Science.gov

Sample records for ngawha geothermal system

  1. The Occurrence of Pyrrhotite in the Ngawha Geothermal System, New Zealand

    SciTech Connect

    Cox, M.E.; Browne, P.R.L.

    1995-01-01

    The Ngawha geothermal system is low in all sulfide minerals, but in comparison to systems in the Taupo Volcanic Zone it contains more widely distributed pyrrhotite which is currently depositing, mainly in fractures. This reflects the high proportion of vapor in the Ngawha system. Pyrrhotite is most common in the upper part of the reservoir and lower part of the aquitard. The Ngawha pyrrhotite is of monoclinic and monoclinic + hexagonal structure.

  2. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  3. Microbial mercury methylation in the Ngawha hot springs and the abandoned Puhipuhi mine, New Zealand

    NASA Astrophysics Data System (ADS)

    Gionfriddo, C. M.; Ogorek, J. M.; Thompson, C. D.; Power, J.; Krabbenhoft, D. P.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Hot springs and fumaroles release significant quantities of aqueous and gaseous mercury into the environment. Yet few studies have focused on the biogeochemical cycling of mercury in geothermal settings. In this study, we investigated the abundance, speciation, and partitioning of mercury in geothermal waters and sediments in the Ngawha geothermal field and Puhipuhi region of New Zealand. The Ngawha geothermal field contains over 20 hot springs with variable chemistry (pH 2.9 - 7.1, ORP 15.7 to 249.1 mV, 22-40.5°C), from which approximately 530 kg of mercury is released annually from deep geological sources, most of which remains in the local surficial waters and sediments. Puhipuhi is the site of an historic mercury mining operation located about 22 miles southeast of Ngawha. The mercury-bearing geological deposits at Ngawha and Puhipuhi were formed over the same period and are connected to the young basalt flows of the region. Puhipuhi no longer hosts active hot springs, but is transected by a stream that varies in chemistry (pH 5.1-7.2, ORP -3.8-115.3 mV, ~22°C). Total- and methylmercury concentrations were measured using ICP-MS and CVAFS. Preliminary analyses of dissolved total- and methylmercury levels across the hot springs ranged from 5-10,000 ng/L and 0.6-23.5 ng/L, respectively, indicating a wide range of environmental conditions exist and may support a diverse array of microbial communities. Due to their high mercury content, geothermal settings may hold clues about the evolution of microbial mercury resistance (detoxification response to environmental Hg), as the ancestral mer operon evolved in thermophilic bacteria such as Thermus thermophilus and Methylacidophilum infernorum. Thus, the Ngawha hot springs provide an opportunity to investigate the evolution of microbial responses to mercury. Adjacent sites often display radically different chemical traits, with implications for changes in microbial community structure and genetic responses to mercury

  4. Enhanced geothermal systems

    SciTech Connect

    McLarty, L.; Grabowski, P.

    1998-07-01

    A vast amount of geothermal energy is stored in the upper portion of the earth's crust; this energy is accessible with current drilling technology. The US Geological Survey has estimated that in the US, the heat energy stored in the upper 10 kilometers of the earth's crust is over 33 {times} 10{sup 24} Joules. Only a small fraction of this energy could conceivably be extracted. However, just one tenth of one percent of this energy is sufficient to provide the US with all its current level of non-transportation energy needs for over 500 years. Current technology is being used widely to extract geothermal energy in areas where subterranean water contacted hot rock formations, became heated, and was trapped by an impermeable layer in the earth's crust, forming a geothermal hydrothermal reservoir. The water serves as a medium to transport the heat to the surface through a conventional well similar to an oil well. Unfortunately, hydrothermal reservoirs are not widespread and represent only a minuscule portion of the geothermal energy that is accessible with current technology. Scientists and engineers in the US, Europe, Japan, and Australia, are developing systems that extract heat from the earth where there is insufficient permeability or water in the rock formation to transport the heat to the surface. Such systems are referred to as Enhanced Geothermal Systems.

  5. National Geothermal Data System

    NASA Astrophysics Data System (ADS)

    Anderson, A. F.; Cuyler, D.; Snyder, W. S.; Allison, M. L.; Blackwell, D. D.; Williams, C. F.

    2011-12-01

    The goal of the U.S. Department of Energy's National Geothermal Data System is to design, build, implement, deploy and populate a national, sustainable, distributed, interoperable network of data and service (application) providers. These providers will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral component of NGDS. As a result the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. Five separate NGDS projects provide the data support, acquisition, and access to cyber infrastructure necessary to reduce cost and risk of the nation's geothermal energy strategy and US DOE program goals focused on the production and utilization of geothermal energy. The U.S DOE Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program is developing the knowledge and data foundation necessary for discovery and development of large-scale energy production while the Buildings Technology Program is focused on other practical applications such as direct use and residential/commercial ground source heat pumps. The NGDS provides expanded reference and resource data for research and development activities (a subset of the US DOE goals) and includes data from across all fifty states and the nation's leading academic geothermal centers. Thus, the project incorporates not only high-temperature potential but also moderate and low-temperature locations incorporating US DOE's goal of adding more geothermal electricity to the grid. The program, through its development of data integration cyberinfrastructure, will help lead to innovative exploration technologies through increased data availability on geothermal energy capacity. Finally

  6. Geothermal Systems for School.

    ERIC Educational Resources Information Center

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  7. OIT geothermal system improvements

    SciTech Connect

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

  8. National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  9. Engineered Geothermal System Demonstration Project

    SciTech Connect

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  10. Computerized international geothermal information systems

    SciTech Connect

    Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

    1980-03-01

    The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

  11. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  12. Geotherm: the U.S. geological survey geothermal information system

    NASA Astrophysics Data System (ADS)

    Bliss, J. D.; Rapport, A.

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request.

  13. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  14. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    indications that geothermal system flow essentially obeys the same ';universal' in situ flow rules as does clastic rock: Well-log data from Los Azufres, MX, show power-law scaling S(k) ~ 1/k^β, 1.2 < β < 1.4, for spatial frequency range 2cycles/km to 0.5cycle/m; higher β-values are likely due to the relatively fresh nature of geothermal systems; Well-core at Bulalo (PH) and Ohaaki (NZ) show statistically significant spatial correlation, δφ ~ δlog(κ) Well productivity at Ohaaki/Ngawha (NZ) and in geothermal systems elsewhere are lognormally distributed; K/Th/U abundances lognormally distributed in Los Azufres well-logs We therefore caution that small-scale evidence for in situ flow fabric in geothermal systems that is interpreted in terms of ';pore connectivity' may in fact not reflect how small-scale chemical processes are integrated into a large-scale geothermal flow structure. Rather such small scale studies should (perhaps) be considered in term of the above flow rules. These flow rules are easily incorporated into standard flow simulation codes, in particular the OPM = Open Porous Media open-source industry-standard flow code. Geochemical transport data relevant to geothermal systems can thus be expected to be well modeled by OPM or equivalent (e.g., INL/LANL) codes.

  15. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  16. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  17. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  18. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  19. Enhanced Geothermal Systems

    SciTech Connect

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  20. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  1. Geothermal systems of northern Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Taylor, Bruce Edward

    1974-01-01

    Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to, boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252?C, although most are below 190?C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential, for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and. analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64?C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. We suggest that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

  2. Geothermal pumping systems

    SciTech Connect

    Hanold, R.J.

    1984-10-18

    After successful field testing of a prototype pressurized lubrication system designed to prevent brine intrusion and loss of lubricating oil from the motor and protector sections of electric submersible pumps, a second-generation lubrication system has been designed, fabricated, and laboratory tested. Based on a sensitive downhole pressure regulator, this system is not depth limited and it accurately controls the differential pressure between the motor oil and the external brine. The first production lengths of metal sheathed power cable have been fabricated by Halpen Engineering and delivered to REDA for testing and evaluation. Laboratory tests performed on prototype metal sheathed cable samples have demonstrated the durability of this power cable design. The East Mesa Pump Test Facility is currently being activated for high-horsepower pumping system tests that are scheduled to commence during the first quarter of FY 85. A 300-horsepower REDA pumping system equipped with a pressure regulator controlled lubrication system and a metal sheathed power cable is being fabricated for testing in this unique facility.

  3. Neutron imaging for geothermal energy systems

    SciTech Connect

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  4. Reno Industrial Park geothermal district heating system

    SciTech Connect

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants have been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.

  5. Small geothermal electric systems for remote powering

    SciTech Connect

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  6. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  7. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  8. Town of Pagosa Springs geothermal heating system

    SciTech Connect

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  9. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  10. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  11. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  12. What is the National Geothermal Data System (NGDS)? Fact Sheet

    SciTech Connect

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-03

    Overview of the National Geothermal Data System, a distributed, interoperable network of data repositories and state geological service providers from across the U.S. and the nation's leading academic geothermal centers.

  13. Induced seismicity associated with enhanced geothermal system

    SciTech Connect

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  14. Convective heat transport in geothermal systems

    SciTech Connect

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  15. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  16. Geothermal pump dual cycle system

    SciTech Connect

    Matthews, H.B.

    1982-05-11

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a primary turbine-motor for driving a primary electrical generator at the earth's surface, the solute-bearing water being returned by a reinjection well. A surface-located auxiliary turbine-pump combination with both turbine and brine pump elements acting in series with down-well counterparts to furnish the pressure necessary for reinjection of the brine.

  17. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  18. The first geothermal power generation project by Enhanced Geothermal System (EGS) in Korea

    NASA Astrophysics Data System (ADS)

    Jong Lee, Tae; Song, Yoonho; Yoon, Woon-Sang

    2013-04-01

    Though Korea does not have high-enthalpy geothermal resources from volcanic sources, it still has huge amount of geothermal resources at depth; i.e. technical geothermal potential of 19.6 GWe within 6.5 km deep by enhanced geothermal system (EGS) technologies. The first proof of concept project for geothermal power generation by EGS has started in Pohang, Korea in Dec. 2010. The project aims to develop a pilot geothermal power plant of 1 MW or more of installed capacity from a doublet EGS system in 5 years. This work summarizes our two years efforts including geological/geophysical surveys, site selection, civil engineering, permission for drilling, setting up the drill rig, and setting up the micro-seismic network and monitoring. At the end of Dec. 2012, drilling reached down to 2,250 m deep. Results of borehole investigation will be also discussed about.

  19. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  20. Utah State Prison Geothermal System

    SciTech Connect

    Mink, L.R.

    1984-07-01

    A geothermal space heating project was recently completed at the Utah State Prison complex at Crystal Hot Springs located near Murray, Utah. The project was initiated in 1978 as a joint U.S. Department of Energy and State of Utah project. Geologic and geophysical investigations initiated in 1979 consist of surface geologic mapping and aeromagnetic and detailed gravity surveys. This exploration program along with several shallow thermal-gradient holes provided the structural details for a subsequent exploration drilling program. The exploration drilling program involved deepening an existing well (SF-1) to 500 ft (150 m) and drilling a new hole (USP/TH-1) to 1000 ft (300 m) to test the extent of the thermal anomaly. Well SF-1 intersected 175)2)F(79)2)C) temperatures in a low permeable quartzite, and well USP/TH-1 intersected highly fractured quartzite in the lower section of the well. A temperature reversal was noted in USP/TH-1 below 700 ft (213 m) with a maximum temperature of 175)2)F(79)2)C) occurring in the zone from 300 to 700 ft (90 to 215 m). Flow testing of USP/TH-1 indicated the well would flow at 1000 gpm with a sustained flow of 400 gpm at a 3.5 psi drawdown over the heating season. Testing also indicated interference with other nearby wells and thermal springs. Fluid production for space heating of the prison facilities took place during the winter of 1983-84. This production will give more data to refine the calculations of reservoir producibility and provide information on the economics of utilizing geothermal fluids for space heating.

  1. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  2. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  3. Enthalpy restoration in geothermal energy processing system

    DOEpatents

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  4. AASG State Geothermal Data Repository for the National Geothermal Data System.

    SciTech Connect

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  5. The Radiator-Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Marsh, B. D.; Geiser, P.

    2015-12-01

    Standard Enhanced Geothermal Systems (EGS) have repeatedly been hobbled by the inability of rock to conductively transfer heat at rates sufficient to re-supply heat extracted convectively via artificially made fracture systems. At the root of this imbalance is the basic magnitude of thermal diffusivity for most rocks, which severely hampers heat flow once the cooled halos about fractures reach ~0.1 m or greater. This inefficiency is exacerbated by the standard EGS design of mainly horizontally constructed fracture systems with inflow and outflow access at the margins of the fracture network. We introduced an alternative system whereby the heat exchanger mimics a conventional radiator in an internal combustion engine, which we call a Radiator-EGS (i.e., RAD-EGS). The heat exchanger is built vertically with cool water entering the base and hot water extracted at the top. The RAD-EGS itself consists of a family of vertical vanes produced through sequential horizontal drilling and permeability stimulation through propellant fracking. The manufactured fracture zones share the orientation of the natural transmissive fracture system. As below about 700 m, S1 is vertical and the average strike of transmissive fractures parallels SHmax, creating vertical fractures that include S1 and SHmax requires drilling stacked laterals parallel to SHmax. The RAD-EGS is also based on the observation that the longevity of natural hydrothermal systems depends on thermal recharge through heat convection but not heat conduction. In this paper, we present numerical simulations that examine the effects of the depths of the injector and extraction wells, vane size, coolant flow rate, the natural crustal geothermal gradient, and natural regional background flow on geothermal energy extraction.

  6. Choosing a Geothermal as an HVAC System.

    ERIC Educational Resources Information Center

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  7. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  8. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275°C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  9. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  10. Ground Energy Balance For Shallow Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Bayer, P.; Rivera, J.

    2015-12-01

    Vertical borehole heat exchangers (BHE) represent the most common applications by far in the field of shallow geothermal energy. They are typically operated for decades for energy extraction from the top 400 m of the subsurface. During this lifetime, thermal anomalies are generated in the ground and surface-near aquifers. These anomalies often grow over the years and compromise the overall performance of the geothermal system. As a basis for prediction and control of the developing energy imbalance in the ground, the focus is often set on the ground temperatures. This is reflected, for instance, in regulative temperature thresholds. As an alternative to temperature, we examine the temporal and spatial variability of heat fluxes and power sources during geothermal heat pump operation. The underlying idea is that knowledge of the primary heat sources is fundamental for the control of ground temperature evolution. For analysis of heat fluxes, an analytical framework for BHE simulation based on Kelvin's line source is re-formulated. This is applied to a synthetic study and for modelling a long-term application in the field. Our results show that during early operation phase, energy is extracted mainly from the underground. Local depletion at the borehole enhances the vertical fluxes with the relative contribution from the bottom reaching a limit of 24 % of the total power demand. The relative contribution from the ground surface becomes dominant for Fourier numbers larger than 0.13. For the full life cycle, vertical heat flux from the ground surface dominates the basal heat flux towards the BHE and it provides about two thirds of the demanded power. Finally, we reveal that the time for ground energy recovery after BHE shutdown may be longer than what is expected from simulated temperature trends.

  11. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  12. Combined cycle power unit with a binary system based on waste geothermal brine at Mutnovsk geothermal power plant

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Nikol'skii, A. I.; Semenov, V. N.

    2016-06-01

    The Russian geothermal power systems developed in the last few decades outperform their counterparts around the world in many respects. However, all Russian geothermal power stations employ steam as the geothermal fluid and discard the accompanying geothermal brine. In reality, the power of the existing Russian geothermal power stations may be increased without drilling more wells, if the waste brine is employed in combined cycle systems with steam and binary turbine units. For the example of the 50 MW Mutnovsk geothermal power plant, the optimal combined cycle power unit based on the waste geothermal brine is considered. It is of great interest to determine how the thermodynamic parameters of the secondary steam in the expansion unit and the pressure in the condenser affect the performance of the equipment in the combined cycle power unit at Mutnovsk geothermal power plant. For the utilization of the waste geothermal brine at Mutnovsk geothermal power plant, the optimal air temperature in the condensers of the combined cycle power unit is +5°C. The use of secondary steam obtained by flashing of the geothermal brine at Mutnovsk geothermal power plant 1 at a pressure of 0.2 MPa permits the generation of up to 8 MW of electric power in steam turbines and additional power of 5 MW in the turbines of the binary cycle.

  13. Quantitative Risk Assessment for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.; McKenna, S. A.; Hadgu, T.; Kalinina, E.

    2011-12-01

    This study uses a quantitative risk-assessment approach to place the uncertainty associated with enhanced geothermal systems (EGS) development into meaningful context and to identify points of attack that can reduce risk the most. Using the integrated geothermal assessment tool, GT-Mod, we calculate the complimentary cumulative distribution function of the levelized cost of electricity (LCOE) that results from uncertainty in a variety of geologic and economic input parameter values. EGS is a developing technology that taps deep (2-10km) geologic heat sources for energy production by "enhancing" non-permeable hot rock through hydraulic stimulation. Despite the promise of EGS, uncertainties in predicting the physical end economic performance of a site has hindered its development. To address this, we apply a quantitative risk-assessment approach that calculates risk as the sum of the consequence, C, multiplied by the range of the probability, ΔP, over all estimations of a given exceedance probability, n, over time, t. The consequence here is defined as the deviation from the best estimate LCOE, which is calculated using the 'best-guess' input parameter values. The analysis assumes a realistic but fictitious EGS site with uncertainties in the exploration success rate, the sub-surface thermal gradient, the reservoir fracture pattern, and the power plant performance. Uncertainty in the exploration, construction, O&M, and drilling costs are also included. The depth to the resource is calculated from the thermal gradient and a target resource temperature of 225 °C. Thermal performance is simulated using the Gringarten analytical solution. The mass flow rate is set to produce 30 MWe of power for the given conditions and is adjusted over time to maintain that rate over the plant lifetime of 30 years. Simulations are conducted using GT-Mod, which dynamically links the physical systems of a geothermal site to simulate, as an integrated, multi-system component, the

  14. RiverHeath: Neighborhood Loop Geothermal Exchange System

    SciTech Connect

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  15. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  16. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  17. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  18. Evaluation of Geothermal Heat Pump Systems under Various Conditions

    NASA Astrophysics Data System (ADS)

    Lee, S.; Bae, G.; Lee, K.

    2006-12-01

    Experimental and numerical test were accomplished to evaluate the relations between the geothermal system and the hydrogeological condition. Sand tank experiment was designed. Combinations of different gradients and temperature gradients were applied for testing the real-time monitoring performance. Numerical modeling results were compared with the experimental data. Water injection-system imitating open- and closed-loop geothermal heat pumps were applied to estimate the change of the distribution of ambient groundwater temperature. The experimental results of different settings were used to estimate the effects of shallow depth geothermal energy utilization on the groundwater system.

  19. Geology of the Rotorua geothermal system

    SciTech Connect

    Wood, C.P. )

    1992-04-01

    This paper discusses the Rotorua geothermal system located in the south part of Rotorua Caldera, which collapsed during and after the eruption of Mamaku Ignimbrite some 140 ka ago. Drillholes provide geological and hydrological information to 300 m depth. The Mamaku Ignimbrite aquifer has been drilled in the east and south of the field where it contains fluid at or near boiling point. The Ignimbrite drops from south to north across exposed and buried caldera collapse scarps. Rotorua City domes comprise a buried N-S ridge rising at either end to form north and south domes; both contain mostly sub-boiling water up to 190{degrees} C which flows laterally through the outer 40 m of permeably rhyolite as indicated by temperature data. The Fenton Park aquifer comprises sands and gravels in the shallow sedimentary sequence which contain hot water derived possibly from Whakarewarewa, the south dome or the Rotoatamaheke Fault.

  20. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  1. Valles Caldera geothermal systems, New Mexico, U.S.A.

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Grigsby, Charles O.

    1982-03-01

    Valles Caldera is part of a Quaternary silicic volcano in northern New Mexico that possesses enormous geothermal potential. The caldera has formed at the intersection of the volcanically active Jemez lineament and the tectonically active Rio Grande rift. Volcanic rocks of the Jemez Mountains overlie Paleozoic—Mesozoic sediments, and Precambrian granitic basement. Although the regional heat flow along the Rio Grande rift is ~2.7 HFU , convective heat flow within the caldera exceeds 10 HFU. A moderately saline hotwater geothermal system ( T > 260° C, Cl ⋍ 3000 mg/ l) has been tapped in fractured caldera-fill ignimbrites at depths of 1800 m. Surface geothermal phenomena include central fumaroles and acid-sulfate springs surrounded by dilute thermal meteoric hot springs. Derivative hot springs from the deep geothermal reservoir issue along the Jemez fault zone, 10 km southwest of the caldera. Present geothermal projects are: (1) proposed construction of an initial 50-MW el power plant utilizing the known geothermal reservoir; (2) research and development of the prototype hot dry rock (HDR) geothermal system that circulates surface water through deep Precambrian basement (˜5MW th); (3) exploration for deep hot fluids in adjacent basin-fill sediments of the Rio Grande rift; and (4) shallow exploration drilling for hot fluids along the Jemez fault zone. 1 HFU (heat flow unit) = 1 μcal. s -2 cm -2 = 41.67 mW m -2.

  2. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  3. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  4. Design Considerations for Artificial Lifting of Enhanced Geothermal System Fluids

    SciTech Connect

    Xina Xie; K. K. Bloomfield; G. L. Mines; G. M. Shook

    2005-07-01

    This work evaluates the effect of production well pumping requirements on power generation. The amount of work that can be extracted from a geothermal fluid and the rate at which this work is converted to power increase as the reservoir temperature increases. Artificial lifting is an important issue in this process. The results presented are based on a configuration comprising one production well and one injection well, representing an enhanced geothermal system. The effects of the hydraulic conductivity of the geothermal reservoir, the flow rate, and the size of the production casing are considered in the study. Besides submersible pumps, the possibility of using lineshaft pumps is also discussed.

  5. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  6. Low-Temperature Geothermal Systems and Groundwater Protection

    NASA Astrophysics Data System (ADS)

    Watters, K.; Ferguson, G.

    2009-05-01

    The development of low temperature geothermal systems for space heating or cooling residential, institutional, commercial and industrial buildings has been steadily increasing in Canada and nations world-wide, primarily due to the associated environmental and cost benefits. Although geothermal systems are generally regarded as a 'green' and 'sustainable' energy source, recent studies have highlighted that the migration of thermal anomalies associated with these subsurface systems can result in adverse impacts to environmental receptors and these systems should be a consideration in groundwater protection. This is particularly true where groundwater is important in the regulation of surface water temperatures and where temperature dependent reactions might affect groundwater quality. In this study, environmental implications of geothermal systems will be evaluated by monitoring groundwater temperatures in wells surrounding existing geothermal developments in different geophysical areas of Nova Scotia. The collected data, in conjunction with existing data, will be used to create numerical models capable of predicting the nature and extent of thermal changes caused by the long-term operation of a geothermal system. Observations and model results will be used to assist in the creation of guidelines to develop geothermal resources in an optimal and sustainable manner for both the thermal application and the environment.

  7. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    SciTech Connect

    Allison, Lee; Richard, Stephen; Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  8. Ground Source Geothermal District Heating and Cooling System

    SciTech Connect

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reduce worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx

  9. Geothermal heating system and method of installing the same

    SciTech Connect

    Kees, E.J.; Steiger, D.W.

    1981-09-01

    A geothermal system and method of installing the same comprises the steps successively driving a drive pipe structure vertically into the ground at a plurality of locations so that a major portion of the length of the drive pipe structure is located below the frost line. An elongate geothermal pipe having closed ends is inserted into the drive pipe structure and its lower end is interlocked with a drive point device located at the lower end of the drive pipe structure. Thereafter, when the drive pipe is removed, the geothermal pipe remains anchored to the drive point. The geothermal pipes are connected together by conduits and connected to a heat pump so that a heat exchange liquid will be circulated through the system.

  10. Geothermal heating system for the Children's Museum of Utah

    SciTech Connect

    Karlsson, T.

    1984-07-01

    The results of a study to determine the engineering and economic feasibility of using the Wasatch Hot Spring resource for space heating of the Children's Library building are presented. The Wasatch Hot Spring with a reported flow of about 63 gpm (240 l/min) at an average temperature of 104/sup 0/F is not capable of furnishing the needed heat for the Children's Museum building. The underground paths along which the thermal waters flow to their outlets at the Warm Springs Fault are not presently known. It is possible if the thermal water ascends from the deep layers of the earth along the Warm Springs Fault that increased geothermal flow at a higher temperature can be produced by drilling into the fault. Assuming that sufficient geothermal fluid quantity is produced by drilling in the area, an analysis is made of a geothermal heating system for the building based on different fluid temperatures. It is assumed that the present and planned heating systems be left intact with the gas fired boilers taking over during cold periods when the geothermal system fails to provide sufficient heat. Economic analysis shows that the geothermal system is very attractive, even for the lowest geothermal fluid temperature considered (110/sup 0/F).

  11. The Newcastle geothermal system, Iron County, Utah

    SciTech Connect

    Blackett, R.E.; Shubat, M.A.; Bishop, C.E. ); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. . Dept. of Geology and Geophysics)

    1990-03-01

    Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

  12. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    SciTech Connect

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  13. Calc-silicate mineralization in active geothermal systems

    SciTech Connect

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  14. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    NASA Astrophysics Data System (ADS)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  15. Recommendations of the workshop on advanced geothermal drilling systems

    SciTech Connect

    Glowka, D.A.

    1997-12-01

    At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

  16. A market survey of geothermal wellhead power generation systems

    NASA Technical Reports Server (NTRS)

    Leeds, M. W.

    1978-01-01

    The market potential for a portable geothermal wellhead power conversion device is assessed. Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individual in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

  17. Conductive thermal modeling of Wyoming geothermal systems

    SciTech Connect

    Heasler, H.P.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    A summary of techniques used by the Wyoming Geothermal Resource Assessment Group in defining low-temperature hydrothermal resource areas is presented. Emphasis is placed on thermal modeling techniques appropriate to Wyoming's geologic setting. Thermal parameters discussed include oil-well bottom hole temperatures, heat flow, thermal conductivity, and measured temperature-depth profiles. Examples of the use of these techniques are from the regional study of the Bighorn Basin and two site specific studies within the Basin.

  18. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  19. 3D characterization of the Astor Pass geothermal system, Nevada

    SciTech Connect

    Mayhew, Brett; Faulds, James E

    2013-10-19

    The Astor Pass geothermal system resides in the northwestern part of the Pyramid Lake Paiute Reservation, on the margins of the Basin and Range and Walker Lane tectonic provinces in northwestern Nevada. Seismic reflection interpretation, detailed analysis of well cuttings, stress field analysis, and construction of a 3D geologic model have been used in the characterization of the stratigraphic and structural framework of the geothermal area. The area is primarily comprised of middle Miocene Pyramid sequence volcanic and sedimentary rocks, nonconformably overlying Mesozoic metamorphic and granitic rocks. Wells drilled at Astor Pass show a ~1 km thick section of highly transmissive Miocene volcanic reservoir with temperatures of ~95°C. Seismic reflection interpretation confirms a high fault density in the geothermal area, with many possible fluid pathways penetrating into the relatively impermeable Mesozoic basement. Stress field analysis using borehole breakout data reveals a complex transtensional faulting regime with a regionally consistent west-northwest-trending least principal stress direction. Considering possible strike-slip and normal stress regimes, the stress data were utilized in a slip and dilation tendency analysis of the fault model, which suggests two promising fault areas controlling upwelling geothermal fluids. Both of these fault intersection areas show positive attributes for controlling geothermal fluids, but hydrologic tests show the ~1 km thick volcanic section is highly transmissive. Thus, focused upwellings along discrete fault conduits may be confined to the Mesozoic basement before fluids diffuse into the Miocene volcanic reservoir above. This large diffuse reservoir in the faulted Miocene volcanic rocks is capable of sustaining high pump rates. Understanding this type of system may be helpful in examining large, permeable reservoirs in deep sedimentary basins of the eastern Basin and Range and the highly fractured volcanic geothermal

  20. Downhole liquid trap for a geothermal pumping system

    SciTech Connect

    Aplenc, A.M.

    1984-05-15

    In a geothermal energy conversion system having a boiler and a turbine driven pumping unit, a separator is disposed between the boiler and the turbine driven pump for separating entrained liquid droplets from the vaporized working fluid exhausted from the boiler.

  1. Multicomponent CO2-Brine Simulations of Fluid and Heat Transfer in Sedimentary-Basin Geothermal Systems: Expanding Geothermal Energy Opportunities

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Randolph, J. B.

    2011-12-01

    In a carbon dioxide plume geothermal (CPG) system, carbon dioxide (CO2) is pumped into existing high-permeability geologic formations that are overlain by a low-permeability caprock. The resulting CO2 plume largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to produce power and/or to provide heat for direct use before being returned to the geologic reservoir. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink. As such, this approach results in a geothermal power plant with a negative carbon footprint. We present results of calculations concerning geothermal power plant efficiencies and energy production rates in both traditional reservoir-based systems and engineered geothermal systems (EGS) when CO2, rather than water, is used as the subsurface working fluid. While our previous studies have examined geologic systems with established CO2 plumes, we focus here on multicomponent (CO2 + brine) systems. Numerical simulations (e.g., Randolph and Saar, Geophysical Research Letters, 2011) indicate that CPG systems provide several times the heat energy recovery of similar water-based systems. Furthermore, the CPG method results in higher geothermal heat extraction efficiencies than both water- and CO2-based EGS. Therefore, CPG should further extend the applicability of geothermal energy utilization to regions with subsurface temperatures and heat flow rates that are even lower than those that may be added due to switching from water- to CO2-based EGS. Finally, simulations at present suggest that multicomponent effects - e.g., buoyant flow as CO2 rises over denser brine - may enhance heat extraction in CPG systems compared to traditional water-based geothermal approaches.

  2. Hydrothermal model of the Momotombo geothermal system, Nicaragua

    SciTech Connect

    Verma, M.P.; Martinez, E.; Sanchez, M.; Miranda, K.

    1996-12-31

    The Momotombo geothermal field is situated on the northern shore of Lake Managua at the foot of the active Momotombo volcano. The field has been producing electricity since 1983 and has an installed capacity of 70 MWe. The results of geological, geochemical and geophysical studies have been reported in various internal reports. The isotopic studies were funded by the International Atomic Energy Agency (IAEA), Vienna to develop a hydrothermal model of the geothermal system. The chemical and stable isotopic data ({delta}{sup 18}O and {delta}D) of the geothermal fluid suggest that the seasonal variation in the production characteristics of the wells is related to the rapid infiltration of local precipitation into the reservoir. The annual average composition of Na{sup +}, K{sup +} and Mg{sup 2+} plotted on the Na-K-Mg triangular diagram presented by Giggenbach (1988) to identify the state of rock-water interaction in geothermal reservoirs, shows that the fluids of almost every well are shifting towards chemically immature water due to reservoir exploitation. This effect is prominent in wells Mt-2, Mt-12, Mt-22 and Mt-27. The local groundwaters including surface water from Lake Managua have much lower tritium concentrations than some of the geothermal well fluids, which have about 6 T.U. The high-tritium wells are located along a fault inferred from a thermal anomaly. The tritium concentration is also higher in fluids from wells close to the lake. This could indicate that older local precipitation waters are stored in a deep layer within the lake and that they are infiltrating into the geothermal reservoir.

  3. Gold enrichment in active geothermal systems by accumulating colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Hannington, Mark; Harðardóttir, Vigdis; Garbe-Schönberg, Dieter; Brown, Kevin L.

    2016-04-01

    The origins of high-grade hydrothermal ore deposits are debated, but active geothermal systems provide important clues to their formation. The highest concentrations of gold are found in geothermal systems with direct links to island arc magmatism. Yet, similar concentrations have also been found in the absence of any input from arc magmas, for example, in the Reykjanes geothermal field, Iceland. Here we analyse brine samples taken from deep wells at Reykjanes and find that gold concentrations in the reservoir zone have increased over the past seven years from an average of 3 ppb to 14 ppb. The metal concentrations greatly exceed the maximum solubility of gold in the reservoir under saturated conditions and are now nearly two orders of magnitude higher than in mid-ocean ridge black smoker fluids--the direct analogues of Reykjanes deep liquids. We suggest that ongoing extraction of brine, the resulting pressure drop, and increased boiling have caused gold to drop out of solution and become trapped in the reservoir as a colloidal suspension. This process may explain how the stock of metal in the reservoirs of fossil geothermal systems could have increased over time and thus become available for the formation of gold-rich ore deposits.

  4. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  5. Geological controls on supercritical fluid resources in volcanic geothermal systems

    NASA Astrophysics Data System (ADS)

    Scott, S. W.; Driesner, T.; Weis, P.

    2014-12-01

    Large-scale fluid convection in conventional volcanic geothermal systems is driven by the hydrothermal cooling of shallow intrusions. Recently, there has been increased interest in tapping supercritical fluid resources in volcanic geothermal systems, since such fluid reservoirs could provide a roughly order-of-magnitude greater potential for electricity production than conventional geothermal wells drilled to temperatures of 250-300 °C. The potential of supercritical geothermal reservoirs was demonstrated in 2010, when the Iceland Deep Drilling Project (IDDP) drilled into liquid magma at 2 km depth and encountered an overlying permeable, high-temperature (~450 °C) fluid reservoir capable of more than ~30 MWe of electricity production. However, a conceptual model describing the main factors governing the extent and structure of target reservoirs has remained elusive. Here, we present the first systematic investigation of the role of rock permeability, the brittle-ductile transition temperature, and the depth of magma chamber emplacement on the development of supercritical fluid reservoirs. We use the numerical modeling code CSMP++ to model two-phase flow of compressible water around an initially elliptical, 900 °C intrusion. Our models indicate that potentially exploitable supercritical fluid resources are an integral part of many magma-driven geothermal systems. Hotter and more extensive reservoirs are promoted by a brittle-ductile transition temperature higher than ~400 °C, an intrusion depth less than 3 km, and a host rock permeability of 10-14 to 10-15 m2. The systematic dependence of the size, location and hydrologic behavior of supercritical reservoirs on these factors aids the development of exploration models for different volcanic settings. In addition, by serving as the main agents of heat transfer at the interface of an intrusion and the overlying hydrothermal system, supercritical fluid reservoirs play a decisive role in determining the overall

  6. Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya

    SciTech Connect

    Bodvarsson, G.S.

    1987-08-01

    The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

  7. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    DOE Data Explorer

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  8. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  9. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

  10. Refinement of model of an open geothermal system

    NASA Astrophysics Data System (ADS)

    Vaganova, Nataliia; Filimonov, M. Yu.

    2016-12-01

    A heat transfer model of an open geothermal system is considered. This system consists of two wells: a production well with hot water, which is used and became cooler, and an injection well, which returns the cold water into the productive layer (aquifer). This cold water is filtered in the productive layer (porous soil) towards the inflow of hot water of the production well. Some different boundary conditions for the model are compared in view to estimate effective thermal life of the system.

  11. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  12. Evaluating Geothermal Potential in Germany by Numerical Reservoir Modeling of Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Jain, Charitra; Vogt, Christian; Clauser, Christoph

    2014-05-01

    We model hypothetical Engineered Geothermal System (EGS) reservoirs by solving coupled partial differential equations governing fluid flow and heat transport. Building on EGS's strengths of inherent modularity and storage capability, it is possible to implement multiple wells in the reservoir to extend the rock volume accessible for circulating water in order to increase the heat yield. By varying parameters like flow rates and well-separations in the subsurface, this study looks at their long-term impacts on the reservoir development. This approach allows us to experiment with different placements of the engineered fractures and propose several EGS layouts for achieving optimized heat extraction. Considering the available crystalline area and accounting for the competing land uses, this study evaluates the overall EGS potential and compares it with those of other used renewables in Germany. There is enough area to support 13450 EGS plants, each with six reversed-triplets (18 wells) and an average electric power of 35.3MWe. When operated at full capacity, these systems can collectively supply 4155TWh of electric energy in one year which would be roughly six times the electric energy produced in Germany in the year 2011. Engineered Geothermal Systems make a compelling case for contributing towards national power production in a future powered by a sustainable, decentralized energy system.

  13. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  14. Boise geothermal system, western Snake River plain, Idaho

    SciTech Connect

    Wood, S.H.; Burnham, W.L.

    1984-07-01

    The Boise geothermal system lies in an area of high heat flow along the northern margin of the western Snake River plain. Exploratory drilling for petroleum and geothermal water, seismic reflection profiling, and regional gravity data permit construction of a detailed structure section across the western plain. A faulted acoustic basement of volcanic rocks lies at depths of 2400 to 6000 ft (730-1830 m) beneath late Cenozoic lacustrine and fluvial deposits in the center of the plain. Volcanic rocks of the acoustic basement are typically basalt out in the plain, but the acoustic basement along the north margin in the vicinity of Boise is largely silicic volcanic rock. Geologic mapping and geothermal well data have provided information on the late Cenozoic geologic units and structures important to the understanding of the Boise geothermal system. The main geothermal aquifer is a sequence of rhyolite layers and minor arkosic and tuffaceous sediment of the Miocene Idavada Volcanics. The aquifer is confined by a sequence of impermeable basaltic tuffs. The aquifer has sufficient fracture permeability to yield 150/sup 0/-170/sup 0/F (65/sup 0/-76.6/sup 0/C) hot water for space heating at a rate of 600 to 1200 gpm from wells drilled in the metropolitan area, north of the Boise River. In this area the rhyolite lies at a depth of 900-2000 ft (274-610 m). Artesian pressure typically lifts water to an elevation of about 2760 ft (840 m). A conceptual model of recharge assumes percolation driven by the topographic head to a depth of more than 7000 ft (2135 m) beneath the granitic highlands northeast of the city. Heated water convects upward through northwest-trending range-front faults.

  15. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  16. Hydrothermal model of the Momotombo geothermal system, Nicaragua

    SciTech Connect

    Verma, M.P.; Martinez, E.; Sanchez, M.; Miranda, K.; Gerardo, J.Y.; Araguas, L.

    1996-01-24

    The Momotombo geotherinal field is situated on the northern shore of Lake Managua at the foot of the active Momotombo volcano. The field has been producing electricity since 1983 and has an installed capacity of 70 MWe. The results of geological, geochemical and geophysical studies have been reported in various internal reports. The isotopic studies were funded by the International Atomic Energy Agency (IAEA), Vienna to develop a hydrothermal model of the geothermal system. The chemical and stable isotopic data (δ18O and δD) of the geothermal fluid suggest that the seasonal variation in the production characteristics of the wells is related to the rapid infiltration of local precipitation into the reservoir. The annual average composition of Na+, K+ and Mg2+ plotted on the Na- K-Mg triangular diagram presented by Giggenbach (1988) to identify the state of rock-water interaction in geothermal reservoirs, shows that the fluids of almost every well are shifting towards chemically immature water due to resenroir exploitation. This effect is prominent in wells Mt-2. Mt-12, Mt-22 and Mt-27. The local groundwaters including surface water from Lake Managua have much lower tritium concentrations than sonic of the geothermal well fluids, which have about 6 T.U. The high-tritium wells are located along a fault inferred froin a thermal anomaly. The tritium concentration is also higher in fluids from wells close to the lake. This could indicate that older local precipitation waters are stored in a deep layer within the lake and that they are infiltrating into the geothermal reservoir.

  17. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  18. Engineered Geothermal Systems Energy Return On Energy Investment

    SciTech Connect

    Mansure, A J

    2012-12-10

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use efficiency when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the minimum EROI an energy production system should have to be an asset rather than a liability.

  19. Environmental impacts of open loop geothermal system on groundwater

    NASA Astrophysics Data System (ADS)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  20. An Integrated Chemical Geothermometry System for Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Spycher, N. F.; Sonnenthal, E. L.; Kennedy, B. M.

    2010-12-01

    The objective of this project is to develop a reliable and improved methodology to predict geothermal reservoir temperatures from full and integrated chemical analyses of spring and shallow well water samples, to see through near surface processes, such as dilution, gas loss, etc., that mask or hide the chemical signatures of deep reservoir fluids in near surface waters. The system builds on a multicomponent chemical geothermometry method developed previously for single point sources relying on computed saturation indices of multiple minerals. Taking advantage of recent advances in optimization and geochemical/reactive transport modeling, the system integrates the multicomponent geothermometry method into an optimization system that allows simultaneous processing of multiple water analyses to estimate reservoir temperatures. In doing so, the system will also be able to solve for amounts and compositions of potential mixing end-members diluting the reservoir fluids and/or composition and amounts of gas phase lost as deep geothermal fluids ascend to ground surface. This integrated approach is expected to allow estimations of reservoir temperatures with better reliability and consistency than currently possible using standard chemical geothermometers. The proposed approach is being implemented and tested using an extensive set of water and gas compositions from springs and wells at the geothermal system in Dixie Valley, Nevada, where standard chemical geothermometers yield temperatures inconsistent with measured reservoir temperatures.

  1. Natural analogs for enhanced heat recovery from geothermal systems

    SciTech Connect

    Nielson, Dennis L.

    1996-01-24

    High-temperature hydrothermal systems are physically and chemically zoned with depth. The energy input is from a magmatic zone, intruded by igneous bodies, that may also contribute variable amounts of magmatic fluid to the system. The heat source is directly overlain by a section of rocks, that due to their elevated temperature, respond to stress in a ductile fashion. The ductile zone is, in turn, overlain by a section of rocks that respond to stress in a brittle fashion, where water is able to circulate through fractures (the geothermal reservoir) and will be termed the hydrothermal circulation zone. Ancient and modern high-temperature geothermal systems show a predictable sequence of evolutionary events affecting these stratified zones. Metamorphic core complexes are uplifts, formed in highly extended terrains, that expose fossil brittle-ductile transition zones. Formerly ductile rocks have had brittle fractures superimposed on them, and meteoric hydrothermal systems are associated with the brittle fracturing. Porphyry copper deposits typically evolve from magmatic to meteoric hydrothermal systems. At the Larderello geothermal system, the brittle- ductile transition has been mapped using reflection seismology, and the zone has been penetrated by the San Pompeo 2 well where temperatures >420°C were encountered. Although neo-granitic dikes have been penetrated by drilling in the Larderello area, the brittle- ductile transition is largely above the inferred plutonic heat source. In the Geysers system, in contrast, the present steam system has been superimposed on young plutonic rocks and the inferred brittle-ductile transition is present at a depth of about 4.7 km within the plutonic rocks. As hydrothermal reservoirs are depleted, or surface facilities are restricted by environmental considerations, interest will turn to the deeper portions of known systems. Japan already has an aggressive program to develop Deep-seated and Magma-Ambient resources. This program, as

  2. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  3. Geothermal systems ancient and modern: a geochemical review

    NASA Astrophysics Data System (ADS)

    Henley, R. W.; Ellis, A. J.

    1983-01-01

    Geothermal systems occur in a range of crustal settings. The emphasis of this review is on those occurring in regions of active or recently active volcanism, where magmatic heat at depths up to 8 km leads to convection of groundwater in the upper crust. Hot water (and steam) flows are controlled by the permeability of the crust and recent data have emphasised the dominance of secondary permeability, especially fractures. Drilling to depths of up to 3 km in these systems encounters near-neutral pH alkali chloride waters with temperatures up to about 350°C and chloride contents generally in the range 500 to 15,000 mg kg -1 although much higher salinities are encountered in some systems such as in the Imperial Valley, California. Stable isotope studies indicate the predominance of a meteoric source in the majority of geothermal systems although seawater predominates in some regions, such as Reykjanes, Iceland. Mixing of waters from both sources also occurs in some systems and some magmatic fluid may also be present. The major element geochemistry of geothermal fluids is determined by a set of temperature-dependent mineral-fluid equilibria although chloride and rare gas contents appear to be independent variables reflecting the sources of these components (sedimentary or volcanic rocks, seawater, magmatic fluids, etc). Boiling in the upper portion of geothermal systems is accompanied by the transfer of acidic gases (CO 2 and H 2S) to the resultant steam which may penetrate the surface as fumarolic activity or become condensed into shallow groundwaters giving rise, with oxidation, to distinctive low pH sulphate bicarbonate water. Fluid inclusion, stable isotope and mineral alteration studies have led to the recognition in many Tertiary hydrothermal ore deposits of physical and chemical environments analogous to those encountered in the present-day systems. The vein-type gold-silver, Carlin-type gold and porphyry-type copper-molybdenum deposits of the western United

  4. High Temperature Components of Magma-Related Geothermal Systems: An Experimental and Theoretical Approach

    SciTech Connect

    Philip A. Candela; Philip M. Piccoli

    2004-03-15

    This summarizes select components of a multi-faceted study of high temperature magmatic fluid behavior in shallow, silicic, volcano-plutonic geothermal systems. This work built on a foundation provided by DOE-supported advances made in our lab in understanding the physics and chemistry of the addition of HCI and other chlorides into the high temperature regions of geothermal systems. The emphasis of this project was to produce a model of the bolatile contributions from felsic magmatic systems to geothermal systems

  5. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  6. Triggered Swarms and Induced Aftershock Sequences in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Turcotte, D. L.; Yikilmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2015-12-01

    Natural geothermal systems, which are used for energy generation, are usually associated with high seismic activity. This can be related to the large-scale injection and extraction of fluids to enhance geothermal recovery. This results in the changes of the pore pressure and pore-elastic stress field and can stimulate the occurrence of earthquakes. These systems are also prone to triggering of seismicity by the passage of seismic waves generated by large distant main shocks. In this study, we analyze clustering and triggering of seismicity at several geothermal fields in California. Particularly, we consider the seismicity at the Geysers, Coso, and Salton Sea geothermal fields. We analyze aftershock sequences generated by local large events with magnitudes greater than 4.0 and earthquake swarms generated by several significant long distant main shocks. We show that the rate of the aftershock sequences generated by the local large events in the two days before and two days after the reference event can be modelled reasonably well by the time dependent Epidemic Type Aftershock Sequence (ETAS) model. On the other hand, the swarms of activity triggered by large distant earthquakes cannot be described by the ETAS model. To model the increase in the rate of seismicity associated with triggering by large distant main shocks we introduce an additional time-dependent triggering mechanism into the ETAS model. In almost all cases the frequency-magnitude statistics of triggered sequences follow Gutenberg-Richter scaling to a good approximation. The analysis indicates that the seismicity triggered by relatively large local events can initiate sequences similar to regular aftershock sequences. In contrast, the distant main shocks trigger swarm like activity with faster decaying rates.

  7. Geothermal district heating systems in the United States

    SciTech Connect

    Lund, J.W.

    1998-07-01

    There are 18 geothermal district heating systems in the Untied States. These systems use geothermal fluids from 138 F to 218 F (59 C to 103 C), with peak flow rates from 85 gpm to 4000 gpm (5 L/s to 250 L/s). Installed power varies from 0.2 MWt to 31 MWt, and annual energy use from 0.8 {times} 10{sup 9} Btu to 75 {times} 10{sup 9} Btu (0.6 GWh to 22 GWh). Thus, the total installed power is almost 100 MWt and the annual energy use is 572 {times} 10{sup 9} Btu (168 GWh). The oldest systems in operation are the Warm Springs Water District in Boise, Idaho that began operation in 1892, and the private system in Ketchum, Idaho starting in 1929, with the system on the Oregon Institute of Technology in operation since 1962, and Midland, South Dakota since 1964. The remaining systems have all been in operation for less than 20 years. Both open and closed distribution systems are used--the later type using a secondary fluid to supply the heat to the customers. Approximately half of the systems use a central mechanical plant containing heat exchangers, circulating pumps, expansion tanks and controls. Both volume and energy metering systems for customer billing are used. A variety of geothermal fluid disposal systems are used, including injection and disposal in a nearby river or stream. The energy and environmental savings, as compared to fossil fuel, amount to nearly 135,000 barrels of oil equivalent annually, and a reduction of 58,000 metric tons of carbon (coal) or 11,000 metric tons of carbon (natural gas) per year. Three systems are described.

  8. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    SciTech Connect

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William; Eker, Erdinc; Baker, Reed; Augustine, Chad

    2015-09-02

    The petroleum industry has had considerable success in recent decades in developing unconventional shale plays using horizontal drilling and multi-zonal isolation and stimulation techniques to fracture tight formations to enable the commercial production of oil and gas. Similar well completions could be used in Enhanced Geothermal Systems (EGS) to create multiple fractures from horizontal wells. This study assesses whether well completion techniques used in the unconventional shale industry to create multi-stage fractures can be applied to an enhanced geothermal system, with a focus on the completion of the EGS injection well. This study assumes an Enhanced Geothermal System (EGS) consisting of a central horizontal injection well flanked on each side by horizontal production wells, connected to the injection well by multiple fractures. The focus is on the design and completion of the horizontal well. For the purpose of developing design criteria, a reservoir temperature of 200 degrees C (392 degrees F) and an injection well flow rate of 87,000 barrels per day (160 kg/s), corresponding to production well flow rates of 43,500 barrels per day (80 kg/s) is assumed. The analysis found that 9-5/8 inches 53.5 pounds per foot (ppf) P110 casing string with premium connections meets all design criteria for the horizontal section of injection well. A P110 grade is fairly common and is often used in horizontal sections of shale development wells in petroleum operations. Next, several zonal isolation systems commonly used in the shale gas industry were evaluated. Three techniques were evaluated -- a 'plug and perf' design, a 'sand and perf' design, and a 'packer and port' design. A plug and perf system utilizes a cemented casing throughout the length of the injector wellbore. The sand and perf system is identical to the plug and perf system, but replaces packers with sand placed in the casing after stimulation to screen out the stimulated perforated zones and provide zonal

  9. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.

    2016-09-01

    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  10. Feasibility study of sedimentary enhanced geothermal systems using reservoir simulation

    NASA Astrophysics Data System (ADS)

    Cho, Jae Kyoung

    investigated. Especially, water density, viscosity and rock heat capacity play a significant role in reservoir performance. The Permian Lyons formation in the Denver Basin is selected for this preliminary study. Well log data around the area of interest are collected and borehole temperature data are analyzed to estimate the geothermal potential of the target area and it follows that the target formation has a geothermal gradient as high as 72 °C/km. Based on the well log data, hypothetical reservoir simulation models are build and tested to access the hydraulic and thermal performance. It turns out that the target formation is marginally or sub-marginally commercial in terms of its formation conductivity. Therefore, the target formation may require reservoir stimulation for commercially viable power generation. Lastly, reservoir simulation models with average petrophysical properties obtained from the well log analysis of the target formation are built. In order to account for overburden and underburden heat transfer for confined reservoirs, low permeability layers representing shale cap/bed rocks are attached to the top and bottom of the reservoir layers. The dual permeability concept is applied to the reservoir layers to model induced fracture networks by reservoir stimulation. The simulation models are tested by changing fracture conductivity and shape factor. The results show that a balance between hydraulic and thermal performance should be achieved to meet the target flow rate and sustainability of 30 years' uninterrupted operation of geothermal electricity power generation. Ineffective reservoir stimulation could result in failing to create a producing reservoir with appropriate productivity index or causing premature thermal breakthrough or short-circuiting which advances the end of geothermal systems. Therefore, Enhanced Geothermal Systems (EGS) should be engineered to secure producing performance and operational sustainability simultaneously.

  11. Seismic ambient noise study at Bouillante geothermal system, French Antilles

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Bitri, Adnan; Loiseau, Justine; Bouchot, Vincent

    2010-05-01

    Seismic ambient noise analyses have been shown to be able to image structural features of the crust and to monitor underground changes of seismic wave ground velocity. We present results of cross-correlation techniques at Bouillante geothermal field, French Antilles, the largest French high-enthalpy geothermal system exploited for electrical power from 3 collocated productive wells. Two power plants generate electricity and fluid extraction rate varies with time and wells are sometimes closed for equipment maintenance. Under the support of the French Environment and Energy Management Agency (ADEME) and the French Research Agency (ANR), BRGM has been analyzing seismic data from a network comprising 5 broadband seismological stations set-up at Bouillante area since 2004. Amongst the large number of earthquakes recorded, we show that no single earthquake could be related to the fluid exploitation. Instead, they are due to the intense regional seismicity. Despite the small number of stations, surface wave travel times computed from ambient noise cross-correlation for about a year suggest that the velocity structure is consistent with the conceptual model of hot (250°C) and permeable (fractured) geothermal reservoir of Bouillante. We show at several instances that changes of the fluid extraction rate have spatial and temporal slight perturbations on medium wave velocity. For example, when the production stops for maintenance, velocity increases by several percent and with larger amplitude at stations within 1 km distance from the production wells and lower amplitudes (by more than 50 %) at stations further than 2 km from the production wells. In addition, we note that velocity perturbations have a delay of at most 1 day at further stations. We discuss several mechanisms to explain those observations like pressure and stress variations in the geothermal system. The results suggest that the inferred velocity changes, owing the fine sensibility of the inter

  12. Thermal Infrared Remote Sensing of the Yellowstone Geothermal System

    NASA Astrophysics Data System (ADS)

    Vaughan, R. G.; Keszthelyi, L. P.; Heasler, H.; Jaworowski, C.; Lowenstern, J. B.; Schneider, D. J.

    2009-12-01

    The Yellowstone National Park (YNP) geothermal system is one of the largest in the world, with thousands of individual thermal features ranging in size from a few centimeters to tens of meters across, (e.g., fumaroles, geysers, mud pots and hot spring pools). Together, large concentrations of these thermal features make up dozens of distinct thermal areas, characterized by sparse vegetation, hydrothermally altered rocks, and usually either sinter, travertine, or acid sulfate alteration. The temperature of these thermal features generally ranges from ~30 to ~93 oC, which is the boiling temperature of water at the elevation of Yellowstone. In-situ temperature measurements of various thermal features are sparse in both space and time, but they show a dynamic time-temperature relationship. For example, as geysers erupt and send pulses of warm water down slope, the warm water cools rapidly and is then followed by another pulse of warm water, on time scales of minutes. The total heat flux from the Park’s thermal features has been indirectly estimated from chemical analysis of Cl- flux in water flowing from Yellowstone’s rivers. We are working to provide a more direct measurement, as well as estimates of time variability, of the total heat flux using satellite multispectral thermal infrared (TIR) remote sensing data. Over the last 10 years, NASA’s orbiting ASTER and MODIS instruments have acquired hundreds and thousands of multispectral TIR images, respectively, over the YNP area. Compared with some volcanoes, Yellowstone is a relatively low-temperature geothermal system, with low thermal contrast to the non-geothermal surrounding areas; therefore we are refining existing techniques to extract surface temperature and thermal flux information. This task is complicated by issues such as, during the day, solar heated surfaces may be warmer than nearby geothermal features; and there is some topographic (elevation) influence on surface temperatures, even at night. Still

  13. A new classification scheme for deep geothermal systems based on geologic controls

    NASA Astrophysics Data System (ADS)

    Moeck, I.

    2012-04-01

    A key element in the characterization, assessment and development of geothermal energy systems is the resource classification. Throughout the past 30 years many classifications and definitions were published mainly based on temperature and thermodynamic properties. In the past classification systems, temperature has been the essential measure of the quality of the resource and geothermal systems have been divided into three different temperature (or enthalpy) classes: low-temperature, moderate-temperature and high-temperature. There are, however, no uniform temperature ranges for these classes. It is still a key requirement of a geothermal classification that resource assessment provides logical and consistent frameworks simplified enough to communicate important aspects of geothermal energy potential to both non-experts and general public. One possible solution may be to avoid classifying geothermal resources by temperature and simply state the range of temperatures at the individual site. Due to technological development, in particular in EGS (Enhanced Geothermal Systems or Engineered Geothermal Systems; both terms are considered synonymously in this thesis) technology, currently there are more geothermal systems potentially economic than 30 years ago. An alternative possibility is to classify geothermal energy systems by their geologic setting. Understanding and characterizing the geologic controls on geothermal systems has been an ongoing focus on different scales from plate tectonics to local tectonics/structural geology. In fact, the geologic setting has a fundamental influence on the potential temperature, on the fluid composition, the reservoir characteristics and whether the system is a predominantly convective or conductive system. The key element in this new classification for geothermal systems is the recognition that a geothermal system is part of a geological system. The structural geological and plate tectonic setting has a fundamental influence on

  14. Estimating Well Costs for Enhanced Geothermal System Applications

    SciTech Connect

    K. K. Bloomfield; P. T. Laney

    2005-08-01

    The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

  15. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  16. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  17. Long-term predictions of minewater geothermal systems heat resources

    NASA Astrophysics Data System (ADS)

    Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga

    2014-05-01

    Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both

  18. Geothermal pump down-hole energy regeneration system

    DOEpatents

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  19. Geothermal pump down-hole energy regeneration system

    SciTech Connect

    Matthews, H.B.

    1982-08-03

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 S surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  20. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  1. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)

    SciTech Connect

    Augustine, C.

    2013-10-01

    Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

  2. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  3. Design of Tomato Drying System by Utilizing Brine Geothermal

    NASA Astrophysics Data System (ADS)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  4. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  5. Enhanced Geothermal Systems (EGS) R&D Program

    SciTech Connect

    Entingh, Daniel J.

    1999-08-18

    The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report

  6. Development of geothermal logging systems in the United States

    SciTech Connect

    Lysne, P.

    1994-04-01

    Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of (potassium, uranium and thorium) is in the calibration phase, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A fluid sampling tool is in the design phase. All tools are designed for operation at conditions exceeding 400 C, and for deployment in the slim holes produced by mining-coring operations. Partnerships are being formed between the geothermal industry and scientific drilling programs to define and develop inversion algorithms relating raw tool data to more pertinent information. These cooperative efforts depend upon quality guidelines such as those under development within the international Ocean Drilling Program.

  7. Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    The current state of geothermal technology has limitations that hinder the expansion of utility scale power. One limitation that has been discussed by the current industry is the limitation of Electric Submersible Pump (ESP) technology. With the exception of a few geothermal fields artificial lift technology is dominated by line shaft pump (LSP) technology. LSP's utilize a pump near or below reservoir depth, which is attached to a power shaft that is attached to a motor above ground. The primary difference between an LSP and an ESP is that an ESP motor is attached directly to the pump which eliminates the power shaft. This configuration requires that the motor is submersed in the geothermal resource. ESP technology is widely used in oil production. However, the operating conditions in an oil field vary significantly from a geothermal system. One of the most notable differences when discussing artificial lift is that geothermal systems operate at significantly higher flow rates and with the potential addition of Enhanced Geothermal Systems (EGS) even greater depths. The depths and flow rates associated with geothermal systems require extreme horsepower ratings. Geothermal systems also operate in a variety of conditions including but not limited to; high temperature, high salinity, high concentrations of total dissolved solids (TDS), and non-condensable gases.

  8. Sulphur isotope applications in two Philippine geothermal systems

    SciTech Connect

    Bayon, F.E.B.

    1996-12-31

    A general and very preliminary study of sulphur isotope geochemistry is presented in this paper. Data from the Mt. Apo and Palinpinon geothermal fields are used to demonstrate the use of sulphur isotopes in geothermometry and correlation of sulphur species. Sulphur and oxygen isotope geothermometers applied to Mt. Apo data show very good agreement with temperatures estimated using other established geothermometers, as well as bore measured temperatures. This signifies that sulphur isotopes in S-species in fluids of the Mt. Apo hydrothermal system are in equilibrium at drilled depths. In Palinpinon, on the other hand, temperature estimates from fluid and mineral sulphur isotope geothermometry calculations do not agree with, and are commonly higher than, well measured temperatures and temperatures estimated from other geothermometers. Sulphur isotopes in the presently-exploited Palinpinon fluid are not in equilibrium, and sulphur isotope geothermometry may be reflective of isotopic equilibrium of the deeper portions of the hydrothermal system. Dissolved sulphate in both the Palinpinon and Mt. Apo geothermal fluids appear to originate from the disproportionation of magmatic SO{sub 2} at temperatures below 400{degrees}C. Hydrogen sulphide in well discharge fluids are dominantly directly derived from the magma, with a minor amount coming from SO{sub 2} disproportionation.

  9. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    SciTech Connect

    Capuano, Louis, Jr.; Huh, Michael; Swanson, Robert; Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A

  10. Boron isotope variations in geothermal systems on Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Purnomo, Budi Joko; Pichler, Thomas; You, Chen-Feng

    2016-02-01

    This paper presents δ11B data for hot springs, hot acid crater lakes, geothermal brines and a steam vent from Java, Indonesia. The processes that produce a large range of the δ11B values were investigated, including the possible input of seawater as well as the contrast δ11B compositions of acid sulfate and acid chloride crater lakes. The δ11B values of hot springs ranged from - 2.4 to + 28.7‰ and acid crater lakes ranged from + 0.6 to + 34.9‰. The δ11B and Cl/B values in waters from the Parangtritis and Krakal geothermal systems confirmed seawater input. The δ11B values of acid sulfate crater lakes ranged from + 5.5 to + 34.9‰ and were higher than the δ11B of + 0.6‰ of the acid chloride crater lake. The heavier δ11B in the acid sulfate crater lakes was caused by a combination of vapor phase addition and further enrichment due to evaporation and B adsorption onto clay minerals. In contrast, the light δ11B of the acid chloride crater lake was a result of acid water-rocks interaction. The correlations of δ11B composition with δ18O and δ2H indicated that the B isotope corresponded to their groundwater mixing sources, but not for J21 (Segaran) and J48 (Cikundul) that underwent 11B isotope enrichment by B adsorption into minerals.

  11. Other geothermal space-heating system in Elko, Nevada

    SciTech Connect

    Bugenig, D.C.; Scolari, D.; Vietti, J.

    1987-08-01

    In February 1985, the Elko County School District completed a 1971-ft deep geothermal well at the site of the Elko Junior High School, Elko, Nevada. Aquifer stress test results indicated that the well could sustain artesian flows of as much as 325 gal/min of 190/sup 0/F water. Because the productivity of the well, up to 15 x 10/sup 6/ Btu/hr, far exceeded the heating demand of the junior high school, a district space heating scheme was conceived to heat additional school-district facilities, a hospital, convention center, municipal swimming pool, and city offices. Estimated savings to the public entities involved and, ultimately, the taxpayers in Elko were projected at $285,000 annually. Approximately one mile of distribution lines were laid and 13 buildings were retrofitted to geothermal heating in time for the 1986-1987 heating season. The system is the second for Elko, the first being the Elko Heat Company that serves commercial users in the downtown area.

  12. Marketing the Klamath Falls Geothermal District Heating system

    SciTech Connect

    Rafferty, K.

    1993-06-01

    The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

  13. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    SciTech Connect

    Queen, John H.

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most effective

  14. Structural controls on a geothermal system in the Tarutung Basin, north central Sumatra

    NASA Astrophysics Data System (ADS)

    Nukman, Mochamad; Moeck, Inga

    2013-09-01

    The Sumatra Fault System provides a unique geologic setting to evaluate the influence of structural controls on geothermal activity. Whereas most of the geothermal systems in Indonesia are controlled by volcanic activity, geothermal systems at the Sumatra Fault System might be controlled by faults and fractures. Exploration strategies for these geothermal systems need to be verified because the typical pattern of heat source and alteration clays are missing so that conventional exploration with magnetotelluric surveys might not provide sufficient data to delineate favorable settings for drilling. We present field geological, structural and geomorphological evidence combined with mapping of geothermal manifestations to allow constraints between fault dynamics and geothermal activity in the Tarutung Basin in north central Sumatra. Our results indicate that the fault pattern in the Tarutung Basin is generated by a compressional stress direction acting at a high angle to the right-lateral Sumatra Fault System. NW-SE striking normal faults possibly related to negative flower structures and NNW-SSE to NNE-SSW oriented dilative Riedel shears are preferential fluid pathways whereas ENE-WSW striking faults act as barriers in this system. The dominant of geothermal manifestations at the eastern part of the basin indicates local extension due to clockwise block rotation in the Sumatra Fault System. Our results support the effort to integrate detailed field geological surveys to refined exploration strategies even in tropical areas where outcrops are limited.

  15. Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system

    SciTech Connect

    McKay, F.; McKay, G.; McKay, S.; Flynn, T.

    1995-12-31

    Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

  16. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed.

  17. Thermal and chemical evolution of The Geysers geothermal system, California

    SciTech Connect

    Moore, J.N.

    1992-01-01

    Fluid inclusions and mineral assemblages provide a reward of the thermal and chemical changes that occurred during the evolution of The Geysers geothermal system. The data document the presence of an extensive liquid dominated geothermal system that developed in response to felsite intrusion and its evolution to a vapor-dominated regime. Temperatures within the early liquid-dominated system ranged from 175 C at a distance of 7200 feet from the felsite to more than 350 C near the contact while salinities varied from 5 equivalent weight percent NaCl (at a distance of 5500 feet) to more than 26 weight percent NaCl. As temperatures around the felsite declined, the liquid-dominated system collapsed upon itself. Downward migration of the low salinity waters resulted in dilution of the fluids present in regions now occupied by the caprock and normal vapor-dominated reservoir. In contrast, dilution was minor in rocks now hosting the high-temperature vapor-dominated reservoir. This suggests that low permeabilities are the primary reason for the development of the high-temperature reservoir. Boiling within the caprock produced late-stage veins of calcite and quartz. As the fluid boiled off, condensate was trapped as low salinity fluid inclusions. Within the main body of the reservoir, a liquid phase with salinities of up to 7 equivalent weight percent NaCl persisted to temperatures between 250 and 270 C. However, except for the presence of vapor-rich inclusions, little evidence of boiling within the reservoir rocks was preserved.

  18. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  19. Geomechanics of Hydraulic Stimulation in Geothermal Systems: Designing and Implementing a Successful Enhanced Geothermal System at Desert Peak, Nevada

    NASA Astrophysics Data System (ADS)

    Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.

    2013-12-01

    Creation of an Enhanced Geothermal System (EGS) in hot but low-permeability rocks involves hydraulic stimulation of fracture permeability to develop a complex heat exchange system with low hydraulic impedance. An integrated study of stress, fractures and rock mechanical properties was conducted to develop the geomechanical framework for a multi-stage EGS stimulation in Desert Peak well 27-15, located at the low-permeability margins of an active geothermal field. The stimulation targeted silicified tuffs and metamorphosed mudstones at depths of 0.9 to 1.8 km and temperatures ~180 to 210° C. Drilling-induced tensile fractures in image logs from well 27-15 show that the least horizontal principal stress (Shmin) is consistent with normal faulting on ESE- and WNW-dipping fractures mapped at the surface and seen in the image logs. A hydraulic fracturing stress measurement indicates that the magnitude of Shmin at ~0.93 km depth is 0.61 of the calculated vertical stress. Coulomb failure calculations using these stresses together with measurements of friction and permeability on core predict that dilatant shear failure should be induced on pre-existing conjugate normal faults once pore pressures are increased ~2.5 MPa or more above ambient values, generating a zone of enhanced permeability elongated in the direction toward active geothermal wells ~0.5 km to the SSW. Hydraulic stimulation of well 27-15 began in September 2010 by injecting water into the open-hole interval between the casing shoe at 0.9 km depth and a temporary cement plug at 1.1 km. Stimulation was monitored by combined surface and down-hole seismic monitoring, inter-well tracer testing and periodic pressure-temperature-flowmeter logging. An initial stage of low-pressure (shear) stimulation was conducted for ~100 days at a series of pressure steps

  20. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Harris, Joel

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  1. Addressing Questions on Life in Terrestrial Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Hedlund, Brian P.; Li, Wen-Jun; Zhang, Chuanlun

    2013-09-01

    A binational research team met on the campus of Yunnan University in Kunming, China, to discuss recent progress and future plans to leverage binational support to address major questions on life in terrestrial geothermal systems. The symposium included about 90 faculty, postdocs, and students from China and about 30 faculty, postdocs, students, and high school teachers from the United States. The introductory session reviewed the progress of the Tengchong PIRE project funded by the U.S. National Science Foundation (NSF) Partnerships for International Research and Education (PIRE) program (OISE-0836450). It also introduced a new collaborative project funded as a Key Project of International Cooperation by the Chinese Ministry of Science and Technology (MOST, 2013DFA31980), which is the first project funded through a memorandum of understanding between NSF and MOST to promote China-U.S. collaboration.

  2. Geothermal system at 21°N, East Pacific Rise: physical limits on geothermal fluid and role of adiabatic expansion

    USGS Publications Warehouse

    Bischoff, J.L.

    1980-01-01

    Pressure-volume-temperature relations for water at the depth of the magma chamber at 21°N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420°C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350°C, but metal solubilization at 400°C and above is effective even at such low ratios. It is proposed that the 420°C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.

  3. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  4. Geothermal System at 21{degrees}N, East Pacific Rise: Physical Limits on Geothermal Fluid and Role of Adiabatic Expansion.

    PubMed

    Bischoff, J L

    1980-03-28

    Pressure-volume-temperature relations for water at the depth of the magma chamber at 21 degrees N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420 degrees C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350 degrees C, but metal solubilization at 400 degrees C and above is effective even at such low ratios. It is proposed that the 420 degrees C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.

  5. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Hackel, Scott Paul; Pertzborn, Amanda

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or geothermal systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  6. Coniform stromatolites from geothermal systems, North Island, New Zealand

    USGS Publications Warehouse

    Jones, B.; Renaut, R.W.; Rosen, Michael R.; Ansdell, K.M.

    2002-01-01

    Coniform stromatolites are found in several sites in the Tokaanu and Whakarewarewa geothermal areas of North Island, New Zealand. At Tokaanu, silicification of these stromatolites is taking place in Kirihoro, a shallow hot springfed pool. At Whakarewarewa, subfossil silicified coniform stromatolites are found on the floor of "Waikite Pool" on the discharge apron below Waikite Geyser, and in an old sinter succession at Te Anarata. The microbes in the coniform stromatolites from Tokaanu, Waikite Pool, and Te Anarata have been well preserved through rapid silicification. Nevertheless, subtle differences in the silicification style induced morphological variations that commonly mask or alter morphological features needed for identification of the microbes in terms of extant taxa. The coniform stromatolites in the New Zealand hotspring pools are distinctive because (1) they are formed of upward tapering (i.e., conical) columns, (2) neighboring columns commonly are linked by vertical sheets or bridges, (3) internally, they are formed of alternating high- and low-porosity laminae that have a conical vertical profile, and (4) Phormidium form more than 90% of the biota. As such, they are comparable to modern coniform mats and stromatolites found in the geothermal systems of Yellowstone National Park and ice-covered lakes in Antarctica. Formation of the coniform stromatolites is restricted to pools that are characterized by low current energy and a microflora that is dominated by Phormidium. These delicate and intricate stromatolites could not form in areas characterized by fast flowing water or a diverse microflora. Thus, it appears that the distribution of these distinctive stromatolites is controlled by biological constraints that are superimposed on environmental needs.

  7. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  9. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  10. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  11. Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.

  12. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    SciTech Connect

    Love, Diane

    2015-12-20

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  13. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley

    SciTech Connect

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-03-02

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

  14. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    SciTech Connect

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  15. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    SciTech Connect

    Siler, Drew L; Brett, Mayhew; Faulds, James E

    2012-12-03

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  16. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    NASA Astrophysics Data System (ADS)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  17. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    SciTech Connect

    Majer, Ernie; Nelson, James; Robertson-Tait, Ann; Savy, Jean; Wong, Ivan

    2012-01-01

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  18. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  19. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  20. Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2010

    SciTech Connect

    Mansure, A.J.

    2010-12-31

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. EROI analyses of geothermal energy are either out of date or presented online with little supporting documentation. Often comparisons of energy systems inappropriately use 'efficiency' when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electric energy delivered to the consumer compared to the energy consumed to build, operate, and decommission the facility.

  1. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  2. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong

    2016-06-01

    Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.

  3. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  4. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  5. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  6. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  7. Modeling of a deep-seated geothermal system near Tianjin, China.

    PubMed

    Xun, Z; Mingyou, C; Weiming, Z; Minglang, L

    2001-01-01

    A geothermal field is located in deep-seated basement aquifers in the northeastern part of the North China Plain near Tianjin, China. Carbonate rocks of Ordovician and Middle and Upper Proterozoic age on the Cangxian Uplift are capable of yielding 960 to 4200 m3/d of 57 degrees C to 96 degrees C water to wells from a depth of more than 1000 m. A three-dimensional nonisothermal numerical model was used to simulate and predict the spatial and temporal evolution of pressure and temperature in the geothermal system. The density of the geothermal water, which appears in the governing equations, can be expressed as a linear function of pressure, temperature, and total dissolved solids. A term describing the exchange of heat between water and rock is incorporated in the governing heat transport equation. Conductive heat flow from surrounding formations can be considered among the boundary conditions. Recent data of geothermal water production from the system were used for a first calibration of the numerical model. The calibrated model was used to predict the future changes in pressure and temperature of the geothermal water caused by two pumping schemes. The modeling results indicate that both pressure and temperature have a tendency to decrease with time and pumping. The current withdrawal rates and a pumping period of five months followed by a shut-off period of seven months are helpful in minimizing the degradation of the geothermal resource potential in the area.

  8. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2012-12-03

    Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks and the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west

  9. Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways and Discovering Blind Geothermal Systems in the Great Basin Region, Western USA: A Progress Report

    SciTech Connect

    Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.; Shevenell, Lisa A.; Siler, Drew L.; dePolo, Craig M.; Hammond, William C.; Kreemer, Corne; Oppliger, G.; Wannamaker, P.; Queen, John H.; Visser, Charles

    2015-09-02

    We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilation tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is defining

  10. Sensitivity of predicted scaling and permeability in Enhanced Geothermal Systems to Thermodynamic Data and Activity Models

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj

    2010-05-01

    A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the

  11. The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems

    SciTech Connect

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

  12. Validation of hydrogeochemical codes using the New Zealand geothermal system

    SciTech Connect

    Glassley, W.

    1992-12-01

    Evaluation of the performance of a nuclear waste repository requires that numerous parameters be evaluated over a broad range of conditions using codes. The capabilities of these codes must be demonstrated using complex natural systems in which the processes of interest have already occurred or are occurring. We have initiated such a test of geochemical and hydrological simulation codes, using the geothermal areas of the Taupo Volcanic Zone, New Zealand. Areas that have been evolving for a few tens to a few tens of thousands of years are of particular interest. This effort will help determine the extent to which simplified modeling approaches can be used in performance assessment calculations. To guide the selection of natural systems, we are attempting to map potential repository regions dominated by equilibrium processes and those dominated by kinetically controlled processes. To do so, fluid velocities and temperatures were computed using the V-TOUGH code assuming an equivalent continuum, dual porosity model. These results were then used to compare advective fluid flow rate with silica dissolution/precipitation rates, using Damkoehler numbers. Only the first 5000 years of repository operation were considered. The results identify a migrating envelope of kinetically dominated activity several meters wide in the vicinity of waste packages that contrasts with other parts of the repository. The Lake Rotokawa region, New Zealand, has been used in our first test effort, since it contains environments that are examples of kinetic and equilibrium processes. The results of tests involving equilibrium processes show excellent correspondence between simulated and observed mineral alteration sequences, although discrepancies in some mineral parageneses demonstrate that operator decisions in conducting simulations must be considered an integral part of validation efforts.

  13. Geochemical properties of groundwater used to geothermal cooling and heating system

    NASA Astrophysics Data System (ADS)

    Kim, Namju; Park, Youngyun; Lee, Jin-Yong

    2013-04-01

    Recently, geothermal cooling and heating system has been used in many countries to reduce emission of greenhouse gases such as water vapour and carbon dioxide (CO2). Especially, CO2 is emitted from combustion of fossil fuel used for cooling and heating of buildings. Therefore, many countries make an effort to reduce amount of CO2 emitted from use of fossil fuel. The geothermal cooling and heating system is good to reduce amount of CO2. Especially, open loop geothermal system shows good thermal efficiency. However, groundwater contaminations will be considered because groundwater is directly used in open loop geothermal system. This study was performed to examine chemical and isotope compositions of groundwater used in open loop geothermal system and to evaluate influence of the system on groundwater using hydrochemical modeling program (preequc). Water temperature of well used in the system (GH) and well around the system (GB) ranged from 8.4 to 17.0 ° and from 15.1 to 18.0 °, respectively. The water temperature in GH was lower than that in GB because of heating mode of the system. Also, EC in GH and GB showed significant difference. The variation trend of EC was different at each site where the system was installed. These results mean that main factors controlling EC in GH was not the system. Generally, EC of groundwater was influenced by water-rock interaction. However, DO and Eh hardly showed significant difference. The operation period of the system observed in this study was short than 5 years. Therefore, influence of the open loop geothermal system on groundwater did not shown significantly. However, while Fe2+ and Mn2+ were not observed in GB, these components were measured in GH. The concentrations of Fe2+ and Mn2+ in GH ranged from 0.02 to 0.14 mg/L and from 0.03 to 0.18 mg/L, respectively. These results mean that redox conditions of GH were changed by the system little by little. In this study, influence of the open loop geothermal system on groundwater

  14. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  15. (Sulfide-oxide-silicate phase equilibria and associated fluid inclusion properties in the Salton Sea geothermal system, California)

    SciTech Connect

    McKibben, M.A.

    1988-06-01

    Our studies involved petrographic, fluid inclusion, geochemical and stable isotopic studies of drillcores and fluids from the Salton Sea geothermal system. Our initial studies revealed the presence of previously-unrecognized evaporitic anhydrite at depth throughout the geothermal system. The high salinity of the Salton Sea geothermal brines previously had been attributed to low-temperature dissolution of surficial evaporitic deposits by meteoric waters. Our microthermometric studies of halite--containing fluid inclusions in the meta-evaporites indicated that the high salinity of the geothermal brines is derived in part from the hydrothermal metamorphism of relatively deeply-buried salt and evaporites. In addition, our research concentrated on mineralized fractures in drillcores.

  16. A geochemical model of the Platanares geothermal system, Honduras

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Goff, F.; Shevenell, L.; Stallard, M.L.; Trujillo, P.E.; Counce, D.

    1991-01-01

    Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at 450 to 680 m depth. Large volume artesian flows of 160-165??C, predominantly bicarbonate water are chemically similar to, but slightly less saline than widespread boiling hot-spring waters. The chemistry of the produced fluid is dominated by equilibrium reactions in sedimentary rocks at greater depths and higher temperatures than those measured in the wells. Chemical, isotope, and gas geothermometers indicate a deep fluid temperature of 200-245??C and reflect a relatively short residence time in the fractures feeding the wells. Chloride-enthalpy relations as well as isotopic and chemical compositions of well discharges, thermal springs, and local cold waters support a conceptual model of ascending high-temperature (minimum 225??C) parent fluid that has cooled conductively to form the 160-165??C shallow (to 680 m) fluid encountered by the wells. The hot-spring waters are formed by boiling and steam loss from more or less conductively cooled parent fluid. The more dilute boiling spring waters (Cl = ???32 mg/kg) have cooled from > 225??C to about 160??C by conduction and from 160??C to 98??C by boiling. The most concentrated boiling spring waters (Cl = 37 mg/kg) have cooled from > 225??C to about 200??C by conduction and from 200??C to 98??C by boiling. Intermediate concentrations reflect mixed cooling paths. ?? 1991.

  17. Relation between structure and low-temperature geothermal systems in Fukuoka city, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Saibi, H.; Nishijima, J.; Hirano, T.; Fujimitsu, Y.; Ehara, S.

    2008-08-01

    The Fukuoka area is located in the southwestern part of Japan. The Yokote-Ijiri area, located in the southern part of Fukuoka city, has several low-temperature geothermal systems, including eleven hot springs. From 1996 to 2008, the Fukuoka area was investigated by gravity survey, using Scintrex CG-3 and CG-3M gravimeters, in an attempt to delineate its subsurface structure. The surveys were intended to improve the understanding of the relation between the geothermal systems and the subsurface structure as well as to locate the active faults in the surveyed area, which are responsible for generating large earthquakes. The gravity data were analyzed using integrated gradient interpretation techniques, such as the Horizontal Gradient (HG), Tilt Derivative (TDR), and Euler deconvolution methods. With these techniques, many faults were detected, including the famous Kego fault, which is an active fault in Fukuoka city. A 2-D gravity model was constructed to show the relationship between the faults and the geothermal systems. The results of the present study will hopefully lead to an understanding of the relationships between the interpreted faults and the location of the low-temperature geothermal systems and possibly aid in future geothermal exploration of the area.

  18. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January 1984-September 1984

    SciTech Connect

    Smith, K.

    1984-09-01

    Progress is reported on a project to use the 130/sup 0/F geothermal resource in central Texas. The system for cascading geothermal energy through aquaculture and greenhouse systems was completed and the first shrimp harvest was held. (MHR)

  19. Generic Guide Specification for Geothermal Heat Pump Systems

    SciTech Connect

    Thomas, WKT

    2000-04-12

    The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the

  20. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  1. Heat and mass transfer in the Klamath Falls, Oregon, geothermal system

    SciTech Connect

    Prucha, R.H.

    1987-05-01

    Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has perplexed researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Based on reevaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. A comprehensive 3-dimensional numerical model, based on the proposed conceptual model is also presented. This numerical model incorporates all of the main reservoir characteristics. Hot water recharge flows from depth, along a large normal fault, and flows into near surface permeable strata where it loses heat to surrounding beds and to mixing with cold regional groundwaters introduced from the north. By matching calculated and measured temperatures and pressures, hot and cold water recharge rates and the permeability distribution for the geothermal system are estimated. A semi-analytic solution and simple lumped parameter methods are also compared to the numerical analysis. Results suggest that the flow patterns within the geothermal system at Klamath Falls are complex and intimately associated with the permeability distribution and the pressures and temperatures at depth, within the faults.

  2. GEOLOGIC AND GEOCHEMICAL INVESTIGATIONS OF THE MEAGER CREEK GEOTHERMAL SYSTEM, BRITISH COLUMBIA, CANADA

    SciTech Connect

    Moore, J.N.; Adams, M.C.; Stauder, J.J.

    1985-01-22

    Meager Creek is perhaps the most intensely explored geothermal system occurring in the Cascade and Garibaldi Volcanic Belts. This paper describes the results of new lithologic, petrographic, X-ray, isotopic, and geochemical investigations of core and cuttings from the Meager Creek wells. The data demonstrate that alteration related to the present geothermal system is superimposed on basement rocks which were metamorphosed and intruded by dioritic stocks prior to the onset of volcanism. The geothermal alteration developed mainly after emplacement of hypabyssal dikes associated with Meager Mountain volcanism and is characterized by mineral assemblages consisting primarily of sheet silicates, quartz, carbonate, hematite, iron oxides, pyrite, and minor epidote, potassium feldspar, actinolite and biotite. Permeabilities within the upper portions of the reservoir are low, reflecting filling of the fracture systems by carbonate. Petrographic observations suggest that sealing of the fractures accompanied hydrothermal brecciation and boiling of the fluids.

  3. [Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report

    SciTech Connect

    Blackwell, D.D.

    1998-04-25

    During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

  4. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  5. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2013-10-27

    The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern end of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal fault

  6. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  7. Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility

    SciTech Connect

    Not Available

    1981-10-26

    The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

  8. Structural compartmentalisation of a geothermal system, the Torre Alfina field (central Italy)

    NASA Astrophysics Data System (ADS)

    Vignaroli, Gianluca; Pinton, Annamaria; De Benedetti, Arnaldo A.; Giordano, Guido; Rossetti, Federico; Soligo, Michele; Berardi, Gabriele

    2013-11-01

    Recent surging of renewed industrial interest in the exploration of low and medium enthalpy geothermal fields makes the accurate assessment of the geothermal potential essential to minimise uncertainties during both exploration and exploitation. The Torre Alfina field is a case of abandoned, but promising, geothermal field of central Italy where the roles of the internal structural setting and of the recharge areas on the hydrothermal circulation are largely unconstrained. In this paper, field structural data integrated with geomorphic lineament analysis document the occurrence of post-orogenic deformation structures controlling the compartmentalisation of the Torre Alfina geothermal field. Strike-slip and subordinate normal fault systems (with associated network fractures) cut and dislocate the internal architecture of the reservoir and prevent its hydraulic connection with Mount Cetona, considered to be the recharge area and where hydrothermal manifestation, including travertine deposition, occurs. 230Th/234U radiometric dating of superposed travertine units gives 200, 120 and 90 ka respectively, inferred to correspond to the age of the fossil hydrothermal circulation during tectonic activity. The results have been used for illustrating a new geological conceptual model for the Torre Alfina area where the geothermal system is composed of different compartments. Tectonic structures define the main boundaries between compartments, helping the understanding of why productive and non-productive wells were found in apparently similar structural settings within the Torre Alfina field.

  9. Geothermal direct applications hardware systems development and testing. 1979 summary report

    SciTech Connect

    Keller, J.G.

    1980-03-01

    Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

  10. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  11. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    SciTech Connect

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal well doublet

  12. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGES

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  13. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    SciTech Connect

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

  14. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  15. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  16. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  17. Seismic methods for resource exploration in enhanced geothermal systems

    SciTech Connect

    Gritto, Roland; Majer, Ernest L.

    2002-06-12

    A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

  18. Vertical arrays for fracture mapping in geothermal systems

    SciTech Connect

    Albright, J.N.; Rutledge, J.T.; Fairbanks, T.D.; Thomson, J.C.; Stevenson, M.A.

    1998-12-01

    In collaboration with UNOCAL Geothermal Operations, Los Alamos National Laboratory assessed the feasibility of using vertical arrays of borehole seismic sensors for mapping of microseismicity in The Geysers geothermal field. Seismicity which arises from minute displacements along fracture or fault surfaces has been shown in studies of seismically active oil reservoirs to be useful in identifying fractures affected by and possibly contributing to production. Use of retrievable borehole seismic packages at The Geysers was found to reduce the threshold for detection of microearthquakes by an estimated 2--3 orders of magnitude in comparison to surface-based sensors. These studies led to the design, materials selection, fabrication, and installation of a permanent array of geophones intended for long term seismic monitoring and mapping of fractures in the vicinity of the array at The Geysers.

  19. NATIONAL GEOTHERMAL DATA SYSTEM: AN EXEMPLAR OF OPEN ACCESS TO DATA

    SciTech Connect

    Blackman, Harold; Blackman, Harold M.; Blackman, Harold M.; Blackman, Harold; Blackman, Harold; Blackman, Harold

    2013-11-15

    The formal launch of National Geothermal Data System (NGDS – www.geothermaldata.org) in 2014 will provide open access to technical geothermal-relevant data from all of the Department of Energy- sponsored geothermal development and research projects and geologic data from all 50 states. By making data easily discoverable and accessible this system will open new exploration opportunities and shorten project development. The prototype data system currently includes multiple data nodes, and nationwide data online and available to the public, indexed through a single catalog under construction at http://search.geothermaldata.org. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Additional data record is being added by companion projects run by Boise State University, Southern Methodist University, and the USGS. The National Renewable Energy Laboratory is managing the Geothermal Data Repository, an NGDS node that will be a clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original implementation will

  20. National Geothermal Data System: an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational

  1. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    SciTech Connect

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  2. Selected data for low-temperature (less than 90 degrees C) geothermal systems in the United States; reference data for U.S. Geological Survey Circular 892

    USGS Publications Warehouse

    Reed, Marshall J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-01-01

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  3. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  4. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  5. On the influence of a geothermal system on ground deformation during a volcanic eruption

    NASA Astrophysics Data System (ADS)

    Zarin, G. A.; Melnik, O. E.; Tsvetkova, Yu. D.; Afanasyev, A. A.

    2016-12-01

    The measurement of ground deformation during a volcanic eruption is one of the main tools for the monitoring of active volcanoes. The deformation is caused by processes that are occurring in the chamber-conduit system, as well as in the geothermal systems that are heated by ascending magma. The influence of the magma chamber and, to a lesser degree, of the conduit on deformation in host rocks is sufficiently well known theoretically, but no studies have been made to investigate the effects of a hydrothermal system on measurable ground deformation during a volcanic eruption. We made a comparative study of the ground deformation due to two deformation-initiating sources: a fissure conduit with a specified excess pressure and a hydrothermal system that was heated by magma flow. We show that the vertical deformation due to the activity of a geothermal system can exceed that due to magma flow by factors of several times. The spatial distributions of the deformation are also substantially different. The vertical displacement due to a geothermal system has its maximum above the fissure conduit, while when the pressure varies in the conduit it induces a local subsidence of the ground; the maximum ground uplift is at a distance of approximately twice the depth to the top of the conduit. The influence of the geothermal system should be incorporated in interpretations of data that come from the monitoring of active volcanoes.

  6. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  7. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  8. HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1983-01-01

    The calculation of high-temperature geothermal resources ( greater than 150 degree C) in the United States has been done by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yielded an estimate of 23,000 MW//e for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MW//e for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  9. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  10. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US

  11. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  12. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  13. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  14. Mono County geothermal activity

    SciTech Connect

    Lyster, D.L.

    1986-01-01

    Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

  15. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  16. A materials and equipment review of selected US geothermal district heating systems

    SciTech Connect

    Rafferty, K.D.

    1989-07-01

    This collection of information was assembled for the benefit of future geothermal system designers and existing system operators. It is intended to provide insight into the experience gained from the operation of 13 major geothermal systems over the past several years. Each chapter contains six or seven sections depending upon the type of system: introduction, production facilities, distribution, customer connections, metering and disposal. Some chapters, covering systems which incorporate a closed distribution design include a section on the central mechanical room. Each section details the original equipment and materials installed in that portion of the system. Following each section is a discussion of the subsequent problems, solutions and modifications relating to the equipment. The extent to which information was available varied from system to system. This is reflected in the length and level of detail of the chapters.

  17. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia.

    PubMed

    O'Gorman, Eoin J; Benstead, Jonathan P; Cross, Wyatt F; Friberg, Nikolai; Hood, James M; Johnson, Philip W; Sigurdsson, Bjarni D; Woodward, Guy

    2014-11-01

    Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.

  18. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2012-09-30

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.

  19. Alteration mineralogy of the Dixie Valley geothermal system, Nevada

    SciTech Connect

    Lutz, S.J.; Moore, J.N.; Benoit, D.

    1996-12-31

    Petrographic studies along the Stillwater fault zone in Dixie Valley, Nevada document a variety of overlapping alteration assemblages that represent different physical and chemical conditions. At depth in the northern portion of the Dixie Valley geothermal field, wairakite, illite-smectite, and chalcedonic quartz are present in the hanging wall where measured, static and flowing temperatures are close to 248{degrees}C. Although the presence of wairakite is consistent with the observed temperatures, both the illite-smectite and chalcedonic quartz suggest lower temperature conditions. In outcrop, samples from the footwall of the Stillwater fault contain quartz, kaolin, smectite, dolomite, biotite, and epidote. Crosscutting relationships indicate that quartz and kaolin postdate formation of older biotite and epidote veins. The superposition of lower temperature assemblages (kaolin, dolomite, smectite) upon higher temperature minerals (biotite, epidote) characterizes the alteration in the footwall, whereas, the superposition of higher temperature minerals (wairakite) upon lower temperature phases (chalcedonic quartz, illite-smectite) is characteristic of the alteration in the geothermal reservoir within the hanging wall. This retrograde and prograde progression of alteration should be expected along this active normal fault as the footwall is uplifted and exhumed through time, and simultaneously, the hanging wall is down dropped.

  20. Human Health Science Building Geothermal Heat Pump Systems

    SciTech Connect

    Leidel, James

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 vertical borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.

  1. Update to Enhanced Geothermal System Resource Potential Estimate: Preprint

    SciTech Connect

    Augustine, Chad

    2016-10-01

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned in 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.

  2. Seismic tomography and dynamics of geothermal and natural hydrothermal systems in the south of Bandung, Indonesia

    NASA Astrophysics Data System (ADS)

    Jousset, Philippe; Sule, Rachmat; Diningrat, Wahyuddin; Syahbana, Devy; Schuck, Nicole; Akbar, Fanini; Kusnadi, Yosep; Hendryana, Andri; Nugraha, Andri; Ryannugroho, Riskiray; Jaya, Makki; Erbas, Kemal; Bruhn, David; Pratomo, Bambang

    2015-04-01

    The structure and the dynamics of geothermal reservoirs and hydrothermal systems allows us to better assess geothermal resources in the south of Bandung. A large variety of intense surface manifestations like geysers, hot-steaming grounds, hot water pools, and active volcanoes suggest an intimate coupling between volcanic, tectonic and hydrothermal processes in this area. We deployed a geophysical network around geothermal areas starting with a network of 30 seismic stations including high-dynamic broadband Güralp and Trillium sensors (0.008 - 100 Hz) and 4 short-period (1 Hz) sensors from October 2012 to December 2013. We extended the network in June 2013 with 16 short-period seismometers. Finally, we deployed a geodetic network including a continuously recording gravity meter, a GPS station and tilt-meters. We describe the set-up of the seismic and geodetic networks and we discuss observations and results. The earthquakes locations were estimated using a non-linear algorithm, and revealed at least 3 seismic clusters. We perform joint inversion of hypo-center and velocity tomography and we look at seismic focal mechanisms. We develop seismic ambient noise tomography. We discuss the resulting seismic pattern within the area and relate the structure to the distribution of hydrothermal systems. We aim at searching possible structural and dynamical links between different hydrothermal systems. In addition, we discuss possible dynamical implications of this complex volcanic systems from temporal variations of inferred parameters. The integration of those results allows us achieving a better understanding of the structures and the dynamics of those geothermal reservoirs. This approach contributes to the sustainable and optimal exploitation of the geothermal resource in Indonesia.

  3. Long-term Sustainability of Fracture Conductivity in Geothermal Systems using Proppants

    SciTech Connect

    Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer; Clay Jones; Joe Moore

    2016-02-01

    Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examine the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.

  4. Chlorine isotope geochemistry of Icelandic thermal fluids: Implications for geothermal system behavior at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Barnes, Jaime D.

    2016-09-01

    The chlorine isotope composition of thermal fluids from Iceland were measured in order to evaluate the source of chlorine and possible chlorine isotope fractionation in geothermal systems at divergent plate boundaries. The geothermal systems studied have a wide range of reservoir temperatures from 40 to 437 °C and in-situ pH of 6.15 to 7.15. Chlorine concentrations range from 5.2 to 171 ppm and δ37 Cl values are -0.3 to + 2.1 ‰ (n = 38). The δ37 Cl values of the thermal fluids are interpreted to reflect the source of the chlorine in the fluids. Geothermal processes such as secondary mineral formation, aqueous and vapor speciation and boiling were found to have minimal effects on the δ37 Cl values. However, further work is needed on incorporation of Cl into secondary minerals and its effect on Cl isotope fractionation. Results of isotope geochemical modeling demonstrate that the range of δ37 Cl values documented in the natural thermal fluids can be explained by leaching of the basaltic rocks by meteoric source water under geothermal conditions. Magmatic gas partitioning may also contribute to the source of Cl in some cases. The range of δ37 Cl values of the fluids result mainly from the large range of δ37 Cl values observed for Icelandic basalts, which range from -0.6 to + 1.2 ‰.

  5. Fractal characterization of subsurface fracture network for geothermal energy extraction system

    SciTech Connect

    Watanabe; Takahashi, H.

    1993-01-28

    As a new modeling procedure of geothermal energy extraction systems, the authors present two dimensional and three dimensional modeling techniques of subsurface fracture network, based on fractal geometry. Fluid flow in fractured rock occurs primarily through a connected network of discrete fractures. The fracture network approach, therefore, seeks to model fluid flow and heat transfer through such rocks directly. Recent geophysical investigations have revealed that subsurface fracture networks can be described by "fractal geometry". In this paper, a modeling procedure of subsurface fracture network is proposed based on fractal geometry. Models of fracture networks are generated by distributing fractures randomly, following the fractal relation between fracture length r and the number of fractures N expressed with fractal dimension D as N =C·r-D, where C is a constant to signify the fracture density of the rock mass. This procedure makes it possible to characterize geothermal reservoirs by the parameters measured from field data, such as core sampling. In this characterization, the fractal dimension D and the fracture density parameter C of a geothermal reservoir are used as parameters to model the subsurface fracture network. Using this model, the transmissivities between boreholes are also obtained as a function of the fracture density parameter C, and a parameter study of system performances, such as heat extraction, is performed. The results show the dependence of thermal recovery of geothermal reservoir on fracture density parameter C.

  6. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  7. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  8. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  9. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field

    SciTech Connect

    Steven Enedy

    2001-12-14

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

  10. Methodology of determining the uncertainty in the accessible geothermal resource base of identified hydrothermal convection systems

    USGS Publications Warehouse

    Nathenson, Manuel

    1978-01-01

    In order to quantify the uncertainty of estimates of the geothermal resource base in identified hydrothermal convection systems, a methodology is presented for combining estimates with uncertainties for temperature, area, and thickness of a geothermal reservoir into an estimate of the stored energy with uncertainty. Probability density functions for temperature, area, and thickness are assumed to be triangular in form. In order to calculate the probability distribution function for the stored energy in a single system or in many systems, a computer program for aggregating the input distribution functions using the Monte-Carlo method has been developed. To calculate the probability distribution of stored energy in a single system, an analytical expression is also obtained that is useful for calibrating the Monte Carlo approximation. For the probability distributions of stored energy in a single and in many systems, the central limit approximation is shown to give results ranging from good to poor.

  11. Chemical geothermometers and mixing models for geothermal systems

    USGS Publications Warehouse

    Fournier, R.O.

    1977-01-01

    Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum subsurface temperatures. Interpretation is easiest where several hot or warm springs are present in a given area. At this time the most widely used quantitative chemical geothermometers are silica, Na/K, and Na-K-Ca. ?? 1976.

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  13. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect

    Bruno, Mike; Detwiler, Russell L; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

  14. Geophysical logging case history of the Raft River geothermal system, Idaho

    SciTech Connect

    Applegate, J.K.; Moens, T.A.

    1980-04-01

    Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation scheme from a minimum of data sets. The Raft River geothermal system occurs in the Raft River Valley, which is a portion of the Basin and Range geomorphic province located in south central Idaho, south of the Snake River Plain. The valley is a late Cenozoic structural downwarp bounded by faults on the west, south, and east. The downwarp is filled with Tertiary and Paleozoic sediments, metasediments, and volcanics that overlie Precambrian rocks. The variety of rock types, the presence of alteration products, and the variability of fracturing make reliable interpretations difficult. However, the cross plotting of various parameters has allowed a determination of rock types and an analysis of the degree of alteration and the density of fractures. Thus, one can determine the relevant data necessary to assess a geothermal reservoir in similar rock types and use cross plots to potentially define the producing zones.

  15. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  16. GTO-DOE/Industry Cost Shared Research; Microseismic Characterization and Monitoring in Geothermal Systems

    SciTech Connect

    Majer, E.L.

    1989-03-21

    The application of passive seismic studies in geothermal regions have undergone significant changes in the last 15 years. The primary application is now in the monitoring of subsurface processes, rather than exploration. A joint Geothermal Technology Organization (GTO) industry/DOE, monitoring project involving GEO, Unocal Geothermal, and LBL, was carried out at The Geysers geothermal field in northern California using a special high frequency monitoring system. This several-month-long experiment monitored the discrete and continuous seismic signals before, during, and after a fluid stimulation of a marginal production well. Almost 350,000 liters of water were pumped into the well over a four-hour, and a three-hour time period for two consecutive days in June of 1988. No significant changes in the background seismicity or the seismic noise were detected during the monitoring period. Analysis of the background seismicity did indicate that the earthquakes at The Geysers contain frequencies higher than 50 Hz. and possibly as high as 100 Hz.

  17. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    SciTech Connect

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    ''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near

  18. Geochemistry of Multicomponent Fluid Phases in the Krafla High-Enthalpy Geothermal System, NE Iceland

    NASA Astrophysics Data System (ADS)

    Hermanska, M.; Stefansson, A.

    2014-12-01

    Many active volcanic systems are associated with high-enthalpy geothermal systems. For systems characterized by shallow magmatic intrusions, liquid water often predominates at depth with two-phase fluids, vapor and liquid water, occurring at shallower depth due to depressurization boiling. Close to the intrusion, superheated or supercritical vapor may also occur. The Krafla high-enthalpy geothermal system provides an ideal opportunity to study such volcanic geothermal systems. Over forty wells have been drilled into the system with fluid discharge temperatures of <200°C to ~450°C and enthalpy between <900 and >3200 kJ/kg. In this study, geochemical modelling of multicomponent fluid phases associated with shallow magmatic intrusions were conducted across variable temperature, pressure and enthalpy conditions and the results compared with the fluid geochemistry of the Krafla system. Within the reservoir at geothermal temperatures (250-300°C) liquid water predominates. Under these conditions, the concentrations of most major elements are controlled by equilibrium with secondary minerals. Geochemical modelling and observations at Krafla support these findings. Around the magma intrusions believed to be at shallow depth at Krafla, superheated vapor is formed. Such fluid was discharged by the IDDP-1 well at 450°C and 140 bar. According to the geochemical modelling, superheated vapor is produced upon heat addition by the intrusion to the surrounding geothermal water resulting in boiling to dryness, precipitation of non-volatiles (Si, Fe, Mg, Al, SO4, Na, K, Ca) whereas volatiles (CO2, H2S, Cl, F, B) are unaffected. By mass, quartz is the predominant secondary mineral around the intrusions. The chemical composition of the modelled and observed superheated vapor compared well. Upon ascent and depressurization of the liquid geothermal water and the superheated vapor various processes may occur, including superheated vapor condensation, mixing and depressurization boiling

  19. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  20. GEOSYS: An X/Motif-based system for analysis and management of geothermal data

    SciTech Connect

    Stevens, J.L.; Garg, S.K.; Luu, L.; Barker, T.G.; Pritchett, J.W.; Truesdell, A.H.; Luis Quijano

    1993-01-28

    The Geothermal Data Management System (GEOSYS) has been developed to allow storage, retrieval, and analysis of the large volume of data associated with a geothermal reservoir, including well drilling data, well log data, production (chemical and flow) data, and geographical data. The system allows the user to display overlays of well locations, faults, and surface features on maps or topographic images. Subsurface cross-sections can be displayed by selecting any two points on the map. Cross sections show subsurface topography together with the projections of wells along the cross section. The structure ofeach individual well can also be displayed in detail. Downhole well logs can be selected, displayed, and expanded to arbitrary scale. Time histories of production data can be displayed for the field and for each well. Data from the Cerro Prieto geothermal field has been used for development and testing of the system. This type of system has been made possible by recent advances in hardware and software technology, and the dramatic reduction in cost of high speed workstations and disk storage. GEOSYS was developed using the X Window System and the OSF/Motif widget set. The X Window System was designed specifically to provide hardware independence for interactive systems based on bit-mapped graphics with a Graphical User Interface (GUI). Systems developed using X run on most modem workstations, and can run across a network with the application being resident on only one computer, but accessible to all others.

  1. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    SciTech Connect

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  2. Exergy analysis of the performance of low-temperature district heating system with geothermal heat pump

    NASA Astrophysics Data System (ADS)

    Sekret, Robert; Nitkiewicz, Anna

    2014-03-01

    Exergy analysis of low temperature geothermal heat plant with compressor and absorption heat pump was carried out. In these two concepts heat pumps are using geothermal water at 19.5 oC with spontaneous outflow 24 m3/h as a heat source. The research compares exergy efficiency and exergy destruction of considered systems and its components as well. For the purpose of analysis, the heating system was divided into five components: geothermal heat exchanger, heat pump, heat distribution, heat exchanger and electricity production and transportation. For considered systems the primary exergy consumption from renewable and non-renewable sources was estimated. The analysis was carried out for heat network temperature at 50/40 oC, and the quality regulation was assumed. The results of exergy analysis of the system with electrical and absorption heat pump show that exergy destruction during the whole heating season is lower for the system with electrical heat pump. The exergy efficiencies of total system are 12.8% and 11.2% for the system with electrical heat pump and absorption heat pump, respectively.

  3. Geology of the Beowawe geothermal system, Eureka and Lander Counties, Nevada

    SciTech Connect

    Struhsacker, E.M.

    1980-07-01

    A geologic study is described undertaken to evaluate the nature of structural and stratigraphic controls within the Beowawe geothermal system, Eureka and Lander Counties, Nevada. This study includes geologic mapping at a scale of 1:24,000 and lithologic logs of deep Chevron wells. Two major normal fault systems control the configuration of the Beowawe geothermal system. Active hot springs and sinter deposits lie along the Malpais Fault zone at the base of the Malpais Rim. The Malpais Rim is one of several east-northeast-striking, fault-bounded cuestas in north central Nevada. A steeply inclined scarp slope faces northwest towards Whirlwind Valley. The general inclination of the volcanic rocks on the Malpais dip slope is 5/sup 0/ to 10/sup 0/ southeast.

  4. Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2011

    SciTech Connect

    Mansure, A.J.

    2011-12-31

    Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. The embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished plant. Also critical are the system boundaries and value of the energy - heat is not as valuable as electrical energy.

  5. Hybrid System for Snow Melting and Space Cooling by using Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Hamada, Yasuhiro; Nakamura, Makoto; Kubota, Hideki

    This paper aims to develop a hybrid system for snow melting and space cooling by using geothermal energy in order to improve the availability factor of the borehole heat exchanger. Based on field experiments, a feasibility evaluation of the system was performed. First, snow melting experiments using geothermal energy were performed and the comparatively good road surface situation was realized. The primary energy reduction rate over 70% was shown in comparison with the conventional snow melting system. Second, regarding a snow melting tank with the hot water piping, it was clarified that the snow melting was possible even in the low temperature water of approximately 9-10°C by using water sprinkling in the tank jointly. Finally, by supplying the space cooling and dehumidification panel with the cold through the borehole heat exchanger in summer, it was shown that the good cooling effect was obtained.

  6. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect

    Lewis, James

    2016-08-05

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  7. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect

    Cuprak, Greg

    2016-11-02

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.

  8. Thermodynamic analysis of a geopressured geothermal hybrid wellhead power system. Final report

    SciTech Connect

    Chang, I.; Williams, J.R.

    1985-01-01

    This research project is designed to evaluate the performance and operating characteristics of hybrid power cycles applied to geopressured and geothermal resources. The power systems evaluated are from the EPRI geopressured wellheat project and data used for the analysis are from the Pleasant Bayou well site. Three types of hybrid power systems are analyzed thermodynamically. They are (A) the single flash system, (B) the double flash system, and (C) the binary system. The studies of the first two systems are more extensive than the third one, although the binary system is the one chosen for testing at the Pleasant Bayou well site.

  9. Hydrothermal mineralogy and fluid inclusions chemistry to understand the roots of active geothermal systems

    NASA Astrophysics Data System (ADS)

    Chambefort, I. S.; Dilles, J. H.; Heinrich, C.

    2013-12-01

    An integrated study to link magmatic textures, magmatic mineral compositions, hydrothermal alteration zoning, hydrothermal mineral chemistry, and fluid inclusion compositions has been undertaken to link an intrusive complex and its degassing alteration halo with their surface equivalent in an active geothermal system. Ngatamariki geothermal system, New Zealand, presents a unique feature in the Taupo Volcanic Zone (TVZ). Drilling intercepted an intrusive complex with a high temperature alteration halo similarly to what is observed in magmatic-derived ore deposits. Thus it presents the perfect opportunity to study the magmatic-hydrothermal transition of the TVZ by characterizing the nature of the deep magmatic fluids link to the heat source of the world known geothermal fields. The record of magmatic-hydrothermal fluid-rock interactions preserved at Ngatamariki may be analogous of processes presently occurring at depth beneath TVZ geothermal systems. The intrusive complex consists of over 5 km3 of tonalite, diorite, basalt and aplitic dykes. Evidence of undercooling subsolidus magmatic textures such as myrmekite and skeletal overgrowth are commonly observed and often linked to volatile loss. The fluids released during the crystallization of the intrusive complex are interpreted to be at the origin of the surrounding high temperature alteration halo. Advanced argillic to potassic alteration and high temperature acidic assemblage is associated with high-temperature quartz veining at depth and vuggy silica at the paleo-surface. Major element compositions of the white micas associated with the high temperature halo show a transition from, muscovite to phengite, muscovitic illite away from the intrusion, with a transition to pyrophyllite and/ or topaz, and andalusite characteristic of more acidic conditions. Abundant high-density (up to 59 wt% NaCl eq and homogenization temperatures of 550 degree Celsius and above) coexist with low-density vapor fluid inclusions. This

  10. Systems study of drilling for installation of geothermal heat pumps

    SciTech Connect

    Finger, J.T.; Sullivan, W.N.; Jacobson, R.D.; Pierce, K.G.

    1997-09-01

    Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.

  11. Application of Fusion Gyrotrons to Enhanced Geothermal Systems (EGS)

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H.; Oglesby, K.

    2013-10-01

    The potential size of geothermal energy resources is second only to fusion energy. Advances are needed in drilling technology and heat reservoir formation to realize this potential. Millimeter-wave (MMW) gyrotrons and related technologies developed for fusion energy research could contribute to enabling EGS. Directed MMW energy can be used to advance rock penetration capabilities, borehole casing, and fracking. MMWs are ideally suited because they can penetrate through small particulate extraction plumes, can be efficiently guided long distances in borehole dimensions, and continuous megawatt sources are commercially available. Laboratory experiments with a 10 kW, 28 GHz CPI gyrotron have shown that granite rock can be fractured and melted with power intensities of about 1 kW/cm2 and minute exposure times. Observed melted rock MMW emissivity and estimated thermodynamics suggest that penetrating hot, hard crystalline rock formations may be economic with fusion research developed MMW sources. Supported by USDOE, Office of Energy Efficiency and Renewable Energy and Impact Technologies, LLC.

  12. Oxygen isotope systematics in an evolving geothermal system: Coso Hot Springs, California

    NASA Astrophysics Data System (ADS)

    Etzel, Thomas M.; Bowman, John R.; Moore, Joseph N.; Valley, John W.; Spicuzza, Michael J.; McCulloch, Jesse M.

    2017-01-01

    Oxygen isotope and clay mineralogy studies have been made on whole rock samples and feldspar separates from three wells along the high temperature West Flank of the Coso geothermal system, California. The reservoir rocks have experienced variable 18O/16O depletion, with δ18O values ranging from primary values of + 7.5‰ down to - 4.6‰. Spatial patterns of clay mineral distributions in the three wells are not closely correlated with the distributions expected from measured, pre-production temperature profiles, but do correlate with spatial patterns of 18O/16O depletion, indicating that the stability of clay minerals in the three wells is a function of fluid-rock interaction in addition to temperature. Detailed δ18O measurements in the three wells identify a limited number of localized intervals of extensive 18O/16O depletion. These intervals document localized zones of higher permeability in the geothermal system that have experienced significant fluid infiltration, water-rock interaction and oxygen isotopic exchange with the geothermal fluids. The local zones of maximum 18O/16O depletion in each well correspond closely with current hot water production zones. Most feldspar separates have measured δ18O values too high to have completely attained oxygen isotope exchange equilibrium with the reservoir fluid at pre-production temperatures. In general, the lower the δ18O value of the feldspar, the closer the feldspar approaches exchange equilibrium with the geothermal fluid. This correlation suggests that fracture-induced increases in permeability increase both fluid infiltration and the surface area of the host rock exposed to geothermal fluid, promoting fluid-rock interaction and oxygen isotope exchange. The two most 18O/16O-depleted feldspar samples have δ18O values too low to be in exchange equilibrium with the pre-production reservoir fluid at pre-production temperatures. These discrepancies suggest that the reservoir fluid in the West Flank of the Coso

  13. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  14. Applications of fractured continuum model to enhanced geothermal system heat extraction problems.

    PubMed

    Kalinina, Elena A; Klise, Katherine A; McKenna, Sean A; Hadgu, Teklu; Lowry, Thomas S

    2014-01-01

    This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environments are demonstrated for single and multiple sets of fractures. Fracture characteristics are defined by fracture strike, dip, spacing, and aperture. The paper demonstrates how the fractured continuum model can be extended to represent continuous fractured features, such as long fractures, and the conditions in which the fracture density varies within the different depth intervals. Simulations of heat transport using different fracture settings were compared with regard to their heat extraction effectiveness. The best heat extraction was obtained in the case when fractures were horizontal. A conventional heat extraction scheme with vertical wells was compared to an alternative scheme with horizontal wells. The heat extraction with the horizontal wells was significantly better than with the vertical wells when the injector was at the bottom.

  15. Enhanced Geothermal Systems Project Development Solicitation - Final Report - 09/30/2000 - 02/01/2001

    SciTech Connect

    Nielson, Dennis L.

    2001-05-07

    The Enhanced Geothermal System concept is to develop the technology required to extract energy from the reduced permeability zones that underlie all high-temperature geothermal systems. Our concept is that injection wells will be drilled into the high temperature zone. The wells will identify fractures that are only poorly connected to the overlying reservoir. Water injected into these fractures will cause them to propagate through thermal contraction, increase in hydrostatic pressure, and reduction of effective stress. The fractures will connect with the overlying normal temperature reservoir, and steam will be produced from existing production wells. The injection water will generate high thermal quality steam while mitigating problems relating to high gas and chloride.

  16. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  17. Beneficial effects of groundwater entry into liquid-dominated geothermal systems

    SciTech Connect

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-04-01

    In all active liquid-dominated geothermal systems there is continuous circulation of mass and transfer of heat, otherwise they would slowly cool and fade away. In the natural state these systems are in dynamic equilibrium with the surrounding colder groundwater aquifers. The ascending geothermal fluids cool conductively, boil, or mix with groundwaters, and ultimately may discharge at the surface as fumaroles or hot springs. With the start of fluid production and the lowering of reservoir pressure, the natural equilibrium is disrupted and cooler groundwater tends to enter the reservoir. Improperly constructed or damaged wells, and wells located near the margins of the geothermal system, exhibit temperature reductions (and possibly scaling from mixing of chemically distinct fluids) as the cooler-water moves into the reservoir. These negative effects, especially in peripheral wells are, however, compensated by the maintenance of reservoir pressure and a reduction in reservoir boiling that might result in mineral precipitation in the formation pores and fractures. The positive effect of cold groundwater entry on the behavior of liquid-dominated system is illustrated by using simple reservoir models. The simulation results show that even though groundwater influx into the reservoir causes cooling of fluids produced from wells located near the cold-water recharge area, it also reduces pressure drawdown and boiling in the exploited zone, and sweeps the heat stored in the reservoir rocks toward production wells, thus increasing the productive life of the wells and field. 9 refs.

  18. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    SciTech Connect

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  19. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  20. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

  1. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase II. Final report. Volume III. Systems description

    SciTech Connect

    Matthews, H.B.

    1984-01-01

    The major fraction of hydrothermal resources that have the prospect of being economically useful for the generation of electricity are in the 300/sup 0/F to 425/sup 0/F temperature range. Cost-effective conversion of the geothermal energy to electricity requires the conception and reduction to practice of new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed during past activities are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low-temperature resource, and in geothermal economics. Explained in detail in this document, some of these problems are: the energy expended by the down-hole pump; the difficulty in designing reliable down-hole equipment; fouling of heat-exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect - a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat-exchanger costs - the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW (actually, more than inversely proportional); the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  2. Cordon Caulle: an active volcanic-geothermal extensional system of Southern Andes of Chile

    NASA Astrophysics Data System (ADS)

    Sepulveda, F.

    2013-05-01

    Cordon Caulle (CC; 40.5° S) is an active volcanic-geothermal system of the Southern Volcanic Zone (SVZ; 37°-44°S). Morphologically, the CC system is a 6 km x 13 km volcanic plateau bordered by NW-trending structures, limited by Puyehue Volcano to the SE and by Caldera Nevada Caldera to the NW. While the SVZ is dominantly basaltic, CC is unique in that it has produced a wide compositional spectrum from basalt to rhyolite. The most recent volcanic activity of Puyehue-CC (last 70 ky) is dominantly silicic, including two historic fissure eruptions (1921-1922; 1960) and a recent central eruption from Puyehue Volcano (2011). Abnormally silicic volcanism was formerly attributed to a localized compression and long-term magma residence and differentiation, resulting from the NW orientation of underlying CC structures with respect to a NE-oriented σ1 (linked to regional strike-slip stress state). However, later studies, including examination of morpho-tectonic features; detailed structural analysis of the 1960 eruption (triggered by Mw 9.5 1960 Chilean Earthquake); InSAR deformation and gravity surveys, point to both historic and long-term extension at CC with σhmax oriented NNW to NW. The pre-2011 (i.e. Puyehue Volcano eruption) geothermal features of CC included boiling hot springs and geysers (Caldera Nevada) and fumaroles (CC and Puyehue Volcano). Both water and gas chemistry surveys were undertaken to assess the source fluid composition and equilibrium temperature. The combination of water and gas geothermometers led to a conceptual model of a stratified geothermal reservoir, with shallow, low-chloride, steam-heated aquifers equilibrated at temperatures between 150°-180°C, overlying a deeper, possibly dominated reservoir with temperatures in excess of 280°C. Gas chemistry also produced the highest He ratios of the SVZ, in agreement with a relatively pure, undiluted magmatic signature and heat source fueling the geothermal system. Other indicators such as N2/Ar

  3. Code Comparison Study Fosters Confidence in the Numerical Simulation of Enhanced Geothermal Systems

    SciTech Connect

    White, Mark D.; Phillips, Benjamin R.

    2015-01-26

    Numerical simulation has become a standard analytical tool for scientists and engineers to evaluate the potential and performance of enhanced geothermal systems. A variety of numerical simulators developed by industry, universities, and national laboratories are currently available and being applied to better understand enhanced geothermal systems at the field scale. To yield credible predictions and be of value to site operators, numerical simulators must be able to accurately represent the complex coupled processes induced by producing geothermal systems, such as fracture aperture changes due to thermal stimulation, fracture shear displacement with fluid injection, rate of thermal depletion of reservoir rocks, and permeability alteration with mineral precipitation or dissolution. A suite of numerical simulators was exercised on a series of test problems that considered coupled thermal, hydraulic, geomechanical, and geochemical (THMC) processes. Problems were selected and designed to isolate selected coupled processes, to be executed on workstation class computers, and have simple but illustrative metrics for result comparisons. This paper summarizes the initial suite of seven benchmark problems, describes the code comparison activities, provides example results for problems and documents the capabilities of currently available numerical simulation codes to represent coupled processes that occur during the production of geothermal resources. Code comparisons described in this paper use the ISO (International Organization for Standardization) standard ISO-13538 for proficiency testing of numerical simulators. This approach was adopted for a recent code comparison study within the radiation transfer-modeling field of atmospheric sciences, which was focused on canopy reflectance models. This standard specifies statistical methods for analyzing laboratory data from proficiency testing schemes to demonstrate that the measurement results do not exhibit evidence of an

  4. Ground heat flux and power sources of low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Blum, Philipp; Rivera, Jaime A.

    2015-04-01

    Geothermal heat pumps commonly extract energy from the shallow ground at depths as low as approximately 400 m. Vertical borehole heat exchangers are often applied, which are seasonally operated for decades. During this lifetime, thermal anomalies are induced in the ground and surface-near aquifers, which often grow over the years and which alleviate the overall performance of the geothermal system. As basis for prediction and control of the evolving energy imbalance in the ground, focus is typically set on the ground temperatures. This is reflected in regulative temperature thresholds, and in temperature trends, which serve as indicators for renewability and sustainability. In our work, we examine the fundamental heat flux and power sources, as well as their temporal and spatial variability during geothermal heat pump operation. The underlying rationale is that for control of ground temperature evolution, knowledge of the primary heat sources is fundamental. This insight is also important to judge the validity of simplified modelling frameworks. For instance, we reveal that vertical heat flux from the surface dominates the basal heat flux towards a borehole. Both fluxes need to be accounted for as proper vertical boundary conditions in the model. Additionally, the role of horizontal groundwater advection is inspected. Moreover, by adopting the ground energy deficit and long-term replenishment as criteria for system sustainability, an uncommon perspective is adopted that is based on the primary parameter rather than induced local temperatures. In our synthetic study and dimensionless analysis, we demonstrate that time of ground energy recovery after system shutdown may be longer than what is expected from local temperature trends. In contrast, unrealistically long recovery periods and extreme thermal anomalies are predicted without account for vertical ground heat fluxes and only when the energy content of the geothermal reservoir is considered.

  5. Assessment of the Geothermal System Near Stanley, Idaho

    SciTech Connect

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

  6. Optimization of Integrated Reservoir, Wellbore, and Power Plant Models for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Peluchette, Jason

    Geothermal energy has the potential to become a substantially greater contributor to the U.S. energy market. An adequate investment in Enhanced Geothermal Systems (EGS) technology will be necessary in order to realize the potential of geothermal energy. This study presents an optimization of a waterbased Enhanced Geothermal System (EGS) modeled for AltaRock Energy's Newberry EGS Demonstration location. The optimization successfully integrates all three components of the geothermal system: (1) the present wellbore design, (2) the reservoir design, and (3) the surface plant design. Since the Newberry EGS Demonstration will use an existing well (NWG 55-29), there is no optimization of the wellbore design, and the aim of the study for this component is to replicate the present wellbore conditions and design. An in-house wellbore model is used to accurately reflect the temperature and pressure changes that occur in the wellbore fluid and the surrounding casing, cement, and earth during injection and production. For the reservoir design, the existing conditions, such as temperature and pressure at depth and rock density, are incorporated into the model, and several design variables are investigated. The engineered reservoir is modeled using the reservoir simulator TOUGH2 while using the graphical interface PetraSim for visualization. Several fracture networks are investigated with the goal of determining which fracture network yields the greatest electrical output when optimized jointly with the surface plant. A topological optimization of the surface is completed to determine what type of power plant is best suited for this location, and a parametric optimization of the surface plant is completed to determine the optimal operating conditions. The conditions present at the Newberry, Oregon EGS project site are the basis for this optimization. The subsurface conditions are favorable for the production of electricity from geothermal energy with rock temperatures exceeding

  7. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal

  8. Induced Microseismic Activity in non Pressure Stimulated Geothermal System - an Example From Southern Germany

    NASA Astrophysics Data System (ADS)

    Wassermann, J. M.; Megies, T.

    2011-12-01

    In order to be efficient in selling heat and electric power, the most favorable locations for deep geothermal power plants are in close proximity to urbanized areas. This advantage bears the inherent danger of induced earthquakes especially during the stimulation and production phase of enhanced geothermal systems, which at least are partially felt in the near surroundings. Felt earthquakes, however, severely reduce the level of acceptance of residents close to the plant. The Bavarian Molasse basin is characterized by its highly permeable, deep groundwater bearing limestone layers. This high permeability permits the abdication of pressure stimulation of the geothermal reservoir and makes the close proximity to the densely populated area around Munich possible. In addition to this favorable production conditions, the Bavarian Molasse Basin is being considered as generally aseismic. In contrast to this obvious advantages five Ml > 2.0 events south of Munich which were felt by local residents attracted public attention. These events were located in the vicinity of a geothermal plant that took up production about half a year earlier. In the last two years a temporary network was set up that recorded more than 80 events with magnitudes mainly ranging from Ml -0.5 to 1.5. Events below magnitude 1.5 could not be detected and located prior to the production stage of the geothermal plant in the main network of the local earthquake service Erdbebendienst Bayern. Still, the exact mechanism leading to the seismicity remains unknown. Most likely the orientation of pre-existing faults, which are pierced by the open-hole part of wells with respect to present stress field and the volume of re-injected cold water play a key role in understanding the mechanisms leading to the observed seismicity. Within the framework of a project financed by the German federal ministry of Environment, further field experiments are conducted to address these open questions and test some working

  9. Energy balance and economic feasibility of shallow geothermal systems for winery industry

    NASA Astrophysics Data System (ADS)

    Ruiz-Mazarrón, F.; Almoguera-Millán, J.; García-Llaneza, J.; Perdigones, A.

    2012-04-01

    The search of energy efficient solutions has not yet been accomplished in agro-food constructions, for which technical studies and orientations are needed to find energy efficient solutions adapted to the environment. The main objective of this investigation is to evaluate the effectiveness of using shallow geothermal energy for the winery industry. World wine production in 2009 stood at 27100 millions of litres [1]. World spends 320 billion Euros on wine a year, according to industry insiders. On average, it is estimated that producing 1 litre of wine sold in a 75 cl glass bottle costs around 0.5-1.2 Euros /litre [2]. The process of ageing the wine could substantially increase production costs. Considering the time required for the aging of wine (months or years) and the size of the constructions, the use of an air conditioning system implies a considerable increase in energy consumption. Underground wine cellars have been in use for centuries for making and ageing wine. Ground thermal inertia provides protection from outdoor temperature oscillation and maintains thermal stability without energy consumption [3]. Since the last century, production of wine has moved to buildings above ground that have several advantages: lower construction cost, more space, etc. Nevertheless, these constructions require a large energy consumption to maintain suitable conditions for the ageing and conservation of wine. This change of construction techniques is the cause of an increase in energy consumption in modern wineries. The use of shallow geothermal energy can be a good alternative to take advantage of the benefits of aboveground buildings and underground constructions simultaneously. Shallow geothermal systems can meet the needs of heating and cooling using a single installation, maintaining low energy consumption. Therefore, it could be a good alternative to conventional HVAC systems. The main disadvantage of geothermal systems is the high cost of investment required. This

  10. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  11. Geologic and preliminary reservoir data on the Los Humeros Geothermal System, Puebla, Mexico

    SciTech Connect

    Ferriz, H.

    1982-01-01

    Exploratory drilling has confirmed the existence of a geothermal system in the Los Humeros volcanic center, located 180 km east of Mexico City. Volcanic activity in the area began with the eruption of andesites, followed by two major caldera-forming pyroclastic eruptions. The younger Los Potreros caldera is nested inside the older Los Humeros caldera. At later stages, basaltic andesite, dacite, and olivine basalt lavas erupted along the ring-fracture zones of both calderas. Geologic interpretation of structural, geophysical, and drilling data suggests that: (1) the water-dominated geothermal reservoir is hosted by the earliest andesitic volcanic pile, is bounded by the ring-fracture zone of the Los Potreros caldera, and is capped by the products of the oldest caldera-forming eruption; (2) permeability within the andesitic pile is provided by faults and fractures related to intracaldera uplift; (3) the geothermal system has potential for a large influx of meteoric water through portions of the ring-fracture zones of both calderas; and (4) volcanic centers with similar magmatic and structural conditions can be found in the eastern Cascades, USA.

  12. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  13. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

  14. Geochemical Attributes and Gradients Within Geothermal Systems Define the Distribution of Specific Microbial Populations

    NASA Astrophysics Data System (ADS)

    Inskeep, W. P.; Macur, R. E.; Korf, S.; Taylor, W. P.; Ackerman, G.; Kozubal, M.; Nagy, A.

    2006-12-01

    Microorganisms in natural habitats interact with mineral surfaces in many different respects. For example, microorganisms are known to enhance the dissolution rates of some minerals via the production of organic acids and other exudates, but at the same time, may mineralize solid phases as a direct or indirect result of metabolic processes. It is also well-established that many microorganisms form biofilms on mineral surfaces, and may preferentially attach to surfaces rich in necessary nutrients or in elements used for energy conservation. In part due to the complexity of natural soil, water and sediments systems, it is generally difficult to ascertain mechanisms controlling the distribution of organisms on mineral surfaces and their role in mineral precipitation-dissolution reactions. Geothermal microbial communities are often less diverse than surface soils and sediments and offer opportunities for understanding relationships among specific microbial populations and geochemical processes that define the biogeochemical cycles of individual elements. We have investigated numerous acidic and near-neutral geothermal sites in Yellowstone National Park, and have performed a number of complimentary chemical and microbiological analyses to ascertain the role of microorganisms in S, Fe, As and Sb cycling in geothermal systems. Our results demonstrate the importance of microbiota in the formation of various Fe(III) oxide phases with variable anion chemistry, and the importance of chemolithotrophic metabolisms in Fe, S and As cycling. Where possible, these metabolisms are linked to specific microbial populations identified via molecular methods, and in some cases confirmed using isolation and characterization of individual organisms.

  15. The geochemistry and sequestration of H 2S into the geothermal system at Hellisheidi, Iceland

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Arnórsson, Stefán; Gunnarsson, Ingvi; Kaasalainen, Hanna; Gunnlaugsson, Einar

    2011-05-01

    The geochemistry and mineralization of H 2S in the geothermal system hosted by basaltic rock formation at Hellisheidi, SW Iceland, was studied. Injection of mixtures of H 2S with geothermal waste water and condensed steam into the > 230 °C geothermal aquifer is planned, where H 2S will hopefully be removed in the form of sulphides. The natural H 2S concentrations in the aquifer average 130 ppm. They are considered to be controlled by close approach to equilibrium with pyrite, pyrrhotite, prehnite and epidote. Injection of H 2S will increase significantly the reservoir H 2S equilibrium concentrations, resulting in mineralization of pyrite and possibly other sulphides as well as affecting the formation of prehnite and epidote. Based on reaction path modelling, the main factors affecting the H 2S mineralization capacity are related to the mobility and oxidation state of iron. At temperatures above 250 °C the pyrite mineralization is greatly reduced upon epidote formation leading to the much greater basalt dissolution needed to sequestrate the H 2S. Based on these findings, the optimum conditions for H 2S injection are aquifers with temperatures below ~ 250 °C where epidote formation is insignificant. Moreover, the results suggest that sequestration of H 2S into the geothermal system is feasible. The total flux of H 2S from the Hellisheidi power plant is 12,950 tonnes yr - 1 . Injection into 250 °C aquifers would result in dissolution of ~ 1000 tonnes yr - 1 of basalt for mineralization of H 2S as pyrite, corresponding to ~ 320 m 3 yr - 1 .

  16. Simulation of Enhanced Geothermal Systems: A Benchmarking and Code Intercomparison Study

    SciTech Connect

    Scheibe, Timothy D.; White, Mark D.; White, Signe K.; Sivaramakrishnan, Chandrika; Purohit, Sumit; Black, Gary D.; Podgorney, Robert; Boyd, Lauren W.; Phillips, Benjamin R.

    2013-06-30

    Numerical simulation codes have become critical tools for understanding complex geologic processes, as applied to technology assessment, system design, monitoring, and operational guidance. Recently the need for quantitatively evaluating coupled Thermodynamic, Hydrologic, geoMechanical, and geoChemical (THMC) processes has grown, driven by new applications such as geologic sequestration of greenhouse gases and development of unconventional energy sources. Here we focus on Enhanced Geothermal Systems (EGS), which are man-made geothermal reservoirs created where hot rock exists but there is insufficient natural permeability and/or pore fluids to allow efficient energy extraction. In an EGS, carefully controlled subsurface fluid injection is performed to enhance the permeability of pre-existing fractures, which facilitates fluid circulation and heat transport. EGS technologies are relatively new, and pose significant simulation challenges. To become a trusted analytical tool for EGS, numerical simulation codes must be tested to demonstrate that they adequately represent the coupled THMC processes of concern. This presentation describes the approach and status of a benchmarking and code intercomparison effort currently underway, supported by the U. S. Department of Energy’s Geothermal Technologies Program. This study is being closely coordinated with a parallel international effort sponsored by the International Partnership for Geothermal Technology (IPGT). We have defined an extensive suite of benchmark problems, test cases, and challenge problems, ranging in complexity and difficulty, and a number of modeling teams are applying various simulation tools to these problems. The descriptions of the problems and modeling results are being compiled using the Velo framework, a scientific workflow and data management environment accessible through a simple web-based interface.

  17. Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah

    SciTech Connect

    Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

    1980-02-01

    Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

  18. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  19. Modeling Self-Potential Effects During Reservoir Stimulation in Enhanced Geothermal Systems.

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Monetti, Alessio; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe

    2015-04-01

    Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock's permeability and to the high thermal gradient, implying the presence of large amounts of hot fluids at reasonable depth. Many of such limitations can be overcome using Enhanced Geothermal Systems technology (EGS), where massive fluid injection is performed to increase the rock permeability by fracturing. This is a powerful method to exploit hot rocks with low natural permeability, otherwise not exploitable. Numerical procedures have already been presented in literature reproducing thermodynamic evolution and stress changes of systems where fluids are injected. However, stimulated fluid flow in geothermal reservoirs can produce also surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. Since the induced seismicity risk is generally correlated to fluid circulation stimulated in an area exceeding the well of several hundreds of meters, the wellbore pressure values can be totally uncorrelated to seismic hazard. However, SP anomalies, being generated from pressure gradients in the whole area where fluids flow, has an interesting potential as induced earthquake precursor. In this work, SP anomalies observed above the Soultz-sous-Forets (Alsace, France) geothermal reservoir while injecting cold water have been modeled, considering a source related to the fluid flow induced by the well stimulation process. In particular, the retrieved changes of pressure due to well stimulation in the EGS system have been used

  20. Carbon-dioxide plume geothermal (CPG) systems, an alternative engineered geothermal system (EGS) that does not require hydrofracturing: Comparison with traditional EGS regarding geologic reservoir heat energy extraction and potential for inducing seismicity

    NASA Astrophysics Data System (ADS)

    Randolph, J. B.; Saar, M. O.

    2010-12-01

    Traditional enhanced or engineered geothermal systems (EGS) typically require hydrofracturing of rock with low natural permeability, which may induce seismicity, leading to significant socio-political resistance. In contrast, the approach described here does not rely on hydrofracturing or similar permeability-enhancing technologies but, rather, utilizes existing high-permeability and high-porosity geologic reservoirs that are overlain by a low-permeability caprock. Carbon dioxide (CO2) is pumped into such reservoirs, where it forms a CO2 plume that largely displaces native formation fluid and is heated by the natural in-situ heat and background geothermal heat flux. A portion of the heated CO2 is piped to the surface to power generators and/or to provide heat for direct use before being returned to the subsurface. Non-recoverable CO2 in the subsurface is geologically sequestered, serving as a CO2 sink that mitigates anthropogenic greenhouse gas emissions to the atmosphere. Furthermore, the amount of CO2 sequestered in such a CO2-plume geothermal (CPG) system is much larger than in more traditional fracture-dominated CO2-based EGS approaches. Here, we compare the geothermal heat energy extraction potential between CPG and traditional water- or CO2-based EGS approaches. Thereafter, we contrast the risk of induced seismicity associated with hydrofracturing in traditional EGS versus that of technologies that require only the fluid injection and production component of geothermal system operations, such as CPG, but minimal-to-no reservoir stimulation. While additional research is required, numerical simulation results at present suggest CPG systems would be viable geothermal energy sources for electric power production for decades, potentially even in regions with low geothermal temperatures and heat flow rates. In addition, CPG systems are expected to significantly reduce the risk of inducing seismicity compared to traditional EGS.

  1. Hydrogeochemistry and preliminary reservoir model of the Platanares Geothermal System, Honduras, Central America

    SciTech Connect

    Goff, F.; Shevenell, L.; Janik, C.J.; Truesdell, A.H.; Grigsby, C.O.; Paredes, R.

    1986-01-01

    A detailed hydrogeochemical investigation has been performed at Platanares, Honduras in preparation for shallow geothermal exploration drilling. Platanares is not associated with any Quaternary volcanism but lies in a tectonic zone of late Tertiary to Quaternary extension. Thermal fluids are characterized by pH between 7 and 10, Cl < 40 mg/l, HCO/sub 3/ > SO/sub 4/ > Cl, B less than or equal to 17 mg/l, Li less than or equal to 4 mg/l and As less than or equal to 1.25 mg/l. Various geochemical indicators show that mixing of hot and cold end-member fluids is an important hydrologic process at this site. Geothermometers indicate the geothermal system equilibrated at roughly 225/sup 0/C while trace element chemistry indicates the reservoir resides in Cretaceous red beds of the Valle de Angeles Group. Based on the discharge rates of thermal features, the minimum power output of the Platanares geothermal site is about 45 MW (thermal).

  2. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect

    Reimus, Paul W

    2011-01-21

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

  3. An efficient computational model for deep low-enthalpy geothermal systems

    NASA Astrophysics Data System (ADS)

    Saeid, Sanaz; Al-Khoury, Rafid; Barends, Frans

    2013-02-01

    In this paper, a computationally efficient finite element model for transient heat and fluid flow in a deep low-enthalpy geothermal system is formulated. Emphasis is placed on coupling between the involved wellbores and a soil mass, represented by a geothermal reservoir and a surrounding soil. The finite element package COMSOL is utilized as a framework for implementing the model. Two main aspects have contributed to the computational efficiency and accuracy: the wellbore model, and the 1D-2D coupling of COMSOL. In the first aspect, heat flow in the wellbore is modelled as pseudo three-dimensional conductive-convective, using a one-dimensional element. In this model, thermal interactions between the wellbore components are included in the mathematical model, alleviating the need for typical 3D spatial discretization, and thus reducing the mesh size significantly. In the second aspect, heat flow in the soil mass is coupled to the heat flow in the wellbores, giving accurate description of heat loss and gain along the pathway of the injected and produced fluid. Heat flow in the geothermal reservoir, and due to dependency of fluid density and viscosity on temperature, is simulated as two-dimensional fully saturated nonlinear conductive-convective, whereas in the surrounding soil, heat flow is simulated as linear conductive. Numerical and parametric examples describing the computational capabilities of the model and its suitability for utilization in engineering practice are presented.

  4. Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada

    SciTech Connect

    Flynn, T.; Ghusn, G. Jr.

    1983-12-01

    The Moana geothermal area is the largest single low- to moderate-temperature geothermal resource in the State of Nevada presently employed for direct-use applications. Approximately 150 individual wells, representing a total estimated investment of $5 to $7 million, are presently used to provide heat ahd hot water to more than 130 private residences, several churches and two large motels. Although most of the wells are constructed to meet the heating needs of individual homes, a large-scale district space heating system, designed to supply heat to 60 houses from a single well, is now being developed. Usable temperatures range from 50 to 99/sup 0/C (120 to 210/sup 0/F); well depths range from 60 to 400 m (100 to 1300 ft). The number of new wells coming on-line in Moana is two to three per month. Development of the resource has been largely unregulated and questions dealing with reported reservoir temperature and water level declines, loss of artesian flow, and fluid disposal have recently surfaced. In October 1982, a geologic and hydrologic research program began that was designed to provide detailed geothermal reservoir data to present or prospective developers. The program combines geophysical, geochemical, and geological surveys of the Moana resource area with a drilling program for 5 monitor/observation wells. Data from this program are supplied directly to developers as well as state and local government agencies to provide for prudent resource development. This paper summarizes the program elements and describes the present status.

  5. Geobotanical characterization of a geothermal system using hyperspectral imagery: Long Valley Caldera, CA

    SciTech Connect

    Carter, M R; Cochran, S A; Martini, B A; Pickles, W L; Potts, D C; Priest, R E; Silver, E A; Wayne, B A; White, W T

    1998-12-01

    We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes. This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.

  6. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  7. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  8. An Assessment of the Tectonic Control in Defining the Geothermal System(s) of the Southern Chilean Andes

    NASA Astrophysics Data System (ADS)

    Sánchez, P.; Alam, M.; Parada, M.; Lahsen, A.

    2010-12-01

    Geothermal manifestations between Villarrica and Chihuio (39°15'-40°15'S, 71°40'-72°10'W), in the southern Chilean Andes, have been studied to assess the tectonic control in defining the geothermal systems of the area. These surface manifestations are in close spatial relationship with either the stratovolcanoes or the Liquiñe-Ofqui Fault Zone (LOFZ, Cembrano et al., 1996). Volcanism and regional tectonics control the two vital components of the geothermal systems, viz., heat source and permeability. Two distinct domains of the geothermal systems, viz., structural (or non-volcanic) and volcanic have been identified, based on the chemical signatures of the thermal discharges and structural analysis of the lineaments. These two domains are distinct in their ways of heating up of meteoric water. The geothermal system(s) of the volcanic domain are closely associated with the volcanic centers, spatially as well as geochemically. In the case of the geothermal system(s) of volcanic domain, the heating of meteoric water is through absorption of heat and condensation of steam and gases by meteoric water during lateral circulation. These discharges do not exhibit the typical signatures of steam heated waters, which are subdued by near surface processes. The relation between the geothermal systems and fault and fracture density (FFD) is quite evident from the lineaments analysis. FFD correlates very well with the surface geothermal manifestations, as well as with their recharge areas. An increase in the (secondary) permeability in the uppermost 200-300 m in the areas of relatively high FFD values, necessary for lateral flow, is consistent with the lithology, structure and stratigraphy of the area. Although the lineaments scatter in a wide range, the absence of lineaments between N60°E and N100°E is noticeable, and is consistent with displacement and stress data of LOFZ (Lavenu and Cembrano, 1999; Cembrano et al., 2007; Lara and Cembrano, 2009). This indicates that such

  9. Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources.

    PubMed

    Bundschuh, Jochen; Maity, Jyoti Prakash; Nath, Bibhash; Baba, Alper; Gunduz, Orhan; Kulp, Thomas R; Jean, Jiin-Shuh; Kar, Sandeep; Yang, Huai-Jen; Tseng, Yu-Jung; Bhattacharya, Prosun; Chen, Chien-Yen

    2013-11-15

    Arsenic (As) contamination in terrestrial geothermal systems has been identified in many countries worldwide. Concentrations higher than 0.01 mg/L are detrimental to human health. We examined potential consequences for As contamination of freshwater resources based on hydrogeochemical investigations of geothermal waters in deep wells and hot springs collected from western Anatolia, Turkey. We analyzed samples for major ions and trace element concentrations. Temperature of geothermal waters in deep wells showed extreme ranges (40 and 230 °C), while, temperature of hot spring fluids was up to 90 °C. The Piper plot illustrated two dominant water types: Na-HCO3(-) type for geothermal waters in deep wells and Ca-HCO3(-) type for hot spring fluids. Arsenic concentration ranged from 0.03 to 1.5mg/L. Dominance of reduced As species, i.e., As(III), was observed in our samples. The Eh value ranged between -250 and 119 mV, which suggests diverse geochemical conditions. Some of the measured trace elements were found above the World Health Organization guidelines and Turkish national safe drinking water limits. The variation in pH (range: 6.4-9.3) and As in geothermal waters suggest mixing with groundwater. Mixing of geothermal waters is primarily responsible for contamination of freshwater resources and making them unsuitable for drinking or irrigation.

  10. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  11. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  12. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    SciTech Connect

    Ong, H.L.; Higashihara, M.; Klusman, R.W.; Voorhees, K.J.; Pudjianto, R.; Ong, J

    1996-01-24

    A variety of hydrocarbons, C1 - C12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids in the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C7-C9) and aromatics (C7-C8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be

  13. US National Geothermal Data System: Web feature services and system operations

    NASA Astrophysics Data System (ADS)

    Richard, Stephen; Clark, Ryan; Allison, M. Lee; Anderson, Arlene

    2013-04-01

    The US National Geothermal Data System is being developed with support from the US Department of Energy to reduce risk in geothermal energy development by providing online access to the body of geothermal data available in the US. The system is being implemented using Open Geospatial Consortium web services for catalog search (CSW), map browsing (WMS), and data access (WFS). The catalog now includes 2427 registered resources, mostly individual documents accessible via URL. 173 WMS and WFS services are registered, hosted by 4 NGDS system nodes, as well as 6 other state geological surveys. Simple feature schema for interchange formats have been developed by an informal community process in which draft content models are developed based on the information actually available in most data provider's internal datasets. A template pattern is used for the content models so that commonly used content items have the same name and data type across models. Models are documented in Excel workbooks and posted for community review with a deadline for comment; at the end of the comment period a technical working group reviews and discusses comments and votes on adoption. When adopted, an XML schema is implemented for the content model. Our approach has been to keep the focus of each interchange schema narrow, such that simple-feature (flat file) XML schema are sufficient to implement the content model. Keeping individual interchange formats simple, and allowing flexibility to introduce new content models as needed have both assisted in adoption of the service architecture. One problem that remains to be solved is that off-the-shelf server packages (GeoServer, ArcGIS server) do not permit configuration of a normative schema location to be bound with XML namespaces in instance documents. Such configuration is possible with GeoServer using a more complex deployment process. XML interchange format schema versions are indicated by the namespace URI; because of the schema location

  14. Design of a geothermal monitoring network in a coastal area and the evaluation system

    NASA Astrophysics Data System (ADS)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  15. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  16. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    SciTech Connect

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation

  17. Hydrothermal alteration in the Reykjanes geothermal system: Insights from Iceland deep drilling program well RN-17

    NASA Astrophysics Data System (ADS)

    Marks, Naomi; Schiffman, Peter; Zierenberg, Robert A.; Franzson, Hjalti; Fridleifsson, Gudmundur Ó.

    2010-01-01

    The Reykjanes geothermal system is a seawater-recharged hydrothermal system that appears to be analogous to seafloor hydrothermal systems in terms of host rock type and low water/rock alteration. The similarities make the Reykjanes system a useful proxy for seafloor vents. At some time during the Pleistocene, the system was dominated by meteoric water recharge, and fluid composition at Reykjanes has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions. The purpose of this study is to characterize secondary mineralization, degree of metasomatic alteration, and bulk composition of cuttings from well RN-17 from the Reykjanes geothermal system. The basaltic host rock includes hyaloclastite, breccia, tuff, extrusive basalt, diabase, as well as a marine sedimentary sequence. The progressive hydrothermal alteration sequence observed with increasing depth results from reaction of geothermal fluids with the basaltic host rock. An assemblage of greenschist facies alteration minerals, including actinolite, prehnite, epidote and garnet, occurs at depths as shallow as 350 m; these minerals are commonly found in Icelandic geothermal systems at temperatures above 250 °C (Bird and Spieler, 2004). This requires hydrostatic pressures that exceed the present-day depth to boiling point curve, and therefore must record alteration at higher fluid pressures, perhaps as a result of Pleistocene glaciation. Major, minor, and trace element profiles of the cuttings indicate transitional MORB to OIB composition with limited metasomatic shifts in easily mobilized elements. Changes in MgO, K 2O and loss on ignition indicate that metasomatism is strongly correlated with protolith properties. The textures of alteration minerals reveal alteration style to be strongly dependent on protolith as well. Hyaloclastites are intensely altered with calc-silicate alteration assemblages comprising calcic hydrothermal

  18. Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2011-12-01

    The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed

  19. Exploration of a Basin and Range-Type Geothermal System Using Soil pH Analysis

    NASA Astrophysics Data System (ADS)

    Owens, L.; Hill, G.; Norman, D. I.

    2005-12-01

    The Socorro Peak, NM Known Geothermal Reservoir Area (KGRA) is a Basin and Range-type extentional-fault geothermal system boasting thermal gradients upwards of 420 mW/m3 in an uplift Precambrian fault block. Structural and geophysical evidence suggests that a low-to-mid temperature (60-100C) geothermal aquifer may reside within the fault-bounded alluvial basin, capped and insulated by over 1000meters of Tertiary mudstone aquitard strata and Quaternary flanglomerates. Select Ion Leach Analysis Geochemistry (SILG) and pH analysis of soils were employed to investigate the location and extent of the Socorro KGRA. The SILG geothermal exploration method is commonly used for mineral and oil exploration; the soil pH is method is a new method being developed. Soil samples for SILG were collected at 100m intervals over the alluvial basin and range bounding fault. Oxide Suite elements (As, V, I, Hg) and alkali elements (Rb, Sr) were observed in a series of nested halos of anomalously high concentrations surrounding a central core of anomalously low concentrations. The center of this 3 km-wide anomaly is located just in to the east of the range bounding fault. This pattern is interpreted as an oxidizing environment surrounding a reduction chimney created by the geothermal waters. Field pH analyses were also performed on a 25 meter interval grid over the same exploration area. A 25 g soil sample screened to 18 mesh is mixed with 10 cc water, stirred and pH measured. Two dimensional plots indicate a central region of 7.0 to 7.5 pH values surrounded by a 1.5 km radius semi-halo of 5.0 to 6.5 pH values . This pattern corresponds with those observed by SILG. If a geothermal reservoir is responsible for the oxidizing/reduction environment causing the volatilization of select ions through the substrate, then we would also expect to see a decrease in pH caused by the release of free hydrogen ions. Spikes of acidic pH values (5.0-6.0) were also observed along sub alluvium faults

  20. The Impact of an Open Loop Geothermal System with Multiple Wells on Groundwater Temperature

    NASA Astrophysics Data System (ADS)

    Susanto, S.

    2015-12-01

    As the demand of groundwater as a source of energy has increased in recent years, the Upper Carbonate Aquifer beneath the City of Winnipeg is heavily utilized for cooling and heating. Majority open loop systems discharge thermal wastewater into the aquifer and increase the groundwater temperature. A numerical model was developed to study the impact of a geothermal system with multiple wells located in the Tuxedo area on groundwater temperature. Analysis was performed using SEAWAT with GUI Visual MODFLOW. Surface elevation, model boundary and wells locations were developed using ArcGIS. The model was run in steady state flow for static water level calibration and in transient mode for calibration using data of a pumping test. Preliminary investigation with three years simulation predicts a 600 m by 660 m area of temperature increase. Groundwater temperature in production wells will increase 0.5°C within 2 years and 1°C within 3 years. Factors that influence the temperature changes and its distribution in the groundwater are production flow rate, recharge flow rate, groundwater flow, return water distribution into recharge wells, distance between production wells and recharge wells, spacing between recharge wells, and layout of geothermal pumping wells. The simulated and observed temperature increase is mainly caused by higher production rate for cooling than for heating. The result from this study will strongly contribute knowledge in the development of a 3D numerical model of the Upper Carbonate Aquifer beneath the City of Winnipeg to investigate the impact of geothermal systems to the groundwater temperature.

  1. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  2. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  3. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  4. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect

    Liu, Xiaobing

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  5. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    SciTech Connect

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  6. Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems

    SciTech Connect

    Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

    2011-12-21

    CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

  7. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  8. Cost Analysis of Environmental Control Systems applicable to Geothermal Energy Development

    SciTech Connect

    1982-08-01

    This report provides an engineering performance and cost correlations from which user could estimate costs of mitigating principal emissions from geothermal power systems. Hydrogen sulfide abatement describes four processes; Iron catalyst, Stretford, EIC, and Dow oxygenation process. Wastewater treatments include: Chemical precipitation, Evaporation ponds, Injection without pretreatment, and Injection with pretreatment. Process and cost estimates are given for Best Case, Most Probable Case, and Worst Case 50 MWe power plant. The cases may be confusing since the worst case has the lowest resource temperature, but the highest loads to mitigate. (DJE 2005)

  9. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January-December 1983

    SciTech Connect

    Smith, K.

    1983-12-30

    Progress is reported on a project for the use of the 130/sup 0/F central Texas geothermal resource. The milestones in the construction of the system for cascading the geothermal enenrgy through two enclosed aquaculture ponds, a greenhouse heating system, and a collection catfish reservoir are reported. (MHR)

  10. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect

    Greg Cuprak

    2011-08-31

    West Chester University is launching a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution is in the process of designing and implementing this project to build well fields, a pumping station and install connecting piping to provide the geothermal heat/cooling source for campus buildings. This project addresses the US Department of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply. For this grant, WCU will extend piping for its geo-exchange system. The work involves excavation of a trench approximately 8 feet wide and 10-12 feet deep located about 30 feet north of the curb along the north side of West Rosedale for a distance of approximately 1,300 feet. The trench will then turn north for the remaining distance (60 feet) to connect into the mechanical room in the basement of the Francis Harvey Green Library. This project will include crossing South Church Street near its intersection with West Rosedale, which will involve coordination with the Borough of West Chester. After installation of the piping, the trench will be backfilled and the surface restored to grass as it is now. Because the trench will run along a heavily-used portion of the campus, it will be accomplished in sections to minimize disruption to the campus as much as possible.

  11. Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs

    SciTech Connect

    Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

    2003-10-01

    This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  13. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  14. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  15. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings

  16. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  17. Stragegies to Detect Hidden Geothermal Systems Based on Monitoringand Analysis of CO2 in the Near-Surface Environment

    SciTech Connect

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2005-03-29

    We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse CO2. Tomeet the challenge of detecting geothermal CO2 emissions within thenatural background variability of CO2, we propose an approach thatintegrates available detection and monitoring techniques with statisticalanalysis and modeling.

  18. Monitoring of Building Heating and Cooling Systems Based on Geothermal Heat Pump in Galicia (Spain)

    NASA Astrophysics Data System (ADS)

    Iglesias, M.; Rodriguez, J.; Franco, D.

    2012-10-01

    In November 2009 was signed an agreement between Galicia's Government and EnergyLab to develop a project related with the geothermal heatpumps (hereafter, GSHP) technology. That project consisted in replacing the existing thermal equipment generators (diesel boilers and air-water heat pumps) by GSHP systems in representative public buildings: two nursery schools, a university library, a health centre and a residential building. This new systems will reach the demands of existing heating, cooling and domestic hot water (hereafter, DHW). These buildings can serve as examples of energy and economic savings that can offer this technology. We will show detailed analysis of the GSHP facilities monitored, since the starting-up of them. Which includes: COP's, EER's, energy consumption, operating costs, operation hours of the system, economic and emissions comparative, geothermal exchange evolution graphs, environmental conditions evolution graphs (temperature and demands), etc. The results presented show an example of the important benefits of the GSHP technology and the significant savings that can offer its implementation for heating, cooling and DHW production. Note to the reader: The article number has been corrected on web pages on November 22, 2013.

  19. Geothermal Systems In The Snake River Plain Idaho Characterized By The Hotspot Project

    NASA Astrophysics Data System (ADS)

    Nielson, D. L.; Delahunty, C.; Shervais, J. W.

    2012-12-01

    The Snake River Plain (SRP) is potentially the largest geothermal province in the world. It is postulated that the SRP results from passage of the North American Plate over the Yellowstone mantle plume. This has resulted in felsic, caldera-related volcanism followed by voluminous eruptions of basalt. Compilations of subsurface temperature data demonstrate the masking effect of the Snake River Aquifer. As a consequence, here has been little serious geothermal exploration within the center of the plain; although there are numerous examples of low-temperature fluids, as well as the Raft River geothermal system, on the southern flanks of the SRP. Project Hotspot was designed to investigate the geothermal potential of the SRP through the coring and subsequent scientific evaluation of three holes, each representing a different geothermal environment. These are located at Kimama, north of Burley, in the center of the plain; at Kimberly near Twin Falls on the southern margin of the plain; and at Mountain Home Air Force base in the central part of the western SRP. Both the Kimberly and Mountain Home sites are located in areas that have warm wells and hot springs, whereas, the Kimama site has neither surface nor subsurface thermal manifestations. All of the sites studied here were sampled using slim hole coring techniques in conjunction with a bottom hole temperature probe developed by DOSECC. Our first hole at Kimama in the center of the eastern SRP was cored to a depth of 1,912 m. Temperature measurements showed the SRP fresh water aquifer extends to a depth of 965 m and masks the underlying high temperature gradient of 74.5oC/Km. The core hole at Kimberly reached a depth of 1,959 m and demonstrated a large low-temperature resource of >50oC below 800 m. A core hole at Mountain Home AFB in the eastern SRP reached a depth of 1,821 m and demonstrated the presence of an intermediate- to high-temperature artesian resource that has a clear magmatic association, with measured

  20. Isotopic evidence for magmatic and meteoric water recharge and the processes affecting reservoir fluids in the Palinpinon geothermal system, Philippines

    SciTech Connect

    Gerardo, J.Y.; Seastres, J.S. Jr.; Nuti, S.; D`Amore, F.; Gonfiantini, R.

    1993-10-01

    Stable isotopic compositions of meteoric and geothermal waters indicate that the Palinpinon geothermal system of Southern Negros is fed by a parent water that originated from a mixture of local meteoric (80%) and magmatic (20%) waters. The meteoric water has an isotopic concentration of {minus}8.5{per_thousand} and {minus}54{per_thousand} in {sup 18}O and {sup 2}H, respectively, which corresponds to an average infiltration altitude of about 1,000 m above sea level. With exploitation of the system and injection of wastewaters to the reservoir, the stable isotopic composition became heavier due to significant mixing of geothermal fluids with injection waters. Incursion of cooler meteoric waters, which is confirmed by the presence of tritium, also leads to the formation of acid-sulfate waters. Stable isotopes are effective as ``natural tracers`` to determine the origin and mixing of different fluids in the reservoir.

  1. Multiple sulfur isotope systematics of Icelandic geothermal fluids and the source and reactions of sulfur in volcanic geothermal systems at divergent plate boundaries

    NASA Astrophysics Data System (ADS)

    Stefánsson, Andri; Keller, Nicole S.; Robin, Jóhann Gunnarsson; Ono, Shuhei

    2015-09-01

    Multiple sulfur isotope systematics of geothermal fluids at Krafla, Northeast Iceland, were studied in order to determine the source and reactions of sulfur in this system, as an example of a geothermal system hosted on a divergent plate boundary. Fluid temperatures ranged from 192 to 437 °C, and the fluids have low Cl concentration between ∼10 and ∼150 ppm, with liquid water and vapor being present in the reservoir. Dissolved sulfide (S-II) and sulfate (SVI) predominated in the water phase with trace concentrations of thiosulfate (S2O32-) whereas sulfide (S-II) was the only species observed in the vapor phase. The reconstructed sulfur isotope ratios of the reservoir fluids based on samples collected at surface from two-phase and vapor only well discharges indicated that δ34S and Δ33S of sulfide in the reservoir fluid ranged from -1.5 to +1.1‰ and -0.001 to -0.017‰, respectively, whereas δ34S and Δ33S of sulfate were significantly different and ranged from +3.4 to +13.4‰ and 0.000 to -0.036‰, respectively. Depressurization boiling upon fluid ascent coupled with progressive fluid-rock interaction and sulfide mineral (pyrite) formation results in the liquid phase becoming progressively isotopically lighter with respect to both δ34S and Δ33S. In contrast, H2S in the vapor phase and pyrite become isotopically heavier. The observed Δ33S and δ34S systematics for geothermal fluids at Krafla suggest that the source of sulfide in the reservoir fluids is the basaltic magma, either through degassing or upon dissolution of unaltered basalts. At high temperatures, insignificant SO4 was observed in the fluids but below ∼230 °C significant concentrations of SO4 were observed, the source inferred to be H2S oxidation. The two key factors controlling the multiple sulfur isotope systematics of geothermal fluids are: (1) the isotopic composition of the source material and (2) the isotope fractionation associated with aqueous and vapor speciation and how these

  2. Preliminary assessment of the geothermal system of the Tiris volcanic area, East Java, Indonesia.

    NASA Astrophysics Data System (ADS)

    Deon, F.; Moeck, I.; Sheytt, T.; Jaya, M. S.

    2012-04-01

    Indonesia, with 15 % of the world's active volcanoes, hosts a total estimated geothermal potential of 27000 MW of which 1197 MWe in 2011 have been installed. Exploration of magmatic remote areas is therefore important. Our investigation area is located at the volcano Lamongan, Tiris East Java, Indonesia, which is part of the modern Sunda Arc Region, characterized by extensional regime. The average ground water temperature in the area ranges between 27 and 29 ° C and the warm springs between 35 - 45 ° C, evidencing a geothermal potential of the area. Numerous maars and cindered cones have been located and studied here, some of them with a NW - SE lineament similar to the Tiris fault (only observed in satellite images). In this first exploration stage we characterized the geochemistry of the springs and investigated the petrology of the rocks. They were analyzed in terms of mineral composition (optical microscopy and electron microprobe) and major element composition (X-ray fluorescence). The samples have a typical basaltic - basaltic andesite composition, with abundant plagioclase with An65 up to An90, as well as olivine and pyroxene. The plagioclase crystals are several mm large, twinned and show no hydrothermal alteration. The fluid chemistry was determined in term of cation and anion concentration with Inductively Coupled Plasma Mass Spectrometry. The chemistry of geothermal waters provides specific information about the deep of the fluids in geothermal system and the discharge location. The concentrations of Na+, Ca2+, Li+, B3+ and Cl- suggest that the water of the Lamongan area derive from sea water intrusions. The high permeable pyroclastites, overlain by lower permeable basalt - andesitic basalt, observed in the field, may have channeled the sea water from the coast to the Tiris area. A structural lineament, NW - SE, may control the water intrusion, as the lineament of the springs confirms. The high HCO3-concentration in the fluid samples, as no carbonate

  3. Vapliq hydrothermal systems, and the vertical permeability of Los Azufres, Mexico, geothermal reservoir

    SciTech Connect

    Iglesias, Eduardo R.; Arellano, Victor M.

    1988-01-01

    We identify a new category of natural hydrothermal systems intermediate between liquid- and vapor-dominated. This category is characterized by a “vapliq” vertical pressure profile, which is nearly vaporstatic in the shallower portion of the system, and nearly boiling-point-for-depth at depth. The prototype of these systems is the geothermal field of Los Azufres, Mexico. To explore the thermohydrological conditions conducent to this type of system, we propose a 1-D vertical scenario based on generally accepted conceptual models of liquid- and vapor-dominated geothermal reservoirs. We use the corresponding mass and thermal energy transport equations to establish that a necessary condition for the existence of 2-phase hydrothermal systems is that the absolute value of the vertical thermal flux must exceed Q{sub min}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point of the system. The values of Q{sub min} are typically 1-4 times the average terrestrial flux. We also find that geothermal systems in which convective heat transport is accomplished by the well-known heat-pipe mechanism can exist only if the corresponding heat flux exceeds Q{sub min} and the permeability at the boiling point of the system is smaller than k{sub Bmax}, a parameter that depends only on the values of the pressure and of the thermal conductivity at the boiling point. Typical values of k{sub Bmax} are 1-3 {times} 10{sup -18} m{sup 2}, suggesting a reason for the fact that all vapor-dominated systems are associated with very-low matrix permeability formations. Applying these insights, and the mass and heat transport equations to Los Azufres, we conclude that a contrast of 1-3 orders of magnitude exists between the vertical permeability at the boiling point and that corresponding to the vapor-dominated portion of the system. We propose that similar permeability contrasts may be responsible for the characteristic composite pressure

  4. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  5. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  6. Impact of Subglacial Geothermal Activity on Meltwater Quality in the JÖKULSÁ Á SÓLHEIMASANDI System, Southern Iceland

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.; Björnsson, H.; Dolan, M.

    1996-04-01

    The influence of subglacial geothermal activity on the hydrochemistry of the Jökulsá á Sólheimasandi glacial meltwater river, south Iceland, is discussed. A radio echosounding and Global Positioning System survey of south-west Myrdalsjökull, the parent ice-cap of the valley glacier Sólheimajökull, establishes the geometry and position of a subglacial caldera. A cauldron in the ice-cap surface at the basin head is also defined, signifying one location of geothermally driven ablation processes. Background H2S concentrations for the Jökulsá meltwaters in summer 1989 show that leakage of geothermal fluids into the glacial drainage network takes place throughout the melt season. Chemical geothermometry (Na+/K+ ratio) applied to the bulk meltwaters tentatively suggests that the subglacial geothermal area is a high-temperature field with a reservoir temperature of 289-304°C. A major event of enhanced geothermal fluid injection was also detected. Against a background of an apparently warming geothermal reservoir, the event began on Julian day 205 (24 July) with a burst of subglacial seismic activity. Meltwater hydrochemical perturbations followed on day 209 and peaked on day 213, finally leading to a sudden and significant increase in flow on day 214. The hydrochemical excursions were characterized by strong peaks in meltwater H2S, SO2-4 and total carbonate concentrations, transient decreases in pH, small increases in Ca2+ and Mg2+ and sustained increases in electrical conductivity. The event may relate to temporary invigoration of the subglacial convective hydrothermal circulation, seismic disturbance of patterns of groundwater flow and geothermal fluid recruitment to the subglacial drainage network, or a cyclic sweeping out of the geothermal zone by the annual wave of descending groundwater. Time lags between seismic events and meltwater electrical conductivity responses suggest mean and maximum intraglacial throughflow velocities of 0.032-0.132 m s-1

  7. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  8. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  9. CO{sub 2} flux measurements across portions of the Dixie Valley geothermal system, Nevada

    SciTech Connect

    Bergfeld, D.; Goff, F.; Janik, C.J.; Johnson, S.D.

    1998-12-31

    A map of the CO{sub 2} flux across a newly formed area of plant kill in the NW part of the Dixie Valley geothermal system was constructed to monitor potential growth of a fumarole field. Flux measurements were recorded using a LI-COR infrared analyzer. Sample locations were restricted to areas within and near the dead zone. The data delineate two areas of high CO{sub 2} flux in different topographic settings. Older fumaroles along the Stillwater range front produce large volumes of CO{sub 2} at high temperatures. High CO{sub 2} flux values were also recorded at sites along a series of recently formed ground fractures at the base of the dead zone. The two areas are connected by a zone of partial plant kill and moderate flux on an alluvial fan. Results from this study indicate a close association between the range front fumaroles and the dead zone fractures. The goals of this study are to characterize recharge to the geothermal system, provide geochemical monitoring of reservoir fluids and to examine the temporal and spatial distribution of the CO{sub 2} flux in the dead zone. This paper reports the results of the initial CO{sub 2} flux measurements taken in October, 1997.

  10. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team

  11. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  12. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January-December 1982

    SciTech Connect

    Smith, K.

    1982-12-31

    Progress is reported on a project for the use of the 130/sup 0/F central Texas geothermal resource. The revised project consists of cascading the geothermal energy through two enclosed aquaculture ponds, a greenhouse heating system, and into a collection catfish reservoir. (MHR)

  13. Imaging the Roots of Geothermal Systems: 3-D Inversion of Magnetotelluric Array Data in the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Bertrand, E. A.; Caldwell, G.; Bannister, S. C.; Hill, G.; Bennie, S.

    2013-12-01

    The Taupo Volcanic Zone (TVZ), located in the central North Island of New Zealand, is a rifted arc that contains more than 20 liquid-dominated high-temperature geothermal systems, which together discharge ~4.2 GW of heat at the surface. The shallow (upper ~500 m) extent of these geothermal systems is marked by low-resistivity, mapped by tens-of-thousands of DC resistivity measurements collected throughout the 1970's and 80's. Conceptual models of heat transport through the brittle crust of the TVZ link these low-resistivity anomalies to the tops of vertically ascending plumes of convecting hydrothermal fluid. Recently, data from a 40-site array of broadband seismometers with ~4 km station spacing, and an array of 270 broadband magnetotelluric (MT) measurements with ~2 km station spacing, have been collected in the south-eastern part of the TVZ in an experiment to image the deep structure (or roots) of the geothermal systems in this region. Unlike DC resistivity, these MT measurements are capable of resolving the resistivity structure of the Earth to depths of 10 km or more. 2-D and 3-D models of subsets of these MT data have been used to provide the first-ever images of quasi-vertical low-resistivity zones (at depths of 3-7 km) that connect with the near-surface geothermal fields. These low-resistivity zones are interpreted to represent convection plumes of high-temperature fluids ascending within fractures, which supply heat to the overlying geothermal fields. At the Rotokawa, Ngatamariki and Ohaaki geothermal fields, these plumes extend to a broad layer of low-resistivity, inferred to represent a magmatic, basal heat source located below the seismogenic zone (at ~7-8 km depth) that drives convection in the brittle crust above. Little is known about the mechanisms that transfer heat into the hydrothermal regime. However, at Rotokawa, new 3-D resistivity models image a vertical low-resistivity zone that lies directly beneath the geothermal field. The top of this

  14. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2016-12-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  15. Hydrogen Sulfide Sequestration and Storage in Geothermal System: New Mitigation Strategy to Reduce H2S from the Atmosphere and Detect its Mineralization with Multiple Sulfur Isotopic Systematics

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Stefansson, A.; Gudbrandsson, S.; Gunnarsson, I.; Aradottir, E. S.; Gunnarsson Robin, J.; Ono, S.

    2015-12-01

    Hydrogen sulfide (H2S) is one of the major components in geothermal fluids and is commonly emitted into the atmosphere from geothermal power plants causing potential environmental problems. Among several mitigation methods proposed to reduce the H2S emissions, is H2S sequestration into geothermal systems. Reykjavík Energy is undertaking a pilot project at Hellisheidi geothermal system (SW Iceland) called Sulfix project where H2S is being injected into the geothermal reservoir for permanent sequestration into pyrite. The SulFix project started its operation in June 2014: the soluble geothermal gases are dissolved in geothermal waste water, and injected at 8 bars into the high temperature reservoir (>200˚C) at 750 m below the wellhead. The reactions involving sulfur in the geothermal reservoir may be traced using sulfur fluid chemistry and multiple sulfur isotope systematics (32S, 33S, 34S and 36S), including mixing between the reservoir geothermal fluid and the injection fluid, sulfide mineralization and oxidation of sulfide to sulfate. In this study we investigated the multiple sulfur isotope systematics upon sulfide mineralization under geothermal conditions. High temperature flow through experiments were carried out in basaltic glass at 200-250°C and ~5 mmol/kg H2S to study the fluid-rock interaction. The results indicate that the sulfide mineralization occurs rapidly under geothermal conditions, highlighting the leaching rate of iron from the basaltic glass as the mineralization rate determining factor. Moreover, the formation of sulfide may be traced using the δ34S-Δ33S relationship in the fluids and pyrite formation - for example to determine if non-reactive mixing between the injection fluids and reservoir fluids occurs at Hellisheidi. The experimental results have been further supported by geochemical modeling involving multiple sulfur isotope fractionation between aqueous sulfide species and rocks upon basalt dissolution and secondary pyrite formation.

  16. Real-time fracture monitoring in Engineered Geothermal Systems with seismic waves

    SciTech Connect

    Jose A. Rial; Jonathan Lees

    2009-03-31

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  17. The effect of CO{sub 2} on reservoir behavior for geothermal systems

    SciTech Connect

    Gaulke, S.W.

    1986-12-01

    The purpose was to gain an understanding of the effects of non-condensible gases (CO/sub 2/) in fractured two-phase geothermal systems. A thorough review of previous work on non-condensible gases was carried out. In addition, since the flowing mass fraction of CO/sub 2/ is strongly controlled by the flowing saturation, the flowing enthalpy literature was also reviewed. Numerical techniques were employed to examine how non-condensible gases (CO/sub 2/) affect well transients and to determine the value of these effects as tools to evaluate in situ reservoir parameters. Simplified reservoir models were used to define the effects of CO/sub 2/ in the reservoir and the resulting transient behavior at the feedzones to the well. Furthermore, fracture-matrix interaction was studied in detail to identify the effects of CO/sub 2/ on recovery and flow patterns within the reservoir. The insight gained from the sensitivity studies for enthalpy and CO/sub 2/ transients was applied to interpret transient data from well BR21 at the Broadlands geothermal field of New Zealand.

  18. Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Rosas-Carbajal, M.; Linde, N.; Peacock, J.; Zyserman, F. I.; Kalscheuer, T.; Thiel, S.

    2015-12-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  19. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  20. Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University

    DOE Data Explorer

    The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

  1. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    NASA Astrophysics Data System (ADS)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (<120m) wells (2 at Manzanar and 3 at Malalcahuello) dug and drilled in the Cautín River Valley discharge alkaline (pH= 9-10) waters with relatively low TDS (130-210mg/L). The main heat source of the geothermal system is apparently the magmatic system of the Sierra Nevada volcano. Liquiñe-Ofqui Fault Zone (LOFZ) that transects the area forms excellent conduits for the flow of the geothermal waters. The geothermal reservoirs are hosted in the volcanic rocks interceded with glacial deposits over the North Patagonian Batholith that forms an impermeable barrier, and thus constitutes the lower boundary of the geothermal system and also controls the lateral flow of the fluids. An equilibrium temperature of ~210°C is derived from gas geothermometry (CO2/Ar-H2/Ar) of the discharges at Baños del Toro. Geothermal fluids from the upflow area on the northwestern flank of the volcano migrate northwards to the Cautín River Valley. The geothermal system has a high enthalpy reservoir(s) on the northwestern flank of the Sierra Nevada volcano and low-enthalpy reservoirs in the Cautín River Valley that have been tapped to form spas at Manzanar and Malalcahuello. While sub-vertical fractures of LOFZ facilitate the recharge of the system, lateral flow of the geothermal fluids is apparently controlled by lithology; Melipueclo Pluton in particular prevents the westward flow from the upflow zone, causing the flow only northwards to Malalcahuello and

  2. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  3. Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:

    SciTech Connect

    Satrape, J.V.

    1987-11-24

    The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

  4. Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems

    SciTech Connect

    1999-11-01

    The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

  5. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    SciTech Connect

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Parick; Mohan, Ram; Shoham, Ovadia; Felber, Betty; Rychel, Dwight

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  6. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    SciTech Connect

    Greiner, Miles; Childress, Amy; Hiibel, Sage; Kim, Kwang; Park, Chanwoo; Wirtz, Richard

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  7. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  8. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    NASA Astrophysics Data System (ADS)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett

  9. Exploring for Geothermal Resources with Electromagnetic Methods

    NASA Astrophysics Data System (ADS)

    Muñoz, Gerard

    2014-01-01

    Electrical conductivity of the subsurface is known to be a crucial parameter for the characterization of geothermal settings. Geothermal systems, composed by a system of faults and/or fractures filled with conducting geothermal fluids and altered rocks, are ideal targets for electromagnetic (EM) methods, which have become the industry standard for exploration of geothermal systems. This review paper presents an update of the state-of-the-art geothermal exploration using EM methods. Several examples of high-enthalpy geothermal systems as well as non-volcanic systems are presented showing the successful application of EM for geothermal exploration but at the same time highlighting the importance of the development of conceptual models in order to avoid falling into interpretation pitfalls. The integration of independent data is key in order to obtain a better understanding of the geothermal system as a whole, which is the ultimate goal of exploration.

  10. Quartz dissolution and silica deposition in hot-dry-rock geothermal systems

    SciTech Connect

    Robinson, B.A.

    1982-07-01

    The kinetics of quartz dissolution control the produced fluid dissolved silica concentration in geothermal systems in which the downhole residence time is finite. The produced fluid of the Phase I, Run Segment 5 experimental Hot Dry Rock (HDR) geothermal system at Fenton Hill, NM, was undersaturated with respect to quartz in one pass through the reservoir, suggesting that the rate of granite dissolution governed the outlet dissolved silica concentration in this system. The literature data for the rate of quartz dissolution in water from 65 to 625/sup 0/C is correlated using an empirical rate law which is first order in quartz surface area and degree of undersaturation of the fluid. The Arrhenius plot (ln k vs T/sup -1/) is linear over eight orders of magnitude of the rate constant, verifying the validity of the proposed rate expression. Carefully performed quartz dissolution experiments in the present study duplicated the literature data and completed the data base in the temperature range from 150 to 250/sup 0/C. Identical experiments using crushed granite indicate that the rate of quartz dissolution in the presence of granite could be as much as 1 to 2 orders of magnitude faster than the rates observed in the pure quartz experiments. A temperature dependent HDR reservoir model incorporates the quartz dissolution rate law to simulate the dissolved silica behavior during the Fenton Hill Run Segment 5 experiment. For this low-permeability, fracture-dominated reservoir, the assumptions of one-dimensional plug flow through a vertically-inclined rectangular fracture and one-dimensional rock heat conduction perpendicular to the direction of flow are employed. These simplifications lead to an analytical solution for the temperature field in the reservoir.

  11. Interaction of processes may explain induced seismicity after shut-in in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    De Simone, Silvia; Carrera, Jesus; Vilarrasa, Victor

    2015-04-01

    Deep fluid injection is a necessary operation in several engineering sectors, like geothermal energy production, natural gas storage, CO2 storage, etc. The seismicity associated to these activities has, in some occasions, reached unexpected magnitude, raising public concern. Moreover, the occurrence of such seismicity after the injection shut-in pointed out the incompleteness of the knowledge and the inability of fully managing these processes. On the other hand, the growing attention toward clean energy makes it clear that we cannot abandon these procedures, which have a huge potential. Therefore, deeply understanding the mechanisms that induce seismicity is crucial. In this study we consider hydraulic stimulation of deep geothermal systems and analyze the mechanisms that may induce or trigger seismicity. Given that the basic mechanism is fluid pressure increase, secondary triggering processes have been studied. In detail, we attempt to identify the potential mechanisms that may trigger seismicity in the post-injection phase, when the overpressure decreases. These mechanisms have been investigated with a coupled and uncoupled approach, in order to understand the individual effects of each one and the effects of the interactions between them on the reservoir stability. Besides fluid overpressure, another relevant process is the temperature variation. Indeed, in the case of enhanced geothermal systems, the temperature contrast between the injected cold fluid and the deep hot reservoir is great and induces thermal stress, which sensibly affects the in-situ stress field. Therefore, we have studied overpressure and temperature effects by means of analytic solutions and by means of hydro-mechanical and thermo-hydro-mechanical numerical simulations. Results show that in fractured rocks the spatial variability of hydraulic and mechanic parameters provokes no isotropic variation of the tensional field, in response to pressure and temperature perturbations. Another

  12. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    NASA Astrophysics Data System (ADS)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis

  13. Secondary mineral growth in fractures in the Miravalles geothermal system, Costa Rica

    SciTech Connect

    Rochelle, C.A. . Dept. of Earth Sciences); Milodowski, A.E.; Savage, D. . Fluid Processes Research Group); Corella, M. )

    1989-01-01

    A mineralogical, fluid-chemical, and theoretical study of hydrothermal alteration in veins from drillcore from the Miravalles geothermal field, Costa Rica has revealed a complex history of mineral-fluid reaction which may be used to characterize changes in temperature and fluid composition with time. Mineralogical and mineral-chemical data are consistent with hydrothermal alteration in the temperature range 200{sup 0}-270{sup 0}C, with deeper portions of the system having undergone temperatures in excess of 300{sup 0}C. Thermodynamic calculations suggest that the observed alteration assemblage is not equilibrium with current well fluids, unless estimates of reservoir pH are incorrect. Fe-Al zoning of prehnite and epidote in veins is consistent with rapid, isothermal fluctuations in fluid composition at current reservoir temperatures, and may be due to changes in volatile content of the fluid due to tectonic activity.

  14. Middlesex Community College Geothermal Project

    SciTech Connect

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  15. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  16. Numerical modeling of geothermal heat pump system: evaluation of site specific groundwater thermal impact

    NASA Astrophysics Data System (ADS)

    Pedron, Roberto; Sottani, Andrea; Vettorello, Luca

    2014-05-01

    A pilot plant using a geothermal open-loop heat pump system has been realized in the city of Vicenza (Northern Italy), in order to meet the heating and cooling needs of the main monumental building in the historical center, the Palladian Basilica. The low enthalpy geothermal system consists of a pumping well and a reinjection well, both intercepting the same confined aquifer; three other monitoring wells have been drilled and then provided with water level and temperature dataloggers. After about 1 year and a half of activity, during a starting experimental period of three years, we have now the opportunity to analyze long term groundwater temperature data series and to evaluate the numerical modeling reliability about thermal impact prediction. The initial model, based on MODFLOW and SHEMAT finite difference codes, has been calibrated using pumping tests and other field investigations data, obtaining a valid and reliable groundwater flow simulation. But thermal parameters, such as thermal conductivity and volumetric heat capacity, didn't have a site specific direct estimation and therefore they have been assigned to model cells referring to bibliographic standards, usually derived from laboratory tests and barely representing real aquifer properties. Anyway preliminary heat transport results have been compared with observed temperature trends, showing an efficient representation of the thermal plume extension and shape. The ante operam simulation could not consider heat pump real utilization, that happened to be relevantly different from the expected project values; so the first numerical model could not properly simulate the groundwater temperature evolution. Consequently a second model has been implemented, in order to calibrate the mathematical simulation with monitored groundwater temperature datasets, trying to achieve higher levels of reliability in heat transport phenomena interpretation. This second step analysis focuses on aquifer thermal parameters

  17. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    SciTech Connect

    Allison, Lee; Chickering, Cathy; Anderson, Arlene; Richard, Stephen M.

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, the invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts

  18. Geothermal materials development

    SciTech Connect

    Kukacka, L.E.

    1982-01-01

    Among the most pressing problems constraining the development of geothermal energy is the lack of satisfactory component and system reliability. This is due to the unavailability, on a commercial scale, of cost-effective materials that can function in a wide range of geothermal environments and to the unavailability of a comprehensive body of directly relevant test data or materials selection experience. Suitable materials are needed for service in geothermal wells and in process plant equipment. For both situations, this requires materials that can withstand high-temperature, highly-corrosive, and scale-forming geothermal fluids. In addition to requiring a high degree of chemical and thermal resistance, the downhole environment places demands on the physical/mechanical properties of materials for components utilized in well drilling, completion, pumping, and logging. Technical and managerial assistance provided by Brookhaven in the program for studying these materials problems is described.

  19. GeoSys.Chem: Estimate of reservoir fluid characteristics as first step in geochemical modeling of geothermal systems

    NASA Astrophysics Data System (ADS)

    Verma, Mahendra P.

    2012-12-01

    A computer code GeoSys.Chem for the calculation of deep geothermal reservoir fluid characteristics from the measured physical-chemical parameters of separated water and condensed vapor samples obtained from drilled wells is presented. It was written as a dynamic link library (DLL) in Visual Basic in Visual Studio 2010 (VB.NET). Using this library a demonstration program GeoChem was developed in VB.NET, which accepts the input data file in the XML format. A stepwise calculation of deep reservoir fluid characteristics of 11 production wells of Los Azufres geothermal system is performed. The calculated concentration of CO2 (e.g.=1270 mmole/kg in the well AZ-09) in the vapor, discharged into the atmosphere at the weir box, from the water sample indicates some problem in the analysis of carbonic species concentrations. In the absence of good quality analysis of carbonic species it is suggested to consider the CO2 in the vapor sample at the separator and the total dissolved carbonic species concentration in the water sample (i.e., without considering the liberation of CO2 in the atmospheric vapor at the weir box) for the geothermal reservoir fluid composition calculations. Similarly, it presents various diagrams developed in Excel for the thermodynamic evolution of Los Azufres geothermal reservoir.

  20. Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada. Final report October 1, 1982-December 31, 1983

    SciTech Connect

    Flynn, T.; Ghusn, G. Jr.

    1984-01-01

    Combined geologic, geophysical, geochemical, and drilling exploration surveys were used to assess the Moana geothermal resource in Washoe County, Nevada, and to determine its relationship with nearby Steamboat Hot Springs. Moana is the largest single moderate-temperature resource in Nevada that supports geothermal space heating applications. Results show that the general geology and structure for the two systems is similar, but important differences exist with respect to reservoir rocks. Gravity data delineated the contact between important volcanic and sedimentary rocks in Moana, but contour trends did not correlate well with mapped faults. Fluid geochemistry data show major differences in bulk chemical composition, stable-light isotope ratios, and radiocarbon ages for Moana and Steamboat geothermal waters. Water level measurements in observation wells in Moana show simultaneous increasing and decreasing values in different sections of the geothermal area. Temperature-depth profiles changed little during the six-month monitoring period. Direct use of the resource is increasing and longer-lasting, more efficient down-hole heat exchangers are replacing previous equipment that was prone to scaling and corrosion. A computer program that calculates heat output for state-of-the-art heat exchangers is described. Recommendations for continued monitoring, heat exchanger design, and fluid reinjection studies are included. Data are available to government agencies responsible for regulation as well as local residents and potential developers to ensure prudent resource utilization.

  1. Thermal Modelling of Amagmatic Heat Sources as an Exploration Tool for Hot Rock Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lescinsky, D. T.; Budd, A. R.; Champion, D. C.; Gerner, E. J.; Kirkby, A. L.

    2012-12-01

    Geothermal resources in Australia are amagmatic, "Hot Rock" systems, and unrelated to active volcanism or plate margin collision. Instead, these resources are typically associated with heat from radioactive decay in high-heat-producing (HHP) granites (granites containing high concentrations of U, Th and K), coupled with thermal insulation from a thick sediment cover. A greater understanding of the ideal geological components of the Hot Rock system is needed to assist geothermal exploration and reduce risk. Existing geothermal data for Australia (borehole temperatures and heat flow determinations) are limited and collection of additional data is both time consuming and restricted to accessing wells drilled for other purposes. To aid in targeting and prioritizing areas for further study (i.e., evaluations of permeabilities and flow rates), GA has undertaken synthetic thermal modelling, constrained by available geological and geophysical datasets. 150,000 discrete numerical simulations were performed using the SHEMAT computer code. The models were designed to explore the range of geological conditions present in Australia and include variations in intrusive geometry and heat production, sediment thickness and thermal conductivity, basement heat production and basal heat flow. In order to facilitate computation and analysis, plutons were modelled as radially symmetrical cylinders and advective heat transfer was considered to be negligible. The results of the synthetic modelling indicate that significant heat can be generated by granites and trapped in geologically realistic conditions. Temperatures >160°C can be produced with heat production values as low as 2.0 μW/m3, but these scenarios require either unusually large pluton diameters (>50 km), low sediment thermal conductivity (<1.75 W/mK), or high basal heat flow values (>0.05 W/m2). The most geologically reasonable conditions that result in temperatures >160°C, are: pluton diameters 30-40 km; heat production of

  2. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  3. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  4. Numerical modeling of cold magmatic CO2 flux measurements for the exploration of hidden geothermal systems

    NASA Astrophysics Data System (ADS)

    Peiffer, Loïc.; Wanner, Christoph; Pan, Lehua

    2015-10-01

    The most accepted conceptual model to explain surface degassing of cold magmatic CO2 in volcanic-geothermal systems involves the presence of a gas reservoir. In this study, numerical simulations using the TOUGH2-ECO2N V2.0 package are performed to get quantitative insights into how cold CO2 soil flux measurements are related to reservoir and fluid properties. Although the modeling is based on flux data measured at a specific geothermal site, the Acoculco caldera (Mexico), some general insights have been gained. Both the CO2 fluxes at the surface and the depth at which CO2 exsolves are highly sensitive to the dissolved CO2 content of the deep fluid. If CO2 mainly exsolves above the reservoir within a fracture zone, the surface CO2 fluxes are not sensitive to the reservoir size but depend on the CO2 dissolved content and the rock permeability. For gas exsolution below the top of the reservoir, surface CO2 fluxes also depend on the gas saturation of the deep fluid as well as the reservoir size. The absence of thermal anomalies at the surface is mainly a consequence of the low enthalpy of CO2. The heat carried by CO2 is efficiently cooled down by heat conduction and to a certain extent by isoenthalpic volume expansion depending on the temperature gradient. Thermal anomalies occur at higher CO2 fluxes (>37,000 g m-2 d-1) when the heat flux of the rising CO2 is not balanced anymore. Finally, specific results are obtained for the Acoculco area (reservoir depth, CO2 dissolved content, and gas saturation state).

  5. Shallow open-loop geothermal systems: simulation of heat transfer in groundwater and experimental tests for improving parameterization

    NASA Astrophysics Data System (ADS)

    Fossoul, F.; Orban, P.; Dassargues, A.; Hydrogeology; Environmental Geology

    2011-12-01

    Innovative and efficient strategies for energy use become a priority, especially in civil engineering. Geothermal open-loop systems (geothermal wells) are not so developed in Belgium contrary to close-loop systems. This is generally due to the lack of relevant dimensioning and impact study that must be foreseen during the planning phases of the building. However, as shallow groundwater is widely available, geothermal wells potential is significant. Using both experimental and numerical tools, our aim is to develop a rigorous methodology to design heating and cooling shallow geothermal wells (pumping/reinjection), with a detailed hydrogeological characterization coupled to feasibility, environmental impact assessment, dimensioning, and system sustainability. Concerning numerical modeling, Groundwater flow and heat transfer is computed using different codes (HydroGeoSphere, MT3DMS and SHEMAT) for a comparative sensitivity analysis on a typical case. Coupling and temperature non linearities of hydro-thermal parameters values are checked accurately. As shown previously, small temperature variations (temperatures ranging from 12 to 25 °C) allow to use conventional solute transport codes for modeling heat transfer in groundwater taking benefits of the similarities between solute transport and heat transfer equations. When numerical codes are used as dimensioning tools for long-term simulations, reliable values for hydro-thermal properties of the aquifer are essential. As very few experimental values are available in the literature, field experiments are needed to determine more accurately the local values in different geological/hydrogeological conditions. Apart from thermal response tests (TRT) usually performed for designing a close-loop system within a borehole considered in static groundwater conditions, there is no standard procedure for geothermal wells systems. In an open-loop system, groundwater movement induced by the pumping is responsible for a major heat

  6. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect

    Joseph N. Moore

    2007-12-31

    . In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  8. Geothermal Energy

    SciTech Connect

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  9. Numerical simulations of heat transfer considering hydraulic discontinuity for an enhanced geothermal system development in Seokmo Island, Korea

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.; Hyun, Y.; Lee, K.; Lee, T.

    2011-12-01

    The construction of the first geothermal plant in Korea is under planning in Seokmo Island, where a few artesian wells showing relatively high water temperature of around 70 degrees were discovered lately. Geologic structure in this region is characterized by the fractured granite. Numerical simulations for the temperature evolution in a fractured geothermal reservoir in Seokmo Island under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity in Seokmo Island region, which reflected the analysis from several geophysical explorations and drilled rock core, was generated. Supposing the N05°E, NW83° fracture zone containing the pumping range, the numerical simulation results show that temperature of the extracted geothermal water decreases after 15 years of operation, which decreases the overall efficiency of the expected geothermal plant. This is because the colder water from the injection well, which is 400 m apart, begins to flow into the more permeable fracture zone from the 15th year, resulting in a decrease in temperature near the pumping well. Temperature distribution calculated from the simulation also shows a rise of relatively hot geothermal water along the fracture plane. All of the results are different from the non-fracture MINC model, which shows a low temperature contour in concentric circle shape around the injection well and relatively consistent extracting temperature. This demonstrates that the distribution and the structure of fracture system influence the major mass and heat flow mechanisms in geologic medium. Therefore, an intensive geologic investigation for the fractures including their structure, permeability and connecting relation is important. Acknowledgement This study was financially supported by KIGAM, KETEP and BK21.

  10. National Geothermal Data System: Open Access to Geoscience Data, Maps, and Documents

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Richard, S. M.; Musil, L.; Sonnenschein, A.; Good, J.

    2014-12-01

    The U.S. National Geothermal Data System (NGDS) provides free open access to millions of geoscience data records, publications, maps, and reports via distributed web services to propel geothermal research, development, and production. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG), and is compliant with international standards and protocols. NGDS currently serves geoscience information from 60+ data providers in all 50 states. Free and open source software is used in this federated system where data owners maintain control of their data. This interactive online system makes geoscience data easily discoverable, accessible, and interoperable at no cost to users. The dynamic project site http://geothermaldata.org serves as the information source and gateway to the system, allowing data and applications discovery and availability of the system's data feed. It also provides access to NGDS specifications and the free and open source code base (on GitHub), a map-centric and library style search interface, other software applications utilizing NGDS services, NGDS tutorials (via YouTube and USGIN site), and user-created tools and scripts. The user-friendly map-centric web-based application has been created to support finding, visualizing, mapping, and acquisition of data based on topic, location, time, provider, or key words. Geographic datasets visualized through the map interface also allow users to inspect the details of individual GIS data points (e.g. wells, geologic units, etc.). In addition, the interface provides the information necessary for users to access the GIS data from third party software applications such as GoogleEarth, UDig, and ArcGIS. A redistributable, free and open source software package called GINstack (USGIN software stack) was also created to give data providers a simple way to release data using

  11. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  12. Final Report: Natural State Models of The Geysers Geothermal System, Sonoma County, California

    SciTech Connect

    T. H. Brikowski; D. L. Norton; D. D. Blackwell

    2001-12-31

    Final project report of natural state modeling effort for The Geysers geothermal field, California. Initial models examined the liquid-dominated state of the system, based on geologic constraints and calibrated to match observed whole rock delta-O18 isotope alteration. These models demonstrated that the early system was of generally low permeability (around 10{sup -12} m{sup 2}), with good hydraulic connectivity at depth (along the intrusive contact) and an intact caprock. Later effort in the project was directed at development of a two-phase, supercritical flow simulation package (EOS1sc) to accompany the Tough2 flow simulator. Geysers models made using this package show that ''simmering'', or the transient migration of vapor bubbles through the hydrothermal system, is the dominant transition state as the system progresses to vapor-dominated. Such a system is highly variable in space and time, making the rock record more difficult to interpret, since pressure-temperature indicators likely reflect only local, short duration conditions.

  13. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    SciTech Connect

    Toksoz, M. Nafi

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  14. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  15. Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location, Location, Location

    SciTech Connect

    Dunn, Paul; Selman, Nancy; Volpe, Anthony Della; Moss, Deborah; Mobley, Rick; Dickey, Halley; Unruh, Jeffery; Hitchcock, Chris; Tanguay, Jasmine; Butler, Steven; Stacey, Robert; Robertson-Tait, Ann; Pruess, Karsten; Gutoski, Greg; Fay, Jamie M.; Stitzer, John T.; Oglesby, Ken

    2012-04-30

    Substantial unexploited opportunity exists for the US, and the world, in Enhanced Geothermal Systems (EGS). As a result of US DOE investment, new drilling technology, new power generation equipment and cycles enable meaningful power production, in a compact and modular fashion; at lower and lower top side EGS working fluid temperatures and in a broader range of geologies and geographies. This cost analysis effort supports the expansion of Enhanced Geothermal Systems (EGS), furthering DOE strategic themes of energy security and sub goal of energy diversity; reducing the Nation's dependence on foreign oil while improving the environment.

  16. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    SciTech Connect

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

    2007-10-17

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting

  17. Integrated mineralogical and fluid inclusion study of the Coso geothermal systems, California

    SciTech Connect

    Lutz, Susan J.; Moore, Joseph N.; Copp, John F.

    1996-01-24

    Coso is one of several high-temperature geothermal systems on the margins of the Basin and Range province that is associated with recent volcanic activity. This system, which is developed entirely in fractured granitic and metamorphic rocks, consists of a well-defined thermal plume that originates in the southern part of the field and then flows upward and laterally to the north. Fluid inclusion homogenization temperatures and salinities demonstrate that cool, low salinity ground waters were present when the thermal plume was emplaced. Dilution of the thermal waters occurred above and below the plume producing strong gradients in their compositions. In response to heating and mixing, clays and carbonate minerals precipitated, sealing the fractures along the margins of the reservoir and strongly influencing its geometry. The alteration mineralogy varies systematically with depth and temperature. Based on the clay mineralogy, three zones can be recognized: the smectite zone, the illite-smectite zone, and the illite zone. The smectite zone thickens from the north to south and is characterized by smectite, kaolin, stilbite and a variety of carbonate minerals. The illite-smectite zone contains mixed-layer clays and also thickens to the south. The deepest zone (the illite zone) contains illite, chlorite, epidote, and wairakite. Quartz and calcite veins occur in all three zones. Comparison of mineral and fluid inclusion based temperatures demonstrates that cooling has occurred along the margins of the thermal system but that the interior of the system is still undergoing heating.

  18. Geothermal reconnaissance of northeastern Venezuela

    SciTech Connect

    Urbani, F. )

    1989-01-01

    About 60% of Venezuela has been covered by a reconnaissance geothermal survey that includes geologic and water geochemical studies. The information is stored in a computerized data bank that holds data from 361 geothermal localities. The subsurface reservoir temperatures of the geothermal systems have been estimated using chemical geothermometry and mixing models and in many cases conceptual geothermal modes have been postulated. Preliminary assessments of the northeastern Venezuelan geothermal systems indicate that the most promising system is Las Minas near El Pilar in the state of Sucre, with an estimated deep reservoir temperature of 200-220{sup 0}C. Further studies are intended to evaluate its potential for electricity generation. Based on present data, other medium and low temperature systems in Venezuela appear useful for direct applications.

  19. Geopressured geothermal bibliography (Geopressure Thesaurus)

    SciTech Connect

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  20. Study on Improving Partial Load by Connecting Geo-thermal Heat Pump System to Fuel Cell Network

    NASA Astrophysics Data System (ADS)

    Obara, Shinya; Kudo, Kazuhiko

    Hydrogen piping, the electric power line, and exhaust heat recovery piping of the distributed fuel cells are connected with network, and operational planning is carried out. Reduction of the efficiency in partial load is improved by operation of the geo-thermal heat pump linked to the fuel cell network. The energy demand pattern of the individual houses in Sapporo was introduced. And the analysis method aiming at minimization of the fuel rate by the genetic algorithm was described. The fuel cell network system of an analysis example assumed connecting the fuel cell co-generation of five houses. When geo-thermal heat pump was introduced into fuel cell network system stated in this paper, fuel consumption was reduced 6% rather than the conventional method

  1. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low pressure/temperature metamorphic facies series

    SciTech Connect

    Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.; Bird, D.K.

    1983-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200/sup 0/ and 370/sup 0/C, low fluid and lithostatic pressures, and low oxygen fugacities. Petrologic investigations of drill cores and cutting from over 50 wells in this field identified a prograde series of calc-silicate mineral zones which include as index minerals: wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure/temperature metamorphic facies series which encompasses the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydrothermal metamorphic facies series, which is becoming increasingly recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation mineral equilibria. Its equivalent should now be sought in fossil hydrothermal systems.

  2. Increasing the efficiency of geothermal power plants using optimum pressures for turbocompressors and steam jet ejectors in gas extraction systems

    NASA Astrophysics Data System (ADS)

    Harns, Karsten Franz

    Geothermal power plants generate electricity by extracting energy from the earth's interior. The radioactive decay of the earth's core causes heat to conduct towards the surface. When water flows into the fissures of this hot rock a naturally occurring geothermal well is formed. Geothermal power plants use the steam in these wells to drive a turbine and thus generate electricity. The steam in the earth however, is always accompanied by a small fraction of non-condensable gases that build up in the power plant's condenser unless actively removed by some gas extraction system. Because these gases contribute significantly to the total backpressure on the turbine, it is in the interest of power generation to remove them from the condenser. The industry standard for removing these non-condensable gases has been steam jet ejectors or a hybrid system of steam jet ejectors and liquid ring vacuum pumps. This thesis focuses on finding the optimum operating pressures for a hybrid steam jet ejector system and a hybrid turbocompressor system. It was found that plants with steam jet ejectors and liquid ring vacuum pumps provide maximum power output when the liquid ring vacuum pump is operated at its maximum pressure ratio. However, plants with a turbocompressor and liquid ring vacuum pump were found to provide maximum power output when the turbocompressor was operated at its maximum pressure ratio.

  3. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal System, New Mexico

    SciTech Connect

    Goff, F.E.; Gardner, J.N.

    1980-12-01

    The geologic and tectonic setting and geology of Sulphur Springs Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic deposits are indicated on the map. (MHR)

  4. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    SciTech Connect

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fields of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.

  5. State-of-the-art hydrogen sulfide control for geothermal energy systems: 1979

    SciTech Connect

    Stephens, F.B.; Hill, J.H.; Phelps, P.L. Jr.

    1980-03-01

    Existing state-of-the-art technologies for removal of hydrogen sulfide are discussed along with a comparative assessment of their efficiencies, reliabilities and costs. Other related topics include the characteristics of vapor-dominated and liquid-dominated resources, energy conversion systems, and the sources of hydrogen sulfide emissions. It is indicated that upstream control technologies are preferred over downsteam technologies primarily because upstream removal of hydrogen sulfide inherently controls all downstream emissions including steam-stacking. Two upstream processes for vapor-dominated resources appear promising; the copper sulfate (EIC) process, and the steam converter (Coury) process combined with an off-gas abatement system such as a Stretford unit. For liquid-dominated systems that produce steam, the process where the non-condensible gases are scrubbed with spent geothermal fluid appears to be promising. An efficient downstream technology is the Stretford process for non-condensible gas removal. In this case, partitioning in the surface condenser will determine the overall abatement efficiency. Recommendations for future environmental control technology programs are included.

  6. Streaming potential in porous media: 2. Theory and application to geothermal systems

    NASA Astrophysics Data System (ADS)

    Revil, A.; Schwaeger, H.; Cathles, L. M., III; Manhardt, P. D.

    1999-09-01

    Self-potential electric and magnetic anomalies are increasingly being observed associated with hydrothermal fields, volcanic activity, and subsurface water flow. Until now a formal theoretical basis for predicting streaming potential of porous materials has not been available. We develop here a model giving both the macroscopic constitutive equations and the material properties entering these equations. The material properties, like the streaming potential coupling coefficient, depend on pore fluid salinity, temperature, water and gas saturations, mean grain diameter, and porosity. Some aspects of the model are directly tested with success against laboratory data. The streaming potential increases with temperature, grain size, and gas saturation, and decreases with salinity. At the scale of geological structures the model provides an explanation for the presence of kilometer-scale dipolar self-potential anomalies in geothermal systems and volcanoes. Positive self-potential anomalies are associated with fluid discharge areas, whereas negative self-potential anomalies are associated with fluid recharge areas. Self-potential anomaly maps determined at the surface of active hydrothermal fields appear to be a powerful way of mapping the fluid recharge and discharge areas. In the case of free convection the vorticities of the convection pattern generate a magnetic field. The greater these vorticities, the greater the associated magnetic field. It follows that hydrothermal systems act as natural geobatteries because of the flow of pore fluids in the subsurface of these systems.

  7. Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland

    NASA Astrophysics Data System (ADS)

    Scott, Samuel; Gunnarsson, Ingvi; Arnórsson, Stefán; Stefánsson, Andri

    2014-01-01

    The geochemistry of aquifer fluids of the Hellisheidi geothermal system, southwest Iceland, was studied. Based on samples of vapor and liquid from well discharge fluids, the aquifer fluid compositions at the depth of the geothermal system were reconstructed taking into account the highly variable degree of excess well discharge enthalpy, where the enthalpy of the discharge is significantly higher than that of vapor-saturated liquid at the measured aquifer temperature. Decreasing concentrations of non-volatile components such as Si in the total well discharge suggest that the main cause of elevated discharge enthalpies is liquid-vapor phase segregation, i.e. the retention of liquid in the aquifer rock due to its adhesion onto mineral surfaces. Moreover, the slightly lower than equilibrium calculated concentrations of H2 and H2S in some of the hottest and highest-enthalpy wells is considered to be caused by conductive heat transfer from the rocks to the fluids. Alternatively, the cause may lie in the selection of the phase segregation conditions. The calculated concentrations of volatile species in the aquifer fluid are very sensitive to the assumed phase segregation conditions while non-volatiles are not greatly affected by this model parameter. In general, the level of uncertainty does not contradict previous findings of a close approach to fluid-mineral equilibrium at aquifer temperatures above 250 °C. The CO2 concentrations were observed to fall below equilibrium with respect to the most likely mineral buffers, suggesting a possible source control. Elevated H2 concentrations indicate a small equilibrium vapor fraction in aquifer fluids (∼0.2% by mass or ∼3% by volume). Previous conceptual models of the Hengill volcanic area (e.g. Bödvarsson et al., 1990) have implied a central magmatic heat source underlying the Hengill central volcano. Instead, a new conceptual model of the Hellisheidi system is proposed that features two main regions of fluid upflow

  8. Modeling the effects of silica deposition and fault rupture on natural geothermal systems

    NASA Astrophysics Data System (ADS)

    Dempsey, D. E.; Rowland, J. V.; Zyvoloski, G. A.; Archer, R. A.

    2012-05-01

    Natural geothermal convection abounds within the Taupo Volcanic Zone (TVZ) of New Zealand's Central North Island. In many locations the highly porous eruptive products that blanket the landscape have been altered by the throughput of hydrothermal fluids and the consequent deposition of silica. We detail a numerical model that considers the evolution of a geothermal plume in the presence of silica deposition/dissolution that controls an evolving permeability distribution. Precipitation of silica occurs according to a gradient reaction regime, in which the dissolved silica concentration is controlled by the temperature dependent silica solubility. Over a period of 120 kyr, continuous geothermal circulation leads to the development of a low permeability cap-zone, approximately 200 m thick, above the main geothermal upflow zone. The cap-zone encourages lateral flow of rising fluids, increasing the area across which geothermal expression is observed. It also has an insulating effect on fluids below the cap, causing increases in temperature, enthalpy, and the reservoir potential of the field. A second model is constructed to consider the specific scenario of fault rupture through the impermeable cap-zone. Coseismic increases in permeability along the fault plane produce vigorous, renewed flow through the center of the geothermal field, temporarily reducing lateral flows. However, resealing of near surface permeability is rapid, and the restoration of lateral flows and recovery of the geothermal reservoir occurs within ˜10 kyr. These effects are discussed in the context of two TVZ geothermal fields: the extinct Ohakuri field, and Te Kopia, which is situated on a major active normal fault.

  9. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  10. Chemical transport in geothermal systems in Iceland: Evidence from hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Franzson, Hjalti; Zierenberg, Robert; Schiffman, Peter

    2008-06-01

    This study focuses on the chemical changes in basaltic rocks in fossil low- and high-temperature hydrothermal systems in Iceland. The method used takes into account the amount of dilution caused by vesicle and vein fillings in the rocks. The amount of dilution allows a calculation of the primary concentration of the immobile element Zr, and by multiplying the composition of the altered rock by the ratio of Zr (protolith)/Zr (altered rock) one can compute the mass addition caused by the dilution of the void fillings, and also make a direct comparison with the likely protoliths from the same areas. The samples were divided into three groups; two from Tertiary fossil high-temperature systems (Hafnarfjall, Geitafell), and the third group from a low temperature, zeolite-altered plateau basalt succession. The results show that hydrothermally altered rocks are enriched in Si, Al, Fe, Mg and Mn, and that Na, K and Ca are mobile but show either depletion or enrichment. The elements that are immobile include Zr, Y, Nb and probably Ti. The two high-temperature systems show quite similar chemical alteration trends, an observation which may apply to Icelandic fresh water high-temperature systems in general. The geochemical data show that the major changes in the altered rocks from Icelandic geothermal systems may be attributed to addition of elements during deposition of pore-filling alteration minerals. A comparison with seawater-dominated basalt-hosted hydrothermal systems shows much greater mass flux within the seawater systems, even though both systems have similar alteration assemblages. The secondary mineral assemblages seem to be controlled predominantly by the thermal stability of the alteration phases and secondarily by the composition of the hydrothermal fluids.

  11. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2016-07-12

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  12. Energy 101: Geothermal Heat Pumps

    SciTech Connect

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  13. The Future of Geothermal Energy

    SciTech Connect

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  14. Carbon and sulfur isotopes as tracers of fluid-fluid and fluid-rock interaction in geothermal systems

    NASA Astrophysics Data System (ADS)

    Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjörnsdottir, A. E.

    2014-12-01

    Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on δ34S for H2S in vapor and water and SO4 in water as well as δ13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total δ34S and δ13C value of the system. Initially, upon progressive fluid rock interaction the δ34S and δ13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with

  15. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    USGS Publications Warehouse

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  16. Design and development of a greenhouse growing system with a cooling facility using geothermal energy; Part 1

    SciTech Connect

    Tanaka, Shunichiro; Ishibashi, Sadato . Faculty of Agriculture); Kaieda, Masami )

    1994-03-01

    The purpose of the present work was to develop a greenhouse growing system with a night cooling facility using geothermal energy to grow fall and winter vegetables during high summer temperatures. In this paper, the authors first designed and constructed a greenhouse cooling facility using geothermal water for the driving energy, and then conducted a cooling performance test and growth experiment in the growing of vegetables. As a result of the investigation, first, the facility showed the cooling performance as designed, since the air in the greenhouse was cooled to the desired temperature of 15 C. Second, in the open division, almost all the spinach, lettuce, and Kinusaya peas died back during growing and there was therefore no yield. However, in the cooling division, all the vegetables grew normally and their yields were large. From the results mentioned above, the authors concluded that it is possible to grow vegetables during the high-temperature summer season in greenhouse cooled only at night.

  17. A geopressured-geothermal, solar conversion system to produce potable water

    NASA Astrophysics Data System (ADS)

    Nitschke, George Samuel

    A design is presented for recovering Geopressured-Geothermal (GPGT) reservoir brines for conversion into solar ponds to renewably power coastal seawater desalination. The hot, gas-cut, high-pressure GPGT brine is flowed through a well-bore to surface systems which concentrate the brine in multi-effect evaporators and recover the gas. The gas and distilled water are used for thermal enhanced oil recovery, and the concentrated brine is used to construct solar ponds. The thermal energy from the solar ponds is used to produce electricity, which is then used to renewably power coastal desalination plants for large-scale potable water production from the sea. The design is proposed for deployment in California and Texas, where the two largest U.S. GPGT basins exist. Projections show that the design fully deployed in California could provide 5 MAF/y (million acre-ft per year) while yielding a 45% Rate of Return (combined oil and water revenues); the California municipal water load is 10 MAF/y. The dissertation contains a feasibility study of the design approach, supported by engineering analyses and simulation models, included in the appendices. A range of systems configurations and GPGT flow conditions are modeled to illustrate how the approach lends itself to modular implementation, i.e., incrementally installing a single system, tens of systems, up to 1000 systems, which corresponds to full deployment in California for the scenario analyzed. The dissertation includes a method for launching and piloting the approach, starting from a single system installation.

  18. Structure of a low-enthalpy geothermal system inferred from magnetotellurics - A case study from Sri Lanka

    NASA Astrophysics Data System (ADS)

    Nimalsiri, Thusitha Bandara; Suriyaarachchi, Nuwan Buddhika; Hobbs, Bruce; Manzella, Adele; Fonseka, Morrel; Dharmagunawardena, H. A.; Subasinghe, Nalaka Deepal

    2015-06-01

    First comprehensive geothermal exploration in Sri Lanka was conducted in 2010 encompassing seven thermal springs, of which Kapurella records the highest temperature. The study consisted of passive magnetotelluric (MT) soundings, in which static shifts were corrected using time domain electromagnetic method (TDEM). A frequency range of 12,500-0.001 Hz was used for MT acquisition and polar diagrams were employed for dimensionality determination. MT and TDEM data were jointly inverted and 2D models were created using both transverse electric and transverse magnetic modes. A conductive southeast dipping structure is revealed from both phase pseudosections and the preferred 2D inversion model. A conductive formation starting at a depth of 7.5 km shows a direct link with the dipping structure. We suggest that these conductive structures are accounted for deep circulation and accumulation of groundwater. Our results show the geothermal reservoir of Kapurella system with a lateral extension of around 2.5 km and a depth range of 3 km. It is further found that the associated dolerite dike is not the source of heat although it could be acting as an impermeable barrier to form the reservoir. The results have indicated the location of the deep reservoir and the possible fluid path of the Kapurella system, which could be utilized to direct future geothermal studies. This pioneering study makes suggestions to improve future MT data acquisition and to use boreholes and other geophysical methods to improve the investigation of structures at depth.

  19. Update on subsidence at the Wairakei-Tauhara geothermal system, New Zealand

    USGS Publications Warehouse

    Allis, R.; Bromley, C.; Currie, S.

    2009-01-01

    The total subsidence at the Wairakei field as a result of 50 years of geothermal fluid extraction is 15 ?? 0.5 m. Subsidence rates in the center of the subsidence bowl have decreased from over 450 mm/year during the 1970s to 80-90 mm/year during 2000-2007. The location of the bowl, adjacent to the original liquid outflow zone of the field, has not changed significantly. Subsidence at the Tauhara field due to Wairakei production was not as well documented in the early years but appeared later and has been less intense than at Wairakei. Total subsidence of 2.6 ?? 0.5 m has also occurred close to the original liquid outflow zone of this field, and maximum subsidence rates in this area today are in the 80-100 mm/year range. In the western part of the Wairakei field, near the area of hot upflow, subsidence rates have approximately doubled during the last 20 years to 30-50 mm/year. This increase appears to be have been caused by declining pressure in the underlying steam zone in this area, which is tapped by some production wells. At Tauhara field, two areas of subsidence have developed since the 1990s with rates of 50-65 mm/year. Although less well-determined, this subsidence may also be caused by declining pressure in shallow steam zones. The cause of the main subsidence bowls in the Wairakei-Tauhara geothermal system is locally high-compressibility rocks within the Huka Falls Formation (HFF), which are predominantly lake sediments and an intervening layer of pumice breccia. At Wairakei, casing deformation suggests the greatest compaction is at 150-200 m depth. The cause of the large compressibility is inferred to be higher clay content in the HFF due to intense hydrothermal alteration close to the natural fluid discharge areas. Future subsidence is predicted to add an additional 2-4 m to the Wairakei bowl, and 1-2 m elsewhere, but these estimates depend on the assumed production-injection scenarios.

  20. Thermal modeling of the Clear Lake magmatic system, California: Implications for conventional and hot dry rock geothermal development

    SciTech Connect

    Stimac, J.; Goff, F.; Wohletz, K.

    1997-06-01

    The combination of recent volcanism, high heat flow ({ge} HFU or 167 mW/m{sup 2}), and high conductive geothermal gradient (up to 120{degree} C/km) makes the Clear Lake region of northern California one of the best prospects for hot dry rock (HDR) geothermal development in the US. The lack of permeability in exploration wells and lack of evidence for widespread geothermal reservoirs north of the Collayomi fault zone are not reassuring indications for conventional geothermal development. This report summarizes results of thermal modeling of the Clear Lake magmatic system, and discusses implications for HDR site selection in the region. The thermal models incorporate a wide range of constraints including the distribution and nature of volcanism in time and space, water and gas geochemistry, well data, and geophysical surveys. The nature of upper crustal magma bodies at Clear Lake is inferred from studying sequences of related silicic lavas, which tell a story of multistage mixing of silicic and mafic magma in clusters of small upper crustal chambers. Thermobarometry on metamorphic xenoliths yield temperature and pressure estimates of {approximately}780--900 C and 4--6 kb respectively, indicating that at least a portion of the deep magma system resided at depths from 14 to 21 km (9 to 12 mi). The results of thermal modeling support previous assessments of the high HDR potential of the area, and suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at depths as little as 3--6 km. This is significant because future HDR reservoirs could potentially be sited in relatively shallow granitoid plutons rather than in structurally complex Franciscan basement rocks.

  1. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  2. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  3. Numerical studies of cold water injection into vapor-dominated geothermal systems

    SciTech Connect

    Lai, C.H; Bodvarsson, G.S.

    1991-01-01

    Recent reservoir pressure and steam flow rate declines at The Geysers geothermal field in California have attracted interest in studies of increased cold water injection into this system. In this paper, numerical studies of such injection into a fractured vapor-dominated reservoir are conducted using a two-dimensional radial, double-porosity model. The results obtained indicate that cold water injection into superheated (low-pressure) zones will greatly enhance the productivities of steam wells. Injection into two-phase zones with significant liquid reserves in the matrix blocks does not appear to aid in steam recovery until most of the original liquid reserves are depleted. Sensitivity studies are conducted over the range of fracture and matrix permeabilities applicable to the Geysers. The sensitivity of the grid size is also conducted, and shows very large grid effects. A fine vertical space discretization near the bottom of the reservoir is necessary to accurately predict the boiling of the injected water. 28 refs., 15 figs., 3 tabs.

  4. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    PubMed

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  5. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Peacock, J. R.; Thiel, S.; Reid, P.; Heinson, G.

    2012-09-01

    Enhanced geothermal systems (EGS) are on the verge of becoming commercially viable for power production, where advancements in subsurface characterization are imperative to develop EGS into a competitive industry. Theory of an EGS is simple, pump fluids into thermally enhanced lithology and extract the hot fluids to produce energy. One significant complication in EGS development is estimating where injected fluids flow in the subsurface. Micro-seismic surveys can provide information about where fractures opened, but not fracture connectivity nor fluid inclusion. Electromagnetic methods are sensitive to conductivity contrasts and can be used as a supplementary tool to delineate reservoir boundaries. In July, 2011, an injection test for a 3.6 km deep EGS at Paralana, South Australia was continuously monitored by both micro-seismic and magnetotellurics (MT). Presented are the first results from continuous MT measurements suggesting transient variations in subsurface conductivity structure generated from the introduction of fluids at depth can be measured. Furthermore, phase tensor representation of the time dependent MT response suggests fluids migrated in a NE direction from the injection well. Results from this experiment supports the extension of MT to a monitoring tool for not only EGS but other hydraulic stimulations.

  6. A re-evaluation of the Moyuta geothermal system, Southern Guatemala

    SciTech Connect

    Goff, F.; Adams, A.; Trujillo, P.E.; Counce, D. ); Janik, C.; Fahlquist, L. ); Roldan, A.; Revolorio, M. . Unidad de Desarollo Geotermico)

    1991-01-01

    Chemical and isotopic data from four fumarole sites combined with prefeasibility assessments obtained in the 1970s have resulted in a re-evaluation of the Moyuta geothermal system. Moyuta consists of an east-west trending complex of Quaternary andesite/dacite domes and flows cut by north-trending faults. Areas of fumaroles, acid springs, and bicarbonate-rich thermal springs flank the north and south sides of the volcanic complex. Chloride-rich thermal springs discharge along rivers at lower elevations around the Moyuta highland. The distribution of thermal features indicates that deep reservoir fluid rises convectively near the axis of volcanism. Geochemical data suggest that there are two subsystems having temperatures of about 210{degrees}C (north flank) and 170{degrees}C (south flank). Exploration wells sited near the most northerly fumarole (Azulco) achieved temperatures of {le}113{degrees}C at 1004 m depth. We suggest the fumaroles occur above hydrothermal outflow plumes confined to vertical, fault-controlled conduits. Better drilling sites occur closer to the intersections of the north trending faults and the Quaternary volcanic axis. 21 refs., 7 figs., 2 tabs.

  7. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal System

    SciTech Connect

    Gutierrez, Marte

    2016-12-31

    The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  8. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  9. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    PubMed Central

    Urbieta, María Sofía; Willis Porati, Graciana; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-01-01

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea. PMID:27682093

  10. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  11. Simulation studies on Enhanced Geothermal Systems with CO2 as a working fluid

    NASA Astrophysics Data System (ADS)

    Karra, S.; Ayling, B.; Han, W.; Lichtner, P. C.; Lu, C.; McPherson, B. J.; Mclin, K. S.; Moore, J.; Pan, F.; Rose, P. E.; Xu, T.

    2011-12-01

    Supercritical CO2 has recently been considered as a working fluid in enhanced geothermal systems (EGS), given its non-ionic nature, larger expansivity and lower viscosity compared to water. In addition, an EGS with supercritical CO2 as a working fluid may also act as a mechanism for CO2 sequestration. To explore this, one must understand the various interactions that may take place between the reservoir rock and the supercritical CO2. In this work, we perform simulations in two and three dimensions using the massively parallel flow and transport code PFLOTRAN, to study these interactions under various conditions (aqueous, non-aqueous and two-phase). The two dimensional results using PFLOTRAN are compared with simulations made using the TOUGH2 code. Numerical studies examining mineral dissolution and precipitation reactions that may occur in EGS that use supercritical CO2 are also shown, in addition to preliminary indications of which well placements may enable optimal flow rates and simultaneous CO2 sequestration.

  12. What can granular media teach us about deformation in geothermal systems

    SciTech Connect

    Stephen L. Karner

    2004-06-01

    Experiments on granular media have significantly improved our understanding of deformation processes in porous rocks. Laboratory results have lead to fundamental theoretical developments (such as poroelasticity, or rate and state-variable friction) that have found widespread application. This paper presents results from laboratory experiments that help constrain these theories. Data from triaxial deformation experiments on quartz sand aggregates are used to illustrate stress-dependent behavior of poroelastic parameters (e.g. the Biot-Willis and Skempton coefficients). Calculations for these coefficients show systematic variations as effective stress increases, in a manner consistent with measured compressibilities of the aggregate. Data from shear experiments show that frictional strength varies systematically with time and temperature. At temperatures below 450 oC, shear zones exhibit greater cohesive strengths as the time of stationary contact increases (hence, positive healing rates). For conditions exceeding 450 oC, shear zone strength is seen to decrease with contact time (negative healing rates). The results from both volumetric compaction and frictional shear experiments are well described by poroelasticity as well as rate and state-variable friction. The combination of these constitutive relations may provide a powerful tool that can be used in numerical models that couple thermal, mechanical, hydraulic, and temporal processes – as occur in geothermal systems.

  13. Hydrothermal flow regime and magmatic heat source of the Cerro Prieto geothermal system, Baja California, Mexico

    SciTech Connect

    Elders, W.A.; Bird, D.K.; Schiffman, P.; Williams, A.E.

    1984-01-01

    This detailed three-dimensional model of the natural flow regime of the Cerro Prieto geothermal field, before steam production began, is based on patterns of hydrothermal mineral zones and light stable isotopic ratios observed in rock samples from more than 50 deep wells, together with temperature gradients, wireline logs and other data. At the level so far penetrated by drilling, this hydrothermal system was heated by a thermal plume of water close to boiling, inclined at 45/sup 0/, rising from the northeast and discharging to the west. To the east a zone of cold water recharge overlies the inclined thermal plume. Fission track annealing studies show the reservoir reached 170/sup 0/C only 10/sup 4/ years ago. Oxygen isotope exchange data indicate that a 12 km/sup 3/ volume of rock subsequently reacted with three times its volume of water hotter than 200/sup 0/C. Averaged over the duration of the heating event this would require a flow velocity through a typical cross-section of the reservoir of about 6 m/year. The heat in storage in that part of the reservoir hotter than 200/sup 0/C and shallower than 3 km depth is equivalent to that which would be released by the cooling of about 1 or 2 km/sup 3/ of basalt or gabbro magma.

  14. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  15. Temporal changes in noble gas compositions within the Aidlinsector ofThe Geysers geothermal system

    SciTech Connect

    Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest,Thijs; Lewicki, Jennifer

    2006-05-03

    The use of nonreactive isotopic tracers coupled to a full thermal-hydrological reservoir simulation allows for an improved method of investigating how reservoir fluids contained within matrix and fractures contribute over time to fluids produced from geothermal systems. A combined field and modeling study has been initiated to evaluate the effects of injection, production, and fracture-matrix interaction on produced noble gas contents and isotopic ratios. Gas samples collected periodically from the Aidlin steam field at The Geysers, California, between 1997 and 2006 have been analyzed for their noble gas compositions, and reveal systematic shifts in abundance and isotopic ratios over time. Because of the low concentrations of helium dissolved in the injection waters, the injectate itself has little impact on the helium isotopic composition of the reservoir fluids over time. However, the injection process may lead to fracturing of reservoir rocks and an increase in diffusion-controlled variations in noble gas compositions, related to gases derived from fluids within the rock matrix.

  16. Application of Microearthquake(MEQ)Monitoring for Characterizing the Performance of Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Majer, E.

    2010-12-01

    Microearthquake monitoring for fracture enhancement and imaging of fracture systems will play a crucial role in the success of EGS, both from a reservoir management and public acceptance point of view. One controversial issue associated with EGS is the impact of induced seismicity or microseismicity, which has been the cause of delays and threatened cancellation of at EGS projects worldwide. LBNL is installing, operating , and/or interfacing MEQ seismic arrays at multiple EGS sites which are in collaboration with the USDOE Geothermal EGS Program. The overall goal is to gather high resolution MEQ data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary and in conjunction with available boreholes) to not only use MEQ data for understanding the creation and monitoring of fracture stimulation of EGS reservoirs, but for using both active and passive monitoring of the fracture systems. Current EGS DOE Project sites include Desert Peak, Brady’s Hot Springs, and New York Canyon, Nevada, the NW Geysers, and the SE Geysers, California, Raft River, Idaho, and Newberry Caldera in Oregon. A possible additional site in Alaska. Additional sites will be instrumented as DOE adds projects. A second goal is to provide high quality MEQ data, improved processing methodologies to detect and understand fracture and fault mechanics,and advanced analysis of the data to the research community in order to develop, test and apply MEQ methods for understanding the performance of the EGS systems,as well as aid in developing induced seismicity mitigation techniques that can be used for a variety of EGS systems in the future. Reported will be current status and results from the initial injections and how the research community can access the data.

  17. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    SciTech Connect

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  18. Relating sulfide mineral zonation and trace element chemistry to subsurface processes in the Reykjanes geothermal system, Iceland

    NASA Astrophysics Data System (ADS)

    Libbey, R. B.; Williams-Jones, A. E.

    2016-01-01

    The nature and distribution of sulfide minerals and their trace element chemistry in the seawater-dominated Reykjanes geothermal system was determined through the study of cuttings and core from wells that intersect different regions of the hydrothermal cell, from the near surface to depths of > 3000 m. The observed sulfide mineral zonation and trace element enrichment correlate well with the present-day thermal structure of the system. Isocubanite and pyrrhotite are confined to the deep, low permeability regions, whereas an assemblage of chalcopyrite and pyrite predominates in the main convective upflow path. The presence of marcasite in the uppermost regions of the system reflects weakly acidic conditions (pH < 5) marginal to the upflow, where outflow and downward percolating fluids have dissolved deeply exsolved CO2. The presence of "chalcopyrite disease" in sphalerite may be an indication that the system is experiencing a heating trend, following the logic of "zone-refining" in volcanogenic massive sulfide systems. Sulfide sulfur at all analyzed depths in the Reykjanes geothermal system was derived from a mixture of basaltic and reduced seawater sources. Petrographic evidence suggests that seawater-derived hydrothermal fluids have altered primary igneous sulfides in the host rocks, a process that has been proposed as a major control of aqueous sulfide production in mid-ocean ridge environments. Calculations show that igneous sulfides in the host basalts likely account for less than 5% of the total available ore metal budget in the system, however, their contribution to fluid metal budgets is probably significant because of their relatively high solubility. The processes documented by this study are likely analogous to those operating in the feeder and deep reaction zones of mid-ocean ridge seafloor hydrothermal systems. The results show that sulfide mineral zonation and trace element chemistry vary as a function of physicochemical parameters that are relevant

  19. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze

  20. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  1. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  2. Geothermal progress monitor report No. 6

    SciTech Connect

    Not Available

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  3. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  4. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  5. An experimental study of adsorption in vapor-dominated geothermal systems

    SciTech Connect

    Satik, Cengiz; Horne, Roland N.

    1995-01-26

    We report results of steam adsorption experiments conducted for rock samples from vapor-dominated geothermal reservoirs. We examine the effect of the temperature on the adsorption/desorption isotherms. We find that the temperature effect is only important on the desorption such that the hysteresis becomes more pronounced as the temperature increases. The scanning behavior within the steam sorption hysteresis loop is also studied to investigate the behavior during repressurization. Collection of sets of data on the sorption behavior of The Geysers geothermal field in California is presented.

  6. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  7. Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware

    SciTech Connect

    Mancus, J.; Perrone, E.

    1982-08-01

    This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

  8. DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT

    SciTech Connect

    Clark, Ryan J.; Kuhmuench, Christoph; Richard, Stephen M.

    2013-03-01

    The National Geothermal Data System (NGDS) De- sign and Testing Team is developing NGDS software currently referred to as the “NGDS Node-In-A-Box”. The software targets organizations or individuals who wish to host at least one of the following: • an online repository containing resources for the NGDS; • an online site for creating metadata to register re- sources with the NGDS • NDGS-conformant Web APIs that enable access to NGDS data (e.g., WMS, WFS, WCS); • NDGS-conformant Web APIs that support dis- covery of NGDS resources via catalog service (e.g. CSW) • a web site that supports discovery and under- standing of NGDS resources A number of different frameworks for development of this online application were reviewed. The NGDS Design and Testing Team determined to use CKAN (http://ckan.org/), because it provides the closest match between out of the box functionality and NGDS node-in-a-box requirements. To achieve the NGDS vision and goals, this software development project has been inititated to provide NGDS data consumers with a highly functional inter- face to access the system, and to ease the burden on data providers who wish to publish data in the sys- tem. It is important to note that this software package constitutes a reference implementation. The NGDS software is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. A number of international organizations have ex- pressed interest in the NGDS approach to data access. The CKAN node implementation can provide a sim- ple path for deploying this technology in other set- tings.

  9. Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment

    NASA Astrophysics Data System (ADS)

    Reyes, Agnes G.

    1990-10-01

    Philippine geothermal systems occur in the vicinity of large Holocene calc-alkaline volcanic complexes. Wells drilled in these areas encountered multiple intrusions; the latest dikes are the subsurface manifestations of the youngest heat source. Commonly, at least two hydrothermal regimes are juxtaposed in a single area, with the latest being in equilibrium with the present temperature and chemical regime. Alteration by neutral-pH water is pervasive and abundant. A contact-metamorphic aureole also occurs near intrusives. Alteration due to acid-sulfate fluids is generally confined to permeable structures. Neutral-pH alteration is divided into four zones on the basis of key clay minerals, and two subzones are defined by calc-silicates. These are the smectite (ambient to 180°C), transition (180-230°C), illite (230-320°C) and biotite (270-340°C) zones. Subzones are defined by epidote (250-340°C) and amphibole (280-340°C). The four main zones of acid alteration are: kaolinite (ambient to 120°C), dickite ± kaolinite (120-200°C), dickite ± pyrophyllite (200-250°C), and pyrophyllite ± illite (230-320°C). Where relict high-temperature alteration reaches the surface, the area being drilled is usually the outflow zone of the present system. These hydrothermal mineral assemblages are used: (1) as geothermometers; (2) to assist in determining the depth at which the production casing will be set during drilling; (3) to estimate fluid pH and other chemical parameters; (4) to predict possible corrosion and scaling tendencies of the fluids; (5) as a measure of permeability and possible cold water influx into wells; (6) as a guide to field hydrology; and (7) to estimate roughly the thickness of the eroded overburden.

  10. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  11. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

  12. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  13. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  14. Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.

    2009-12-01

    We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel

  15. "Assistance to States on Geothermal Energy"

    SciTech Connect

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC

  16. Changes in physical-thermal properties of soil related to very shallow geothermal systems in urban areas

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Psyk, Mario; Popp, Thomas; Bertermann, David

    2016-04-01

    In the near future the population living in urban areas is expected to increase. This worldwide trend will lead to a high concentrations of infrastructures in confined areas, whose impact on land use and shallow subsurface must be well evaluated. Since shallow geothermal energy resource is becoming increasingly important as renewable energy resource, due to its huge potential in providing thermal energy for residential and tertiary buildings and in contributing to reduce greenhouse gas emission, the number of installed geothermal systems is expected to continue to rise in the near future. However, a leading question concerns the short and long-term effect of an intensive thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage. From an environmental and technical point of view, changes on ground temperatures can influence the physical-thermal properties of soil and groundwater as well as their chemical and biological features. In this study the preliminary results of ITER Project are presented. This project, funded by European Union, focuses on improving heat transfer efficiency of very shallow geothermal systems, as horizontal collector systems or special forms (i.e. helix system), interesting the first 2 m of depth from ground level. Given the heterogeneity of sedimentary deposits in alluvial plain and the uncertainties related to the estimation of thermal parameters for unconsolidated material affected by thermal use, physical-thermal parameters (i.e. moisture content, bulk density, thermal conductivity...) where determined in laboratory for sand, clay and loamy sand samples. In addition, preliminary results from a field test site located within an urban area will be also shown. The main aim is to improve our knowledge of heat transfer process in the soil body in order (i) to create a reference database to compare subsequently the impact of temperature variations on the same properties and (ii) to provide reliable data for

  17. Geoelectrical Characterization of the Punta Banda System: A Possible Structural Control for the Geothermal Anomalies

    NASA Astrophysics Data System (ADS)

    Arango-Galvan, C.; Flores-Marquez, E.; Prol-Ledesma, R.; Working Group, I.

    2007-05-01

    The lack of sufficient drinking water in México has become a very serious problem, especially in the northern desert regions of the country. In order to give a real solution to this phenomenon the IMPULSA research program has been created to develope novel technologies based on desalination of sea and brackish water using renewable sources of energy to face the problem. The Punta Banda geothermal anomaly is located towards the northern part of Baja California Peninsula (Mexico). High water temperatures in some wells along the coast depicted a geothermal anomaly. An audiomagnetotelluric survey was carried out in the area as a preliminary study, both to understand the process generating these anomalous temperatures and to assess its potential exploitation to supply hot water to desalination plants. Among the electromagnetic methods, the audiomagnetotellurics (AMT) method is appropriated for deep groundwater and geothermal studies. The survey consisted of 27 AMT stations covering a 5 km profile along the Agua Blanca Fault. The employed array allowed us to characterize the geoelectrical properties of the main structures up to 500 m depth. Two main geoelectrical zones were identified: 1) a shallow low resistivity media located at the central portion of the profile, coinciding with the Maneadero valley and 2) two high resitivity structures bordering the conductive zone possibly related to NS faulting, already identified by previous geophysical studies. These results suggest that the main geothermal anomalies are controlled by the dominant structural regime in the zone.

  18. Stimulation Techniques Used In Enhanced Geothermal Systems: Perspectives From Geomechanics and Rock Physics

    SciTech Connect

    Stephen L. Karner; Joel Renner

    2005-01-01

    Understanding the processes that enhance fluid flow in crustal rocks is a key step towards extracting sustainable thermal energy from the Earth. To achieve this, geoscientists need to identify the fundamental parameters that govern how rocks respond to stimulation techniques, as well as the factors that control the evolution of permeability networks. These parameters must be assessed over variety of spatial scales: from microscopic rock properties (such as petrologic, mechanical, and diagenetic characteristics) to macroscopic crustal behavior (such as tectonic and hydro-dynamic properties). Furthermore, these factors must be suitably monitored and/or characterized over a range of temporal scales before the evolutionary behavior of geothermal fields can be properly assessed. I am reviewing the procedures currently employed for reservoir stimulation of geothermal fields. The techniques are analyzed in the context of the petrophysical characteristics of reservoir lithologies, studies of wellbore data, and research on regional crustal properties. I determine common features of geothermal fields that can be correlated to spatiotemporal evolution of reservoirs, with particular attention to geomechanics and petrophysical properties. The study of these correlations can then help guide procedures employed when targeting new prospective geothermal resources.

  19. Rupture directivity of fluid-induced microseismic events: Observations from an enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi

    2016-11-01

    The rupture process of fluid-induced microseismic events is still poorly understood, mainly due to usually small magnitudes and sparse monitoring geometries. The high-quality recordings of the earthquake sequence 2006-2007 at the enhanced geothermal system at Basel, Switzerland, constitute a rare exception, allowing a systematic directivity study of 195 events using the empirical Green's function method. We observe clear directivity signatures for about half the events which demonstrates that rupture directivity persists down to small magnitudes (ML˜1). The predominant rupture behavior is unilateral. We further find evidence that directivity is magnitude dependent and varies systematically with distance from the injection source. Whereas pore pressure seems to play the dominant role close to the injection source and no preferred rupture direction is observable, directivity aligns parallel to the event distribution with increasing distance (≳100 m) and is preferably oriented away from the injection point. The largest analyzed events (ML˜2) show a distinct behavior: They rupture toward the injection source, suggesting that they nucleate in the vicinity of the pressure front and propagate backward into the perturbed volume. This finding is of particular relevance for seismic hazard assessment of georeservoirs, since it implies that maximum event size is related to dimension of the fluid-perturbed volume. Our study also resolves rupture complexities for a small group of events. This shows that small fault heterogeneities exist down to a scale of a few tens of meters. The observation of directivity and complexity in induced microseismic events suggest that future source studies account for these phenomena.

  20. Assessing the prospective resource base for enhanced geothermal systems in Europe

    NASA Astrophysics Data System (ADS)

    Limberger, J.; Calcagno, P.; Manzella, A.; Trumpy, E.; Boxem, T.; Pluymaekers, M. P. D.; van Wees, J.-D.

    2014-12-01

    In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh-1 in 2020, EUR 127 MWh-1 in 2030, and EUR 70 MWh-1 in 2050. Cutoff values of EUR 200 MWh-1 in 2020, EUR 150 MWh-1 in 2030, and EUR 100 MWh-1 in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GWe in 2020, 22 GWe in 2030, and 522 GWe in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.

  1. Geothermal Grows Up

    ERIC Educational Resources Information Center

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  2. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    lower values detected in venting gases from active volcanoes (e.g. Vulcano and Panarea). The explanation of such a difference is not related to the volcanic activity at all, but to the parent mantle that in the western side looks to be less contaminated compared to the eastern side. Crustal contamination has been invoked by several authors as the main factor that caused the dramatic 3He/4He decrease. Although the parent mantle produced magmas with different isotopic signature, the gas phase looks similar. To explain the results of the chemical analyses it is proposed that similar deep boundary conditions (pressure, temperature, oxidation level) act as buffers for the chemical composition of the venting gases. With the aim of investigating their origin, estimations of the deep equilibration conditions have been carried out. The reactive compounds detected in the sampled gases, largely used for geothermometric and geobarometric considerations of hydrothermal fluids were used in a system based on the CH4-CO-CO2 contents assuming the presence of a boiling aqueous solution. The equilibrium constants of the adopted reactions are a function of temperature and oxygen fugacity, being the latter buffered by the mineral assemblage of the host rocks. Due to the similarity in the chemical composition of the gases vented at all the islands, a theoretical model developed to interpret the chemical composition of the gases released at Panarea during the last volcanic crisis is here applied. The results have shown that geothermal boiling systems are detectable at all the islands with temperatures up to 350°C. The adopted geo-thermobarometric system is more sensitive to the contents of CO and CH4 than that of CO2, implying that although GWI induce modifications in the chemical composition, the estimated equilibrium temperatures do not change very much for variations of the CO2 content in the range of several volume percent, thus, whether or not the gaseous mixture underwent GWI. Moreover

  3. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  4. Advances in geothermal energy use

    SciTech Connect

    Kilkis, I.B.; Eltez, M.

    1996-10-01

    One of the earliest examples of large scale use of the geothermal energy is the district heating system in Boise, Idaho. Established in 1892, this system now serves 266 customers--mostly residential. Today, excluding heat pumps, there are about 300 sites in America where geothermal energy is currently used in various applications; including district heating, absorption cooling and refrigeration, industrial processes, aquaculture, horticulture, and snow melting/freeze protection. Among these, 18 geothermal district heating systems are operating with 677 GBtu (714 TJ) total annual heat output. Geothermal activity was first generated in Italy, in 1904, with a 10 kWe capacity. Now, commercial power plants are in service using vapor-dominated and liquid-dominated plants with a world-wide installed capacity of 6 GWe. This paper looks at a hybrid cycle/integrated district HVAC system.

  5. Cap rock efficiency of geothermal systems in fold-and-thrust belts: Evidence from paleo-thermal and structural analyses in Rosario de La Frontera geothermal area (NW Argentina)

    NASA Astrophysics Data System (ADS)

    Maffucci, R.; Corrado, S.; Aldega, L.; Bigi, S.; Chiodi, A.; Di Paolo, L.; Giordano, G.; Invernizzi, C.

    2016-12-01

    Cap rock characterization of geothermal systems is often neglected despite fracturing may reduce its efficiency and favours fluid migration. We investigated the siliciclastic cap rock of Rosario de La Frontera geothermal system (NW Argentina) in order to assess its quality as a function of fracture patterns and related thermal alteration. Paleothermal investigations (XRD on fine-grained fraction of sediments, organic matter optical analysis and fluid inclusions on veins) and 1D thermal modelling allowed us to distinguish the thermal fingerprint associated to sedimentary burial from that related to fluid migration. The geothermal system is hosted in a Neogene N-S anticline dissected by high angle NNW- and ENE-striking faults. Its cap rock can be grouped into two quality categories: rocks acting as good insulators, deformed by NNW-SSE and E-W shear fractures, NNE-SSW gypsum- and N-S-striking calcite-filled veins that developed during the initial stage of anticline growth. Maximum paleo-temperatures (< 60 °C) were experienced during deposition to folding phases. rocks acting as bad insulators, deformed by NNW-SSE fault planes and NNW- and WNW-striking sets of fractures associated to late transpressive kinematics. Maximum paleo-temperatures higher than about 115 °C are linked to fluid migration from the reservoir to surface (with a reservoir top at maximum depths of 2.5 km) along fault damage zones. This multi-method approach turned out to be particularly useful to trace the main pathways of hot fluids and can be applied in blind geothermal systems where either subsurface data are scarce or surface thermal anomalies are lacking.

  6. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  7. Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon

    SciTech Connect

    Pruess, Karsten

    2006-06-07

    Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock. CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.

  8. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    SciTech Connect

    Paulsson, Bjorn N.P.; Thornburg, Jon A; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The current state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown

  9. U-Th dating of vein calcite by LA-MC-ICP-MS: preliminary results from geothermal systems

    NASA Astrophysics Data System (ADS)

    McGee, L. E.; Reich, M.; Rodriguez, V.; Leisen, M.; Barra, F.

    2014-12-01

    The measurement of U-series isotopes in precipitated minerals such as calcite holds various challenges, including low U and Th concentrations (in the ppb-ppt range), and the presence of detrital 232Th which can lead to age overestimations. Additionally, as yet there does not exist a calcite standard reference material for inter-laboratory accuracy and precision comparison, with most laboratories using their own in-house standard material and focussing largely on application to paleoclimate studies (e.g. corals and speleothems). In actively deforming regions, high-pressure hydrothermal fluids play an important role in faulting and vein formation, and commonly fault rupture is followed by rapid sealing through mineral precipitation. Therefore, precise dating of vein growth is of special importance to our understanding of the complex interplay between seismic events and fluid flow in the upper crust, and opens up a new field of study using U-Th techniques. The ability to accurately date fault-filling calcite within such settings has the power to elucidate the connection between structure and fluid flow in the development of geothermal systems, and provide valuable information on the longevity of the heat/water source, in addition to regional magmatic history. We are developing U-Th measurements and ages of vein calcite from geothermal systems using a Neptune Plus MC-ICP-MS (with 5 CDDs and 3 SEMs) coupled to an excimer 193nm Photon Machines laser. We will be comparing our results with an 189ka in-house flowstone calcite standard previously dated by TIMS, as well as developing a geothermal calcite standard.

  10. The role of active and ancient geothermal systems in evolution of Grant Canyon oil field, Railroad Valley, Nye County, Nevada

    SciTech Connect

    Hulen, J.B. ); Bereskin, S.R. ); Bortz, L.C.

    1991-06-01

    Since discovery in 1983, the Grant Canyon field has been among the most prolific oil producers (on a per-well basis) in the US. Production through June 1990 was 12,935,630 bbl of oil, principally from two wells which in tandem have consistently yielded more than 6,000 bbl of oil per day. The field is hosted by highly porous Devonian dolomite breccia loosely cemented with hydrothermal quartz. Results of fluid-inclusion and petrographic research in progress at Grant Canyon suggest that paleogeothermal and perhaps currently circulating geothermal systems may have played a major role in oil-reservoir evolution. For example, as previously reported, the breccia-cementing quartz hosts primary aqueous, aqueous/oil, and oil fluid inclusions which were trapped at about 120C (average homogenization temperature) and document initial oil migration and entrapment as droplets or globules dispersed in dilute (< 2.2 wt.% equivalent NaCl) aqueous solutions. Additional evidence of geothermal connection is that the horst-block trap at Grant Canyon is top and side sealed by valley-fill clastic and volcanic rocks which are locally hydrothermally altered and calcite flooded. These secondary seals are enhanced by disseminated, solid asphaltic residues locally accounting for 23% (volume) of the rock. Current reservoir temperatures at Grant Canyon (120C) and the adjacent Bacon Flat field (171C) attest to vigorous contemporary geothermal activity. Based on results of the authors' Grant Canyon work to date, they suggest that active and paleohydrothermal systems could be viable petroleum exploration targets in otherwise favorable terrain elsewhere in the Basin and Range.

  11. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy)

    NASA Astrophysics Data System (ADS)

    Morteani, Giulio; Ruggieri, Giovanni; Möller, Peter; Preinfalk, Christine

    2011-02-01

    The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1-147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.

  12. Understanding the Chemical and Structural Dynamics of a Geothermal System Using Hyperspectral Imaging and Field Observations, Dixie Meadows, Nevada

    NASA Astrophysics Data System (ADS)

    Kennedy-Bowdoin, T. J.; Silver, E. A.; Martini, B. A.; Pickles, W. L.

    2003-12-01

    Dixie Valley hosts the largest geothermal plant in the state of Nevada. As part of an exploration program to evaluate other geothermal sites we mapped a 16 km swath of the eastern front of the Stillwater Range, including the Dixie Valley Fault system (Caskey et al. 1996) and Dixie Hot Springs. This visibly hydrothermally altered portion of the range front is located 25 km south of the existing plant and 10 km north of a major bend in the Dixie Valley Fault System. We used hyperspectral (HyMAP) data to locate outcrops of high temperature, hydrothermally altered minerals (including alunite, kaolinite, dickite, jarosite, and hematite). Several outcrops of these altered minerals exist in the mapped region, and one area of roughly 1 square kilometer shows abundant high temperature alteration. We also utilized an ASD field spectrometer to ground-truth our image interpretation and to map more subtle mineral distributions. These spectra support the locations of the mapped high temperature mineralization based on the hyperspectral data, and show that other high temperature minerals, such as vein chalcedony are present on scales below the spectral resolution of the HyMap data (3 m). At active fumaroles near the range front, acidic vapor-phase mineralization is occurring, and we measured ground temperatures of up to 94 §C. Approximately 1 km into the valley, at Dixie Valley Hot Springs, we measured alkaline liquid discharge to have a pH of 8.4 and a temperature of 75 §C. We also carried out structural analysis using a DEM, hyperspectral-based mineral mapping, and field observations. We find that this outcrop is bounded on all sides by a set of cross-cutting faults. We hypothesize that extension related to the release of the bend to the south has resulted in increased permeability, and as result, greater geothermal activity. Both the intense alteration in this area, including the presence of active fumeroles and hotsprings, and the high permeability introduced by cross

  13. Magmatic Chimney Beneath Telaga Bodas Revealed by Magnetotellurics Profiling: A Case Study at the Karaha Bodas Geothermal System, Indonesia

    NASA Astrophysics Data System (ADS)

    Raharjo, I.; Wannamaker, P.; Moore, J. N.; Allis, R.; Chapman, D.

    2002-12-01

    Karaha-Telaga Bodas is a partially vapor-dominated geothermal system located on the flanks of Galunggung Volcano in Java, Indonesia. Fumaroles, hot springs and a shallow acid lake occur at the southern (Telaga Bodas) end of the geothermal area. Enrichments in chloride, fluoride, and sulfur in the lake water and the presence of tourmaline, fluorite, and native sulfur at depth are related to the flux of magmatic gases. Here, temperatures as high as 350 degree C are found at depths of about 2 km. A magnetotellurics profile crossing the Telaga Bodas area is used to test for presence of a magmatic chimney, which is believed to be the source of the magmatic components. The profile was modeled on a grid having 248x48 cells with 46 closely spaced stations aligned along NW-SE direction. The TM mode and vertical H-field data were rotated to strike of 10 degree east and inverted with a 2-D algorithm which damps model departures from an a-priori 1-D structure. The dataset consists of 25 periods running from 0.01024 to 1024 seconds yielding an RMS of 2.3. Five distinctive resistivity features are recognized: (1) resistive thin layer at the surface (about 1.5 km asl); (2)conductive layers sloping to the NW and SE; (3) a slightly resistive region in the center encapsulated by the conductive layers; (4) a vertical conductive structure inside the slightly resistive region; and (5) a resistive basement starting from 2 km below sea level. The sloping conductive layers (< 10 Ohm.m) are interpreted as representing clay-rich and/or weathered layers that exist for cap rock over the geothermal system whereas the slightly resistive region in the center corresponds to altered volcanic rocks and the underlying intrusives. The width of these volcanic rocks varies from about 2 km at their top to about 5 km at their base. The chimney is represented by a vertical conductive structure (< 10 ohm-m) inside this slightly resistive region. The size of the chimney is about 1 km wide and 2.5 km high

  14. Field trip guide to the Valles Caldera and its geothermal systems

    SciTech Connect

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  15. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    SciTech Connect

    Wannamaker, Philip E.

    2016-07-31

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T and TOUGHREACT software.

  16. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, M.J.; Antunez, E.

    1996-01-01

    In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

  17. Information systems and technology transfer programs on geothermal energy and other renewable sources of energy

    SciTech Connect

    Lippmann, Marcelo J.; Antunez, Emilio u.

    1996-01-24

    In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

  18. Final Progress Report for Project Entitled: Quantum Dot Tracers for Use in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Bartl, Michael; Reimus, Paul; Williams, Mark; Mella, Mike

    2015-09-12

    The objective of this project was to develop and demonstrate a new class of tracers that offer great promise for use in characterizing fracture networks in EGS reservoirs. From laboratory synthesis and testing through numerical modeling and field demonstrations, we have demonstrated the amazing versatility and applicability of quantum dot tracers. This report summarizes the results of four years of research into the design, synthesis, and characterization of semiconductor nanocrystals (quantum dots) for use as geothermal tracers.

  19. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  20. Geothermal Technologies Program: Utah

    SciTech Connect

    Not Available

    2005-06-01

    Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

  1. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive™ Power System (“TDPS”) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLC’s TDPS offers an opportunity to change the geothermal power industry dynamics.

  2. Remote sensing application on geothermal exploration

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  3. Geothermal Prospector: Supporting Geothermal Analysis Through Spatial Data Visualization and Querying Tools

    SciTech Connect

    Getman, Daniel; Anderson, Arlene; Augustine, Chad

    2015-09-02

    Determining opportunities for geothermal energy can involve a significant investment in data collection and analysis. Analysts within a variety of industry and research domains collect and use these data; however, determining the existence and availability of data needed for a specific analysis activity can be challenging and represents one of the initial barriers to geothermal development [2]. This paper describes the motivating factors involved in designing and building the Geothermal Prospector application, how it can be used to reduce risks and costs related to geothermal exploration, and where it fits within the larger collection of tools that is the National Geothermal Data System (NGDS) [5].

  4. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Allis, R.G.; Nemcok, M.; Powell, T.S.; Bruton, C.J.; Wannamaker, P.E.; Raharjo, I.B.; Norman, D.I.

    2008-01-01

    Temperature and pressure surveys, fluid samples, and petrologic analyses of rock samples from deep drill holes at the Karaha - Telaga Bodas geothermal field on the volcanic ridge extending northward from Galunggung Volcano, West Java, have provided a unique opportunity to characterize the evolution of an active volcano-hosted geothermal system. Wells up to 3 km in depth have encountered temperatures as high as 353??C and a weakly altered granodiorite that intruded to within 2 to 3 km of the surface. The intrusion is shallowest beneath the southern end of the field where an acid lake overlies a nearly vertical low resistivity structure (<10 ohm-m) defined by magnetotelluric measurements. This structure is interpreted to represent a vapor-dominated chimney that provides a pathway to the surface for magmatic gases. Four distinct hydrothermal mineral assemblages document the evolution of the