocin (STZ)-induced experimental diabetic neuropathy (DN) in rats. Fisetin was administered (5 and 10 mg/kg) for 2 weeks (7th and 8th week) post STZ administration. Thermal and mechanical hyperalgesia were assessed by measuring tactile sensitivity to thermal and mechanical stimuli, respectively. Motor nerve conduction velocity (MNCV) was determined using power lab system and sciatic nerve blood flow (NBF) was determined using laser Doppler system. Nerve sections were processed for TUNEL assay and NF-κB, COX-2 immunohistochemical staining. Sciatic nerve homogenate was used for biochemical and Western blotting analysis. MNCV and sciatic NBF deficits associated with DN were ameliorated in fisetin administered rats. Fisetin treatment reduced the interleukin-6 and tumour necrosis factor-alpha in sciatic nerves of diabetic rats (p < 0.001). Protein expression studies have identified that the therapeutic benefit of fisetin might be through regulation of redox sensitive transcription factors such as nuclear erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB). Our study provides an evidence for the therapeutic potential of fisetin in DN through simultaneous targeting of NF-κB and Nrf2.

  12. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling

    PubMed Central

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-01-01

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases. PMID:28415686

  13. Chikusetsu saponin IVa ameliorates high fat diet-induced inflammation in adipose tissue of mice through inhibition of NLRP3 inflammasome activation and NF-κB signaling.

    PubMed

    Yuan, Chengfu; Liu, Chaoqi; Wang, Ting; He, Yumin; Zhou, Zhiyong; Dun, Yaoyan; Zhao, Haixia; Ren, Dongming; Wang, Junjie; Zhang, Changcheng; Yuan, Ding

    2017-05-09

    Chronic metabolic inflammation in adipose tissue plays an important role in the development of obesity-associated diseases. Our previous study indicated that total saponins of Panax japonicus (SPJ) rhizoma and Chikusetsu saponin V, one main component of SPJ, could exert the anti-oxidative and anti-inflammatory effects. The present study aimed to investigate the in vivo and Ex vivo anti-inflammatory activities of another main component of SPJ, namely Chikusetsu saponin IVa (CS). CS could significantly inhibited HFD-induced lipid homeostasis, and inhibited inflammation in adipose tissue, as reflected by the decreased mRNA expression levels of inflammation-related genes and secretion of the chemokines/cytokines, inhibited the accumulation of adipose tissue macrophages (ATMs) and shifted their polarization from M1 to M2, suppressed HFD-induced expression of NLRP3 inflammasome component genes and decreased IL-1β and Caspase-1 production in mice. Moreover, CS treatment also inhibited the activation of NLRP3 inflammasome in bone marrow-derived macrophages (BMDMs). Meanwhile, CS treatment inhibited an NLRP3-induced ASC pyroptosome formation and lipopolysaccharide (LPS)-induced pyroptosis. Furthermore, CS treatment suppressed HFD-induced NF-κB signaling in vivo and LPS-induced NF-κB activation as reflected by the fact that their phosphorylated forms and the ratios of pNF-κB/NF-κB, pIKK/IKK, and pIκB/IκB were all decreased in EAT from HFD-fed mice treated with CS as compared with those of HFD mice. Taking together, this study has revealed that CS effectively inhibits HFD-induced inflammation in adipose tissue of mice through inhibiting both NLRP3 inflammasome activation and NF-κB signaling. Thus, CS can serve as a potential therapeutic drug in the prevention and treatment of inflammation-associated diseases.

  14. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M.

    PubMed

    Yin, Xinru; Gong, Xia; Zhang, Li; Jiang, Rong; Kuang, Ge; Wang, Bin; Chen, Xinyu; Wan, Jingyuan

    2017-04-01

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100mg/kg) 1h before lipopolysaccharide (LPS)/d-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Follistatin-like protein 1 induction of matrix metalloproteinase 1, 3 and 13 gene expression in rheumatoid arthritis synoviocytes requires MAPK, JAK/STAT3 and NF-κB pathways.

    PubMed

    Ni, Su; Li, Chenkai; Xu, Nanwei; Liu, Xi; Wang, Wei; Chen, Wenyang; Wang, Yuji; van Wijnen, Andre J

    2018-06-22

    Elevated levels of follistatin-like protein 1 (FSTL1) have been found both in mouse models for human rheumatoid arthritis (RA) and collagen-induced arthritis (CIA). In this study, we elucidated the potential mechanisms by which FSTL1 contributes to the pathogenesis of RA. Fibroblast-like synoviocytes (FLSs) were established from synovial tissues of RA patients and stimulated with human recombinant FSTL1. Protein and mRNA expression levels of select matrix metalloproteinases (i.e., MMP1, MMP3, MMP13) in FLS were measured by, respectively, real-time RT-qPCR and ELISA. Activation of MAPK and other pathways that affect MMPs were evaluated by Western blotting. We also compared concentrations of MMPs in plasma in RA patients versus healthy controls (HC). Expression levels of MMP1, MMP3, and MMP13 were clearly stimulated by FSTL1 in vitro. FSTL1 activated the inflammation-related NF-κB signaling pathway, as well as all three mitogen-activated protein kinase (MAPK) pathways and the JAK/STAT3 pathway. Moreover, select chemical inhibitors that target p38 (SB203580), Erk1/2 (SP600125), JNK (SCH772984), STAT3 (AG490), and NF-κB (BAY 11-7082) significantly attenuated MMP expression. Inhibition of Toll-like receptor 4 by compound TAK-242 significantly abolished those effects of FSTL1. Importantly, elevated plasma concentrations of MMP3 were found to correlate with plasma FSTL1 levels in RA patients. These findings suggest that FSTL1 accelerates RA progression by activating MAPK, JAK/STAT3, and NF-κB pathways to enhance secretion of different MMPs and this enhancement is via TLR4. Targeting FSTL1 may provide a promising pharmacological drug therapy to ameliorate RA symptoms and perhaps reverse disease progression. © 2018 Wiley Periodicals, Inc.

  16. PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription.

    PubMed

    Wu, Jui-Sheng; Tsai, Hsin-Da; Cheung, Wai-Mui; Hsu, Chung Y; Lin, Teng-Nan

    2016-08-01

    Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX. With pharmacological (PPAR-γ antagonist GW9662), loss-of-function (PPAR-γ siRNA), and gain-of-function (Ad-PPAR-γ) approaches, we first demonstrated that 15-deoxy-∆(12,14)-PGJ2 (15d-PGJ2), via selectively attenuating p22phox expression, inhibited NOX activation and the subsequent ROS generation and neuronal death in a PPAR-γ-dependent manner. Secondly, results of promoter analyses and subcellular localization studies further revealed that PPAR-γ, via inhibiting hypoxia-induced NF-κB nuclear translocation, indirectly suppressed NF-κB-driven p22phox transcription. Noteworthily, postischemic p22phox siRNA treatment not only reduced infarct volumes but also improved functional outcome. In summary, we report a novel transrepression mechanism involving PPAR-γ downregulation of p22phox expression to suppress the subsequent NOX activation, ischemic neuronal death, and brain infarct. Identification of a PPAR-γ → NF-κB → p22phox neuroprotective signaling cascade opens a new avenue for protecting the brain against ischemic insult.

  17. Mangiferin ameliorates Porphyromonas gingivalis-induced experimental periodontitis by inhibiting phosphorylation of nuclear factor-κB and Janus kinase 1-signal transducer and activator of transcription signaling pathways.

    PubMed

    Li, H; Wang, Q; Ding, Y; Bao, C; Li, W

    2017-02-01

    Mangiferin is a natural polyphenol compound with anti-inflammatory properties. However, there have been few reports on the effect of mangiferin on periodontitis. Here, we investigated the anti-inflammatory effects of this compound on experimental periodontitis and the underlying mechanisms. Mice were inoculated with Porphyromonas gingivalis to induce periodontitis, and treated with mangiferin orally (50 mg/kg bodyweight, once a day) for 8 wk. Then, the alveolar bone loss was examined using a scanning electronic microscope. Expression of tumor necrosis factor-α (TNF-α) and the phosphorylation levels of nuclear factor-κB (NF-κB) and Janus kinase 1-signal transducer and activator of adhesion (JAK1-STAT) pathways in the gingival epithelium were detected using western blot analysis and immunohistochemical staining. The results showed that mice with periodontitis exhibited greater alveolar bone loss, stronger expression of TNF-α and higher phosphorylation levels of NF-κB and JAK1-STAT1/3 pathways in gingival epithelia, compared with control mice with no periodontitis. Moreover, treatment with mangiferin could significantly inhibit alveolar bone loss, TNF-α production and phosphorylation of NF-κB and JAK1-STAT1/3 pathways in gingival epithelia. Mangiferin has anti-inflammatory effects on periodontitis, which is associated with its ability to down-regulate the phosphorylation of NF-κB and JAK1-STAT1/3 pathways in gingival epithelia. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young Nam; Kim, Dae Won; Jo, Hyo Sang

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB)more » and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.« less

  19. Magnolol ameliorates lipopolysaccharide-induced acute lung injury in rats through PPAR-γ-dependent inhibition of NF-kB activation.

    PubMed

    Lin, Ming-Hsien; Chen, Meng-Chuan; Chen, Tso-Hsiao; Chang, Heng-Yuan; Chou, Tz-Chong

    2015-09-01

    Acute lung injury (ALI) has a high morbidity and mortality rate due to the serious inflammation and edema occurred in lung. Magnolol extracted from Magnolia officinalis, has been reported to exhibit anti-inflammatory, and antioxidant activities. Peroxisome proliferator-activated receptors (PPARs) are known to exert a cytoprotective effect against cellular inflammatory stress and oxidative injury. The aim of this study was to explore the involvement of PPAR-γ in the beneficial effect of magnolol in lipopolysaccharide (LPS)-induced ALI. We found that treatment with magnolol greatly improved the pathological features of ALI evidenced by reduction of lung edema, polymorphonuclear neutrophil infiltration, ROS production, the levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF), the expression of iNOS and COX-2, and NF-κB activation in lungs exposed to LPS. Importantly, magnolol is capable of increasing the PPAR-γ expression and activity in lungs of ALI. However, blocking PPAR-γ activity with GW9662 markedly abolished the protective and anti-inflammatory effects of magnolol. Taken together, the present study provides a novel mechanism accounting for the protective effect of magnolol in LPS-induced ALI is at least partly attributed to induction of PPAR-γ in lungs, and in turn suppressing NF-κB-related inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The effects of S-nitrosoglutathione on intestinal ischemia reperfusion injury and acute lung injury in rats: Roles of oxidative stress and NF-κB.

    PubMed

    Turan, Inci; Sayan Ozacmak, Hale; Ozacmak, V Haktan; Barut, Figen; Ozacmak, I Diler

    2018-06-01

    Intestinal ischemia and reperfusion (I/R) induces oxidative stress, inflammatory response, and acute lung injury. S-nitrosoglutathione (GSNO), a nitric oxide donor, has been documented to have protective effects on experimental ischemia models. The aim of this study was to examine the effect of GSNO on I/R-induced intestine and lung damage and detect the potential mechanisms emphasizing the protective role of GSNO. Intestinal I/R was induced by occluding the superior mesenteric artery for 30 min followed by reperfusion for 180 min. GSNO was administered intravenously before reperfusion period (0.25 mg/kg). The levels of lipid peroxidation, reduced glutathione, and myeloperoxidase (MPO), histopathological evaluation and immunohistochemical expressions of both nuclear factor KappaB (NF-κB) and inducible nitric oxide (iNOS) in intestine and lung tissues were assessed. Histolopathologic evaluation demonstrated that intestinal I/R induced severe damages in the intestine and the lung tissues. Histopathological scores decreased with GSNO treatment. GSNO treatment reduced lipid peroxidation and MPO levels and inhibited expression of NF-κB and iNOS in the intestine. Our results suggest that GSNO treatment may ameliorate the intestinal and lung injury in rats, at least in part, by inhibiting inflammatory response and oxidative stress. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Prevention of Endotoxin-Induced Uveitis in Rats by Benfotiamine, a Lipophilic Analogue of Vitamin B1

    PubMed Central

    Yadav, Umesh C. S.; Subramanyam, Sumitra; Ramana, Kota V.

    2009-01-01

    Purpose To study the amelioration of ocular inflammation in endotoxin-induced uveitis (EIU) in rats by benfotiamine, a lipid-soluble analogue of thiamine. Methods EIU in Lewis rats was induced by subcutaneous injection of lipopolysaccharide (LPS) followed by treatment with benfotiamine. The rats were killed 3 or 24 hours after LPS injection, eyes were enucleated, aqueous humor (AqH) was collected, and the number of infiltrating cells, protein concentration, and inflammatory marker levels were determined. Immunohistochemical analysis of eye sections was performed to determine the expression of inducible–nitric oxide synthase (iNOS), cyclooxygenase (Cox)-2, protein kinase C (PKC), and transcription factor NF-κB. Results Infiltrating leukocytes, protein concentrations, and inflammatory cytokines and chemokines were significantly elevated in the AqH of EIU rats compared with control rats, and benfotiamine treatment suppressed these increases. Similarly increased expression of inflammatory markers iNOS and Cox-2 in ciliary body and retinal wall was also significantly inhibited by benfotiamine. The increased phosphorylation of PKC and the activation of NF-κB in the ciliary body and in the retinal wall of EIU rat eyes were suppressed by benfotiamine. Conclusions These results suggest that benfotiamine suppresses oxidative stress–induced NF-κB– dependent inflammatory signaling leading to uveitis. Therefore, benfotiamine could be used as a novel therapeutic agent for the treatment of ocular inflammation, especially uveitis. (Invest Ophthalmol Vis Sci. PMID:19136698

  2. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice.

    PubMed

    Fu, Yunhe; Gao, Ruifeng; Cao, Yongguo; Guo, Mengyao; Wei, Zhengkai; Zhou, Ershun; Li, Yimeng; Yao, Minjun; Yang, Zhengtao; Zhang, Naisheng

    2014-05-01

    Curcumin, the main constituent of the spice turmeric, has been reported to have potent anti-inflammatory properties. However, the effect of curcumin on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The aim of this study was to investigate whether curcumin could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of the mammary gland. Curcumin was applied 1h before and 12h after LPS treatment. The results showed that curcumin attenuated the infiltration of inflammatory cells, the activity of myeloperoxidase (MPO), and the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) in a dose-dependent manner. Additionally, Western blotting results showed that curcumin inhibited the phosphorylation of IκB-α and NF-κB p65 and the expression of TLR4. These results indicated that curcumin has protective effect on mice mastitis and the anti-inflammatory mechanism of curcumin on LPS-induced mastitis in mice may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Curcumin may be a potential therapeutic agent against mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Vitamin K2 stimulates osteoblastogenesis and suppresses osteoclastogenesis by suppressing NF-κB activation.

    PubMed

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2011-01-01

    Several bone protective factors are reported to exhibit stimulatory activities on bone formation coupled with inhibitory effects on bone resorption; one such factor is vitamin K2. Vitamin K species [K1 (phylloquinone) and K2 (menaquinone)] have long been associated with bone protective activities and are receiving intense interest as nutritional supplements for the prevention or amelioration of bone disease in humans. However, the mechanisms of vitamin K action on the skeleton are poorly defined. Activation of the nuclear factor κB (NF-κB) signal transduction pathway is essential for osteoclast formation and resorption. By contrast, NF-κB signaling potently antagonizes osteoblast differentiation and function, prompting us to speculate that NF-κB antagonists may represent a novel class of dual anti-catabolic and pro-anabolic agents. We now show that vitamin K2 action on osteoblast and osteoclast formation and activity is accomplished by down-regulating basal and cytokine-induced NF-κB activation, by increasing IκB mRNA, in a γ-carboxylation-independent manner. Furthermore, vitamin K2 prevented repression by tumor necrosis factor α (TNFα) of SMAD signaling induced by either transforming growth factor ß (TGFß) or bone morphogenetic protein-2 (BMP-2). Vitamin K2 further antagonized receptor activator of NF-κB (RANK) ligand (RANKL)-induced NF-κB activation in osteoclast precursors. Our data provide a novel mechanism to explain the dual pro-anabolic and anti-catabolic activities of vitamin K2, and may further support the concept that pharmacological modulation of NF-κB signal transduction may constitute an effective mechanism for ameliorating pathological bone loss and for promoting bone health.

  4. Berberine attenuates CCN2-induced IL-1β expression and prevents cartilage degradation in a rat model of osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shan-Chi; Lee, Hsiang-Ping; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan

    Connective tissue growth factor (CTGF; also known as CCN2) is an inflammatory mediator that is abundantly expressed in osteoarthritis (OA). Interleukin-1β (IL-1β) plays a pivotal role in OA pathogenesis. Berberine exhibits an anti-inflammatory effect, but the mechanisms by which it modulates CCN2-induced IL-1β expression in OA synovial fibroblasts (OASFs) remain unknown. We showed that CCN2-induced IL-1β expression is mediated by the activation of α{sub v}β{sub 3}/α{sub v}β{sub 5} integrin-dependent reactive oxygen species (ROS) generation, and subsequent activation of apoptosis signal-regulating kinase 1 (ASK1), p38/JNK, and nuclear factor-κB (NF-κB) signaling pathways. This IL-1β expression in OASFs is attenuated by N-acetylcysteine (NAC),more » inhibitors of ASK1, p38, or JNK, or treatment with berberine. Furthermore, berberine also reverses cartilage damage in an experimental model of collagenase-induced OA (CIOA). We observed that CCN2 increased IL-1β expression via α{sub v}β{sub 3}/α{sub v}β{sub 5} integrins, ROS, and ASK1, p38/JNK, and NF-κB signaling pathways. Berberine was found to inhibit these signaling components in OASFs in vitro and prevent cartilage degradation in vivo. We suggest a novel therapeutic strategy of using berberine for managing OA. - Highlights: • CCN2 induce IL-1β production via αvβ3/αvβ5 integrin, ROS, ASK1, p38/JNK, and NF-κB. • Berberine attenuates CCN2-induced IL-1β expression in vitro and in OA rat model. • Berberine as natural drug of choice for anti-inflammatory effect to ameliorates OA.« less

  5. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation.

    PubMed

    El-Bakly, Wesam M; Louka, Manal L; El-Halawany, Ali M; Schaalan, Mona F

    2012-12-01

    Doxorubicin is a widely used antitumour drug. Cardiotoxicity is considered a major limitation for its clinical use. The present study was designed to assess the possible antioxidant and antiapoptotic effects of 6-gingerol in attenuating doxorubicin-induced cardiac damage. Male albino rats were treated with either intraperitoneal doxorubicin (18 mg/kg divided into six equal doses for 2 weeks) and/or oral 6-gingerol (10 mg/kg starting 5 days before and continued till the end of the experiment). 6-gingerol significantly ameliorated the doxorubicin-induced elevation in the cardiac enzymes. The stimulation of oxidative stress by doxorubicin was evidenced by the significant decrease in the serum soluble receptor for advanced glycation endproduct allowing unopposed serum advanced glycation endproduct availability. Moreover, doxorubicin activated nuclear factor kappa B (NF-κB) which was indicated by an increase in its immunohistochemical staining in the nucleus. In addition, doxorubicin-induced cardiotoxicity was accompanied by elevation of cardiac caspase-3. Notably, pretreatment with 6-gingerol significantly ameliorated the changes in sRAGE, NF-κB and cardiac caspase-3. Cardiac enzymes showed significant positive correlation with NF-κB and caspase-3 but negative with serum sRAGE, suggesting their role in doxorubicin-induced cardiac injury. These findings were confirmed by cardiac tissue histopathology. 6-gingerol, a known single compound from ginger with anticancer activity, was shown to have a promising role in cardioprotection against doxorubicin-induced cardiotoxicity. This study suggested a novel mechanism for 6-gingerol cardioprotection, which might be mediated through its antioxidative effect and modulation of NF-κB as well as apoptosis.

  6. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistancemore » in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.« less

  7. Effects of curcumin on pain threshold and on the expression of nuclear factor κ B and CX3C receptor 1 after sciatic nerve chronic constrictive injury in rats.

    PubMed

    Cao, Hong; Zheng, Jin-Wei; Li, Jia-Jia; Meng, Bo; Li, Jun; Ge, Ren-Shan

    2014-11-01

    To investigate the effects of curcumin on pain threshold and the expressions of nuclear factor κ B (NF-κ B) and CX3C chemokine receptor 1 (CX3CR1) in spinal cord and dorsal root ganglion (DRG) of the rats with sciatic nerve chronic constrictive injury. One hundred and twenty male Sprague Dawley rats, weighing 220-250 g, were randomly divided into 4 groups. Sham surgery (sham) group: the sciatic nerves of rats were only made apart but not ligated; chronic constrictive injury (CCI) group: the sciatic nerves of rats were only ligated without any drug treatment; curcumin treated injury (Cur) model group: the rats were administrated with curcumin 100 mg/(kg·d) by intraperitoneal injection for 14 days after CCI; solvent control (SC) group: the rats were administrated with the solvent at the same dose for 14 days after CCI. Thermal withdrawal latency (TWL) and mechanical withdrawal threshold (MWT) of rats were respectively measured on pre-operative day 2 and postoperative day 1, 3, 5, 7, 10 and 14. The lumbar segment L4-5 of the spinal cord and the L4, L5 DRG was removed at post-operative day 3, 7 and 14. The change of nuclear factor κ B (NF-κ B) p65 expression was detected by Western blotting while the expression of CX3CR1 was determined by immunohistochemical staining. Compared with the sham group, the TWL and MWT of rats in the CCI group were significantly decreased on each post-operative day (P<0.01), which reached a nadir on the 3rd day after CCI, and the expressions of NF-κ B p65 and CX3CR1 were markedly increased in spinal cord dorsal horn and DRG. In the Cur group, the TWL of rats were significantly increased than those in the CCI group on post-operative day 7, 10 and 14 (P<0.05) and MWT increased than those in the CCI group on post-operative day 10 and 14 (P<0.05). In addition, the administration of curcumin significantly decreased the positive expressions of NF-κ B p65 and CX3CR1 in spinal cord and DRG (P<0.05). Our study suggests that curcumin could ameliorate the CCI-induced neuropathic pain, probably through inhibiting CX3CR1 expression by the activation of NF-κ B p65 in spinal cord and DRG.

  8. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury.

    PubMed

    Ren, Xiaomeng; Li, Xinzhi; Jia, Linna; Chen, Deheng; Hou, Hai; Rui, Liangyou; Zhao, Yujun; Chen, Zheng

    2017-02-01

    Potent and selective chemical probes are valuable tools for discovery of novel treatments for human diseases. NF-κB-inducing kinase (NIK) is a key trigger in the development of liver injury and fibrosis. Whether inhibition of NIK activity by chemical probes ameliorates liver inflammation and injury is largely unknown. In this study, a small-molecule inhibitor of NIK, B022, was found to be a potent and selective chemical probe for liver inflammation and injury. B022 inhibited the NIK signaling pathway, including NIK-induced p100-to-p52 processing and inflammatory gene expression, both in vitro and in vivo Furthermore, in vivo administration of B022 protected against not only NIK but also CCl 4 -induced liver inflammation and injury. Our data suggest that inhibition of NIK is a novel strategy for treatment of liver inflammation, oxidative stress, and injury.-Ren, X., Li, X., Jia, L., Chen, D., Hou, H., Rui, L., Zhao, Y., Chen, Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. © FASEB.

  9. PAMs ameliorates the imiquimod-induced psoriasis-like skin disease in mice by inhibition of translocation of NF-κB and production of inflammatory cytokines.

    PubMed

    Dou, Rongkun; Liu, Zongying; Yuan, Xue; Xiangfei, Danzhou; Bai, Ruixue; Bi, Zhenfei; Yang, Piao; Yang, Yalan; Dong, Yinsong; Su, Wei; Li, Diqiang; Mao, Canquan

    2017-01-01

    Psoriasis is a chronic and persistent inflammatory skin disease seriously affecting the quality of human life. In this study, we reported an ancient formula of Chinese folk medicine, the natural plant antimicrobial solution (PAMs) for its anti-inflammatory effects and proposed the primary mechanisms on inhibiting the inflammatory response in TNF-α/IFN-γ-induced HaCaT cells and imiquimod-induced psoriasis-like skin disease mouse model. Two main functional components of hydroxysafflor Yellow A and allantoin in PAMs were quantified by HPLC to be 94.2±2.2 and 262.9±12.5 μg/mL respectively. PAMs could significantly reduce the gene expression and inflammatory cytokines production of Macrophage-Derived Chemokine (MDC), IL-8 and IL-6 in TNF-α/IFN-γ-induced HaCaT cells. PAMs also significantly ameliorates the psoriatic-like symptoms in a mouse model with the evaluation scores for both the single (scales, thickness, erythema) and cumulative features were in the order of blank control < Dexamethasone < PAMs < 50% ethanol < model groups. The results were further confirmed by hematoxylin-eosin staining, RT-qPCR and immunohistochemistry. The down-regulated gene expression of IL-8, TNF-α, ICAM-1 and IL-23 in mouse tissues was consistent with the results from those of the HaCaT cells. The inhibition of psoriasis-like skin inflammation by PAMs was correlated with the inactivation of the translocation of P65 protein into cellular nucleus, indicating the inhibition of the inflammatory NF-κB signaling pathway. Taken together, these findings suggest that PAMs may be a promising drug candidate for the treatment of inflammatory skin disorders, such as psoriasis.

  10. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.

    PubMed

    Malik, Salma; Suchal, Kapil; Khan, Sana Irfan; Bhatia, Jagriti; Kishore, Kamal; Dinda, Amit Kumar; Arya, Dharamvir Singh

    2017-08-01

    Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway. Copyright © 2017 the American Physiological Society.

  11. Hemistepsin A ameliorates acute inflammation in macrophages via inhibition of nuclear factor-κB and activation of nuclear factor erythroid 2-related factor 2.

    PubMed

    Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan

    2018-01-01

    Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thiamet G mediates neuroprotection in experimental stroke by modulating microglia/macrophage polarization and inhibiting NF-κB p65 signaling.

    PubMed

    He, Yating; Ma, Xiaofeng; Li, Daojing; Hao, Junwei

    2017-08-01

    Inflammatory responses are accountable for secondary injury induced by acute ischemic stroke (AIS). Previous studies indicated that O-GlcNAc modification (O-GlcNAcylation) is involved in the pathology of AIS, and increase of O-GlcNAcylation by glucosamine attenuated the brain damage after ischemia/reperfusion. Inhibition of β-N-acetylglucosaminidase (OGA) with thiamet G (TMG) is an alternative option for accumulating O-GlcNAcylated proteins. In this study, we investigate the neuroprotective effect of TMG in a mouse model of experimental stroke. Our results indicate that TMG administration either before or after middle cerebral artery occlusion (MCAO) surgery dramatically reduced infarct volume compared with that in untreated controls. TMG treatment ameliorated the neurological deficits and improved clinical outcomes in neurobehavioral tests by modulating the expression of pro-inflammatory and anti-inflammatory cytokines. Additionally, TMG administration reduced the number of Iba1 + cells in MCAO mice, decreased expression of the M1 markers, and increased expression of the M2 markers in vivo. In vitro, M1 polarization of BV2 cells was inhibited by TMG treatment. Moreover, TMG decreased the expression of iNOS and COX2 mainly by suppressing NF-κB p65 signaling. These results suggest that TMG exerts a neuroprotective effect and could be useful as an anti-inflammatory agent for ischemic stroke therapy.

  13. Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-kappaB activation, and induces human osteoblastic and chondrocytic differentiation.

    PubMed

    Ryu, BoMi; Qian, Zhong-Ji; Kim, Se-Kwon

    2010-03-30

    Ongoing efforts to search for naturally occurring, bioactive substances for the amelioration of arthritis have led to the discovery of natural products with substantial bioactive properties. The seahorse (Hippocampus kuda Bleeler), a telelost fish, is one source of known beneficial products, yet has not been utilized for arthritis research. In the present work, we have purified and characterized a bioactive peptide from seahorse hydrolysis. Among the hydrolysates tested, pronase E-derived hydrolysate exhibited the highest alkaline phosphatase (ALP) activity, a phenotype marker of osteoblast and chondrocyte differentiation. After its separation from the hydrolysate by several purification steps, the peptide responsible for the ALP activity was isolated and its sequence was identified as LEDPFDKDDWDNWK (1821Da). We have shown that the isolated peptide induces differentiation of osteoblastic MG-63 and chondrocytic SW-1353 cells by measuring ALP activity, mineralization and collagen synthesis. Our results indicate that the peptide acts during early to late stages of differentiation in MG-63 and SW-1353 cells. We also assessed the concentration dependence of the peptide's inhibition of MMP (-1, -3 and -13), iNOS and COX-2 expression after treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), a common form of phorbol ester. The peptide also inhibited NO production in MG-63 and SW-1353 cells. To elucidate the mechanisms by which the peptide acted, we examined its effects on TPA-induced MAPKs/NF-kappaB activation and determined that the peptide treatment significantly reduced p38 kinase/NF-kappaB in MG-63 cells and MAPKs/NF-kappaB in SW-1353 cells.

  14. Effect and mechanism of evodiamine against ethanol-induced gastric ulcer in mice by suppressing Rho/NF-кB pathway.

    PubMed

    Zhao, Zhongyan; Gong, Shilin; Wang, Shumin; Ma, Chunhua

    2015-09-01

    Evodiamine (EVD), a major alkaloid compound extracted from the dry unripened fruit Evodia fructus (Evodia rutaecarpa Benth., Rutaceae), has various pharmacological effects. The purpose of the present study was to investigate the possible anti-ulcerogenic potential of EVD and explore the underlying mechanism against ethanol-induced gastric ulcer in mice. Administration of EVD at the doses of 20, 40mg/kg body weight prior to the ethanol ingestion could effectively protect the stomach from ulceration. The gastric lesion was significantly ameliorated in the EVD group compared with that in the model group. Pre-treatment with EVD prevented the oxidative damage and decreased the levels of prostaglandin E2 (PGE2) content, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In addition, EVD pretreatment markedly increased the serum levels of glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT), decreased malonaldehyde (MDA) content in serum and activity of myeloperoxidase (MPO) in stomach tissues compared with those in the model group. In the mechanistic study, significant elevation of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 expressions were observed in the gastric mucosa group, whereas EVD effectively suppressed the protein expressions of Rho, Rho-kinase 1 (ROCK1), ROCK2, cytosolic and nucleic NF-κBp65 in mice. Moreover, EVD showed protective activity on ethanol-induced GES-1 cells, while the therapeutic effects were not due to its cytotoxity. Taken together, these results strongly indicated that EVD exerted a gastro-protective effect against gastric ulceration. The underlying mechanism might be associated with the improvement of antioxidant and anti-inflammatory status through Rho/NF-κB pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Astragaloside IV Attenuated 3,4-Benzopyrene-Induced Abdominal Aortic Aneurysm by Ameliorating Macrophage-Mediated Inflammation.

    PubMed

    Wang, Jiaoni; Zhou, Yingying; Wu, Shaoze; Huang, Kaiyu; Thapa, Saroj; Tao, Luyuan; Wang, Jie; Shen, Yigen; Wang, Jinsheng; Xue, Yangjing; Ji, Kangting

    2018-01-01

    Abdominal aortic aneurysm (AAA), characterized by macrophage infiltration-mediated inflammation and oxidative stress, is a potentially fatal disease. Astragaloside IV (AS-IV) has been acknowledged to exhibit antioxidant and anti-inflammatory properties. This study was designed to investigate the protective effect of AS-IV against AAA formation induced by 3,4-benzopyrene (Bap) and angiotensin II (Ang II), and to explore probable mechanisms. Results showed that AS-IV decreased AAA formation, and reduced macrophage infiltration and expression of matrix metalloproteinase. Furthermore, AS-IV abrogated Bap-/Ang II-induced NF-κB activation and oxidative stress. In vitro , AS-IV inhibition of macrophage activation and NF-κB was correlated with increased phosphorylation of phosphatidylinositol 3-kinase (PI3-K)/AKT. Together, our findings suggest that AS-IV has potential as an intervention in the formation of AAA. (1)The protective effect of Astragaloside IV (AS-IV) on abdominal aortic aneurysm (AAA) is associated with its suppressing effects on inflammation in the aortic wall.(2)AS-IV abrogated 3,4-benzopyrene (Bap)/angiotensin II (Ang II)-induced nuclear factor-κB (NF-κB) activation and oxidative stress.(3)AS-IV inhibited Bap-induced RAW264.7 macrophage cells activation by inhibiting oxidative stress and NF-κB activation through phosphatidylinositol 3-kinase (PI3-K)/AKT pathway.AS-IV is a potential preventive agent for cigarette smoking-related AAA.

  16. Role of blue green algae biofertilizer in ameliorating the nitrogen demand and fly-ash stress to the growth and yield of rice (Oryza sativa L.) plants.

    PubMed

    Tripathi, R D; Dwivedi, S; Shukla, M K; Mishra, S; Srivastava, S; Singh, R; Rai, U N; Gupta, D K

    2008-02-01

    Rice is a major food crop throughout the world; however, accumulation of toxic metals and metalloids in grains in contaminated environments is a matter of growing concern. Field experiments were conducted to analyze the growth performance, elemental composition (Fe, Si, Zn, Mn, Cu, Ni, Cd and As) and yield of the rice plants (Oryza sativa L. cv. Saryu-52) grown under different doses of fly-ash (FA; applied @ 10 and 100 tha(-1) denoted as FA(10) and FA(100), respectively) mixed with garden soil (GS) in combination with nitrogen fertilizer (NF; applied @ 90 and 120 kg ha(-1) denoted as NF(90) and NF(120), respectively) and blue green algae biofertilizer (BGA; applied @ 12.5 kg ha(-1) denoted as BGA(12.5)). Significant enhancement of growth was observed in the plants growing on amended soils as compared to GS and best response was obtained in amendment of FA(10)+NF(90)+BGA(12.5). Accumulation of Si, Fe, Zn and Mn was higher than Cu, Cd, Ni and As. Arsenic accumulation was detected only in FA(100) and its amendments. Inoculation of BGA(12.5) caused slight reduction in Cd, Ni and As content of plants as compared to NF(120) amendment. The high levels of stress inducible non-protein thiols (NP-SH) and cysteine in FA(100) were decreased by application of NF and BGA indicating stress amelioration. Study suggests integrated use of FA, BGA and NF for improved growth, yield and mineral composition of the rice plants besides reducing the high demand of nitrogen fertilizers.

  17. Neuroprotection of early and short-time applying berberine in the acute phase of cerebral ischemia: up-regulated pAkt, pGSK and pCREB, down-regulated NF-κB expression, ameliorated BBB permeability.

    PubMed

    Zhang, Xiaolin; Zhang, Xiangjian; Wang, Chaohui; Li, Yanhua; Dong, Lipeng; Cui, Lili; Wang, Lina; Liu, Zongjie; Qiao, Huimin; Zhu, Chunhua; Xing, Yinxue; Cao, Xiaoyun; Ji, Ye; Zhao, Kang

    2012-06-12

    Berberine (BBR) has gained attention for its vast beneficial biological effects through immunomodulation, anti-inflammatory and anti-apoptosis properties. Inflammatory and apoptosis damage play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The aim of this study was to explore BBR's effect in ischemic injury and the role of the Akt/GSK (glycogen synthase kinase) signaling cascade in mediating the anti-apoptosis and anti-inflammatory effects in the rat brain of permanent middle cerebral artery occlusion (pMCAO). Male Sprague-Dawley rats were subjected to pMCAO and randomly assigned into four groups: Sham (sham-operated) group, pMCAO (pMCAO+0.9% saline) group, BBR-L (pMCAO+BBR 10 mg/kg) and BBR-H (pMCAO+BBR 40 mg/kg) group. BBR was administered immediately after pMCAO and the neuroprotection was detected. Phospho-Akt (pAkt), phospho-glycogen synthase kinase 3-β (pGSK3β), phospho-cAMP response element binding protein (pCREB), nuclear factor-kappa B (NF-κB) and claudin-5 in ischemic cerebral cortex were detected by immunohistochemistry, reverse transcription-polymerase chain reaction and western blotting. Compared with pMCAO group, BBR dramatically lessened neurological deficits scores, brain water contents and infarct sizes, upregulated the expression of pAkt, pGSK3β, pCREB and claudin-5, and decreased the nuclear accumulation of NF-κB (P<0.05) in ischemic brain. The results showed that BBR reduced ischemic brain injury after pMACO, and this effect may be via the increasing the activation of Akt/GSK signaling and claudin-5, and decreasing NF-κB expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Exploring the effect and mechanism of Hibiscus sabdariffa on urinary tract infection and experimental renal inflammation.

    PubMed

    Chou, Shun-Ting; Lo, Hsin-Yi; Li, Chia-Cheng; Cheng, Lu-Chen; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-12-24

    Hibiscus sabdariffa Linn., also known as roselle, is used in folk medicine as an anti-inflammatory agent. Urinary tract infection (UTI) is a common problem in long-term care facilities. However, effects of roselle on UTI and renal inflammation remained to be analyzed. Here we surveyed the effect of roselle drink on the prevention of UTI in long-term care facilities and analyzed the anti-inflammatory potential of roselle on lipopolysaccharide (LPS)-induced renal inflammation in mice. Survey questionnaires and clinical observation were applied to evaluate the use of roselle and the incidence of UTI in long-term care facilities. Mice were administrated roselle orally for 7 consecutive days and then challenged with LPS. Anti-renal inflammatory effects of roselle were analyzed by microarray and immunohistochemical staining. Clinical observation showed that taking roselle drink in residents with urinary catheters reduced the incidence of UTI in long-term care facilities. Renal inflammation is a key event of UTI. Roselle suppressed LPS-induced nuclear factor-κB (NF-κB) activation in cells and LPS-induced interleukin-1β production in mice a dose-dependent manner. Immunohistochemical staining showed that roselle inhibited LPS-induced NF-κB activation and inflammatory cell infiltration in kidney. Gene expression profiling further showed that roselle suppressed the expression of pro-inflammatory cytokine genes and enzyme genes involved in the production of prostaglandin and nitric oxide. In addition, NF-κB was the main transcription factor involved in the regulation of roselle-regulated gene expression in kidney. This is the first report applying clinical observation-guided transcriptomic study to explore the application and mechanism of roselle on UTI. Our findings suggested that roselle drink ameliorated LPS-induced renal inflammation via downregulation of cytokine network, pro-inflammatory product production, and NF-κB pathway. Moreover, this report suggested the potential benefit of roselle drink on UTI. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways.

    PubMed

    Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong

    2018-06-12

    Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Semen Brassicae ameliorates hepatic fibrosis by regulating transforming growth factor-β1/Smad, nuclear factor-κB, and AKT signaling pathways in rats.

    PubMed

    Cao, Si; Zheng, Baoping; Chen, Tao; Chang, Xinfeng; Yin, Bao; Huang, Zhihua; Shuai, Ping; Han, Limin

    2018-01-01

    There is no effective treatment for liver fibrosis, which is a common phase during the progression of many chronic liver diseases to cirrhosis. Previous studies found that Semen Brassicae therapy can effectively improve the clinical symptoms of patients with asthma, allergic rhinitis, and chronic lung diseases; however, its effects on liver fibrosis in rats and its possible mechanisms of action remain unclear. Rats were injected intraperitoneally with 4% thioacetamide aqueous solution (5 mL·kg -1 ) at a dose of 200 mg·kg -1 twice a week for 8 consecutive weeks to establish the liver fibrosis model and were then treated with different concentrations of Semen Brassicae extract. After Semen Brassicae treatment, the morphology of the liver tissue was analyzed using hematoxylin and eosin and Masson's trichrome staining, and liver index and liver fibrosis grade were calculated. Thereafter, the levels of collagen-I, collagen-III, α-SMA, transforming growth factor (TGF)-β1, p-Smad 2/3, Smad 2/3, Smad4, NF-κB-p65, p-NF-κB-p65, IL-1β, IL-6, AKT, and p-AKT were determined using Western blotting. Compared with the untreated model group, the Semen Brassicae-treated group showed significantly decreased liver function indices; expression levels of collagen-I, collagen-III, and α-SMA; and hepatic fibrosis. Further studies also showed that the expression of TGF-β1, Smad4, p-Smad 2/3/Smad 2/3, p-NF-κB-p65/NF-κB-p65, IL-1β, IL-6, and p-AKT/AKT significantly decreased after the treatment. These results indicate that Semen Brassicae exhibits an anti-hepatic fibrosis effect, and the underlying mechanism of action may be related to the regulation of TGF-β1/Smad, NF-κB, and AKT signaling pathways and the reduction of extracellular matrix deposition.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Ying; Li, Jianguo, E-mail: 2010lijianguo@sina.cn

    Highlights: Black-Right-Pointing-Pointer Carbachol reduced the lipopolysaccharide-induced intestinal barrier breakdown. Black-Right-Pointing-Pointer Carbachol ameliorated the lipopolysaccharide-induced ileal tight junction damage. Black-Right-Pointing-Pointer Carbachol prevented the LPS-induced NF-{kappa}{beta} and myosin light-chain kinase activation. Black-Right-Pointing-Pointer Carbachol exerted its beneficial effects in an {alpha}7 nicotinic receptor-dependent manner. -- Abstract: Carbachol is a cholinergic agonist that protects the intestines after trauma or burn injury. The present study determines the beneficial effects of carbachol and the mechanisms by which it ameliorates the lipopolysaccharide (LPS)-induced intestinal barrier breakdown. Rats were injected intraperitoneally with 10 mg/kg LPS. Results showed that the gut barrier permeability was reduced, the ultrastructural disruption ofmore » tight junctions (TJs) was prevented, the redistribution of zonula occludens-1 and claudin-2 proteins was partially reversed, and the nuclear factor-kappa beta (NF-{kappa}{beta}) and myosin light-chain kinase (MLCK) activation in the intestinal epithelium were suppressed after carbachol administration in LPS-exposed rats. Pretreatment with the {alpha}7 nicotinic acetylcholine receptor ({alpha}7nAchR) antagonist {alpha}-bungarotoxin blocked the protective action of carbachol. These results suggested that carbachol treatment can protect LPS-induced intestinal barrier dysfunction. Carbachol exerts its beneficial effect on the amelioration of the TJ damage by inhibiting the NF-{kappa}{beta} and MLCK pathways in an {alpha}7nAchR-dependent manner.« less

  2. Inhibition of inflammation by astaxanthin alleviates cognition deficits in diabetic mice.

    PubMed

    Zhou, Xiaoyan; Zhang, Fang; Hu, Xiaotong; Chen, Jing; Wen, Xiangru; Sun, Ying; Liu, Yonghai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2015-11-01

    Neurons in the hippocampal and cortical functional regions are more susceptible to damage induced by hyperglycemia, which can result in severe spatial learning and memory impairment. Neuroprotection ameliorates cognitive impairment induced by hyperglycemia in diabetic encephalopathy (DE). Astaxanthin has been widely studied in diabetes mellitus and diabetic complications due to its hypoglycemic, antioxidant and anti-apoptotic effects. However, whether astaxanthin can alleviate cognition deficits induced by DE and its precise mechanisms remain undetermined. In this study, DE was induced by streptozotocin (STZ, 150 mg/kg) in ICR mice. We observed the effect of astaxanthin on cognition and investigated its potential mechanisms in DE mice. Results showed that astaxanthin treatment significantly decreased the latency and enhanced the distance and time spent in the target quadrant in the Morris water maze test. Furthermore, neuronal survival was significantly increased in the hippocampal CA3 region and the frontal cortex following treatment with astaxanthin. Meanwhile, immunoblotting was used to observe the nuclear translocation of nuclear factor-kappaB (NF-κB) p65 and the expression of tumor necrosis factor-α (TNF-α) in the hippocampus and frontal cortex. The results indicated that astaxanthin could inhibit NF-κB nuclear translocation and downregulate TNF-α expression in the hippocampus and frontal cortex. Overall, the present study implied that astaxanthin could improve cognition by protecting neurons against inflammation injury potentially through inhibiting the nuclear translocation of NF-κB and down-regulating TNF-α. Copyright © 2015. Published by Elsevier Inc.

  3. Ameliorative effects of arctiin from Arctium lappa on experimental glomerulonephritis in rats.

    PubMed

    Wu, Jian-Guo; Wu, Jin-Zhong; Sun, Lian-Na; Han, Ting; Du, Jian; Ye, Qi; Zhang, Hong; Zhang, Yu-Guang

    2009-11-01

    Membranous glomerulonephritis (MGN) remains the most common cause of adult-onset nephrotic syndrome in the world and up to 40% of untreated patients will progress to end-stage renal disease. Although the treatment of MGN with immunosuppressants or steroid hormones can attenuate the deterioration of renal function, numerous treatment-related complications have also been established. In this study, the ameliorative effects of arctiin, a natural compound isolated from the fruits of Arctium lappa, on rat glomerulonephritis induced by cationic bovine serum albumin (cBSA) were determined. After oral administration of arctiin (30, 60, 120 mg/kgd) for three weeks, the levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and 24-h urine protein content markedly decreased, while endogenous creatinine clearance rate (ECcr) significantly increased. The parameters of renal lesion, hypercellularity, infiltration of polymorphonuclear leukocyte (PMN), fibrinoid necrosis, focal and segmental proliferation and interstitial infiltration, were reversed. In addition, we observed that arctiin evidently reduced the levels of malondialdehyde (MDA) and pro-inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor (TNF-alpha), suppressed nuclear factor-kappaB p65 (NF-kappaB) DNA binding activity, and enhanced superoxide dismutase (SOD) activity. These findings suggest that the ameliorative effects of arctiin on glomerulonephritis is carried out mainly by suppression of NF-kappaB activation and nuclear translocation and the decreases in the levels of these pro-inflammatory cytokines, while SOD is involved in the inhibitory pathway of NF-kappaB activation. Arctiin has favorable potency for the development of an inhibitory agent of NF-kappaB and further application to clinical treatment of glomerulonephritis, though clinical studies are required.

  4. Celecoxib Ameliorates Non-Alcoholic Steatohepatitis in Type 2 Diabetic Rats via Suppression of the Non-Canonical Wnt Signaling Pathway Expression

    PubMed Central

    Tian, Feng; Zhang, Ya Jie; Li, Yu; Xie, Ying

    2014-01-01

    Our aim was to test whether pharmacological inhibition of cycloxygenase-2 (COX-2) reverses non-alcoholic steatohepatitis (NASH) in type 2 diabetes mellitus (T2DM) rats via suppression of the non-canonical Wnt signaling pathway expression. Twenty-four male Sprague-Dawley rats were randomly distributed to two groups and were fed with a high fat and sucrose (HF-HS) diet or a normal chow diet, respectively. After four weeks, rats fed with a HF-HS diet were made diabetic with low-dose streptozotocin. At the 9th week the diabetic rats fed with a HF-HS diet or the non-diabetic rats fed with a normal chow diet were further divided into two subgroups treated with vehicle or celecoxib (a selective COX-2 inhibitor, 10 mg/Kg/day, gavage) for the last 4 weeks, respectively. At the end of the 12th week, rats were anesthetized. NASH was assessed by histology. Related cytokine expression was measured at both the protein and gene levels through immunohistochemistry (IHC), Western blot and real-time PCR. T2DM rats fed with a HF-HS diet developed steatohepatitis and insulin resistance associated with elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), insulin levels and the non-alcoholic fatty liver disease (NAFLD) activity score (NAS). The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 were all significantly increased in the T2DM-NASH group compared with the control and control-cele group. Hepatic injury was improved by celecoxib in T2DM-NASH-Cele group indicated by reduced serum ALT and AST levels and hepatic inflammation was reduced by celecoxib showed by histology and the NAFLD activity score (NAS). Serum related metabolic parameters, HOMA-IR and insulin sensitivity index were all improved by celecoxib. The expression of Wnt5a, JNK1, NF-κB p65, and COX-2 expression were all suppressed by celecoxib in T2DM-NASH-Cele group. The results of the present study indicated that celecoxib ameliorated NASH in T2DM rats via suppression of the non-canonical Wnt5a/JNK1 signaling pathway expression. PMID:24404139

  5. The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice.

    PubMed

    Kong, Liang; Hu, Yu; Yao, Yingjia; Jiao, Yanan; Li, Shaoheng; Yang, Jingxian

    2015-01-01

    It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer's disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway.

  6. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2016-01-01

    T-cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathologic immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite that multiple pharmacologic properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4(+) T-cell subsets by regulating the expression and production of T-cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription proteins. In addition, BOT-4-one inhibited TCR-mediated Akt and NF-κB signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as 2,4,6-trinitrochlorobenzene-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4(+) T cell differentiation and overall immune responses. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Korean red ginseng ameliorated experimental pancreatitis through the inhibition of hydrogen sulfide in mice.

    PubMed

    Lee, Sooyeon; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun Jin; Ko, Weon Jin; Cho, Joo Young; Kwon, Chang Il; Hahm, Ki Baik

    2016-01-01

    Effective therapy to treat acute pancreatitis (AP) or to prevent its recurrence/complication is still not available. Based on previous results that suggest that: i) hydrogen sulfide (H2S) levels were significantly increased in pancreatitis and gastritis and ii) Korean red ginseng (KRG) efficiently attenuated Helicobacter pylori-associated gastritis through the suppressive actions of H2S, we hypothesized that KRG can ameliorate experimental pancreatitis through suppression of H2S generation. C57BL/6 mice were pre-administered KRG and then subjected to cerulein injection or pancreatic duct ligation (PDL) to induce pancreatitis. Blood and pancreas tissues were collected and processed to measure serum levels of amylase, lipase and myeloperoxidase and the concentration of H2S and the levels of various inflammatory cytokine in pancreatic tissues of mice with induced AP. KRG significantly inhibited NaHS-induced COX-2 and TNF-α mRNA in pancreatic cells, but dl-propargylglycine did not. KRG ameliorated cerulein-induced edematous pancreatitis accompanied with significant inactivation of NF-κB and JNK in pancreatic tissues of C57BL/6 mice (p < 0.001) and also significantly ameliorated PDL-induced necrotizing pancreatitis (p<0.01); in both conditions, the significant suppression of H2S resulting from KRG pretreatment afforded rescuing outcomes. Along with suppressed levels of H2S consequent to depressed expressions of CBS and CSE mRNA, KRG administration efficiently decreased the serum level of amylase, lipase, and myeloperoxidase and the expression of inflammatory cytokines in animal models of mild or severe AP. These results provide evidence for the preventive and therapeutic roles of KRG against AP mediated by H2S suppression. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  8. ACTIVATION OF NF-KB AND NOT AP-1 IN CELLULAR RESPONSE TO NICKEL COMPOUNDS. (R827351C005)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats.

    PubMed

    Tsai, Wen-Hsin; Wu, Chung-Hsin; Yu, Hong-Jeng; Chien, Chiang-Ting

    2017-02-01

    Upregulation of substance P (SP) and neurokinin-1 receptor (NK1R) activation induces pro-inflammatory bladder hyperactivity through the PKC/ERK/NF-κB/ICAM-1/IL-33 signaling pathways to increase the leukocyte infiltration and adhesion leading to reactive oxygen species (ROS) production, autophagy, and apoptosis. l-Theanine is a unique non-protein-forming amino acid present in tea (Camellia sinensis [L.] O. Kuntze) with its antioxidant, anti-inflammatory, and relaxation effects to improve cognition, mood, gastric ulcer injury, and cerebral ischemia/reperfusion injury, and posttraumatic stress disorder. We explored the protective effect of l-theanine on SP-induced bladder hyperactivity. In urethane-anesthetized female Wistar rats, we explored the transcystometrogram, pelvic nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, apoptosis-related Caspase 3/poly-(ADP-ribose)-polymerase (PARP), and autophagy-mediated LC3 II expression by Western blot, electrophoretic-mobility shift assay and immunohistochemistry, bladder ROS amount by a ultrasensitive chemiluminescence method, and possible ROS sources from the different leukocytes by specific stains in SP-evoked hyperactive bladder. l-Theanine dose-dependently depressed H 2 O 2 and HOCl activity in vitro. In urethane-anesthetized female Wistar rats, intra-arterial SP through NK1R activation increased voiding frequency (shortened intercontraction intervals) associated with the increase in bladder nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, Caspase 3/PARP-mediated apoptosis, LC3 II-mediated autophagy, ROS amount, neutrophils adhesion, CD68 (monocyte/macrophage) infiltration, and mast cells degranulation in the hyperactive bladder. Intragastrical l-theanine (15 mg/kg) twice daily for 2 weeks efficiently ameliorated all the enhanced parameters in the SP-treated hyperactive bladder. In conclusion, l-theanine through antioxidant and anti-inflammatory actions ameliorates SP-induced bladder hyperactivity via the inhibition of proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, oxidative stress, bladder nerve hyperactivity, apoptosis, and autophagy. Neurourol. Urodynam. 36:297-307, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1{beta} gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.

    2009-10-01

    Ketamine may affect the host immunity. Interleukin-1{beta} (IL-1{beta}), IL-6, and tumor necrosis factor-{alpha} (TNF-{alpha}) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1{beta}, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 {mu}M), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 {mu}M ketamine decreased the binding affinity of LPS and LPS-binding protein but didmore » not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1{beta}, IL-6, and TNF-{alpha} gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NF{kappa}B). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1{beta} synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1{beta} production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1{beta} possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK and subsequent translocation and transactivation of NF{kappa}B.« less

  11. Defining Causative Factors Contributing in the Activation of Hedgehog Signaling in Diffuse Large B-Cell Lymphoma

    PubMed Central

    Ramirez, Elisa; Singh, Rajesh R; Kunkalla, Kranthi; Liu, Yadong; Qu, Changju; Cain, Christine; Multani, Asha S.; Lennon, Patrick A; Jackacky, Jared; Ho, Michael; Dawud, Sity; Gu, Jun; Yang, Su; Hu, Peter C; Vega, Francisco

    2012-01-01

    Hedgehog (Hh) signaling pathway is activated in diffuse large B-cell lymphoma (DLBCL). Genetic abnormalities that explain activation of Hh signaling in DLBCL are unknown. We investigate the presence of amplifications of Hh genes that might result in activation of this pathway in DLBCL. Our data showed few extra copies of GLI1 and SMO due to chromosomal aneuploidies in a subset of DLBCL cell lines. We also showed that pharmacologic inhibition of PI3K/AKT and NF-KB pathways resulted in decreased expression of GLI1 and Hh ligands. In conclusion, our data support the hypothesis that aberrant activation of Hh signaling in DLBCL mainly results from integration of deregulated oncogenic signaling inputs converging into Hh signaling. PMID:22809693

  12. Silencing of long noncoding RNA AK139328 attenuates ischemia/reperfusion injury in mouse livers.

    PubMed

    Chen, Zhenzhen; Jia, Shi; Li, Danhua; Cai, Junyan; Tu, Jian; Geng, Bin; Guan, Youfei; Cui, Qinghua; Yang, Jichun

    2013-01-01

    Recently, increasing evidences had suggested that long noncoding RNAs (LncRNAs) are involved in a wide range of physiological and pathophysiological processes. Here we determined the LncRNA expression profile using microarray technology in mouse livers after ischemia/reperfusion treatment. Seventy one LncRNAs were upregulated, and 27 LncRNAs were downregulated in ischemia/reperfusion-treated mouse livers. Eleven of the most significantly deregulated LncRNAs were further validated by quantitative PCR assays. Among the upregulated LncRNAs confirmed by quantitative PCR assays, AK139328 exhibited the highest expression level in normal mouse livers. siRNA-mediated knockdown of hepatic AK139328 decreased plasma aminotransferase activities, and reduced necrosis area in the livers with a decrease in caspase-3 activation after ischemia/reperfusion treatment. In ischemia/reperfusion liver, knockdown of AK139328 increased survival signaling proteins including phosphorylated Akt (pAkt), glycogen synthase kinase 3 (pGSK3) and endothelial nitric oxide synthase (peNOS). Furthermore, knockdown of AK139328 also reduced macrophage infitration and inhibited NF-κB activity and inflammatory cytokines expression. In conclusion, these findings revealed that deregulated LncRNAs are involved in liver ischemia/reperfusion injury. Silencing of AK139328 ameliorated ischemia/reperfusion injury in the liver with the activation of Akt signaling pathway and inhibition of NF-κB activity. LncRNA AK139328 might be a novel target for diagnosis and treatment of liver surgery or transplantation.

  13. Apigenin and naringenin ameliorate PKCβII-associated endothelial dysfunction via regulating ROS/caspase-3 and NO pathway in endothelial cells exposed to high glucose.

    PubMed

    Qin, Weiwei; Ren, Bei; Wang, Shanshan; Liang, Shujun; He, Baiqiu; Shi, Xiaoji; Wang, Liying; Liang, Jingyu; Wu, Feihua

    2016-10-01

    Endothelial dysfunction is a key event in the progression of atherosclerosis with diabetes. Increasing cell apoptosis may lead to endothelial dysfunction. Apigenin and naringenin are two kinds of widely used flavones. In the present study, we investigated whether and how apigenin and naringenin reduced endothelial dysfunction induced by high glucose in endothelial cells. We showed that apigenin and naringenin protected against endothelial dysfunction via inhibiting phosphorylation of protein kinase C βII (PKCβII) expression and downstream reactive oxygen species (ROS) production in endothelial cells exposed to high glucose. Furthermore, we demonstrated that apigenin and naringenin reduced high glucose-increased apoptosis, Bax expression, caspase-3 activity and phosphorylation of NF-κB in endothelial cells. Moreover, apigenin and naringenin effectively restored high glucose-reduced Bcl-2 expression and Akt phosphorylation. Importantly, apigenin and naringenin significantly increased NO production in endothelial cells subjected to high glucose challenge. Consistently, high glucose stimulation impaired acetylcholine (ACh)-mediated vasodilation in the rat aorta, apigenin and naringenin treatment restored the impaired endothelium-dependent vasodilation via dramatically increasing eNOS activity and nitric oxide (NO) level. Taken together, our results manifest that apigenin and naringenin can ameliorate endothelial dysfunction via regulating ROS/caspase-3 and NO pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Targeted P2X7 R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction.

    PubMed

    Gao, Hongmei; Yin, Jie; Shi, Yugen; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Li, Xinran; Li, Yongkang; Wang, Yu; Yan, Suhua

    2017-04-01

    Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X 7 R is a key immune mediator, its role has yet to be explored. We investigated whether P2X 7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X 7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X 7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X 7 R was activated in the infarcted tissue at an early stage. The administration of P2X 7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. The administration of P2X 7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation. © 2016 John Wiley & Sons Ltd.

  15. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinru

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, westernmore » blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic acid alleviated LPS-activated TLR4 signal pathway in vivo and in vitro. • Glycyrrhetinic acid upregulated the expression of IRAK-M in vivo and in vitro. • IRAK-M mediated the protective effect of Glycyrrhetinic acid on LPS-induced inflammation.« less

  16. The epigenetic effect of glucosamine and a nuclear factor-kappa B (NF-kB) inhibitor on primary human chondrocytes - Implications for osteoarthritis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imagawa, Kei, E-mail: k.Imagawa@soton.ac.uk; Tohoku University School of Medicine, Sendai; Andres, MC de

    Research highlights: {yields} Glucosamine and a NF-kB inhibitor reduce inflammation in OA. {yields} Cytokine induced demethylation of CpG site in IL1{beta} promoter prevented by glucosamine. {yields} Glucosamine and NF-kB inhibitor have epigenetic effects on human chondrocytes. -- Abstract: Objective: Idiopathic osteoarthritis is the most common form of osteoarthritis (OA) world-wide and remains the leading cause of disability and the associated socio-economic burden in an increasing aging population. Traditionally, OA has been viewed as a degenerative joint disease characterized by progressive destruction of the articular cartilage and changes in the subchondral bone culminating in joint failure. However, the etiology of OAmore » is multifactorial involving genetic, mechanical and environmental factors. Treatment modalities include analgesia, joint injection with steroids or hyaluronic acid, oral supplements including glucosamine and chondroitin sulfate, as well as physiotherapy. Thus, there is significant interest in the discovery of disease modifying agents. One such agent, glucosamine (GlcN) is commonly prescribed even though the therapeutic efficacy and mechanism of action remain controversial. Inflammatory cytokines, including IL-1{beta}, and proteinases such as MMP-13 have been implicated in the pathogenesis and progression of OA together with an associated CpG demethylation in their promoters. We have investigated the potential of GlcN to modulate NF-kB activity and cytokine-induced abnormal gene expression in articular chondrocytes and, critically, whether this is associated with an epigenetic process. Method: Human chondrocytes were isolated from the articular cartilage of femoral heads, obtained with ethical permission, following fractured neck of femur surgery. Chondrocytes were cultured for 5 weeks in six separate groups; (i) control culture, (ii) cultured with a mixture of 2.5 ng/ml IL-1{beta} and 2.5 ng/ml oncostatin M (OSM), (iii) cultured with 2 mM N-acetyl GlcN (Sigma-Aldrich), (iv) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 2 mM GlcN, (v) cultured with 1.0 {mu}M BAY 11-7082 (BAY; NF-kB inhibitor: Calbiochem, Darmstadt, Germany) and, (vi) cultured with a mixture of 2.5 ng/ml IL-1{beta}, 2.5 ng/ml OSM and 1.0 {mu}M BAY. The levels of IL1B and MMP13 mRNA were examined using qRT-PCR. The percentage DNA methylation in the CpG sites of the IL1{beta} and MMP13 proximal promoter were quantified by pyrosequencing. Result:IL1{beta} expression was enhanced over 580-fold in articular chondrocytes treated with IL-1{beta} and OSM. GlcN dramatically ameliorated the cytokine-induced expression by 4-fold. BAY alone increased IL1{beta} expression by 3-fold. In the presence of BAY, IL-1{beta} induced IL1B mRNA levels were decreased by 6-fold. The observed average percentage methylation of the -256 CpG site in the IL1{beta} promoter was 65% in control cultures and decreased to 36% in the presence of IL-1{beta}/OSM. GlcN and BAY alone had a negligible effect on the methylation status of the IL1B promoter. The cytokine-induced loss of methylation status in the IL1B promoter was ameliorated by both GlcN and BAY to 44% and 53%, respectively. IL-1{beta}/OSM treatment increased MMP13 mRNA levels independently of either GlcN or BAY and no change in the methylation status of the MMP13 promoter was observed. Conclusion: We demonstrate for the first time that GlcN and BAY can prevent cytokine-induced demethylation of a specific CpG site in the IL1{beta} promoter and this was associated with decreased expression of IL1{beta}. These studies provide a potential mechanism of action for OA disease modifying agents via NF-kB and, critically, demonstrate the need for further studies to elucidate the role that NF-kB may play in DNA demethylation in human chondrocytes.« less

  17. Phylogenetic, epidemiological and functional analyses of the Streptococcus bovis/Streptococcus equinus complex through an overarching MLST scheme.

    PubMed

    Jans, Christoph; de Wouters, Tomas; Bonfoh, Bassirou; Lacroix, Christophe; Kaindi, Dasel Wambua Mulwa; Anderegg, Janine; Böck, Désirée; Vitali, Sabrina; Schmid, Thomas; Isenring, Julia; Kurt, Fabienne; Kogi-Makau, Wambui; Meile, Leo

    2016-06-21

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises seven (sub)species classified as human and animal commensals, emerging opportunistic pathogens and food fermentative organisms. Changing taxonomy, shared habitats, natural competence and evidence for horizontal gene transfer pose difficulties for determining their phylogeny, epidemiology and virulence mechanisms. Thus, novel phylogenetic and functional classifications are required. An SBSEC overarching multi locus sequence type (MLST) scheme targeting 10 housekeeping genes was developed, validated and combined with host-related properties of adhesion to extracellular matrix proteins (ECM), activation of the immune responses via NF-KB and survival in simulated gastric juice (SGJ). Commensal and pathogenic SBSEC strains (n = 74) of human, animal and food origin from Europe, Asia, America and Africa were used in the MLST scheme yielding 66 sequence types and 10 clonal complexes differentiated into distinct habitat-associated and mixed lineages. Adhesion to ECMs collagen I and mucin type II was a common characteristic (23 % of strains) followed by adhesion to fibronectin and fibrinogen (19.7 %). High adhesion abilities were found for East African dairy and human blood isolate branches whereas commensal fecal SBSEC displayed low adhesion. NF-KB activation was observed for a limited number of dairy and blood isolates suggesting the potential of some pathogenic strains for reduced immune activation. Strains from dairy MLST clades displayed the highest relative survival to SGJ independently of dairy adaptation markers lacS/lacZ. Combining phylogenetic and functional analyses via SBSEC MLST enabled the clear delineation of strain clades to unravel the complexity of this bacterial group. High adhesion values shared between certain dairy and blood strains as well as the behavior of NF-KB activation are concerning for specific lineages. They highlighted the health risk among shared lineages and establish the basis to elucidate (zoonotic-) transmission, host specificity, virulence mechanisms and enhanced risk assessment as pathobionts in an overarching One Health approach.

  18. Perilla frutescens Extracts Protects against Dextran Sulfate Sodium-Induced Murine Colitis: NF-κB, STAT3, and Nrf2 as Putative Targets.

    PubMed

    Dae Park, Deung; Yum, Hye-Won; Zhong, Xiancai; Kim, Seung Hyeon; Kim, Seong Hoon; Kim, Do-Hee; Kim, Su-Jung; Na, Hye-Kyung; Sato, Atsuya; Miura, Takehito; Surh, Young-Joon

    2017-01-01

    Perilla frutescens is a culinary and medicinal herb which has a strong anti-inflammatory and antioxidative effects. In the present study, we investigated the effects of Perilla frutescens extract (PE) against dextran sulfate sodium (DSS)-induced mouse colitis, an animal model that mimics human inflammatory bowel disease (IBD). Five-week-old male ICR mice were treated with a daily dose of PE (20 or 100 mg/kg, p.o. ) for 1 week, followed by administration of 3% DSS in double distilled drinking water and PE by gavage for another week. DSS-induced colitis was characterized by body weight loss, colon length shortening, diarrhea and bloody stool, and these symptoms were significantly ameliorated by PE treatment. PE administration suppressed DSS-induced expression of proinflammatory enzymes, including cyclooxygenase-2 and inducible nitric oxide synthase as well as cyclin D1, in a dose-dependent fashion. Nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) are major transcriptional regulators of inflammatory signaling. PE administration significantly inhibited the activation of both NF-κB and STAT3 induced by DSS, while it elevated the accumulation of Nrf2 and heme oxygenase-1 in the colon. In another experiment, treatment of CCD841CoN human normal colon epithelial cells with PE (10 mg/ml) resulted in the attenuation of the tumor necrosis factor-α-induced expression/activation of mediators of proinflammatory signaling. The above results indicate that PE has a preventive potential for use in the management of IBD.

  19. Diclofenac pretreatment modulates exercise-induced inflammation in skeletal muscle of rats through the TLR4/NF-κB pathway.

    PubMed

    Barcelos, Rômulo Pillon; Bresciani, Guilherme; Cuevas, Maria José; Martínez-Flórez, Susana; Soares, Félix Alexandre Antunes; González-Gallego, Javier

    2017-07-01

    Nonsteroidal anti-inflammatory drugs, such as diclofenac, are widely used to treat inflammation and pain in several conditions, including sports injuries. This study analyzes the influence of diclofenac on the toll-like receptor-nuclear factor kappa B (TLR-NF-κB) pathway in skeletal muscle of rats submitted to acute eccentric exercise. Twenty male Wistar rats were divided into 4 groups: control-saline, control-diclofenac, exercise-saline, and exercise-diclofenac. Diclofenac or saline were administered for 7 days prior to an acute eccentric exercise bout. The inflammatory status was evaluated through mRNA levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNF-α), and protein content of COX-2, IL-6, and TNF-α in vastus lateralis muscle. Data obtained showed that a single bout of eccentric exercise significantly increased COX-2 gene expression. Similarly, mRNA expression and protein content of other inflammation-related genes also increased after the acute exercise. However, these effects were attenuated in the exercise + diclofenac group. TLR4, myeloid differentiation primary response gene 88 (MyD88), and p65 were also upregulated after the acute eccentric bout and the effect was blunted by the anti-inflammatory drug. These findings suggest that pretreatment with diclofenac may represent an effective tool to ameliorate the pro-inflammatory status induced by acute exercise in rat skeletal muscle possibly through an attenuation of the TLR4-NF-κB signaling pathway.

  20. Expression of NF-κB and PTEN in osteosarcoma and its clinical significance

    PubMed Central

    Gong, Teng; Su, Xuetao; Xia, Qun; Wang, Jinggui; Kan, Shilian

    2017-01-01

    We investigated the role of nuclear factor-κB (NF-κB) and phosphatase and tensin homolog deleted in chromosome 10 (PTEN) in the pathogenesis of osteosarcoma and its relationship with prognosis. Immunohistochemical method was used to detect the expression of NF-κB and PTEN in osteosarcoma and adjacent tissues. RT-PCR was used to detect the expression of NF-κB and PTEN mRNA in osteosarcoma and adjacent tissues. Western blotting was used to detect the expression of NF-κB and PTEN in osteosarcoma and adjacent tissues and compare their differences. The expression of NF-κB and PTEN was detected in osteosarcoma and adjacent tissues. The positive rate of NF-κB was 75.3 and 32.9%, respectively; while the positive rate of PTEN was 67.1 and 90.4%, respectively. The positive expression of NF-κB and PTEN was statistically significant. There was a negative correlation between NF-κB and PTEN expression (r=−0.502, p<0.05). The positive and negative expression of NF-κB and PTEN was statistically significant for the five-year survival (p<0.05). At gene and protein level, osteosarcoma tissues had higher expression of NF-κB, and lower expression of PTEN, which was significantly different from the adjacent tissues. In osteosarcoma, NF-κB is highly expressed, but PTEN is expressed at low level, and the two are negatively correlated. This is of great significance for the early diagnosis of osteosarcoma and prognosis. PMID:29151913

  1. Beneficial effects of enteral nutrition containing with hydrolyzed whey peptide on warm ischemia/reperfusion injury in the rat liver.

    PubMed

    Hanaoka, Jun; Shimada, Mitsuo; Utsunomiya, Toru; Morine, Yuji; Imura, Satoru; Ikemoto, Tetsuya; Mori, Hiroki; Sugimoto, Koji; Saito, Yu; Yamada, Shinichiro; Asanoma, Michihito

    2014-01-01

    This study examined the efficacy of enteral nutrition containing hydrolyzed whey peptide (HWP) on warm ischemia/reperfusion (I/R) injury in the rat liver. Male Wistar rats were subjected to 30 min of warm hepatic ischemia followed by immediate p.o. intake of enteral nutrition with WHP (HWP group) or 20% glucose solution (control group) (0.025 mL/g). The animals were killed at 6 or 12 h after reperfusion. The serum aspartate aminotransferase (AST) and alanine aminotransferase alt (ALT) levels were measured. The necrotic areas were assessed histologically. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and caspase-3 activation were assessed to evaluate apoptosis. The expressions of hepatic tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nuclear factor (NF)-κB in the liver tissue were assessed by real time reverse transcription polymerase chain reaction. Significant reductions in the serum AST and ALT levels were seen in the HWP group compared with the control group at both 6 and 12 h after reperfusion. The necrotic areas and numbers of TUNEL positive cells were significantly decreased in the HWP group at 6 and 12 h after reperfusion. The caspase-3/7 activities were significantly decreased in HWP group at 6 and 12 h after reperfusion. The mRNA expressions of TNF-α and IL-6 were significantly reduced in the HWP group at 12 h after reperfusion. NF-κB mRNA expression was significantly increased in the HWP group at 6 and 12 h after reperfusion. Enteral nutrition containing HWP ameliorated the hepatic warm I/R injury possibly through the suppression of pro-inflammatory cytokine expressions and the induction of NF-κB in the rat liver. © 2013 The Japan Society of Hepatology.

  2. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.

    PubMed

    Xu, Li; Lin, Zhongyuan; Tao, Qing; Liang, Mingxiang; Zhao, Gengmao; Yin, Xiangzhen; Fu, Ruixin

    2014-01-01

    Members of the plant NUCLEAR FACTOR Y (NF-Y) family are composed of the NF-YA, NF-YB, and NF-YC subunits. In Brassica napus (canola), each of these subunits forms a multimember subfamily. Plant NF-Ys were reported to be involved in several abiotic stresses. In this study, we demonstrated that multiple members of thirty three BnNF-Ys responded rapidly to salinity, drought, or ABA treatments. Transcripts of five BnNF-YAs, seven BnNF-YBs, and two BnNF-YCs were up-regulated by salinity stress, whereas the expression of thirteen BnNF-YAs, ten BnNF-YBs, and four BnNF-YCs were induced by drought stress. Under NaCl treatments, the expression of one BnNF-YA10 and four NF-YBs (BnNF-YB3, BnNF-YB7, BnNF-YB10, and BnNF-YB14) were greatly increased. Under PEG treatments, the expression levels of four NF-YAs (BnNF-YA9, BnNF-YA10, BnNF-YA11, and BnNF-YA12) and five NF-YBs (BnNF-YB1, BnNF-YB8, BnNF-YB10, BnNF-YB13, and BnNF-YB14) were greatly induced. The expression profiles of 20 of the 27 salinity- or drought-induced BnNF-Ys were also affected by ABA treatment. The expression levels of six NF-YAs (BnNF-YA1, BnNF-YA7, BnNF-YA8, BnNF-YA9, BnNF-YA10, and BnNF-YA12) and seven BnNF-YB members (BnNF-YB2, BnNF-YB3, BnNF-YB7, BnNF-YB10, BnNF-YB11, BnNF-YB13, and BnNF-YB14) and two NF-YC members (BnNF-YC2 and BnNF-YC3) were greatly up-regulated by ABA treatments. Only a few BnNF-Ys were inhibited by the above three treatments. Several NF-Y subfamily members exhibited collinear expression patterns. The promoters of all stress-responsive BnNF-Ys harbored at least two types of stress-related cis-elements, such as ABRE, DRE, MYB, or MYC. The cis-element organization of BnNF-Ys was similar to that of Arabidopsis thaliana, and the promoter regions exhibited higher levels of nucleotide sequence identity with Brassica rapa than with Brassica oleracea. This work represents an entry point for investigating the roles of canola NF-Y proteins during abiotic stress responses and provides insight into the genetic evolution of Brassica NF-Ys.

  3. PCR-based polymorphisms in neurofibromatosis type 1 (NFI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, P.S.; Chee, S.; Low, P.S.

    Neurofibromatosis type 1 (NF1) is one of the most common genetic disorders in humans with an incidence of 1 in 3,000. The NF1 gene is located on chromosome 17q 11.2 and encodes an ubiquitously expressed transcript of about 13kb. Direct mutation detection is difficult in this disorder due to the large gene size, high mutation rate and variety of mutations. We have studied the allele frequencies of seven PCR-based polymorphisms. Six of the probes used flank the NF1 gene, namely p11.3C4.2/Msp I (proximal), pEW206/Msp I (distal), p2.f9.8/Rsa I (distal), pEW207/Bgl II (distal), pEW207/Hind III (distal) and pHHH202/Rsa I (proximal). Anmore » intragenic RFLP, pEvi 2B-B/Eco R1 polymorphism in intron 27, was also analyzed by PCR. Allele frequencies for 48 normal unrelated individuals were obtained as follows: A1 = 0.40, A2 = 0.6 (p11.3C4.2/Msp I), A1 = 0.44, A2 = 0.56 (pEW206/Msp I), A1 = 0.17, A2 = 0.83 (p2.F9.8/Rsa I), A1 = 0.64, A2 = 0.36 (pEW207/Bgl I), A1 = 0.45, A2 = 0.55 (pEvi 2B-B/Eco RI). Heterozygosity rates of the alleles ranged from 20.8% to 51.7%. Using a combination of these markers, seven local families with NF1 were studied. Normal Mendelian segregation of alleles was observed in these families and no recombination was detected so far. These PCR-based markers were found to be useful for linkage analysis in our families.« less

  4. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  5. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats

    PubMed Central

    Fernandez-Twinn, Denise S.; Chen, Jian Hua; Hargreaves, Iain P.; Neergheen, Viruna; Aiken, Catherine E.; Ozanne, Susan E.

    2016-01-01

    ABSTRACT ‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. PMID:27585884

  6. Immunomodulatory Activities of the Benzoxathiole Derivative BOT-4-One Ameliorate Pathogenic Skin Inflammation in Mice.

    PubMed

    Lee, Hyun Gyu; Cho, Nam-Chul; Jeong, Ae Jin; Li, Yu-Chen; Rhie, Sung-Ja; Choi, Jung Sook; Lee, Kwang-Ho; Kim, Youngsoo; Kim, Yong-Nyun; Kim, Myoung-Hwan; Pae, Ae Nim; Ye, Sang-Kyu; Kim, Byung-Hak

    2015-09-30

    T cell-mediated immune responses play an important role in body protection. However, aberrantly activated immune responses are responsible for inflammatory and autoimmune diseases. The regulation of pathological immune responses may be a potential therapeutic strategy for the treatment of these diseases. Despite multiple pharmacological properties of benzoxathiole derivatives have been defined, the molecular mechanisms underlying these properties remain to be clarified. Here, we demonstrated the benzoxathiole derivative 2-cyclohexylimino-6-methyl-6,7-dihydro-5H-benzo[1,3]oxathiol-4-one (BOT-4-one) regulated immune responses and ameliorated experimentally induced inflammatory skin diseases both in vitro and in vivo. BOT-4-one inhibited the differentiation of CD4 + T-cell subsets by regulating the expression and production of T cell lineage-specific master transcription factors and cytokines and activating the signal transducer and activator of transcription (STAT) proteins. In addition, BOT-4-one inhibited T-cell receptor (TCR)-mediated Akt and nuclear factor-kappaB (NF-κB) signaling. Topical application of BOT-4-one ameliorated experimentally induced inflammatory skin diseases in mice models such as TNCB-induced contact and atopic dermatitis and IL-23-induced psoriasis-like skin inflammation. Our study demonstrated that BOT-4-one ameliorates inflammatory skin diseases by suppressing the pathogenic CD4 + T cell differentiation and the overall immune responses.Journal of Investigative Dermatology accepted article preview online, 30 September 2015. doi:10.1038/jid.2015.384.

  7. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family.

    PubMed

    Skrypek, N; Duchêne, B; Hebbar, M; Leteurtre, E; van Seuningen, I; Jonckheere, N

    2013-03-28

    The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar), is the main chemotherapeutic drug in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer (PC) cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-Resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and western blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells, but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells, in which the NF-κB pathway was found to have an important role in both sensitivity to gemcitabine and hCNT1 regulation. Finally, and in accordance with our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of PC cell resistance to gemcitabine, in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment.

  8. The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family

    PubMed Central

    Skrypek, Nicolas; Duchêne, Bélinda; Hebbar, Mohamed; Leteurtre, Emmanuelle; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2013-01-01

    The fluorinated analog of deoxycytidine, Gemcitabine (Gemzar®), is the main chemotherapy in pancreatic cancer, but survival remains weak mainly because of the high resistance of tumors to the drug. Recent works have shown that the mucin MUC4 may confer an advantage to pancreatic tumor cells by modifying their susceptibility to drugs. However, the cellular mechanism(s) responsible for this MUC4-mediated resistance is unknown. The aim of this work was to identify the cellular mechanisms responsible for gemcitabine resistance linked to MUC4 expression. CAPAN-2 and CAPAN-1 adenocarcinomatous pancreatic cancer cell lines were used to establish stable MUC4-deficient clones (MUC4-KD) by shRNA interference. Measurement of the IC50 index using tetrazolium salt test indicated that MUC4-deficient cells were more sensitive to gemcitabine. This was correlated with increased Bax/BclXL ratio and apoptotic cell number. Expression of Equilibrative/Concentrative Nucleoside Transporter (hENT1, hCNT1/3), deoxycytidine kinase (dCK), ribonucleotide reductase (RRM1/2) and Multidrug-resistance Protein (MRP3/4/5) was evaluated by quantitative RT-PCR (qRT-PCR) and Western-blotting. Alteration of MRP3, MRP4, hCNT1 and hCNT3 expression was observed in MUC4-KD cells but only hCNT1 alteration was correlated to MUC4 expression and sensitivity to gemcitabine. Decreased activation of MAPK, JNK and NF-κB pathways was observed in MUC4-deficient cells in which NF-κB pathway was found to play an important role both in sensitivity to gemcitabine and in hCNT1 regulation. Finally and accordingly to our in vitro data, we found that MUC4 expression was conversely correlated to that of hCNT1 in tissues from patients with pancreatic adenocarcinoma. This work describes a new mechanism of pancreatic cancer cell resistance to gemcitabine in which the MUC4 mucin negatively regulates the hCNT1 transporter expression via the NF-κB pathway. Altogether, these data point out to MUC4 and hCNT1 as potential targets to ameliorate the response of pancreatic tumors to gemcitabine treatment. PMID:22580602

  9. Topical atorvastatin ameliorates 12-O-tetradecanoylphorbol-13-acetate induced skin inflammation by reducing cutaneous cytokine levels and NF-κB activation.

    PubMed

    Kulkarni, Nagaraj M; Muley, Milind M; Jaji, Mallikarjun S; Vijaykanth, G; Raghul, J; Reddy, Neetin Kumar D; Vishwakarma, Santosh L; Rajesh, Navin B; Mookkan, Jeyamurugan; Krishnan, Uma Maheswari; Narayanan, Shridhar

    2015-06-01

    Atorvastatin is a 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitor used in the treatment of atherosclerosis and dyslipidemia. Studies have evaluated the utility of statins in the treatment of skin inflammation but with varied results. In the present study, we investigated the effect of atorvastatin on TNF-α release and keratinocyte proliferation in vitro and in acute and chronic 12-O-tetradecanoylphorbol-13-acetate (TPA) induced skin inflammation in vivo. Atorvastatin significantly inhibited lipopolysacharide induced TNF-α release in THP-1 cells and keratinocyte proliferation in HaCaT cells. In an acute study, topical atorvastatin showed dose dependent reduction in TPA induced skin inflammation with highest efficacy observed at 500 µg/ear dose. In chronic study, topical atorvastatin significantly reduced TPA induced ear thickness, ear weight, cutaneous cytokines, MPO activity and improved histopathological features comparable to that of dexamethasone. Atorvastatin also inhibited TPA stimulated NF-κB activation in mouse ear. In conclusion, our results suggest that atorvastatin ameliorates TPA induced skin inflammation in mice at least in part, due to inhibition of cytokine release and NF-κB activation and may be beneficial for the treatment skin inflammation like psoriasis.

  10. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice.

    PubMed

    Koh, Seong-Joon; Choi, Youn-I; Kim, Yuri; Kim, Yoo-Sun; Choi, Sang Woon; Kim, Ji Won; Kim, Byeong Gwan; Lee, Kook Lae

    2018-05-09

    Walnuts (Juglans regia) are known to have anti-cancer and immunomodulatory effects. However, little information is available on the effects of walnut phenolic extract (WPE) on intestinal inflammation and colitis-associated colon cancer. COLO205 cells were pretreated with WPE and then stimulated with tumor necrosis factor (TNF)-α. In the acute colitis model, wild type mice (C57BL/6) were administered 4% dextran sulfate sodium (DSS) for 5 days. In the chronic colitis model, interleukin (IL)-10 -/- mice were administered with either the vehicle or WPE (20 mg/kg) by oral gavage daily for 2 weeks. In an inflammation-associated tumor model, wild type mice were administered a single intraperitoneal injection of azoxymethane followed by three cycles of 2% DSS for 5 days and 2 weeks of free water consumption. WPE significantly inhibited IL-8 and IL-1α expression in COLO205 cells. WPE attenuated both the TNF-α-induced IκB phosphorylation/degradation and NF-κB DNA binding activity. The administration of oral WPE significantly reduced the severity of colitis in both acute and chronic colitis models, including the IL-10 -/- mice. In immunohistochemical staining, WPE attenuated NF-κB signaling in the colons of both colitis models. Finally, WPE also significantly reduced tumor development in a murine model of colitis-associated colon cancer (CAC). WPE ameliorates acute and chronic colitis and CAC in mice, suggesting that WPE may have potentials for the treatment of inflammatory bowel disease.

  11. A novel chalcone derivative attenuates the diabetes-induced renal injury via inhibition of high glucose-mediated inflammatory response and macrophage infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Qilu; Zhao, Leping; Wang, Yi

    Inflammation plays a central role in the development and progression of diabetic nephropathy (DN). Researches on novel anti-inflammatory agents may offer new opportunities for the treatment of DN. We previously found a chalcone derivative L6H21 could inhibit LPS-induced cytokine release from macrophages. The aim of this study was to investigate whether L6H21 could ameliorate the high glucose-mediated inflammation in NRK-52E cells and attenuate the inflammation-mediated renal injury. According to the results, L6H21 showed a great inhibitory effect on the expression of pro-inflammatory cytokines, cell adhesion molecules, chemokines, and macrophage adhesion via down-regulation of NF-κB/MAPKs activity in high glucose-stimulated renal NRK-52Emore » cells. Further, in vivo oral administration with L6H21 at a dosage of 20 mg/kg/2 days showed a decreased expression of pro-inflammatory cytokines, cell adhesion molecules, which subsequently contributed to the inhibition on renal macrophage infiltration, the reduction of serum creatinine and BUN levels, and the improvement on the fibrosis and pathological changes in the renal tissues of diabetic mice. These findings provided that chalcone derived L6H21 may be a promising anti-inflammatory agent and have the potential in the therapy of diabetic nephropathy, and importantly, MAPK/NF-κB signaling system may be a novel therapeutic target for human DN in the future. - Highlights: • Inflammation plays a central role in the development of diabetic nephropathy. • Compound L6H21 reduced the high glucose-mediated inflammation in NRK-52E cells. • Compound L6H21 attenuated the inflammation-mediated renal injury. • L6H21 exhibited anti-inflammatory effects via inactivation of NF-κB/MAPKs. • MAPKs/NF-κB may be a novel therapeutic target in diabetic nephropathy treatment.« less

  12. AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2

    PubMed Central

    Wang, Wei; Schwemmers, Sven; Hexner, Elizabeth O.

    2010-01-01

    The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2V617F mutation. Although NF-E2 levels correlate with JAK2V671F allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2V617F mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2V617F. In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-β significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients. PMID:20339092

  13. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    PubMed

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  14. FAP-1 and NF-κB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis.

    PubMed

    Nariai, Y; Mishima, K; Yoshimura, Y; Sekine, J

    2011-04-01

    This study was designed to investigate the feasibility of using Fas-associated phosphatase-1 (FAP-1), nuclear factor kappa B (NF-κB) and p53 as markers for chemo-radio sensitivity in oral squamous cell carcinoma (OSCC). FAP-1 plays a role as an anti-apoptotic factor through Fas-dependent apoptosis after chemo-radiotherapy. NF-κB and p53 might be involved in modulation of FAP-1 expression. FAP-1, NF-κB and p53 expression were immunohistochemically examined using biopsy specimens in 50 OSCC patients treated with chemotherapy and/or radiotherapy. FAP-1 was expressed in 52%, NF-κB in 52% and p53 in 46% of patients. There was no significant difference in FAP-1, p53 or NF-κB expression according to the clinicopathological features. No correlation was found among FAP-1, p53 or NF-κB expression. FAP-1-positive cases showed a poorer survival rate than FAP-1-negative cases (P = 0.0409) and NF-κB-positive cases showed a poorer survival rate than NF-κB-negative cases (P = 0.0018). Multivariate analysis showed that FAP-1 expression, NF-κB expression, clinical stage and age were significant independent variables for survival (clinical stage: P = 0.0016; age: P = 0.0016; NF-κB: P = 0.0314; FAP-1: P = 0.0366). These results suggest that FAP-1 and NF-κB might play a role as chemo-radioresistant factor during chemo-radiotherapy, and FAP-1 and NF-κB expression in OSCC would be feasible markers for chemo-radio sensitivity and prognosis. Copyright © 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling.

    PubMed

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A

    2015-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Downregulation of kinin B1 receptor function by B2 receptor heterodimerization and signaling

    PubMed Central

    Zhang, Xianming; Brovkovych, Viktor; Zhang, Yongkang; Tan, Fulong; Skidgel, Randal A.

    2014-01-01

    Signaling through the G protein-coupled kinin receptors B1 (kB1R) and B2 (kB2R) plays a critical role in inflammatory responses mediated by activation of the kallikrein-kinin system. The kB2R is constitutively expressed and rapidly desensitized in response to agonist whereas kB1R expression is upregulated by inflammatory stimuli and it is resistant to internalization and desensitization. Here we show that the kB1R heterodimerizes with kB2Rs in co-transfected HEK293 cells and natively expressing endothelial cells, resulting in significant internalization and desensitization of the kB1R response in cells pre-treated with kB2R agonist. However, pre-treatment of cells with kB1R agonist did not affect subsequent kB2R responses. Agonists of other G protein-coupled receptors (thrombin, lysophosphatidic acid) had no effect on a subsequent kB1R response. The loss of kB1R response after pretreatment with kB2R agonist was partially reversed with kB2R mutant Y129S, which blocks kB2R signaling without affecting endocytosis, or T342A, which signals like wild type but is not endocytosed. Co-endocytosis of the kB1R with kB2R was dependent on β-arrestin and clathrin-coated pits but not caveolae. The sorting pathway of kB1R and kB2R after endocytosis differed as recycling of kB1R to the cell surface was much slower than that of kB2R. In cytokine-treated human lung microvascular endothelial cells, pre-treatment with kB2R agonist inhibited kB1R-mediated increase in transendothelial electrical resistance (TER) caused by kB1R stimulation (to generate nitric oxide) and blocked the profound drop in TER caused by kB1R activation in the presence of pyrogallol (a superoxide generator). Thus, kB1R function can be downregulated by kB2R co-endocytosis and signaling, suggesting new approaches to control kB1R signaling in pathological conditions. PMID:25289859

  17. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

    PubMed

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-02-21

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling.

  18. Loss of neurofibromatosis type 1 (NF1) gene expression in pheochromocytomas from patients without NF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, R.T.; Gutmann, D.H.; Moley, J.F.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, termed neurofibromin. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 as well as malignant and neuroblastomas from patients without NF1. Previously, we demonstrated the lack of neurofibromin expression in six pheochromocytomas from patients with NF1, suggesting that neurofibromin loss is associated with the progression to neoplasia in pheochromocytomas in these patients. The lack of NF1 gene expression in NF1 patient pheochromocytomas supports the notion that neurofibromin might be an essential regulator of cell growth in these cells. To determine whethermore » NF1 gene expression is similarly altered in pheochromocytomas from patients without NF1, twenty pheochromocytomas were examined for the presence of NF1 RNA by reverse-transcribed PCR (RT-PCR). Lack of NF1 gene expression was documented in four of these twenty tumors (20%) which corresponds to previously reported numbers for malignant melanomas and neuroblastomas in non-NF1 patients. Of these twenty pheochromocytomas, one of four sporadic tumors, one of ten tumors from patients with MEN2A, one of four tumors from patients with MEN2B, and one of two tumors from patients with von Hippel-Lindau syndrome demonstrated loss of NF1 gene expression. In all cases, the quality and quantity of tumor RNA was determined by RT-PCR amplification using primers which amplify cyclophilin RNA. We previously demonstrated that these tumors do not harbor activating mutations of the N-ras, K-ras or H-ras proto-oncogenes. These results suggest that loss of NF1 gene expression is frequently associated with the progression to neoplasia in tumors derived from adrenal medullary tissue in patients without clinical manifestations of neurofibromatosis and supports the notion that neurofibromin is a tumor suppressor gene product involved in the pathogenesis of a wide variety of tumor types.« less

  19. The Hepatoprotective Effect of Selenium-Enriched Yeast and Gum Arabic Combination on Carbon Tetrachloride-Induced Chronic Liver Injury in Rats.

    PubMed

    Hamid, Mohammed; Abdulrahim, Yassin; Liu, Dandan; Qian, Gang; Khan, Alamzeb; Huang, Kehe

    2018-02-01

    The antioxidant and anti-inflammatory effects of selenium-enriched yeast (SY) and Gum Arabic (GA) have been reported. This study aimed to determine the hepatoprotective effect of SY and GA combination on carbon tetrachloride (CCl 4 )-induced chronic liver injury in rats and to explore their synergistic mechanisms of action. Forty adult male Wistar rats randomly allotted to 5 groups: (A) worked as control, (B) was administered CCl 4 , (C-E) were fed daily by GA, SY, and GA+SY respectively after mixing with basal diet, following CCl 4 -intoxication. GA and SY combination significantly ameliorated CCl 4 -induced reduction in serum total protein with elevation in aspartate transaminase (AST) and alanine transaminase (ALT) in addition to restoring the histopathological changes and hepatic content of hydroxyproline. GA and SY combination was also effective in reducing lipid peroxidation (MDA), consistent with an increase in total antioxidant capacity (T-AOC), glutathione (GSH), superoxide dismutase (SOD) activities, indicating the suppression of liver oxidative stress. Furthermore, liver inflammation was ameliorated by GA and SY combination through inhibition of nuclear factor-kappa (NF-κB), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2(COX-2), monocyte chemotactic protein-1 (MCP-1), and toll-like receptor 4(TLR-4) over expression in the liver. Moreover, the up-regulation of proliferating cell nuclear antigen (PCNA) expression by GA and SY combination enhanced the regeneration of liver tissue after CCl 4 -administration. The expression of Collagen1, alpha-smooth muscle actin (α-SMA), and transforming growth factor-beta1 (TGFβ1), was obviously ameliorated by GA and SY combination, suggesting the amelioration of profibrotic response of the liver. Taken together, our current study suggests that GA and SY combination exhibit a significant hepatoprotective activity, which more efficient than GA or SY alone. Chronic liver diseases are the serious health problems, which increase the morbidity and mortality in the world today. Selenium-enriched yeast (SY) and Gum Arabic (GA) combination might be potential dietary agents could obviously ameliorate chronic liver damage, higher than GA and SY alone. They act to suppress the inflammation and inhibit the profibrotic response as well as support the liver regeneration. © 2018 Institute of Food Technologists®.

  20. Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4.

    PubMed

    Manku, Harinder; Langefeld, Carl D; Guerra, Sandra G; Malik, Talat H; Alarcon-Riquelme, Marta; Anaya, Juan-Manuel; Bae, Sang-Cheol; Boackle, Susan A; Brown, Elizabeth E; Criswell, Lindsey A; Freedman, Barry I; Gaffney, Patrick M; Gregersen, Peter A; Guthridge, Joel M; Han, Sang-Hoon; Harley, John B; Jacob, Chaim O; James, Judith A; Kamen, Diane L; Kaufman, Kenneth M; Kelly, Jennifer A; Martin, Javier; Merrill, Joan T; Moser, Kathy L; Niewold, Timothy B; Park, So-Yeon; Pons-Estel, Bernardo A; Sawalha, Amr H; Scofield, R Hal; Shen, Nan; Stevens, Anne M; Sun, Celi; Gilkeson, Gary S; Edberg, Jeff C; Kimberly, Robert P; Nath, Swapan K; Tsao, Betty P; Vyse, Tim J

    2013-01-01

    We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P=1.71 × 10(-34) , OR=1.43[1.26-1.60]) and rs1234317-T (P=1.16 × 10(-28) , OR=1.38[1.24-1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5' region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5' risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait.

  1. Trans-Ancestral Studies Fine Map the SLE-Susceptibility Locus TNFSF4

    PubMed Central

    Manku, Harinder; Langefeld, Carl D.; Guerra, Sandra G.; Malik, Talat H.; Alarcon-Riquelme, Marta; Anaya, Juan-Manuel; Bae, Sang-Cheol; Boackle, Susan A.; Brown, Elizabeth E.; Criswell, Lindsey A.; Freedman, Barry I.; Gaffney, Patrick M.; Gregersen, Peter A.; Guthridge, Joel M.; Han, Sang-Hoon; Harley, John B.; Jacob, Chaim O.; James, Judith A.; Kamen, Diane L.; Kaufman, Kenneth M.; Kelly, Jennifer A.; Martin, Javier; Merrill, Joan T.; Moser, Kathy L.; Niewold, Timothy B.; Park, So-Yeon; Pons-Estel, Bernardo A.; Sawalha, Amr H.; Scofield, R. Hal; Shen, Nan; Stevens, Anne M.; Sun, Celi; Gilkeson, Gary S.; Edberg, Jeff C.; Kimberly, Robert P.; Nath, Swapan K.; Tsao, Betty P.; Vyse, Tim J.

    2013-01-01

    We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE. SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T (P = 1.71×10−34, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16×10−28, OR = 1.38[1.24–1.54]). Inference of fine-scale recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans. In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 5′ region proximal to TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate the 5′ risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a decameric motif which binds NF-κBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-κB interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a complex trait. PMID:23874208

  2. Vitamin D ameliorates impaired wound healing in streptozotocin-induced diabetic mice by suppressing NF-κB-mediated inflammatory genes.

    PubMed

    Yuan, YiFeng; Das, Sushant K; Li, MaoQuan

    2018-04-27

    Diabetic wounds are characterized by delayed wound healing due to persistent inflammation and excessive production of reactive oxygen species. Vitamin D, which is well acknowledged to enhance intestinal calcium absorption and increase in plasma calcium level, has recently been shown to display beneficial effects in various vascular diseases by promoting angiogenesis and inhibiting inflammatory responses. However, the role of Vitamin D in diabetic wound healing is still unclear. In the present study, we investigated the role of Vitamin D in cutaneous wound healing in streptozotocin (STZ)-induced diabetic mice. Four weeks after injection of STZ, a full thickness excisional wound was created with a 6-mm diameter sterile biopsy punch on the dorsum of the mice. Vitamin D was given consecutively for 14 days by intraperitoneal injection. Vitamin D supplementation significantly accelerated wound healing in diabetic mice and improved the healing quality as assessed by measuring the wound closure rate and histomorphometric analyses. By monitoring the level of pro-inflammatory cytokines tumor necrosis factor-α ( TNF-α ), interleukin (IL) 6 ( IL-6 ), IL-1β ) in the wounds, reduced inflammatory response was found in VD treatment group. Furthermore, nuclear factor κB (NF-κB) pathway was found to be involved in the process of diabetic wound healing by assessing the relative proteins in diabetic wounds. Vitamin D supplementation obviously suppressed NF-κB pathway activation. These results demonstrated that Vitamin D improves impaired wound healing in STZ-induced diabetic mice through suppressing NF-κB-mediated inflammatory gene expression. © 2018 The Author(s).

  3. Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 ameliorate neuroinflammatory responses in chronic cerebral hypoperfusion model by blocking NF-κB pathways.

    PubMed

    Su, Shao-Hua; Wu, Yi-Fang; Lin, Qi; Hai, Jian

    2017-12-01

    The present study explored the protective effects of cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) against neuroinflammation in rats with chronic cerebral hypoperfusion (CCH). Activated microglia, astrocytes, and nuclear factor kappa B (NF-κB) p65-positive cells were measured by immunofluorescence. Reactive oxygen species (ROS) was assessed by dihydroethidium staining. The protein levels of cluster of differentiation molecule 11b (OX-42), glial fibrillary acidic protein (GFAP), NF-κB p65, inhibitor of kappa B alpha (IκB-a), IκB kinase a/β (IKK a/β), phosphorylated IKK a/β (p-IKK a/β), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, and interleukin-1β (IL-1β) were examined by western blotting or enzyme-linked immunosorbent assay. All the protein levels of OX-42, GFAP, TNF-a, IL-1β, COX-2, and iNOS are increased in CCH rats. WIN and URB downregulated the levels of OX-42, GFAP, TNF-α, IL-1β, COX-2 and iNOS and inhibited CCH-induced ROS accumulation in CCH rats, indicating that WIN and URB might exert their neuroprotective effects by inhibiting the neuroinflammatory response. In addition, the NF-κB signaling pathway was activated by CCH in frontal cortex and hippocampus, while the aforementioned changes were reversed by WIN and URB treatment. These findings suggest that WIN and URB treatment ameliorated CCH-induced neuroinflammation through inhibition of the classical pathway of NF-κB activation, resulting in mitigation of chronic ischemic injury.

  4. (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one ameliorates the collagen-arthritis via blocking ERK/JNK and NF-κB signaling pathway.

    PubMed

    Li, Xiuxia; Peng, Fei; Xie, Caifeng; Wu, Wenshuang; Han, Xiaolei; Chen, Lijuan

    2013-12-01

    Our previous report has shown a natural pyranochalcones-derived compound, (E)-3-(3,4-Dimethoxyphenyl)-1-(5-hydroxy-2,2-dimethyl-2H-chromen-6-yl)prop-2-en-1-one (5b), that exerted protection against carrageenan-induced hind paw edema and adjuvant-induced arthritis. In this study, collagen-induced arthritis (CIA) model was used to further examine the anti-arthritic effects of 5b in vivo; the underlying molecular mechanisms of action were also investigated using a murine monocytic cell line, RAW264.7 cells. Here we showed that oral administration of 5b (20mg/kg) significantly suppressed the progression of arthritis. Improvement in disease severity was accompanied by inhibition of CD68-positive cells in knee joint and reduced pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in serum. In vitro, 5b suppressed expressions of iNOS, cyclooxygenase-2 (COX-2), TNF-α, IL-6 and IL-1β as well as productions of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-treated macrophages. This compound also significantly suppressed LPS-induced NF-κB activation, including phosphorylation of I-κB, degradation of I-κB, and nuclear translocation of p65 and p50. Treatment with 5b also blocked LPS-induced expression of TLR4 remarkably, suppressed degradation of IRAKs and phosphorylations of JNK and ERK, but had little effect to p38 kinase activation. These findings indicated that 5b might be a therapeutic agent for rheumatoid arthritis, and exerted an anti-inflammatory effect mainly through mediating TLR4, NF-κB and ERK/JNK signaling pathways in monocytes. © 2013.

  5. Histological and immunohistochemical effects of L-arginine and silymarin on TNBS-induced inflammatory bowel disease in rats.

    PubMed

    Al-Drees, Abdul; Khalil, Mahmoud Salah

    2016-11-01

    Inflammatory bowel disease (IBD) is a chronic disease that affects quality of life. Various mediators are involved in IBD pathogenesis including inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB), cytochrome c, heat shock protein 70 (HSP70) and tumor necrosis factor (TNF)-α. L-Arginine (L-Arg) can be depleted in IBD, and silymarin inhibits neutrophil infiltration, NF-κB, and TNF-α, which have crucial roles in inducing IBD. This study aimed to investigate whether silymarin and L-Arg supplementation decreases IBD progression in trinitrobenzine-sulfonic acid (TNBS)-induced colitis. Fifty adult male albino rats were randomized into five groups (10 animals per group): Group I rats orally received 100 mg silymarin/kg body weight once daily; Group II rats orally received 2 mg L-Arg/100 g body weight in 5 mL distilled water once daily; Group III rats rectally received 0.85 mL TNBS in 50% ethanol to induce colitis; Group IV rats were treated similar to group III and, on recovery from anesthesia, received silymarin as described for group I; and Group V rats were treated similar to group III and, on recovery from anesthesia, received L-Arg as described for group II. On day 7, the rats were anesthetized, and blood samples were collected to determine the serum concentrations of TNF-α. Laparotomy and total colectomy were performed for macroscopic, histological, and immunohistochemical investigations. The results showed that silymarin and L-Arg macroscopically and microscopically ameliorated TNBS-induced colitis; significantly decreased the serum levels of TNF-α; inhibited the colonic expression of iNOS, NF-κB, and cytochrome c; and increased expression of HSP70. Our results suggest that these complementary medicines could be used to supplement current treatments for IBD.

  6. Superoxide dismutase recombinant Lactobacillus fermentum ameliorates intestinal oxidative stress through inhibiting NF-κB activation in a trinitrobenzene sulphonic acid-induced colitis mouse model.

    PubMed

    Hou, C L; Zhang, J; Liu, X T; Liu, H; Zeng, X F; Qiao, S Y

    2014-06-01

    Superoxide dismutase (SOD) can prevent and cure inflammatory bowel diseases by decreasing the amount of reactive oxygen species. Unfortunately, short half-life of SOD in the gastrointestinal tract limited its application in the intestinal tract. This study aimed to investigate the treatment effects of recombinant SOD Lactobacillus fermentum in a colitis mouse model. In this study, we expressed the sodA gene in Lact. fermentum I5007 to obtain the SOD recombinant strain. Then, we determined the therapeutic effects of this SOD recombinant strain in a trinitrobenzene sulphonic acid (TNBS)-induced colitis mouse model. We found that SOD activity in the recombinant Lact. fermentum was increased by almost eightfold compared with that in the wild type. Additionally, both the wild type and the recombinant Lact. fermentum increased the numbers of lactobacilli in the colon of mice (P < 0·05). Colitis mice treated with recombinant Lact. fermentum showed a higher survival rate and lower disease activity index (P < 0·05). Recombinant Lact. fermentum significantly decreased colonic mucosa histological scoring for infiltration of inflammatory cells, lipid peroxidation, the expression of pro-inflammatory cytokines and myeloperoxidase (P < 0·05) and inhibited NF-κB activity in colitis mice (P < 0·05). SOD recombinant Lact. fermentum significantly reduced oxidative stress and inflammation through inhibiting NF-κB activation in the TNBS-induced colitis model. This study provides insights into the anti-inflammatory effects of SOD recombinant Lact. fermentum, indicating the potential therapeutic effects in preventing and curing intestinal bowel diseases. © 2014 The Society for Applied Microbiology.

  7. Overexpression of Hsp20 Prevents Endotoxin-Induced Myocardial Dysfunction and Apoptosis via Inhibition of NF-κB Activation

    PubMed Central

    Wang, Xiaohong; Zingarelli, Basilia; Connor, Michael O’; Zhang, Pengyuan; Adeyemo, Adeola; Kranias, Evangelia G.; Wang, Yigang; Fan, Guo-Chang

    2009-01-01

    The occurrence of cardiovascular dysfunction in sepsis is associated with a significantly increased mortality rate of 70% to 90% compared with 20% in septic patients without cardiovascular impairment. Thus, rectification or blockade of myocardial depressant factors should partly ameliorate sepsis progression. Heat shock protein 20 (Hsp20) has been shown to enhance myocardial contractile function and protect against doxorubicin-induced cardiotoxicity. To investigate the possible role of Hsp20 in sepsis-mediated cardiac injury, we first examined the expression profiles of five major Hsps in response to lipopolysaccharide (LPS) challenge, and observed that only the expression of Hsp20 was downregulated in LPS-treated myocardium, suggesting that this decrease might be one of mechanisms contributing to LPS-induced cardiovascular defects. Further studies using loss-of-function and gain-of function approaches in adult rat cardiomyocytes verified that reduced Hsp20 levels were indeed correlated with the impaired contractile function. In fact, overexpression of Hsp20 significantly enhanced cardiomyocyte contractility upon LPS treatment. Moreover, after administration of LPS (25μg/g) in vivo, Hsp20 transgenic mice (10-fold overexpression) displayed: 1) an improvement in myocardial function; 2) reduced the degree of cardiac apoptosis; and 3) decreased NF-κB activity, accompanied with reduced myocardial cytokines IL-1β and TNF-α production, compared to the LPS-treated non-transgenic littermate controls. Thus, the increases in Hsp20 levels can protect against LPS-induced cardiac apoptosis and dysfunction, associated with inhibition of NF-κB activity, suggesting that Hsp20 may be a new therapeutic agent for the treatment of sepsis. PMID:19501592

  8. Moderate caloric restriction in lactating rats programs their offspring for a better response to HF diet feeding in a sex-dependent manner.

    PubMed

    Palou, Mariona; Torrens, Juana María; Priego, Teresa; Sánchez, Juana; Palou, Andreu; Picó, Catalina

    2011-06-01

    We aimed to assess the lasting effects of moderate caloric restriction in lactating rats on the expression of key genes involved in energy balance of their adult offspring (CR) and their adaptations under high-fat (HF) diet. Dams were fed with either ad libitum normal-fat (NF) diet or a 30% caloric restricted diet throughout lactation. After weaning, the offspring were fed with NF diet until the age of 15 weeks and then with an NF or a HF diet until the age of 28 weeks, when they were sacrificed. Body weight and food intake were followed. Blood parameters and the expression of selected genes in hypothalamus and white adipose tissue (WAT) were analysed. CR ate fewer calories and showed lower body weight gain under HF diet than their controls. CR males were also resistant to the increase of insulin and leptin occurring in their controls under HF diet, and HF diet exposed CR females showed lower circulating fasting triglyceride levels than controls. In the hypothalamus, CR males had higher ObRb mRNA levels than controls, and CR females displayed greater InsR mRNA levels than controls and decreased neuropeptide Y mRNA levels when exposed to HF diet. CR males maintained WAT capacity of fat uptake and storage and of fatty-acid oxidation under HF diet, whereas these capacities were impaired in controls; female CR showed higher WAT ObRb mRNA levels than controls. These results suggest that 30% caloric restriction in lactating dams ameliorates diet-induced obesity in their offspring by enhancing their sensitivity to insulin and leptin signaling, but in a gender-dependent manner. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Cereal Fiber Ameliorates High-Fat/Cholesterol-Diet-Induced Atherosclerosis by Modulating the NLRP3 Inflammasome Pathway in ApoE-/- Mice.

    PubMed

    Zhang, Ru; Han, Shufen; Zhang, Zheng; Zhang, Weiguo; Yang, Jing; Wan, Zhongxiao; Qin, Liqiang

    2018-05-16

    Cereal fiber is associated with decreasing the risk of cardiovascular diseases. However, whether cereal fiber modulates inflammatory response and improves atherosclerosis remains unclear. This study evaluated the anti-atherosclerotic effect of cereal fibers from oat or wheat bran and explored the potential anti-inflammatory mechanisms. Male ApoE -/- mice were given a high-fat/cholesterol (HFC) diet or a HFC diet supplemented with 0.8% oat fiber or wheat bran fiber. After 18 weeks of the feeding period, serum lipids and inflammatory cytokines were measured. The relative protein levels of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway and nuclear factor κB (NF-κB) were determined by the western blot method in aorta tissues. Pathologically, oat fiber and wheat fiber significantly reduced atherosclerotic plaques by 43.3 and 27.1%, respectively. Biochemically, cereal fiber markedly decreased the protein levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor 4 (TLR4) in aortic tissues. The expression of NF-κB was similarly inhibited by both cereal fibers. In comparison to wheat bran fiber, oat fiber had greater effects in reducing the plague size and inhibiting TLR4/MyD88/NF-κB pathways. Such differences might come from modulation of the NLRP3 inflammasome pathway because the expressions of the cleavage of caspase-1 and interleukin (IL)-1β were inhibited only by oat fiber. The present study demonstrates that cereal fibers can attenuate inflammatory response and atherosclerosis in ApoE -/- mice. Such effects are pronounced with oat fiber and likely mediated by specific inhibition of oat fiber on the NLRP3 inflammasome pathway.

  10. The Mixture of Anemarrhena asphodeloides and Coptis chinensis Attenuates High-Fat Diet-Induced Colitis in Mice.

    PubMed

    Lim, Su-Min; Choi, Hyun-Sik; Kim, Dong-Hyun

    2017-01-01

    Anemarrhena asphodeloides (AA, family Liliaceae) inhibits macrophage activation by inhibiting IRAK1 phosphorylation and helper T (Th)17 differentiation. Coptis chinensis (CC, family Ranunculaceae), which inhibits macrophage activation by inhibiting the binding of lipopolysaccharide (LPS) on toll-like receptor 4 and inducing regulatory T (Treg) cell differentiation. The mixture of AA and CC (AC-mix) synergistically attenuates 2,4,6-trinitrobenzenesulfonic acid or dextran sulfate sodium-induced colitis in mice by inhibiting NF-[Formula: see text]B activation and regulating Th17/Treg balance. In the present study, we examined the effect of AC-mix on high-fat diet (HFD)-induced colitis in mice, which induced NF-[Formula: see text]B activation and disturbed Th17/Treg balance. Long-term feeding of HFD in mice caused colitis, including increased macroscopic score and myeloperoxidase activity. Oral administration of AC-mix (20[Formula: see text]mg/kg) suppressed HFD-induced myeloperoxidase activity by 68% ([Formula: see text]). Furthermore, treatment with the AC-mix (20[Formula: see text]mg/kg) inhibited HFD-induced activation of NF-[Formula: see text]B and expression of cyclooxygenase-2, inducible NO synthase, interleukin (IL)-17, and tumor necrosis factor-alpha but increased HFD- suppressed expression of IL-10. AC-mix suppressed HFD-induced differentiation into Th17 cells by 46% ([Formula: see text]) and increased HFD-induced differentiation into regulatory T cells 2.2-fold ([Formula: see text]). AC-mix also suppressed the HFD-induced Proteobacteria/Bacteroidetes ratio on the gut microbiota by 48% ([Formula: see text]). These findings suggest that AC-mix can ameliorate HFD-induced colitis by regulating innate and adaptive immunities and correcting the disturbance of gut microbiota.

  11. NF-κB activation impairs somatic cell reprogramming in ageing.

    PubMed

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  12. Neurofibromatosis type 1 associated with vertebrobasilar dolichoectasia and pontine ischemic stroke.

    PubMed

    Giannantoni, Nadia Mariagrazia; Broccolini, Aldobrando; Frisullo, Giovanni; Pilato, Fabio; Profice, Paolo; Morosetti, Roberta; Di Lella, Giuseppe; Zampino, Giuseppe; Della Marca, Giacomo

    2015-01-01

    Neurofibromatosis type 1 (NF1) is a heterogeneous, common, neurocutaneous disorder presenting different complications during a life span, including cerebrovascular dysplasia. To our knowledge this is the first reported case of NF1 associated with vertebrobasilar dolichoectasia and pontine ischemic stroke. We describe a 57-year-old man with NF1 who presented an acute onset right-sided facial palsy and hemiplegia, dysarthria, and gait imbalance. Magnetic resonance imaging showed an acute left paramedian pontine infarct and a hypoplastic right vertebral artery. Brain Computed Tomography Angiography revealed the occurrence of vertebrobasilar dolichoectasia. Co-occurrence of VBD and NF1 might not be merely casual and it may significantly heighten the mortality rate in this multisystem disorder. We suggest a possible role of VBD in the genesis of our patient's clinical-radiological features and prompt the early detection of asymptomatic arteriopathy in individuals with NF1 in order to ameliorate patients' quality of life and life expectancy. Copyright © 2014 by the American Society of Neuroimaging.

  13. Mapping neurofibromatosis 1 homologous loci by fluorescence in situ hybridization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viskochil, D.; Breidenbach, H.H.; Cawthon, R.

    Neurofibromatosis 1 maps to chromosome band 17q11.2 and the NF1 gene is comprised of 59 exons that span approximately 335 kb of genomic DNA. In order to further analyze the structure of NF1 from exons 2 through 27b, we isolated a number of cosmid and bacteriophage P-1 genomic clones using NF1-exon probes under high-stringency hybridization conditions. Using tagged, intron-based primers and DNA from various clones as a template, we PCR-amplified and sequenced individual NF1 exons. The exon sequences in PCR products from several genomic clones differed from the exon sequence derived from cloned NF1 cDNAs. Clones with variant sequences weremore » mapped by fluorescence in situ hybridization under high-stringency conditions. Three clones mapped to chromosome band 15q11.2, one mapped to 14q11.2, one mapped to both 2q14.1-14.3 and 14q11.2, one mapped to 2q33-34, and one mapped to both 18q11.2 and 21q21. Even though some PCR-product sequences retained proper splice junctions and open reading frames, we have yet to identify cDNAs that correspond to the variant exon sequences. We are now sequencing clones that map to NF1-homologous loci in order to develop discriminating primer pairs for the exclusive amplification of NF1-specific sequences in our efforts to develop a comprehensive NF1 mutation screen using genomic DNA as template. The role of NF1-homologous sequences may play in neurofibromatosis 1 is not clear.« less

  14. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci.

    PubMed

    Falcone, Emmanuela; Grandoni, Luca; Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor-miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported.

  15. Infinity: An In-Silico Tool for Genome-Wide Prediction of Specific DNA Matrices in miRNA Genomic Loci

    PubMed Central

    Garibaldi, Francesca; Manni, Isabella; Filligoi, Giancarlo; Piaggio, Giulia; Gurtner, Aymone

    2016-01-01

    Motivation miRNAs are potent regulators of gene expression and modulate multiple cellular processes in physiology and pathology. Deregulation of miRNAs expression has been found in various cancer types, thus, miRNAs may be potential targets for cancer therapy. However, the mechanisms through which miRNAs are regulated in cancer remain unclear. Therefore, the identification of transcriptional factor–miRNA crosstalk is one of the most update aspects of the study of miRNAs regulation. Results In the present study we describe the development of a fast and user-friendly software, named infinity, able to find the presence of DNA matrices, such as binding sequences for transcriptional factors, on ~65kb (kilobase) of 939 human miRNA genomic sequences, simultaneously. Of note, the power of this software has been validated in vivo by performing chromatin immunoprecipitation assays on a subset of new in silico identified target sequences (CCAAT) for the transcription factor NF-Y on colon cancer deregulated miRNA loci. Moreover, for the first time, we have demonstrated that NF-Y, through its CCAAT binding activity, regulates the expression of miRNA-181a, -181b, -21, -17, -130b, -301b in colon cancer cells. Conclusions The infinity software that we have developed is a powerful tool to underscore new TF/miRNA regulatory networks. Availability and Implementation Infinity was implemented in pure Java using Eclipse framework, and runs on Linux and MS Windows machine, with MySQL database. The software is freely available on the web at https://github.com/bio-devel/infinity. The website is implemented in JavaScript, PHP and HTML with all major browsers supported. PMID:27082112

  16. Lysosome-mediated Cell Death and Autophagy-Dependent Multidrug Resistance in Breast Cancer

    DTIC Science & Technology

    2008-10-01

    gene links mitochondria and cell death, the data suggests that Bcl2 may be involved in autophagic cell death and AD-MDR. GeneGo analysis also...GSK3 beta GSK3 beta E2A p53 p21 p21 E2F1 PPAR -gamma JNK1(MA PK8) JNK1(M APK8) ESR1 (nuclear) RARalpha Androgen receptor Androge n receptor p53...RelA (p65 NF-kB subunit) Erk (MAPK1/3 ) Erk (MAPK1/ 3) PPAR - gamma SOX9 Bcl-2 Bcl-2 RARalpha SP1 EGFR EGFR RelA (p65 NF- kB subunit) RARalpha RelA

  17. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17

    PubMed Central

    Yang, Yang; Cui, Yiting; Tang, Beisha

    2017-01-01

    Spinocerebellar ataxia 17 (SCA17) is caused by polyglutamine (polyQ) repeat expansion in the TATA-binding protein (TBP) and is among a family of neurodegenerative diseases in which polyQ expansion leads to preferential neuronal loss in the brain. Although previous studies have demonstrated that expression of polyQ-expanded proteins in glial cells can cause neuronal injury via noncell-autonomous mechanisms, these studies investigated animal models that overexpress transgenic mutant proteins. Since glial cells are particularly reactive to overexpressed mutant proteins, it is important to investigate the in vivo role of glial dysfunction in neurodegeneration when mutant polyQ proteins are endogenously expressed. In the current study, we generated two conditional TBP-105Q knock-in mouse models that specifically express mutant TBP at the endogenous level in neurons or in astrocytes. We found that mutant TBP expression in neuronal cells or astrocytes alone only caused mild neurodegeneration, whereas severe neuronal toxicity requires the expression of mutant TBP in both neuronal and glial cells. Coculture of neurons and astrocytes further validated that mutant TBP in astrocytes promoted neuronal injury. We identified activated inflammatory signaling pathways in mutant TBP-expressing astrocytes, and blocking nuclear factor κB (NF-κB) signaling in astrocytes ameliorated neurodegeneration. Our results indicate that the synergistic toxicity of mutant TBP in neuronal and glial cells plays a critical role in SCA17 pathogenesis and that targeting glial inflammation could be a potential therapeutic approach for SCA17 treatment. SIGNIFICANCE STATEMENT Mutant TBP with polyglutamine expansion preferentially affects neuronal viability in SCA17 patients. Whether glia, the cells that support and protect neurons, contribute to neurodegeneration in SCA17 remains mostly unexplored. In this study, we provide both in vivo and in vitro evidence arguing that endogenous expression of mutant TBP in neurons and glia synergistically impacts neuronal survival. Hyperactivated inflammatory signaling pathways, particularly the NF-κB pathway, underlie glia-mediated neurotoxicity. Moreover, blocking NF-κB activity with small chemical inhibitors alleviated such neurotoxicity. Our study establishes glial dysfunction as an important component of SCA17 pathogenesis and suggests targeting glial inflammation as a potential therapeutic approach for SCA17 treatment. PMID:28821675

  18. Vinpocetine mitigates proteinuria and podocytes injury in a rat model of diabetic nephropathy.

    PubMed

    Wadie, Walaa; El-Tanbouly, Dalia M

    2017-11-05

    Podocyte injury and glomerular basement membrane thickening have been considered as essential pathophysiological events in diabetic nephropathy. The aim of this study was to investigate the possible beneficial effects of vinpocetine on diabetes-associated renal damage. Male Wistar rats were made diabetic by injection of streptozotocin (STZ). Diabetic rats were treated with vinpocetine in a dose of 20mg/kg/day for 6 weeks. Treatment with vinpocetine resulted in a marked decrease in the levels of blood glucose, glycosylated haemoglobin, creatinine, blood urea nitrogen, urinary albumin and albumin/creatinine ratio along with an elevation in creatinine clearance rate. The renal contents of advanced glycation end-products, interleukin-10, tissue growth factor-β, nuclear factor (NF)-κB and Ras-related C3 botulinum toxin substrate 1 (Rac 1) were decreased. Renal nephrin and podocin contents were increased and their mRNA expressions were replenished in vinpocetine-treated rats. Moreover, administration of vinpocetine showed improvements in oxidative status as well as renal glomerular and tubular structures. The current investigation revealed that vinpocetine ameliorated the STZ-induced renal damage. This beneficial effect could be attributed to its antioxidant and antihyperglycemic effects parallel to its ability to inhibit NF-κB which eventually modulated cytokines production as well as nephrin and podocin proteins expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon No; Dutta, Raghbendra Kumar; Kim, Seul-Gi

    Highlights: •A fasting–refeeding high fat diet (HDF) model mimics irregular eating habit. •A fasting–refeeding HFD induces liver ballooning injury. •A fasting–refeeding HDF process elicits hepatic triglyceride accumulation. •Fenofibrate, PPARα ligand, prevents liver damage induced by refeeding HFD. -- Abstract: Fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist, is an anti-hyperlipidemic agent that has been widely used in the treatment of dyslipidemia. In this study, we examined the effect of fenofibrate on liver damage caused by refeeding a high-fat diet (HFD) in mice after 24 h fasting. Here, we showed that refeeding HFD after fasting causes liver damage in mice determinedmore » by liver morphology and liver cell death. A detailed analysis revealed that hepatic lipid droplet formation is enhanced and triglyceride levels in liver are increased by refeeding HFD after starvation for 24 h. Also, NF-κB is activated and consequently induces the expression of TNF-α, IL1-β, COX-2, and NOS2. However, treating with fenofibrate attenuates the liver damage and triglyceride accumulation caused by the fasting–refeeding HFD process. Fenofibrate reduces the expression of NF-κB target genes but induces genes for peroxisomal fatty acid oxidation, peroxisome biogenesis and mitochondrial fatty acid oxidation. These results strongly suggest that the treatment of fenofibrate ameliorates the liver damage induced by fasting–refeeding HFD, possibly through the activation of fatty acid oxidation.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS.more » Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Xiao-hui; Zhang, Ling, E-mail: lindazhang8508@hotmail.com; Chen, Guo-tao

    Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-β1 (TGF-β1) signaling pathway. Further investigation revealedmore » that rhALR suppresses the expression of TGF-β receptor type II (TβR II) and significantly alleviates TGF-β1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD. - Highlights: • ALR is involved in the pathological progression of renal EMT in NRK-52E cells. • ALR suppresses the expression of TβRII and the phosphorylation of Smad2 and NF-κB. • ALR plays a role in inhibiting progression of renal tubular EMT.« less

  2. Fish Scale Collagen Peptides Protect against CoCl2/TNF-α-Induced Cytotoxicity and Inflammation via Inhibition of ROS, MAPK, and NF-κB Pathways in HaCaT Cells

    PubMed Central

    Subhan, Fazli; Kang, Hae Yeong; Lim, Yeseon; Ikram, Muhammad; Baek, Sun-Yong; Jin, Songwan; Jeong, Young Hun; Kwak, Jong Young

    2017-01-01

    Skin diseases associated with inflammation or oxidative stress represent the most common problem in dermatology. The present study demonstrates that fish scale collagen peptides (FSCP) protect against CoCl2-induced cytotoxicity and TNF-α-induced inflammatory responses in human HaCaT keratinocyte cells. Our study is the first to report that FSCP increase cell viability and ameliorate oxidative injury in HaCaT cells through mechanisms mediated by the downregulation of key proinflammatory cytokines, namely, TNF-α, IL-1β, IL-8, and iNOS. FSCP also prevent cell apoptosis by repressing Bax expression, caspase-3 activity, and cytochrome c release and by upregulating Bcl-2 protein levels in CoCl2- or TNF-α-stimulated HaCaT cells. In addition, the inhibitory effects of FSCP on cytotoxicity and the induction of proinflammatory cytokine expression were found to be associated with suppression of the ROS, MAPK (p38/MAPK, ERK, and JNK), and NF-κB signaling pathways. Taken together, our data suggest that FSCP are useful as immunomodulatory agents in inflammatory or immune-mediated skin diseases. Furthermore, our results provide new insights into the potential therapeutic use of FSCP in the prevention and treatment of various oxidative- or inflammatory stress-related inflammation and injuries. PMID:28717410

  3. Pokemon reduces Bcl-2 expression through NF-κ Bp65: A possible mechanism of hepatocellular carcinoma.

    PubMed

    Zhao, Xinkai; Ning, Qiaoming; Sun, Xiaoning; Tian, De'an

    2011-06-01

    To investigate the relationship among Pokemon, NF-κ B p65 and Bcl-2 in hepatoma cells. HCC cell HepG2, SMMC7721 and human fetal liver cell line LO2 cells were used, and expression of Pokemon, NF-κ B p65 and Bcl-2 in three cells were detected by real-time PCR and western blot. Then siRNA of Pokemon was applied to inhibit the expression of Pokemon and NF-κ B p65 and apoptotic rate was determined by flow cytometric analysis. Expressions of Pokemon, NF-κ B p65 and Bcl-2 in human hepatoma cell HepG2, SMMC7721 expression were significantly higher than those in human embryonic stem cells LO2. siRNA of Pokemon inhibited the expression of Pokemon, NF-κ B p65 and Bcl-2 in liver cancer cells, and significantly increased apoptosis of liver cells. While siRNA of NF-κ B p65 inhibited the expression of NF-κ B p65 and Bcl-2, but Pokemon expression in hepatoma cells had no significant change. The proto-oncogene Pokemon can inhibit P14ARF by specific transcription regulation of cell cycle and can induce tumors. In addition, Pokemon can regulate NF-κ B p65 through the expression of apoptosis repressor, and promote the development of liver cancer. It suggests signal network in the liver include the regulation of new non-classical NF-κ B regulatory pathway. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  4. KB220Z™ a Pro-Dopamine Regulator Associated with the Protracted, Alleviation of Terrifying Lucid Dreams. Can We Infer Neuroplasticity-induced Changes in the Reward Circuit?

    PubMed Central

    McLaughlin, Thomas; Febo, Marcelo; Badgaiyan, Rajendra D.; Barh, Debmalya; Dushaj, Kristina; Braverman, Eric R.; Li, Mona; Madigan, Margaret A.; Blum, Kenneth

    2017-01-01

    Background Recent reports by our laboratory have indicated that lucid dreams may be linked to psychiatric conditions, including Attention Deficit Hyperactivity Disorder (ADHD) and other Reward Deficiency Syndrome-related diagnoses. In the latter case, it has been our observation that such lucid dreams can be unpleasant and frequently terrifying. Case presentations We present four cases of a dramatic and persistent alleviation of terrifying, lucid dreams in patients diagnosed with ADHD/PTSD and/or opiate/opioid addiction. The amelioration of such dreams could well be permanent, since the patients had stopped taking the nutraceutical for between 10 to 12 months, without their recollection or recurrence. In the first case, the patient is a 47-year-old, married male who required continued Buprenorphine/ Naloxone (Suboxone) treatment. The second case involved a 32-year-old female with the sole diagnosis of ADHD. The third case involves a 38-year-old male who carried the diagnoses of Substance Use Dependence and ADHD. The fourth case involved a 50-year-old female with the diagnoses of Alcohol Abuse, ADHD and Posttraumatic Stress Disorder. Results In order to attempt to understand the possibility of neuroplasticity, we evaluated the effect of KB220Z in non-opioid-addicted rats utilizing functional Magnetic Resonance Imaging methodology. While we cannot make a definitive claim because rat brain functional connectivity may not be exactly the same as humans, it does provide some interesting clues. We did find following seeding of the dorsal hippocampus, enhanced connectivity volume across several Regions of Interest (ROI), with the exception of the pre- frontal cortex. Interestingly, the latter region is only infrequently activated in lucid human dreaming, when the dreamer reports that he/she had the thought that they were dreaming during the lucid dream. Conclusions The four patients initially reported a gradual but, then, complete amelioration of their long-term, terrifying, lucid dreams, while taking KB220Z. The persistent amelioration of these dreams continued for up to 12 months, after a self-initiated, cessation of use of KB220Z. These particular cases raise the scientific possibility that KB200Z increases both dopamine stability as well as functional connectivity between networks of brain reward circuitry in both rodents and humans. The increase in connectivity volume in rodents suggest the induction of neuroplasticity changes, which may be analogous to those involved in human lucid dreaming as well as Rapid Eye Movement sleep. The possibility that the complex induces long-term, neuroplasticity changes must await more intensive investigations, involving large-population, double-blinded studies. PMID:28210713

  5. Lack of NF1 gene expression in a sporadic schwannoma from a patient without neurofibromatosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, K.K.; Dowton, B.; Silow-Santiago, I.

    The neurofibromatosis type 1 (NF1) gene encodes a tumor suppressor protein, neurofibromin, which is expressed at high levels in Schwann cells and other adult tissues. Loss of NF1 gene expression has been reported in Schwann cell tumors (neurofibrosarcomas) from patients with NF1 and its loss is associated with increased proliferation of these cells. We examined one spinal schwannoma from a patient without clinical features of neurofibromatosis type 1 or 2. The tumor was a typical schwannoma confirmed by standard neuropathologic criteria and expressed S100 by immunocytochemistry. NF1 gene expression in this tumor was examined by in situ hybridization using anmore » NF1-specific riboprobe, Northern blot analysis and reverse-transcribed (RT) PCR. Little or no expression of NF1 RNA could be detected using these methods whereas abundant expression of S100, cyclophilin and beta-action RNA was found in the tumor. Fibroblast and Schwann cells were then individually cultured from this schwannoma and the RNA extracted for Northern blot and RT-PCR analysis. In these cultured Schwann cells both from early and late passages, abundant expression of NF1 RNA could be detected. It is unlikely that our culture technique preferentially expanded {open_quotes}normal{close_quotes} Schwann cells, since NF1 acts as a tumor suppressor gene and its presence would not confer any growth advantage over the tumor-derived, neurofibromin-negative Schwann cells which presumably have an increased proliferation rate. Similarly, the conditions used to expand these Schwann cells do not result in increased NF1 gene expression as shown in previous studies. These results suggest that, in some tumors, expression of the NF1 gene can be downregulated by factors produced within the tumor and that this type of tumor suppressor gene downregulation may represent another mechanism other than mutation for turning off the expression of these growth-suppressing genes and allowing for cell proliferation in tumors.« less

  6. Aberrant ATRX protein expression is associated with poor overall survival in NF1-MPNST

    PubMed Central

    Lu, Hsiang-Chih; Eulo, Vanessa; Apicelli, Anthony J.; Pekmezci, Melike; Tao, Yu; Luo, Jingqin; Hirbe, Angela C.; Dahiya, Sonika

    2018-01-01

    Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive soft tissue sarcomas that can occur sporadically or in the setting of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. These tumors carry a dismal overall survival. Previous work in our lab had identified ATRX chromatin remodeler (ATRX), previously termed, Alpha Thalassemia/Mental Retardation Syndrome X Linked as a gene mutated in a subset of MPNSTs. Given the great need for novel biomarkers and therapeutic targets for MPNSTs, we sought to determine the expression of ATRX in a larger subset of sporadic and NF1 associated MPNSTs (NF1-MPNSTs). We performed immunohistochemistry (IHC) on 74 MPNSTs (43 NF1-associated and 31 sporadic), 21 plexiform neurofibromas, and 9 atypical neurofibromas. Using this approach, we have demonstrated that 58% (43/74) of MPNSTs have aberrant ATRX expression (<80% nuclear expression) compared to only 7% (2/30) of benign (plexiform and atypical) neurofibromas. Second, we demonstrated that 65% (28/43) of NF1-MPNSTs displayed aberrant ATRX expression as did 48% (15/31) of sporadic MPNSTs. Finally, we show that aberrant ATRX expression was associated with a significantly decreased overall survival for patients with NF1-MPNST (median OS of 17.9 months for aberrant expression and median OS not met (>120 months) for intact expression, p = 0.0276). In summary, we demonstrate that ATRX is aberrantly expressed in the majority of NF1-MPNSTs, but not plexiform or atypical neurofibromas. Additionally, aberrant ATRX expression is associated with decreased overall survival in NF1-MPNST, but not sporadic MPNST and may serve as a prognostic marker for patients with NF1-MPNST. PMID:29796169

  7. IQCJ-SCHIP1, a novel fusion transcript encoding a calmodulin-binding IQ motif protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwasnicka-Crawford, Dorota A.; Carson, Andrew R.; Scherer, Stephen W.

    The existence of transcripts that span two adjacent, independent genes is considered rare in the human genome. This study characterizes a novel human fusion gene named IQCJ-SCHIP1. IQCJ-SCHIP1 is the longest isoform of a complex transcriptional unit that bridges two separate genes that encode distinct proteins, IQCJ, a novel IQ motif containing protein and SCHIP1, a schwannomin interacting protein that has been previously shown to interact with the Neurofibromatosis type 2 (NF2) protein. IQCJ-SCHIP1 is located on the chromosome 3q25 and comprises a 1692-bp transcript encompassing 11 exons spanning 828 kb of the genomic DNA. We show that IQCJ-SCHIP1 mRNAmore » is highly expressed in the brain. Protein encoded by the IQCJ-SCHIP1 gene was localized to cytoplasm and actin-rich regions and in differentiated PC12 cells was also seen in neurite extensions.« less

  8. Prediction of anticancer activity of diterpenes isolated from the paraiban flora through a PLS model and molecular surfaces.

    PubMed

    Scotti, Luciana; Scotti, Marcus T; Ishiki, Hamilton; Junior, Francisco J B M; dos, Santos Paula F; Tavares, Josean F; da Silva, Marcelo S

    2014-05-01

    The aim of this work was to predict the anticancer potential of 3 atisane, and 3 trachylobane diterpene compounds extracted from the roots of Xylopia langsdorffiana. The prediction of anticancer activity as expressed against PC-3 tumor cells was made using a PLS model built with 26 diterpenes in the training set. Significant statistical measures were obtained. The six investigated diterpenes were applied to the model and their activities against PC-3 cells were calculated. All the diterpenes were active, with atisane diterpenes showing the higher pICso values. In human prostate carcinoma PC-3 cells, the apoptosis mechanism is related to an inhibition of IKK/NF-KB. Antioxidant potential implies a greater electronic molecular atmosphere (increased donor electron capacity), which can reduce radical reactivity, and facilitate post donation charge accommodation. Molecular surfaces indicated a much greater electronic cloud over atisane diterpenes.

  9. The Role of Protein Radicals in Chronic Neuroimmune Dysfunction and Neuropathology in Response to a Multiple-Hit Model of Gulf War Exposure

    DTIC Science & Technology

    2014-10-01

    potential neurotoxicants and triggers of inflammation, such as persistent peripheral inflammation and the organophosphate pesticide chlorpyrifos (CPF...War Illness Mouse Model, Chlorpyrifos , LPS, NF-KB p50, microglia, chronic neuroinflammation, serum markers, neuropathology 16. SECURITY...neurotoxicants and triggers of inflammation, such as persistent infections, and the organophosphate pesticide chlorpyrifos (CPF) may interact to

  10. Human Oncoprotein MDM2 Up-regulates Expression of NF-κB2 Precursor p100 Conferring a Survival Advantage to Lung Cells

    PubMed Central

    Vaughan, Catherine; Mohanraj, Lathika; Singh, Shilpa; Dumur, Catherine I.; Ramamoorthy, Mahesh; Garrett, Carleton T.; Windle, Brad; Yeudall, W. Andrew; Deb, Sumitra

    2011-01-01

    The current model predicts that MDM2 is primarily overexpressed in cancers with wild-type (WT) p53 and contributes to oncogenesis by degrading p53. Following a correlated expression of MDM2 and NF-κB2 transcripts in human lung tumors, we have identified a novel transactivation function of MDM2. Here, we report that in human lung tumors, overexpression of MDM2 was found in approximately 30% of cases irrespective of their p53 status, and expression of MDM2 and NF-κB2 transcripts showed a highly significant statistical correlation in tumors with WT p53. We investigated the significance of this correlated expression in terms of mechanism and biological function. Increase in MDM2 expression from its own promoter in transgenic mice remarkably enhanced expression of NF-κB2 compared with its non-transgenic littermates. Knockdown or elimination of endogenous MDM2 expression in cultured non-transformed or lung tumor cells drastically reduced expression of NF-κB2 transcripts, suggesting a normal physiological role of MDM2 in regulating NF-κB2 transcription. MDM2 could up-regulate expression of NF-κB2 transcripts when its p53-interaction domain was blocked with Nutlin-3, indicating that the MDM2-p53 interaction is dispensable for up-regulation of NF-κB2 expression. Consistently, analysis of functional domains of MDM2 indicated that although the p53-interaction domain of MDM2 contributes to the up-regulation of the NFκB2 promoter, MDM2 does not require direct interactions with p53 for this function. Accordingly, MDM2 overexpression in non-transformed or lung cancer cells devoid of p53 also generated a significant increase in the expression of NF-κB2 transcript and its targets CXCL-1 and CXCL-10, whereas elimination of MDM2 expression had the opposite effects. MDM2-mediated increase in p100/NF-κB2 expression reduced cell death mediated by paclitaxel. Furthermore, knockdown of NF-κB2 expression retarded cell proliferation. Based on these data, we propose that MDM2-mediated NF-κB2 up-regulation is a combined effect of p53-dependent and independent mechanisms and that it confers a survival advantage to lung cancer cells. PMID:22701761

  11. Post-treatment with Ma-Huang-Tang ameliorates cold-warm-cycles induced rat lung injury.

    PubMed

    Xiao, Meng-Meng; Pan, Chun-Shui; Liu, Yu-Ying; Ma, Li-Qian; Yan, Li; Fan, Jing-Yu; Wang, Chuan-She; Huang, Rong; Han, Jing-Yan

    2017-03-22

    Frequent and drastic ambient temperature variation may cause respiratory diseases such as common cold and pneumonia, the mechanism for which is not fully understood, however, due to lack of appropriate animal models. Ma-Huang-Tang (MHT) is widely used in China for treatment of respiratory diseases. The present study aimed to investigate the effect of MHT on temperature alternation induced rat lung injury and explore underlying mechanisms. Male Sprague-Dawley rats were exposed to a cold environment for 1 h and then shifted to a warm environment for 30 min. This cold and warm alteration cycled 4 times. Rats were administrated with MHT (1.87 g/kg) by gavage 6 h after cold-warm-cycles. Cold-warm-cycles induced pulmonary microcirculatory disorders, lung edema and injury, decrease in the expression of tight junction proteins, increase in VE-cadherin activation, increase in the expression and activation of Caveolin-1, Src and NF-κB, and NADPH oxidase subunits p47 phox , p40 phox and p67 phox membrane translocation and inflammatory cytokines production. All alterations were significantly ameliorated by post-treatment with MHT. This study showed that rats subjected to cold-warm-cycles may be used as an animal model to investigate ambient temperature variation-induced lung injury, and suggested MHT as a potential strategy to combat lung injury induced by temperature variation.

  12. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine.

    PubMed

    Banerjee, Sharmistha; Sinha, Krishnendu; Chowdhury, Sayantani; Sil, Parames C

    2018-01-05

    cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB.

    PubMed

    Liu, T Z; Lee, K T; Chern, C L; Cheng, J T; Stern, A; Tsai, L Y

    2001-10-01

    Excessive production of hydroxyl radicals in blood and liver has previously been demonstrated by us in rats with obstructive jaundice induced by common bile duct ligation (CBDL). In this study, we demonstrate overproduction of superoxide radicals in circulating blood of CBDL rats by the lucigenin-amplified chemiluminescence technique. To pinpoint the molecular agents that mediate these processes, we measured circulating proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta ( IL-1beta), and interleukin-6 (IL-6) in controls and CBDL rats. Concentrations of these cytokines in blood of CBDL rats were markedly elevated when compared to the controls (TNF-alpha: 36.7 +/- 5.0 vs 13.8 +/- 0.5 pg/mL; IL-6: 2,814 +/- 1,740 vs 0 pg/mL; IL-1beta: 11.9 +/- 2.6 vs 0 pg/mL). The overproduction of free radicals triggered by elevated cytokines in CBDL rats was correlated with the activation of NF-kappaB in hepatic tissue. Using the TdT-mediated dUTP nick-end label staining technique, we showed that hepatic tissue sections from CBDL rats had an increase in the apoptotic index (AI). Based on these findings, we propose that the severe hepatic injury in CBDL rats is mediated by a cycle that involves the activation of NF-kappaB by combined action of proinflammatory cytokines and reactive oxygen species (ROS). NF-KB, in turn, initiates the transcription of cytokine genes (eg, IL-6, IL-8, TNF-alpha), which triggers hepatic injury, at least in part, by a free radical-mediated apoptotic mechanism. Elevated ROS may be as a positive-feedback signal that triggers NF-KB reactivation; the severe hepatic injury of CBDL rats may result from perpetuation of this vicious cycle.

  14. Persistence of antigen is required to maintain transplantation tolerance induced by genetic modification of bone marrow stem cells.

    PubMed

    Tian, C; Bagley, J; Iacomini, J

    2006-09-01

    Genetic modification of hematopoietic stem cells (HSCs) resulting in a state of molecular chimerism can be used to induce donor-specific tolerance to allografts. However, the requirements for maintaining tolerance in molecular chimeras remain unknown. Here, we examined whether long-term expression of a retrovirally encoded alloantigen in hematopoietic cells is required to maintain donor-specific tolerance in molecular chimeras. To this end, mice were reconstituted with syngeneic bone marrow transduced with retroviruses carrying the gene encoding the allogeneic MHC class I molecule Kb. Following induction of molecular chimerism, mice were depleted of cells expressing Kb by administration of the anti-Kb monoclonal antibody Y-3. Mice that were effectively depleted of cells expressing the retrovirally encoded MHC class I antigen rejected Kb disparate skin allografts. In contrast, control molecular chimeras accepted Kb disparate skin allografts indefinitely. These data suggest maintenance of tolerance in molecular chimeras requires long-term expression of retrovirally transduced alloantigen on the progeny of retrovirally transduced HSCs.

  15. The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs).

    PubMed

    Li, Zhenyu; Zhong, Qiaoqing; Yang, Tianlun; Xie, Xiumei; Chen, Meifang

    2013-10-04

    Accumulation of advanced glycation end products (AGEs) in the vasculature triggers a series of morphological and functional changes contributing to endothelial hyperpermeability. The reorganisation and redistribution of the cytoskeleton regulated by profilin-1 mediates endothelial cell contraction, which results in vascular hyperpermeability. This study aimed to investigate the pivotal role of profilin-1 in the process of endothelial cell damage induced by AGEs. Human umbilical vein endothelial cells (HUVECs) were incubated with AGEs. The mRNA and protein expression of profilin-1 was determined using real-time PCR and western blotting analyses. The levels of intercellular adhesion molecule-1 (ICAM-1), nitric oxide (NO) and reactive oxygen species (ROS), as well as the activities of nuclear factor-κB (NF-κB) and protein kinase C (PKC), were detected using the appropriate kits. The levels of asymmetric dimethylarginine (ADMA) were determined using HPLC. The distribution of the cytoskeleton was visualised using immunofluorescent staining. Compared with the control, incubation of endothelial cells with AGEs (200 μg/ml) for 4 or 24 h significantly up-regulated the mRNA and protein expression of profilin-1, markedly increased the levels of ICAM-1 and ADMA and decreased the production of NO (P<0.05, P<0.01), which was significantly attenuated by pretreatment with DPI (an antioxidant), GF 109203X (PKC inhibitor) or BAY-117082 (NF-κB inhibitor). DPI (10 μmol/L) markedly decreased the elevated levels of ROS induced by AGEs (200 μg/ml, 24 h); however, GF 109203X (10 μmol/L) and BAY-117082 (5 μmol/L) exhibited no significant effect on the formation of ROS by AGEs. Immunofluorescent staining indicated that AGEs markedly increased the expression of profilin-1 in the cytoplasm and the formation of actin stress fibres, resulting in the rearrangement and redistribution of the cytoskeleton. This effect was significantly ameliorated by DPI, GF 109203X, BAY-117082 or siRNA treatment of profilin-1. Incubation with DPI and GF 109203X markedly inhibited the activation of PKC triggered by AGEs, and DPI and BAY-117082 significantly decreased the activity of NF-κB mediated by AGEs. Disruption of profilin-1 gene expression attenuated the extent of endothelial abnormalities by reducing ICAM-1 and ADMA levels and elevating NO levels (P<0.05, P<0.01), but this disruption had no effect on the activities of NF-κB and PKC (P>0.05). These findings suggested that profilin-1 might act as an ultimate and common cellular effector in the process of metabolic memory (endothelial abnormalities) mediated by AGEs via the ROS/PKC or ROS/NF-қB signalling pathways.

  16. Hyperbaric Oxygen and Ginkgo Biloba Extract Ameliorate Cognitive and Memory Impairment via Nuclear Factor Kappa-B Pathway in Rat Model of Alzheimer's Disease

    PubMed Central

    Zhang, Li-Da; Ma, Li; Zhang, Li; Dai, Jian-Guo; Chang, Li-Gong; Huang, Pei-Lin; Tian, Xiao-Qiang

    2015-01-01

    Background: Hyperbaric oxygen (HBO) and Ginkgo biloba extract (e.g., EGB 761) were shown to ameliorate cognitive and memory impairment in Alzheimer's disease (AD). However, the exact mechanism remains elusive. The aim of the present study was to investigate the possible mechanisms of HBO and EGB 761 via the function of nuclear factor kappa-B (NF-κB) pathway. Methods: AD rats were induced by injecting β-amyloid 25–35 into the hippocampus. All animals were divided into six groups: Normal, sham, AD model, HBO (2 atmosphere absolute; 60 min/d), EGB 761 (20 mg·kg−1·d−1), and HBO/EGB 761 groups. Morris water maze tests were used to assess cognitive, and memory capacities of rats; TdT-mediated dUTP Nick-End Labeling staining and Western blotting were used to analyze apoptosis and NF-κB pathway-related proteins in hippocampus tissues. Results: Morris water maze tests revealed that EGB 761 and HBO significantly improved the cognitive and memory ability of AD rats. In addition, the protective effect of combinational therapy (HBO/EGB 761) was superior to either HBO or EGB 761 alone. In line, reduced apoptosis with NF-κB pathway activation was observed in hippocampus neurons treated by HBO and EGB 761. Conclusions: Our results suggested that HBO and EGB 761 improve cognitive and memory capacity in a rat model of AD. The protective effects are associated with the reduced apoptosis with NF-κB pathway activation in hippocampus neurons. PMID:26608991

  17. Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visel, Axel; Zhu, Yiwen; May, Dalit

    2010-01-01

    Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation propertiesmore » of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.« less

  18. Hydrogen sulfide (H2S) attenuates uranium-induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2-NF-κB pathways.

    PubMed

    Zheng, Jifang; Zhao, Tingting; Yuan, Yan; Hu, Nan; Tang, Xiaoqing

    2015-12-05

    As an endogenous gaseous mediator, H2S exerts anti-oxidative, anti-inflammatory and cytoprotective effects in kidneys. This study was designed to investigate the protective effect of H2S against uranium-induced nephrotoxicity in adult SD male rats after in vivo effect of uranium on endogenous H2S formation was explored in kidneys. The levels of endogenous H2S and H2S-producing enzymes (CBS and CSE) were measured in renal homogenates from rats intoxicated by an intraperitoneally (i.p.) injection of uranyl acetate at a single dose of 2.5, 5 or 10 mg/kg. In rats injected i.p. with uranyl acetate (5 mg/kg) or NaHS (an H2S donor, 28 or 56 μmol/kg) alone or in combination, we determined biochemical parameters and histopathological alteration to assess kidney function, examined oxidative stress markers, and investigated Nrf2 and NF-κB pathways in kidney homogenates. The results suggest that uranium intoxication in rats decreased endogenous H2S generation as well as CBS and CSE protein expression. NaHS administration in uranium-intoxicated rats ameliorated the renal biochemical indices and histopathological effects, lowered MDA accumulation, and restored GSH level and anti-oxidative enzymes activities like SOD, CAT, GPx and GST. NaHS treatment in uranium-intoxicated rats activated uranium-inhibited protein expression and nuclear translocation of transcription factor Nrf2, which increased protein expression of downstream target-Nrf2 genes HO-1, NQO-1, GCLC, and TXNRD-1. NaHS administration in uranium-intoxicated rats inhibited uranium-induced nuclear translocation and phosphorylation of transcription factor κB/p65, which decreased protein expression of target-p65 inflammatory genes TNF-α, iNOS, and COX-2. Taken together, these data implicate that H2S can afford protection to rat kidneys against uranium-induced adverse effects through induction of antioxidant defense by activating Nrf2 pathway and reduction of inflammatory response by suppressing NF-κB pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Negative Regulation of NF-κB by the ING4 Tumor Suppressor in Breast Cancer

    PubMed Central

    Byron, Sara A.; Min, Elizabeth; Thal, Tanya S.; Hostetter, Galen; Watanabe, Aprill T.; Azorsa, David O.; Little, Tanya H.; Tapia, Coya; Kim, Suwon

    2012-01-01

    Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer. PMID:23056468

  20. Therapeutic Role of Rifaximin in Inflammatory Bowel Disease: Clinical Implication of Human Pregnane X Receptor Activation

    PubMed Central

    Cheng, Jie; Shah, Yatrik M.; Ma, Xiaochao; Pang, Xiaoyan; Tanaka, Toshiya; Kodama, Tatsuhiko; Krausz, Kristopher W.

    2010-01-01

    Human pregnane X receptor (PXR) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Rifaximin, a human PXR activator, is in clinical trials for treatment of IBD and has demonstrated efficacy in Crohn's disease and active ulcerative colitis. In the current study, the protective and therapeutic role of rifaximin in IBD and its respective mechanism were investigated. PXR-humanized (hPXR), wild-type, and Pxr-null mice were treated with rifaximin in the dextran sulfate sodium (DSS)-induced and trinitrobenzene sulfonic acid (TNBS)-induced IBD models to determine the protective function of human PXR activation in IBD. The therapeutic role of rifaximin was further evaluated in DSS-treated hPXR and Pxr-null mice. Results demonstrated that preadministration of rifaximin ameliorated the clinical hallmarks of colitis in DSS- and TNBS-treated hPXR mice as determined by body weight loss and assessment of diarrhea, rectal bleeding, colon length, and histology. In addition, higher survival rates and recovery from colitis symptoms were observed in hPXR mice, but not in Pxr-null mice, when rifaximin was administered after the onset of symptoms. Nuclear factor κB (NF-κB) target genes were markedly down-regulated in hPXR mice by rifaximin treatment. In vitro NF-κB reporter assays demonstrated inhibition of NF-κB activity after rifaximin treatment in colon-derived cell lines expressing hPXR. These findings demonstrated the preventive and therapeutic role of rifaximin on IBD through human PXR-mediated inhibition of the NF-κB signaling cascade, thus suggesting that human PXR may be an effective target for the treatment of IBD. PMID:20627999

  1. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat.

    PubMed

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-07-01

    Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of baicalin on toll-like receptor 4-mediated ischemia/reperfusion inflammatory responses in alcoholic fatty liver condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seok-Joo; Lee, Sun-Mee, E-mail: sunmee@skku.edu

    Alcoholic fatty liver is susceptible to secondary stresses such as ischemia/reperfusion (I/R). Baicalin is an active component extracted from Scutellaria baicalensis, which is widely used in herbal preparations for treatment of hepatic diseases and inflammatory disorders. This study evaluated the potential beneficial effect of baicalin on I/R injury in alcoholic fatty liver. Rats were fed an alcohol liquid diet or a control isocaloric diet for 5 weeks, and then subjected to 60 min of hepatic ischemia and 5 h of reperfusion. Baicalin (200 mg/kg) was intraperitoneally administered 24 and 1 h before ischemia. After reperfusion, baicalin attenuated the increases inmore » serum alanine aminotransferase activity, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) levels in alcoholic fatty liver. The increased levels of TNF-α and IL-6 mRNA expression and inducible nitric oxide synthase and cyclooxygenase-2 protein and mRNA expressions increased after reperfusion, which were higher in ethanol-fed animals, were attenuated by baicalin. In ethanol-fed animals, baicalin attenuated the increases in toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 protein expressions and the nuclear translocation of NF-κB after reperfusion. In conclusion, our findings suggest that baicalin ameliorates I/R-induced hepatocellular damage by suppressing TLR4-mediated inflammatory responses in alcoholic fatty liver. -- Highlights: ► Baicalin attenuates hepatic I/R-induced inflammation in alcoholic fatty liver. ► Baicalin downregulates TLR4, MyD88 expression during I/R in alcoholic fatty liver. ► Baicalin attenuates NF-κB nuclear translocation during I/R in alcoholic fatty liver.« less

  3. Synergistic Effects of Electroacupuncture and Mesenchymal Stem Cells on Intestinal Ischemia/Reperfusion Injury in Rats.

    PubMed

    Geng, Yanxia; Chen, Dong; Zhou, Jiang; Lu, Jun; Chen, Mingqi; Zhang, Haidong; Wang, Xing

    2016-08-01

    Electroacupuncture (EA) and transplantation of bone marrow mesenchymal stem cells (MSCs) are both promising therapeutic applications for intestinal disorders. The current study examined their combined effect on rat intestinal ischemia/reperfusion (I/R) injury and the possible mechanism. Five groups were performed: con group (shame operation),I/R group (model group), MSC group (I/R + MSC), EA group (I/R + EA), and combined group (I/R + MSC + EA). Intestinal histological damage, crypt cell proliferation degree, mucosal cytokines expression, and levels of inflammation factors were studied for each group. Compared with the I/R group, crypt cell proliferation index and mucosal mRNA concentration of SDF-1, CXCR4, EGF, EGFR in MSC group and EA group were significantly increased, with mucosal NF-кBp65 and serum inflammation factor (TNF-α, IL-6) levels significantly decreased. Above all of these indicators except NF-кBp65 were improved more notably in combined group than the other two treatment groups. Chiu's score was only ameliorated remarkably in the combined group. The combined treatment of MSC transplantion and electroacupuncture could protect intestinal mucosal barrier from I/R injury.

  4. Optimized Lentiviral Vector Design Improves Titer and Transgene Expression of Vectors Containing the Chicken β-Globin Locus HS4 Insulator Element

    PubMed Central

    Hanawa, Hideki; Yamamoto, Motoko; Zhao, Huifen; Shimada, Takashi; Persons, Derek A

    2009-01-01

    Hematopoietic cell gene therapy using retroviral vectors has achieved success in clinical trials. However, safety issues regarding vector insertional mutagenesis have emerged. In two different trials, vector insertion resulted in the transcriptional activation of proto-oncogenes. One strategy for potentially diminishing vector insertional mutagenesis is through the use of self-inactivating lentiviral vectors containing the 1.2-kb insulator element derived from the chicken β-globin locus. However, use of this element can dramatically decrease both vector titer and transgene expression, thereby compromising its practical use. Here, we studied lentiviral vectors containing either the full-length 1.2-kb insulator or the smaller 0.25-kb core element in both orientations in the partially deleted long-terminal repeat. We show that use of the 0.25-kb core insulator rescued vector titer by alleviating a postentry block to reverse transcription associated with the 1.2-kb element. In addition, in an orientation-dependent manner, the 0.25-kb core element significantly increased transgene expression from an internal promoter due to improved transcriptional termination. This element also demonstrated barrier activity, reducing variability of expression due to position effects. As it is known that the 0.25-kb core insulator has enhancer-blocking activity, this particular insulated lentiviral vector design may be useful for clinical application. PMID:19223867

  5. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    PubMed Central

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  6. Cyanidin-3-glucoside reverses ethanol-induced inhibition of neurite outgrowth: role of glycogen synthase kinase 3 Beta.

    PubMed

    Chen, Gang; Bower, Kimberly A; Xu, Mei; Ding, Min; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2009-05-01

    Ethanol is a potent teratogen for the developing central nervous system (CNS), and fetal alcohol syndrome (FAS) is the most common nonhereditary cause of mental retardation. Ethanol disrupts neuronal differentiation and maturation. It is important to identify agents that provide neuroprotection against ethanol neurotoxicity. Using an in vitro neuronal model, mouse Neuro2a (N2a) neuroblastoma cells, we demonstrated that ethanol inhibited neurite outgrowth and the expression of neurofilament (NF) proteins. Glycogen synthase kinase 3beta (GSK3beta), a multifunctional serine/threonine kinase negatively regulated neurite outgrowth of N2a cells; inhibiting GSK3beta activity by retinoic acid (RA) and lithium induced neurite outgrowth, while over-expression of a constitutively active S9A GSK3beta mutant prevented neurite outgrowth. Ethanol inhibited neurite outgrowth by activating GSK3beta through the dephosphorylation of GSK3beta at serine 9. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family rich in many edible berries and other pigmented fruits, enhanced neurite outgrowth by promoting p-GSK3beta(Ser9). More importantly, C3G reversed ethanol-mediated activation of GSK3beta and inhibition of neurite outgrowth as well as the expression of NF proteins. C3G also blocked ethanol-induced intracellular accumulation of reactive oxygen species (ROS). However, the antioxidant effect of C3G appeared minimally involved in its protection. Our study provides a potential avenue for preventing or ameliorating ethanol-induced damage to the developing CNS.

  7. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: Relevance of NF-κB signaling.

    PubMed

    Sahu, Bidya Dhar; Kumar, Jerald Mahesh; Sistla, Ramakrishna

    2016-02-01

    Fisetin, a dietary flavonoid, is commonly found in many fruits and vegetables. Although studies indicate that fisetin has an anti-inflammatory property, little is known about its effects on intestinal inflammation. The present study investigated the effects of the fisetin on dextran sulphate sodium (DSS)-induced murine colitis, an animal model that resembles human inflammatory bowel disease. Fisetin treatment to DSS-exposed mice significantly reduced the severity of colitis and alleviated the macroscopic and microscopic signs of the disease. Moreover, fisetin reduced the levels of myeloperoxidase activity, the production of proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and interleukin-6 (IL-6) and the expressions of COX-2 and iNOS in the colon tissues. Further studies revealed that fisetin suppressed the activation of NF-κB (p65) by inhibiting IκBα phosphorylation and NF-κB (p65)-DNA binding activity and attenuated the phosphorylation of Akt and the p38, but not ERK and JNK MAPKs in the colon tissues of DSS-exposed mice. In addition, DSS-induced decline in reduced glutathione (GSH) and the increase in malondialdehyde (MDA) levels were significantly restored by oral fisetin. Furthermore, the results from in vitro studies showed that fisetin significantly reduced the pro-inflammatory cytokine and mediator release and suppressed the degradation and phosphorylation of IκBα with subsequent nuclear translocation of NF-κB (p65) in lipopolysaccharide (LPS)-stimulated mouse primary peritoneal macrophages. These results suggest that fisetin exerts anti-inflammatory activity via inhibition of Akt, p38 MAPK and NF-κB signaling in the colon tissues of DSS-exposed mice. Thus, fisetin may be a promising candidate as pharmaceuticals or nutraceuticals in the treatment of inflammatory bowel disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression.

    PubMed

    He, Zhu-Mei; Jiang, Xiao-Ling; Qi, Yu; Luo, Di-Qing

    2008-06-01

    To assess the utility of the tomato fruit-specific E8 gene's promoter for driving vaccine antigen expression in plant, the 2.2 kb and 1.1 kb E8 promoters were isolated and sequenced from Lycopersicon esculentum cv. Jinfeng #1. The 1.1 kb promoter was fused to vaccine antigen HBsAg M gene for the transfer to Nicotiana tabacum, and the CaMV 35S promoter was used for comparison. Cholera toxin B (ctb) gene under the control of the 1.1 kb promoter was transformed into both N. tabacum and L. esculentum. Southern blot hybridization confirmed the stable integration of the target genes into the tomato and tobacco genomes. ELISA assay showed that the expression product of HBsAg M gene under the control of the 1.1 kb E8 promoter could not be detected in transgenic tobacco tissues such as leaves, flowers, and seeds. In contrast, the expression of HBsAg M gene driven by CaMV 35S promoter could be detected in transgenic tobacco. ELISA assay for CTB proved that the 1.1 kb E8 promoter was able to direct the expression of exotic gene in ripe fruits of transgenic tomato, but expression was absent in leaf, flower, and unripe fruit of tomato, and CTB protein was not detected in transgenic tobacco tissues such as leaves, flowers, and seeds when the gene was under the control of the 1.1 kb E8 promoter. The results indicated that the E8 promoter acted not only in an organ-specific, but also in a species-specific fashion in plant transformation.

  9. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila.

    PubMed

    Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M

    2001-03-01

    We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.

  10. Increased expression of NF-AT3 and NF-AT4 in the atria correlates with procollagen I carboxyl terminal peptide and TGF-β1 levels in serum of patients with atrial fibrillation.

    PubMed

    Zhao, Fei; Zhang, ShiJiang; Chen, YiJiang; Gu, WeiDong; Ni, BuQing; Shao, YongFeng; Wu, YanHu; Qin, JianWei

    2014-11-25

    Atrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice. Unfortunately, the precise mechanisms and sensitive serum biomarkers of atrial remodeling in AF remain unclear. The aim of this study was to determine whether the expression of the transcription factors NF-AT3 and NF-AT4 correlate with atrial structural remodeling of atrial fibrillation and serum markers for collagen I and III synthesis. Right and left atrial specimens were obtained from 90 patients undergoing valve replacement surgery. The patients were divided into sinus rhythm (n = 30), paroxysmal atrial fibrillation (n = 30), and persistent atrial fibrillation (n = 30) groups. NF-AT3, NF-AT4, and collagen I and III mRNA and protein expression in atria were measured. We also tested the levels of the carboxyl-terminal peptide from pro-collagen I, the N-terminal type I procollagen propeptides, the N-terminal type III procollagen propeptides, and TGF-β1 in serum using an enzyme immunosorbent assay. NF-AT3 and NF-AT4 mRNA and protein expression were increased in the AF groups, especially in the left atrium. NF-AT3 and NF-AT4 expression in the right atrium was increased in the persistent atrial fibrillation group compared the sinus rhythm group with similar valvular disease. In patients with AF, the expression levels of nuclear NF-AT3 and NF-AT4 correlated with those of collagens I and III in the atria and with PICP and TGF-β1 in blood. These data support the hypothesis that nuclear NF-AT3 and NF-AT4 participates in atrial structural remodeling, and that PICP and TGF-β1 levels may be sensitive serum biomarkers to estimate atrial structural remodeling with atrial fibrillation.

  11. An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines.

    PubMed

    Bale, Swarna; Venkatesh, Pooladanda; Sunkoju, Manoj; Godugu, Chandraiah

    2018-01-01

    Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF.

  12. An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines

    PubMed Central

    Bale, Swarna; Venkatesh, Pooladanda; Sunkoju, Manoj; Godugu, Chandraiah

    2018-01-01

    Pulmonary fibrosis (PF) is chronic lung disease with only two FDA approved clinically available drugs, with limited safety profile. Inadequate therapy motivated us to explore the effect of vimentin inhibitor Withaferin A, as an anti-fibrotic agent against TGF-β1-induced in vitro fibrotic events and Bleomycin induced in vivo fibrosis with an emphasis on epithelial to mesenchymal transition (EMT), extracellular matrix deposition (ECM), inflammation, and angiogenesis. In vitro EMT and fibrotic events were induced by TGF-β1 in alveolar epithelial cells and human fetal lung fibroblasts followed by treatment with Withaferin A (0.25, 0.5, and 1 μM concentrations) to explore its anti-fibrotic effects. In vivo potential of Withaferin A (2 and 4 mg/kg) was assessed in murine model of Bleomycin induced PF. All the parameters and molecular studies related to PF were performed at the end of treatment period. Withaferin A treatment reduced the progression of PF by modulating the EMT related cell markers both in vivo and in vitro. Withaferin A ameliorated the expression of inflammatory cytokines including NF-κB p65, IL-1β and TNF-α, as well as attenuated the expression of pro-fibrotic proteins including CTGF, collagen 1A2, collagen 3A1, and fibronectin. Expression of angiogenic factors like VEGF, FAK, p38 MAPK, and PLC-γ1 were also inhibited by Withaferin A. Phosphorylation of Smad 2/3 induced by TGF-β1 and Bleomycin were significantly inhibited. Withaferin A suppressed expression of pro-inflammatory, pro-fibrotic, and pro-angiogenic mediators and also reduced the ECM deposition. In a nutshell, Withaferin A could probably prove as an efficient and potential therapeutic against PF. PMID:29623041

  13. The Role of Protein Radicals in Chronic Neuroimmune Dysfunction and Neuropathology in Response to a Multiple-Hit Model of Gulf War Exposures

    DTIC Science & Technology

    2015-10-01

    neurotoxicants and triggers of inflammation, such as persistent peripheral inflammation and the organophosphate pesticide chlorpyrifos (CPF) may interact to...Model, Chlorpyrifos , LPS, NF-KB p50, microglia, chronic neuroinflammation, serum markers, neuropathology 16. SECURITY CLASSIFICATION OF: 17...potential neurotoxicants and triggers of inflammation, such as persistent infections, and the organophosphate pesticide chlorpyrifos (CPF) may

  14. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2.

    PubMed

    Ye, Peng; Yang, Xi-Liang; Chen, Xing; Shi, Cai

    2017-03-01

    Allergic airways disease (AAD) is one of the most common medical illnesses that is associated with an increased allergic airway inflammation. Hyperoside, an active compound isolated from Rhododendron brachycarpum G. Don, has been reported to have anti-inflammatory effect. The aim of this study was to analyze the protective effect of hyperoside on OVA-induced allergic airway inflammation in mice. In the present study, the mouse asthma model was induced by given OVA and hyperoside was administrated 1h before OVA challenge. The levels of IL-4, IL-5, IL-13, and IgE were detected by ELISA. H&E staining was used to assess lung histopathological changes. The expression of NF-κB p65, IκB, HO-1, and Nf-E2 related factor 2 (Nrf2) were measured by western blot analysis. The results showed that hyperoside significantly reduced the inflammatory cells infiltration and the levels of IL-4, IL-5, IL-13, and IgE. Hyperoside significantly inhibited OVA-induced oxidative stress as demonstrated by decreased MDA, and increased GSH and SOD levels. Treatment of hyperoside also inhibited OVA-induced airway hyperresponsiveness (AHR). Furthermore, the results showed that treatment of hyperoside significantly inhibited LPS-induced NF-κB activation. In addition, hyperoside was found to activate Nrf2/HO-1 signaling pathway. In conclusion, these results suggest that hyperoside ameliorates OVA-induced allergic airway inflammation by activating Nrf2 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Glatiramer acetate (GA) prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guoqian; Zhang, Xueyan; Su, Zhendong

    2015-01-30

    Highlights: • GA inhibited TNF-α-induced binding of monocytes to endothelial cells. • GA inhibited the induction of adhesion molecules MCP-1, VCAM-1 and E-selectin. • GA inhibits NF-κB p65 nuclear translocation and transcriptional activity. • GA inhibits TNF-α-induced IκBα degradation. - Abstract: Pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) is considered to be the major one contributing to the process of development of endothelial dysfunction. Exposure to TNF-α induces the expression of a number of proinflammatory chemokines, such as monocyte chemotactic protein-1 (MCP-1), and adhesion molecules, including vascular adhesion molecule-1 (VCAM-1) and E-selectin, which mediate the interaction of invading monocytesmore » with vascular endothelial cells. Glatiramer acetate (GA) is a licensed clinical drug for treating patients suffering from multiple sclerosis (MS). The effects of GA in vascular disease have not shown before. In this study, we found that GA significantly inhibited TNF-α-induced binding of monocytes to endothelial cells. Mechanistically, we found that GA ameliorated the upregulation of MCP-1, VCAM-1, and E-selectin induced by TNF-α. Notably, this process is mediated by inhibiting the nuclear translocation and activation of NF-κB. Our results also indicate that GA pretreatment attenuates the up-regulation of COX-2 and iNOS. These data suggest that GA might have a potential benefit in therapeutic endothelial dysfunction related diseases.« less

  16. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway.

    PubMed

    Ruifeng, Gao; Yunhe, Fu; Zhengkai, Wei; Ershun, Zhou; Yimeng, Li; Minjun, Yao; Xiaojing, Song; Zhengtao, Yang; Naisheng, Zhang

    2014-04-15

    Chlorogenic acid (CGA), one of the most abundant polyphenols in the diet, has been reported to have potent anti-inflammatory properties. However, the effect of CGA on lipopolysaccharide (LPS)-induced mice mastitis has not been investigated. The purpose of the present study was to elucidate whether CGA could ameliorate the inflammation response in LPS-induced mice mastitis and to clarify the possible mechanism. The mouse model of mastitis was induced by injection of LPS through the duct of mammary gland. CGA was administered intraperitoneally with the dose of 12.5, 25, and 50mg/kg respectively 1h before and 12h after induction of LPS. In this study, the effect of CGA on LPS-induced mice mastitis was assessed through histopathological examination, ELISA assay, and western blot analysis. The results showed that CGA significantly reduced TNF-α, IL-1β, and IL-6 production compared with LPS group. Besides, western blot analysis showed that CGA could inhibit the expression of TLR4 and the phosphorylation of NF-κB and IκB induced by LPS. These results suggested that anti-inflammatory effects of CGA against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathway. Therefore, CGA may be a potent therapeutic reagent for the prevention of the immunopathology encountered during Escherichia coli elicited mastitis. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella.

    PubMed

    Li, Jun Hua; Yu, Zhang Long; Xue, Na Na; Zou, Peng Fei; Hu, Jing Yu; Nie, P; Chang, Ming Xian

    2014-02-01

    Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules of innate immunity. In this study, a long-form PGRP, designated as gcPGRP6, was identified from grass carp Ctenopharyngodon idella. The deduced amino acid sequence of gcPGRP6 is composed of 464 residues with a conserved PGRP domain at the C-terminus. The gcPGRP6 gene consists of four exons and three introns, spacing approximately 2.7 kb of genomic sequence. Phylogenetic analysis demonstrated that gcPGRP6 is clustered closely with zebrafish PGLYRP6, and formed a long-type PGRP subfamily together with PGLYRP2 members identified in teleosts and mammals. Real-time PCR and Western blotting analyses revealed that gcPGRP6 is constitutively expressed in organs/tissues examined, and its expression was significantly induced in liver and intestine of grass carp in response to PGN stimulation and in CIK cells treated with lipoteichoic acid (LTA), polyinosinic polycytidylic acid (Poly I:C) and peptidoglycan (PGN). Immunofluorescence microscopy and Western blotting analyses revealed that gcPGRP6 is effectively secreted to the exterior of CIK cells. The over-expression of gcPGRP6 in CIK cells leads to the activation of NF-κB and the inhibition of intracellular bacterial growth. Moreover, cell lysates from CIK cells transfected with pTurbo-gcPGRP6-GFP plasmid display the binding activity towards Lys-type PGN from Staphylococcus aureus and DAP-type PGN from Bacillus subtilis. Furthermore, proinflammatory cytokine IL-2 and intracellular PGN receptor NOD2 had a significantly increased expression in CIK cells overexpressed with gcPGRP6. It is demonstrated that the PGRP6 in grass carp has a role in binding PGN, in inhibiting the growth of intracellular bacteria, and in activating NF-κB, as well as in regulating innate immune genes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. MHY1485 ameliorates UV-induced skin cell damages via activating mTOR-Nrf2 signaling

    PubMed Central

    Yang, Bo; Xu, Qiu-Yun; Guo, Chun-Yan; Huang, Jin-Wen; Wang, Shu-Mei; Li, Yong-Mei; Tu, Ying; He, Li; Bi, Zhi-Gang; Ji, Chao; Cheng, Bo

    2017-01-01

    Ultra Violet (UV)-caused skin cell damage is a main cause of skin cancer. Here, we studied the activity of MHY1485, a mTOR activator, in UV-treated skin cells. In primary human skin keratinocytes, HaCaT keratinocytes and human skin fibroblasts, MHY1485 ameliorated UV-induced cell death and apoptosis. mTOR activation is required for MHY1485-induced above cytoprotective actions. mTOR kinase inhibitors (OSI-027, AZD-8055 and AZD-2014) or mTOR shRNA knockdown almost abolished MHY1485-induced cytoprotection. Further, MHY1485 treatment in skin cells activated mTOR downstream NF-E2-related factor 2 (Nrf2) signaling, causing Nrf2 Ser-40 phosphorylation, stabilization/upregulation and nuclear translocation, as well as mRNA expression of Nrf2-dictated genes. Contrarily, Nrf2 knockdown or S40T mutation almost nullified MHY1485-induced cytoprotection. MHY1485 suppressed UV-induced reactive oxygen species production and DNA single strand breaks in skin keratinocytes and fibroblasts. Together, we conclude that MHY1485 inhibits UV-induced skin cell damages via activating mTOR-Nrf2 signaling. PMID:28061443

  19. Sulforaphane Ameliorates Okadaic Acid-Induced Memory Impairment in Rats by Activating the Nrf2/HO-1 Antioxidant Pathway.

    PubMed

    Dwivedi, Subhash; Rajasekar, N; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-10-01

    Okadaic acid (OKA) causes memory impairment and attenuates nuclear factor erythroid 2-related factor 2 (Nrf2) along with oxidative stress and neuroinflammation in rats. Sulforaphane (dietary isothiocyanate compound), an activator of Nrf2 signaling, exhibits neuroprotective effects. However, the protective effect of sulforaphane in OKA-induced neurotoxicity remains uninvestigated. Therefore, in the present study, the role of sulforaphane in OKA-induced memory impairment in rats was explored. A significant increased Nrf2 expression in the hippocampus and cerebral cortex was observed in trained (Morris water maze) rats, and a significant decreased Nrf2 expression in memory-impaired (OKA, 200 ng icv) rats indicated its involvement in memory function. Sulforaphane administration (5 and 10 mg/kg, ip, days 1 and 2) ameliorates OKA-induced memory impairment in rats. The treatment also restored Nrf2 and its downstream antioxidant protein expression (GCLC, HO-1) and attenuated oxidative stress (ROS, nitrite, GSH), neuroinflammation (NF-κB, TNF-α, IL-10), and neuronal apoptosis in the cerebral cortex and hippocampus of OKA-treated rats. Further, to determine whether modulation of Nrf2 signaling is responsible for the protective effect of sulforaphane, in vitro, Nrf2 siRNA and its downstream HO-1 inhibition studies were carried out in a rat astrocytoma cell line (C6). The protective effects of sulforaphane were abolished with Nrf2 siRNA and HO-1 inhibition in astrocytes. The results suggest that Nrf2-dependent activation of cellular antioxidant machinery results in sulforaphane-mediated protection against OKA-induced memory impairment in rats. Graphical Abstract ᅟ.

  20. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. Themore » 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. - Highlights: • We indicated a total of 50 members of ZmNF-Y gene family in maize genome. • We analyzed gene structure, protein architecture of ZmNF-Y genes. • Evolution pattern and phylogenic relationships were analyzed among 50 ZmNF-Y genes. • Expression pattern of ZmNF-Ys were detected in various maize tissues. • Transcript levels of ZmNF-Ys were measured under various abiotic and biotic stresses.« less

  1. NF45 inhibits cardiomyocyte apoptosis following myocardial ischemia-reperfusion injury.

    PubMed

    Liu, Xiaojuan; Zhang, Chi; Qian, Long; Zhang, Chao; Wu, Kunpeng; Yang, Chen; Yan, Daliang; Wu, Xiang; Shi, Jiahai

    2015-12-01

    Cardiomyocyte apoptosis, which occurs during ischemia and reperfusion injury, can cause irreversible damage to cardiac function. There is accumulating evidence that nuclear factor 45 (NF45) and regulatory pathways are important in understanding reparative processes in the myocardium. NF45 is a multifunctional regulator of gene expression that participates in the regulation of DNA break repair. Recently, NF45 has been proved to be associated with tumor cell apoptosis in various human malignancies. However, the underlying mechanism of NF45 regulating myocardial ischemia-reperfusion (I/R) injury remains unclear. In this study, western blot showed that NF45 expression decreased after myocardial I/R in vivo. Double immunofluorescent staining revealed that NF45, located in the nucleus of cardiomyocyes, was correlated with cardiomyocyte apoptosis. Furthermore, NF45 expression decreased in H9c2 cells after hypoxia-reoxygenation (H/R) treatment in vitro, which was in line with the results in vivo. Overexpression of NF45 in H9c2 cells reduced cell apoptosis, as evidenced by increased Bcl-2 level, as well as decreased cleaved caspase-3, p53 and p21 expression. The expression of NF45 was reduced by LY294002 (a PI3K/Akt inhibitor), but not SB203580 (a p38 inhibitor), suggesting that NF45 prevented H/R-induced H9c2 cell apoptosis via PI3K/Akt pathway. Our data may supply a novel molecular target for acute myocardial infarction (AMI) therapy. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Transcription factor NF-kappaB participates in regulation of epithelial cell turnover in the colon.

    PubMed

    Inan, M S; Tolmacheva, V; Wang, Q S; Rosenberg, D W; Giardina, C

    2000-12-01

    The transcription factor nuclear factor (NF)-kappaB regulates the expression of genes that can influence cell proliferation and death. Here we analyze the contribution of NF-kappaB to the regulation of epithelial cell turnover in the colon. Immunohistochemical, immunoblot, and DNA binding analyses indicate that NF-kappaB complexes change as colonocytes mature: p65-p50 complexes predominate in proliferating epithelial cells of the colon, whereas the p50-p50 dimer is prevalent in mature epithelial cells. NF-kappaB1 (p50) knockout mice were used to study the role of NF-kappaB in regulating epithelial cell turnover. Knockout animals lacked detectable NF-kappaB DNA binding activity in isolated epithelial cells and had significantly longer crypts with a more extensive proliferative zone than their wild-type counterparts (as determined by proliferating cell nuclear antigen staining and in vivo bromodeoxyuridine labeling). Gene expression profiling reveals that the NF-kappaB1 knockout mice express the potentially growth-enhancing tumor necrosis factor (TNF)-alpha and nerve growth factor-alpha genes at elevated levels, with in situ hybridization localizing some of the TNF-alpha expression to epithelial cells. TNF-alpha is NF-kappaB regulated, and its upregulation in NF-kappaB1 knockouts may result from an alleviation of p50-p50 repression. NF-kappaB complexes may therefore influence cell proliferation in the colon through their ability to selectively activate and/or repress gene expression.

  3. Glucagon Like Peptide-1 (GLP-1) Modulates OVA-Induced Airway Inflammation and Mucus Secretion Involving a Protein Kinase A (PKA)-Dependent Nuclear Factor-κB (NF-κB) Signaling Pathway in Mice.

    PubMed

    Zhu, Tao; Wu, Xiao-Ling; Zhang, Wei; Xiao, Min

    2015-08-26

    Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.

  4. Phyllostachys edulis Compounds Inhibit Palmitic Acid-Induced Monocyte Chemoattractant Protein 1 (MCP-1) Production

    PubMed Central

    Higa, Jason K.; Liang, Zhibin; Williams, Philip G.; Panee, Jun

    2012-01-01

    Background Phyllostachys edulis Carriere (Poaceae) is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs) and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2) is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA), a FFA. Methodology/Principal Findings MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX) inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. Conclusions/Significance PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible therapeutic application of BEX and its compounds toward alleviating chronic inflammation caused by elevated circulatory FFAs. PMID:23028772

  5. MicroRNA-3178 ameliorates inflammation and gastric carcinogenesis promoted by Helicobacter pylori new toxin, Tip-α, by targeting TRAF3.

    PubMed

    Zou, Meijuan; Wang, Fang; Jiang, Aiqin; Xia, Anliang; Kong, Siya; Gong, Chun; Zhu, Mingxia; Zhou, Xin; Zhu, Jun; Zhu, Wei; Cheng, Wenfang

    2017-04-01

    Helicobacter pylori infection is the main cause of chronic gastritis, peptic ulcer, and gastric cancer. Tip-α is a newly identified carcinogenic factor present in H. pylori. TRAF3 can activate NF-κB by both canonical and noncanonical signaling pathways. In this study, we found that the expression of TRAF3 and NF-κB was upregulated, while microRNA-3178 (miR-3178) was decreased in H. pylori-positive gastric tissues but not in H. pylori-negative tissues. GES-1 cells were incubated with 12.5 μg/mL recombinant Tip-α (rTip-α) in RPMI1640 for 2 hours. After another 24 hours, the supernatant medium was designed as inflammatory-conditioned medium (ICM) and that from the untreated control cells was designed as untreated control medium. The release of proinflammatory cytokines from GES-1 cells and proliferation of gastric cancer cells was determined by ELISA and CCK-8 kits. Cells were transfected with the mimic, inhibitor, negative control of miR-3178, or TRAF3 siRNA control siRNA. The medium was then replaced with RPMI1640, 12.5 μg/mL rTip-α, and collected, and the total cellular RNA and protein were extracted for the following detection. MiR-3178 mimic prevented the increasement of TRAF3 and hence decreased activation of NF-κB signals, whereas miR-3178 inhibitor could not, in GES-1 cells with Tip-α treatment. The condition medium from miR-3178 mimic transfected GES-1 cells could inhibit proliferation and induce apoptosis of inflammation-related gastric cancer cells SGC7901 and MGC803 by decreasing the production of inflammatory cytokines TNF-α and IL-6, which were secreted by GES-1 cells. Taken all together, Tip-α might activate NF-κB to promote inflammation and carcinogenesis by inhibiting miR-3178 expression, which directly targeting TRAF3, during H. pylori infection in gastric mucosal epithelial cells. © 2016 John Wiley & Sons Ltd.

  6. Substance P Induces HO-1 Expression in RAW 264.7 Cells Promoting Switch towards M2-Like Macrophages

    PubMed Central

    Montana, Giovanna

    2016-01-01

    Substance P (SP) is a neuropeptide that mediates many physiological as well as inflammatory responses. Recently, SP has been implicated in the resolution of inflammation through induction of M2 macrophages phenotype. The shift between M1-like and M2-like, allowing the resolution of inflammatory processes, also takes place by means of hemeoxygenase-1 (HO-1). HO-1 is induced in response to oxidative stress and inflammatory stimuli and modulates the immune response through macrophages polarisation. SP induces HO-1 expression in human periodontal ligament (PDL), the latter potentially plays a role in cytoprotection. We demonstrated that SP promotes M2-like phenotype from resting as well as from M1 macrophages. Indeed, SP triggers the production of interleukine-10 (IL-10), interleukine-4 (IL-4) and arginase-1 (Arg1) without nitric oxide (NO) generation. In addition, SP increases HO-1 expression in a dose- and time-dependent manner. Here we report that SP, without affecting cell viability, significantly reduces the production of pro-inflammatory cytokines and enzymes, such as tumor necrosis factor-alpha (TNF-α), interleukine-6 (IL-6), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and ameliorates migration and phagocytic properties in LPS-stimulated RAW 264.7 cells. M2-like conversion required retention of NF-κB p65 into the cytoplasm and HO-1 induced expression. Silencing of the HO-1 mRNA expression reversed the induction of pro-inflammatory cytokines in RAW 264.7 stimulated by LPS and down-regulated anti-inflammatory hallmarks of M2 phenotype. In conclusion, our data show that SP treatment might be associated with anti-inflammatory effects in LPS-stimulated RAW 264.7 cells by suppressing NF-κB activation and inducing HO-1 expression. PMID:27907187

  7. Resveratrol Ameliorates Palmitate-Induced Inflammation in Skeletal Muscle Cells by Attenuating Oxidative Stress and JNK/NF-κB Pathway in a SIRT1-Independent Mechanism.

    PubMed

    Sadeghi, Asie; Seyyed Ebrahimi, Shadi Sadat; Golestani, Abolfazl; Meshkani, Reza

    2017-09-01

    Resveratrol has been shown to exert anti-inflammatory and anti-oxidant effects in a variety of cell types, however, its role in prevention of inflammatory responses mediated by palmitate in skeletal muscle cells remains unexplored. In the present study, we investigated the effects of resveratrol on palmitate-induced inflammation and elucidated the underlying mechanisms in skeletal muscle cells. The results showed that palmitate significantly enhanced TNF-α and IL-6 mRNA expression and protein secretion from C2C12 cells at 12, 24, and 36 h treatments. Increased expression of cytokines was accompanied by an enhanced phosphorylation of JNK, P38, ERK1/2, and IKKα/IKKβ. In addition, JNK and P38 inhibitors could significantly attenuate palmitate-induced mRNA expression of TNF-α and IL-6, respectively, whereas NF-κB inhibitor reduced the expression of both cytokines in palmitate-treated cells. Resveratrol pretreatment significantly prevented palmitate-induced TNF-α and IL-6 mRNA expression and protein secretion in C2C12 cells. Importantly, pre-treatment of the cells with resveratrol completely abrogated the phosphorylation of ERK1/2, JNK, and IKKα/IKKβ in palmitate treated cells. The protection from palmitate-induced inflammation by resveratrol was accompanied by a decrease in the generation of reactive oxygen species (ROS). N-acetyl cysteine (NAC), a known scavenger of ROS, could protect palmitate-induced expression of TNF-α and IL-6. Furthermore, inhibition of SIRT1 by shRNA or sirtinol demonstrated that the anti-inflammatory effect of resveratrol in muscle cells is mediated through a SIRT1-independent mechanism. Taken together, these findings suggest that resveratrol may represent a promising therapy for prevention of inflammation in skeletal muscle cells. J. Cell. Biochem. 118: 2654-2663, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway.

    PubMed

    Zhu, Liping; Han, Jiakai; Yuan, Rongrong; Xue, Lei; Pang, Wuyan

    2018-03-31

    Diabetic nephropathy (DN) is the leading cause of end-stage renal failure, contributing to severe morbidity and mortality in diabetic patients. Berberine (BBR) has been well characterized to exert renoprotective effects in DN progression. However, the action mechanism of BBR in DN remains to be fully understood. The DN rat model was generated by intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) while 30 mM high glucose (HG)-treated podocytes were used as an in vitro DN model. The fasting blood glucose level and ratio of kidney weight to body weight were measured after BBR treatment (50, 100, or 200 mg/kg) in STZ-induced DN rats. The renal injury parameters including 24-h urinary protein, blood urea nitrogen and serum creatinine were assessed. qRT-PCR was performed to detect the transcript amounts of inflammatory factors. The concentrations of inflammatory factors were evaluated by ELISA kits. Western blot analysis was conducted to measure the amounts of TLR4/NF-κB-related proteins. The apoptotic rate of podocytes was analyzed by flow cytometry using Annexin V/propidium iodide. Berberine reduced renal injury in STZ-induced DN rat model, as evidenced by the decrease in fasting blood glucose, ratio of kidney weight to body weight, 24-h urinary protein, serum creatinine, and blood urine nitrogen. BBR attenuated the systemic and renal cortex inflammatory response and inhibited TLR4/NF-κB pathway in STZ-induced DN rats and HG-induced podocytes. Also, HG-induced apoptosis of podocytes was lowered by BBR administration. Furthermore, blockade of TLR4/NF-κB pathway by resatorvid (TAK-242) or pyrrolidine dithiocarbamate aggravated the inhibitory effect of BBR on HG-induced inflammatory response and apoptosis in podocytes. Berberine ameliorated DN through relieving STZ-induced renal injury, inflammatory response, and podocyte HG-induced apoptosis via inactivating TLR4/NF-κB pathway.

  9. Transforming growth factor-beta 1 (TGF-beta1) promotes IL-2 mRNA expression through the up-regulation of NF-kappaB, AP-1 and NF-AT in EL4 cells.

    PubMed

    Han, S H; Yea, S S; Jeon, Y J; Yang, K H; Kaminski, N E

    1998-12-01

    Transforming growth factor beta1 (TGF-beta1) has been previously shown to modulate interleukin 2 (IL-2) secretion by activated T-cells. In the present studies, we determined that TGF-beta1 induced IL-2 mRNA expression in the murine T-cell line EL4, in the absence of other stimuli. IL-2 mRNA expression was significantly induced by TGF-beta1 (0.1-1 ng/ml) over a relatively narrow concentration range, which led to the induction of IL-2 secretion. Under identical condition, we examined the effect of TGF-beta1 on the activity of nuclear factor AT (NF-AT), nuclear factor kappaB (NF-kappaB), activator protein-1 (AP-1) and octamer, all of which contribute to the regulation of IL-2 gene expression. Electrophoretic mobility shift assays showed that TGF-beta1 markedly increased NF-AT, NF-kappaB and AP-1 binding to their respective cognate DNA binding sites, whereas octamer binding remained constant, as compared with untreated cells. Employing a reporter gene expression system with p(NF-kappaB)3-CAT, p(NF-AT)3-CAT and p(AP-1)3-CAT, TGF-beta1 treatment of transfected EL4 cells induced a dose-related increase in chloramphenicol acetyltransferase activity that correlated well with the DNA binding profile found in the electrophoretic mobility shift assay studies. These results show that TGF-beta1, in the absence of any additional stimuli, up-regulates the activity of key transcription factors involved in IL-2 gene expression, including NF-AT, NF-kappaB and AP-1, to help promote IL-2 mRNA expression by EL4 cells.

  10. Striated muscle preferentially expressed genes alpha and beta are two serine/threonine protein kinases derived from the same gene as the aortic preferentially expressed gene-1.

    PubMed

    Hsieh, C M; Fukumoto, S; Layne, M D; Maemura, K; Charles, H; Patel, A; Perrella, M A; Lee, M E

    2000-11-24

    Aortic preferentially expressed gene (APEG)-1 is a 1.4-kilobase pair (kb) mRNA expressed in vascular smooth muscle cells and is down-regulated by vascular injury. An APEG-1 5'-end cDNA probe identified three additional isoforms. The 9-kb striated preferentially expressed gene (SPEG)alpha and the 11-kb SPEGbeta were found in skeletal muscle and heart. The 4-kb brain preferentially expressed gene was detected in the brain and aorta. We report here cloning of the 11-kb SPEGbeta cDNA. SPEGbeta encodes a 355-kDa protein that contains two serine/threonine kinase domains and is homologous to proteins of the myosin light chain kinase family. At least one kinase domain is active and capable of autophosphorylation. In the genome, all four isoforms share the middle three of the five exons of APEG-1, and they differ from each other by using different 5'- and 3'-ends and alternative splicing. We show that the expression of SPEGalpha and SPEGbeta is developmentally regulated in the striated muscle during C2C12 myoblast to myotube differentiation in vitro and cardiomyocyte maturation in vivo. This developmental regulation suggests that both SPEGalpha and SPEGbeta can serve as sensitive markers for striated muscle differentiation and that they may be important for adult striated muscle function.

  11. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions

    PubMed Central

    Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A.; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy

    2010-01-01

    NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise. PMID:20739506

  12. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions.

    PubMed

    Tantiwong, Puntip; Shanmugasundaram, Karthigayan; Monroy, Adriana; Ghosh, Sangeeta; Li, Mengyao; DeFronzo, Ralph A; Cersosimo, Eugenio; Sriwijitkamol, Apiradee; Mohan, Sumathy; Musi, Nicolas

    2010-11-01

    NF-κB is a transcription factor that controls the gene expression of several proinflammatory proteins. Cell culture and animal studies have implicated increased NF-κB activity in the pathogenesis of insulin resistance and muscle atrophy. However, it is unclear whether insulin-resistant human subjects have abnormal NF-κB activity in muscle. The effect that exercise has on NF-κB activity/signaling also is not clear. We measured NF-κB DNA-binding activity and the mRNA level of putative NF-κB-regulated myokines interleukin (IL)-6 and monocyte chemotactic protein-1 (MCP-1) in muscle samples from T2DM, obese, and lean subjects immediately before, during (40 min), and after (210 min) a bout of moderate-intensity cycle exercise. At baseline, NF-κB activity was elevated 2.1- and 2.7-fold in obese nondiabetic and T2DM subjects, respectively. NF-κB activity was increased significantly at 210 min following exercise in lean (1.9-fold) and obese (2.6-fold) subjects, but NF-κB activity did not change in T2DM. Exercise increased MCP-1 mRNA levels significantly in the three groups, whereas IL-6 gene expression increased significantly only in lean and obese subjects. MCP-1 and IL-6 gene expression peaked at the 40-min exercise time point. We conclude that insulin-resistant subjects have increased basal NF-κB activity in muscle. Acute exercise stimulates NF-κB in muscle from nondiabetic subjects. In T2DM subjects, exercise had no effect on NF-κB activity, which could be explained by the already elevated NF-κB activity at baseline. Exercise-induced MCP-1 and IL-6 gene expression precedes increases in NF-κB activity, suggesting that other factors promote gene expression of these cytokines during exercise.

  13. Characterization of the human UDP-galactose:ceramide galactosyltransferase gene promoter.

    PubMed

    Tencomnao, T; Yu, R K; Kapitonov, D

    2001-02-16

    UDP-galactose:ceramide galactosyltransferase (CGT, EC 2.4.1.45) is a key enzyme in the biosynthesis of galactocerebroside, the most abundant glycosphingolipid in the myelin sheath. An 8 kb fragment upstream from the transcription initiation site of CGT gene was isolated from a human genomic DNA library. Primer extension analysis revealed a single transcription initiation site 329 bp upstream from the ATG start codon. Neither a consensus TATA nor a CCAAT box was identified in the proximity to the transcription start site; however, this region contains a high GC content and multiple putative regulatory elements. To investigate the transcriptional regulation of CGT, a series of 5' deletion constructs of the 5'-flanking region were generated and cloned upstream from the luciferase reporter gene. By comparing promoter activity in the human oligodendroglioma (HOG) and human neuroblastoma (LAN-5) cell lines, we found that the CGT promoter functions in a cell type-specific manner. Three positive cis-acting regulatory regions were identified, including a proximal region at -292/-256 which contains the potential binding sites for known transcription factors (TFs) such as Ets and SP1 (GC box), a distal region at -747/-688 comprising a number of binding sites such as the ERE half-site, NF1-like, TGGCA-BP, and CRE, and a third positive cis-acting region distally localized at -1325/-1083 consisting of binding sites for TFs such as nitrogen regulatory, TCF-1, TGGCA-BP, NF-IL6, CF1, bHLH, NF1-like, GATA, and gamma-IRE. A negative cis-acting domain localized in a far distal region at -1594/-1326 was also identified. Our results suggest the presence of both positive and negative cis-regulatory regions essential for the cell-specific expression in the TATA-less promoter of the human CGT gene.

  14. Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Nabanita; Das, Subhadip; Bose, Dipayan

    Inflammation is a protective immune response against harmful stimuli whose long time continuation results in host disease. Quinazolinones are nitrogen containing heterocyclic compounds with wide spectrum of biological activities. The anticancer effect of a 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative was reported earlier. The anti-inflammatory effect of these quinazolinone derivatives has now been examined in endotoxin stimulated macrophages and in different in vivo models of inflammation by measuring the proinflammatory cytokines (TNF-α, IL-1β and IL-6), mediators NO and NF-κB (by ELISA and western blot), and translocation of the nuclear factor kB (by immunocytochemical analysis). To elucidate the in vivo effect, mice endotoxin model wasmore » and the various levels of edema, inflammatory pain and vascular permeability were studied. One of the quinazolinone derivatives showed significant anti-inflammatory activity in stimulated macrophage cells by inhibiting the expression of TNF-α, IL-1β, IL-6, iNOS, COX-2, p-IκB and NF-κBp65. Significant (P < 0.01) improvement was observed in the mortality of endotoxemic mice. The carrageenan and formalin-induced paw edema thicknesses were found to be reduced significantly (P < 0.01) along with the reduction of pain, vascular permeability and edema induced by complete Freund's adjuvant (P < 0.01). These findings indicate that 3-(arylideneamino)‐phenylquinazoline-4(3H)-one derivative as a potential anti-inflammatory agent. -- Highlights: ► 2-phenylquinazoline analog suppresses the cytokines in stimulated macrophages. ► 2-phenylquinazoline analog down regulated NF-kB P65 translocation. ► Role of 2-phenylquinazoline analog in endotoximia and peripheral inflammations.« less

  15. A porcine model of neurofibromatosis type 1 that mimics the human disease.

    PubMed

    White, Katherine A; Swier, Vicki J; Cain, Jacob T; Kohlmeyer, Jordan L; Meyerholz, David K; Tanas, Munir R; Uthoff, Johanna; Hammond, Emily; Li, Hua; Rohret, Frank A; Goeken, Adam; Chan, Chun-Hung; Leidinger, Mariah R; Umesalma, Shaikamjad; Wallace, Margaret R; Dodd, Rebecca D; Panzer, Karin; Tang, Amy H; Darbro, Benjamin W; Moutal, Aubin; Cai, Song; Li, Wennan; Bellampalli, Shreya S; Khanna, Rajesh; Rogers, Christopher S; Sieren, Jessica C; Quelle, Dawn E; Weimer, Jill M

    2018-06-21

    Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.

  16. Genome-wide characterization and expression analysis of citrus NUCLEAR FACTOR-Y (NF-Y) transcription factors identified a novel NF-YA gene involved in drought-stress response and tolerance.

    PubMed

    Pereira, Suzam L S; Martins, Cristina P S; Sousa, Aurizangela O; Camillo, Luciana R; Araújo, Caroline P; Alcantara, Grazielle M; Camargo, Danielle S; Cidade, Luciana C; de Almeida, Alex-Alan F; Costa, Marcio G C

    2018-01-01

    Nuclear factor Y (NF-Y) is a ubiquitous transcription factor found in eukaryotes. It is composed of three distinct subunits called NF-YA, NF-YB and NF-YC. NF-Ys have been identified as key regulators of multiple pathways in the control of development and tolerance to biotic and abiotic factors. The present study aimed to identify and characterize the complete repertoire of genes coding for NF-Y in citrus, as well as to perform the functional characterization of one of its members, namely CsNFYA5, in transgenic tobacco plants. A total of 22 genes coding for NF-Y were identified in the genomes of sweet orange (Citrus sinensis) and Clementine mandarin (C. clementina), including six CsNF-YAs, 11 CsNF-YBs and five CsNF-YCs. Phylogenetic analyses showed that there is a NF-Y orthologous in the Clementine genome for each sweet orange NF-Y gene; this was not observed when compared to Arabidopsis thaliana. CsNF-Y proteins shared the same conserved domains with their orthologous proteins in other organisms, including mouse. Analysis of gene expression by RNA-seq and EST data demonstrated that CsNF-Ys have a tissue-specific and stress inducible expression profile. qRT-PCR analysis revealed that CsNF-YA5 exhibits differential expression in response to water deficit in leaves and roots of citrus plants. Overexpression of CsNF-YA5 in transgenic tobacco plants contributed to the reduction of H2O2 production under dehydration conditions and increased plant growth and photosynthetic rate under normal conditions and drought stress. These biochemical and physiological responses to drought stress promoted by CsNF-YA5 may confer a productivity advantage in environments with frequent short-term soil water deficit.

  17. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    PubMed

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  18. Fisetin Ameliorated Photodamage by Suppressing the Mitogen-Activated Protein Kinase/Matrix Metalloproteinase Pathway and Nuclear Factor-κB Pathways.

    PubMed

    Chiang, Hsiu-Mei; Chan, Shih-Yun; Chu, Yin; Wen, Kuo-Ching

    2015-05-13

    Ultraviolet (UV) irradiation is one of the most important extrinsic factors contributing to skin photodamage. After UV irradiation, a series of signal transductions in the skin will be activated, leading to inflammatory response and photoaged skin. In this study, fisetin, a flavonol that exists in fruits and vegetables, was investigated for its photoprotective effects. The results revealed that 5-25 μM fisetin inhibits cyclooxygenase-2 (COX-2) and matrix metalloproteinase (MMP)-1, MMP-3, MMP-9 expression induced by ultraviolet B (UVB) irradiation in human skin fibroblasts. In addition, fisetin suppressed UVB-induced collagen degradation. With regard to its effect on upper-stream signal transduction, we found that fisetin reduced the expression of ultraviolet (UV)-induced ERK, JNK, and p38 phosphorylation in the mitogen-activated protein kinase (MAP kinase) pathway. Furthermore, fisetin reduced inhibitor κB (IκB) degradation and increased the amount of p65, which is a major subunit of nuclear factor-κB (NF-κB), in cytoplasm. It also suppressed NF-κB translocated to the nucleus and inhibited cAMP response element-binding protein (CREB) Ser-133 phosphorylation level in the phosphoinositide 3-kinase/protein kinase B/CREB (PI3K/AKT/CREB) pathway. Finally, fisetin inhibited UV-induced intracellular reactive oxygen species (ROS), prostaglandin E2 (PGE2), and nitric oxide (NO) generation. The mentioned effects and mechanisms suggest that fisetin can be used in the development of photoprotective agents.

  19. Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats.

    PubMed

    Zhang, Tingting; Su, Jingyuan; Guo, Bingyu; Wang, Kaiwen; Li, Xiaoming; Liang, Guobiao

    2015-09-01

    Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is associated with high morbidity and mortality. Inflammation has been considered as the major contributor to brain damage after SAH. SAH induces a systemic increase in pro-inflammatory cytokines and chemokines. Disruption of blood-brain barrier (BBB) facilitates the influx of inflammatory cells. It has been reported that the activation of toll-like receptor 4 (TLR4)/NF-κB signaling pathway plays a vital role in the central nervous system diseases. Apigenin, a common plant flavonoid, possesses anti-inflammation effect. In this study, we focused on the effects of apigenin on EBI following SAH and its anti-inflammation mechanism. Our results showed that apigenin (20mg/kg) administration significantly attenuated EBI (including brain edema, BBB disruption, neurological deficient, severity of SAH, and cell apoptosis) after SAH in rats by suppressing the expression of TLR4, NF-κB and their downstream pro-inflammatory cytokines in the cortex and by up-regulating the expression of tight junction proteins of BBB. Double immunofluorescence staining demonstrated that TLR4 was activated following SAH in neurons, microglia cells, and endothelial cells but not in astrocytes. Apigenin could suppress the activation of TLR4 induced by SAH and inhibit apoptosis of cells in the cortex. These results suggested that apigenin could attenuate EBI after SAH in rats by suppressing TLR4-mediated inflammation and protecting against BBB disruption. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Polysaccharide of Hericium erinaceus attenuates colitis in C57BL/6 mice via regulation of oxidative stress, inflammation-related signaling pathways and modulating the composition of the gut microbiota.

    PubMed

    Ren, Yilin; Geng, Yan; Du, Yan; Li, Wang; Lu, Zhen-Ming; Xu, Hong-Yu; Xu, Guo-Hua; Shi, Jin-Song; Xu, Zheng-Hong

    2018-03-16

    Inflammatory bowel disease (IBD) is a disease caused by a dysregulated immune with unknown etiology. Hericium erinaceus (H. erinaceus) is a Chinese medicinal fungus, with the effect of prevention and treatment of gastrointestinal disorders. In this study, we have tested the anti-inflammatory effect of polysaccharide of H. erinaceus (HECP, Mw: 86.67 kDa) in the model of dextran sulfate sodium (DSS)-induced colitis in C57BL/6 mice. Our data indicated that HECP could improve clinical symptoms and down-regulate key markers of oxidative stresses, including nitric oxide (NO), malondialdehyde (MDA), total superoxide dismutase (T-SOD), and myeloperoxidase (MPO). HECP also suppressed the secretion of interleukin (IL)-6, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and decreased the expression of related mRNA. Meanwhile, HECP blocked phosphorylation of nuclear factor-κB (NF-κB) p65, NF-κB inhibitor alpha (IκB-α), mitogen-activated protein kinases (MAPK) and Protein kinase B (Akt) in DSS-treated mice. Moreover, HECP reversed DSS-induced gut dysbiosis and maintained intestinal barrier integrity. In conclusion, HECP ameliorates DSS-induced intestinal injury in mice, which suggests that HECP can serve as a protective dietary nutrient against IBD. Copyright © 2018. Published by Elsevier Inc.

  1. Transcriptional regulation of FoxO3 gene by glucocorticoids in murine myotubes

    PubMed Central

    Kuo, Taiyi; Liu, Patty H.; Chen, Tzu-Chieh; Lee, Rebecca A.; New, Jenny; Zhang, Danyun; Lei, Cassandra; Chau, Andy; Tang, Yicheng; Cheung, Edna

    2016-01-01

    Glucocorticoids and FoxO3 exert similar metabolic effects in skeletal muscle. FoxO3 gene expression was increased by dexamethasone (Dex), a synthetic glucocorticoid, both in vitro and in vivo. In C2C12 myotubes the increased expression is due to, at least in part, the elevated rate of FoxO3 gene transcription. In the mouse FoxO3 gene, we identified three glucocorticoid receptor (GR) binding regions (GBRs): one being upstream of the transcription start site, −17kbGBR; and two in introns, +45kbGBR and +71kbGBR. Together, these three GBRs contain four 15-bp glucocorticoid response elements (GREs). Micrococcal nuclease (MNase) assay revealed that Dex treatment increased the sensitivity to MNase in the GRE of +45kbGBR and +71kbGBR upon 30- and 60-min Dex treatment, respectively. Conversely, Dex treatment did not affect the chromatin structure near the −17kbGBR, in which the GRE is located in the linker region. Dex treatment also increased histone H3 and/or H4 acetylation in genomic regions near all three GBRs. Moreover, using chromatin conformation capture (3C) assay, we showed that Dex treatment increased the interaction between the −17kbGBR and two genomic regions: one located around +500 bp and the other around +73 kb. Finally, the transcriptional coregulator p300 was recruited to all three GBRs upon Dex treatment. The reduction of p300 expression decreased FoxO3 gene expression and Dex-stimulated interaction between distinct genomic regions of FoxO3 gene identified by 3C. Overall, our results demonstrate that glucocorticoids activated FoxO3 gene transcription through multiple GREs by chromatin structural change and DNA looping. PMID:26758684

  2. NF-κB-Induced IL-6 Ensures STAT3 Activation and Tumor Aggressiveness in Glioblastoma

    PubMed Central

    McFarland, Braden C.; Hong, Suk W.; Rajbhandari, Rajani; Twitty, George B.; Gray, G. Kenneth; Yu, Hao; Benveniste, Etty N.; Nozell, Susan E.

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness. PMID:24244348

  3. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma.

    PubMed

    McFarland, Braden C; Hong, Suk W; Rajbhandari, Rajani; Twitty, George B; Gray, G Kenneth; Yu, Hao; Benveniste, Etty N; Nozell, Susan E

    2013-01-01

    Glioblastoma (GBM) is the most aggressive, neurologically destructive and deadly tumor of the central nervous system (CNS). In GBM, the transcription factors NF-κB and STAT3 are aberrantly activated and associated with tumor cell proliferation, survival, invasion and chemoresistance. In addition, common activators of NF-κB and STAT3, including TNF-α and IL-6, respectively, are abundantly expressed in GBM tumors. Herein, we sought to elucidate the signaling crosstalk that occurs between the NF-κB and STAT3 pathways in GBM tumors. Using cultured GBM cell lines as well as primary human GBM xenografts, we elucidated the signaling crosstalk between the NF-κB and STAT3 pathways utilizing approaches that either a) reduce NF-κB p65 expression, b) inhibit NF-κB activation, c) interfere with IL-6 signaling, or d) inhibit STAT3 activation. Using the clinically relevant human GBM xenograft model, we assessed the efficacy of inhibiting NF-κB and/or STAT3 alone or in combination in mice bearing intracranial xenograft tumors in vivo. We demonstrate that TNF-α-induced activation of NF-κB is sufficient to induce IL-6 expression, activate STAT3, and elevate STAT3 target gene expression in GBM cell lines and human GBM xenografts in vitro. Moreover, the combined inhibition of NF-κB and STAT3 signaling significantly increases survival of mice bearing intracranial tumors. We propose that in GBM, the activation of NF-κB ensures subsequent STAT3 activation through the expression of IL-6. These data verify that pharmacological interventions to effectively inhibit the activity of both NF-κB and STAT3 transcription factors must be used in order to reduce glioma size and aggressiveness.

  4. Identification of Novel Small Molecule Activators of Nuclear Factor-κB With Neuroprotective Action Via High-Throughput Screening

    PubMed Central

    Manuvakhova, Marina S.; Johnson, Guyla G.; White, Misti C.; Ananthan, Subramaniam; Sosa, Melinda; Maddox, Clinton; McKellip, Sara; Rasmussen, Lynn; Wennerberg, Krister; Hobrath, Judith V.; White, E. Lucile; Maddry, Joseph A.; Grimaldi, Maurizio

    2012-01-01

    Neuronal noncytokine-dependent p50/p65 nuclear factor-κB (the primary NF-κB complex in the brain) activation has been shown to exert neuroprotective actions. Thus neuronal activation of NF-κB could represent a viable neuroprotective target. We have developed a cell-based assay able to detect NF-κB expression enhancement, and through its use we have identified small molecules able to up-regulate NF-κB expression and hence trigger its activation in neurons. We have successfully screened approximately 300,000 compounds and identified 1,647 active compounds. Cluster analysis of the structures within the hit population yielded 14 enriched chemical scaffolds. One high-potency and chemically attractive representative of each of these 14 scaffolds and four singleton structures were selected for follow-up. The experiments described here highlighted that seven compounds caused noncanonical long-lasting NF-κB activation in primary astrocytes. Molecular NF-κB docking experiments indicate that compounds could be modulating NF-κB-induced NF-κB expression via enhancement of NF-κB binding to its own promoter. Prototype compounds increased p65 expression in neurons and caused its nuclear translocation without affecting the inhibitor of NF-κB (I-κB). One of the prototypical compounds caused a large reduction of glutamate-induced neuronal death. In conclusion, we have provided evidence that we can use small molecules to activate p65 NF-κB expression in neurons in a cytokine receptor-independent manner, which results in both long-lasting p65 NF-κB translocation/activation and decreased glutamate neurotoxicity. PMID:21046675

  5. NF-κB is involved in the LPS-mediated proliferation and apoptosis of MAC-T epithelial cells as part of the subacute ruminal acidosis response in cows.

    PubMed

    Fan, Wen-Jie; Li, He-Ping; Zhu, He-Shui; Sui, Shi-Ping; Chen, Pei-Ge; Deng, Yue; Sui, Tong-Ming; Wang, Yue-Ying

    2016-11-01

    To determine the effect of NF-κB on cell proliferation and apoptosis, we investigate the expression of inflammation and apoptosis-related factors in the bovine mammary epithelial cell line, MAC-T. MAC-T cells were cultured in vitro and MTT and LDH assays used to determine the effects of lipopolysaccharide (LPS) on proliferation and cytotoxicity respectively. RT-PCR and western blotting were used to evaluate the effect of LPS and NF-κB inhibition [pyrrolidine dithiocarbamate (PDTC) treatment] on the expression of inflammation and apoptosis-related factors. LPS significantly inhibited MAC-T cell proliferation in a dose- and time-dependent manner. Furthermore, LPS promoted apoptosis while the NF-кB inhibitor PDTC attenuated this effect. After LPS treatment, the NF-кB signaling pathway was activated, and the expression of inflammation and apoptosis-related factors increased. When PDTC blocked NF-кB signaling, the expression of inflammation and apoptosis-related factors were decreased in MAC-T cells. LPS activates the TLR4/NF-κB signaling pathway, inhibits proliferation and promotes apoptosis in MAC-T cells. NF-кB inhibition attenuates MAC-T cell apoptosis and TLR4/NF-κB signaling pathway. NF-кB inhibitor alleviating MAC-T cell apoptosis is presumably modulated by NF-кB.

  6. Dissecting Loss of Heterozygosity (LOH) in Neurofibromatosis Type 1-Associated Neurofibromas: Importance of Copy Neutral LOH

    PubMed Central

    Garcia-Linares, Carles; Fernández-Rodríguez, Juana; Terribas, Ernest; Mercadé, Jaume; Pros, Eva; Benito, Llúcia; Benavente, Yolanda; Capellà, Gabriel; Ravella, Anna; Blanco, Ignacio; Kehrer-Sawatzki, Hildegard; Lázaro, Conxi; Serra, Eduard

    2011-01-01

    Dermal neurofibromas (dNFs) are benign tumors of the peripheral nervous system typically associated with Neurofibromatosis type 1 (NF1) patients. Genes controlling the integrity of the DNA are likely to influence the number of neurofibromas developed because dNFs are caused by somatic mutational inactivation of the NF1 gene, frequently evidenced by loss of heterozygosity (LOH). We performed a comprehensive analysis of the prevalence and mechanisms of LOH in dNFs. Our study included 518 dNFs from 113 patients. LOH was detected in 25% of the dNFs (N = 129). The most frequent mechanism causing LOH was mitotic recombination, which was observed in 62% of LOH-tumors (N = 80), and which does not reduce the number of NF1 gene copies. All events were generated by a single crossover located between the centromere and the NF1 gene, resulting in isodisomy of 17q. LOH due to the loss of the NF1 gene accounted for a 38% of dNFs with LOH (N = 49), with deletions ranging in size from ∼80 kb to ∼8 Mb within 17q. In one tumor we identified the first example of a neurofibroma-associated second-hit type-2 NF1 deletion. Analysis of the prevalence of mechanisms causing LOH in dNFs in individual patients (possibly under genetic control) will elucidate whether there exist interindividual variation. Hum Mutat 32:78–90, 2011. © 2010 Wiley-Liss, Inc. PMID:21031597

  7. NF-kappaB mediates mitogen-activated protein kinase pathway-dependent iNOS expression in human melanoma.

    PubMed

    Uffort, Deon G; Grimm, Elizabeth A; Ellerhorst, Julie A

    2009-01-01

    Tumor expression of inducible nitric oxide synthase (iNOS) predicts poor outcomes for melanoma patients. We have reported the regulation of melanoma iNOS by the mitogen-activated protein kinase (MAPK) pathway. In this study, we test the hypothesis that NF-kappaB mediates this regulation. Western blotting of melanoma cell lysates confirmed the constitutive expression of iNOS. Western blot detected baseline levels of activated nuclear extracellular signal-regulated kinase and NF-kappaB. Indirect immunofluorescence confirmed the presence of NF-kappaB p50 and p65 in melanoma cell nuclei, with p50 being more prevalent. Electrophoretic mobility shift assay demonstrated baseline NF-kappaB activity, the findings confirmed by supershift analysis. Treatment of melanoma cells with the MEK inhibitor U0126 decreased NF-kappaB binding to its DNA recognition sequence, implicating the MAPK pathway in NF-kappaB activation. Two specific NF-kappaB inhibitors suppressed iNOS expression, demonstrating regulation of iNOS by NF-kappaB. Several experiments indicated the presence of p50 homodimers, which lack a transactivation domain and rely on the transcriptional coactivator Bcl-3 to carry out this function. Bcl-3 was detected in melanoma cells and co-immunoprecipitated with p50. These data suggest that the constitutively activated melanoma MAPK pathway stimulates activation of NF-kappaB hetero- and homodimers, which, in turn, drive iNOS expression and support melanoma tumorigenesis.

  8. Angiotensin II modulates interleukin-1{beta}-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-{kappa}B crosstalk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun

    2011-07-08

    Highlights: {yields} We examine how angiotensin II modulates ERK-NF-{kappa}B crosstalk and gene expression. {yields} Angiotensin II suppresses IL-1{beta}-induced prolonged ERK and NF-{kappa}B activation. {yields} ERK-RSK1 signaling is required for IL-1{beta}-induced prolonged NF-{kappa}B activation. {yields} Angiotensin II modulates NF-{kappa}B responsive genes via regulating ERK-NF-{kappa}B crosstalk. {yields} ERK-NF-{kappa}B crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. Inmore » cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1{beta}-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-{kappa}B, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1{beta}-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1{beta}, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE{sup -/-}) mice. VCAM-1 and iNOS expression were higher in ApoE{sup -/-} than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE{sup -/-} mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-{kappa}B crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.« less

  9. NEMO Binding Domain peptide inhibits constitutive NF-κB activity and reduces tumor burden in a canine model of relapsed, refractory Diffuse Large B-Cell Lymphoma

    PubMed Central

    Gaurnier-Hausser, Anita; Patel, Reema; Baldwin, Albert S.; May, Michael J.; Mason, Nicola J.

    2011-01-01

    Purpose Activated B-Cell Diffuse Large B-Cell Lymphoma (ABC-DLBCL) is an aggressive, poorly chemoresponsive lymphoid malignancy characterized by constitutive canonical NF-κB activity that promotes lymphomagenesis and chemotherapy resistance via over-expression of anti-apoptotic NF-κB target genes. Inhibition of the canonical NF-κB pathway may therefore have therapeutic relevance in ABC-DLBCL. Here we set out to determine whether dogs with spontaneous DLBCL have comparative aberrant constitutive NF-κB activity and to determine the therapeutic relevance of NF-κB inhibition in dogs with relapsed, resistant DLBCL. Experimental Design Canonical NF-κB activity was evaluated by electrophoretic mobility shift assays and immunoblot analyses, and NF-κB target gene expression was measured by qRT-PCR. Primary malignant canine B lymphocytes were treated with the selective IKK complex inhibitor Nemo Binding Domain (NBD) peptide, and evaluated for NF-κB activity and apoptosis. NBD peptide was administered intra-nodally to dogs with relapsed B-cell lymphoma and NF-κB target gene expression and tumor burden were evaluated pre and post treatment. Results Constitutive canonical NF-κB activity and increased NF-κB target gene expression was detected in primary DLBCL tissue. NBD peptide inhibited this activity and induced apoptosis of primary malignant B cells in vitro. Intra-tumoral injections of NBD peptide to dogs with relapsed DLBCL inhibited NF-κB target gene expression and reduced tumor burden. Conclusions This work shows that dogs with spontaneous DLBCL represent a clinically relevant, spontaneous, large animal model for human ABC-DLBCL and demonstrates the therapeutic relevance of NF-κB inhibition in the treatment of ABC-DLBCL. These results have important translational relevance for ABC-DLBCL treatment in human patients. PMID:21610150

  10. Over-expression of Flt3 induces NF-kappaB pathway and increases the expression of IL-6.

    PubMed

    Takahashi, Shinichiro; Harigae, Hideo; Ishii, Keiko Kumura; Inomata, Mitsue; Fujiwara, Tohru; Yokoyama, Hisayuki; Ishizawa, Kenichi; Kameoka, Junichi; Licht, Jonathan D; Sasaki, Takeshi; Kaku, Mitsuo

    2005-08-01

    Activating mutations or over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), associated with activation of Ras/MAP kinase and other signaling pathways. In this study, we addressed the role of Flt3 in the activation of nuclear factor-kappa B (NF-kappaB), which is a target molecule of these kinase pathways. In BaF3 cells stably expressing Flt3, a NF-kappaB-responsive reporter was upregulated and its target gene, IL-6, was increased by the involvement of Flt3-ERK/MAPK-NF-kappaB pathway. Furthermore, we found a modest positive correlation (r=0.35, p=0.096) between Flt3 and IL-6 mRNA expression in 24 AML specimens. These results suggest a role of Flt3 over-expression in NF-kappaB pathway.

  11. Prx1 and 3.2 kb Col1a1 promoters target distinct bone cell populations in transgenic mice

    PubMed Central

    Ouyang, Zhufeng; Chen, Zhijun; Ishikawa, Masakazu; Yue, Xiuzhen; Kawanami, Aya; Leahy, Patrick; Greenfield, Edward M.; Murakami, Shunichi

    2014-01-01

    Bones consist of a number of cell types including osteoblasts and their precursor cells at various stages of differentiation. To analyze cellular organization within the bone, we generated Col1a1CreER-DsRed transgenic mice that express, in osteoblasts, CreER and DsRed under the control of a mouse 3.2 kb Col1a1 promoter. We further crossed Col1a1CreER-DsRed mice with Prx1CreER-GFP mice that express CreER and GFP in osteochondro progenitor cells under the control of a 2.4 kb Prx1 promoter. Since the 3.2 kb Col1a1 promoter becomes active in osteoblasts at early stages of differentiation, and Prx1CreER-GFP-expressing periosteal cells show endogenous Col1a1 expression, we expected to find a cell population in which both the 2.4 kb Prx1 promoter and the 3.2 kb Col1a1 promoter are active. However, our histological and flow cytometric analyses demonstrated that these transgenes are expressed in distinct cell populations. In the periosteum of long bones, Col1a1CreER-DsRed is expressed in the innermost layer directly lining the bone surface, while Prx1CreER-GFP-expressing cells are localized immediately outside of the Col1a1CreER-DsRed-expressing osteoblasts. In the calvaria, Prx1CreER-GFP-expressing cells are also localized in the cranial suture mesenchyme. Our experiments further showed that Col1a1CreER-DsRed-expressing cells lack chondrogenic potential, while the Prx1CreER-GFP-expressing cells show both chondrogenic and osteogenic potential. Our results indicate that Col1a1CreER-DsRed-expressing cells are committed osteoblasts, while Prx1CreER-GFP-expressing cells are osteochondro progenitor cells. The Prx1CreER-GFP and Col1a1CreER-DsRed transgenes will offer novel approaches for analyzing lineage commitment and early stages of osteoblast differentiation under physiologic and pathologic conditions. PMID:24513582

  12. Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

    PubMed Central

    Kim, Seung-Jae; Cha, Ji-Young; Kang, Hye Suk; Lee, Jae-Ho; Lee, Ji Yoon; Park, Jae-Hyung; Bae, Jae-Hoon; Song, Dae-Kyu; Im, Seung-Soon

    2016-01-01

    Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation. [BMB Reports 2016; 49(5): 276-281] PMID:26615974

  13. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines

    PubMed Central

    Xu, Ning; An, Jun

    2017-01-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation. PMID:29250144

  14. Formononetin ameliorates mast cell-mediated allergic inflammation via inhibition of histamine release and production of pro-inflammatory cytokines.

    PubMed

    Xu, Ning; An, Jun

    2017-12-01

    Various allergic diseases cause allergic inflammation, which is mediated by mast cells. The current study investigated the anti-allergic inflammatory effects of formononetin and its mechanism of action in vitro using mast cells. Levels of histamine and pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6, were measured to assess the effects of formononetin on allergic inflammation. The activation of intracellular calcium and nuclear factor (NF)-κB, as well as the activity of caspase-1, were assessed to determine the mechanism of action. It was determined that difference concentrations of formononetin (0.1, 1 and 10 µM) suppressed histamine release and secretion of TNF-α, IL-1β and IL-6. Further investigations indicated that the effects of formononetin were associated with a reduction of intracellular calcium, suppression of NF-κB activation and upstream IκKα phosphorylation and inhibition of caspase-1 activity. Therefore, the results of the current study demonstrated that formononetin ameliorated mast cell-mediated allergic inflammation.

  15. Identification of a locus control region for quadruplicated green-sensitive opsin genes in zebrafish

    PubMed Central

    Tsujimura, Taro; Chinen, Akito; Kawamura, Shoji

    2007-01-01

    Duplication of opsin genes has a crucial role in the evolution of visual system. Zebrafish have four green-sensitive (RH2) opsin genes (RH2–1, RH2–2, RH2–3, and RH2–4) arrayed in tandem. They are expressed in the short member of the double cones (SDC) but differ in expression areas in the retina and absorption spectra of their encoding photopigments. The shortest and the second shortest wavelength subtypes, RH2–1 and RH2–2, are expressed in the central-to-dorsal retina. The longer wavelength subtype, RH2–3, is expressed circumscribing the RH2–1/RH2–2 area, and the longest subtype, RH2–4, is expressed further circumscribing the RH2–3 area and mainly occupying the ventral retina. The present report shows that a 0.5-kb region located 15 kb upstream of the RH2 gene array is an essential regulator for their expression. When the 0.5-kb region was deleted from a P1-artificial chromosome (PAC) clone encompassing the four RH2 genes and when one of these genes was replaced with a reporter GFP gene, the GFP expression in SDCs was abolished in the zebrafish to which a series of the modified PAC clones were introduced. Transgenic studies also showed that the 0.5-kb region conferred the SDC-specific expression for promoters of a non-SDC (UV opsin) and a nonretinal (keratin 8) gene. Changing the location of the 0.5-kb region in the PAC clone conferred the highest expression for its proximal gene. The 0.5-kb region was thus designated as RH2-LCR analogous to the locus control region of the L-M opsin genes of primates. PMID:17646658

  16. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families.

    PubMed

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-09-16

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Inhibition of soluble epoxide hydrolase lowers portal hypertension in cirrhotic rats by ameliorating endothelial dysfunction and liver fibrosis.

    PubMed

    Deng, Wensheng; Zhu, Yiming; Lin, Jiayun; Zheng, Lei; Zhang, Chihao; Luo, Meng

    2017-07-01

    Epoxyeicostrienoic acids (EETs) are arachidonic acid derived meditators which are catalyzed by soluble epoxide hydrolase (sEH) to less active dihydroeicostrienoics acids (DHETS). The aim of our study is to investigate the effects of sEH inhibition on hepatic and systemic hemodynamics, hepatic endothelial dysfunction, and hepatic fibrosis in CCl4 cirrhotic rats. The sEH inhibitor,trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid (t-TUCB) was administered to stabilize hepatic EETs by gavage at a dose of 1mg/kg/d. Our results showed that hepatic sEH expression was markedly increased in portal hypertension, and led to a lower ratio of EETs/DHETs which was effectively reversed by t-TUCB administration. t-TUCB significantly decreased portal pressure without significant changes in systemic hemodynamics, which was associated with the attenuation of intrahepatic vascular resistance (IHVR) and liver fibrosis. t-TUCB ameliorated endothelial dysfunction, increased hepatic endothelial nitric oxide synthase (eNOS) phosphorylation and nitric oxide (NO) production. In addition, t-TUCB significantly reduced alpha-Smooth Muscle Actin (α-SMA) expression and liver fibrosis, which was associated with a decrease in NF-κB signaling. Taken together, inhibition of sEH reduces portal pressure, liver fibrosis and attenuates hepatic endothelial dysfunction in cirrhotic rats. Our results indicate that sEH inhbitors may be useful in the treatment of portal hypertension in patients with cirrhosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Bromodomain and Extraterminal (BET) Protein Inhibition Suppresses Human T Cell Leukemia Virus 1 (HTLV-1) Tax Protein-mediated Tumorigenesis by Inhibiting Nuclear Factor κB (NF-κB) Signaling*

    PubMed Central

    Wu, Xuewei; Qi, Jun; Bradner, James E.; Xiao, Gutian; Chen, Lin-Feng

    2013-01-01

    The etiology of human T cell leukemia virus 1 (HTLV-1)-mediated adult T cell leukemia is associated with the ability of viral oncoprotein Tax to induce sustained NF-κB activation and the expression of many NF-κB target genes. Acetylation of the RelA subunit of NF-κB and the subsequent recruitment of bromodomain-containing factor Brd4 are important for the expression of NF-κB target genes in response to various stimuli. However, their contributions to Tax-mediated NF-κB target gene expression and tumorigenesis remain unclear. Here we report that Tax induced the acetylation of lysine 310 of RelA and the binding of Brd4 to acetylated RelA to facilitate Tax-mediated transcriptional activation of NF-κB. Depletion of Brd4 down-regulated Tax-mediated NF-κB target gene expression and cell proliferation. Inhibiting the interaction of Brd4 and acetylated RelA with the bromodomain extraterminal protein inhibitor JQ1 suppressed the proliferation of Tax-expressing rat fibroblasts and Tax-positive HTLV-1-infected cells and Tax-mediated cell transformation and tumorigenesis. Moreover, JQ1 attenuated the Tax-mediated transcriptional activation of NF-κB, triggering the polyubiquitination and proteasome-mediated degradation of constitutively active nuclear RelA. Our results identify Brd4 as a key regulator for Tax-mediated NF-κB gene expression and suggest that targeting epigenetic regulators such as Brd4 with the bromodomain extraterminal protein inhibitor might be a potential therapeutic strategy for cancers and other diseases associated with HTLV-1 infection. PMID:24189064

  19. p55PIK regulates alpha-fetoprotein expression through the NF-κB signaling pathway.

    PubMed

    Ye, Guoguo; Sun, Ge; Cheng, Zhikui; Zhang, Lei; Hu, Kanghong; Xia, Xianmin; Zhou, Yin

    2017-12-15

    Alpha-fetoprotein (AFP) is regarded as a diagnostic and prognostic biomarker and a potential therapeutic target for hepatocellular carcinoma (HCC). However, the regulation of AFP expression in HCC remains poorly understood. This study aimed to investigate the mechanism by which AFP expression is regulated by p55PIK, an isoform of PI3K. Human HCC cell lines (HepG2 and Huh-7) were treated with p55PIK specific competitive inhibitor or shRNA, or p55PIK overexpression vector, in the absence or presence of NF-κB inhibitor PDTC. AFP expression was detected by quantitative real-time PCR and Western blotting. NF-κB responsive elements in AFP enhancer region were characterized by luciferase reporter assay. p55PIK significantly stimulated the expression of AFP by activating NF-κB signaling pathway in HCC cells. Furthermore, two NF-κB binding sites in AFP enhancer region were identified to be primarily responsible for p55PIK mediated upregulation of AFP expression. p55PIK/NF-κB signaling plays an important role in the upregulation of AFP expression in HCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A Genetic Variant Ameliorates β-Thalassemia Severity by Epigenetic-Mediated Elevation of Human Fetal Hemoglobin Expression.

    PubMed

    Chen, Diyu; Zuo, Yangjin; Zhang, Xinhua; Ye, Yuhua; Bao, Xiuqin; Huang, Haiyan; Tepakhan, Wanicha; Wang, Lijuan; Ju, Junyi; Chen, Guangfu; Zheng, Mincui; Liu, Dun; Huang, Shuodan; Zong, Lu; Li, Changgang; Chen, Yajun; Zheng, Chenguang; Shi, Lihong; Zhao, Quan; Wu, Qiang; Fucharoen, Supan; Zhao, Cunyou; Xu, Xiangmin

    2017-07-06

    A delayed fetal-to-adult hemoglobin (Hb) switch ameliorates the severity of β-thalassemia and sickle cell disease. The molecular mechanism underlying the epigenetic dysregulation of the switch is unclear. To explore the potential cis-variants responsible for the Hb switching, we systematically analyzed an 80-kb region spanning the β-globin cluster using capture-based next-generation sequencing of 1142 Chinese β-thalassemia persons and identified 31 fetal hemoglobin (HbF)-associated haplotypes of the selected 28 tag regulatory single-nucleotide polymorphisms (rSNPs) in seven linkage disequilibrium (LD) blocks. A Ly1 antibody reactive (LYAR)-binding motif disruptive rSNP rs368698783 (G/A) from LD block 5 in the proximal promoter of hemoglobin subunit gamma 1 (HBG1) was found to be a significant predictor for β-thalassemia clinical severity by epigenetic-mediated variant-dependent HbF elevation. We found this rSNP accounted for 41.6% of β-hemoglobinopathy individuals as an ameliorating factor in a total of 2,738 individuals from southern China and Thailand. We uncovered that the minor allele of the rSNP triggers the attenuation of LYAR and two repressive epigenetic regulators DNA methyltransferase 3 alpha (DNMT3A) and protein arginine methyltransferase 5 (PRMT5) from the HBG promoters, mediating allele-biased γ-globin elevation by facilitating demethylation of HBG core promoter CpG sites in erythroid progenitor cells from β-thalassemia persons. The present study demonstrates that this common rSNP in the proximal A γ-promoter is a major genetic modifier capable of ameliorating the severity of thalassemia major through the epigenetic-mediated regulation of the delayed fetal-to-adult Hb switch and provides potential targets for the treatment of β-hemoglobinopathy. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. NF-kappaB specifically activates BMP-2 gene expression in growth plate chondrocytes in vivo and in a chondrocyte cell line in vitro.

    PubMed

    Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di

    2003-08-01

    Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.

  2. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice.

    PubMed

    Chien, Mei-Yin; Chuang, Cheng-Hung; Chern, Chang-Ming; Liou, Kou-Tong; Liu, Der-Zen; Hou, Yu-Chang; Shen, Yuh-Chiang

    2016-10-01

    Salvianolic acid A (SalA), a chemical type of caffeic acid trimer, has drawn great attention for its potent bioactivities against ischemia-induced injury both in vitro and in vivo. In this study, we evaluated SalA's protective effects against acute ischemic stroke by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries in mice. Treatment of the mice with SalA (50 and 100μg/kg, i.v.) at 2h after MCAO enhanced their survival rate, improved their moving activity, and ameliorated the severity of brain infarction and apoptosis seen in the mice by diminishing pathological changes such as the extensive breakdown of the blood-brain barrier (BBB), nitrosative stress, and the activation of an inflammatory transcriptional factor p65 nuclear factor-kappa B (NF-κB) and a pro-apoptotic kinase p25/Cdk5. SalA also intensively limited cortical infarction and promoted the expression of neurogenesis protein near the peri-infarct cortex and subgranular zone of the hippocampal dentate gyrus by compromising the activation of GSK3β and p25/Cdk5, which in turn upregulated β-catenin, doublecortin (DCX), and Bcl-2, most possibly through the activation of PI3K/Akt signaling via the upregulation of brain-derived neurotrophic factor. We conclude that SalA blocks inflammatory responses by impairing NF-κB signaling, thereby limiting inflammation/nitrosative stress and preserving the integrity of the BBB; SalA also concomitantly promotes neurogenesis-related protein expression by compromising GSK3β/Cdk5 activity to enhance the expression levels of β-catenin/DCX and Bcl-2 for neuroprotection. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2).

    PubMed

    Sharma, Ritu S; Harrison, David J; Kisielewski, Dorothy; Cassidy, Diane M; McNeilly, Alison D; Gallagher, Jennifer R; Walsh, Shaun V; Honda, Tadashi; McCrimmon, Rory J; Dinkova-Kostova, Albena T; Ashford, Michael L J; Dillon, John F; Hayes, John D

    2018-03-01

    Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. Nrf2 +/+ and Nrf2 -/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.

  4. Carnosic Acid Alleviates BDL-Induced Liver Fibrosis through miR-29b-3p-Mediated Inhibition of the High-Mobility Group Box 1/Toll-Like Receptor 4 Signaling Pathway in Rats

    PubMed Central

    Zhang, Shuai; Wang, Zhecheng; Zhu, Jie; Xu, Ting; Zhao, Yan; Zhao, Huanyu; Tang, Fan; Li, Zhenlu; Zhou, Junjun; Gao, Dongyan; Tian, Xiaofeng; Yao, Jihong

    2018-01-01

    Fibrosis reflects a progression to liver cancer or cirrhosis of the liver. Recent studies have shown that high-mobility group box-1 (HMGB1) plays a major role in hepatic injury and fibrosis. Carnosic acid (CA), a compound extracted from rosemary, has been reported to alleviate alcoholic and non-alcoholic fatty liver injury. CA can also alleviate renal fibrosis. We hypothesized that CA might exert anti-liver fibrosis properties through an HMGB1-related pathway, and the results of the present study showed that CA treatment significantly protected against hepatic fibrosis in a bile duct ligation (BDL) rat model. CA reduced the liver expression of α-smooth muscle actin (α-SMA) and collagen 1 (Col-1). Importantly, we found that CA ameliorated the increase in HMGB1 and Toll-like receptor 4 (TLR4) caused by BDL, and inhibited NF-κB p65 nuclear translocation in fibrotic livers. In vitro, CA inhibited LX2 cell activation by inhibiting HMGB1/TLR4 signaling pathway. Furthermore, miR-29b-3p decreased HMGB1 expression, and a dual-luciferase assay validated these results. Moreover, CA down-regulated HMGB1 and inhibited LX2 cell activation, and these effects were significantly counteracted by antago-miR-29b-3p, indicating that the CA-mediated inhibition of HMGB1 expression might be miR-29b-3p dependent. Collectively, the results demonstrate that a miR-29b-3p/HMGB1/TLR4/NF-κB signaling pathway, which can be modulated by CA, is important in liver fibrosis, and indicate that CA might be a prospective therapeutic drug for liver fibrosis. PMID:29403377

  5. Polysaccharides of Dendrobium officinale Kimura & Migo protect gastric mucosal cell against oxidative damage-induced apoptosis in vitro and in vivo.

    PubMed

    Zeng, Qiang; Ko, Chun-Hay; Siu, Wing-Sum; Li, Long-Fei; Han, Xiao-Qiang; Yang, Liu; Bik-San Lau, Clara; Hu, Jiang-Miao; Leung, Ping-Chung

    2017-08-17

    Dendrobium officinale Kimura & Migo (DO) is a valuable Traditional Chinese Medicine to nourish stomach, in which polysaccharides are identified as active ingredients. However, limited scientific evidences have been reported on the gastroprotective efficacy of DO. The aim of the current study was to investigate the protective effects and underlying mechanism of polysaccharides from DO(DOP) on gastric mucosal injury. For in vitro study, HFE145 cells were pretreated with DOP before induction of cell apoptosis by H 2 O 2 . Cell apoptosis and related proteins expression were detected. In the in vivo study, absolute ethanol was administered orally to induce gastric mucosal injury in rat. The gastric mucosal injury area and histological examination were used to evaluate the effects of DOP treatment on the recovery of the gastric mucosal injury. H 2 O 2 treatment for 6h significantly induced cell apoptosis in HFE145 cells. However, the destructive effects of H 2 O 2 on HFE 145 cells could be reversed by the pretreatment with DOP. The increased ROS level induced by H 2 O 2 for 4h was reduced after DOP pretreatment. The number of apoptotic cells in both early and late apoptosis stages decreased significantly and the nuclei morphology changes were improved with DOP pretreatment. Furthermore, DOP inhibited caspase 3 activation and PARP cleavage, downregulated Bax expression and upregulated Bcl2 expression in cell model. Further study revealed that pretreatment of DOP inhibited p -NF-κBp65/NF-κBp65 level, indicating DOP inhibited H 2 O 2 -mediated apoptosis via suppression of NF-κB activation. In addition, DOP treatment could ameliorate gastric mucosal injury and inhibit mucin loss induced by ethanol in animal model. DOP treatment also interfered with ethanol-induced apoptosis process by downregulating Bax/Bcl2 ratio in gastric mucosa. The present study was the first one to demonstrate the gastroprotective effect of DOP through inhibiting oxidative stress-induced apoptosis. This study provided a solid evidence for the potential use of DO as a therapy or health supplement for gastric mucosal diseases. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Sirtuin-6 deficiency exacerbates diabetes induced impairment of wound healing

    PubMed Central

    Thandavarayan, Rajarajan A; Garikipati, Venkata Naga Srikanth; Joladarashi, Darukeshwara; Babu, Sahana Suresh; Jeyabal, Prince; Verma, Suresh K; Mackie, Alexander R; Khan, Mohsin; Arumugam, Somasundaram; Watanabe, Kenichi; Kishore, Raj; Krishnamurthy, Prasanna

    2015-01-01

    Delayed wound healing is one of the major complications in diabetes and is characterized by chronic proinflammatory response, and abnormalities in angiogenesis and collagen deposition. Sirtuin family proteins regulate numerous pathophysiological processes, including those involved in promotion of longevity, DNA repair, glycolysis and inflammation. However the role of sirtuin 6 (SIRT6), a NAD+-dependent nuclear deacetylase, in wound healing specifically under diabetic condition remains unclear. To analyze the role of SIRT6 in cutaneous wound healing, paired 6 mm stented wound were created in diabetic db/db mice and injected siRNA against SIRT6 in the wound margins (transfection agent alone and non-sensed siRNA served as controls). Wound time to closure was assessed by digital planimetry, and wounds were harvested for histology, immunohistochemistry and Western blotting. SIRT6-siRNA treated diabetic wound showed impaired healing, which was associated with reduced capillary density (CD31 staining vessels) when compared to control treatment. Interestingly, SIRT6 deficiency decreased vascular endothelial growth factor (VEGF) expression and proliferation markers in the wounds. Furthermore, SIRT6 ablation in diabetic wound promotes nuclear factor kB (NF-kB) activation resulting in increased expression of proinflammatory markers (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, tumor necrosis factor-α and interleukin-1β) and increased oxidative stress. Collectively, our findings demonstrate that loss of SIRT6 in cutaneous wound aggravates proinflammatory response by increasing NF-kB activation, oxidative stress and decrease in angiogenesis in the diabetic mice. Based on these findings, we speculate that activation of SIRT6 signaling might be a potential therapeutic approach for promoting wound healing in diabetics. PMID:26010430

  7. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  8. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Benjamin J.

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHRmore » antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity is a promising candidate for a potentially simple therapeutic approach for the prevention and treatment of obesity and associated complications. - Highlights: • The AHR acts as a hub in Western diet-based obesity. • Inhibition of AHR signaling by antagonists prevents obesity and liver steatosis. • ox-LDL stimulates AHR activity via a TLR2/4, NF-kB, IDO1, kynurenine axis. • TGFβ stimulates AHR activity in Hepa-1c1c7 cells via PI3K and NF-kB. • The AHR offers a simple and promising approach for treating obesity.« less

  9. Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells*

    PubMed Central

    Kozela, Ewa; Pietr, Maciej; Juknat, Ana; Rimmerman, Neta; Levy, Rivka; Vogel, Zvi

    2010-01-01

    Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. However, the mechanisms of these effects are not completely understood. Using the BV-2 mouse microglial cell line and lipopolysaccharide (LPS) to induce an inflammatory response, we studied the signaling pathways engaged in the anti-inflammatory effects of cannabinoids as well as their influence on the expression of several genes known to be involved in inflammation. We found that the two major cannabinoids present in marijuana, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), decrease the production and release of proinflammatory cytokines, including interleukin-1β, interleukin-6, and interferon (IFN)β, from LPS-activated microglial cells. The cannabinoid anti-inflammatory action does not seem to involve the CB1 and CB2 cannabinoid receptors or the abn-CBD-sensitive receptors. In addition, we found that THC and CBD act through different, although partially overlapping, mechanisms. CBD, but not THC, reduces the activity of the NF-κB pathway, a primary pathway regulating the expression of proinflammatory genes. Moreover, CBD, but not THC, up-regulates the activation of the STAT3 transcription factor, an element of homeostatic mechanism(s) inducing anti-inflammatory events. Following CBD treatment, but less so with THC, we observed a decreased level of mRNA for the Socs3 gene, a main negative regulator of STATs and particularly of STAT3. However, both CBD and THC decreased the activation of the LPS-induced STAT1 transcription factor, a key player in IFNβ-dependent proinflammatory processes. In summary, our observations show that CBD and THC vary in their effects on the anti-inflammatory pathways, including the NF-κB and IFNβ-dependent pathways. PMID:19910459

  10. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Lei; Jinan Central Hospital Affiliated to Shandong University, Jinan 250012; Meng, Di

    It is considered that the essence of acute lung injury (ALI) is an excessive and uncontrolled inflammatory response in lung, of which mainly is attributed to the release of inflammatory mediators. Recent studies demonstrated that irisin, which is a metabolism associated factor after physical exercise could suppression of inflammation by regulating cellular signaling pathways, however, the underlying molecular mechanism remains to be determined. The present study aimed to reveal the potential mechanism responsible for the anti-inflammatory effects of irisin on LPS-induced acute lung injury in mice and in A549 cells. The results of histopathological changes showed that irisin ameliorated the lungmore » injury that was induced by LPS in time- and dose-dependent manner. QRT-PCR assays demonstrated that irisin suppressed the production of IL-1β, IL-6, MCP-1 and TNF-α, and western blot assays demonstrated that irisin suppressed apoptosis of ALI. The expression of caspase-3 and Bax were decreased and Bcl-2 was increased by irisin administration. Further study was conducted on nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) using pathways using western blots. The results showed that irisin inhibited reduced LPS-induced activation of MAPK and NF-κB signaling. All results indicated that irisin has protective effect on LPS-induced ALI in mice and in A549 cells. Thus, irisn related with physical exercise may be a potential therapy for the treatment of pulmonary inflammation. - Highlights: • Irisin inhibited the inflammation reactivity of cells and pathological changes of LPS-induced lung injury in mice. • Irisin inhibited mRNA expression of inflammatory cytokines induced by LPS in A549 cells. • Irisin inhibited apoptosis induced by LPS in the injured lung. • Irisin reduced LPS-induced activation of MAPK and NF-κB signaling pathways.« less

  11. Heat shock factor-1 knockout induces multidrug resistance gene, MDR1b, and enhances P-glycoprotein (ABCB1)-based drug extrusion in the heart

    PubMed Central

    Krishnamurthy, Karthikeyan; Vedam, Kaushik; Kanagasabai, Ragu; Druhan, Lawrence J.; Ilangovan, Govindasamy

    2012-01-01

    Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis. PMID:22615365

  12. Light induces translocation of NF-κB p65 to the mitochondria and suppresses expression of cytochrome c oxidase subunit III (COX III) in the rat retina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomita, Hiroshi, E-mail: htomita@iwate-u.ac.jp; Soft-Path Engineering Research Center; Clinical Research, Innovation and Education Center, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, Miyagi 980-8574

    2016-05-13

    The transcription factor nuclear factor kappaB (NF-κB) plays various roles in cell survival, apoptosis, and inflammation. In the rat retina, NF-κB activity increases after exposure to damaging light, resulting in degeneration of photoreceptors. Here, we report that in dark-adapted rats exposed for 6 h to bright white light, the p65 subunit of retinal NF-κB translocates to the mitochondria, an event associated with a decrease in expression of cytochrome c oxidase subunit III (COX III). However, sustained exposure for 12 h depleted p65 from the mitochondria, and enhanced COX III expression. Treatment with the protective antioxidant PBN prior to light exposure prevents p65more » depletion in the mitochondria and COX III upregulation during prolonged exposure, and apoptosis in photoreceptor cells. These results indicate that COX III expression is sensitive to the abundance of NF-κB p65 in the mitochondria, which, in turn, is affected by exposure to damaging light. - Highlights: • Damaging light exposure of the retina induces NF-κB p65 mitochondrial translocation. • NF-κB p65 mitochondrial translocation is associated with the decrease of COX III expression. • Prolonged light exposure depletes mitochondrial p65 resulting in the increase in COX III expression. • NF-κB p65 and COX III expression play an important role in the light-induced photoreceptor degeneration.« less

  13. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juan; Xin, Beibei; Wang, Hui

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues.more » Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.« less

  14. Pasteurella haemolytica leukotoxin and endotoxin induced cytokine gene expression in bovine alveolar macrophages requires NF-kappaB activation and calcium elevation.

    PubMed

    Hsuan, S L; Kannan, M S; Jeyaseelan, S; Prakash, Y S; Malazdrewich, C; Abrahamsen, M S; Sieck, G C; Maheswaran, S K

    1999-05-01

    In bovine alveolar macrophages (BAMs), exposure to leukotoxin (Lkt) and endotoxin (LPS) from Pasteurella haemolytica results in expression of inflammatory cytokine genes and intracellular calcium ([Ca2+]i) elevation. Leukotoxin from P. haemolytica interacts only with leukocytes and platelets from ruminant species. Upregulation of cytokine genes in different cells by LPS involves activation of the transcription factor NF-kappaB (NF-kappaB), resulting in its translocation from the cytoplasm to the nucleus. Using immunocytochemical staining and confocal imaging, we studied whether NF-kappaB activation represents a common mechanism for the expression of multiple cytokine genes in BAMs (Lkt-susceptible cells) stimulated with Lkt and LPS. Bovine pulmonary artery endothelial cells and porcine alveolar macrophages were used as nonsusceptible cells. The role of Ca2+ and tyrosine kinases in NF-kappaB activation and inflammatory cytokine gene expression was studied, since an inhibitor of tyrosine kinases attenuates LPS-induced [Ca2+]i elevation in BAMs. The results are summarized as follows: (a) Lkt induced NF-kappaB activation and [Ca2+]i elevation only in BAMs, while LPS effects were demonstrable in all cell types; (b) chelation of [Ca2+]i blocked NF-kappaB activation and IL-1beta, TNFalpha, and IL-8 mRNA expression; and (c) tyrosine kinase inhibitor herbimycin A blocked expression of all three cytokine genes in BAMs stimulated with Lkt, while only the expression of IL-1beta was blocked in BAMs stimulated with LPS. We conclude that cytokine gene expression in BAMs requires NF-kappaB activation and [Ca2+]i elevation, and Lkt effects exhibit cell type- and species specificity. Copyright 1999 Academic Press.

  15. Altered ROS production, NF-κB activation and interleukin-6 gene expression induced by electrical stimulation in dystrophic mdx skeletal muscle cells.

    PubMed

    Henríquez-Olguín, Carlos; Altamirano, Francisco; Valladares, Denisse; López, José R; Allen, Paul D; Jaimovich, Enrique

    2015-07-01

    Duchenne muscular dystrophy is a fatal X-linked genetic disease, caused by mutations in the dystrophin gene, which cause functional loss of this protein. This pathology is associated with an increased production of reactive oxygen (ROS) and nitrogen species. The aim of this work was to study the alterations in NF-κB activation and interleukin-6 (IL-6) expression induced by membrane depolarization in dystrophic mdx myotubes. Membrane depolarization elicited by electrical stimulation increased p65 phosphorylation, NF-κB transcriptional activity and NF-κB-dependent IL-6 expression in wt myotubes, whereas in mdx myotubes it had the opposite effect. We have previously shown that depolarization-induced intracellular Ca2+ increases and ROS production are necessary for NF-κB activation and stimulation of gene expression in wt myotubes. Dystrophic myotubes showed a reduced amplitude and area under the curve of the Ca2+ transient elicited by electrical stimulation. On the other hand, electrical stimuli induced higher ROS production in mdx than wt myotubes, which were blocked by NOX2 inhibitors. Moreover, mRNA expression and protein levels of the NADPH oxidase subunits: p47phox and gp91phox were increased in mdx myotubes. Looking at ROS-dependence of NF-κB activation we found that in wt myotubes external administration of 50 μM H2O2 increased NF-κB activity; after administration of 100 and 200 μM H2O2 there was no effect. In mdx myotubes there was a dose-dependent reduction in NF-κB activity in response to external administration of H2O2, with a significant effect of 100 μM and 200 μM, suggesting that ROS levels are critical for NF-κB activity. Prior blockage with NOX2 inhibitors blunted the effects of electrical stimuli in both NF-κB activation and IL-6 expression. Finally, to ascertain whether stimulation of NF-κB and IL-6 gene expression by the inflammatory pathway is also impaired in mdx myotubes, we studied the effect of lipopolysaccharide on both NF-κB activation and IL-6 expression. Exposure to lipopolysaccharide induced a dramatic increase in both NF-κB activation and IL-6 expression in both wt and mdx myotubes, suggesting that the altered IL-6 gene expression after electrical stimulation in mdx muscle cells is due to dysregulation of Ca2+ release and ROS production, both of which impinge on NF-κB signaling. IL-6 is a key metabolic modulator that is released by the skeletal muscle to coordinate a multi-systemic response (liver, muscle, and adipocytes) during physical exercise; the alteration of this response in dystrophic muscles may contribute to an abnormal response to contraction and exercise. Copyright © 2015. Published by Elsevier B.V.

  16. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    PubMed

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999 Academic Press.

  17. The high-level expression of human tissue plasminogen activator in the milk of transgenic mice with hybrid gene locus strategy.

    PubMed

    Zhou, Yanrong; Lin, Yanli; Wu, Xiaojie; Xiong, Fuyin; Lv, Yuemeng; Zheng, Tao; Huang, Peitang; Chen, Hongxing

    2012-02-01

    Transgene expression for the mammary gland bioreactor aimed at producing recombinant proteins requires optimized expression vector construction. Previously we presented a hybrid gene locus strategy, which was originally tested with human lactoferrin (hLF) as target transgene, and an extremely high-level expression of rhLF ever been achieved as to 29.8 g/l in mice milk. Here to demonstrate the broad application of this strategy, another 38.4 kb mWAP-htPA hybrid gene locus was constructed, in which the 3-kb genomic coding sequence in the 24-kb mouse whey acidic protein (mWAP) gene locus was substituted by the 17.4-kb genomic coding sequence of human tissue plasminogen activator (htPA), exactly from the start codon to the end codon. Corresponding five transgenic mice lines were generated and the highest expression level of rhtPA in the milk attained as to 3.3 g/l. Our strategy will provide a universal way for the large-scale production of pharmaceutical proteins in the mammary gland of transgenic animals.

  18. Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein

    PubMed Central

    Giovannini, Marco; Robanus-Maandag, Els; Niwa-Kawakita, Michiko; van der Valk, Martin; Woodruff, James M.; Goutebroze, Laurence; Mérel, Philippe; Berns, Anton; Thomas, Gilles

    1999-01-01

    Specific mutations in some tumor suppressor genes such as p53 can act in a dominant fashion. We tested whether this mechanism may also apply for the neurofibromatosis type-2 gene (NF2) which, when mutated, leads to schwannoma development. Transgenic mice were generated that express, in Schwann cells, mutant NF2 proteins prototypic of natural mutants observed in humans. Mice expressing a NF2 protein with an interstitial deletion in the amino-terminal domain showed high prevalence of Schwann cell-derived tumors and Schwann cell hyperplasia, whereas those expressing a carboxy-terminally truncated protein were normal. Our results indicate that a subset of mutant NF2 alleles observed in patients may encode products with dominant properties when overexpressed in specific cell lineages. PMID:10215625

  19. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-05-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymicmore » epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells.« less

  20. Determining the Effects of Geraniol on Liver Regeneration Via the Nuclear Factor kB Pathway After Partial Hepatectomy.

    PubMed

    Ceyhan, Emre; Canbek, Mediha

    2017-05-01

    Context • Nuclear factor kB (NF-κB) is a dimeric transcription factor that is involved in the regulation of regenerative and apoptosic genes and plays a key role in liver regeneration after a partial hepatectomy (PH). Complementary medicine is used to treat various diseases and can be obtained from a large number of plants that are found in nature. One such plant is geraniol, and no studies have yet occurred assessing its in vivo effects on liver regeneration. Objective • The current study intended to assess the effects of geraniol on liver regeneration after a 70% PH in rats. Design • The research team studied geraniol in a rat model in vivo. Setting • The study took place in the medical and surgical experimental research center at Eskisehir Osmangazi University (Eskisehir, Turkey). Animals • The animals were Wistar albino male rats. Intervention • The rats were divided into 8 groups with 6 rats in each group. Two groups were the sham control groups. The other 6 groups received an injection of a single dose of saline, the negative control; silymarin, the negative control; or geraniol, the intervention. The injections were given intraperitoneally immediately after PH. A laparotomy was performed on the rats all of those groups at either 24 h or 48 h after the PH. Outcome Measures • Using the reverse transcription (RT)- polymerase chain reaction (PCR) method (RT-PCR) and Western blot analysis, the NF-κB, tumor necrosis factor α, and interleukin 6 gene expression and protein levels were measured. Moreover, the levels of the heat shock proteins (HSPs) HSP27 and HSP60 were examined by Western blot. Results • The data showed that geraniol had a significant role (P < .05) in increasing the process of liver regeneration when given intraperitoneally, and it protected the liver as assessed by histology and the HSP levels. In rats receiving 100 mg/kg geraniol intraperitoneally, the agent induced hepatic regeneration 24 h and 48 h after PH (70%).

  1. Caffeic Acid Cyclohexylamide Rescues Lethal Inflammation in Septic Mice through Inhibition of IκB Kinase in Innate Immune Process

    PubMed Central

    Choi, Jun Hyeon; Park, Sun Hong; Jung, Jae-Kyung; Cho, Won-Jea; Ahn, Byeongwoo; Yun, Cheong-Yong; Choi, Yong Pyo; Yeo, Jong Hun; Lee, Heesoon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo

    2017-01-01

    Targeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF. PMID:28145460

  2. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling.

    PubMed

    Medicherla, Kanakaraju; Sahu, Bidya Dhar; Kuncha, Madhusudana; Kumar, Jerald Mahesh; Sudhakar, Godi; Sistla, Ramakrishna

    2015-09-01

    Ulcerative colitis is associated with a considerable reduction in the quality of life of patients. The use of phyto-ingredients is becoming an increasingly attractive approach for the management of colitis. Geraniol is a monoterpene with anti-inflammatory and antioxidative properties. In this study, we investigated the therapeutic potential of geraniol as a complementary and alternative medicine against dextran sulphate sodium (DSS)-induced ulcerative colitis in mice. Disease activity indices (DAI) comprising body weight loss, presence of occult blood and stool consistency were assessed for evaluation of colitis symptoms. Intestinal damage was assessed by evaluating colon length and its histology. Pre-treatment with geraniol significantly reduced the DAI score, improved stool consistency (without occult blood) and increased the colon length. The amount of pro-inflammatory cytokines, specifically TNF-α, IL-1β and IL-6 and the activity of myeloperoxidase in colon tissue were significantly decreased in geraniol pre-treated mice. Western blot analyses revealed that geraniol interfered with NF-κB signaling by inhibiting NF-κB (p65)-DNA binding, and IκBα phosphorylation, degradation and subsequent increase in nuclear translocation. Moreover, the expressions of downstream target pro-inflammatory enzymes such as iNOS and COX-2 were significantly reduced by geraniol. Pre-treatment with geraniol also restored the DSS-induced decline in antioxidant parameters such as reduced glutathione and superoxide dismutase activity and attenuated the increase in lipid peroxidation marker, thiobarbituric acid reactive substances and nitrative stress marker, nitrites in colon tissue. Thus, our results suggest that geraniol is a potential therapeutic agent for inflammatory bowel disease.

  3. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    PubMed

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. MicroRNA-22 and microRNA-140 suppress NF-{kappa}B activity by regulating the expression of NF-{kappa}B coactivators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takata, Akemi; Otsuka, Motoyuki, E-mail: otsukamo-tky@umin.ac.jp; Kojima, Kentaro

    2011-08-12

    Highlights: {yields} miRNAs were screened for their ability to regulate NF-{kappa}B activity. {yields} miRNA-22 and miRNA-140-3p suppress NF-{kappa}B activity by regulating coactivators. {yields} miRNA-22 targets nuclear receptor coactivator 1 (NCOA1). {yields} miRNA-140-3p targets nuclear receptor-interacting protein 1 (NRIP1). -- Abstract: Nuclear factor {kappa}B (NF-{kappa}B) is a transcription factor that regulates a set of genes that are critical to many biological phenomena, including liver tumorigenesis. To identify microRNAs (miRNAs) that regulate NF-{kappa}B activity in the liver, we screened 60 miRNAs expressed in hepatocytes for their ability to modulate NF-{kappa}B activity. We found that miRNA-22 and miRNA-140-3p significantly suppressed NF-{kappa}B activity bymore » regulating the expression of nuclear receptor coactivator 1 (NCOA1) and nuclear receptor-interacting protein 1 (NRIP1), both of which are NF-{kappa}B coactivators. Our results provide new information about the roles of miRNAs in the regulation of NF-{kappa}B activity.« less

  5. Interleukin-6 upregulates paraoxonase 1 gene expression via an AKT/NF-κB-dependent pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chi-Chih; Hsueh, Chi-Mei; Chen, Chiu-Yuan

    2013-07-19

    Highlights: •IL-6 could induce PON1 gene expression. •IL-6 increased NF-κB protein expression and NF-κB-p50 and -p65 subunits nuclear translocation. •IL-6-induced PON1 up-regulation was through an AKT/NF-κB pathway. -- Abstract: The aim of this study is to investigate the relationship between paraoxonase 1 (PON1) and atherosclerosis-related inflammation. In this study, human hepatoma HepG2 cell line was used as a hepatocyte model to examine the effects of the pro-inflammatory cytokines on PON1 expression. The results showed that IL-6, but not TNF-α and IL-1β, significantly increased both the function and protein level of PON1; data from real-time RT-PCR analysis revealed that the IL-6-inducedmore » PON1 expression occurred at the transcriptional level. Increase of IκB kinase activity and IκB phosphorylation, and reduction of IκB protein level were also observed in IL-6-treated HepG2 cells compared with untreated culture. This event was accompanied by increase of NF-κB-p50 and -p65 nuclear translocation. Moreover, treatment with IL-6 augmented the DNA binding activity of NF-κB. Furthermore, pharmacological inhibition of NF-κB activation by PDTC and BAY 11-7082, markedly suppressed the IL-6-mediated PON1 expression. In addition, IL-6 increased the levels of phosphorylated protein kinase B (PKB, AKT). An AKT inhibitor LY294002 effectively suppressed IKK/IκB/NF-κB signaling and PON1 gene expression induced by IL-6. Our findings demonstrate that IL-6 upregulates PON1 gene expression through an AKT/NF-κB signaling axis in human hepatocyte-derived HepG2 cell line.« less

  6. Pre-Treatment with Curcumin Ameliorates Cisplatin-Induced Kidney Damage by Suppressing Kidney Inflammation and Apoptosis in Rats.

    PubMed

    Soetikno, Vivian; Sari, Shinta Dewi Permata; Ul Maknun, Lulu; Sumbung, Nielda Kezia; Rahmi, Deliana Nur Ihsani; Pandhita, Bashar Adi Wahyu; Louisa, Melva; Estuningtyas, Ari

    2018-06-26

    In addition to oxidative stress, inflammation and apoptosis have an important role in the pathogenesis of cisplatin-induced kidney damage. This study aimed to investigate the molecular mechanisms of protective effects of curcumin against cisplatin-induced kidney inflammation and apoptosis in rats. Eighteen rats were equally divided into three groups; normal (0.5% CMC-Na), cisplatin (CDPP) (7 mg/kg i.p.), and cisplatin+curcumin (CMN100) groups. Curcumin was given at a dose of 100 mg/kg orally for nine days, starts one week before giving a single dose of cisplatin. Kidney and plasma were taken for analysis. Cisplatin challenged rats demonstrated kidney injury as shown by reduced creatinine clearance, increased of plasma BUN, plasma creatinine, and kidney MDA, decreased of kidney GSH levels, and kidney histopathology alterations. Also, cisplatin increased ERK1/2 phosphorylation and NF-κB expression, which subsequently increased mRNA expression of TNF-α, IL-6, KIM-1, NGAL, and Bax/Bcl-2 ratio as well as decreased mRNA expression of IL-10 in kidney tissues. Pre-treatment with curcumin significantly ameliorated inflammation and apoptosis induced by cisplatin. In addition, curcumin downregulated Ctr1 and OCT2 drug transporters as compared to cisplatin group. Histopathological examination furthers confirmed the kidney damage protection effect of curcumin. These data indicate that curcumin has nephroprotective properties against cisplatin-induced kidney damage in rats and this effect is associated with its anti-inflammatory and anti-apoptosis profiles, in addition to its antioxidant. Hence, curcumin may be useful for preventing kidney damage against cisplatin administration. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    PubMed

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart Association, Inc.

  8. Febuxostat ameliorates doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Krishnamurthy, Bhaskar; Rani, Neha; Bharti, Saurabh; Golechha, Mahaveer; Bhatia, Jagriti; Nag, Tapas Chandra; Ray, Ruma; Arava, Sudheer; Arya, Dharamvir Singh

    2015-07-25

    The clinical use of doxorubicin is associated with dose limiting cardiotoxicity. This is a manifestation of free radical production triggered by doxorubicin. Therefore, we evaluated the efficacy of febuxostat, a xanthine oxidase inhibitor and antioxidant, in blocking cardiotoxicity associated with doxorubicin in rats. Male albino Wistar rats were divided into four groups: control (normal saline 2.5mL/kg/dayi.p. on alternate days, a total of 6 doses); Doxorubicin (2.5mg/kg/dayi.p. on alternate days, a total of 6 doses), Doxorubicin+Febuxostat (10mg/kg/day oral) and Doxorubicin+Carvedilol (30mg/kg/day oral) for 14days. Febuxostat significantly ameliorated the doxorubicin-induced deranged cardiac functions as there was significant improvement in arterial pressures, left ventricular end diastolic pressure and inotropic and lusitropic states of the myocardium. These changes were well substantiated with biochemical findings, wherein febuxostat prevented the depletion of non-protein sulfhydryls level, with increased manganese superoxide dismutase level and reduced cardiac injury markers (creatine kinase-MB and B-type natriuretic peptide levels) and thiobarbituric acid reactive substances level. Febuxostat also exhibited significant anti-inflammatory (decreased expression of NF-κBp65, IKK-β and TNF-α) and anti-apoptotic effect (increased Bcl-2 expression and decreased Bax and caspase-3 expression and TUNEL positivity). Hematoxylin and Eosin, Masson Trichome, Picro Sirius Red and ultrastructural studies further corroborated with hemodynamic and biochemical findings showing that febuxostat mitigated doxorubicin-induced increases in inflammatory cells, edema, collagen deposition, interstitial fibrosis, perivascular fibrosis and mitochondrial damage and better preservation of myocardial architecture. In addition, all these changes were comparable to those produced by carvedilol. Thus, our results suggest that the antioxidant and anti-apoptotic effect of febuxostat contributes to its protective effects against doxorubicin-induced cardiotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. New CYP1 genes in the frog Xenopus (Silurana) tropicalis: Induction patterns and effects of AHR agonists during development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joensson, Maria E., E-mail: maria.jonsson@ebc.uu.se; Biology Department, Redfield 3-42 MS 32, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543; Berg, Cecilia

    2011-01-15

    The Xenopus tropicalis genome shows a single gene in each of the four cytochrome P450 1 (CYP1) subfamilies that occur in vertebrates, designated as CYP1A, CYP1B1, CYP1C1, and CYP1D1. We cloned the cDNAs of these genes and examined their expression in untreated tadpoles and in tadpoles exposed to waterborne aryl hydrocarbon receptor agonists, 3,3',4,4',5-pentachlorobiphenyl (PCB126), {beta}-naphthoflavone ({beta}NF), or indigo. We also examined the effects of PCB126 on expression of genes involved in stress response, cell proliferation, thyroid homeostasis, and prostaglandin synthesis. PCB126 induced CYP1A, CYP1B1, and CYP1C1 but had little effect on CYP1D1 (77-, 1.7-, 4.6- and 1.4-fold induction versusmore » the control, respectively). {beta}NF induced CYP1A and CYP1C1 (26- and 2.5-fold), while, under conditions used, indigo tended to induce only CYP1A (1.9-fold). The extent of CYP1 induction by PCB126 and {beta}NF was positively correlated to the number of putative dioxin response elements 0-20 kb upstream of the start codons. No morphological effect was observed in tadpoles exposed to 1 nM-10 {mu}M PCB126 at two days post-fertilization (dpf) and screened 20 days later. However, in 14-dpf tadpoles a slight up-regulation of the genes for PCNA, transthyretin, HSC70, Cu-Zn SOD, and Cox-2 was observed two days after exposure to 1 {mu}M PCB126. This study of the full suite of CYP1 genes in an amphibian species reveals gene- and AHR agonist-specific differences in response, as well as a much lower sensitivity to CYP1 induction and short-term toxicity by PCB126 compared with in fish larvae. The single genes in each CYP1 subfamily may make X. tropicalis a useful model for mechanistic studies of CYP1 functions.« less

  10. Clematichinenoside protects blood brain barrier against ischemic stroke superimposed on systemic inflammatory challenges through up-regulating A20.

    PubMed

    Han, Dan; Fang, Weirong; Zhang, Rui; Wei, Jie; Kodithuwakku, Nandani Darshika; Sha, Lan; Ma, Wenhuan; Liu, Lifang; Li, Fengwen; Li, Yunman

    2016-01-01

    Suppression of excessive inflammation can ameliorate blood brain barrier (BBB) injury, which shows therapeutic potential for clinical treatment of brain injury induced by stroke superimposed on systemic inflammatory diseases. In this study, we investigated whether and how clematichinenoside (AR), an anti-inflammatory triterpene saponin, protects brain injury from stroke superimposed on systemic inflammation. Lipopolysaccharide (LPS) was intraperitoneally injected immediately after middle cerebral artery occlusion (MCAO) in rats. Rat microvessel endothelial cells (rBMECs) were exposed to hypoxia/reoxygenation (H/R) coexisting with LPS. The results revealed that AR suppressed the excessive inflammation, restored BBB dysfunction, alleviated brain edema, decreased neutrophil infiltration, lessened neurological dysfunction, and decreased infarct rate. Further study demonstrated that the expression of nucleus nuclear factor kappa B (NF-κB), inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α) and interlukin-1β (IL-1β) were suppressed by AR via zinc finger protein A20. Besides, AR increased in vitro BBB integrity through A20. In conclusion, AR alleviated cerebral inflammatory injury through A20-NF-κB signal pathway, offering an alternative medication for stroke associated with systemic inflammatory diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Arctigenin protects against ultraviolet-A-induced damage to stemness through inhibition of the NF-κB/MAPK pathway.

    PubMed

    Park, See-Hyoung; Cho, Jae Youl; Oh, Sae Woong; Kang, Mingyeong; Lee, Seung Eun; Yoo, Ju Ah; Jung, Kwangseon; Lee, Jienny; Lee, Sang Yeol; Lee, Jongsung

    2018-02-25

    The stemness of stem cells is negatively affected by ultraviolet A (UVA) irradiation. This study was performed to examine the effects of arctigenin on UVA-irradiation-induced damage to the stemness of human mesenchymal stem cells (hMSCs) derived from adipose tissue. The mechanisms of action of arctigenin were also investigated. A BrdU-incorporation assay demonstrated that arctigenin attenuated the UVA-induced reduction of the cellular proliferative potential. Arctigenin also increased the UVA-induced reduction in stemness of hMSCs by upregulating stemness-related genes such as SOX2, OCT4, and NANOG. In addition, the UVA-induced reduction in the mRNA expression level of hypoxia-inducible factor (HIF)-1α was significantly recovered by arctigenin. The antagonizing effect of arctigenin on UVA irradiation was mediated by reduced PGE 2 production through the inhibition of MAPKs (p42/44 MAPK, p38 MAPK, and JNK) and NF-κB. Overall, these findings suggest that arctigenin can ameliorate the reduced stemness of hMSCs induced by UVA irradiation. The effects of arctigenin are mediated by PGE 2 -cAMP signaling-dependent upregulation of HIF-1α. Therefore, arctigenin could be used as an antagonist to attenuate the effects of UVA irradiation. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Protective effect of cinnamon polyphenols against STZ-diabetic mice fed high-sugar, high-fat diet and its underlying mechanism.

    PubMed

    Li, Rong; Liang, Tao; Xu, Lingyuan; Li, Yongwen; Zhang, Shijun; Duan, Xiaoqun

    2013-01-01

    This study was designed to investigate the potential effects of 14days' intragastrically given of cinnamon polyphenols (CPS) in treating diabetic mice induced by intraperitoneal injection of streptozotocin (150mgkg(-1)) and fed high-sugar, high-fat diet. The diabetic mice model was successfully established through determining on fasting blood-glucose (FBG) test. As revealed by glucose oxidase (GOD) and radioimmunoassay (RIA), both dimethyldiguanide (DC, 0.6gkg(-1)d(-1)) and CPS (0.3, 0.6, 1.2gkg(-1)d(-1)) treatments significantly resulted in down-regulation of blood glucose and insulin levels in serum, while the levels of oxidative stress markers were markedly lowered through ELISA assay. Meanwhile, the pathological damage in islet with pancreatic beta cells was ameliorated by treatment of CPS at different doses, as shown in HE stain. At the same time, the treatments also caused notable reduction of iNOS, NF-κB expressions showing in Western blot analysis. These findings demonstrate that cinnamon polyphenols can exert the hypoglycemic and hypolipidemic effects through the mechanisms that may be associated with repairing pancreatic beta cells in diabetic mice and improving its anti-oxidative capacity, as well as attenuating cytotoxicity via inhibition of iNOS, NF-κB activation. Published by Elsevier Ltd.

  13. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  14. Respiratory syncytial virus M2-1 protein induces the activation of nuclear factor kappa B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Kerstin; Buchholz, Katja; Werchau, Hermann

    2005-01-20

    Respiratory syncytial virus (RSV) induces the production of a number of cytokines and chemokines by activation of nuclear factor kappa B (NF-{kappa}B). The activation of NF-{kappa}B has been shown to depend on viral replication in the infected cells. In this study, we demonstrate that expression of RSV M2-1 protein, a transcriptional processivity and anti-termination factor, is sufficient to activate NF-{kappa}B in A549 cells. Electromobility shift assays show increased NF-{kappa}B complexes in the nuclei of M2-1-expressing cells. M2-1 protein is found in nuclei of M2-1-expressing cells and in RSV-infected cells. Co-immunoprecipitations of nuclear extracts of M2-1-expressing cells and of RSV-infected cellsmore » revealed an association of M2-1 with Rel A protein. Furthermore, the activation of NF-{kappa}B depends on the C-terminus of the RSV M2-1 protein, as shown by NF-{kappa}B-induced gene expression of a reporter gene construct.« less

  15. A Pro-Inflammatory Role for Nuclear Factor Kappa B in Childhood Obstructive Sleep Apnea Syndrome

    PubMed Central

    Israel, Lee P.; Benharoch, Daniel; Gopas, Jacob; Goldbart, Aviv D.

    2013-01-01

    Study Objectives: Childhood obstructive sleep apnea syndrome (OSAS) is associated with an elevation of inflammatory markers such as C-reactive protein (CRP) that correlates with specific morbidities and subsides following intervention. In adults, OSAS is associated with activation of the transcription factor nuclear factor kappa B (NF-kB). We explored the mechanisms underlying NF-kB activation, based on the hypothesis that specific NF-kB signaling is activated in children with OSAS. Design: Adenoid and tonsillar tissues from children with OSAS and matched controls were immunostained against NF-kB classical (p65 and p50) and alternative (RelB and p52) pathway subunits, and NF-kB-dependent cytokines: interleukin (IL)- 1α, IL-1β, tumor necrosis factor-α, and IL-8). Serum CRP levels were measured in all subjects. NF-kB induction was evaluated by a luciferase-NF-kB reporter assay in L428 cells constitutively expressing NF-kB and in Jurkat cells with inducible NF-kB expression. p65 translocation to the nucleus, reflecting NF-kB activation, was measured in cells expressing fluorescent NF-kB-p65-GFP (green fluorescent protein). Setting: Sleep research laboratory. Patients or Participants: Twenty-five children with OSAS and 24 without OSAS. Interventions: N/A. Measurements and Results: Higher expression of IL-1α and classical NF-kB subunits p65 and p50 was observed in adenoids and tonsils of children with OSAS. Patient serum induced NF-kB activity, as measured by a luciferase-NF-kB reporter assay and by induction of p65 nuclear translocation in cells permanently transfected with GFP-p65 plasmid. IL-1β showed increased epithelial expression in OSAS tissues. Conclusions: Nuclear factor kappa B is locally and systemically activated in children with obstructive sleep apnea syndrome. This observation may motivate the search for new anti-inflammatory strategies for controlling nuclear factor kappa B activation in obstructive sleep apnea syndrome. Citation: Israel LP; Benharoch D; Gopas J; Goldbart AD. A pro-inflammatory role for nuclear factor kappa B in childhood obstructive sleep apnea syndrome. SLEEP 2013;36(12):1947-1955. PMID:24293770

  16. Omentin inhibits TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via ERK/NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Xia, E-mail: zhongxia1977@126.com; Li, Xiaonan; Liu, Fuli

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Omentin inhibited TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Black-Right-Pointing-Pointer Omentin reduces expression of ICAM-1 and VCAM-1 induced by TNF-{alpha} in HUVECs. Black-Right-Pointing-Pointer Omentin inhibits TNF-{alpha}-induced ERK and NF-{kappa}B activation in HUVECs. Black-Right-Pointing-Pointer Omentin supreeses TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 via ERK/NF-{kappa}B pathway. -- Abstract: In the present study, we investigated whether omentin affected the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in tumor necrosis factor-{alpha} (TNF-{alpha}) induced human umbilical vein endothelial cells (HUVECs). Our data showed that omentin decreased TNF-{alpha}-induced expression of ICAM-1 and VCAM-1 in HUVECs. In addition, omentin inhibitedmore » TNF-{alpha}-induced adhesion of THP-1 cells to HUVECs. Further, we found that omentin inhibited TNF-{alpha}-activated signal pathway of nuclear factor-{kappa}B (NF-{kappa}B) by preventing NF-{kappa}B inhibitory protein (I{kappa}B{alpha}) degradation and NF-{kappa}B/DNA binding activity. Omentin pretreatment significantly inhibited TNF-{alpha}-induced ERK activity and ERK phosphorylation in HUVECs. Pretreatment with PD98059 suppressed TNF-{alpha}-induced NF-{kappa}B activity. Omentin, NF-kB inhibitor (BAY11-7082) and ERK inhibitor (PD98059) reduced the up-regulation of ICAM-1 and VCAM-1 induced by TNF-{alpha}. These results suggest that omentin may inhibit TNF-{alpha}-induced expression of adhesion molecules in endothelial cells via blocking ERK/NF-{kappa}B pathway.« less

  17. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes.

    PubMed

    Zhao, Qiuying; Wu, Xiaohui; Yan, Shuo; Xie, Xiaofang; Fan, Yonghua; Zhang, Jinqiang; Peng, Cheng; You, Zili

    2016-10-04

    Discoveries that microglia-mediated neuroinflammation is involved in the pathological process of depression provided a new strategy for novel antidepressant therapy. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor regulating inflammation and microglial polarization and, therefore, a potential target for resolving depressive disorders. Our hypothesis was that antidepressant effects could be achieved through anti-inflammatory and neuroprotective activities by PPARγ-dependent microglia-modulating agents. Chronic mild stress (CMS) treatment was performed on C57BL/6 mice for 6 weeks. After 3 weeks with the CMS procedure, depressive-like behaviors were evaluated by sucrose preference (SP), tail suspension test (TST), forced swimming test (FST), and locomotor activity. Pioglitazone was administered intragastrically once per day for 3 weeks at different doses. Neuroinflammatory cytokines were determined by real time-PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot. The activated microglial state was confirmed by immunohistochemistry. N9 microglial cells were subjected to lipopolysaccharide, pioglitazone, and GW9662 to discuss the phenotype of activated microglia by RT-PCR, ELISA, and western blot. It was demonstrated that the PPARγ agonist pioglitazone (2.5 mg/kg) ameliorated depression-like behaviors in CMS-treated mice, as indicated by body weight (BW), the SP test, the FST, and the TST. The amelioration of the depression was blocked by the PPARγ antagonist GW9662. The expression of M1 markers (IL-1β, IL-6, TNFα, iNOS, and CCL2) increased, and the gene expression of M2 markers (Ym1, Arg1, IL-4, IL-10, and TGFβ) decreased in the hippocampus of the stress-treated mice. Pioglitazone significantly inhibited the increased numbers and morphological alterations of microglia in the hippocampus, reduced the elevated expression of microglial M1 markers, and increased the downgraded expression of microglial M2 markers in C57BL/6 mice exposed to CMS. In an in vitro experiment, pioglitazone reversed the imbalance of M1 and M2 inflammatory cytokines, which is correlated with the inhibition of nuclear factor kB activation and is expressed in LPS-stimulated N9 microglial cells. We showed that pioglitazone administration induce the neuroprotective phenotype of microglia and ameliorate depression-like behaviors in CMS-treated C57BL/6 mice. These data suggested that the microglia-modulating agent pioglitazone present a beneficial choice for depression.

  18. Identification and characterization of NF-YB family genes in tung tree.

    PubMed

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  19. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.).

    PubMed

    Ren, Chong; Zhang, Zhan; Wang, Yi; Li, Shaohua; Liang, Zhenchang

    2016-08-11

    Nuclear factor Y (NF-Y) transcription factor is composed of three distinct subunits: NF-YA, NF-YB and NF-YC. Many members of NF-Y family have been reported to be key regulators in plant development, phytohormone signaling and drought tolerance. However, the function of the NF-Y family is less known in grape (Vitis vinifera L.). A total of 34 grape NF-Y genes that distributed unevenly on grape (V. vinifera) chromosomes were identified in this study. Phylogenetic analysis was performed to predict functional similarities between Arabidopsis thaliana and grape NF-Y genes. Comparison of the structures of grape NF-Y genes (VvNF-Ys) revealed their functional conservation and alteration. Furthermore, we investigated the expression profiles of VvNF-Ys in response to various stresses, phytohormone treatments, and in leaves and grape berries with various sugar contents at different developmental stages. The relationship between VvNF-Y transcript levels and sugar content was examined to select candidates for exogenous sugar treatments. Quantitative real-time PCR (qPCR) indicated that many VvNF-Ys responded to different sugar stimuli with variations in transcript abundance. qPCR and publicly available microarray data suggest that VvNF-Ys exhibit distinct expression patterns in different grape organs and developmental stages, and a number of VvNF-Ys may participate in responses to multiple abiotic and biotic stresses, phytohormone treatments and sugar accumulation or metabolism. In this study, we characterized 34 VvNF-Ys based on their distributions on chromosomes, gene structures, phylogenetic relationship with Arabidopsis NF-Y genes, and their expression patterns. The potential roles of VvNF-Ys in sugar accumulation or metabolism were also investigated. Altogether, the data provide significant insights on VvNF-Ys, and lay foundations for further functional studies of NF-Y genes in grape.

  20. Peripheral nerve injury alters the expression of NF-κB in the rat's hippocampus.

    PubMed

    Chou, Chiu-Wen; Wong, Gordon T C; Lim, Grewo; McCabe, Michael F; Wang, Shuxing; Irwin, Michael G; Mao, Jianren

    2011-03-10

    The hippocampus plays an important role in learning and memory and possibly contributes to the formation of pain-related memory and emotional responses. However, there is currently little data linking the hippocampus to neuropathic pain. It has been reported that NF-κB is an important regulatory factor in memory consolidation within the hippocampus. This study aims to examine a possible relationship between the hippocampal NF-κB expression and nerve injury-induced thermal hyperalgesia using a rat model of constriction sciatic nerve injury (CCI). Immunofluorescence and Western blot analysis were performed to detect and quantify the hippocampal NF-κB expression. Thermal hyperalgesia was examined on day 0 and postoperative days 1, 7 and 14. The nuclear portion of the p65 NF-κB expression was significantly increased on the contralateral side on days 7 and 14 as well as significantly increased on the ipsilateral side on day 14 as compared to the sham control group. Intraperitoneal administration of MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist, reduced hyperalgesia and modulated the NF-κB expression in the contralateral side of hippocampus. These results suggest an association between the hippocampal NF-κB expression and the behavioral manifestation of thermal hyperalgesia, which is likely to be mediated through activation of the NMDA receptor. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Enhanced Expression of WD Repeat-Containing Protein 35 via Nuclear Factor-Kappa B Activation in Bupivacaine-Treated Neuro2a Cells

    PubMed Central

    Huang, Lei; Kondo, Fumio; Harato, Misako; Feng, Guo-Gang; Ishikawa, Naoshisa; Fujiwara, Yoshihiro; Okada, Shoshiro

    2014-01-01

    The family of WD repeat proteins comprises a large number of proteins and is involved in a wide variety of cellular processes such as signal transduction, cell growth, proliferation, and apoptosis. Bupivacaine is a sodium channel blocker administered for local infiltration, nerve block, epidural, and intrathecal anesthesia. Recently, we reported that bupivacaine induces reactive oxygen species (ROS) generation and p38 mitogen-activated protein kinase (MAPK) activation, resulting in an increase in the expression of WD repeat-containing protein 35 (WDR35) in mouse neuroblastoma Neuro2a cells. It has been shown that ROS activate MAPK through phosphorylation, followed by activation of nuclear factor-kappa B (NF-κB) and activator protein 1 (AP-1). The present study was undertaken to test whether NF-κB and c-Jun/AP-1 are involved in bupivacaine-induced WDR35 expression in Neuro2a cells. Bupivacaine activated both NF-κB and c-Jun in Neuro2a cells. APDC, an NF-κB inhibitor, attenuated the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. GW9662, a selective peroxisome proliferator-activated receptor-γ antagonist, enhanced the increase in NF-κB activity and WDR35 protein expression in bupivacaine-treated Neuro2a cells. In contrast, c-Jun siRNA did not inhibit the bupivacaine-induced increase in WDR35 mRNA expression. These results indicate that bupivacaine induces the activation of transcription factors NF-κB and c-Jun/AP-1 in Neuro2a cells, while activation of NF-κB is involved in bupivacaine-induced increases in WDR35 expression. PMID:24466034

  2. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shaoqing; Graduate School of Medicine, Nanchang University, Nanchang; Chen, Xia

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatmentmore » recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.« less

  3. Regulation of Th1 and Th17 cell differentiation and amelioration of experimental autoimmune encephalomyelitis by natural product compound berberine.

    PubMed

    Qin, Xia; Guo, Bingshi T; Wan, Bing; Fang, Lei; Lu, Limin; Wu, Lili; Zang, Ying Qin; Zhang, Jingwu Z

    2010-08-01

    Berberine (BBR), an isoquinoline alkaloid derived from plants, is widely used as an anti-inflammatory remedy in traditional Chinese medicine. In this study, we showed that BBR was efficacious in the amelioration of experimental autoimmune encephalomyelitis (EAE) through novel regulatory mechanisms involving pathogenic Th1 and Th17 cells. BBR inhibited differentiation of Th17 cells and, to a lesser degree, Th1 cells through direct actions on the JAK/STAT pathway, whereas it had no effect on the relative number of CD4(+)Foxp3(+) regulatory T cells. In addition, BBR indirectly influenced Th17 and Th1 cell functions through its effect on the expression and function of costimulatory molecules and the production of IL-6, which was attributable to the inhibition of NF-kappaB activity in CD11b(+) APCs. BBR treatment completely abolished the encephalitogenicity of MOG(35-55)-reactive Th17 cells in an adoptive transfer EAE model, and the same treatment significantly inhibited the ability of MOG(35-55)-reactive Th1 cells to induce EAE. This study provides new evidence that natural compounds, such as BBR, are of great value in the search for novel anti-inflammatory agents and therapeutic targets for autoimmune diseases.

  4. The murine SP-C promoter directs type II cell-specific expression in transgenic mice.

    PubMed

    Glasser, Stephan W; Eszterhas, Susan K; Detmer, Emily A; Maxfield, Melissa D; Korfhagen, Thomas R

    2005-04-01

    Genomic DNA from the mouse pulmonary surfactant protein C (SP-C) gene was analyzed in transgenic mice to identify DNA essential for alveolar type II cell-specific expression. SP-C promoter constructs extending either 13 or 4.8 kb upstream of the transcription start site directed lung-specific expression of the bacterial chloramphenicol acetyl transferase (CAT) reporter gene. In situ hybridization analysis demonstrated alveolar cell-specific expression in the lungs of adult transgenic mice, and the pattern of 4.8 SP-C-CAT expression during development paralleled that of the endogenous SP-C gene. With the use of deletion constructs, lung-specific, low-level CAT activity was detected in tissue assays of SP-C-CAT transgenic mice retaining 318 bp of the promoter. In transient and stable cell transfection experiments, the 4.8-kb SP-C promoter was 90-fold more active as a stably integrated gene. These findings indicate that 1) the 4.8-kb SP-C promoter is sufficient to direct cell-specific and developmental expression, 2) an enhancer essential for lung-specific expression maps to the proximal 318-bp promoter, and 3) the activity of the 4.8-kb SP-C promoter construct is highly dependent on its chromatin environment.

  5. NF-κB Activation Protects Oligodendrocytes against Inflammation

    PubMed Central

    Stone, Sarrabeth; Jamison, Stephanie; Yue, Yuan; Durose, Wilaiwan

    2017-01-01

    NF-κB is a key player in inflammatory diseases, including multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the effects of NF-κB activation on oligodendrocytes in MS and EAE remain unknown. We generated a mouse model that expresses IκBαΔN, a super-suppressor of NF-κB, specifically in oligodendrocytes and demonstrated that IκBαΔN expression had no effect on oligodendrocytes under normal conditions (both sexes). Interestingly, we showed that oligodendrocyte-specific expression of IκBαΔN blocked NF-κB activation in oligodendrocytes and resulted in exacerbated oligodendrocyte death and hypomyelination in young, developing mice that express IFN-γ ectopically in the CNS (both sexes). We also showed that NF-κB inactivation in oligodendrocytes aggravated IFN-γ-induced remyelinating oligodendrocyte death and remyelination failure in the cuprizone model (male mice). Moreover, we found that NF-κB inactivation in oligodendrocytes increased the susceptibility of mice to EAE (female mice). These findings imply the cytoprotective effects of NF-κB activation on oligodendrocytes in MS and EAE. SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. NF-κB is a major player in inflammatory diseases that acts by regulating inflammation and cell viability. Data indicate that NF-κB activation in inflammatory cells facilitates the development of MS. However, to date, attempts to understand the role of NF-κB activation in oligodendrocytes in MS have been unsuccessful. Herein, we generated a mouse model that allows for inactivation of NF-κB specifically in oligodendrocytes and then used this model to determine the precise role of NF-κB activation in oligodendrocytes in models of MS. The results presented in this study represent the first demonstration that NF-κB activation acts cell autonomously to protect oligodendrocytes against inflammation in animal models of MS. PMID:28842413

  6. NF-κB Directly Regulates Fas Transcription to Modulate Fas-mediated Apoptosis and Tumor Suppression*

    PubMed Central

    Liu, Feiyan; Bardhan, Kankana; Yang, Dafeng; Thangaraju, Muthusamy; Ganapathy, Vadivel; Waller, Jennifer L.; Liles, Georgia B.; Lee, Jeffrey R.; Liu, Kebin

    2012-01-01

    Fas is a member of the death receptor family. Stimulation of Fas leads to induction of apoptotic signals, such as caspase 8 activation, as well as “non-apoptotic” cellular responses, notably NF-κB activation. Convincing experimental data have identified NF-κB as a critical promoter of cancer development, creating a solid rationale for the development of antitumor therapy that suppresses NF-κB activity. On the other hand, compelling data have also shown that NF-κB activity enhances tumor cell sensitivity to apoptosis and senescence. Furthermore, although stimulation of Fas activates NF-κB, the function of NF-κB in the Fas-mediated apoptosis pathway remains largely undefined. In this study, we observed that deficiency of either Fas or FasL resulted in significantly increased incidence of 3-methylcholanthrene-induced spontaneous sarcoma development in mice. Furthermore, Fas-deficient mice also exhibited significantly greater incidence of azoxymethane and dextran sodium sulfate-induced colon carcinoma. In addition, human colorectal cancer patients with high Fas protein in their tumor cells had a longer time before recurrence occurred. Engagement of Fas with FasL triggered NF-κB activation. Interestingly, canonical NF-κB was found to directly bind to the FAS promoter. Blocking canonical NF-κB activation diminished Fas expression, whereas blocking alternate NF-κB increased Fas expression in human carcinoma cells. Moreover, although canonical NF-κB protected mouse embryo fibroblast (MEF) cells from TNFα-induced apoptosis, knocking out p65 diminished Fas expression in MEF cells, resulting in inhibition of FasL-induced caspase 8 activation and apoptosis. In contrast, knocking out p52 increased Fas expression in MEF cells. Our observations suggest that canonical NF-κB is a Fas transcription activator and alternate NF-κB is a Fas transcription repressor, and Fas functions as a suppressor of spontaneous sarcoma and colon carcinoma. PMID:22669972

  7. Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and non-canonical NF-κB signalling

    PubMed Central

    Saldanha-Araujo, Felipe; Haddad, Rodrigo; de Farias, Kelen C R Malmegrim; Souza, Alessandra de Paula Alves; Palma, Patrícia V; Araujo, Amélia G; Orellana, Maristela D; Voltarelli, Julio C; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T cells into regulatory T cells in vitro. The marker CD69 is a target of canonical nuclear factor kappa-B (NF-κB) signalling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 (BAY) and a siRNA against v-rel reticuloendotheliosis viral oncogene homolog B (RELB) were used to explore the differential roles of canonical and non-canonical NF-κB signalling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signalling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signalling on the third day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signalling. PMID:21777379

  8. Nuclear factor kappa B-dependent Zif268 expression in hippocampus is required for recognition memory in mice.

    PubMed

    Zalcman, Gisela; Federman, Noel; de la Fuente, Verónica; Romano, Arturo

    2015-03-01

    Long-term memory formation requires gene expression after acquisition of new information. The first step in the regulation of gene expression is the participation of transcription factors (TFs) such as nuclear factor kappa B (NF-кB), which are present before the neuronal activity induced by training. It was proposed that the activation of these types of TFs allows a second step in gene regulation by induction of immediate-early genes (IEGs) whose protein products are, in turn, TFs. Between these IEGs, zif268 has been found to play a critical role in long-term memory formation and reprocessing after retrieval. Here we found in mice hippocampus that, on one hand, NF-кB was activated 45 min after training in a novel object recognition (NOR) task and that inhibiting NF-кB immediately after training by intrahippocampal administration of NF-кB Decoy DNA impaired NOR memory consolidation. On the other hand, Zif268 protein expression was induced 45 min after NOR training and the administration of DNA antisense to its mRNA post-training impaired recognition memory. Finally, we found that the inhibition of NF-кB by NF-кB Decoy DNA reduced significantly the training-induced Zif268 increment, indicating that NF-кB is involved in the regulation of Zif268 expression. Thus, the present results support the involvement of NF-кB activity-dependent Zif268 expression in the hippocampus during recognition memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Plumbagin, a vitamin K3 analogue, abrogates lipopolysaccharide-induced oxidative stress, inflammation and endotoxic shock via NF-κB suppression.

    PubMed

    Checker, Rahul; Patwardhan, Raghavendra S; Sharma, Deepak; Menon, Jisha; Thoh, Maikho; Sandur, Santosh K; Sainis, Krishna B; Poduval, T B

    2014-04-01

    Plumbagin has been reported to modulate cellular redox status and suppress NF-κB. In the present study, we investigated the effect of plumbagin on lipopolysaccharide (LPS)-induced endotoxic shock, oxidative stress and inflammatory parameters in vitro and in vivo. Plumbagin inhibited LPS-induced nitric oxide, TNF-α, IL-6 and prostaglandin-E2 production in a concentration-dependent manner in RAW 264.7 cells without inducing any cell death. Plumbagin modulated cellular redox status in RAW cells. Plumbagin treatment significantly reduced MAPkinase and NF-κB activation in macrophages. Plumbagin prevented mice from endotoxic shock-associated mortality and decreased serum levels of pro-inflammatory markers. Plumbagin administration ameliorated LPS-induced oxidative stress in peritoneal macrophages and splenocytes. Plumbagin also attenuated endotoxic shock-associated changes in liver and lung histopathology and decreased the activation of ERK and NF-κB in liver. These findings demonstrate the efficacy of plumbagin in preventing LPS-induced endotoxemia and also provide mechanistic insights into the anti-inflammatory effects of plumbagin.

  10. Genetic ablation of P65 subunit of NF-κB in mdx mice to improve muscle physiological function.

    PubMed

    Yin, Xi; Tang, Ying; Li, Jian; Dzuricky, Anna T; Pu, Chuanqiang; Fu, Freddie; Wang, Bing

    2017-10-01

    Duchenne muscular dystrophy (DMD) is a genetic muscle disease characterized by dystrophin deficiency. Beyond gene replacement, the question of whether ablation of the p65 gene of nuclear factor-kappa B (NF-κB) in DMD can improve muscle physiology function is unknown. In this study, we investigated muscle physiological improvement in mdx mice (DMD model) with a genetic reduction of NF-κB. Muscle physiological function and histology were studied in 2-month-old mdx/p65 +/- , wild-type, mdx, and human minidystrophin gene transgenic mdx (TghΔDys/mdx) mice. Improved muscle physiological function was found in mdx/p65 +/- mice when compared with mdx mice; however, it was similar to TghΔDys/mdx mice. The results indicate that genetic reduction of p65 levels diminished chronic inflammation in dystrophic muscle, thus leading to amelioration of muscle pathology and improved muscle physiological function. The results show that inhibition of NF-κB may be a promising therapy when combined with gene therapy for DMD. Muscle Nerve 56: 759-767, 2017. © 2016 Wiley Periodicals, Inc.

  11. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wenwen; Zheng, Xuexing; Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathwaysmore » using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.« less

  12. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression

    PubMed Central

    Heusinger, Elena; Kirchhoff, Frank

    2017-01-01

    The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165

  13. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes

    PubMed Central

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Background: Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. Objective: In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Materials and Methods: Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11–7082. Results: Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11–7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Conclusions: Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. SUMMARY Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression. Abbreviations Used: OA: Osteoarthritis IL-1β: Interleukin-1 beta NF-κB: Nuclear factor-kappa B COX-2: cyclooxygenase-2 PGE2: prostaglandin E2 PMID:27034605

  14. Lactoferrin from Camelus dromedarius Inhibits Nuclear Transcription Factor-kappa B Activation, Cyclooxygenase-2 Expression and Prostaglandin E2 Production in Stimulated Human Chondrocytes.

    PubMed

    Rasheed, Naila; Alghasham, Abdullah; Rasheed, Zafar

    2016-01-01

    Osteoarthritis (OA) is a progressive joint disorder, which remains the leading cause of chronic disability in aged people. Nuclear factor-kappa B (NF)-κB is a major cellular event in OA and its activation by interleukin-1β (IL-1β) plays a critical role in cartilage breakdown in these patients. In this study, we examined the effect of lactoferrin on NF-κB activation, cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in stimulated human articular chondrocytes. Human chondrocytes were derived from OA articular cartilage and treated with camel lactoferrin and then stimulated with IL-1β. Gene expression was determined by TaqMan assays and protein expression was studied by Western immunoblotting. NF-κB activity and PGE2 levels were determined by ELISA based assays. NF-κB activity was also determined by treatment of chondrocytes with NF-κB specific inhibitor Bay 11-7082. Lactoferrin inhibited IL-1β-induced activation and nuclear translocation of NF-κB p65 in human OA chondrocytes. Lactoferrin also inhibited mRNA/protein expression of COX-2 and production of PGE2. Moreover, Bay 11-7082 also inhibited IL-1β-induced expression of COX-2 and production of PGE2. The inhibitory effect of lactoferrin on the IL-1β induced expression of COX-2 or production of PGE2 was mediated at least in part via suppression of NF-κB activation. Our data determine camel lactoferrin as a novel inhibitor of IL-1β-induced activation of NF-κB signaling events and production of cartilage-degrading molecule PGE2 via inhibition of COX-2 expressions. These results may have important implications for the development of novel therapeutic strategies for the prevention/treatment of OA and other degenerative/inflammatory diseases. Lactoferrin shows anti-arthritic activity in IL-1β stimulated primary human chondrocytes.Lactoferrin inhibits IL-1β-induced NF-κB activation.Lactoferrin inhibits production of cartilage degrading PGE2 via inhibition of COX-2 expression. Abbreviations Used: OA: Osteoarthritis IL-1β: Interleukin-1 beta NF-κB: Nuclear factor-kappa B COX-2: cyclooxygenase-2 PGE2: prostaglandin E2.

  15. IKK{epsilon} modulates RSV-induced NF-{kappa}B-dependent gene transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao Xiaoyong; Indukuri, Hemalatha; Liu Tianshuang

    2010-12-20

    Respiratory syncytial virus (RSV), a negative-strand RNA virus, is the most common cause of epidemic respiratory disease in infants and young children. RSV infection of airway epithelial cells induces the expression of immune/inflammatory genes through the activation of a subset of transcription factors, including Nuclear Factor-{kappa}B (NF-{kappa}B). In this study we have investigated the role of the non canonical I{kappa}B kinase (IKK){epsilon} in modulating RSV-induced NF-{kappa}B activation. Our results show that inhibition of IKK{epsilon} activation results in significant impairment of viral-induced NF-{kappa}B-dependent gene expression, through a reduction in NF-{kappa}B transcriptional activity, without changes in nuclear translocation or DNA-binding activity. Absencemore » of IKK{epsilon} results in a significant decrease of RSV-induced NF-{kappa}B phosphorylation on serine 536, a post-translational modification important for RSV-induced NF-{kappa}B-dependent gene expression, known to regulate NF-{kappa}B transcriptional activity without affecting nuclear translocation. This study identifies a novel mechanism by which IKK{epsilon} regulates viral-induced cellular signaling.« less

  16. Therapeutic microRNAs targeting the NF-kappa B Signaling Circuits of Cancers

    PubMed Central

    Tong, Lingying; Yuan, Ye; Wu, Shiyong

    2014-01-01

    MicroRNAs (miRNAs) not only directly regulate NF-κB expression, but also up- or down-regulate NF-κB activity via upstream and downstream signaling pathways of NF-κB. In many cancer cells, miRNA expressions are altered accompanied with an elevation of NF-κB, which often plays a role in promoting cancer development and progression as well as hindering the effectiveness of chemo and radiation therapies. Thus NF-κB-targeting miRNAs have been identified and characterized as potential therapeutics for cancer treatment and sensitizers of chemo and radiotherapies. However, due to cross-targeting and instability of miRNAs, some limitations of using miRNA as cancer therapeutics still exist. In this review, the mechanisms for miRNA-mediated alteration of NF-κB expression and activation in different types of cancers will be discussed. The results of therapeutic use of NF-κB-targeting miRNA for cancer treatment will be examined. Some limitations, challenges and potential strategies in future development of miRNA as cancer therapeutics are also assessed. PMID:25220353

  17. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells.

    PubMed

    Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie

    2013-05-01

    Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.

  18. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise

    PubMed Central

    Ibáñez, Carlos A.; Erthal, Rafaela P.; Ogo, Fernanda M.; Peres, Maria N. C.; Vieira, Henrique R.; Conejo, Camila; Tófolo, Laize P.; Francisco, Flávio A.; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P.; da Silva, Paulo H. O.; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D.; Moreira, Veridiana M.; Alves, Vander S.; da Silva Franco, Claudinéia C.; Previate, Carina; Gomes, Rodrigo M.; de Oliveira Venci, Renan; Dias, Francielle R. S.; Armitage, James A.; Zambrano, Elena; Mathias, Paulo C. F.; Fernandes, Glaura S. A.; Palma-Rigo, Kesia

    2017-01-01

    An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health. PMID:29163186

  19. A High Fat Diet during Adolescence in Male Rats Negatively Programs Reproductive and Metabolic Function Which Is Partially Ameliorated by Exercise.

    PubMed

    Ibáñez, Carlos A; Erthal, Rafaela P; Ogo, Fernanda M; Peres, Maria N C; Vieira, Henrique R; Conejo, Camila; Tófolo, Laize P; Francisco, Flávio A; da Silva Silveira, Sandra; Malta, Ananda; Pavanello, Audrei; Martins, Isabela P; da Silva, Paulo H O; Jacinto Saavedra, Lucas Paulo; Gonçalves, Gessica D; Moreira, Veridiana M; Alves, Vander S; da Silva Franco, Claudinéia C; Previate, Carina; Gomes, Rodrigo M; de Oliveira Venci, Renan; Dias, Francielle R S; Armitage, James A; Zambrano, Elena; Mathias, Paulo C F; Fernandes, Glaura S A; Palma-Rigo, Kesia

    2017-01-01

    An interaction between obesity, impaired glucose metabolism and sperm function in adults has been observed but it is not known whether exposure to a diet high in fat during the peri-pubertal period can have longstanding programmed effects on reproductive function and gonadal structure. This study examined metabolic and reproductive function in obese rats programmed by exposure to a high fat (HF) diet during adolescence. The effect of physical training (Ex) in ameliorating this phenotype was also assessed. Thirty-day-old male Wistar rats were fed a HF diet (35% lard w/w) for 30 days then subsequently fed a normal fat diet (NF) for a 40-day recovery period. Control animals were fed a NF diet throughout life. At 70 days of life, animals started a low frequency moderate exercise training that lasted 30 days. Control animals remained sedentary (Se). At 100 days of life, biometric, metabolic and reproductive parameters were evaluated. Animals exposed to HF diet showed greater body weight, glucose intolerance, increased fat tissue deposition, reduced VO 2max and reduced energy expenditure. Consumption of the HF diet led to an increase in the number of abnormal seminiferous tubule and a reduction in seminiferous epithelium height and seminiferous tubular diameter, which was reversed by moderate exercise. Compared with the NF-Se group, a high fat diet decreased the number of seminiferous tubules in stages VII-VIII and the NF-Ex group showed an increase in stages XI-XIII. HF-Se and NF-Ex animals showed a decreased number of spermatozoa in the cauda epididymis compared with animals from the NF-Se group. Animals exposed to both treatments (HF and Ex) were similar to all the other groups, thus these alterations induced by HF or Ex alone were partially prevented. Physical training reduced fat pad deposition and restored altered reproductive parameters. HF diet consumption during the peri-pubertal period induces long-term changes on metabolism and the reproductive system, but moderate and low frequency physical training is able to recover adipose tissue deposition and reproductive system alterations induced by high fat diet. This study highlights the importance of a balanced diet and continued physical activity during adolescence, with regard to metabolic and reproductive health.

  20. Anti-ulcerogenic effect of cavidine against ethanol-induced acute gastric ulcer in mice and possible underlying mechanism.

    PubMed

    Li, Weifeng; Wang, Xiumei; Zhang, Hailin; He, Zehong; Zhi, Wenbing; Liu, Fang; Wang, Yu; Niu, Xiaofeng

    2016-09-01

    Cavidine, a major alkaloid compound isolated from Corydalis impatiens, has various pharmacological effects but its effect on gastric ulcer has not been previously explored. The current study aimed to investigate the possible anti-ulcerogenic potential of cavidine in the model of ethanol-induced gastric ulcer. Mice received cavidine (1, 5 or 10mg/kg, ig), cimetidine (CMD, 100mg/kg, ig) or vehicle at 12h and 1h before absolute ethanol administration (0.5mL/100g), and animals were euthanized 3h after ethanol ingestion. Gross and histological gastric lesions, biochemical, immunological and Western blot parameters were taken into consideration. The results showed that ethanol administration produced apparent mucosal injuries with morphological and histological damage, whereas cavidine pre-treatment reduced the gastric injuries. Cavidine pre-treatment also ameliorated the contents of malonaldehyde (MDA) and myeloperoxidase (MPO) activity, and increased the mucosa levels of glutathione (GSH), superoxide dismutase (SOD) and prostaglandin E2 (PGE2), relative to the model group. Also cavidine was able to decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), inhibit the up-regulation of cyclo-oxygenase-2 (COX-2) expression and activation of Nuclear factor-kappa B (NF-κB) pathway. Taken together, these results indicated that cavidine exerts a gastroprotective effect against gastric ulceration, and the underlying mechanism might be associated with the stimulation of PGE2, reduction of oxidative stress, suppression of NF-κB expression and subsequent reduced COX-2 and pro-inflammatory cytokines. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. PDK1 in NF-κB signaling is a target of Xanthium strumarium methanolic extract-mediated anti-inflammatory activities.

    PubMed

    Hossen, Muhammad Jahangir; Cho, Jae Youl; Kim, Daewon

    2016-08-22

    Xanthium strumarium L. (Asteraceae) has traditionally been used to treat bacterial infections, nasal sinusitis, urticaria, arthritis, chronic bronchitis and rhinitis, allergic rhinitis, edema, lumbago, and other ailments. However, the molecular mechanisms by which this plant exerts its anti-inflammatory effects are poorly characterized. Here we studied the immunopharmacological activities of the methanolic extract of the aerial parts of this plant (Xs-ME) and validated its pharmacological targets. To evaluate the anti-inflammatory activity of Xs-ME, we employed lipopolysaccharide (LPS)-treated macrophages and an HCl/EtOH-induced mouse model of gastritis. We also used HPLC to identify the potentially active anti-inflammatory components of this extract. The molecular mechanisms of its anti-inflammatory activity were studied by kinase assays, reporter gene assays, immunoprecipitation analysis, and overexpression of target enzymes. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) were both suppressed by Xs-ME. Moreover, orally administered Xs-ME ameliorated HCl/EtOH-induced gastric lesions. Furthermore, this extract downregulated the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 and reduced the nuclear levels of NF-κB. Signaling events upstream of NF-κB translocation, such as phosphorylation of AKT and the formation of PDK1-AKT signaling complexes, were also inhibited by Xs-ME. Moreover, Xs-ME suppressed the enzymatic activity of PDK1. Additionally, PDK1-induced luciferase activity and Akt phosphorylation were both inhibited by Xs-ME. We also identified the polyphenol resveratrol as a likely active anti-inflammatory component in Xs-ME that targets PDK1. Xs-ME exerts anti-inflammatory activity in vitro and in vivo by inhibiting PDK1 kinase activity and blocking signaling to its downstream transcription factor, NF-κB. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B.

    PubMed

    Rodríguez, Clara I; Nogal, María L; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda

    2002-04-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-kappaB. Thus, transient transfection of the viral IAP increases the activity of an NF-kappaB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-kappaB-dependent gene. NF-kappaB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-kappaB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-kappaB activity seems to be the consequence of higher IkappaB kinase (IKK) basal activity in these cells. The NF-kappaB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2.

  3. African Swine Fever Virus IAP-Like Protein Induces the Activation of Nuclear Factor Kappa B

    PubMed Central

    Rodríguez, Clara I.; Nogal, María L.; Carrascosa, Angel L.; Salas, María L.; Fresno, Manuel; Revilla, Yolanda

    2002-01-01

    African swine fever virus (ASFV) encodes a homologue of the inhibitor of apoptosis (IAP) that promotes cell survival by controlling the activity of caspase-3. Here we show that ASFV IAP is also able to activate the transcription factor NF-κB. Thus, transient transfection of the viral IAP increases the activity of an NF-κB reporter gene in a dose-responsive manner in Jurkat cells. Similarly, stably transfected cells expressing ASFV IAP have elevated basal levels of c-rel, an NF-κB-dependent gene. NF-κB complexes in the nucleus were increased in A224L-expressing cells compared with control cells upon stimulation with phorbol myristate acetate (PMA) plus ionomycin. This resulted in greater NF-κB-dependent promoter activity in ASFV IAP-expressing than in control cells, both in basal conditions and after PMA plus ionophore stimulation. The elevated NF-κB activity seems to be the consequence of higher IκB kinase (IKK) basal activity in these cells. The NF-κB-inducing activity of ASFV IAP was abrogated by an IKK-2 dominant negative mutant and enhanced by expression of tumor necrosis factor receptor-associated factor 2. PMID:11907233

  4. Nuclear factor 45 of tongue sole (Cynoglossus semilaevis): evidence for functional differentiation between two isoforms in immune defense against viral and bacterial pathogens.

    PubMed

    Chi, Heng; Hu, Yong-hua; Xiao, Zhi-zhong; Sun, Li

    2014-02-01

    Nuclear factor 45 (NF45) is known to play an important role in regulating interleukin-2 expression in mammals. The function of fish NF45 is largely unknown. In a previous study, we reported the identification of a NF45 (named CsNF45) from half smooth tongue sole (Cynoglossus semilaevis). In the present study, we identified an isoform of CsNF45 (named CsNF45i) from half smooth tongue sole and examined its biological properties in comparison with CsNF45. We found that CsNF45i is a truncated version of CsNF45 and lacks the N-terminal 38 residues of CsNF45. Genetic analysis showed that the CsNF45 gene consists of 14 exons and 13 introns, and that CsNF45 and CsNF45i are the products of alternative splicing. Constitutive expression of CsNF45 and CsNF45i occurred in multiple tissues but differed in patterns. Experimental infection with viral and bacterial pathogens upregulated the expression of both isoforms but to different degrees, with potent induction of CsNF45 being induced by bacterial pathogen, while dramatic induction of CsNF45i being induced by viral pathogen. Transient transfection analysis showed that both isoforms were localized in the nucleus and able to stimulate the activity of IL-2 promoter to comparable extents. To examine their in vivo effects, the two isoforms were overexpressed in tongue sole. Subsequent analysis showed that following viral and bacterial infection, the viral loads in CsNF45i-overexpressing fish were significantly lower than those in CsNF45-overexpressing fish, whereas the bacterial loads in CsNF45-overexpressing fish were significantly lower than those in CsNF45i-overexpressing fish. These results indicate that both CsNF45 and CsNF45i possess immunoregulatory properties, however, the two isoforms most likely participate in different aspects of host immune defense that target different pathogens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. ZmNF-YB16 Overexpression Improves Drought Resistance and Yield by Enhancing Photosynthesis and the Antioxidant Capacity of Maize Plants

    PubMed Central

    Wang, Baomei; Li, Zhaoxia; Ran, Qijun; Li, Peng; Peng, Zhenghua; Zhang, Juren

    2018-01-01

    ZmNF-YB16 is a basic NF-YB superfamily member and a member of a transcription factor complex composed of NF-YA, NF-YB, and NF-YC in maize. ZmNF-YB16 was transformed into the inbred maize line B104 to produce homozygous overexpression lines. ZmNF-YB16 overexpression improves dehydration and drought stress resistance in maize plants during vegetative and reproductive stages by maintaining higher photosynthesis and increases the maize grain yield under normal and drought stress conditions. Based on the examination of differentially expressed genes between the wild-type (WT) and transgenic lines by quantitative real time PCR (qRT-PCR), ZmNF-YB16 overexpression increased the expression of genes encoding antioxidant enzymes, the antioxidant synthase, and molecular chaperones associated with the endoplasmic reticulum (ER) stress response, and improved protection mechanism for photosynthesis system II. Plants that overexpression ZmNF-YB16 showed a higher rate of photosynthesis and antioxidant enzyme activity, better membrane stability and lower electrolyte leakage under control and drought stress conditions. These results suggested that ZmNF-YB16 played an important role in drought resistance in maize by regulating the expression of a number of genes involved in photosynthesis, the cellular antioxidant capacity and the ER stress response. PMID:29896208

  6. Coal dust contiguity-induced changes in the concentration of TNF- and NF- B p65 on the ocular surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.Y.; Hong, J.; Liu, Z.Y.

    2009-07-01

    To observe the influence of coal dust on ocular surface of coal miners and rabbits with coal dust contiguity on expression TNF- and NF- Bp65 and dry eye occurrence. Expression TNF- and NF- Bp65 in ocular surface were determined. Results showed tear production, BUT and lysozyme decreased for coal miners and rabbits with coal dust contiguity. Coal dust exposure was linked to development of xerophthalmia, and induced a higher expression of NF- B p65 and TNF- perhaps as a mechanism to resist coal dust ocular surface injury.

  7. Towards isolation of the gene for X-linked retinitis pigmentosa (RP3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dry, K.L.; Aldred, M.A.; Hardwick, L.J.

    1994-09-01

    Until recently the region of interest containing the gene for X-linked retinitis pigmentosa (RP3) was thought to lie between CYBB (Xp21.1) and the proximal end of the deletion in patient BB (JBBprox). This region was thought to span 100-150 kb. Here we present new mapping data to show that the distance between the 5{prime} (most proximal) end of CYBB and JBBprox is only 50 kb. Recently Roux et al. (1994) have described the isolation of a gene within this region but this showed no disease-associated changes. Further evidence from mapping the deletion in patient NF (who suffered from McLead`s syndromemore » and CGD but not RP) and from linkage analysis of our RP3 families with a new dinucleotide repeat suggests that the gene must extend proximally from JBBprox. In order to extend the region of search we have constructed a YAC contig spanning 800 kb to OTC. We are continuing our search for the RP3 gene using a variety of strategies including exon trapping and cDNA enrichment as well as direct screening of cDNA libraries with subclones from this region.« less

  8. Anthocyanins in black rice, soybean and purple corn increase fecal butyric acid and prevent liver inflammation in high fat diet-induced obese mice.

    PubMed

    Wu, Tao; Guo, Xueqi; Zhang, Min; Yang, Lu; Liu, Rui; Yin, Jinjin

    2017-09-20

    Epidemiological evidence indicates that anthocyanin consumption reduces the incidence of chronic and degenerative diseases. Therefore, the present study aimed to determine whether black rice anthocyanin (BRA), black soybean anthocyanin (BSA), and purple corn anthocyanin (PCA) could mitigate oxidative stress and inflammation associated obesity in C57BL/6 mice fed with a high-fat diet. BRA, BSA, or PCA was administered at doses of 200 mg kg -1 throughout the 12-week experiment and reduced the bodyweight by 9.6%, 13.3%, or 16.6%, respectively. Furthermore, BRA, BSA or PCA administration could effectively increase fecal butyric acid levels, elevate hepatic SOD and GPx activities, decrease lipid peroxidation, and downregulate the gene expression levels of TNFα, IL-6, iNOS, and NF-κB. Hence, BRA, BSA, or PCA might ameliorate diet-induced obesity by alleviating both oxidative stress and inflammation.

  9. Full expression of Bacillus anthracis toxin gene in the presence of bicarbonate requires a 2.7-kb-long atxA mRNA that contains a terminator structure.

    PubMed

    Bertin, Marine; Château, Alice; Fouet, Agnès

    2010-05-01

    Bacillus anthracis toxin gene expression requires AtxA, a virulence regulator that also activates capsule gene transcription and controls expression of more than a hundred genes. Here we report that atxA mRNA is 2.7-kb-long and ends, after a 500 nt-long 3' untranslated region, with a stem loop structure followed by a run of U's. The presence of this structure stabilizes atxA mRNA and is necessary for AtxA maximal accumulation, full expression of the PA toxin gene, pagA and optimal PA accumulation. This structure displays terminator activity independently of its orientation when cloned between an inducible promoter and a reporter gene. The 3.6-kb-long DNA fragment carrying both AtxA promoters and the terminator is sufficient for full expression of pagA in the presence of bicarbonate. No pXO1-encoded element other than the DNA fragment encompassing the 2.7 kb atxA transcript and the pagA promoter is required for bicarbonate induction of pagA transcription. (c) 2010 Elsevier Masson SAS. All rights reserved.

  10. Nuclear factor-kappaB activation correlates with better prognosis and Akt activation in human gastric cancer.

    PubMed

    Lee, Byung Lan; Lee, Hye Seung; Jung, Jieun; Cho, Sung Jin; Chung, Hee-Yong; Kim, Woo Ho; Jin, Young-Woo; Kim, Chong Soon; Nam, Seon Young

    2005-04-01

    Because the biological significance of constitutive nuclear factor-kappaB (NF-kappaB) activation in human gastric cancer is unclear, we undertook this study to clarify the regulatory mechanism of NF-kappaB activation and its clinical significance. Immunohistochemistry for NF-kappaB/RelA was done on 290 human gastric carcinoma specimens placed on tissue array slides. The correlations between NF-kappaB activation and clinicopathologic features, prognosis, Akt activation, tumor suppressor gene expression, or Bcl-2 expression were analyzed. We also did luciferase reporter assay, Western blot analysis, and reverse transcription-PCR using the SNU-216 human gastric cancer cell line transduced with retroviral vectors containing constitutively active Akt or the NF-kappaB repressor mutant of IkappaBalpha. Nuclear expression of RelA was found in 18% of the gastric carcinomas and was higher in early-stage pathologic tumor-node-metastasis (P = 0.019). A negative correlation was observed between NF-kappaB activation and lymphatic invasion (P = 0.034) and a positive correlation between NF-kappaB activation and overall survival rate of gastric cancer patients (P = 0.0228). In addition, NF-kappaB activation was positively correlated with pAkt (P = 0.047), p16 (P = 0.004), adenomatous polyposis coli (P < 0.001), Smad4 (P = 0.002), and kangai 1 (P < 0.001) expression. An in vitro study showed that NF-kappaB activity in gastric cancer cells is controlled by and controls Akt. NF-kappaB activation was frequently observed in early-stage gastric carcinoma and was significantly correlated with better prognosis and Akt activation. These findings suggest that NF-kappaB activation is a valuable prognostic variable in gastric carcinoma.

  11. STAT3/NF-κB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer

    PubMed Central

    Kuo, Wei-Ying; Hwu, Luen; Wu, Chun-Yi; Lee, Jhih-Shian; Chang, Chi-Wei; Liu, Ren-Shyan

    2017-01-01

    Triple-negative breast cancer (TNBC) represents approximately 20% of all breast cancers and appears resistance to conventional cytotoxic chemotherapy, demonstrating a particularly poor prognosis and a significantly worse clinical outcome than other types of cancer. Suicide gene therapy has been used for the in vivo treatment of various solid tumors in recent clinical trials. In tumor microenvironment, STAT3/NF-κB pathways are constitutively activated in stromal cells as well as in cancer stem cells (CSCs). In this study, we have cloned a novel STAT3/NF-κB-based reporter system to drive the expression of herpes simplex virus thymidine kinase (HSV-TK) against breast cancer. Lentiviral vector expressing HSV-TK under the regulation of STAT3/NF-κB fused response element was developed. In this setting, we exploited the constitutive STAT3/NF-κB activation in tumors to achieve higher transgene expression than that driven by a constitutively active CMV promotor in vivo. An orthotropic MDA-MB-231 triple negative breast cancer mouse model was used for evaluating the feasibility of STAT3-NF-κB-TK/GCV suicide gene therapy system. The basal promoter activity of Lenti-CMV-TK and Lenti-STAT3-NF-κB-TK in MDA-MB-231 cells was compared by 3H-FEAU uptake assay. The Lenti-CMV-TK showed ~5 fold higher 3H-FEAU uptake then Lenti -STAT3-NF-κB-TK. In clonogenic assay, cells expressing Lenti-CMV-TK were 2-fold more sensitive to GCV than Lenti-STAT3-NF-κB-TK transduced cells. In vitro effect of STAT3-NF-κB-induced transgene expression was determined by 10ng/mL TNF-α induction and confirmed by western blot analysis and DsRedm fluorescent microscopy. In vivo evaluation of therapeutic effect by bioluminescence and [18F]FHBG microPET imaging indicated that Lenti-STAT3-NF-κB-TK showed more tumor growth retardation than Lenti-CMV-TK when GCV (20 mg/kg) was administered. The invasiveness and expression of cancer stem cell markers were both decreased after STAT3/NF-κB-regulated HSV-TK/GCV therapy. Moreover, STAT3/NF-κB signaling targeting could further sensitize tumor cells to cisplatin. This study successfully established a theranositic approach to treat triple-negative breast cancer via STAT3-NF-κB responsive element-driven suicide gene therapy. This platform may also be an alternative strategy to handle with drug-resistant cancer cells. PMID:28255357

  12. Chronotherapeutic effect of fisetin on expression of urea cycle enzymes and inflammatory markers in hyperammonaemic rats.

    PubMed

    Subramanian, Perumal; Jayakumar, Murugesan; Jayapalan, Jaime Jacqueline; Hashim, Onn Haji

    2014-12-01

    Elevated blood ammonia leads to hyperammonaemia that affects vital central nervous system (CNS) functions. Fisetin, a naturally occurring flavonoid, exhibits therapeutic benefits, such as anti-cancer, anti-diabetic, anti-oxidant, anti-angiogenic, neuroprotective and neurotrophic effects. In this study, the chronotherapeutic effect of fisetin on ammonium chloride (AC)-induced hyperammonaemic rats was investigated, to ascertain the time point at which the maximum drug effect is achieved. The anti-hyperammonaemic potential of fisetin (50mg/kg b.w. oral) was analysed when administered to AC treated (100mg/kg b.w. i.p.) rats at 06:00, 12:00, 18:00 and 00:00h. Amelioration of pathophysiological conditions by fisetin at different time points was measured by analysing the levels of expression of liver urea cycle enzymes (carbamoyl phosphate synthetase-I (CPS-I), ornithine transcarbamoylase (OTC) and argininosuccinate synthetase (ASS)), nuclear transcription factor kappaB (NF-κB p65), brain glutamine synthetase (GS) and inducible nitric oxide synthase (iNOS) by Western blot analysis. Fisetin increased the expression of CPS-I, OTC, ASS and GS and decreased iNOS and NF-κB p65 in hyperammonaemic rats. Fisetin administration at 00:00h showed more significant effects on the expression of liver and brain markers, compared with other time points. Fisetin could exhibit anti-hyperammonaemic effect owing to its anti-oxidant and cytoprotective influences. The temporal variation in the effect of fisetin could be due to the (i) chronopharmacological, chronopharmacokinetic properties of fisetin and (ii) modulations in the endogenous circadian rhythms of urea cycle enzymes, brain markers, redox enzymes and renal clearance during hyperammonaemia by fisetin. However, future studies in these lines are necessitated. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Piracy of PGE2/EP receptor mediated signaling by Kaposi’s sarcoma associated herpes virus (KSHV/HHV-8) for latency gene expression: Strategy of a successful pathogen

    PubMed Central

    Paul, Arun George; Sharma-Walia, Neelam; Kerur, Nagaraj; White, Carl; Chandran, Bala

    2010-01-01

    KSHV is implicated in the pathogenesis of KS, a chronic inflammation associated malignancy. COX-2 and its metabolite PGE2, two pivotal proinflammatory/oncogeneic molecules, are proposed to play roles in the expression of major KSHV latency associated nuclear antigen-1 (LANA-1). Microsomal prostaglandin E2 synthase (mPGES), PGE2 and its receptors (EP1, EP2, EP3, and EP4) were detected in KS lesions with the distinct staining of EP2/EP4 in KS lesions. In latently infected endothelial TIVE-LTC cells, EP receptor antagonists down-regulated LANA-1 expression as well as Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB, which are also some of the signal molecules proposed to be important in KS pathogenesis. Exogenous PGE2 and EP receptor agonists induced the LANA-1 promoter in 293 cells, and YY1, Sp1, Oct-1, Oct-6, C/EBP and c-Jun transcription factors appear to be involved in this induction. PGE2/EP receptor induced LANA-1 promoter activity was down-regulated significantly by the inhibition of Ca2+, p-Src, p-PI3K, p-PKCζ/λ, and p-NF-κB. These findings implicate the inflammatory PGE2/EP receptors and the associated signal molecules in herpes virus latency and uncover a novel paradigm that demonstrates the evolution of KSHV genome plasticity to utilize inflammatory response for its survival advantage of maintaining latent gene expression. This data also suggests that potential use of anti-COX-2 and anti-EP receptor therapy may not only ameliorate the chronic inflammation associated with KS but could also lead to elimination of the KSHV latent infection and the associated KS lesions. PMID:20388794

  14. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. BCL11B enhances TCR/CD28-triggered NF-kappaB activation through up-regulation of Cot kinase gene expression in T-lymphocytes.

    PubMed

    Cismasiu, Valeriu B; Duque, Javier; Paskaleva, Elena; Califano, Danielle; Ghanta, Sailaja; Young, Howard A; Avram, Dorina

    2009-01-15

    BCL11B is a transcriptional regulator with an important role in T-cell development and leukaemogenesis. We demonstrated recently that BCL11B controls expression from the IL (interleukin)-2 promoter through direct binding to the US1 (upstream site 1). In the present study, we provide evidence that BCL11B also participates in the activation of IL-2 gene expression by enhancing NF-kappaB (nuclear factor kappaB) activity in the context of TCR (T-cell receptor)/CD28-triggered T-cell activation. Enhanced NF-kappaB activation is not a consequence of BCL11B binding to the NF-kappaB response elements or association with the NF-kappaB-DNA complexes, but rather the result of higher translocation of NF-kappaB to the nucleus caused by enhanced degradation of IkappaB (inhibitor of NF-kappaB). The enhanced IkappaB degradation in cells with increased levels of BCL11B was specific for T-cells activated through the TCR, but not for cells activated through TNFalpha (tumour necrosis factor alpha) or UV light, and was caused by increased activity of IkappaB kinase, as indicated by its increase in phosphorylation. As BCL11B is a transcription factor, we investigated whether the expression of genes upstream of IkappaB kinase in the TCR/CD28 signalling pathway was affected by increased BCL11B expression, and found that Cot (cancer Osaka thyroid oncogene) kinase mRNA levels were elevated. Cot kinase is known to promote enhanced IkappaB kinase activity, which results in the phosphorylation and degradation of IkappaB and activation of NF-kappaB. The implied involvement of Cot kinase in BCL11B-mediated NF-kappaB activation in response to TCR activation is supported by the fact that a Cot kinase dominant-negative mutant or Cot kinase siRNA (small interfering RNA) knockdown blocked BCL11B-mediated NF-kappaB activation. In support of our observations, in the present study we report that BCL11B enhances the expression of several other NF-kappaB target genes, in addition to IL-2. In addition, we provide evidence that BCL11B associates with intron 2 of the Cot kinase gene to regulate its expression.

  16. Regulation of Bacteria-Induced Intercellular Adhesion Molecule-1 by CCAAT/Enhancer Binding Proteins

    PubMed Central

    Manzel, Lori J.; Chin, Cecilia L.; Behlke, Mark A.; Look, Dwight C.

    2009-01-01

    Direct interaction between bacteria and epithelial cells may initiate or amplify the airway response through induction of epithelial defense gene expression by nuclear factor-κB (NF-κB). However, multiple signaling pathways modify NF-κB effects to modulate gene expression. In this study, the effects of CCAAT/enhancer binding protein (C/EBP) family members on induction of the leukocyte adhesion glycoprotein intercellular adhesion molecule-1 (ICAM-1) was examined in primary cultures of human tracheobronchial epithelial cells incubated with nontypeable Haemophilus influenzae. Increased ICAM-1 gene transcription in response to H. influenzae required gene sequences located at −200 to −135 in the 5′-flanking region that contain a C/EBP-binding sequence immediately upstream of the NF-κB enhancer site. Constitutive C/EBPβ was found to have an important role in epithelial cell ICAM-1 regulation, while the adjacent NF-κB sequence binds the RelA/p65 and NF-κB1/p50 members of the NF-κB family to induce ICAM-1 expression in response to H. influenzae. The expression of C/EBP proteins is not regulated by p38 mitogen-activated protein kinase activation, but p38 affects gene transcription by increasing the binding of TATA-binding protein to TATA-box–containing gene sequences. Epithelial cell ICAM-1 expression in response to H. influenzae was decreased by expressing dominant-negative protein or RNA interference against C/EBPβ, confirming its role in ICAM-1 regulation. Although airway epithelial cells express multiple constitutive and inducible C/EBP family members that bind C/EBP sequences, the results indicate that C/EBPβ plays a central role in modulation of NF-κB–dependent defense gene expression in human airway epithelial cells after exposure to H. influenzae. PMID:18703796

  17. NF-κB and androgen receptor variant expression correlate with human BPH progression.

    PubMed

    Austin, David C; Strand, Douglas W; Love, Harold L; Franco, Omar E; Jang, Alex; Grabowska, Magdalena M; Miller, Nicole L; Hameed, Omar; Clark, Peter E; Fowke, Jay H; Matusik, Robert J; Jin, Ren J; Hayward, Simon W

    2016-04-01

    Benign prostatic hyperplasia (BPH) is a common, chronic progressive disease. Inflammation is associated with prostatic enlargement and resistance to 5α-reductase inhibitor (5ARI) therapy. Activation of the nuclear factor-kappa B (NF-κB) pathway is linked to both inflammation and ligand-independent prostate cancer progression. NF-κB activation and androgen receptor variant (AR-V) expression were quantified in transition zone tissue samples from patients with a wide range of AUASS from incidental BPH in patients treated for low grade, localized peripheral zone prostate cancer to advanced disease requiring surgical intervention. To further investigate these pathways, human prostatic stromal and epithelial cell lines were transduced with constitutively active or kinase dead forms of IKK2 to regulate canonical NF-κB activity. The effects on AR full length (AR-FL) and androgen-independent AR-V expression as well as cellular growth and differentiation were assessed. Canonical NF-κB signaling was found to be upregulated in late versus early stage BPH, and to be strongly associated with non-insulin dependent diabetes mellitus. Elevated expression of AR-variant 7 (AR-V7), but not other AR variants, was found in advanced BPH samples. Expression of AR-V7 significantly correlated with the patient AUASS and TRUS volume. Forced activation of canonical NF-κB in human prostatic epithelial and stromal cells resulted in elevated expression of both AR-FL and AR-V7, with concomitant ligand-independent activation of AR reporters. Activation of NF-κB and over expression of AR-V7 in human prostatic epithelial cells maintained cell viability in the face of 5ARI treatment. Activation of NF-κB and AR-V7 in the prostate is associated with increased disease severity. AR-V7 expression is inducible in human prostate cells by forced activation of NF-κB resulting in resistance to 5ARI treatment, suggesting a potential mechanism by which patients may become resistant to 5ARI therapy. © 2015 Wiley Periodicals, Inc.

  18. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy.

    PubMed

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-05-31

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin ( IL ) -6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT₁ receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion.

  19. Melatonin Inhibits Androgen Receptor Splice Variant-7 (AR-V7)-Induced Nuclear Factor-Kappa B (NF-κB) Activation and NF-κB Activator-Induced AR-V7 Expression in Prostate Cancer Cells: Potential Implications for the Use of Melatonin in Castration-Resistant Prostate Cancer (CRPC) Therapy

    PubMed Central

    Liu, Vincent Wing Sun; Yau, Wing Lung; Tam, Chun Wai; Yao, Kwok-Ming; Shiu, Stephen Yuen Wing

    2017-01-01

    A major current challenge in the treatment of advanced prostate cancer, which can be initially controlled by medical or surgical castration, is the development of effective, safe, and affordable therapies against progression of the disease to the stage of castration resistance. Here, we showed that in LNCaP and 22Rv1 prostate cancer cells transiently overexpressing androgen receptor splice variant-7 (AR-V7), nuclear factor-kappa B (NF-κB) was activated and could result in up-regulated interleukin (IL)-6 gene expression, indicating a positive interaction between AR-V7 expression and activated NF-κB/IL-6 signaling in castration-resistant prostate cancer (CRPC) pathogenesis. Importantly, both AR-V7-induced NF-κB activation and IL-6 gene transcription in LNCaP and 22Rv1 cells could be inhibited by melatonin. Furthermore, stimulation of AR-V7 mRNA expression in LNCaP cells by betulinic acid, a pharmacological NF-κB activator, was reduced by melatonin treatment. Our data support the presence of bi-directional positive interactions between AR-V7 expression and NF-κB activation in CRPC pathogenesis. Of note, melatonin, by inhibiting NF-κB activation via the previously-reported MT1 receptor-mediated antiproliferative pathway, can disrupt these bi-directional positive interactions between AR-V7 and NF-κB and thereby delay the development of castration resistance in advanced prostate cancer. Apparently, this therapeutic potential of melatonin in advanced prostate cancer/CRPC management is worth translation in the clinic via combined androgen depletion and melatonin repletion. PMID:28561752

  20. [Effect of NF-κB on the expression of interleukin-6 induced by lipopolysaccharides of Porphyromonas endodontalis in MC3T3-E1 cells].

    PubMed

    Yu, Ya-qiong; Guo, Jia-jie; Qiu, Li-hong; Lv, You; Jia, Ge; Guo, Yan

    2013-08-01

    To investigate the effect of NF-κB signaling on the expression of interleukin-6(IL-6) induced by lipopolysaccharides(LPS) extracted from Porphyromonas endodontalis(P.e) in MC3T3-El cells. MC3T3-E1 cells were pretreated with BAY-117082 for 1 h, and then were treated with 10 mg/L P.e-LPS for different times. The translocation of NF-κB was observed by immunofluorescence. The expression of IL-6 was detected by reverse transcription polymerse chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). Statistical analysis was performed using multi-way ANOVA and Dunnett's t test with SPSS 13.0 software package. The staining of NF-κB was mostly in cytoplasm in untreated cells. Rapid translocation of NF-κB into nucleus was observed in the cells stimulated for 30 min and mostly relocalization of NF-κB from nucleus to cytoplasm was observed after 60 min. Pretreatment with 10 μmol/L BAY-117082 for 1h significantly inhibited P.e-LPS-induced translocation of NF-κB .The mRNA and proteins of IL-6 decreased significantly after pretreatment with 10 μmol/L BAY-117082 and the expression of IL-6 proteins was reduced from (774.983±6.585) ng/L to (377.384±14.620) ng/L (P<0.01). The group of treatment with BAY-117082 alone had no significant difference from the blank control group. P.e-LPS can induce translocation of NF-κB in mouse osteoblast MC3T3-El, and P.e-LPS may induce the expression of IL-6 in mouse osteoblast through the signaling of NF-κB.

  1. N-Acetyl cysteine protects diabetic mouse derived mesenchymal stem cells from hydrogen-peroxide-induced injury: A novel hypothesis for autologous stem cell transplantation.

    PubMed

    Ali, Fatima; Khan, Mohsin; Khan, Shaheen N; Riazuddin, Sheikh

    2016-03-01

    Stem cell transplantation is one of the therapeutic options available to repair damaged organs. However, transplanted cells entail several challenges including their survival in diabetes-affected injured tissue. This study was designed to determine the effects of preconditioning of mesenchymal stem cells (MSCs) with N-acetyl cysteine (NAC), a widely used antioxidant drug. Diabetic-mouse-derived MSCs (blood glucose ≥ 300 mg/dL) were preconditioned with 30 mM NAC for 1 hour followed by oxidative injury with 100 μM hydrogen peroxide (H2O2) for 1 hour. Gene expression analysis showed marked upregulation of prosurvival genes (Akt and Bcl-2) and significantly downregulated expression of proapoptotic and stress genes (Capase-3, Bax, Bak, p53, p38, and NF-κB) in the 30 mM-NAC-treated group when compared with those cells treated with H2O2 alone. NAC preconditioning improved cell viability, decreased lactate dehydrogenase release, β-galactosidase activity, and Annexin-V-positive cells. Also, amelioration of oxidative stress, as shown by a decrease in malondialdehyde level and an increase in superoxide dismutase and catalase activities and glutathione level, was observed in the 30 mM-NAC-treated group in comparison to cells treated with H2O2 alone. This study demonstrates the potential benefits of pharmacological preconditioning of diabetic-mouse-derived MSCs with NAC for amelioration of apoptosis and oxidative stress in H2O2 induced injury. Copyright © 2016. Published by Elsevier Taiwan LLC.

  2. Baicalin Ameliorates H2O2 Induced Cytotoxicity in HK-2 Cells through the Inhibition of ER Stress and the Activation of Nrf2 Signaling

    PubMed Central

    Lin, Miao; Li, Long; Zhang, Yi; Zheng, Long; Xu, Ming; Rong, Ruiming; Zhu, Tongyu

    2014-01-01

    Renal ischemia-reperfusion injury plays a key role in renal transplantation and greatly affects the outcome of allograft. Our previous study proved that Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, protects kidney from ischemia-reperfusion injury. This study aimed to study the underlying mechanism in vitro. Human renal proximal tubular epithelial cell line HK-2 cells were stimulated by H2O2 with and without Baicalin pretreatment. The cell viability, apoptosis and oxidative stress level were measured. The expression of endoplasmic reticulum (ER) stress hallmarks, such as binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP), were analyzed by western blot and real-time PCR. NF-E2-related factor 2 (Nrf2) expression was also measured. In the H2O2 group, cell viability decreased and cell apoptosis increased. Reactive Oxygen Species (ROS) and Glutathione/Oxidized Glutathione (GSH/GSSG) analysis revealed increased oxidative stress. ER stress and Nrf2 signaling also increased. Baicalin pretreatment ameliorated H2O2-induced cytotoxicity, reduced oxidative stress and ER stress and further activated the anti-oxidative Nrf2 signaling pathway. The inducer of ER stress and the inhibitor of Nrf2 abrogated the protective effects, while the inhibitor of ER stress and the inducer of Nrf2 did not improve the outcome. This study revealed that Baicalin pretreatment serves a protective role against H2O2-induced cytotoxicity in HK-2 cells, where the inhibition of ER stress and the activation of downstream Nrf2 signaling are involved. PMID:25029541

  3. Transcriptome profiling reveals novel BMI- and sex-specific gene expression signatures for human cardiac hypertrophy.

    PubMed

    Newman, Mackenzie S; Nguyen, Tina; Watson, Michael J; Hull, Robert W; Yu, Han-Gang

    2017-07-01

    How obesity or sex may affect the gene expression profiles of human cardiac hypertrophy is unknown. We hypothesized that body-mass index (BMI) and sex can affect gene expression profiles of cardiac hypertrophy. Human heart tissues were grouped according to sex (male, female), BMI (lean<25 kg/m 2 , obese>30 kg/m 2 ), or left ventricular hypertrophy (LVH) and non-LVH nonfailed controls (NF). We identified 24 differentially expressed (DE) genes comparing female with male samples. In obese subgroup, there were 236 DE genes comparing LVH with NF; in lean subgroup, there were seven DE genes comparing LVH with NF. In female subgroup, we identified 1,320 significant genes comparing LVH with NF; in male subgroup, there were 1,383 significant genes comparing LVH with NF. There were seven significant genes comparing obese LVH with lean NF; comparing male obese LVH with male lean NF samples we found 106 significant genes; comparing female obese LVH with male lean NF, we found no significant genes. Using absolute value of log 2 fold-change > 2 or extremely small P value (10 -20 ) as a criterion, we identified nine significant genes (HBA1, HBB, HIST1H2AC, GSTT1, MYL7, NPPA, NPPB, PDK4, PLA2G2A) in LVH, also found in published data set for ischemic and dilated cardiomyopathy in heart failure. We identified a potential gene expression signature that distinguishes between patients with high BMI or between men and women with cardiac hypertrophy. Expression of established biomarkers atrial natriuretic peptide A (NPPA) and B (NPPB) were already significantly increased in hypertrophy compared with controls. Copyright © 2017 the American Physiological Society.

  4. Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice

    PubMed Central

    Wozniak, David F.; Diggs-Andrews, Kelly A.; Conyers, Sara; Yuede, Carla M.; Dearborn, Joshua T.; Brown, Jacquelyn A.; Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F.; Gutmann, David H.

    2013-01-01

    Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1-associated cognitive/behavioral deficits. PMID:23762458

  5. Recurrent hypoinsulinemic hyperglycemia in neonatal rats increases PARP-1 and NF-κB expression and leads to microglial activation in the cerebral cortex.

    PubMed

    Gisslen, Tate; Ennis, Kathleen; Bhandari, Vineet; Rao, Raghavendra

    2015-11-01

    Hyperglycemia is a common metabolic problem in extremely low-birth-weight preterm infants. Neonatal hyperglycemia is associated with increased mortality and brain injury. Glucose-mediated oxidative injury may be responsible. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in DNA repair and cell survival. However, PARP-1 overactivation leads to cell death. NF-κB is coactivated with PARP-1 and regulates microglial activation. The effects of recurrent hyperglycemia on PARP-1/NF-κB expression and microglial activation are not well understood. Rat pups were subjected to recurrent hypoinsulinemic hyperglycemia of 2 h duration twice daily from postnatal (P) day 3-P12 and killed on P13. mRNA and protein expression of PARP-1/NF-κB and their downstream effectors were determined in the cerebral cortex. Microgliosis was determined using CD11 immunohistochemistry. Recurrent hyperglycemia increased PARP-1 expression confined to the nucleus and without causing PARP-1 overactivation and cell death. NF-κB mRNA expression was increased, while IκB mRNA expression was decreased. inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), and neuronal nitric oxide synthase (nNOS) mRNA expressions were decreased. Hyperglycemia significantly increased the number of microglia. Recurrent hyperglycemia in neonatal rats is associated with upregulation of PARP-1 and NF-κB expression and subsequent microgliosis but not neuronal cell death in the cerebral cortex.

  6. Different effects of antisense RelA p65 and NF-kappaB1 p50 oligonucleotides on the nuclear factor-kappaB mediated expression of ICAM-1 in human coronary endothelial and smooth muscle cells.

    PubMed

    Voisard, R; Huber, N; Baur, R; Susa, M; Ickrath, O; Both, A; Koenig, W; Hombach, V

    2001-01-01

    Activation of nuclear factor-kappaB (NF-kappaB) is one of the key events in early atherosclerosis and restenosis. We hypothesized that tumor necrosis factor-alpha (TNF-alpha) induced and NF-kappaB mediated expression of intercellular adhesion molecule-1 (ICAM-1) can be inhibited by antisense RelA p65 and NF-kappaB1 p50 oligonucleotides (RelA p65 and NF-kappaB1 p50). Smooth muscle cells (SMC) from human coronary plaque material (HCPSMC, plaque material of 52 patients), SMC from the human coronary media (HCMSMC), human endothelial cells (EC) from umbilical veins (HUVEC), and human coronary EC (HCAEC) were successfully isolated (HCPSMC, HUVEC), identified and cultured (HCPSMC, HCMSMC, HUVEC, HCAEC). 12 hrs prior to TNF-alpha stimulus (20 ng/mL, 6 hrs) RelA p65 and NF-kappaB1 p50 (1, 2, 4, 10, 20, and 30 microM) and controls were added for a period of 18 hrs. In HUVEC and HCAEC there was a dose dependent inhibition of ICAM-1 expression after adding of both RelA p65 and NF-kappaB1 p50. No inhibitory effect was seen after incubation of HCMSMC with RelA p65 and NF-kappaB1 p50. A moderate inhibition of ICAM-1 expression was found after simultaneous addition of RelA p65 and NF-kappaB1 p50 to HCPSMC, no inhibitory effect was detected after individual addition of RelA p65 and NF-kappaB1 p50. The data point out that differences exist in the NF-kappaB mediated expression of ICAM-1 between EC and SMC. Experimental antisense strategies directed against RelA p65 and NF-kappaB1 p50 in early atherosclerosis and restenosis are promising in HCAEC but will be confronted with redundant pathways in HCMSMC and HCPSMC.

  7. A role for NRAGE in NF-κB activation through the non-canonical BMP pathway

    PubMed Central

    2010-01-01

    Background Previous studies have linked neurotrophin receptor-interacting MAGE protein to the bone morphogenic protein signaling pathway and its effect on p38 mediated apoptosis of neural progenitor cells via the XIAP-Tak1-Tab1 complex. Its effect on NF-κB has yet to be explored. Results Herein we report that NRAGE, via the same XIAP-Tak1-Tab1 complex, is required for the phosphorylation of IKK -α/β and subsequent transcriptional activation of the p65 subunit of NF-κB. Ablation of endogenous NRAGE by siRNA inhibited NF-κB pathway activation, while ablation of Tak1 and Tab1 by morpholino inhibited overexpression of NRAGE from activating NF-κB. Finally, cytokine profiling of an NRAGE over-expressing stable line revealed the expression of macrophage migration inhibitory factor. Conclusion Modulation of NRAGE expression revealed novel roles in regulating NF-κB activity in the non-canonical bone morphogenic protein signaling pathway. The expression of macrophage migration inhibitory factor by bone morphogenic protein -4 reveals novel crosstalk between an immune cytokine and a developmental pathway. PMID:20100315

  8. Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.

    PubMed

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-05

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.

  9. Glycyrrhetinic acid inhibits ICAM-1 expression via blocking JNK and NF-κB pathways in TNF-α-activated endothelial cells

    PubMed Central

    Chang, Ying-ling; Chen, Chien-lin; Kuo, Chao-Lin; Chen, Bor-chyuan; You, Jyh-sheng

    2010-01-01

    Aim: To investigate the effects of glycyrrhetinic acid (GA), an active component extracted from the root of Glycyrrhizae glabra, on the expression of intercellular adhesion molecule-1 (ICAM-1) in tumor necrosis factor-α (TNF-α)-activated human umbilical vein endothelial cells (HUVEC). Methods: ICAM-1 mRNA and protein levels were detected using RT-PCR and cell enzyme-linked immunosorbent assays. The adherence of human monocytic THP-1 cells labeled with [3H]thymidine to HUVEC was determined by counting radioactivity with a scintillation counter. The activation of mitogen-activated protein kinases as well as the degradation of IκB and nuclear factor-κB (NF-κB) or phospho-c-Jun in the nucleus were detected by western blots. NF-κB binding activity was detected using electrophoretic mobility shift assay. Results: GA (50 and 100 μmol/L) significantly inhibits TNF-α-induced ICAM-1 mRNA and protein expressions, as well as THP-1 cell adhesiveness in HUVEC. GA selectively inhibited TNF-α-activated signal pathway of c-Jun N-terminal kinase (JNK), without affecting extracellular signal-regulated kinase 1/2 and p38. Furthermore, GA apparently inhibited IκB/NF-κB signaling system by preventing IκB degradation, NF-κB translocation, and NF-κB/DNA binding activity. Finally, pretreatment with GA or the inhibitors of NF-κB, JNK, and p38 reduced the ICAM-1 protein expression induced by TNF-α. Conclusion: GA inhibits TNF-α-stimulated ICAM-1 expression, leading to a decrease in adherent monocytes to HUVEC. This inhibition is attributed to GA interruption of both JNK/c-Jun and IκB/NF-κB signaling pathways, which decrease activator protein-1 (AP-1) and NF-κB mediated ICAM-1 expressions. The results suggest that GA may provide a beneficial effect in treating vascular diseases associated with inflammation, such as atherosclerosis. PMID:20418897

  10. Induction of CD69 expression by cagPAI-positive Helicobacter pylori infection

    PubMed Central

    Mori, Naoki; Ishikawa, Chie; Senba, Masachika

    2011-01-01

    AIM: To investigate and elucidate the molecular mechanism that regulates inducible expression of CD69 by Helicobacter pylori (H. pylori) infection. METHODS: The expression levels of CD69 in a T-cell line, Jurkat, primary human peripheral blood mononuclear cells (PBMCs), and CD4+ T cells, were assessed by immunohistochemistry, reverse transcription polymerase chain reaction, and flow cytometry. Activation of CD69 promoter was detected by reporter gene. Nuclear factor (NF)-κB activation in Jurkat cells infected with H. pylori was evaluated by electrophoretic mobility shift assay. The role of NF-κB signaling in H. pylori-induced CD69 expression was analyzed using inhibitors of NF-κB and dominant-negative mutants. The isogenic mutants with disrupted cag pathogenicity island (cagPAI) and virD4 were used to elucidate the role of cagPAI-encoding type IV secretion system and CagA in CD69 expression. RESULTS: CD69 staining was detected in mucosal lymphocytes and macrophages in specimens of patients with H. pylori-positive gastritis. Although cagPAI-positive H. pylori and an isogenic mutant of virD4 induced CD69 expression, an isogenic mutant of cagPAI failed to induce this in Jurkat cells. H. pylori also induced CD69 expression in PBMCs and CD4+ T cells. The activation of the CD69 promoter by H. pylori was mediated through NF-κB. Transfection of dominant-negative mutants of IκBs, IκB kinases, and NF-κB-inducing kinase inhibited H. pylori-induced CD69 activation. Inhibitors of NF-κB suppressed H. pylori-induced CD69 mRNA expression. CONCLUSION: The results suggest that H. pylori induces CD69 expression through the activation of NF-κB. cagPAI might be relevant in the induction of CD69 expression in T cells. CD69 in T cells may play a role in H. pylori-induced gastritis. PMID:21990950

  11. Overexpression of the transcription factor NF-YC9 confers abscisic acid hypersensitivity in Arabidopsis.

    PubMed

    Bi, Chao; Ma, Yu; Wang, Xiao-Fang; Zhang, Da-Peng

    2017-11-01

    Nuclear factor Y (NF-Y) family proteins are involved in many developmental processes and responses to environmental cues in plants, but whether and how they regulate phytohormone abscisic acid (ABA) signaling need further studies. In the present study, we showed that over-expression of the NF-YC9 gene confers ABA hypersensitivity in both the early seedling growth and stomatal response, while down-regulation of NF-YC9 does not affect ABA response in these processes. We also showed that over-expression of the NF-YC9 gene confers salt and osmotic hypersensitivity in early seedling growth, which is likely to be directly associated with the ABA hypersensitivity. Further, we observed that NF-YC9 physically interacts with the ABA-responsive bZIP transcription factor ABA-INSENSITIVE5 (ABI5), and facilitates the function of ABI5 to bind and activate the promoter of a target gene EM6. Additionally, NF-YC9 up-regulates expression of the ABI5 gene in response to ABA. These findings show that NF-YC9 may be involved in ABA signaling as a positive regulator and likely functions redundantly together with other NF-YC members, and support the model that the NF-YC9 mediates ABA signaling via targeting to and aiding the ABA-responsive transcription factors such as ABI5.

  12. Adenosine 5'-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice.

    PubMed

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-09

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.

  13. Adenosine 5′-monophosphate ameliorates D-galactosamine/lipopolysaccharide-induced liver injury through an adenosine receptor-independent mechanism in mice

    PubMed Central

    Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J

    2014-01-01

    D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238

  14. Color threshold and ratio of S100 beta, MAP5, NF68/200, GABA & GAD. I. Distribution in inner ear afferents

    NASA Technical Reports Server (NTRS)

    Fermin, C. D.; Martin, D. S.; Hara, H.

    1997-01-01

    Afferents of chick embryos (Gallus domesticus) VIIIth nerve were examined at E3, E6, E9, E13, El7, and hatching (NH) for anti-S100 beta, anti-MAP5, anti-GABA, anti-GAD and anti-NF68/200 stain. Different ages were processed together to determine if the distribution of these antibodies changed during synaptogenesis and myelination. Color thresholding showed that saturation of pixels changed for S100 beta only 5%, for NF68/200 10%, and for MAP5, 10%, between E9-NH. Color ratio of NF68/200 over MAP5 was 1.00 at E13 and 0.25 at E16 and NH. S100 beta, GABA and GAD were co-expressed on nerve endings at the edge of the maculae and center of the cristae, whereas hair cells in the center of the maculae expressed either S100 beta or GABA, but not both. S100 beta/NF68/200 shared antigenic sites on the chalices, but NF68/200 expression was higher than S100 beta in the chalices at hatching. MAP5 was expressed in more neurons than NF68/200 at E11, whereas NF68/200 was more abundant than MAP5 at hatching. The results suggest that: 1) the immunoexpression of these neuronal proteins is modulated concomitantly with the establishment of afferent synapses and myelination; 2) S100 beta may serve a neurotrophic function in the chalices where it is co-expressed with the neurotransmitter GABA and its synthesizing enzyme GAD.

  15. Genetic Modifiers of Neurofibromatosis Type 1-Associated Café-au-Lait Macule Count Identified Using Multi-platform Analysis

    PubMed Central

    Pemov, Alexander; Sung, Heejong; Hyland, Paula L.; Sloan, Jennifer L.; Ruppert, Sarah L.; Baldwin, Andrea M.; Boland, Joseph F.; Bass, Sara E.; Lee, Hyo Jung; Jones, Kristine M.; Zhang, Xijun; Mullikin, James C.; Widemann, Brigitte C.; Wilson, Alexander F.; Stewart, Douglas R.

    2014-01-01

    Neurofibromatosis type 1 (NF1) is an autosomal dominant, monogenic disorder of dysregulated neurocutaneous tissue growth. Pleiotropy, variable expressivity and few NF1 genotype-phenotype correlates limit clinical prognostication in NF1. Phenotype complexity in NF1 is hypothesized to derive in part from genetic modifiers unlinked to the NF1 locus. In this study, we hypothesized that normal variation in germline gene expression confers risk for certain phenotypes in NF1. In a set of 79 individuals with NF1, we examined the association between gene expression in lymphoblastoid cell lines with NF1-associated phenotypes and sequenced select genes with significant phenotype/expression correlations. In a discovery cohort of 89 self-reported European-Americans with NF1 we examined the association between germline sequence variants of these genes with café-au-lait macule (CALM) count, a tractable, tumor-like phenotype in NF1. Two correlated, common SNPs (rs4660761 and rs7161) between DPH2 and ATP6V0B were significantly associated with the CALM count. Analysis with tiled regression also identified SNP rs4660761 as significantly associated with CALM count. SNP rs1800934 and 12 rare variants in the mismatch repair gene MSH6 were also associated with CALM count. Both SNPs rs7161 and rs4660761 (DPH2 and ATP6V0B) were highly significant in a mega-analysis in a combined cohort of 180 self-reported European-Americans; SNP rs1800934 (MSH6) was near-significant in a meta-analysis assuming dominant effect of the minor allele. SNP rs4660761 is predicted to regulate ATP6V0B, a gene associated with melanosome biology. Individuals with homozygous mutations in MSH6 can develop an NF1-like phenotype, including multiple CALMs. Through a multi-platform approach, we identified variants that influence NF1 CALM count. PMID:25329635

  16. NF-κB Is the Transcription Factor for FGF-2 That Causes Endothelial Mesenchymal Transformation in Cornea

    PubMed Central

    Lee, Jeong Goo

    2012-01-01

    Purpose. To determine the role of nuclear factor-κB (NF-κB) during FGF-2–mediated endothelial mesenchymal transformation (EMT) in response to interleukin (IL)-1β stimulation in corneal endothelial cells (CECs). Methods. Expression and/or activation of IL-1 receptor–associated protein kinase (IRAK), TNF receptor–associated factor 6 (TRAF6), phosphatidylinositol 3-kinase (PI 3-kinase), IκB kinase (IKK), IκB, NF-κB, and FGF-2 were analyzed by immunoblot analysis. Cell proliferation was measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. NF-κB activity was measured by NF-κB ELISA kit, while binding of NF-κB to the promoter region of FGF-2 gene was determined by chromatin immunoprecipitation. Results. Brief stimulation of CECs with IL-1β upregulated expression of IRAK and TRAF6 and activated PI 3-kinase; expression of IRAK and TRAF6 reached maximum within 60 minutes, after which the expression disappeared, while PI 3-kinase activity was observed up to 4 hours after IL-1β stimulation. Use of specific inhibitor to PI 3-kinase or IRAK demonstrated that IRAK activates PI 3-kinase, the signaling of which phosphorylates IKKα/β and degrades IκB, subsequently leading to activation of NF-κB. The induction of FGF-2 by IL-1β was completely blocked by inhibitors to NF-κB activation (sulfasalazine) or PI 3-kinase (LY294002), and both inhibitors greatly blocked cell proliferation of CECs. Chromatin immunoprecipitation further demonstrated that NF-κB is the transcription factor of FGF-2 as NF-κB binds the putative NF-κB binding site of the FGF-2 promoter. Conclusions. These data suggest that IL-1β signaling combines the canonical pathway and the PI 3-kinase signaling to upregulate FGF-2 production through NF-κB, which plays a key role as a transcription factor of FGF-2 gene. PMID:22323467

  17. Molecular Imaging of Smoke-Induced Changes in Nuclear Factor-Kappa B Expression in Murine Tissues Including the Lung.

    PubMed

    Syrkina, Olga; Hales, Charles H; Bonab, Ali A; Hamrahi, Victoria; Paul, Kasie; Jung, Walter J; Tompkins, Ronald G; Fischman, Alan J; Carter, Edward A

    Many inflammatory responses are mediated by activation of the transcription factor, nuclear factor-kappa B (NF-κB), and a wide variety of human diseases involve abnormal regulation of its expression. In this investigation, we evaluated the effect of smoke inhalation injury on NF-κB expression in lung using two strains of NF-κB reporter mice. Groups of reporter mice with viral thymidine kinase (TK) or "fire fly" luciferase (Luc) genes under control by the NF-κB promoter (TK/NF-κB mice and Luc/NF-κB mice) were subjected to nonlethal smoke inhalation injury. Sham-treated animals served as controls. Twenty-four hours (each animal was injected intravenously with either 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (FHBG) (~ 1.0 mCi) or luciferin (1.0 mg). One hour later, the TK/NF-κB mice were studied by micro-positron emission tomography (µ-PET) imaging using a Concord P4 µ-PET camera, and the Luc/NF-κB mice were studied by bioluminescence imaging with a charge-coupled device camera. The µ-PET data demonstrated that smoke injury produced massive increases in NF-κB expression (FHBG-standardized uptake value: 3.1 vs 0.0) 24 hours after smoke inhalation, which was reduced 48 hours after smoke inhalation, but still significantly different than the control. Qualitative analysis of the bioluminescence data revealed a remarkably similar effect of burn NF-κB luciferase expression in vivo. Biodistribution studies of FHBG uptake and luciferase activity in lung tissue demonstrated a similar increase 24 hours after injury, which was reduced 48 hours later, but still significantly higher than the sham. The present data with these models providing longitudinal imaging data on the same mouse may prove useful in the examination of the factors producing lung injury by smoke inhalation, as well as the treatment(s) for the damage produced with and without burn injury.

  18. Nuclear Factor-κB Promotes Urothelial Tumorigenesis and Cancer Progression via Cooperation with Androgen Receptor Signaling.

    PubMed

    Inoue, Satoshi; Ide, Hiroki; Mizushima, Taichi; Jiang, Guiyang; Netto, George J; Gotoh, Momokazu; Miyamoto, Hiroshi

    2018-06-01

    We investigated the role of NF-κB in the development and progression of urothelial cancer as well as cross-talk between NF-κB and androgen receptor (AR) signals in urothelial cells. Immunohistochemistry in surgical specimens showed that the expression levels of NF-κB/p65 ( P = 0.015)/phospho-NF-κB/p65 ( P < 0.001) were significantly elevated in bladder tumors, compared with those in nonneoplastic urothelial tissues. The rates of phospho-NF-κB/p65 positivity were also significantly higher in high-grade ( P = 0.015)/muscle-invasive ( P = 0.033) tumors than in lower grade/non-muscle-invasive tumors. Additionally, patients with phospho-NF-κB/p65-positive muscle-invasive bladder cancer had significantly higher risks of disease progression ( P < 0.001) and cancer-specific mortality ( P = 0.002). In immortalized human normal urothelial SVHUC cells stably expressing AR, NF-κB activators and inhibitors accelerated and prevented, respectively, their neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene. Bladder tumors were identified in 56% (mock), 89% (betulinic acid), and 22% (parthenolide) of N -butyl- N -(4-hydroxybutyl)nitrosamine-treated male C57BL/6 mice at 22 weeks of age. NF-κB activators and inhibitors also significantly induced and reduced, respectively, cell proliferation/migration/invasion of AR-positive bladder cancer lines, but not AR-knockdown or AR-negative lines, and their growth in xenograft-bearing mice. In both nonneoplastic and neoplastic urothelial cells, NF-κB activators/inhibitors upregulated/downregulated, respectively, AR expression, whereas AR overexpression was associated with increases in the expression levels of NF-κB/p65 and phospho-NF-κB/p65. Thus, NF-κB appeared to be activated in bladder cancer, which was associated with tumor progression. NF-κB activators/inhibitors were also found to modulate tumorigenesis and tumor outgrowth in AR-activated urothelial cells. Accordingly, NF-κB inhibition, together with AR inactivation, has the potential of being an effective chemopreventive and/or therapeutic approach for urothelial carcinoma. Mol Cancer Ther; 17(6); 1303-14. ©2018 AACR . ©2018 American Association for Cancer Research.

  19. Meta-Analysis Identifies NF-κB as a Therapeutic Target in Renal Cancer

    PubMed Central

    Peri, Suraj; Devarajan, Karthik; Yang, Dong-Hua; Knudson, Alfred G.; Balachandran, Siddharth

    2013-01-01

    Objective To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes. Methods Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC. Results A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis. Conclusions These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy. PMID:24116146

  20. Biphasic activation of nuclear factor-κB and expression of p65 and c-Rel following traumatic neuronal injury.

    PubMed

    Zhang, Huasheng; Zhang, Dingding; Li, Hua; Yan, Huiying; Zhang, Zihuan; Zhou, Chenhui; Chen, Qiang; Ye, Zhennan; Hang, Chunhua

    2018-06-01

    The transcription factor nuclear factor-κB (NF-κB) has been shown to function as a key regulator of cell death or survival in neuronal cells. Previous studies indicate that the biphasic activation of NF-κB occurs following experimental neonatal hypoxia-ischemia and subarachnoid hemorrhage. However, the comprehensive understanding of NF-κB activity following traumatic brain injury (TBI) is incomplete. In the current study, an in vitro model of TBI was designed to investigate the NF-κB activity and expression of p65 and c-Rel subunits following traumatic neuronal injury. Primary cultured neurons were assigned to control and transected groups. NF-κB activity was detected by electrophoretic mobility shift assay. Western blotting and immunofluorescence were used to investigate the expression and distribution of p65 and c-Rel. Reverse transcription-quantitative polymerase chain reaction was performed to assess the downstream genes of NF-κB. Lactate dehydrogenase (LDH) quantification and trypan blue staining were used to estimate the neuronal injury. Double peaks of elevated NF-κB activity were observed at 1 and 24 h following transection. The expression levels of downstream genes exhibited similar changes. The protein levels of p65 also presented double peaks while c-Rel was elevated significantly in the late stage. The results of the trypan blue staining and LDH leakage assays indicated there was no sustained neuronal injury during the late peak of NF-κB activity. In conclusion, biphasic activation of NF-κB is induced following experimental traumatic neuronal injury. The elevation of p65 and c-Rel levels at different time periods suggests that within a single neuron, NF-κB may participate in different pathophysiological processes.

  1. NF-κB mediates Gadd45β expression and DNA demethylation in the hippocampus during fear memory formation.

    PubMed

    Jarome, Timothy J; Butler, Anderson A; Nichols, Jessica N; Pacheco, Natasha L; Lubin, Farah D

    2015-01-01

    Gadd45-mediated DNA demethylation mechanisms have been implicated in the process of memory formation. However, the transcriptional mechanisms involved in the regulation of Gadd45 gene expression during memory formation remain unexplored. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) controls transcription of genes in neurons and is a critical regulator of synaptic plasticity and memory formation. In silico analysis revealed several NF-κB (p65/RelA and cRel) consensus sequences within the Gadd45β gene promoter. Whether NF-κB activity regulates Gadd45 expression and associated DNA demethylation in neurons during memory formation is unknown. Here, we found that learning in a fear conditioning paradigm increased Gadd45β gene expression and brain-derivedneurotrophic factor (BDNF) DNA demethylation in area CA1 of the hippocampus, both of which were prevented with pharmacological inhibition of NF-κB activity. Further experiments found that conditional mutations in p65/RelA impaired fear memory formation but did not alter changes in Gadd45β expression. The learning-induced increases in Gadd45β mRNA levels, Gadd45β binding at the BDNF gene and BDNF DNA demethylation were blocked in area CA1 of the c-rel knockout mice. Additionally, local siRNA-mediated knockdown of c-rel in area CA1 prevented fear conditioning-induced increases in Gadd45β expression and BDNF DNA demethylation, suggesting that c-Rel containing NF-κB transcription factor complex is responsible for Gadd45β regulation during memory formation. Together, these results support a novel transcriptional role for NF-κB in regulation of Gadd45β expression and DNA demethylation in hippocampal neurons during fear memory.

  2. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts.

    PubMed

    Yu, Y; Qiu, L; Guo, J; Yang, D; Qu, L; Yu, J; Zhan, F; Xue, M; Zhong, M

    2015-08-01

    Porphyromonas endodontalis lipopolysaccharide (LPS) is considered to be correlated with the progression of bone resorption in periodontal and periapical diseases. Wnt5a has recently been implicated in inflammatory processes, but its role is unclear as a P. endodontalis LPS-induced mediator in osteoblasts. Tribbles homolog 3 (TRIB3) encodes a pseudokinase and has been linked to inflammation in certain situations. Here, we found that P. endodontalis LPS induced Wnt5a expression in a dose- and time-dependent manner and it also upregulated translocation, phosphorylation and transcriptional activity of nuclear factor-κB (NF-κB) in MC3T3-E1 cells. Bay 11-7082 blocked the translocation of NF-κB and Wnt5a expression induced by P. endodontalis LPS. Chromatin immunoprecipitation assay further established that induction of Wnt5a by P. endodontalis LPS was mediated through the NF-κB p65 subunit. Additionally, P. endodontalis LPS increased expression of TRIB3 in osteoblasts after 10 h simulated time. Overexpression of TRIB3 enhanced NF-κB phosphorylation and Wnt5a induction, whereas knockdown of TRIB3 inhibited NF-κB phosphorylation and Wnt5a expression in P. endodontalis LPS-stimulated osteoblasts. These results suggest that P. endodontalis LPS has the ability to promote the expression of Wnt5a in mouse osteoblasts, and this induction is mainly mediated by NF-κB pathway. TRIB3 seems to modulate the sustained expression of Wnt5a in osteoblasts stimulated by P. endodontalis LPS, as well as regulating NF-κB phosphorylation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Expression of the tumor suppressor genes NF2, 4.1B, and TSLC1 in canine meningiomas.

    PubMed

    Dickinson, P J; Surace, E I; Cambell, M; Higgins, R J; Leutenegger, C M; Bollen, A W; LeCouteur, R A; Gutmann, D H

    2009-09-01

    Meningiomas are common primary brain tumors in dogs; however, little is known about the molecular genetic mechanisms involved in their tumorigenesis. Several tumor suppressor genes have been implicated in meningioma pathogenesis in humans, including the neurofibromatosis 2 (NF2), protein 4.1B (4.1 B), and tumor suppressor in lung cancer-1 (TSLC1) genes. We investigated the expression of these tumor suppressor genes in a series of spontaneous canine meningiomas using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) (NF2; n = 25) and western blotting (NF2/merlin, 4.1B, TSLC1; n = 30). Decreased expression of 4.1B and TSLC1 expression on western blotting was seen in 6/30 (20%) and in 15/30 (50%) tumors, respectively, with 18/30 (60%) of meningiomas having decreased or absent expression of one or both proteins. NF2 gene expression assessed by western blotting and RT-PCR varied considerably between individual tumors. Complete loss of NF2 protein on western blotting was not seen, unlike 4.1B and TSLC1. Incidence of TSLC1 abnormalities was similar to that seen in human meningiomas, while perturbation of NF2 and 4.1B appeared to be less common than reported for human tumors. No association was observed between tumor grade, subtype, or location and tumor suppressor gene expression based on western blot or RT-PCR. These results suggest that loss of these tumor suppressor genes is a frequent occurrence in canine meningiomas and may be an early event in tumorigenesis in some cases. In addition, it is likely that other, as yet unidentified, genes play an important role in canine meningioma formation and growth.

  4. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits.

    PubMed

    Shehatou, George S G; Suddek, Ghada M

    2016-02-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  5. Sulforaphane attenuates the development of atherosclerosis and improves endothelial dysfunction in hypercholesterolemic rabbits

    PubMed Central

    Suddek, Ghada M

    2016-01-01

    The aim of the present work was to explore possible protective effects of sulforaphane (SFN) against atherosclerosis development and endothelial dysfunction in hypercholesterolemic rabbits. Rabbits were assigned to three groups of five: group I fed normal chow diet for four weeks, group II fed 1% high cholesterol diet (HCD) and group III fed HCD + SFN (0.25 mg/kg/day). Blood samples were collected for measurement of serum triglycerides (TGs), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), lactate dehydrogenase (LDH) and C-reactive protein (CRP). Aortic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and total nitrite/nitrate (NOx) were measured. Vascular reactivity and intima/media (I/M) ratio were analyzed. Nuclear factor-kappa B (NF-κB) activation in aortic endothelial cells was identified immunohistochemically. HCD induced significant increases in serum TGs, TC, LDL-C, LDH, and CRP, and aortic MDA and SOD. Moreover, HCD caused significant reductions in serum HDL-C, aortic GSH and NOx. SFN administration significantly decreased HCD-induced elevations in serum TC, LDL-C, CRP, and LDH. while significantly increased HDL-C and GSH levels and normalized aortic SOD and NOx. Additionally, SFN significantly improved rabbit aortic endothelium-dependent relaxation to acetylcholine. Moreover, SFN significantly reduced the elevation in I/M ratio. This effect was confirmed by aortic histopathologic examination. The expression of NF-κB in aortic tissue showed a marked reduction upon treatment with SFN. In conclusion, this study reveals that SFN has the ability to ameliorate HCD-induced atherosclerotic lesions progression and vascular dysfunction, possibly via its lipid-lowering and antioxidant effects and suppression of NF-κB-mediated inflammation. PMID:26490346

  6. Palmitoylethanolamide Ameliorates Hippocampal Damage and Behavioral Dysfunction After Perinatal Asphyxia in the Immature Rat Brain

    PubMed Central

    Herrera, María I.; Udovin, Lucas D.; Toro-Urrego, Nicolás; Kusnier, Carlos F.; Luaces, Juan P.; Capani, Francisco

    2018-01-01

    Perinatal asphyxia (PA) is an obstetric complication associated with an impaired gas exchange. This health problem continues to be a determinant of neonatal mortality and neurodevelopmental disorders. Palmitoylethanolamide (PEA) has exerted neuroprotection in several models of brain injury and neurodegeneration. We aimed at evaluating the potential neuroprotective role of PEA in an experimental model, which induces PA in the immature rat brain. PA was induced by placing Sprague Dawley newborn rats in a water bath at 37°C for 19 min. Once their physiological conditions improved, they were given to surrogate mothers that had delivered normally within the last 24 h. The control group was represented by non-fostered vaginally delivered pups, mimicking the clinical situation. Treatment with PEA (10 mg/kg) was administered within the first hour of life. Modifications in the hippocampus were analyzed with conventional electron microscopy, immunohistochemistry (for NeuN, pNF-H/M, MAP-2, and GFAP) and western blot (for pNF H/M, MAP-2, and GFAP). Behavior was also studied throughout Open Field (OF) Test, Passive Avoidance (PA) Task and Elevated Plus Maze (EPM) Test. After 1 month of the PA insult, we observed neuronal nucleus degeneration in CA1 using electron microscopy. Immunohistochemistry revealed a significant increase in pNF-H/M and decrease in MAP-2 in CA1 reactive area. These changes were also observed when analyzing the level of expression of these markers by western blot. Vertical exploration impairments and anxiety-related behaviors were encountered in the OF and EPM tests. PEA treatment attenuated PA-induced hippocampal damage and its corresponding behavioral alterations. These results contribute to the elucidation of PEA neuroprotective role after PA and the future establishment of therapeutic strategies for the developing brain. PMID:29662433

  7. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a promising target for pharmacological modulation of cellular radiation response either to improve tumor cell killing during radiotherapy with heavy ions or to mitigate radiation late effects in astronauts or irradiated healthy tissue.

  8. Hepatocyte growth factor (HGF) upregulates heparanase expression via the PI3K/Akt/NF-κB signaling pathway for gastric cancer metastasis.

    PubMed

    Hao, Ning-Bo; Tang, Bo; Wang, Guo-Zheng; Xie, Rui; Hu, Chang-Jiang; Wang, Su-Min; Wu, Yu-Yun; Liu, En; Xie, Xia; Yang, Shi-Ming

    2015-05-28

    Heparanase (HPA) is an endoglucuronidase that can promote the shedding of associated cytokines in several types of tumors. However, little is known about what controls the expression of HPA or its role in gastric cancer. In this study, we report for the first time that HGF regulates HPA expression to promote gastric cancer metastasis. In this study, HGF and HPA were found to be significantly expressed in 58 gastric cancer patients. High expression of both HGF and HPA was positively associated with TNM stage, invasion depth and poor prognosis. In MKN74 cells, exogenous HGF significantly increased HPA expression at both the mRNA and protein levels. Further study revealed that HGF first activated PI3K/Akt signaling. NF-κB signaling was activated downstream of PI3K/Akt and promoted HPA expression. However, when c-met, PI3K/Akt or NF-κB signal inhibitors were used, HPA expression was significantly decreased. All of these results indicate that HGF regulates HPA expression by PI3K/Akt and downstream NF-κB signaling. Using bioinformatics and the ChIP assay, p65 was observed to bind to the HPA promoter. Furthermore, HGF significantly induced tumor cell migration, whereas treatment with an NF-κB inhibitor decreased migration. Moreover, when HPA was overexpressed in MKN74 cells, migration was significantly enhanced, and the HGF concentration was increased. However, when HPA was down-regulated in MKN45 cells, migration and HGF levels decreased. Together, these results demonstrate that HGF/c-met can activate PI3K/Akt and downstream NF-κB signaling to promote HPA expression and subsequent tumor metastasis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. NF-κB– and AP-1–Mediated DNA Looping Regulates Osteopontin Transcription in Endotoxin-Stimulated Murine Macrophages

    PubMed Central

    Zhao, Wei; Wang, Lijuan; Zhang, Meng; Wang, Peng; Zhang, Lei; Yuan, Chao; Qi, Jianni; Qiao, Yu; Kuo, Paul C.; Gao, Chengjiang

    2013-01-01

    Osteopontin (OPN) is expressed by various immune cells and modulates both innate and adaptive immune responses. However, the molecular mechanisms that control opn gene expression, especially at the chromatin level, remain largely unknown. We have previously demonstrated many specific cis- and trans-regulatory elements that determine the extent of endotoxin (LPS)-mediated induction of OPN synthesis in murine macrophages. In the present study, we confirm that NF-κB also plays an important role in the setting of LPS-stimulated OPN expression through binding to a distal regulatory element. Importantly, we demonstrate that LPS stimulates chromosomal loops in the OPN promoter between NF-κB binding site and AP-1 binding site using chromosome conformation capture technology. The crucial role of NF-κB and AP-1 in LPS-stimulated DNA looping was confirmed, as small interfering RNA knock-down of NF-κB p65 and AP-1 c-Jun exhibited decreased levels of DNA looping. Furthermore, we demonstrate that p300 can form a complex with NF-κB and AP-1 and is involved in DNA looping and LPS-induced OPN expression. Therefore, we have identified an essential mechanism to remodel the local chromatin structures and spatial conformations to regulate LPS-induced OPN expression. PMID:21257959

  10. Nonylphenol regulates cyclooxygenase-2 expression via Ros-activated NF-κB pathway in sertoli TM4 cells.

    PubMed

    Liu, Xiaozhen; Nie, Shaoping; Huang, Danfei; Xie, Mingyong

    2015-09-01

    The aim of this study was to investigate the signaling pathways involved in the cyclooxygenase (COX)-2 regulation induced by nonylphenol (NP) in mouse testis Sertoli TM4 cells. Our results showed that treatment of TM4 cells with NP increased COX-2 protein expression and interleukin-6 (IL)-6 and prostaglandin E2 (PGE2) secretion in a dose-dependent manner. Pretreatment with reactive oxygen species (ROS) scavenger, N-acetylcysteine (NAC), attenuated NP-induced ROS production, COX-2 expression, and IL-6 and PGE2 release in TM4 cells. Exposure to NP stimulated activation of NF-κB, whereas the NF-κB inhibitor, pyrrolidine dithiocarbamate, attenuated NP-enhanced COX-2 expression and IL-6 and PGE2 release in TM4 cells in a dose-dependent manner. Furthermore, NAC blocked NP-induced activation of NF-κB. In addition, inhibition of COX-2 mitigated NP-induced IL-6 release. In conclusion, NP induced ROS generation, activation of NF-κB pathway, COX-2 upregulation, and IL-6 and PGE2 secretion in TM4 cells. NP may regulate COX-2 expression via ROS-activated NF-κB pathway in Sertoli TM4 cells. © 2014 Wiley Periodicals, Inc.

  11. Gene expression as a sensitive endpoint to evaluate cell differentiation and maturation of the developing central nervous system in primary cultures of rat cerebellar granule cells (CGCs) exposed to pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogberg, Helena T.; Department of Physiology, Wenner-Gren Institute, Stockholm University; Kinsner-Ovaskainen, Agnieszka

    The major advantage of primary neuronal cultures for developmental neurotoxicity (DNT) testing is their ability to replicate the crucial stages of neurodevelopment. In our studies using primary culture of cerebellar granule cells (CGCs) we have evaluated whether the gene expression relevant to the most critical developmental processes such as neuronal differentiation (NF-68 and NF-200) and functional maturation (NMDA and GABA{sub A} receptors), proliferation and differentiation of astrocytes (GFAP and S100{beta}) as well as the presence of neural precursor cells (nestin and Sox10) could be used as an endpoint for in vitro DNT. The expression of these genes was assessed aftermore » exposure to various pesticides (paraquat parathion, dichlorvos, pentachlorophenol and cycloheximide) that could induce developmental neurotoxicity through different mechanisms. All studied pesticides significantly modified the expression of selected genes, related to the different stages of neuronal and/or glial cell development and maturation. The most significant changes were observed after exposure to paraquat and parathion (i.e. down-regulation of mRNA expression of NF-68 and NF-200, NMDA and GABA{sub A} receptors). Similarly, dichlorvos affected mainly neurons (decreased mRNA expression of NF-68 and GABA{sub A} receptors) whereas cycloheximide had an effect on neurons and astrocytes, as significant decreases in the mRNA expression of both neurofilaments (NF-68 and NF-200) and the astrocyte marker (S100{beta}) were observed. Our results suggest that toxicity induced by pesticides that target multiple pathways of neurodevelopment can be identified by studying expression of genes that are involved in different stages of cell development and maturation, and that gene expression could be used as a sensitive endpoint for initial screening to identify the compounds with the potential to cause developmental neurotoxicity.« less

  12. Abnormal brain activation in neurofibromatosis type 1: a link between visual processing and the default mode network.

    PubMed

    Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel

    2012-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.

  13. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renalmore » injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress via NF-kB and PKC signaling. ► DSL may act as a beneficial agent in hyperglycemia induced renal disorder.« less

  14. Transcription factor NF-kappaB regulates inducible CD83 gene expression in activated T lymphocytes.

    PubMed

    McKinsey, T A; Chu, Z; Tedder, T F; Ballard, D W

    2000-01-01

    The immunoglobulin superfamily member CD83 is expressed on the surface of mature dendritic cells that present processed antigens to T lymphocytes. In addition, T cells acquire CD83 expression following mitogenic stimulation in vitro. Here we report two lines of evidence demonstrating that this inducible lymphocyte response is genetically programmed by transcription factor NF-kappaB and contingent upon proteolytic breakdown of its cytoplasmic inhibitor IkappaBalpha. First, signal-dependent induction of CD83 mRNA expression is blocked in both transformed and primary T cells harboring a degradation-resistant mutant of IkappaBalpha that constitutively represses NF-kappaB. Second, as revealed in gel retardation assays, the IkappaBalpha constitutive repressor prevents the inducible interaction of NF-kappaB with consensus recognition sites identified in the CD83 promoter. Given that IkappaBalpha is functionally coupled to the T-cell antigen receptor, these findings suggest that the downstream transcription unit for CD83 is triggered by NF-kappaB during an adaptive immune response.

  15. Mangiferin corrects the imbalance of Th17/Treg cells in mice with TNBS-induced colitis.

    PubMed

    Lim, Su-Min; Jeong, Jin-Ju; Choi, Hyun Sik; Chang, Hwan Bong; Kim, Dong-Hyun

    2016-05-01

    In the previous study, 80% ethanol extract of the rhizome mixture of Anemarrhena asphodeloides and Coptidis chinensis (AC) and its main constituent mangiferin improved TNBS-induced colitis in mice by inhibiting macrophage activation related to the innate immunity. In the preliminary study, we found that AC could inhibit Th17 cell differentiation in mice with TNBS-induced colitis. Therefore, we investigated whether AC and it main constituent mangiferin are capable of inhibiting inflammation by regulating T cell differentiation related to the adaptive immunity in vitro and in vivo. AC and mangiferin potently suppressed colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis. They also suppressed TNBS-induced Th17 cell differentiation and IL-17 expression, but increased TNBS-suppressed Treg cell differentiation and IL-10 expression. Moreover, AC and mangiferin strongly inhibited the expression of TNF-α and IL-17, as well as the activation of NF-κB. Furthermore, mangiferin potently inhibited the differentiation of splenocytes into Th7 cells and increased the differentiation into Treg cells in vitro. Mangiferin also inhibited RORγt and IL-17 expression and STAT3 activation in splenocytes and induced Foxp3 and IL-10 expression and STAT5 activation. Based on these findings, mangiferin may ameliorate colitis by the restoration of disturbed Th17/Treg cells and inhibition of macrophage activation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Berberine improves airway inflammation and inhibits NF-κB signaling pathway in an ovalbumin-induced rat model of asthma.

    PubMed

    Li, Zhenghao; Zheng, Jie; Zhang, Ning; Li, Chengde

    2016-12-01

    Berberine has been reported for its various activities including anti-inflammatory effects and has been used in treating many diseases. However, its effects on airway inflammation in asthma have not been investigated. This study mainly aimed to detect its effects on the airway inflammation and the nuclear factor-κB (NF-κB) signaling pathway activity in a rat model of asthma. Asthma was induced by ovalbumin (OVA) sensitization and challenge. The asthmatic rats were respectively treated with vehicle PBS or berberine (100 mg/kg or 200 mg/kg) for 28 days. The control rats were treated with PBS. Inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted and the lung inflammation was scored. Levels of NF-κB p65 (mRNA and protein), phosphorylated NF-κB p65 (p-NF-κB p65), inhibitory κB alpha (IκBα) (mRNA and protein) and phosphorylated IκBα (p-IκBα), as well as NF-κB p65 DNA-binding activity, were measured to assess the activity of NF-κB signaling pathway. Levels of the downstream inflammatory mediators of NF-κB signaling, IL-1β, IL-4, IL-5, IL-6, IL-13 and IL-17 in BALF, were measured. Besides, the serum levels of OVA-specific immunoglobulin (Ig)E were measured. Results showed that OVA increased the number of inflammatory cells in BALF, elevated lung inflammation scores, enhanced the NF-κB signaling activity and promoted the production of IgE in rats. Berberine dose-dependently reversed the alterations induced by OVA in the asthmatic rats. The findings suggested a therapeutic potential of berberine on OVA- induced airway inflammation. The ameliorative effects on the OVA-induced airway inflammation might be associated with the inhibition of the NF-κB signaling pathway.

  17. Studies on the expression of an H-2K/human growth hormone fusion gene in giant transgenic mice.

    PubMed Central

    Morello, D; Moore, G; Salmon, A M; Yaniv, M; Babinet, C

    1986-01-01

    Transgenic mice carrying the H-2K/human growth hormone (hGH) fusion gene were produced by microinjecting into the pronucleus of fertilized eggs DNA molecules containing 2 kb of the 5' flanking sequences (including promoter) of the class I H-2Kb gene joined to the coding sequences of the hGH gene. Thirteen transgenic mice were obtained which all contained detectable levels of hGH hormone in their blood. Nine grew larger than their control litter-mates. Endogenous H-2Kb and exogenous hGH mRNA levels were analysed by S1 nuclease digestion experiments. hGH transcripts were found in all the tissues examined and the pattern of expression paralleled that of endogenous H-2K gene expression, being high in liver and lymphoid organs and low in muscle and brain. Thus 2 kb of the 5' promoter/regulatory region of the H-2K gene are sufficient to ensure regulated expression of hGH in transgenic mice. This promoter may therefore be of use to target the expression of different exogenous genes in most tissues of transgenic mice and to study the biological role of the corresponding proteins in different cellular environments. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:3019667

  18. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  19. Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes

    PubMed Central

    Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2015-01-01

    Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085

  20. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  1. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi, E-mail: wangyi2004a@126.com; Wang, Xiang; Sun, Minghui

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kBmore » (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam cell formation.« less

  2. Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature.

    PubMed

    Davidson, Tom B; Sanchez-Lara, Pedro A; Randolph, Linda M; Krieger, Mark D; Wu, Shi-Qi; Panigrahy, Ashok; Shimada, Hiroyuki; Erdreich-Epstein, Anat

    2012-03-22

    Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the NF2 gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient. We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing NF2, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including NF2 and MN1 (meningioma 1).Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing NF2 were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed MN1, PITPNB and TTC28. MN1, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (TEL/MN1) in human myeloid leukemias. Interestingly, Mn1-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, Mn1 regulates maturation and function of calvarial osteoblasts and is an upstream regulator of Tbx22, a gene associated with murine and human cleft palate. This suggests that deletion of MN1 in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities. Thus, our report describes a NF2-adjacent chromosome 22q12.2 deletion syndrome and is the first to report association of MN1 deletion with abnormal craniofacial development and/or cleft palate in humans.

  3. Doxycycline down-regulates matrix metalloproteinase expression and inhibits NF-κB signaling in LPS-induced PC3 cells.

    PubMed

    Ogut, Deniz; Reel, Buket; Gonen Korkmaz, Ceren; Arun, Mehmet Zuhuri; Cilaker Micili, Serap; Ergur, Bekir Ugur

    2016-01-01

    Matrix metalloproteinase enzymes (MMPs) play important role in inflammation, malignant cell proliferation, invasion and angiogenesis by mediating extracellular matrix degradation. Doxycycline, a synthetic tetracycline, behaves as a MMP inhibitor at a subantimicrobial dose and inhibits tumor cell proliferation, invasion and angiogenesis. The aberrant activity of nuclear factor kappa B (NF-κB) causes activation of MMPs and thereby proliferation and invasion of cancer cells. The aim of this study was to investigate the effects of doxycycline on the expression of MMPs in lipopolysaccharide (LPS)-induced PC3 human prostate cancer cells and the possible role of NF-κB signaling. PC3 cells were incubated with LPS (0.5 μg/mL) for 24 h in the presence or absence of doxycycline (5 μg/mL). The effects of LPS and doxycycline on the expressions of MMP-2, MMP-8, MMP-9, MMP-10, NF-κB/p65, IκB-α, p-IκB-α, IKK-β were examined by Western blotting and immunohistochemistry in PC3 cells. Furthermore, relative proteinase activities of MMP-2 and MMP-9 were determined by gelatin zymography. LPS increased expression and activity of MMP-9 and expression of MMP-8, MMP-10, NF-κB /p65, p-IκB-α, IKK-β and doxycycline down-regulated its effects with the exception of MMP-10 expression. The expression of MMP-2 and IκB-α was affected by neither LPS nor doxycycline. Our findings indicate that doxycycline inhibits the expression of various MMPs and NF-κB signaling may play a role in the regulation of MMPs expression in LPS-induced PC3 human prostate cancer cells.

  4. miR-218 inhibits the invasive ability of glioma cells by direct downregulation of IKK-{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Libing, E-mail: lb.song1@gmail.com; Huang, Quan; Chen, Kun

    2010-11-05

    Research highlights: {yields} miR-218 is markedly downregulated in glioma cell lines and in primary glioma tissues. {yields} Upregulation of miR-218 dramatically reduces the invasive ability of glioma cells. {yields} Ectopic expression of miR-218 inactivates IKK-{beta}/NF-{kappa}B signaling pathway. {yields} miR-218 directly targets the 3'-untranslated region (3'-UTR) of IKK-{beta}. -- Abstract: Aberrant activation of nuclear factor-kappa B (NF-{kappa}B) pathway has been proven to play important roles in the development and progression of cancers. Activation of NF-{kappa}B via the classical pathway is modulated by I{kappa}Bs kinase (IKK-{beta}). However, the mechanism underlying the epigenetic regulation of IKK-{beta}/NF-{kappa}B pathway remains largely unknown. In this study,more » we found that the expression level of miR-218 was markedly downregulated in glioma cell lines and in human primary glioma tissues. Upregulation of miR-218 dramatically reduced the migratory speed and invasive ability of glioma cells. Furthermore, we showed that ectopically expressing miR-218 in glioma cells resulted in downregulation of matrix metalloproteinase-9 (MMP-9) and reduction in NF-{kappa}B transactivity at a transcriptional level, but inhibition of miR-218 enhanced the expression of MMP-9 and transcriptional activity of NF-{kappa}B. Moreover, we showed that miR-218 inactivated the NF-{kappa}B pathway through downregulating IKK-{beta} expression by directly targeting the 3'-untranslated region (3'-UTR) of IKK-{beta}. Taken together, our results suggest that miR-218 plays an important role in preventing the invasiveness of glioma cells, and our results present a novel mechanism of miRNA-mediated direct suppression of IKK-{beta}/NF-{kappa}B pathway in gliomas.« less

  5. Nuclear IL-33 is a transcriptional regulator of NF-{kappa}B p65 and induces endothelial cell activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Sook; Park, Jeong Ae; Kim, Jihye

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer IL-33 as nuclear factor regulated expression of ICAM-1 and VCAM-1. Black-Right-Pointing-Pointer Nuclear IL-33 increased the transcription of NF-{kappa}B p65 by binding to the p65 promoter. Black-Right-Pointing-Pointer Nuclear IL-33 controls NF-{kappa}B-dependent inflammatory responses. -- Abstract: Interleukin (IL)-33, an IL-1 family member, acts as an extracellular cytokine by binding its cognate receptor, ST2. IL-33 is also a chromatin-binding transcriptional regulator highly expressed in the nuclei of endothelial cells. However, the function of IL-33 as a nuclear factor is poorly defined. Here, we show that IL-33 is a novel transcriptional regulator of the p65 subunit of the NF-{kappa}B complex and ismore » involved in endothelial cell activation. Quantitative reverse transcriptase PCR and Western blot analyses indicated that IL-33 mediates the expression of intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in endothelial cells basally and in response to tumor necrosis factor-{alpha}-treatment. IL-33-induced ICAM-1/VCAM-1 expression was dependent on the regulatory effect of IL-33 on the nuclear factor (NF)-{kappa}B pathway; NF-{kappa}B p65 expression was enhanced by IL-33 overexpression and, conversely, reduced by IL-33 knockdown. Moreover, NF-{kappa}B p65 promoter activity and chromatin immunoprecipitation analysis revealed that IL-33 binds to the p65 promoter region in the nucleus. Our data provide the first evidence that IL-33 in the nucleus of endothelial cells participates in inflammatory reactions as a transcriptional regulator of NF-{kappa}B p65.« less

  6. Posttreatment with Ma-Xing-Shi-Gan-Tang, a Chinese medicine formula, ameliorates lipopolysaccharide-induced lung microvessel hyperpermeability and inflammatory reaction in rat.

    PubMed

    Ma, Li-Qian; Pan, Chun-Shui; Yang, Ning; Liu, Yu-Ying; Yan, Li; Sun, Kai; Wei, Xiao-Hong; He, Ke; Xiao, Meng-Meng; Fan, Jing-Yu; Han, Jing-Yan

    2014-10-01

    The aim of present study was to investigate the efficacy of MXSGT, a traditional Chinese medicine formula used for treatment of respiratory system diseases, in the LPS-induced rat ALI particularly with a focus on its effect on lung microvascular hyperpermeability and inflammatory reaction. Male Sprague-Dawley rats were injected with LPS (7.5 mg/kg, 1.5 mg/mL) intraperitoneally. MXSGT (0.52 g or 2.61 g/kg) was given by gavage six hours after LPS injection. LPS stimulation resulted in a reduced survival rate, deteriorated vital signs, an increase in the number of leukocytes adhering to lung venules, the albumin leakage, the activity of MPO in lung tissues, the production of pro-inflammatory cytokines and lung perivascular edema. After LPS stimulation, western blot analysis revealed an increase in the expression of ICAM-1 and toll-like receptor 4, a decrease in tight junction proteins and an activation of cav-1, Src, and NF-κB. All the LPS-induced alterations were significantly attenuated by posttreatment with MXSGT. This study demonstrated MXSGT as a potential strategy for lung microvascular hyperpermeability and inflammatory reaction in ALI, and suggested that the beneficial role of MXSGT was correlated with toll-like receptor 4, Src, and NF-κB. © 2014 John Wiley & Sons Ltd.

  7. Puerarin Exerts an Antiinflammatory Effect by Inhibiting NF-kB and MAPK Activation in Staphylococcus aureus-Induced Mastitis.

    PubMed

    Wu, Haichong; Zhao, Gan; Jiang, Kangfeng; Chen, Xiuying; Zhu, Zhe; Qiu, Changwei; Deng, Ganzhen

    2016-10-01

    Mastitis is defined as the inflammation of the mammary gland. There is generally no effective treatment for mastitis in animals. Puerarin, extracted from Radix puerariae, has been proven to possess many biological activities. The present study aims to reveal the potential mechanism that is responsible for the antiinflammatory action of puerarin in Staphylococcus aureus (S. aureus)-induced mastitis in mice. Histopathological changes showed that puerarin ameliorated the inflammatory injury induced by S. aureus. Quantitative real-time polymerase chain reaction and ELISA analysis indicated that puerarin not only suppressed the production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 but also promoted the secretion of IL-10. Toll-like receptor 2 (TLR2) is important in the immune defense against S. aureus infection. Research in molecular biology has shown that the expression of TLR2 was inhibited with administration of puerarin. Further studies were performed on NF-kB and mitogen-activated protein kinase signaling pathways using western blot. The results demonstrated that puerarin suppressed phosphorylated IkBα, p65, p38, extracellular signal-regulated kinase 1and 2 (ERK), and c-Jun N-terminal kinase (JNK) in a dose-dependent manner. All of the results suggested that puerarin may be a potential therapy for treating mastitis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Evidence of functional cross talk between the Notch and NF-κB pathways in nonneoplastic hyperproliferating colonic epithelium.

    PubMed

    Ahmed, Ishfaq; Roy, Badal; Chandrakesan, Parthasarathy; Venugopal, Anand; Xia, Lijun; Jensen, Roy; Anant, Shrikant; Umar, Shahid

    2013-02-15

    The Notch and NF-κB signaling pathways regulate stem cell function and inflammation in the gut, respectively. We investigate whether a functional cross talk exists between the two pathways during transmissible murine colonic hyperplasia (TMCH) caused by Citrobacter rodentium (CR). During TMCH, NF-κB activity and subunit phosphorylation in colonic crypts of NIH Swiss mice at days 6 and 12 were associated with increases in downstream target CXC chemokine ligand (CXCL)-1/keratinocyte-derived chemokine (KC) expression. Blocking Notch signaling acutely for 5 days with the Notch blocker dibenzazepine (DBZ) failed to inhibit crypt NF-κB activity or CXCL-1/KC expression. Chronic DBZ administration for 10 days, however, blocked Notch and NF-κB signaling in the crypts and abrogated hyperplasia. Intriguingly, chronic Notch inhibition was associated with significant increases in IL-1α, granulocyte colony-stimulating factor, monocyte chemoattractant protein 1, macrophage inflammatory protein 2, and KC in the crypt-denuded lamina propria or whole distal colon, with concomitant increases in myeloperoxidase activity. In core-3(-/-) mice, which are defective in intestinal mucin, DBZ administration replicated the results of NIH Swiss mice; in Apc(Min/+) mice, which are associated with CR-induced elevation of NF-κB-p65(276) expression, DBZ reversed the increase in NF-κB-p65(276), which may have blocked rapid proliferation of the mutated crypts. DBZ further blocked reporter activities involving the NF-κB-luciferase reporter plasmid or the Toll-like receptor 4/NF-κB/SEAPorter HEK-293 reporter cell line, while ectopic expression of Notch-N(ICD) reversed the inhibitory effect. Dietary bael (Aegle marmelos) extract (4%) and curcumin (4%) restored Notch and NF-κB cross talk in NIH Swiss mice, inhibited CR/DBZ-induced apoptosis in the crypts, and promoted crypt regeneration. Thus functional cross talk between the Notch and NF-κB pathways during TMCH regulates hyperplasia and/or inflammation in response to CR infection.

  9. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling.

    PubMed

    Huang, Qingsong; Niu, Zhiguo; Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-08-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target.

  10. Effects of Cot expression on the nuclear translocation of NF-kappaB in RBL-2H3 cells.

    PubMed

    Chikamatsu, Satomi; Furuno, Tadahide; Kinoshita, Yosuke; Inoh, Yoshikazu; Hirashima, Naohide; Teshima, Reiko; Nakanishi, Mamoru

    2007-03-01

    Cot is a serine/threonine protein kinase and is classified as a mitogen-activated protein (MAP) kinase kinase kinase. Overexpression of this protein has been shown to activate the extracellular signal-regulated kinase, the c-Jun N-terminal kinase, and the p38 MAP kinase pathways and to stimulate NF-AT and NF-kappaB-dependent transcription. Here we have shown that Cot kinase activity is intimately involved in the high affinity receptor for IgE (FcvarepsilonRI)-mediated nuclear translocation of NF-kappaB1 independent of NF-kappaB-inducing kinase (NIK) in rat basophilic leukemia (RBL-2H3) cells. A transfected green fluorescent protein-tagged NF-kappaB1 (GFP-NF-kappaB1) resided in the cytoplasm in RBL-2H3 cells and it remained in the cytoplasm even when Cot tagged with red fluorescent protein (Cot-RFP) was co-expressed. Western blotting analysis showed that IkappaB kinases (IKKs) were expressed in RBL-2H3 cells but NIK was not. GFP-NF-kappaB1 translocated from the cytoplasm to the nucleus after the aggregation of FcvarepsilonRI in Cot-transfected cells but not in kinase-deficient Cot-transfected cells. This finding gives a new insight into the role of Cot in the FcvarepsilonRI-mediated NF-kappaB activation in mast cells.

  11. ClC-K chloride channels: emerging pathophysiology of Bartter syndrome type 3.

    PubMed

    Andrini, Olga; Keck, Mathilde; Briones, Rodolfo; Lourdel, Stéphane; Vargas-Poussou, Rosa; Teulon, Jacques

    2015-06-15

    The mutations in the CLCNKB gene encoding the ClC-Kb chloride channel are responsible for Bartter syndrome type 3, one of the four variants of Bartter syndrome in the genetically based nomenclature. All forms of Bartter syndrome are characterized by hypokalemia, metabolic alkalosis, and secondary hyperaldosteronism, but Bartter syndrome type 3 has the most heterogeneous presentation, extending from severe to very mild. A relatively large number of CLCNKB mutations have been reported, including gene deletions and nonsense or missense mutations. However, only 20 CLCNKB mutations have been functionally analyzed, due to technical difficulties regarding ClC-Kb functional expression in heterologous systems. This review provides an overview of recent progress in the functional consequences of CLCNKB mutations on ClC-Kb chloride channel activity. It has been observed that 1) all ClC-Kb mutants have an impaired expression at the membrane; and 2) a minority of the mutants combines reduced membrane expression with altered pH-dependent channel gating. Although further investigation is needed to fully characterize disease pathogenesis, Bartter syndrome type 3 probably belongs to the large family of conformational diseases, in which the mutations destabilize channel structure, inducing ClC-Kb retention in the endoplasmic reticulum and accelerated channel degradation. Copyright © 2015 the American Physiological Society.

  12. Zingerone ameliorates cisplatin-induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female wistar rats.

    PubMed

    Kaygusuzoglu, Erdal; Caglayan, Cuneyt; Kandemir, Fatih Mehmet; Yıldırım, Serkan; Kucukler, Sefa; Kılınc, Mehmet Akif; Saglam, Yavuz Selim

    2018-06-01

    Cisplatin (CP) is a widely used chemotherapeutic drug, effective against a variety of solid tumours, though its utility is limited due to its multiple organ toxicity. Zingerone (ZO), one of the most important components of dry ginger root, has several pharmacological activities, such as antioxidant, anti-inflammatory and anti-apoptotic properties. This study aimed to investigate the ameliorative effect of ZO on CP-induced ovarian and uterine toxicity in female rats. The rats were subjected to a prophylactic oral treatment of ZO (25 and 50 mg/kg body weight) for seven days to measure the protective effect against ovarian and uterine toxicity induced by a single (i.p.) of CP (7 mg/kg body weight) on the first day whereas the rats were sacrificed on the eighth day. The results showed that ZO decreased the serum FSH hormone level, increased the serum E2 hormone level, and also maintained the ovarian and uterine histological architecture and integrity. In addition, ZO obviously increased the measured activity of antioxidant enzymes (SOD, CAT and GPx) and the GSH content, and significantly reduced MDA levels. ZO was able to reduce the levels of the inflammatory markers NF-κB, TNF-α, IL-1β, IL-6, COX-2 and iNOS in CP-induced ovarian and uterine damage. It also inhibited apoptosis and reduced oxidative DNA damage markers by the downregulation of caspase-3 and 8-OHdG expression coupled with an upregulated Bcl-2 level. The results indicate that ZO may be beneficial in ameliorating CP-induced oxidative stress, sex hormone imbalances, inflammation and apoptosis in ovarian and uterine tissues of female rats. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats.

    PubMed

    Ren, Bei; Qin, Weiwei; Wu, Feihua; Wang, Shanshan; Pan, Cheng; Wang, Liying; Zeng, Biao; Ma, Shiping; Liang, Jingyu

    2016-02-15

    Vascular endothelial dysfunction is regarded as the initial step of vascular complications in diabetes mellitus. This study investigated the amelioration of apigenin and naringenin in type 2 diabetic (T2D) rats induced by high-fat diet and streptozotocin and explored the underlying mechanism. Apigenin or naringenin was intragastrically administered at 50 or 100mg/kg once a day for 6 weeks. Biochemical parameters including blood glucose, glycated serum protein, serum lipid, insulin, superoxide dismutase (SOD), malonaldehyde and intercellular adhesion molecule-1 (ICAM-1) were measured. Vascular reactivity in isolated thoracic aortic rings was examined. Pathological features of the thoracic aorta were further observed through optical microscopy and transmission electron microscopy. Lastly, we evaluated their effects on insulin resistance of palmitic acid (PA)-induced endothelial cells. Compared with diabetic control group, apigenin and naringenin significantly decreased the levels of blood glucose, serum lipid, malonaldehyde, ICAM-1 and insulin resistance index, increased SOD activity and improved impaired glucose tolerance. Apigenin and naringenin restored phenylephrine-mediated contractions and acetylcholine or insulin-induced relaxations in aortic tissues. Furthermore, pathological damage in the thoracic aorta of apigenin and naringenin groups was more remissive than diabetic control group. In vitro, apigenin and naringenin inhibited NF-κB activation and ICAM-1 mRNA expression in PA-treated endothelial cells and improved nitric oxide production in the presence of insulin. In conclusion, both apigenin and naringenin can ameliorate glucose and lipid metabolism, as well as endothelial dysfunction in T2D rats at least in part by down-regulating oxidative stress and inflammation. In general, apigenin showed greater potency than naringenin equivalent. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. OsNF-YC2 and OsNF-YC4 proteins inhibit flowering under long-day conditions in rice.

    PubMed

    Kim, Soon-Kap; Park, Hyo-Young; Jang, Yun Hee; Lee, Keh Chien; Chung, Young Soo; Lee, Jeong Hwan; Kim, Jeong-Kook

    2016-03-01

    OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.

  15. T cell-intrinsic requirement for NF-kappa B induction in postdifferentiation IFN-gamma production and clonal expansion in a Th1 response.

    PubMed

    Corn, Radiah A; Aronica, Mark A; Zhang, Fuping; Tong, Yingkai; Stanley, Sarah A; Kim, Se Ryoung Agnes; Stephenson, Linda; Enerson, Ben; McCarthy, Susan; Mora, Ana; Boothby, Mark

    2003-08-15

    NF-kappaB/Rel transcription factors are linked to innate immune responses and APC activation. Whether and how the induction of NF-kappaB signaling in normal CD4(+) T cells regulates effector function are not well-understood. The liberation of NF-kappaB dimers from inhibitors of kappaB (IkappaBs) constitutes a central checkpoint for physiologic regulation of most forms of NF-kappaB. To investigate the role of NF-kappaB induction in effector T cell responses, we targeted inhibition of the NF-kappaB/Rel pathway specifically to T cells. The Th1 response in vivo is dramatically weakened when T cells defective in their NF-kappaB induction (referred to as IkappaBalpha(DeltaN) transgenic cells) are activated by a normal APC population. Analyses in vivo, and IL-12-supplemented T cell cultures in vitro, reveal that the mechanism underlying this T cell-intrinsic requirement for NF-kappaB involves activation of the IFN-gamma gene in addition to clonal expansion efficiency. The role of NF-kappaB in IFN-gamma gene expression includes a modest decrease in Stat4 activation, T box expressed in T cell levels, and differentiation efficiency along with a more prominent postdifferentiation step. Further, induced expression of Bcl-3, a trans-activating IkappaB-like protein, is decreased in T cells as a consequence of NF-kappaB inhibition. Together, these findings indicate that NF-kappaB induction in T cells regulates efficient clonal expansion, Th1 differentiation, and IFN-gamma production by Th1 lymphocytes at a control point downstream from differentiation.

  16. [Effect of NF-κB activation on the radiation response of esophageal cancer cells].

    PubMed

    Li, Baozhong; Chen, Zhaoli; Zhou, Fang; He, Jie

    2014-07-01

    To investigate the effect of NF-κB activation on radiation response of esophageal carcinoma. The expression of NF-κB was detected in pretreatment and posttreatment specimens of patients with ESCC by immunohistochemistry. Electrophoretic mobility shift assay (EMSA) and Western blot were used to detect the activation of NF-κB in esophageal cancer cell line KYSE150 cells. SN50, a specific NF-κB inhibitor, was applied to inhibit the activation of NF-κB. Clone formation test was used to detect the radiosensitivity of esophageal cancer cells. The median survival time of patients with activated and inactivated NF-κB in the pretreatment specimens were 16 and 19 months, respectively, with a non-significant difference between the two groups (P > 0.05). As to the patients with activated and inactivated NF-κB in posttreatment specimens, the median survival times were 13 and 35 months, respectively, with a significant difference (P < 0.01) between them. Western blot showed that the cytoplasmic expression of NF-κB was reduced with increasing radiation dose at 1.5 and 3 hours after radiation treatment. However, the expression of NF-κB in the cell nuclei was increased under the same condition, showing a trend of increased nucleus/cytoplasm ratio. The clone number in SN50 group was 96.66, 64.66, 76.66 and 10.00 under 0, 2, 4 and 12 Gy irradiation, which demonstrated a significant difference compared with the control groups (P < 0.001). Our results show that activation of NF-κB is induced by radiotherapy. Activation of NF-κB reduces the outcome of radiation treatment of esophageal cancer patients.

  17. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promotingmore » brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism relevant to activation of the NF-κB pathway in response to particular pro-inflammatory cytokines and/or saturated FFAs in BAT.« less

  18. RelAp43, a member of the NF-κB family involved in innate immune response against Lyssavirus infection.

    PubMed

    Luco, Sophie; Delmas, Olivier; Vidalain, Pierre-Olivier; Tangy, Frédéric; Weil, Robert; Bourhy, Hervé

    2012-01-01

    NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response.

  19. RelAp43, a Member of the NF-κB Family Involved in Innate Immune Response against Lyssavirus Infection

    PubMed Central

    Vidalain, Pierre-Olivier; Tangy, Frédéric; Weil, Robert; Bourhy, Hervé

    2012-01-01

    NF-κB transcription factors are crucial for many cellular processes. NF-κB is activated by viral infections to induce expression of antiviral cytokines. Here, we identified a novel member of the human NF-κB family, denoted RelAp43, the nucleotide sequence of which contains several exons as well as an intron of the RelA gene. RelAp43 is expressed in all cell lines and tissues tested and exhibits all the properties of a NF-κB protein. Although its sequence does not include a transactivation domain, identifying it as a class I member of the NF-κB family, it is able to potentiate RelA-mediated transactivation and stabilize dimers comprising p50. Furthermore, RelAp43 stimulates the expression of HIAP1, IRF1, and IFN-β - three genes involved in cell immunity against viral infection. It is also targeted by the matrix protein of lyssaviruses, the agents of rabies, resulting in an inhibition of the NF-κB pathway. Taken together, our data provide the description of a novel functional member of the NF-κB family, which plays a key role in the induction of anti-viral innate immune response. PMID:23271966

  20. A motor neuron strategy to save time and energy in neurodegeneration: adaptive protein stoichiometry.

    PubMed

    Zucchi, Elisabetta; Lu, Ching-Hua; Cho, Yunju; Chang, Rakwoo; Adiutori, Rocco; Zubiri, Irene; Ceroni, Mauro; Cereda, Cristina; Pansarasa, Orietta; Greensmith, Linda; Malaspina, Andrea; Petzold, Axel

    2018-06-30

    Neurofilament proteins (Nf) are a biomarker of disease progression in amyotrophic lateral sclerosis (ALS). This study investigated whether there are major differences in expression from in vivo measurements of neurofilament isoforms, from the light chain, NfL (68 kDa), compared to larger proteins, the medium chain (NfM, 150 kDa) and the heavy (NfH, 200-210 kDa) chains in ALS patients and healthy controls. New immunological methods were combined with Nf subunit stoichiometry calculations and Monte-Carlo simulations of a coarse-grained Nf brush model. Based on a physiological Nf subunit stoichiometry of 7:3:2 (NfL:NfM:NfH) we found an "adaptive" Nf subunit stoichiometry of 24:2.4:1.6 in ALS. Adaptive Nf stoichiometry preserved NfL gyration radius in the Nf brush model. The energy and time requirements for Nf translation were 56±27k ATP (5.6 hours) in control subjects compared to 123±102k (12.3 h) in ALS with "adaptive" Nf stoichiometry (not significant) and increased significantly to 355±330k (35.5 h) with "luxury" Nf subunit stoichiometry (p<0.0001 for each comparison). Longitudinal disease progression related energy consumption was highest with a "luxury" Nf stoichiometry. Therefore, an energy and time saving option for motor neurons is to shift protein expression from larger to smaller (cheaper) subunits, at little or no costs on a protein structural level, to compensate for increased energy demands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. 1, 25(OH){sub 2}D{sub 3}-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Dong; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000; Zhang, Ruo-nan

    KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2more » in LPS-treated macrophages. Further studies revealed that 1, 25(OH){sub 2}D{sub 3}-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH){sub 2}D{sub 3} induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages. - Highlights: • 1, 25(OH){sub 2}D{sub 3} suppresses LPS-induced KLF5 expression via upregulation of VDR expression. • KLF5 interacts with NF-κB-p50 to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. • 1,25(OH){sub 2}D{sub 3} induces interaction of VDR with p50.« less

  2. Mouse scrapie responsive gene 1 (Scrg1): genomic organization, physical linkage to sap30, genetic mapping on chromosome 8, and expression in neuronal primary cell cultures.

    PubMed

    Dron, M; Tartare, X; Guillo, F; Haik, S; Barbin, G; Maury, C; Tovey, M; Dandoy-Dron, F

    2000-11-15

    We have previously reported a transcript of a novel mouse gene (Scrg1) with increased expression in transmissible spongiform encephalopathies and the cloning of the human mRNA analogue. In this paper, we present the genomic organization of the mouse and human SCRG1 loci, which exhibit a high degree of conservation. The genes are composed of three exons; the two downstream exons contain the protein coding region. The mouse gene is expressed in brain tissue essentially as a 0.7-kb message but also as a minor 2.6-kb mRNA. We have sequenced 20 kb of DNA at the mouse Scrg1 locus and found that the longer transcript is the prolongation of the 0.7-kb mRNA to a polyadenylation site located about 2 kb further downstream. Sequencing revealed that the mouse Scrg1 gene is physically linked to Sap30, a gene that encodes a protein of the histone deacetylase complex, and genetic linkage mapping assigned the localization of Scrg1 to chromosome 8 between Ant1 and Hmg2. Northern blot analysis showed that Scrg1 is under strict developmental control in mouse embryo and is expressed by cells of neuronal origin in vitro. Comparison of the rat, mouse, and human SCRG1 proteins identified a box of 35 identical contiguous amino acids and a characteristic cysteine distribution pattern defining a new protein signature. Copyright 2000 Academic Press.

  3. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity is a promising candidate for a potentially simple therapeutic approach for the prevention and treatment of obesity and associated complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Inhibiting NF-κB Activation by Small Molecules As a Therapeutic Strategy

    PubMed Central

    Gupta, Subash C; Sundaram, Chitra; Reuter, Simone; Aggarwal, Bharat B

    2010-01-01

    Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitnation, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50- p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitnation, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Here, we review the small molecules that suppress NF-κB activation and thus may have therapeutic potential. PMID:20493977

  5. Overexpression of NF90-NF45 Represses Myogenic MicroRNA Biogenesis, Resulting in Development of Skeletal Muscle Atrophy and Centronuclear Muscle Fibers

    PubMed Central

    Todaka, Hiroshi; Higuchi, Takuma; Yagyu, Ken-ichi; Sugiyama, Yasunori; Yamaguchi, Fumika; Morisawa, Keiko; Ono, Masafumi; Fukushima, Atsuki; Tsuda, Masayuki; Taniguchi, Taketoshi

    2015-01-01

    MicroRNAs (miRNAs) are involved in the progression and suppression of various diseases through translational inhibition of target mRNAs. Therefore, the alteration of miRNA biogenesis induces several diseases. The nuclear factor 90 (NF90)-NF45 complex is known as a negative regulator in miRNA biogenesis. Here, we showed that NF90-NF45 double-transgenic (dbTg) mice develop skeletal muscle atrophy and centronuclear muscle fibers in adulthood. Subsequently, we found that the levels of myogenic miRNAs, including miRNA 133a (miR-133a), which promote muscle maturation, were significantly decreased in the skeletal muscle of NF90-NF45 dbTg mice compared with those in wild-type mice. However, levels of primary transcripts of the miRNAs (pri-miRNAs) were clearly elevated in NF90-NF45 dbTg mice. This result indicated that the NF90-NF45 complex suppressed miRNA production through inhibition of pri-miRNA processing. This finding was supported by the fact that processing of pri-miRNA 133a-1 (pri-miR-133a-1) was inhibited via binding of NF90-NF45 to the pri-miRNA. Finally, the level of dynamin 2, a causative gene of centronuclear myopathy and concomitantly a target of miR-133a, was elevated in the skeletal muscle of NF90-NF45 dbTg mice. Taken together, we conclude that the NF90-NF45 complex induces centronuclear myopathy through increased dynamin 2 expression by an NF90-NF45-induced reduction of miR-133a expression in vivo. PMID:25918244

  6. GATA-6 and NF-κB Activate CPI-17 Gene Transcription and Regulate Ca2+ Sensitization of Smooth Muscle Contraction

    PubMed Central

    Boopathi, Ettickan; Hypolite, Joseph A.; Zderic, Stephen A.; Gomes, Cristiano Mendes; Malkowicz, Bruce; Liou, Hsiou-Chi; Wein, Alan J.

    2013-01-01

    Protein kinase C (PKC)-potentiated inhibitory protein of 17 kDa (CPI-17) inhibits myosin light chain phosphatase, altering the levels of myosin light chain phosphorylation and Ca2+ sensitivity in smooth muscle. In this study, we characterized the CPI-17 promoter and identified binding sites for GATA-6 and nuclear factor kappa B (NF-κB). GATA-6 and NF-κB upregulated CPI-17 expression in cultured human and mouse bladder smooth muscle (BSM) cells in an additive manner. CPI-17 expression was decreased upon GATA-6 silencing in cultured BSM cells and in BSM from NF-κB knockout (KO) mice. Moreover, force maintenance by BSM strips from KO mice was decreased compared with the force maintenance of BSM strips from wild-type mice. GATA-6 and NF-κB overexpression was associated with CPI-17 overexpression in BSM from men with benign prostatic hyperplasia (BPH)-induced bladder hypertrophy and in a mouse model of bladder outlet obstruction. Thus, aberrant expression of NF-κB and GATA-6 deregulates CPI-17 expression and the contractile function of smooth muscle. Our data provide insight into how GATA-6 and NF-κB mediate CPI-17 transcription, PKC-mediated signaling, and BSM remodeling associated with lower urinary tract symptoms in patients with BPH. PMID:23275439

  7. An analysis of variation in expression of neurofibromatosis (NF) type I (NFI): Evidence for modifying genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Easton, D.F.; Ponder, B.A.J.; Huson, S.M.

    Neurofibromatosis (NF) type 1 (NF1) is notable for its variable expression. To determine whether variation in expression has an inherited component, the authors examined 175 individuals in 48 NF families, including six MZ twin pairs. Three quantitative traits were scored - number of cafe-au-lait patches, number of cutaneous neurofibromas, and head circumference; and five binary traits were scored - the presence or absence of plexiform neurofibromas, optic gliomas, scoliosis, epilepsy, and referral for remedial education. For cafe-au-lait patches and neurofibromas, correlation was highest between MZ twins, less high between first-degree relatives, and lower still between more distant relatives. The highmore » correlation between distant relatives suggests that the type of mutation at the NF1 locus itself plays only a minor role. All of the five binary traits, with the exception of plexiformneurofibromas, also showed significant familial clustering. The familial effects for these traits were consistent with polygenic effects, but there were insufficient data to rule out other models, including a significant effect of different NF1 mutations. There was no evidence of any association between the different traits in affected individuals. The authors conclude that the phenotypic expression of NF1 is to a large extent determined by the genotype at other [open quotes]modifying[close quotes] loci and that these modifying genes are trait specific. 22 refs., 8 tabs.« less

  8. The effects of dexamethasone on rat brain cortical nuclear factor kappa B (NF-{kappa}B) in endotoxic shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Zhi; Kang Jinsong; Li Yang

    2006-08-01

    To explore the molecular mechanism of brain tissue injury induced by lipopolysaccharide (LPS), we studied the effects of endotoxic shock on rat brain cortex NF-{kappa}B and the effects of dexamethasone on these changes. Rats were randomly divided into LPS, LPS + dexamethasone, and control groups. The DNA-binding activity of NF-{kappa}B was observed using electrophoretic mobility shift assay (EMSA). Protein expression in nuclear extracts was studied using Western blots, and nuclear translocation was observed using immunohistochemistry. These indices were assayed at 1 h and 4 h after intravenous injection of LPS (4 mg.kg{sup -1}). EMSA showed significantly increased NF-{kappa}B DNA-binding activitymore » in nuclear extracts from the LPS group at both 1 h and 4 h after LPS injection, compared with the control group (P < 0.01). For the LPS group, the NF-{kappa}B DNA-binding activity was greater at 1 h than at 4 h (P < 0.05). The expression of p65 and p50 protein in the nuclear extracts was also increased, as compared with the control group. However, the expression of p65 and p50 protein from cytosolic extracts did not show any significant change. Dexamethasone down-regulated not only NF-{kappa}B DNA-binding activity but also the expression of p65 protein in the nuclear extracts. From these data, we have concluded that NF-{kappa}B activation and nuclear translocation of NF-{kappa}B play a key role in the molecular mechanism of brain tissue injury in endotoxic shock. Dexamethasone may alleviate brain injury by inhibiting NF-{kappa}B activation.« less

  9. The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rascle, Anne; Neumann, Tanja; Raschta, Anne-Sarah

    2009-01-01

    LMX1B is a LIM-homeodomain transcription factor essential for development. Putative LMX1B target genes have been identified through mouse gene targeting studies, but their identity as direct LMX1B targets remains hypothetical. We describe here the first molecular characterization of LMX1B target gene regulation. Microarray analysis using a tetracycline-inducible LMX1B expression system in HeLa cells revealed that a subset of NF-{kappa}B target genes, including IL-6 and IL-8, are upregulated in LMX1B-expressing cells. Inhibition of NF-{kappa}B activity by short interfering RNA-mediated knock-down of p65 impairs, while activation of NF-{kappa}B activity by TNF-{alpha} synergizes induction of NF-{kappa}B target genes by LMX1B. Chromatin immunoprecipitation demonstratedmore » that LMX1B binds to the proximal promoter of IL-6 and IL-8 in vivo, in the vicinity of the characterized {kappa}B site, and that LMX1B recruitment correlates with increased NF-{kappa}B DNA association. IL-6 promoter-reporter assays showed that the {kappa}B site and an adjacent putative LMX1B binding motif are both involved in LMX1B-mediated transcription. Expression of NF-{kappa}B target genes is affected in the kidney of Lmx1b{sup -/-} knock-out mice, thus supporting the biological relevance of our findings. Together, these data demonstrate for the first time that LMX1B directly regulates transcription of a subset of NF-{kappa}B target genes in cooperation with nuclear p50/p65 NF-{kappa}B.« less

  10. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay

    PubMed Central

    Sharma, Vasundhara; Jordan, Jennifer J.; Ciribilli, Yari; Resnick, Michael A.; Bisio, Alessandra; Inga, Alberto

    2015-01-01

    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators. PMID:26147604

  11. Differential requirement for the IKKβ/NF-κB signaling module in regulating TLR versus RLR-induced type 1 IFN expression in dendritic cells1

    PubMed Central

    Wang, Xingyu; Wang, Junmei; Zheng, Hong; Xie, Mengyu; Hopewell, Emily L.; Albrecht, Randy A.; Nogusa, Shoko; García-Sastre, Adolfo; Balachandran, Siddharth; Beg, Amer A.

    2014-01-01

    Host innate-immune responses are tailored by cell-type to control and eradicate specific infectious agents. For example, an acute RNA virus infection can result in high-level expression of type 1 interferons (IFNs) by both conventional (cDCs) and plasmacytoid dendritic cells (pDCs), but while cDCs preferentially utilize RIG-I-like Receptor (RLR) signaling to produce type 1 IFNs, pDCs predominantly employ Toll-like Receptors (TLR) to induce these cytokines. We previously found that the IKKβ/NF-κB pathway regulates early IFN-β expression but not the magnitude of type 1 IFN expression following RLR engagement. In this study, we use IKKβ inhibition and mice deficient in IKKβ or canonical NF-κB subunits (p50, RelA/p65 and cRel) to demonstrate that the IKKβ/NF-κB axis is critically important for virus-induced type 1 IFN expression in pDCs, but not in cDCs. We also reveal a crucial and more general requirement for IKKβ/NF-κB in TLR - but not RLR- induced expression of type 1 IFNs and inflammatory cytokines. Together, these findings reveal a previously unappreciated specificity of the IKKβ/NF-κB signaling axis in regulation of anti-microbial responses by different classes of PRR, and therefore by individual cell-types reliant on particular PRRs for their innate-immune transcriptional responses. PMID:25057006

  12. Methylation-Dependent Activation of CDX1 through NF-κB

    PubMed Central

    Rau, Tilman T.; Rogler, Anja; Frischauf, Myrjam; Jung, Andreas; Konturek, Peter C.; Dimmler, Arno; Faller, Gerhard; Sehnert, Bettina; El-Rifai, Wael; Hartmann, Arndt; Voll, Reinhard E.; Schneider-Stock, Regine

    2013-01-01

    The caudal homeobox factor 1 (CDX1) is an essential transcription factor for intestinal differentiation. Its aberrant expression in intestinal metaplasia of the upper gastrointestinal tract is a hallmark within the gastritis-metaplasia-carcinoma sequence. CDX1 expression is influenced by certain pathways, such as Wnt, Ras, or NF-κB signaling; however, these pathways alone cannot explain the transient expression of CDX1 in intestinal metaplasia or the molecular inactivation mechanism of its loss in cases of advanced gastric cancer. In this study, we investigated the epigenetic inactivation of CDX1 by promoter methylation, as well as the functional link of CDX1 promoter methylation to the inflammatory NF-κB signaling pathway. We identified methylation-dependent NF-κB binding to the CDX1 promoter and quantified it using competitive electrophoretic mobility shift assays and chromatin immunoprecipitation. A methylated CDX1 promoter was associated with closed chromatin structure, reduced NF-κB binding, and transcriptional silencing. Along the gastritis-metaplasia-carcinoma sequence, we observed a biphasic pattern of tumor necrosis factor-α (TNF-α) protein expression and an inverse biphasic pattern of CDX1 promoter methylation; both are highly consistent with CDX1 protein expression. The stages of hyper-, hypo-, and hyper-methylation patterns of the CDX1 promoter were inversely correlated with the NF-κB signaling activity along this sequence. In conclusion, these functionally interacting events drive CDX1 expression and contribute to intestinal metaplasia, epithelial dedifferentiation, and carcinogenesis in the human stomach. PMID:22749770

  13. Infectivity of Plasmodium falciparum in Malaria-Naive Individuals Is Related to Knob Expression and Cytoadherence of the Parasite

    PubMed Central

    Stanisic, Danielle I.; Gerrard, John; Fink, James; Griffin, Paul M.; Liu, Xue Q.; Sundac, Lana; Sekuloski, Silvana; Rodriguez, Ingrid B.; Pingnet, Jolien; Yang, Yuedong; Zhou, Yaoqi; Trenholme, Katharine R.; Wang, Claire Y. T.; Hackett, Hazel; Chan, Jo-Anne A.; Langer, Christine; Hanssen, Eric; Hoffman, Stephen L.; Beeson, James G.; McCarthy, James S.

    2016-01-01

    Plasmodium falciparum is the most virulent human malaria parasite because of its ability to cytoadhere in the microvasculature. Nonhuman primate studies demonstrated relationships among knob expression, cytoadherence, and infectivity. This has not been examined in humans. Cultured clinical-grade P. falciparum parasites (NF54, 7G8, and 3D7B) and ex vivo-derived cell banks were characterized. Knob and knob-associated histidine-rich protein expression, CD36 adhesion, and antibody recognition of parasitized erythrocytes (PEs) were evaluated. Parasites from the cell banks were administered to malaria-naive human volunteers to explore infectivity. For the NF54 and 3D7B cell banks, blood was collected from the study participants for in vitro characterization. All parasites were infective in vivo. However, infectivity of NF54 was dramatically reduced. In vitro characterization revealed that unlike other cell bank parasites, NF54 PEs lacked knobs and did not cytoadhere. Recognition of NF54 PEs by immune sera was observed, suggesting P. falciparum erythrocyte membrane protein 1 expression. Subsequent recovery of knob expression and CD36-mediated adhesion were observed in PEs derived from participants infected with NF54. Knobless cell bank parasites have a dramatic reduction in infectivity and the ability to adhere to CD36. Subsequent infection of malaria-naive volunteers restored knob expression and CD36-mediated cytoadherence, thereby showing that the human environment can modulate virulence. PMID:27382019

  14. Effect of caffeic acid phenethyl ester on Prevotella intermedia lipopolysaccharide-induced production of proinflammatory mediators in murine macrophages.

    PubMed

    Choi, E-Y; Choe, S-H; Hyeon, J-Y; Choi, J-I; Choi, I S; Kim, S-J

    2015-12-01

    Caffeic acid phenethyl ester (CAPE) has numerous potentially beneficial properties, including antioxidant, immunomodulatory and anti-inflammatory activities. However, the effect of CAPE on periodontal disease has not been studied before. This study was designed to investigate the efficacy of CAPE in ameliorating the production of proinflammatory mediators in macrophages activated by lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen implicated in periodontal disease. LPS from P. intermedia ATCC 25611 was isolated by using the standard hot phenol-water method. Culture supernatants were assayed for nitric oxide (NO), interleukin (IL)-1β and IL-6. We used real-time polymerase chain reaction to quantify inducible NO synthase, IL-1β, IL-6, heme oxygenase (HO)-1 and suppressors of cytokine signaling (SOCS) 1 mRNA expression. HO-1 protein expression and levels of signaling proteins were assessed by immunoblot analysis. DNA-binding activities of NF-κB subunits were analyzed by using the enzyme-linked immunosorbent assay-based kits. CAPE exerted significant inhibitory effects on P. intermedia LPS-induced production of NO, IL-1β and IL-6 as well as their mRNA expression in RAW264.7 cells. CAPE-induced HO-1 expression in cells activated with P. intermedia LPS, and selective inhibition of HO-1 activity by tin protoporphyrin IX attenuated the inhibitory effect of CAPE on LPS-induced NO production. CAPE did not interfere with IκB-α degradation induced by P. intermedia LPS. Instead, CAPE decreased nuclear translocation of NF-κB p65 and p50 subunits induced with LPS, and lessened LPS-induced p50 binding activity. Further, CAPE showed strong inhibitory effects on LPS-induced signal transducer and activator of transcription 1 and 3 phosphorylation. Besides, CAPE significantly elevated SOCS1 mRNA expression in P. intermedia LPS-stimulated cells. Modulation of host response by CAPE may represent an attractive strategy towards the treatment of periodontal disease. In vivo studies are required to appraise the potential of CAPE further as an immunomodulator in the treatment of periodontal disease. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Pre-S2 Start Codon Mutation of Hepatitis B Virus Subgenotype B3 Effects on NF-κB Expression and Activation in Huh7 Cell Lines.

    PubMed

    Siburian, Marlinang Diarta; Suriapranata, Ivet Marita; Wanandi, Septelia Inawati

    2018-03-19

    A cross-sectional study on hepatitis B patients in Indonesia showed association of pre-S2 start codon mutation (M120 V) with cirrhosis and hepatocellular carcinoma (HCC), which was dissimilar from studies from other populations where pre-S2 deletion mutation was more prevalent. Different mutation patterns were attributed to different hepatitis B virus (HBV) subgenotypes in each population study. HBV surface proteins are reported to induce the activation of NF-κB, a transcriptional factor known to play an important role in the development of liver disease. This study aimed to see the effects of HBs variants in HBV subgenotype B3 on the expression and activation of NF-κB as one of the mechanisms in inducing advanced liver disease. HBV subgenotypes B3, each carrying wild-type (wt) HBs, M120 V, and pre-S2 deletion mutation were isolated from three HCC patients. HBs genes were amplified and cloned into pcDNA3.1 and were transfected using Lipofectamine into a Huh7 cell line. NF-κB activation was measured through IκB-α expression, which is regulated by NF-κB. RNA expressions for HBs, IκB-α, and NF-κB subunit (p50) were evaluated using real-time PCR. M120 V mutant had a significantly higher mRNA level compared with wt and pre-S2 deletion mutant; however, there were no significant differences in HBs protein expressions. The transcription level of p50 was higher in M120 V mutation compared with HBs wild-type and pre-S2 deletion mutant. NF-κB activation was higher in HBs wild-type compared with the two mutant variants. Pre-S2 mutations had no effect on the increment of NF-κB activation. However, M120 V mutation may utilize a different pathway in liver disease progression that involves high expression of NF-κB subunit, p50.

  16. Merlin, the product of NF2 gene, is associated with aromatase expression and estrogen formation in human liver tissues and liver cancer cells.

    PubMed

    Cocciadiferro, Letizia; Miceli, Vitale; Granata, Orazia M; Carruba, Giuseppe

    2017-09-01

    The product of neurofibromatosis type 2 (NF2) gene, also known as Merlin/neurofibromin 2, homeostatically regulates liver stem cells by controlling abundance and signaling of epidermal growth factor receptor (EGFR), with a mechanism independent of the Hippo pathway. We have reported that locally elevated estrogen formation, driven by abnormally high expression and function of aromatase, may be implicated in development and progression of human hepatocellular carcinoma (HCC) through activation of a rapid signaling pathway mediated by amphiregulin (AREG) and EGFR. We have recently presented a model by which the aromatase-estrogen-amphiregulin-EGFR axis is activated in response to tissue injury and/or inflammatory disease, with its alteration eventually leading to development of major human tumors (liver, breast, prostate) and other chronic diseases (diabetes, obesity, Alzheimer's and heart disease). In this study, we investigated NF2 expression in liver cancer cells and tissues in relation to aromatase expression/function, estrogen receptor (ER) status and amphiregulin. Our data indicate that NF2 expression is associated with aromatase and AREG expression, being elevated in HCC tissues and HepG2 cells, intermediate in cirrhotic tissues and Huh7 cells, and lower in nontumoral liver and HA22T cells. In addition, NF2 expression is inversely related to wild type hERα66 and proportional to the expression of the membrane-associated hERα36 splice variant, as measured by exon-specific RT-PCR analysis, both in vivo and in vitro. Furthermore, incubation with estradiol induced a significant decrease of NF2 expression in both HA22T and Huh7 cells (over 54% and 22%, respectively), while no change could be observed in HepG2 cells, this effect being inversely related to aromatase expression and activity in HCC cell lines. Based on the above combined evidence, we hypothesize that NF2 behaves as a protein sensing tissue damage and aromatase-driven local estrogen formation, eventually leading to regulation of stem cells differentiation and tissue repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition.

    PubMed

    Wang, Shuai; Shi, Xiao-Lei; Feng, Min; Wang, Xun; Zhang, Zhi-Heng; Zhao, Xin; Han, Bing; Ma, Hu-Cheng; Dai, Bo; Ding, Yi-Tao

    2016-09-01

    Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis.

    PubMed

    Zou, An; Magee, Nancy; Deng, Fengyan; Lehn, Sarah; Zhong, Cuncong; Zhang, Yuxia

    2018-06-01

    Nonalcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide, ranging from nonalcoholic fatty liver (NAFL, steatosis without hepatocellular injury) to the more aggressive nonalcoholic steatohepatitis (NASH, steatosis with ballooning, inflammation, or fibrosis). Although many studies have greatly contributed to the elucidation of NAFLD pathogenesis, the disease progression from NAFL to NASH remains incompletely understood. Nuclear receptor small heterodimer partner (Nr0b2, SHP ) is a transcriptional regulator critical for the regulation of bile acid, glucose, and lipid metabolism. Here, we show that SHP levels are decreased in the livers of patients with NASH and in diet-induced mouse NASH. Exposing primary mouse hepatocytes to palmitic acid and lipopolysaccharide in vitro , we demonstrated that the suppression of Shp expression in hepatocytes is due to c-Jun N-terminal kinase (JNK) activation, which stimulates c-Jun-mediated transcriptional repression of Shp Interestingly, in vivo induction of hepatocyte-specific SHP in steatotic mouse liver ameliorated NASH progression by attenuating liver inflammation and fibrosis, but not steatosis. Moreover, a key mechanism linking the anti-inflammatory role of hepatocyte-specific SHP expression to inflammation involved SHP-induced suppression of NF-κB p65-mediated induction of chemokine (C-C motif) ligand 2 (CCL2), which activates macrophage proinflammatory polarization and migration. In summary, our results indicate that a JNK/SHP/NF-κB/CCL2 regulatory network controls communications between hepatocytes and macrophages and contributes to the disease progression from NAFL to NASH. Our findings may benefit the development of new management or prevention strategies for NASH. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. NF-κB expression and its association with nutritional status in hemodialysis patients.

    PubMed

    Farage, Najla E; Stockler-Pinto, Milena B; Leal, Viviane O; Cardozo, Ludmila Lmf; Carraro-Eduardo, José Carlos; Fouque, Denis; Mafra, Denise

    2016-12-01

    This study aimed to evaluate the association among the expressions of pro- and anti-inflammatory nuclear factors (nuclear factor-kappaB, NF-κB and nuclear erythroid 2-related factor 2, Nrf2) and nutritional status in HD patients. This cross-sectional study included eighty-three HD patients. The peripheral blood mononuclear cells were isolated and processed for the evaluation of NF-κB and Nrf2 RNAm expression by quantitative real-time polymerase chain reaction. Muscle mass was estimated by creatinine index (CI) and percentage of body fat (%BF) by anthropometry. Seven-point subjective global assessment was also used to evaluate the nutritional status. The NF-κB expression was negatively correlated with CI (r = -0.54, p = 0.0001), serum albumin (r = -0.32, p = 0.02) and %BF (r = -0.61, p = 0.001). Multiple linear regression analysis revealed that NF-κB expression was independently associated with CI (β: -0.8, p = 0.013) and %BF (β: -0.42, p = 0.04). There was no correlation among Nrf2 and anthropometric and biochemical variables. The classical NF-κB activation seems to be associated with poor nutritional status in HD patients; however, the exact underlying mechanisms deserve further studies.

  20. CARMA3 is overexpressed in colon cancer and regulates NF-{kappa}B activity and cyclin D1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Zhifeng; Zhao, Tingting; Wang, Zhenning

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CARMA3 expression is elevated in colon cancers. Black-Right-Pointing-Pointer CARMA3 promotes proliferation and cell cycle progression in colon cancer cells. Black-Right-Pointing-Pointer CARMA3 upregulates cyclinD1 through NF-{kappa}B activation. -- Abstract: CARMA3 was recently reported to be overexpressed in cancers and associated with the malignant behavior of cancer cells. However, the expression of CARMA3 and its biological roles in colon cancer have not been reported. In the present study, we analyzed the expression pattern of CARMA3 in colon cancer tissues and found that CARMA3 was overexpressed in 30.8% of colon cancer specimens. There was a significant association between CARMA3 overexpression andmore » TNM stage (p = 0.0383), lymph node metastasis (p = 0.0091) and Ki67 proliferation index (p = 0.0035). Furthermore, knockdown of CARMA3 expression in HT29 and HCT116 cells with high endogenous expression decreased cell proliferation and cell cycle progression while overexpression of CARMA3 in LoVo cell line promoted cell proliferation and facilitated cell cycle transition. Further analysis showed that CARMA3 knockdown downregulated and its overexpression upregulated cyclin D1 expression and phospho-Rb levels. In addition, we found that CARMA3 depletion inhibited p-I{kappa}B levels and NF-{kappa}B activity and its overexpression increased p-I{kappa}B expression and NF-{kappa}B activity. NF-{kappa}B inhibitor BAY 11-7082 reversed the role of CARMA3 on cyclin D1 upregulation. In conclusion, our study found that CARMA3 is overexpressed in colon cancers and contributes to malignant cell growth by facilitating cell cycle progression through NF-{kappa}B mediated upregulation of cyclin D1.« less

  1. Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-κB pathway in TMPRSS2/ERG fusion gene expressing prostate cancer.

    PubMed

    Shao, Longjiang; Zhou, Zhansong; Cai, Yi; Castro, Patricia; Dakhov, Olga; Shi, Ping; Bai, Yaoxia; Ji, Huixiang; Shen, Wenhao; Wang, Jianghua

    2013-01-01

    The TMPRSS2/ERG (T/E) fusion gene is present in the majority of all prostate cancers (PCa). We have shown previously that NF-kB signaling is highly activated in these T/E fusion expressing cells via phosphorylation of NF-kB p65 Ser536 (p536). We therefore hypothesize that targeting NF-kB signaling may be an efficacious approach for the subgroup of PCas that carry T/E fusions. Celastrol is a well known NF-kB inhibitor, and thus may inhibit T/E fusion expressing PCa cell growth. We therefore evaluated Celastrol's effects in vitro and in vivo in VCaP cells, which express the T/E fusion gene. VCaP cells were treated with different concentrations of Celastrol and growth inhibition and target expression were evaluated. To test its ability to inhibit growth in vivo, 0.5 mg/kg Celastrol was used to treat mice bearing subcutaneous VCaP xenograft tumors. Our results show Celastrol can significantly inhibit the growth of T/E fusion expressing PCa cells both in vitro and in vivo through targeting three critical signaling pathways: AR, ERG and NF-kB in these cells. When mice received 0.5 mg/kg Celastrol for 4 times/week, significant growth inhibition was seen with no obvious toxicity or significant weight loss. Therefore, Celastrol is a promising candidate drug for T/E fusion expressing PCa. Our findings provide a novel strategy for the targeted therapy which may benefit the more than half of PCa patients who have T/E fusion expressing PCas.

  2. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages.

    PubMed

    Salari, Samira; Seibert, Tara; Chen, Yong-Xiang; Hu, Tieqiang; Shi, Chunhua; Zhao, Xiaoling; Cuerrier, Charles M; Raizman, Joshua E; O'Brien, Edward R

    2013-01-01

    Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.

  3. Inverse expression of estrogen receptor-beta and nuclear factor-kappaB in urinary bladder carcinogenesis.

    PubMed

    Kontos, Stylianos; Kominea, Athina; Melachrinou, Maria; Balampani, Eleni; Sotiropoulou-Bonikou, Georgia

    2010-09-01

    To investigate the expression of nuclear factor-kappaB (NF-kappaB) and estrogen receptor-beta (ER-beta) signalling pathways in bladder urothelial carcinoma according to clinicopathological features, in order to elucidate their role during carcinogenesis. Immunohistochemical methodology was carried out on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females) who underwent transurethral resection of bladder neoplasms. Correlations between ER-beta and NF-kappaB, and tumor grade and T-stage were evaluated, along with demographic data, sex and age. A significant decrease in ER-beta expression in the nucleus of bladder cells during loss of cell differentiation (r(s) = -0.61, P-value < 0.001, test of trend P-value = 0.003) and in muscle invasive carcinomas (T2-T4; test of trend P-value < 0.001) was found. p65 Subunit of NF-kappaB was expressed in the nucleus and in the cytoplasm of bladder epithelial cells. A strong positive association between tumor grade and nuclear expression of NF-kappaB was shown. No correlation between NF-kappaB, nuclear or cytoplasmic staining, with T-stage was observed. An inverse correlation between ER-beta and nuclear p65 immunoreactivity was observed (r(s) = -0.45, P-value < 0.001). There was no correlation with demographic data. Our immunohistochemical study suggests the possible inverse regulation of NF-kappaB and ER-beta transcription factor during bladder carcinogenesis. Selective ER-beta agonists and agents, inhibitors of NF-kappaB, might represent a possible new treatment strategy for bladder urothelial tumors.

  4. Amelioration of inflammatory responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats

    PubMed Central

    Kim, Youn Sook; Jung, Ji Yun; Park, Chung A.; Jegal, Kyung Hwan; Ku, Sae Kwang; Kim, Jae Kwang; Lee, Chul Won; Kim, Young Woo; Cho, Il Je; An, Won G.; Kim, Sang Chan

    2018-01-01

    Socheongryong-Tang (SCRT) is a natural medicine prescription that has been mainly used in East Asia for the treatment of inflammatory disorders, including asthma and allergic rhinitis. The present study evaluated the anti-inflammatory effects of SCRT on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in a rat model of carrageenan (CA)-induced paw edema. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and prostaglandin E2 (PGE2) in the culture supernatant were quantified and nitric oxide (NO) production was monitored. In addition, the effect of SCRT on the protein expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was assessed by western blot analysis. Furthermore, the effects of SCRT on acute inflammation in vivo and changes in the histomorphometry and histopathology of paw skin were observed using CA-treated rats. SCRT (1 mg/ml) inhibited the LPS-induced changes in the protein expression of NF-κB, JNK, ERK1/2, iNOS and COX-2, as well as the production of NO, PGE2 and cytokines. In the rat paw edema assay, administration of 1 g/kg of lyophilized powder obtained from the aqueous extracts of SCRT for 3 consecutive days inhibited the CA-induced increases in skin thickness, mast cell degranulation, and infiltration of inflammatory cells in the ventral and dorsal pedis skin within 4 h. These results demonstrated that SCRT exerts its anti-inflammatory activities in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, including PGE2, NO and cytokines, via suppression of the NF-κB and JNK and ERK1/2 signaling pathways. In addition, the data of the CA-induced paw edema indicated an anti-edema effect of SCRT. SCRT (1 g/kg) reduced acute edematous inflammation through inhibition of mast cell degranulation and infiltration of inflammatory cells. Therefore, the present study provided scientific evidence for the anti-inflammatory activities of SCRT as well as the underlying mechanisms. PMID:29436586

  5. Amelioration of inflammatory responses by Socheongryong-Tang, a traditional herbal medicine, in RAW 264.7 cells and rats.

    PubMed

    Park, Sang Mi; Lee, Tae Hoon; Zhao, Rongjie; Kim, Youn Sook; Jung, Ji Yun; Park, Chung A; Jegal, Kyung Hwan; Ku, Sae Kwang; Kim, Jae Kwang; Lee, Chul Won; Kim, Young Woo; Cho, Il Je; An, Won G; Kim, Sang Chan

    2018-05-01

    Socheongryong-Tang (SCRT) is a natural medicine prescription that has been mainly used in East Asia for the treatment of inflammatory disorders, including asthma and allergic rhinitis. The present study evaluated the anti-inflammatory effects of SCRT on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and in a rat model of carrageenan (CA)-induced paw edema. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and prostaglandin E2 (PGE2) in the culture supernatant were quantified and nitric oxide (NO) production was monitored. In addition, the effect of SCRT on the protein expression of nuclear factor-κB (NF-κB), mitogen-activated protein kinases (MAPKs), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) was assessed by western blot analysis. Furthermore, the effects of SCRT on acute inflammation in vivo and changes in the histomorphometry and histopathology of paw skin were observed using CA-treated rats. SCRT (1 mg/ml) inhibited the LPS-induced changes in the protein expression of NF-κB, JNK, ERK1/2, iNOS and COX-2, as well as the production of NO, PGE2 and cytokines. In the rat paw edema assay, administration of 1 g/kg of lyophilized powder obtained from the aqueous extracts of SCRT for 3 consecutive days inhibited the CA-induced increases in skin thickness, mast cell degranulation, and infiltration of inflammatory cells in the ventral and dorsal pedis skin within 4 h. These results demonstrated that SCRT exerts its anti-inflammatory activities in LPS-stimulated RAW 264.7 cells through decreasing the production of inflammatory mediators, including PGE2, NO and cytokines, via suppression of the NF-κB and JNK and ERK1/2 signaling pathways. In addition, the data of the CA-induced paw edema indicated an anti-edema effect of SCRT. SCRT (1 g/kg) reduced acute edematous inflammation through inhibition of mast cell degranulation and infiltration of inflammatory cells. Therefore, the present study provided scientific evidence for the anti-inflammatory activities of SCRT as well as the underlying mechanisms.

  6. Genome-wide expression analysis of soybean NF-Y genes reveals potential function in development and drought response.

    PubMed

    Quach, Truyen N; Nguyen, Hanh T M; Valliyodan, Babu; Joshi, Trupti; Xu, Dong; Nguyen, Henry T

    2015-06-01

    Nuclear factor-Y (NF-Y), a heterotrimeric transcription factor, is composed of NF-YA, NF-YB and NF-YC proteins. In plants, there are usually more than 10 genes for each family and their members have been identified to be key regulators in many developmental and physiological processes controlling gametogenesis, embryogenesis, nodule development, seed development, abscisic acid (ABA) signaling, flowering time, primary root elongation, blue light responses, endoplasmic reticulum (ER) stress response and drought tolerance. Taking the advantages of the recent soybean genome draft and information on functional characterizations of nuclear factor Y (NF-Y) transcription factor family in plants, we identified 21 GmNF-YA, 32 GmNF-YB, and 15 GmNF-YC genes in the soybean (Glycine max) genome. Phylogenetic analyses show that soybean's proteins share strong homology to Arabidopsis and many of them are closely related to functionally characterized NF-Y in plants. Expression analysis in various tissues of flower, leaf, root, seeds of different developmental stages, root hairs under rhizobium inoculation, and drought-treated roots and leaves revealed that certain groups of soybean NF-Y are likely involved in specific developmental and stress responses. This study provides extensive evaluation of the soybean NF-Y family and is particularly useful for further functional characterization of GmNF-Y proteins in seed development, nodulation and drought adaptation of soybean.

  7. Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice.

    PubMed

    Zhang, Qiong; Wang, Liangrong; Chen, Baihui; Zhuo, Qian; Bao, Caiying; Lin, Lina

    2017-10-01

    Propofol, one of the most commonly used intravenous anesthetic agents, has been reported to have anti-inflammatory property. However, the anti-allergic inflammation effect of propofol and its underlying molecular mechanisms have not been elucidated. In the present study, we aim to investigate the roles of NF-kB activation in propofol anti-asthma effect on OVA-induced allergic airway inflammation in mice. In a standard experimental asthma model, Balb/c mice were sensitized with ovalbumin, treated with propofol (50,100,150mg/kg) or a vehicle control 1h before OVA challenge. Blood samples, bronchoalveolar lavage fluid (BALF) and lung tissues were harvested after measurement of airway hyperresponsiveness. Results revealed that propofol not only significantly inhibit airway hyperresponsiveness, but also inhibited the production of Th2 cytokines, NO, Ova-specific IgE and eotaxin. Histological studies indicated that propofol significantly attenuated OVA-induced inflammatory cell infiltration in the peribronchial areas and mucus hypersecretion. Meanwhile, our results indicated that propofol was found to inhibit NF-kB activation in OVA-Induced mice. Furthermore, propofol significantly reduced the TNF-α-induced NF-kB activation in A549 cells. In conclusion, our study suggested that propofol effectively reduced allergic airway inflammation by inhibiting NF-kB activation and could thus be used as a therapy for allergic asthma. Copyright © 2017. Published by Elsevier B.V.

  8. Double-Stranded RNA-Binding Protein Regulates Vascular Endothelial Growth Factor mRNA Stability, Translation, and Breast Cancer Angiogenesis▿

    PubMed Central

    Vumbaca, Frank; Phoenix, Kathryn N.; Rodriguez-Pinto, Daniel; Han, David K.; Claffey, Kevin P.

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key angiogenic factor expressed under restricted nutrient and oxygen conditions in most solid tumors. The expression of VEGF under hypoxic conditions requires transcription through activated hypoxia-inducible factor 1 (HIF-1), increased mRNA stability, and facilitated translation. This study identified double-stranded RNA-binding protein 76/NF90 (DRBP76/NF90), a specific isoform of the DRBP family, as a VEGF mRNA-binding protein which plays a key role in VEGF mRNA stability and protein synthesis under hypoxia. The DRBP76/NF90 protein binds to a human VEGF 3′ untranslated mRNA stability element. RNA interference targeting the DRBP76/NF90 isoform limited hypoxia-inducible VEGF mRNA and protein expression with no change in HIF-1-dependent transcriptional activity. Stable repression of DRBP76/NF90 in MDA-MB-435 breast cancer cells demonstrated reduced polysome-associated VEGF mRNA levels under hypoxic conditions and reduced mRNA stability. Transient overexpression of the DRBP76/NF90 protein increased both VEGF mRNA and protein levels synthesized under normoxic and hypoxic conditions. Cells with stable repression of the DRBP76/NF90 isoform showed reduced tumorigenic and angiogenic potential in an orthotopic breast tumor model. These data demonstrate that the DRBP76/NF90 isoform facilitates VEGF expression by promoting VEGF mRNA loading onto polysomes and translation under hypoxic conditions, thus promoting breast cancer growth and angiogenesis in vivo. PMID:18039850

  9. Correction of Murine Sickle Cell Disease Using γ-Globin Lentiviral Vectors to Mediate High-level Expression of Fetal Hemoglobin

    PubMed Central

    Pestina, Tamara I; Hargrove, Phillip W; Jay, Dennis; Gray, John T; Boyd, Kelli M; Persons, Derek A

    2008-01-01

    Increased levels of red cell fetal hemogloblin, whether due to hereditary persistence of expression or from induction with hydroxyurea therapy, effectively ameliorate sickle cell disease (SCD). Therefore, we developed erythroid-specific, γ-globin lentiviral vectors for hematopoietic stem cell (HSC)-targeted gene therapy with the goal of permanently increasing fetal hemoglobin (HbF) production in sickle red cells. We evaluated two different γ-globin lentiviral vectors for therapeutic efficacy in the BERK sickle cell mouse model. The first vector, V5, contained the γ-globin gene driven by 3.1 kb of β-globin regulatory sequences and a 130-bp β-globin promoter. The second vector, V5m3, was identical except that the γ-globin 3′-untranslated region (3′-UTR) was replaced with the β-globin 3′-UTR. Adult erythroid cells have β-globin mRNA 3′-UTR-binding proteins that enhance β-globin mRNA stability and we postulated this design might enhance γ-globin expression. Stem cell gene transfer was efficient and nearly all red cells in transplanted mice expressed human γ-globin. Both vectors demonstrated efficacy in disease correction, with the V5m3 vector producing a higher level of γ-globin mRNA which was associated with high-level correction of anemia and secondary organ pathology. These data support the rationale for a gene therapy approach to SCD by permanently enhancing HbF using a γ-globin lentiviral vector. PMID:19050697

  10. Effects of chronic scopolamine treatment on cognitive impairment and neurofilament expression in the mouse hippocampus

    PubMed Central

    Lee, Jae-Chul; Park, Joon Ha; Ahn, Ji Hyeon; Park, Jinseu; Kim, In Hye; Cho, Jeong Hwi; Shin, Bich Na; Lee, Tae-Kyeong; Kim, Hyunjung; Song, Minah; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kim, Young-Myeong; Won, Moo-Ho; Choi, Soo Young

    2018-01-01

    Neurofilaments (NFs) including neurofilament-200 kDa (NF-H), neurofilament-165 kDa (NF-M) and neurofilament-68 kDa (NF-L) are major protein constituents of the brain, and serve important roles in the regulation of axonal transport. NF alteration is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. In the present study, cognitive impairments were investigated, via assessments using the Morris water maze and passive avoidance tests, in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. SCO-induced cognitive impairments were significantly observed 1 week following the SCO treatment, and these cognitive deficits were maintained for 4 weeks. However, the NF immunoreactivities and levels were altered differently according to the hippocampal subregion following SCO treatment. NF-H immunoreactivity and levels were markedly altered in all hippocampal subregions, and were significantly increased 1 week following the SCO treatment; thereafter, the immunoreactivity and levels significantly decreased with time. NF-M immunoreactivity and levels gradually decreased in the hippocampus and were significantly decreased 4 weeks following SCO treatment. NF-L immunoreactivity and levels gradually decreased in the hippocampus, and were significantly decreased 2 and 4 weeks following SCO treatment. In conclusion, the results of the present study demonstrated that chronic systemic treatment with SCO induced cognitive impairment from 1 week following SCO treatment, and NF expression was diversely altered according to the hippocampal subregion from 1 week following SCO treatment. These results suggest that SCO-induced changes in NF expression may be associated with cognitive impairment. PMID:29257227

  11. Myeloid-derived NF-κB negative regulation of PU.1 and cEBPβ-driven pro-inflammatory cytokine production restrains LPS-induced Shock

    PubMed Central

    Vanoni, Simone; Tsai, Yi Ting; Waddell, Amanda; Waggoner, Lisa; Klarquist, Jared; Divanovic, Senad; Hoebe, Kasper; Steinbrecher, Kris A.; Hogan, Simon P.

    2017-01-01

    Sepsis is a life-threatening event predominantly caused by gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell (DC) activation that leads to excessive pro-inflammatory cytokine interleukin (IL)-1β, IL-6, and Tumor necrosis factor (TNF)-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting Nuclear Factor kappa Beta (NF-κB) signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive. In this study, we demonstrate increased mortality in mice lacking p65 in the myeloid lineage (p65Δmye) compared to wild type (WT) mice upon ultra-pure LPS (U-LPS) challenge. We show that increased susceptibility to Lipopolysaccharide (LPS)-induced shock was associated with elevated serum level of IL-1β and IL-6. Mechanistic analyses revealed that LPS-induced pro-inflammatory cytokine production was ameliorated in p65-deficient bone marrow–derived macrophages (BMDMs); however, p65-deficient “activated” peritoneal macrophages (MΦs) exhibited elevated IL-1β and IL-6. We show that the elevated pro-inflammatory cytokine secretion was due in part to increased accumulation of IL-1β mRNA and protein in activated inflammatory MΦs. The increased IL-1β was linked with heightened binding of PU.1 and CCAAT/Enhancer Binding Protein Beta (cEBPβ to Il1b and Il6 promoters in activated inflammatory MΦs. Our data provides insight into a role for NF-κB in the negative regulation of pro-inflammatory cytokines in myeloid cells. PMID:27932520

  12. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    PubMed

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p < .05) and ameliorated the contrast-induced acute kidney injury (p < .05) and significantly reduced Toll-like receptor 4 (TLR4), Myeloid differentiation factor 88 (Myd88), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression and relative mRNA expression levels (p < .05) and significantly decreased expression levels of downstream inflammatory factors (p < .05). Different atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  13. The nuclear factor kappa B (NF-κB) activation is required for phagocytosis of staphylococcus aureus by RAW 264.7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Fei, E-mail: zhufei@zju.edu.cn; Yue, Wanfu; Wang, Yongxia

    Nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor which controls the expression of various genes involved in immune responses. However, it is not clear whether NF-κB activation is critical for phagocytosis when Staphylococcus aureus is the pathogen. Using oligonucleotide microarrays, we investigated whether NF-κB cascade genes are altered in a mouse leukemic monocyte macrophage cell line (RAW 264.7) when the cells were stimulated to activate a host innate immune response against live S. aureus or heat-inactivated S. aureus (HISA). NF-κB cascade genes such as Nfκb1, Nfκbiz, Nfκbie, Rel, Traf1 and Tnfaip3 were up-regulated by all treatments at onemore » hour after incubation. NF-κB play an important role in activating phagocytosis in RAW 264.7 cells infected with S. aureus. Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus and decreased the expression of NFκB1, IL1α, IL1β and TLR2 in this cell line. Our results demonstrate that S. aureus may activate the NF-κB pathway and that NF-κB activation is required for phagocytosis of S. aureus by macrophages. - Highlights: • NF-κB cascade genes such as Nfκb1 and Traf1 were up-regulated by heat-inactivated S. aureus. • Inhibition of NF-κB significantly blocked phagocytosis of fluorescently labeled S. aureus. • NF-κB activation is required for phagocytosis of S. aureus by macrophages.« less

  14. Acemannan increases NF-κB/DNA binding and IL-6/-8 expression by selectively binding Toll-like receptor-5 in human gingival fibroblasts.

    PubMed

    Thunyakitpisal, Pasutha; Ruangpornvisuti, Vithaya; Kengkwasing, Pattrawadee; Chokboribal, Jaroenporn; Sangvanich, Polkit

    2017-04-01

    Acemannan, an acetylated polymannose from Aloe vera, has immunomodulatory effects. We investigated whether acemannan induces IL-6 and -8 expression and NF-κB/DNA binding in human gingival fibroblasts. IL-6 and -8 expression levels were assessed via RT-PCR and ELISA. The NF-κB p50/p65-DNA binding was determined. The structures of acemannan mono-pentamers and Toll-like receptor 5 (TLR5) were simulated. The binding energies between acemannan and TLR5 were identified. We found that acemannan significantly stimulated IL-6/-8 expression at both the mRNA and protein level and significantly increased p50/DNA binding. Preincubation with an anti-TLR5 neutralizing antibody abolished acemannan-induced IL-6/-8 expression and p50/DNA binding, and co-incubation of acemannan with Bay11-7082, a specific NF- κB inhibitor, abolished IL-6/-8 expression. The computer modeling indicated that monomeric/dimeric single stranded acemannan molecules interacted with the TLR5 flagellin recognition sites with a high binding affinity. We conclude that acemannan induces IL-6/-8 expression, and p50/DNA binding in gingival fibroblasts, at least partly, via a TLR5/NF-κB-dependent signaling pathway. Furthermore, acemannan selectively binds with TLR5 ectodomain flagellin recognition sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Sialoglycoproteins prepared from the eggs of Carassius auratus prevent bone loss by inhibiting the NF-κB pathway in ovariectomized rats.

    PubMed

    Xia, Guanghua; Wang, Jingfeng; Sun, Shuhong; Zhao, Yanlei; Wang, Yiming; Yu, Zhe; Wang, Shanshan; Xue, Changhu

    2016-02-01

    In this study, we investigated the improvement of osteoporosis by sialoglycoproteins isolated from the eggs of Carassius auratus (Ca-SGP) in ovariectomized rats. Ca-SGP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that Ca-SGP treatment remarkably prevented the reduction of bone mass, improved cancellous bone structure and biochemical properties. Ca-SGP also significantly decreased the serum contents of TRAP, Cath-K, MMP-9, DPD, CTX-1, Ca, and P. Mechanism investigation revealed that Ca-SGP significantly increased the OPG/RANKL ratio in mRNA expression, protein expression and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of NFATc1 and TRAF6, diminishing the mRNA expression and phosphorylation of NF-κB p65, three key transcription factors in NF-κB pathways. These results suggest that Ca-SGP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.

  16. Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats.

    PubMed

    Zahran, Walid E; Elsonbaty, Sawsan M; Moawed, Fatma S M

    2017-08-01

    Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. A retroviral mutagenesis screen reveals strong cooperation between Bcl11a overexpression and loss of the Nf1 tumor suppressor gene

    PubMed Central

    Yin, Bin; Delwel, Ruud; Valk, Peter J.; Wallace, Margaret R.; Loh, Mignon L.; Shannon, Kevin M.

    2009-01-01

    NF1 inactivation occurs in specific human cancers, including juvenile myelomonocytic leukemia, an aggressive myeloproliferative disorder of childhood. However, evidence suggests that Nf1 loss alone does not cause leukemia. We therefore hypothesized that inactivation of the Nf1 tumor suppressor gene requires cooperating mutations to cause acute leukemia. To search for candidate genes that cooperate with Nf1 deficiency in leukemogenesis, we performed a forward genetic screen using retroviral insertion mutagenesis in Nf1 mutant mice. We identified 43 common proviral insertion sites that contain candidate genes involved in leukemogenesis. One of these genes, Bcl11a, confers a growth advantage in cultured Nf1 mutant hematopoietic cells and causes early onset of leukemia of either myeloid or lymphoid lineage in mice when expressed in Nf1-deficient bone marrow. Bcl11a-expressing cells display compromised p21Cip1 induction, suggesting that Bcl11a's oncogenic effects are mediated, in part, through suppression of p21Cip1. Importantly, Bcl11a is expressed in human chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia samples. A subset of AML patients, who had poor outcomes, of 16 clusters, displayed high levels of BCL11A in leukemic cells. These findings suggest that deregulated Bcl11a cooperates with Nf1 in leukemogenesis, and a therapeutic strategy targeting the BCL11A pathway may prove beneficial in the treatment of leukemia. PMID:18948576

  18. HTLV-1 Tax upregulates early growth response protein 1 through nuclear factor-κB signaling

    PubMed Central

    Han, Jingxian; Liu, Xihong; Lv, Zhuangwei; Li, Huanhuan; Yuan, Lixiang; Li, Xiangping; Sun, Shuming; Wang, Hui; Huang, Xinxiang

    2017-01-01

    Human T cell leukemia virus type 1 (HTLV-1) is a complex retrovirus that causes adult T cell leukemia (ATL) in susceptible individuals. The HTLV-1-encoded oncoprotein Tax induces persistent activation of the nuclear factor-κB (NF-κB) pathway. Early growth response protein 1 (EGR1) is overexpressed in HTLV-1-infected T cell lines and ATL cells. Here, we showed that both Tax expression and HTLV-1 infection promoted EGR1 overexpression. Loss of the NF-κB binding site in the EGR1 promotor or inhibition of NF-κB activation reduced Tax-induced EGR1 upregulation. Tax mutants unable to activate NF-κB induced only slight EGR1 upregulation as compared with wild-type Tax, confirming NF-κB pathway involvement in EGR1 regulation. Tax also directly interacted with the EGR1 protein and increased endogenous EGR1 stability. Elevated EGR1 in turn promoted p65 nuclear translocation and increased NF-κB activation. These results demonstrate a positive feedback loop between EGR1 expression and NF-κB activation in HTLV-1-infected and Tax-expressing cells. Both NF-κB activation and Tax-induced EGR1 stability upregulated EGR1, which in turn enhanced constitutive NF-κB activation and facilitated ATL progression in HTLV-1-infected cells. These findings suggest EGR1 may be an effective anti-ATL therapeutic target. PMID:28881635

  19. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways

    PubMed Central

    Gong, Li-rong; Dong, Shu-an; Cao, Xin-shun; Wu, Li-li; Wu, Li-na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies. PMID:26524181

  20. Electroacupuncture Ameliorates Acute Renal Injury in Lipopolysaccharide-Stimulated Rabbits via Induction of HO-1 through the PI3K/Akt/Nrf2 Pathways.

    PubMed

    Yu, Jian-Bo; Shi, Jia; Zhang, Yuan; Gong, Li-Rong; Dong, Shu-An; Cao, Xin-Shun; Wu, Li-Li; Wu, Li-Na

    2015-01-01

    Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.

Top