Science.gov

Sample records for ni base alloys

  1. Transient oxidation of multiphase Ni-Cr base alloys

    SciTech Connect

    Baran, G.; Meraner, M.; Farrell, P.

    1988-06-01

    Four commercially available Ni-Cr-based alloys used with porcelain enamels were studied. Major alloying elements were Al, Be, Si, B, Nb, and Mo. All alloys were multiphase. During heat treatments simulating enameling conditions, phase changes occurred in most alloys and were detected using hardness testing, differential thermal analysis (DTA), and microscopy. Oxidation of these alloys at 1000/degrees/C for 10 min produced an oxide layer consisting principally of chromium oxide, but the oxide morphology varied with each alloy depending on the alloy microstructure. Controlling alloy microstructure while keeping the overall composition unchanged may be a means of preventing wrinkled poorly adherent scales from forming.

  2. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  3. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu; Phanikumar, Gandham

    2016-12-01

    The present investigation reports phase and microstructure evolution during solidification of novel Ni-rich Ni-Ti-based alloys, Ni60Ti40, Ni50Cu10Ti40, Ni48Cu10Co2Ti40, and Ni48Cu10Co2Ti38Ta2 during suction casting. The design philosophy of the multicomponent alloys involves judicious selection of alloying elements such as Cu, Co, and Ta in the near Ni60Ti40 eutectic alloy by replacing both Ni and Ti so that phase mixture in the microstructure remains the same from the binary to quinary alloy. The basic objective is to study the effect of addition of Cu, Co, and Ta on the phase evolution and transformation in the Ni-rich Ni-Ti-based alloys. The detailed electron microscopic studies on these suction cast alloys reveal the presence of ultrafine eutectic lamellae between NiTi and Ni3Ti phases along with dendritic NiTi and Ti2Ni phases. It has also been observed that in the binary (Ni60Ti40) alloy, the ordered NiTi (B2) phase transforms to trigonal (R) phase followed by NiTi martensitic phase (M-phase), i.e., B2 → R-phase → M-phase during solid-state cooling. However, the addition of alloying elements such as Cu, Co to the binary (Ni60Ti40) alloy suppresses the martensitic transformation of the ordered NiTi (B2) dendrite. Thus, in the ternary and quaternary alloys, the ordered NiTi (B2) phase is transformed to only trigonal (R) phase, i.e., B2 → R-phase. The secondary precipitate of Ti2Ni has been observed in all of the studied alloys. Interestingly, Ni48Cu10Co2Ti38Ta2 quinary alloy shows the disordered nature of NiTi dendrites. The experimentally observed solidification path is in good agreement with Gulliver-Scheil simulated path for binary alloy, whereas simulated solidification path deviates from the experimental results in case of ternary, quaternary, and quinary alloys.

  4. Alloys based on NiAl for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vedula, K. M.; Pathare, V.; Aslanidis, I.; Titran, R. H.

    1984-01-01

    The NiAl alloys for potential high temperature applications were studied. Alloys were prepared by powder metallurgy techniques. Flow stress values at slow strain rates and high temperatures were measured. Some ternary alloying additions (Hf, Ta and Nb) were identified. The mechanism of strengthening in alloys containing these additions appears to be a form of particle dislocation interaction. The effects of grain size and stoichiometry in binary alloys are also presented.

  5. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  6. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation.

    PubMed

    Reclaru, L; Unger, R E; Kirkpatrick, C J; Susz, C; Eschler, P-Y; Zuercher, M-H; Antoniac, I; Lüthy, H

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects.

  7. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  8. Processing, properties, and applications of Ni{sub 3}Al-based alloys

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Liu, C.T.

    1997-06-01

    The Ni{sub 3}Al-based alloys represent a quantum jump in advanced alloys for structural applications at elevated temperatures. These alloys offer benefits of oxidation, carburization, and chlorination resistance, and significantly higher strength than many commercially used alloys. The commercial applications of the Ni{sub 3}Al-based alloys have begun to occur because of their comprehensive development This paper is to provide a review of. (1) alloy development, (2) melting, casting, and processing of alloys, (3) property data, (4) welding process and weldment properties, and (5) case histories of current applications. It is concluded that the cast alloy IC-221M is on its way to commercialization. 22 refs., 8 figs., 2 tabs.

  9. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    NASA Astrophysics Data System (ADS)

    Jin, K.; Bei, H.; Zhang, Y.

    2016-04-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm-2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  10. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  11. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  12. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    SciTech Connect

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  13. Effect of composition on antiphase boundary energy in Ni3Al based alloys: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Lomaev, I. L.; Gornostyrev, Yu. N.; Ruban, A. V.; Furrer, D.; Venkatesh, V.; Novikov, D. L.; Burlatsky, S. F.

    2016-06-01

    The effect of composition on the antiphase boundary (APB) energy of Ni-based L 12-ordered alloys is investigated by ab initio calculations employing the coherent potential approximation. The calculated APB energies for the {111} and {001} planes reproduce experimental values of the APB energy. The APB energies for the nonstoichiometric γ' phase increase with Al concentration and are in line with the experiment. The magnitude of the alloying effect on the APB energy correlates with the variation of the ordering energy of the alloy according to the alloying element's position in the 3 d row. The elements from the left side of the 3 d row increase the APB energy of the Ni-based L 12-ordered alloys, while the elements from the right side slightly affect it except Ni. The way to predict the effect of an addition on the {111} APB energy in a multicomponent alloy is discussed.

  14. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  15. Study on hemocompatibility and corrosion behavior of ion implanted TiNi shape memory alloy and Co-based alloys.

    PubMed

    Liang, Chenghao; Huang, Naibao

    2007-10-01

    Biomedical TiNi shape memory alloy and Co-based alloys were ion implanted, and corrosion resistance and hemocompatibility of these had been investigated with electrochemical method, dynamic clotting time, and hemolysis rate tests. The results indicated that the electrochemical stability and anodic polarization behavior of the materials were improved significantly after ion implantation. When TiNi, Co-based alloys were implanted Mo + C and Ti + C, respectively, the corrosion potentials were enhanced more than 200 mV, passive current densities decreased, and passive ranges were broadened. Dynamic clotting time of the ion implanted substances was prolonged and hemolysis rate decreased. All the results pointed out that corrosion resistance and hemocompatibility of the alloys were improved by ion implantation, and effects of dual implantation was better than that of C single implantation. X-ray diffraction analysis of the alloys after dual implantation revealed that TiC, Mo(2)C, Mo(9)Ti(4), and Mo appeared on the surface of TiNi alloy, and CoC(x), Co(3)Ti, TiC, and TiO on the surface of Co-based alloys. These phases dispersing on the alloy surface formed amorphous film, prevented dissolving of alloy elements and improved the corrosion resistance and hemocompatibility of the alloys.

  16. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  17. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGES

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; ...

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  18. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  19. Microscopic study of the structure of the Steel Ni-based Alloy: Hastelloy G35 Alloy

    NASA Astrophysics Data System (ADS)

    Sabir, F.; Ben Lenda, O.; Saissi, S.; Marbouh, K.; Tyouke, B.; Zerrouk, L.; Ibnlfassi, A.; Ouzaouit, K.; Elmadani, S.

    2017-03-01

    The study of the influence of heat treatment on changes of mechanical and structural properties of Steel Ni-based Alloy is a highly interdisciplinary topic at the interface of the physical chemistry of metallic materials, which also helps in environmental and economic protection.After heat treatment, the structural and micro-structural studies for the different transformation temperature led to identify phases formed and the morphology. This work has been carried out using different techniques: X-ray diffraction, optical microscopy and scanning electron microscopy.

  20. Study of Alloy Microstructure Based on TiNi After High-Temperature Treatment

    NASA Astrophysics Data System (ADS)

    Senkevich, K. S.; Gusev, D. E.

    2016-09-01

    Features of microstructure formation for alloy based on titanium nickelide after high-temperature treatment at 1050 - 1250°C are studied. Heat treatment conditions are stipulated diffusion welding and sintering regimes developed previously for alloys based on TiNi.

  1. New Fe-Ni based metal-metalloid glassy alloys prepared by mechanical alloying and rapid solidification

    SciTech Connect

    Sunol, J.J.; Clavaguera-Mora, M.T.; Clavaguera, N.; Pradell, T.

    1997-12-31

    Mechanical alloying and rapid solidification are two important routes to obtain glassy alloys. New Fe-Ni based metal-metalloid (P-Si) alloys prepared by these two different processing routes were studied by differential scanning calorimetry and transmission Moessbauer spectroscopy. Mechanical alloyed samples were prepared with elemental precursors, and different nominal compositions. Rapidly solidified alloys were obtained by melt-spinning. The structural analyses show that, independent of the composition, the materials obtained by mechanical alloying are not completely disordered whereas fully amorphous alloys were obtained by rapid solidification. Consequently, the thermal stability of mechanically alloyed samples is lower than that of the analogous material prepared by rapid solidification. The P/Si ratio controls the magnetic interaction of the glassy ribbons obtained by rapid solidification. The experimental results are discussed in terms of the degree of amorphization and crystallization versus processing route and P/Si ratio content.

  2. Some properties of a stir-cast Ni-Cr based dental alloy.

    PubMed

    Boswell, P G; Stevens, L

    1980-06-01

    A Ni-Cr based crown and bridge alloy has been successfully stir-cast into small investment mould spaces using a modified induction melting and casting machine. Stir-casting produced substantial improvements to the mechanical properties of the cast alloy. A model for the development of the stir-cast microstructure is described and the clinical significance of the improvements in the alloy's properties is discussed.

  3. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-02-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  4. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  5. Characterization of Sputtered Nickel-Titanium (NiTi) Stress and Thermally Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA)

    DTIC Science & Technology

    2015-11-01

    Actuated Cantilever Bimorphs Based on NiTi Shape Memory Alloy (SMA) by Merric D Srour, Cory R Knick, and Christopher J Morris Sensors and...applications7 so a natural focus was to achieve large recovery stresses in films as thin as possible. By varying the sputtering parameters of NiTi...alloys. Sensors and Actuators A. 2002;99:55–58. 2. Ohta A, Bhansali S, Kishimoto I, Umeda A. Novel fabrication techique of TiNi shape memory alloy

  6. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states atmore » the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  7. Antimonide-Based Heterostructure p-Channel MOSFETs With Ni-Alloy Source/Drain

    DTIC Science & Technology

    2013-11-01

    IEEE ELECTRON DEVICE LETTERS, VOL. 34, NO. 11, NOVEMBER 2013 1367 Antimonide-Based Heterostructure p-Channel MOSFETs With Ni-Alloy Source/Drain Ze...density of 2×1012cm−2. Index Terms— Antimonide semiconductors, metal source/drain (S/D), Ni-GaSb, p-channel MOSFET . I. INTRODUCTION ANTIMONIDE-based...channel MOSFETs [3], [4], performance of III–V p- MOSFETs traditionally lagged behind. Recently, high-performance antimonide p- MOSFETs have been

  8. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  9. Performance of Alumina-Forming Austenitic Steels, Fe-base and Ni-base alloys exposed to metal dusting environments

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Unocic, Kinga A; Pint, Bruce A; Brady, Michael P

    2011-01-01

    A series of conventional Fe- and Ni- base, chromia- and alumina- forming alloys, and a newly developed creep-resistant, alumina-forming austenitic steel were developed and its performance relative to conventional Fe- and Ni-based chromia-forming alloys was evaluated in metal dusting environments with a range of water vapor contents. Five 500h experiments have been performed at 650 C with different water vapor contents and total pressures. Without water vapor, the Ni-base alloys showed greater resistance to metal dusting than the Fe-base alloys, including AFA. However, with 10-28% water vapor, more protective behavior was observed with the higher-alloyed materials and only small mass changes were observed. Longer exposure times are in progress to further differentiate performance.

  10. Gamma prime precipitation mechanisms and solute partitioning in Ni-base alloys

    NASA Astrophysics Data System (ADS)

    Rojhirunsakool, Tanaporn

    Nickel-base superalloys have been emerged as materials for gas turbines used for jet propulsion and electricity generation. The strength of the superalloys depends mainly from an ordered precipitates of L12 structure, so called gamma prime (gamma') dispersed within the disorder gamma matrix. The Ni-base alloys investigated in this dissertation comprise both model alloy systems based on Ni-Al-Cr and Ni-Al-Co as well as the commercial alloy Rene N5. Classical nucleation and growth mechanism dominates the gamma' precipitation process in slowed-cooled Ni-Al-Cr alloys. The effect of Al and Cr additions on gamma' precipitate size distribution as well as morphological and compositional development of gamma' precipitates were characterized by coupling transmission electron microscopy (TEM) and 3D atom probe (3DAP) techniques. Rapid quenching Ni-Al-Cr alloy experiences a non-classical precipitation mechanism. Structural evolution of the gamma' precipitates formed and subsequent isothermal annealing at 600 °C were investigated by coupling TEM and synchrotron-based high-energy xray diffraction (XRD). Compositional evolution of the non-classically formed gamma' precipitates was determined by 3DAP and Langer, Bar-on and Miller (LBM) method. Besides homogeneous nucleation, the mechanism of heterogeneous gamma' precipitation involving a discontinuous precipitation mechanism, as a function of temperature, was the primary focus of study in case of the Ni-Al-Co alloy. This investigation coupled SEM, SEM-EBSD, TEM and 3DAP techniques. Lastly, solute partitioning and enrichment of minor refractory elements across/at the gamma/ gamma' interfaces in the commercially used single crystal Rene N5 superalloy was investigated by using an advantage of nano-scale composition investigation of 3DAP technique.

  11. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  12. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  13. Processing and Characterization of Mechanically Alloyed NiAl-Based Alloys

    DTIC Science & Technology

    1994-07-20

    50.1 49.9 - - - 0.007 * 5 00 0E 4 CD C o E * 0 0 L 00000i,_ 0 • 4- -. 0 * CCL 6.2 6- Three types of alloys were produced, NiAI with a brittle, Heusler ...16): -e - h where 7’ is the Orowan stress, h is particle height (usually, particle radius), and X is half the mean interparticle spacing. By

  14. Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.

    PubMed

    Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi

    2004-05-20

    Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions.

  15. Control of Interfacial Reactivity Between ZrB2 and Ni-Based Brazing Alloys

    NASA Astrophysics Data System (ADS)

    Valenza, F.; Muolo, M. L.; Passerone, A.; Cacciamani, G.; Artini, C.

    2012-05-01

    Transition metals diborides (Ti,Zr,Hf)B2 play a key role in applications where stability at extremely high temperatures and damage tolerance are required; however, much research has still to be done to optimize the joining of these materials to themselves or to other high-temperature materials. In this study, the reactivity at the solid-liquid interface between ZrB2 ceramics and Ni-based brazing alloys has been addressed; it is shown how the reactivity and the dissolution of the solid phase can be controlled and even suppressed by adjusting the brazing alloy composition on the basis of thermodynamic calculations. Wetting experiments on ZrB2 ceramics by Ni, Ni-B 17 at.%, and Ni-B 50 at.% were performed at 1500 and 1200 °C by the sessile drop technique. The obtained interfaces were characterized by optical microscopy and SEM-EDS, and interpreted by means of the ad hoc-calculated B-Ni-Zr ternary diagram. A correlation among microstructures, substrate dissolution, shape of the drops, spreading kinetics, and the phase diagram was found. The effect on the interfacial reactivity of Si3Ni4 used as a sintering aid and issues related to Si diffusion into the brazing alloy are discussed as well.

  16. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  17. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    SciTech Connect

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

  18. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  19. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    NASA Astrophysics Data System (ADS)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-01-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  20. Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625

    NASA Astrophysics Data System (ADS)

    Fernandez, Johnnatan Rodriguez; Ramirez, Antonio J.

    2017-03-01

    Microstructure evolution during friction stir welding (FSW) of mild steel and Ni-based alloy 625 was studied. Regarding the Ni-based alloy, the welding process led to grain refinement caused by discontinuous and continuous dynamic recrystallization, where bulging of the pre-existing grains and subgrain rotation were the primary mechanisms of recrystallization. In the steel, discontinuous dynamic recrystallization was identified as the recovery process experienced by the austenite. Simple shear textures were observed in the regions affected by the deformation of both materials. Although the allotropic transformation obscured the deformation history, the thermo-mechanically affected zone was identified in the steel by simple shear texture components. A new methodology for the study of texture evolution based on rotations of the slip systems using pole figures is presented as an approximation to describe the texture evolution in FSW.

  1. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    PubMed

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  2. Optimizing Ni-Ti-based shape memory alloys for ferroic cooling

    NASA Astrophysics Data System (ADS)

    Wieczorek, A.; Frenzel, J.; Schmidt, M.; Maaß, B.; Seelecke, S.; Schütze, A.; Eggeler, G.

    Due to their large latent heats, pseudoelastic Ni-Ti-based shape memory alloys (SMAs) are attractive candidate materials for ferroic cooling, where elementary solid-state processes like martensitic transformations yield the required heat effects. The present work aims for a chemical and microstructural optimization of Ni-Ti for ferroic cooling. A large number of Ni-Ti-based alloy compositions were evaluated in terms of phase transformation temperatures, latent heats, mechanical hysteresis widths and functional stability. The aim was to identify material states with superior properties for ferroic cooling. Different material states were prepared by arc melting, various heat treatments and thermo-mechanical processing. The cooling performance of selected materials was assessed by differential scanning calorimetry, uniaxial tensile loading/unloading, and by using a specially designed ferroic cooling demonstrator setup. A Ni45Ti47.25Cu5V2.75 SMA was identified as a potential candidate material for ferroic cooling. This material combines extremely stable pseudoelasticity at room temperature and a very low hysteresis width. The ferroic cooling efficiency of this material is four times higher than in the case of binary Ni-Ti.

  3. Magnetic micromechanical structures based on CoNi electrodeposited alloys

    NASA Astrophysics Data System (ADS)

    Cojocaru, P.; Magagnin, L.; Gomez, E.; Vallés, E.; Liu, F.; Carraro, C.; Maboudian, R.

    2010-12-01

    Electrodeposited CoNi magnetic microstructures compatible with silicon microfabrication technology have been developed using a sulfamate acidic bath, as an alternative to a less environmentally friendly chloride bath. The galvanostatic electrodeposition in the formulated electrolyte allows the deposition of cobalt-rich CoNi films and microstructures defined by photoresist at high deposition rates. Microstructures are adherent to the substrate, with a good lateral definition and resistance to the wet etching for the release of the sacrificial layer. The released structures respond to applied magnetic fields and no breakage occurred during large deformation.

  4. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  5. Deformation behavior of NiAl-based alloys containing iron, cobalt, and hafnium

    NASA Technical Reports Server (NTRS)

    Pank, D. R.; Koss, D. A.; Nathal, M. V.

    1989-01-01

    The effects of alloying additions on the mechanical properties of the B2 intermetallic NiAl have been investigated in both the melt-spun ribbon and consolidated, bulk form. The study is based on a matrix of NiAl-based alloys with up to 20 at. pct Co and Fe additions and with reduced Al levels in the range of 30-40 at. pct. Characterization of the melt-spun ribbon by optical and scanning electron microscopy indicates a range of microstructures, including single-phase beta, gamma-prime necklace phase surrounding either martensitic or beta grains, and a mixture of equiaxed martensitic and gamma-prime grains. Bend ductility is present in melt-spun and annealed ribbons exhibiting the gamma-prime necklace structure and in a single-phase beta material containing 20 at. pct Fe. The analysis of compressive flow behavior on consolidated, bulk specimens indicates that the single-phase beta alloys exhibit a continuous decrease in yield stress with increasing temperature and profuse microcracking at grain boundaries. In contrast, multiphase (gamma-prime + either martensite or beta) alloys tend to display a peak in flow stress between 600 and 800 K, with little or no signs of microcracking. In general, heat treatments which convert the martensitic grains to beta + gamma-prime result in improved strength at temperatures above 600 K and better resistance to crack initiation.

  6. The wetting characteristics and surface tension of some Ni-based alloys on yttria, hafnia, alumina, and zirconia substrates

    NASA Technical Reports Server (NTRS)

    Kanetkar, C. S.; Kacar, A. S.; Stefanescu, D. M.

    1988-01-01

    The surface tension and wetting characteristics of four commercial Ni-based alloys (UD718, Waspaloy, UD720, and UD520), pure Ni, and three special alloys (Ni-20 percent Cr, Ni-20 percent Cr-1 percent Al, and Ni-20 percent Cr-4 percent Al) on various ceramic substrates (including alumina, zirconia, hafnia, and yttria) were investigated using sessile drop experiments. Most of the systems studied exhibited a nonwetting behavior. Wetting improved with holding time at a given temperature to the point that some systems, such as Ni-20Cr on alumina, Ni-20Cr-4Al on alumina and on yttria, became marginally wetting. Wetting characteristics were apparently related to constitutional undercooling, which in turn could be affected by the metal dissolving some of the substrate during measurements.

  7. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    SciTech Connect

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; Weber, William J.

    2016-01-01

    We investigate Irradiation-induced damage accumulation in Ni0.8Fe0.2 and Ni0.8Cr0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  8. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys

    DOE PAGES

    He, Mo-Rigen; Wang, Shuai; Shi, Shi; ...

    2016-12-31

    Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elementsmore » are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L10 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.« less

  9. Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys

    SciTech Connect

    He, Mo-Rigen; Wang, Shuai; Shi, Shi; Jin, Ke; Bei, Hongbin; Yasuda, Kazuhiro; Matsumura, Syo; Higashida, Kenji; Robertson, Ian M.

    2016-12-31

    Single-phase concentrated solid solution alloys have attracted wide interest due to their superior mechanical properties and enhanced radiation tolerance, which make them promising candidates for the structural applications in next-generation nuclear reactors. However, little has been understood about the intrinsic stability of their as-synthesized, high-entropy configurations against radiation damage. In this paper, we report the element segregation in CrFeCoNi, CrFeCoNiMn, and CrFeCoNiPd equiatomic alloys when subjected to 1250 kV electron irradiations at 400 °C up to a damage level of 1 displacement per atom. Cr/Fe/Mn/Pd can deplete and Co/Ni can accumulate at radiation-induced dislocation loops, while the actively segregating elements are alloy-specific. Moreover, electron-irradiated matrix of CrFeCoNiMn and CrFeCoNiPd shows L10 (NiMn)-type ordering decomposition and <001>-oriented spinodal decomposition between Co/Ni and Pd, respectively. Finally, these findings are rationalized based on the atomic size difference and enthalpy of mixing between the alloying elements, and identify a new important requirement to the design of radiation-tolerant alloys through modification of the composition.

  10. Thick amorphous hums of Ni base alloys using high energy (MeV) ion beam mixing

    NASA Astrophysics Data System (ADS)

    Bhattacharya, R. S.; Pronko, P. P.; Rai, A. K.; McCormick, A. W.; Raffoul, C.

    1985-03-01

    This work investigates the potential for applying ion beam mixing techniques to the fabrication of amorphous metallic alloy coatings of MoNi and TiNi on metal substrates to improve their corrosion resistant properties. Alternating layers of 100 Å Mo and 70 Å Ni with total thicknesses of 1450 Å and 2900 Å were prepared by e-beam evaporation on Ni substrates. Similarly, 80 A Ti and 50 Å Ni alternate layers with total thicknesses of 900 Å and 1560 Å were deposited on Ni. A batch of alternating films of total thickness 5200 Å of TiNi with individual thicknesses of 160 Å Ti and 100 Å Ni were also prepared on Ni substrates. The thicknesses of individual films were adjusted in this way to obtain an overall composition of Ni 50Mo 50 and Ni 50Ti 50 after mixing. The films were irradiated with 1 and 2 MeV Au + and 1.5 MeV Ni + ions depending on the total thickness. The ion beam mixing and nucrostructure of these films have been studied as a function of dose using RBS and TEM. Amorphous layers have been tested for their corrosion behavior by potentiodynamic polarization techniques. Measurements carried out in nitric acid solution reveal that both NiMo and NiTi amorphous layers are more resistant to corrosive attack than the polycrystalline multiphased alloys. NiTi exhibited much superior corrosion resistant properties than NiMo.

  11. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  12. Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.

  13. A structural investigation of a plasma sprayed Ni--Cr based alloy coating

    SciTech Connect

    Sampath, S.; Neiser, R.A.; Herman, H. ); Kirkland, J.P.; Elam, W.T. )

    1993-01-01

    A Ni--Cr based hardfacing alloy has been plasma sprayed in ambient and low pressure atmospheres onto mild steel substrates. These coatings exhibit excellent wear and corrosion resistance; however, the significance of microstructure on properties has not been reported. This study relates the structure of the sprayed coatings to the processing conditions. X-ray diffraction results indicate phase separation in air plasma sprayed deposits, while low pressure plasma sprayed deposits exhibit a single supersaturated solid solution. Annealing of the air plasma sprayed coating shows dissolution of the bcc chromium phase, confirming its metastable nature. These results were confirmed using Extended X-ray Absorption Fine Structure (EXAFS) analysis, which further suggests a highly disordered structure, with partial oxidation of selected alloying elements, such as chromium. Transmission electron microscopy indicates a wide variety of microstructures in the air plasma sprayed deposit. In the case of low pressure sprayed deposit, the microstructures are homogeneous and uniform.

  14. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  15. Advanced thermal barrier system bond coatings for use on Ni, Co-, and Fe-base alloy substrates

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1985-01-01

    New and improved Ni-, Co-, and Fe-base bond coatings have been identified for the ZrO2-Y2O3 thermal barrier coatings to be used on NI-, Co-, and Fe-base alloy substrates. These bond coatings were evaluated in a cyclic furnace between 1120 and 1175 C. It was found that MCrAlYb (where M = Ni, Co, or Fe) bond coating thermal barrier systems. The longest life was obtained with the FeCrAlYb thermal barrier system followed by NiCrAlYb and CoCrAlYb thermal barrier systems in that order.

  16. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  17. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    DOE PAGES

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; ...

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less

  18. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    SciTech Connect

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; Samolyuk, German D.; Caro, Alfredo; Wang, Lumin; Stoller, Roger E.

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which lead to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.

  19. Measuring grain boundary character distributions in Ni-base alloy 725 using high-energy diffraction microscopy

    DOE PAGES

    Bagri, Akbar; Hanson, John P.; Lind, J. P.; ...

    2016-10-25

    We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe amore » preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.« less

  20. Measuring grain boundary character distributions in Ni-base alloy 725 using high-energy diffraction microscopy

    SciTech Connect

    Bagri, Akbar; Hanson, John P.; Lind, J. P.; Kenesei, Peter; Suter, Robert; Gradecak, Silvija; Demkowicz, Michael J.

    2016-10-25

    We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe a preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.

  1. Measuring Grain Boundary Character Distributions in Ni-Base Alloy 725 Using High-Energy Diffraction Microscopy

    NASA Astrophysics Data System (ADS)

    Bagri, Akbar; Hanson, John P.; Lind, Jonathan; Kenesei, Peter; Suter, Robert M.; Gradečak, Silvija; Demkowicz, Michael J.

    2017-01-01

    We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe a preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.

  2. Processing and Mechanical Properties of Directionally Solidified NiAl/NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1994-01-01

    Promising creep strengths were found for a directionally solidified NiAl-NiAlTa alloy when compared to other NiAl based intermetallics. The directionally solidified alloy had an off-eutectic composition that resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of the two phase alloy was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Alloying additions that may improve the room temperature toughness by producing multiphase alloys are discussed.

  3. Desulfurization of Ni-based super alloys by combined heating and glow discharge

    SciTech Connect

    Outlaw, R.A.; Rezaie-Serej, S.; Allen, W.P.; Latanision, R.M.

    1996-04-15

    The service lifetime of blades and vanes in aircraft gas turbines can be influenced by the degradation of the interface of the Ni-based superalloy and the overlying aluminide coating during cyclic oxidation. Advanced superalloys and coatings rely on formation of a thin and continuous Al{sub 2}O{sub 3} film to protect the base alloy from further oxidative attack at temperatures above 980 C. In order that the Al{sub 2}O{sub 3} scale be protective, it must remain adherent to the underlying alloy under thermal cycling conditions. Recent experimental work indicates that the interfacial binding between Ni and the overlying Al{sub 2}O{sub 3} scale is initially strong, but has also been shown that segregation of indigenous sulfur to the metal/oxide interface induces premature scale spallation, apparently through a reduction in the interfacial adhesive strength with a concomitant reduction in component lifetime. Removal of the sulfur is the best solution to this problem.

  4. Use of Ni{sub 3}Al-based alloys for walking-beam furnaces

    SciTech Connect

    Sikka, V.K.; Dailey, R.E.

    1996-02-01

    This report summarizes the joint work performed by the Oak Ridge National Laboratory (ORNL) and Rapid Technologies, Inc. (the CRADA partner) to determine the potential of Ni{sub 3}Al-based alloys for use in gas-fired walking-beam furnace components. The report identifies tasks to be performed as part of the CRADA and the organization responsible for each task. The work required under each task was completed and is described. The CRADA accomplished the primary goal of utilizing cast Ni{sub 3}Al-based alloy as rails and other components for walking-beam furnaces manufactured by Rapid Technologies. Rapid Technologies, a small business, is implementing on a commercial basis a highly energy efficient rapid-heating technology for use in the metal manufacturing industry. The rapid heating process allows energy savings of up to 95%. Although goals of all of the tasks of this CRADA were met, there is still a need for a material to work in the rapid heating furnaces at temperatures in the range of 1,350 to 1,400 C. Future effort should be focused in fulfilling this need.

  5. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    NASA Astrophysics Data System (ADS)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  6. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    NASA Astrophysics Data System (ADS)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  7. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Guo, Xingwu; Yang, Haiyan; Dai, JiChun; Zhu, Rongyu; Gong, Jia; Peng, Liming; Ding, Wenjiang

    2014-01-01

    The electrodeposition mechanism, microstructures and corrosion resistances of Ni-Cu alloy coatings on Cu substrate were investigated in a choline chloride-urea (1:2 molar ratio) eutectic-based ionic liquid (1:2 ChCl-urea IL) containing nickel and copper chlorides. Cyclic voltammetry showed that the onset reduction potentials for Cu (∼-0.32 V) and for Ni (∼-0.47 V) were close to each other, indicating that Ni-Cu co-deposition could be easily achieved in the absence of complexing agent which was indispensable in aqueous plating electrolyte. Chronoamperometric investigations revealed that Ni-Cu deposits followed the three-dimensional instantaneous nucleation/growth mechanism, thus producing a solid solution. The compositions, microstructures and corrosion resistances of Ni-Cu alloy coatings were significantly dependent on the deposition current densities. Ni-Cu alloy coatings were α-Ni(Cu) solid solutions, and the coating containing ∼17.6 at.% Cu exhibited the best corrosion resistance because of its dense and crack-free structure.

  8. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Efforts are underway to replace superalloys used in the hot sections of gas turbine engines with materials possessing better mechanical and physical properties. Alloys based on the intermetallic NiAl have demonstrated potential; however, they generally suffer from low fracture resistance (toughness) at room temperature and from poor strength at elevated temperatures. Directional solidification of NiAl alloyed with both Cr and Mo has yielded materials with useful toughness and elevated-temperature strength values. The intermetallic alloy NiAl has been proposed as an advanced material to extend the maximum operational temperature of gas turbine engines by several hundred degrees centigrade. This intermetallic alloy displays a lower density (approximately 30-percent less) and a higher thermal conductivity (4 to 8 times greater) than conventional superalloys as well as good high-temperature oxidation resistance. Unfortunately, unalloyed NiAl has poor elevated temperature strength (approximately 50 MPa at 1027 C) and low room-temperature fracture toughness (about 5 MPa). Directionally solidified NiAl eutectic alloys are known to possess a combination of high elevated-temperature strength and good room-temperature fracture toughness. Research has demonstrated that a NiAl matrix containing a uniform distribution of very thin Cr plates alloyed with Mo possessed both increased fracture toughness and elevated-temperature creep strength. Although attractive properties were obtained, these alloys were formed at low growth rates (greater than 19 mm/hr), which are considered to be economically unviable. Hence, an investigation was warranted of the strength and toughness behavior of NiAl-(Cr,Mo) directionally solidified at faster growth rates. If the mechanical properties did not deteriorate with increased growth rates, directional solidification could offer an economical means to produce NiAl-based alloys commercially for gas turbine engines. An investigation at the NASA Glenn

  9. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  10. Predicting minimum Al concentrations for protective scale fromation on Ni-base alloys. I - Isothermal oxidation. II - Cyclic oxidation

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1989-01-01

    Criteria proposed to predict the minimum bulk Al concentration for the formation of protective Al2O3 scales on Ni-based alloys during isothermal oxidation (two criteria proposed by Wagner, 1952 and 1959) and cyclic oxidation (the criteria proposed by Wahl, 1983, and Whittle, 1972/Wahl, 1983) were applied to Ni-Al and Ni-Cr-Al(Zr) alloys, respectively. It is shown that the first Wagner (1952) criterion underpredicted, by a factor of 3, the experimentally observed minimum Al concentration for the formation of an external Al2O3 scale on Ni-Al alloys at 1200 C; the second Wagner criterion predicted a transition from internal oxidation to continuous Al2O3 formation in good agreement with experimentally observed concentrations. It was also found that the two criteria for an Al2O3 scale formation during cyclic oxidation of Ni-Cr-Al(Zr) alloys were inadequate to predict the minimum Al concentration necessary for repeated formation of an Al2O3 scale, regardless of the adherence of the scale.

  11. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    PubMed

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding.

  12. Research into oil-based high-dispersion graphite lubricants for extrusion of Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Petrov, Alexander N.; Petrov, Mikhail A.; Petrov, Pavel A.

    2016-10-01

    The presented paper deals with oil-based high-dispersion graphite lubricants for hot extrusion Ni-based alloys. This paper emphasize an influence of the lubricant's flash point and oil burning on composition changing of the lubricants. It was found out that oil-based lubricants increase heat shielding properties of the die during extrusion. The temperature of a die surface was estimated on the base of production tests on the mechanical press with nominal force of 1,6MN. The practical recommendations were presented and should help to choose lubricants properly in accordance to the analysis.

  13. Investigation of the structural, electronic, and magnetic properties of Ni-based Heusler alloys from first principles

    NASA Astrophysics Data System (ADS)

    Qawasmeh, Yasmeen; Hamad, Bothina

    2012-02-01

    Density functional theory (DFT) calculations are performed to investigate the structural, electronic, magnetic, and elastic properties of Ni2MnZ (Z = B, Al, Ga, In) and Ni2FeZ (Z = Al, Ga) full Heusler alloys. The alloys are found to be metallic ferromagnets with total magnetic moments of about 4μB/f.u. and 3μB/f.u for Ni2MnZ and Ni2FeZ alloys, respectively. The Ni2MnAl and Ni2MnIn alloys are found to be stable at L21 phase, while the other alloys are more stable in the tetragonal phase with c/a ratios of 1.38 and 1.27 for Ni2MnB and Ni2MnGa, respectively and 1.35 for both Ni2FeAl and Ni2FeGa. The Ni2MnB alloy exhibits the highest electron spin polarization in its tetragonal phase, which is about 88% greater than that of L21 structure. However, the Ni2MnGa, Ni2FeAl, and Ni2FeGa alloys exhibit lower spin polarizations in their tetragonal phase than those at the L21. The most contribution of the total magnetic moments comes from Mn or Fe atoms, whereas Ni atoms exhibit much smaller magnetic moments. However, Z atoms have small induced magnetic moments, which are coupled antiferromagnetically with Ni, Mn and Fe.

  14. Rare-earth metals (REMs) in nickel aluminide-based alloys: I. Physicochemical laws of interaction in the Ni-Al-REM and Ni x Al y -REM-AE (alloying element) systems

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.; Morozov, A. E.

    2008-02-01

    The data on the Ni-Al- R ( R = REM Sc, Y, La, lanthanides) binary and ternary systems and the interactions of three rare-earth metals (yttrium, lanthanum, cerium) with the main alloying elements (Ti (Zr, Hf), Cr (Mo, W) that are introduced into Ni3Al-based VKNA alloys are analyzed. The binary aluminides of REMs in the Ni-Al- R ternary systems are shown to be in equilibrium with neither NiAl nor Ni3Al. The solid solution of aluminum in RNi5, which penetrates deep into these ternary systems, is the most stable phase in equilibrium with Ni3Al. In the NiAl (Ni3Al)-AE- R systems, REM precipitation (segregation) on various defects and interfaces in nickel aluminides is likely to be the most probable, and REMs are thought to interact with the most active impurities in real alloys (C, O, N), since REMs have a large atomic radius and, thus, are virtually undissolved in nickel, aluminum, and nickel aluminides.

  15. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  16. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    SciTech Connect

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface. The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.

  17. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  18. Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition

    NASA Astrophysics Data System (ADS)

    Zhang, Shi Hong; Li, Ming Xi; Yoon, Jae Hong; Cho, Tong Yul; Zhu He, Yi; Lee, Chan Gyu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- and n- CeO2 /NBA) have been investigated. The results showed that a smooth coating was prepared under suitable processing parameters (P= 2.0 kW, V= 180 mm min- 1) by adding 1.5% n- CeO2. In addition to the primary phases of γ-Ni, Cr23 C6 and Ni3 B in the Ni-base alloy coating, CeNi3 was formed in Ni-base alloy coatings with both n- CeO2 and m-CeO2 particles, and CeNi5 appeared in the coating upon decreasing the size of CeO2 particles. Well-developed dendrites were observed in the Ni-base alloy coating; directional dendrites grew at the interface in the coating upon the addition of m-CeO2, whereas fine and multioriented dendrites grew upon decreasing the size of CeO2 particles to the nanoscale. Actinomorphic dendrites and compact equiaxed dendrites grew from the interface to near the surface upon increasing the content of n- CeO2 from 1.5 to 3.0%. In strongly acidic HNO3 solution, the severe corrosion of dendrites occurred and there were many corrosion pits in the Ni-base alloy coating; intercrystalline corrosion also has a dominant role upon the addition of m-CeO2, whereas uniform corrosion occurs in the coating as the size of CeO2 particles is decreased to nanoscale.

  19. Development and Evaluation of Directionally-Solidified NiAl/(CR,MO)-Based Eutectic Alloys for Airfoil Applications

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.

    2001-01-01

    The results of recent efforts to develop directionally-solidified alloys based on the Ni-33Al-31Cr-3Mo eutectic composition are discussed. These developmental efforts included studying the effects of macroalloying and growth rates on microstructure formation as well as the elevated temperature compressive and tensile properties of these alloys. These observations revealed that contrary to conventional opinion, the cellular microstructure was stronger and tougher than the planar eutectic microstructure due to a microstructural refinement of the cell size and interlamellar spacing. The high temperature strengths of these alloys are compared with those of commercial superalloys and advanced NiAl single crystals. The implications of this research on airfoil manufacturing and applications are discussed.

  20. Comparison of Crevice Corrosion of Fe-Based Amorphous Metal and Crystalline Ni-Cr-Mo Alloy

    SciTech Connect

    Shan, X; Ha, H; Payer, J H

    2008-07-24

    The crevice corrosion behaviors of an Fe-based bulk metallic glass alloy (SAM1651) and a Ni-Cr-Mo crystalline alloy (C-22) were studied in 4M NaCl at 100 C with cyclic potentiodynamic polarization and constant potential tests. The corrosion damage morphologies, corrosion products and the compositions of corroded surfaces of these two alloys were studied with optical 3D reconstruction, Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Auger Electron Spectroscopy (AES). It was found that the Fe-based bulk metallic glass (amorphous alloy) SAM1651 had a more positive breakdown potential and repassivation potential than crystalline alloy C-22 in cyclic potentiodynamic polarization tests and required a more positive oxidizing potential to initiate crevice corrosion in constant potential test. Once crevice corrosion initiated, the corrosion propagation of C-22 was more localized near the crevice border compared to SAM1651, and SAM1651 repassivated more readily than C-22. The EDS results indicated that the corrosion products of both alloys contained high amount of O and were enriched in Mo and Cr. The AES results indicated that a Cr-rich oxide passive film was formed on the surfaces of both alloys, and both alloys were corroded congruently.

  1. Effects of alloying elements and temperature on the elastic properties of dilute Ni-base superalloys from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Shang, S. L.; Kim, D. E.; Zacherl, C. L.; Wang, Y.; Du, Y.; Liu, Z. K.

    2012-09-01

    The variation of elastic properties, e.g., elastic constants, bulk modulus, and shear modulus of dilute Ni-base superalloys due to alloying elements (X's) and temperature, has been studied via first-principles calculations. Here, 26 alloying elements are considered: Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. It is found that (i) both the bulk and shear moduli of Ni-X decrease approximately linearly with increasing equilibrium volume, especially within each group of 3d, 4d, or 5d transition-metal alloying elements; (ii) all alloying elements considered herein increase the ratio of bulk to shear modulus (i.e., the ductility) and the elastic anisotropy of the Ni-X alloys; and (iii) the largest decrease of elastic properties of Ni is caused by alloying element Y. It is observed that the change of elastic properties of Ni due to various alloying elements is traceable from the distribution of (magnetization) charge density, for instance the spherical distribution of charge density facilitates shear deformation, resulting in a lower shear-related property. Using a proposed quasistatic approach based on the predicted elasticity-volume-temperature relationship, the isothermal and the isentropic elastic properties are predicted for the dilute Ni-X alloys at finite temperatures, displaying a decreasing trend with respect to temperature for each Ni-X system. Computed elastic properties are in favorable accord with available experimental data.

  2. Joining a Ni-based creep-resistant (ODS) alloy by brazing

    NASA Astrophysics Data System (ADS)

    Bucklow, I. A.

    Joints are produced in a fine-grained Ni oxide-dispersion-strengthened (ODS) alloy by means of brazing alloys with and without boron, and the resulting joints are studied mechanographically. The brazing alloys employed are either sputtered coatings or foils, and brazing is conducted in a vacuum for approximately two hours. The resulting joints are examined during the process by mass spectrometry and afterwards by means of metallographic observation following etching in glyceregia. Premature and uncontrolled recrystallization of the parent metal is noted in the samples brazed with alloys obtaining boron. The 2-micron braze coating used minimize second-phase formation and dispersoid agglomerations, and the 25-micron brazing foils lead to high porosity and dispersoid aggregation due to excessive melting. Recrystallization of the parent metal near brazing zones is concluded to be undesirable although is does not necessarily influence the quality of the joint.

  3. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity.

    PubMed

    Jin, K; Sales, B C; Stocks, G M; Samolyuk, G D; Daene, M; Weber, W J; Zhang, Y; Bei, H

    2016-02-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4-300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  4. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    SciTech Connect

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; Samolyuk, German D.; Daene, Markus; Weber, William J.; Zhang, Yanwen; Bei, Hongbin

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  5. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE PAGES

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  6. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    NASA Astrophysics Data System (ADS)

    Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Daene, M.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-02-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  7. The halogen effect for Ni-base alloys - A new method for increasing the oxidation protection at high temperatures

    NASA Astrophysics Data System (ADS)

    Zschau, Hans-Eberhard; Renusch, Daniel; Masset, Patrick J.; Schütze, Michael

    2009-05-01

    A new method for oxidation protection of Ni-base alloys is presented. The method is based on the halogen effect. Thermodynamic calculations show the preferred formation of gaseous Al-halogenides within a certain region of fluorine partial pressures. Ion implantation has been chosen for fluorine treatment. The implantation parameters are defined by using the T-DYN simulation software. Based on these results fluorine implantations of the Ni-base alloy IN 738 are performed to meet the required fluorine content near the surface. The fluorine depth profiles are analyzed by using the PIGE-technique. After oxidation at 1050 °C a dense protecting external alumina scale is formed on the surface.

  8. Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System

    SciTech Connect

    T. Angeliu

    2006-01-19

    Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron ,exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculations show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the Be0 control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.

  9. Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System

    SciTech Connect

    T Angeliu; J Ward; J Witter

    2006-04-04

    Ni-base alloys were considered for the Prometheus space reactor pressure vessel with operational parameters of {approx}900 K for 15 years and fluences up to 160 x 10{sup 20} n/cm{sup 2} (E > 0.1 MeV). This paper reviews the effects of irradiation on the behavior of Ni-base alloys and shows that radiation-induced swelling and creep are minor considerations compared to significant embrittlement with neutron exposure. While the mechanism responsible for radiation-induced embrittlement is not fully understood, it is likely a combination of helium embrittlement and solute segregation that can be highly dependent on the alloy composition and exposure conditions. Transmutation calculations show that detrimental helium levels would be expected at the end of life for the inner safety rod vessel (thimble) and possibly the outer pressure vessel, primarily from high energy (E > 1 MeV) n,{alpha} reactions with {sup 58}Ni. Helium from {sup 10}B is significant only for the outer vessel due to the proximity of the outer vessel to the BeO control elements. Recommendations for further assessments of the material behavior and methods to minimize the effects of radiation damage through alloy design are provided.

  10. Processing and operating experience of Ni{sub 3}Al-based intermetallic alloy IC-221M

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Orth, J.E.

    1997-05-01

    The cast Ni{sub 3}Al-based intermetallic alloy IC-221M is the most advanced in its commercial applications. This paper presents progress made for this alloy in the areas of: (1) composition optimization; (2) melting process development; (3) casting process; (4) mechanical properties; (5) welding process, weld repairs, and thermal aging response; and (6) applications. This paper also reviews the operating experience with several of the components. The projection for future growth in the applications of nickel aluminide is also discussed.

  11. Observation of Localized Corrosion of Ni-Based Alloys Using Coupled Orientation Imaging Microscopy and Atomic Force Microscopy

    SciTech Connect

    Bedrossian, P.J.

    1999-11-24

    We present a method for assessing the relative vulnerabilities of distinct classes of grain boundaries to localized corrosion. Orientation imaging microscopy provides a spatial map which identifies and classifies grain boundaries at a metal surface. Once the microstructure of a region of a sample surface has been characterized, a sample can be exposed to repeated cycles of exposure to a corrosive environment alternating with topographic measurement by an atomic force microscope in the same region in which the microstructure had been mapped. When this procedure is applied to Ni and Ni-based alloys, we observe enhanced attack at random grain boundaries relative to special boundaries and twins in a variety of environments.

  12. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  13. Two-temperature model in molecular dynamics simulations of cascades in Ni-based alloys

    DOE PAGES

    Zarkadoula, Eva; Samolyuk, German; Weber, William J.

    2017-01-03

    In high-energy irradiation events, energy from the fast moving ion is transferred to the system via nuclear and electronic energy loss mechanisms. The nuclear energy loss results in the creation of point defects and clusters, while the energy transferred to the electrons results in the creation of high electronic temperatures, which can affect the damage evolution. In this paper, we perform molecular dynamics simulations of 30 keV and 50 keV Ni ion cascades in nickel-based alloys without and with the electronic effects taken into account. We compare the results of classical molecular dynamics (MD) simulations, where the electronic effects aremore » ignored, with results from simulations that include the electronic stopping only, as well as simulations where both the electronic stopping and the electron-phonon coupling are incorporated, as described by the two temperature model (2T-MD). Finally, our results indicate that the 2T-MD leads to a smaller amount of damage, more isolated defects and smaller defect clusters.« less

  14. Effect of Co on Discontinuous Precipitation Transformation with TCP Phase in Ni-based Alloy Containing Re

    NASA Astrophysics Data System (ADS)

    Shi, Qianying; An, Ning; Huo, Jiajie; Zheng, Yunrong; Feng, Qiang

    2017-02-01

    The effect of Co on discontinuous precipitation (DP) transformation involving the formation of topologically close-packed (TCP) phase was investigated in three Ni-Cr-Re model alloys containing different levels of Co. One typical TCP phase, σ, was generated within DP cellular colonies along the migrating grain boundaries in experimental alloys during aging treatment. As a result of the increased solubility of Re in the γ matrix and enlarged interlamellar spacing of σ precipitates inside of growing DP colonies, Co addition suppressed the formation of σ phase and associated DP colonies. This study suggests that Co could potentially serve as a microstructural stabilizer in Re-containing Ni-base superalloys, which provides an alternative method for the composition optimization of superalloys.

  15. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    SciTech Connect

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P.; Windisch, C.F.; Johnson, C.D.; Schaeffer, C.

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  16. Preparation and high-temperature oxidation behavior of plasma Cr-Ni alloying on Ti6Al4V alloy based on double glow plasma surface metallurgy technology

    NASA Astrophysics Data System (ADS)

    Wei, Dong-Bo; Zhang, Ping-Ze; Yao, Zheng-Jun; Wei, Xiang-Fei; Zhou, Jin-Tang; Chen, Xiao-Hu

    2016-12-01

    To improve the oxidation resistance of Ti6Al4V alloy, it was coated with a Cr-Ni alloy with 20, 40, 60, and 80 at.% Ni content using the double-glow plasma surface metallurgy technology. The coatings were dense, uniform, and compact, including a complete structure of deposited layer, interdiffusion layer, and sputtering-affected zone. The effect of Ni content on the isothermal oxidation behavior of coating was investigated at 750, 850, and 950 °C. The results show that the oxide scale consisted of NiO and Cr2O3. The morphology and distribution of NiO in oxide scale were affected by oxidation temperature and Ni content. When the Ni content was ≤40 at.%, the oxidation resistance of the Cr-Ni alloy coating was enhanced.

  17. [Study on grinding of base metal alloys. 4. Constant pressure grinding of a Ni-Cr alloy with vitrified wheels].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1989-09-01

    The grinding techniques and the constituent element of vitrified wheels suitable for a 13% Cr-Ni dental casting alloy were determined. The lever-type grinding test machine used in the previous study was modified so that a work might be ground under a constant pressure as it moved reciprocally within a short stroke along the tangential direction of a rotating wheel. The grinding performance of two marketed wheels and eleven experimental wheels with different constituent elements was tested. Abrasive grains on the working surface of alumina wheel wore extremely due to abrasive attrition. Carborundum wheels proved to be more suitable for grinding of the comparatively soft Ni-Cr alloy. Not only depressing a wheel against a work but also moving the wheel over it with heavier pressure should be desired for the maximal grinding efficiency. The experimental carborundum wheels exhibited much the same performance as the marketed carborundum wheel under a less grinding pressure that 100 gf. Only the wheel of grain size #150 bonded with 19% binder wore obviously under the pressure of 150 or 200 gf and provided about two times the performance of the marketed wheel.

  18. Influence of the pulsed plasma treatment on the corrosion resistance of the low-alloy steel plated by Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Dzhumaev, P.; Yakushin, V.; Kalin, B.; Polsky, V.; Yurlova, M.

    2016-04-01

    This paper presents investigation results of the influence of high temperature pulsed plasma flows (HTPPF) treatment on the corrosion resistance of low-alloy steel 0.2C-Cr-Mn- Ni-Mo cladded by the rapidly quenched nickel-based alloy. A technique that allows obtaining a defect-free clad layer with a good adhesion to the substrate was developed. It is shown that the preliminary treatment of steel samples by nitrogen plasma flows significantly increases their corrosion resistance in the conditions of intergranular corrosion test in a water solution of sulfuric acid. A change of the corrosion mechanism of the clad layer from intergranular to uniform corrosion was observed as a result of sub-microcrystalline structure formation and homogeneous distribution of alloying elements in the plasma treated surface layer thus leading to the significant increase of the corrosion resistance.

  19. Ni{sub 3}Al aluminide alloys

    SciTech Connect

    Liu, C.T.

    1993-10-01

    This paper provides a brief review of the recent progress in research and development of Ni{sub 3}Al and its alloys. Emphasis has been placed on understanding low ductility and brittle fracture of Ni{sub 3}Al alloys at ambient and elevated temperatures. Recent studies have resulted in identifying both intrinsic and extrinsic factors governing the fracture behavior of Ni{sub 3}Al alloys. Parallel efforts on alloy design using physical metallurgy principles have led to properties for structural use. Industrial interest in these alloys is high, and examples of industrial involvement in processing and utilization of these alloys are briefly mentioned.

  20. Nickel-based (Ni-Cr and Ni-Cr-Be) alloys used in dental restorations may be a potential cause for immune-mediated hypersensitivity.

    PubMed

    Lu, Yin; Chen, Weiqing; Ke, Wei; Wu, Shaohua

    2009-11-01

    Although nickel-based (Ni-Cr and Ni-Cr-Be) alloy prothesis is widely used in orthodontics, its potential biologic hazards, hypersensitivity in particular, are still uncertain as yet. And only a few studies in vivo have considered the biocompatibility. However, several case reports show adverse effects of immunologic alterations, such as urticaria, respiratory disease, nickel contact dermatitis, microscopic hematuria and proteinuria, and even exacerbated to hepatocyte injury and renal injury. So nickel-based alloy used in dental restorations may be a potential cause for immune-mediated hypersensitivity. The metal surface would occur electrochemical corrosion as metal edge of porcelain-fused-to-nichrome crown exposed to oral cavity rich in electrolytes after restoration, and metal ion would release to oral cavity then come into contact with cells and tissues in the immediate environment, or be distributed throughout the body, mainly to the intestine canal. Once these ions are not biocompatible, the human system may be injured (toxicity and risk of sensitization) if they are absorbed in sufficient quantity. Thus, it is necessary to determine the long-term biocompatibility properties of nickel-based alloy, reduce sensitization, and grasp the information of individual differences in the appearance of adverse reactions in further research.

  1. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  2. Initial assessment of Ni-base alloy performance in 0.1 MPa and supercritical CO2

    DOE PAGES

    Pint, B. A.; Keiser, J. R.

    2015-09-25

    There is considerable interest in increasing the working temperature of both open and closed supercritical CO2 (sCO2) cycles to ≥700 °C. At these temperatures, it is unlikely that any Fe-base alloys have suitable strength and therefore the focus is on Ni-base alloys for this application. To begin addressing the lack of compatibility data under these conditions, initial work exposed a wide range of candidate alloys in 500-h exposures at 20 MPa (200 bar) CO2 at 650 -750 °C in high purity CO2. In general, the reaction products were thin and protective in these exposures. A smaller group of alloy couponsmore » focusing on chromia- and alumina-forming alloys was exposed for 500h in 0.1 MPa (1bar) air, CO2, CO2+O2 and CO2+H2O for comparison. Thus, the thin surface oxides formed were very similar to those formed at high pressure and no clear detrimental effect of CO2 oxidation or O2 or H2O impurities could be observed in these exposures.« less

  3. Evaporative segregation in 80% Ni-20% Cr and 60% Fe-40% Ni alloys

    NASA Technical Reports Server (NTRS)

    Gupta, K. P.; Mukherjee, J. L.; Li, C. H.

    1974-01-01

    An analytical approach is outlined to calculate the evaporative segregation behavior in metallic alloys. The theoretical predictions are based on a 'normal' evaporation model and have been examined for Fe-Ni and Ni-Cr alloys. A fairly good agreement has been found between the predicted values and the experimental results found in the literature.

  4. Structures and Electrochemical Hydrogen Storage Properties of the As-Spun RE-Mg-Ni-Co-Al-Based AB2-Type Alloys Applied to Ni-MH Battery

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Yuan, Zeming; Shang, Hongwei; Li, Yaqin; Qi, Yan; Zhao, Dongliang

    2017-03-01

    In this paper, the La0.8-x Ce0.2Y x MgNi3.5Co0.4Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2) alloys were synthesized via smelting and melt spinning. The effect of Y content on the structure and electrochemical hydrogen storage characteristics of the as-cast and spun alloys was investigated. The identifications of XRD and SEM demonstrate that the experimental alloys possess a major phase LaMgNi4 and a minor phase LaNi5. The variation of Y content results in an obvious transformation of the phase abundance rather than phase composition in the alloys, namely LaMgNi4 phase increases while LaNi5 phase decreases with Y content growing. Furthermore, the replacement of Y for La causes the lattice constants and cell volume to clearly decrease and markedly refines the alloy grains. The electrochemical tests reveal that these alloys can obtain the maximum values of discharge capacity at the first cycling without any activation needed. With Y content growing, the discharge capacity of the alloys obviously declines, but its cycle stability remarkably improves. Moreover, the electrochemical dynamics of the alloys, involving the high-rate discharge ability, hydrogen diffusion coefficient (D), limiting current density (I L), and charge transfer rate, initially augment and then decrease with rising Y content.

  5. Rare-earth metals (REMs) in nickel aluminide-based alloys: II. Effect of a REM on the phase composition of a multicomponent Ni3Al-based alloy

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Kazanskaya, N. K.; Morozov, A. E.; Kolobov, Yu. R.; Vershinina, T. N.; Kozlov, E. V.

    2008-10-01

    The hardening mechanisms are studied in the cast high-temperature next-generation materials that are based on the intermetallic compound Ni3Al and are low alloyed with refractory (W, Re, Mo, Cr) and reaction- and surface-active (REM, Ti, etc.) metals. The interaction of the main impurities (C, O, Si, S) with three characteristic representatives of the REM group (namely, Y, La, Ce), which can be used for alloying, is analyzed. The reported data on the behavior of some REMs in the alloys based on nickel monoaluminide NiAl are considered. The effect of the REMs on the phase compositions of real multicomponent semicommercial Ni3Al-based VKNA alloys produced by directional solidification is investigated, and the excess phases precipitating upon alloying are revealed. Alloying with refractory metals and REMs is shown to lead to the formation of nanophases that stabilize the dendritic or single-crystal structure of VKNA-type cast alloys and strengthen the interface boundaries in them.

  6. Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature

    DOE PAGES

    Rouaix-Vande Put, Aurelie; Unocic, Kinga A.; Brady, Michael P.; ...

    2015-11-18

    Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H2–CO–CO2–H2O environment, the increase in temperature from 550 to 750 °C generally decreased metal dusting. When H2O was added to a H2–CO–CO2 environment at 650 °C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H2O, the higher alloyed specimens retained a thin protective oxide. Lastly, for gas mixtures containing little or no H2O, the Fe-base alloys were less resistant to metal dustingmore » than Ni-base alloys.« less

  7. Ab initio study of effect of Co substitution on the magnetic properties of Ni and Pt-based Heusler alloys

    NASA Astrophysics Data System (ADS)

    Roy, Tufan; Chakrabarti, Aparna

    2017-04-01

    Using density functional theory based calculations, we have carried out in-depth studies of effect of Co substitution on the magnetic properties of Ni and Pt-based shape memory alloys. We show the systematic variation of the total magnetic moment, as a function of Co doping. A detailed analysis of evolution of Heisenberg exchange coupling parameters as a function of Co doping has been presented here. The strength of RKKY type of exchange interaction is found to decay with the increase of Co doping. We calculate and show the trend, how the Curie temperature of the systems vary with the Co doping.

  8. Laser clad Ni-base alloy added nano- and micron-size CeO 2 composites

    NASA Astrophysics Data System (ADS)

    Zhang, Shi Hong; Li, Ming Xi; Cho, Tong Yul; Yoon, Jae Hong; Lee, Chan Gyu; He, Yi Zhu

    2008-07-01

    Micron-size Ni-base alloy (NBA) powders are mixed with both 1.5 wt% (%) micron-CeO 2 (m-CeO 2) and also 1.0-3.0% nano-CeO 2 (n-CeO 2) powders. These mixtures are coated on low carbon steel (Q235) by 2.0 kW CO 2 laser cladding. The effects on microstructures, microhardness and wear resistance of the coating by the addition of m- and n-CeO 2 powders to NBA (m- and n-CeO 2/NBA) have been investigated. Addition to the primary phases of γ-Ni, Cr 23C 6 and Ni 3B of NBA coating, CeNi 3 shows up both in m- and n-CeO 2/NBA coatings and CeNi 5 appears only in n-CeO 2/NBA coating. Directional dendrite and coarse equiaxed dendrite are grown in m-CeO 2/NBA coating from interface to central zone, whereas multi-oriented dendrite and fine equiaxed dendrite growth by addition of n-CeO 2. The microhardness and wear resistance of coatings are greatly improved by CeO 2 powder addition, and compared to the addition of 1.0% and 3.0%, 1.5% n-CeO 2/NBA is the best. Hardness and wear resistance of the coating improves with decreasing CeO 2 size from micron to nano.

  9. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  10. Prediction of microstructure evolution during high temperature blade forging of a Ni-Fe based superalloy, Alloy 718

    NASA Astrophysics Data System (ADS)

    Na, Young-Sang; Yeom, Jong-Taek; Park, Nho-Kwang; Lee, Jai-Young

    2003-02-01

    The mechanical properties of the Ni-Fe-based Alloy 718 depend very much on grain size, as well as the strengthening phases, γ' and γ. The grain structure of the superalloy components is mainly controlled during thermo-mechanical processes by the dynamic, meta-dynamic recrystallization and grain growth. In this investigation, the evolution of the grain structure in the process of two-step blade forging was experimentally and numerically dealt with. The evolution of the grain structure in Alloy 718 during blade forging was predicted using a 2-DFE simulator with implemented constitutive models on dynamic recrystallization and grain growth. The comparison of the simulated microstructure with the actual grain structure of the forged parts validated the prediction of the grain structure evolution. The effect of dynamic recrystallization on the evolution of grain structure is highlighted in this article.

  11. Effect of Creep and Oxidation on Reduced Creep-Fatigue life of Ni-based Alloy 617 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2014-01-01

    Low cycle fatigue (LCF) and creep fatigue testing of Ni-based alloy 617 was carried out at 850 C. Compared with its LCF life, the material s creep fatigue life decreases to different extents depending on test conditions. To elucidate the microstructure-fatigue property relationship for alloy 617 and the effect of creep and oxidation on its fatigue life, systematic microstructural investigations were carried out using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electron backscatter diffraction (EBSD). In LCF tests, as the total strain range increased, deformations concentrated near high angle grain boundaries (HAGBs). The strain hold period in the creep fatigue tests introduced additional creep damage to the material, which revealed the detrimental effect of the strain hold time on the material fatigue life in two ways. First, the strain hold time enhanced the localized deformation near HAGBs, resulting in the promotion of intergranular cracking of alloy 617. Second, the strain hold time encouraged grain boundary sliding, which resulted in interior intergranular cracking of the material. Oxidation accelerated the initiation of intergranular cracking in alloy 617. In the crack propagation stage, if oxidation was promoted and the cyclic oxidation damage was greater than the fatigue damage, oxidation-assisted intergranular crack growth resulted in a significant reduction in the material s fatigue life.

  12. Impact of CrSiTi and NiSi on the Thermodynamics, Microstructure, and Properties of AlCoCuFe-Based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Rong; Wang, Zhao-Qin; Lin, Tie-Song; He, Peng; Sekulic, Dusan P.

    2016-05-01

    Aiming to solve the problem of spontaneous combustion on titanium via electrospark deposition (ESD), two AlCoCuFe-based high-entropy alloys (HEAs), AlCoCuFe- x ( x = CrSiTi, NiSi), were produced by vacuum arc melting as electrodes in ESD process. The thermodynamic analysis of AlCoCuFe-based HEAs were carried out using the concept of mixing enthalpy matrix and a powerful thermodynamic calculation toolbox (HEA-Thermo-Calcu). The microstructure and mechanical properties of the two alloys were investigated. The AlCoCuFeCrSiTi alloy contains a body-centered cubic (BCC) phase and a face-centered cubic (FCC) phase. The AlCoCuFeNiSi alloy is composed of two BCC phases and an FCC phase. Addition of CrSiTi and NiSi to AlCoCuFe-based alloys makes the enthalpy of mixing to be sizably more negative than for the other AlCoCuFe-based HEAs. Notwithstanding the fact that the thermodynamic parameters do not agree with Yang's proposition, the two alloys form simple solid solutions. The electronegativity difference (Δ χ) favors a formation of the solid solution when Δχ ≤ 14.2. The hardness of AlCoCuFe- x ( x = CrSiTi, NiSi) alloys reaches 935 HV and 688 HV, respectively. The yield strength, fracture strength, and ultimate strain of AlCoCuFeNiSi are larger, i.e., 29, 30, and 45%, respectively, than those of the AlCoCuFeCrSiTi alloy.

  13. Process of super-black shading material applied to the star sensor based on Ni-P alloys

    NASA Astrophysics Data System (ADS)

    Liu, Fengdeng; Xing, Fei; Wu, Yuelong; You, Zheng

    2014-12-01

    Super-black materials based on Nanotechnology have very important applications in many science fields. Super-black materials which have been reported currently, although have excellent light-trapping properties, most of them need the use of sophisticated equipment , the long-time synthesis , high temperature environment and release flammable, explosive and other dangerous gases. So many kinds of problems have hindered the application of such super-black material in practice. This project had nano super-black material developed with simple equipment and process, instead of complicated and dangerous process steps in high temperature and high pressure. On the basis of literature research, we successfully worked out a set of large-area Ni-P alloy plating method through a series of experiments exploring and analyze the experimental results. In the condition of the above Ni-P alloy, we took the solution, which anodized the Ni-P alloy immersed in the non-oxidizing acid, instead of conventional blackening process. It`s a big break for changing the situation in which oxidation, corrosion, vigorous evolution of hydrogen gas in the process are performed at the same location. As a result, not only the reaction process decreased sensitivity to time error, but also the position of the bubble layer no longer located in the surface of the workpiece which may impede observing the process of reaction. Consequently, the solution improved the controllability of the blackening process. In addition, we conducted the research of nano super-black material, exploring nano-super-black material in terms of space optical sensor.

  14. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  15. Stress corrosion cracking of Ni-base and Ti alloys under controlled potential

    SciTech Connect

    Estill, J C; Gordon, S R; Logeteta, L F; Roy, A K

    1998-10-22

    Susceptibility to stress corrosion cracking (SCC) of alloy C-22 and Ti Gr-12, two candidate alloys for the inner-container of the multi-barrier nuclear waste package, was evaluated by using the slow-strain-rate (SSR) test technique in a deaerated acidic brine (pH {approx} 2.70) at 90 C. The strain rate used was 3.3 x 10{sup {minus}6} sec{sup {minus}1}. Prior to being tested in the acidic brine, specimens of each alloy were pulled inside the test chamber in the dry condition at room temperature (RT). Then specimens were exposed to the test solution while being strained under different controlled electrochemical potentials. The magnitude of the controlled potential was selected based on the corrosion potential measured in the test solution prior to straining of the specimen. Results indicate that, for Ti Gr-12, the times to failure were significantly shorter compared to those for alloy C-22. Furthermore, Ti Gr-12 showed reduced ductility in terms of percent reduction in area and true fracture stress, as the controlled potential became more cathodic. Results also indicate that the time-to-failure and percent elongation reached the minimum values when Ti Gr-12 was tested under impressed potential of {minus}1162 mV. Finally, metallographic examination was performed to evaluate the primary fracture, and the secondary cracking, if any, along the gage section of the broken tensile specimen.

  16. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  17. Electrodeposition of NiPd alloy from aqueous chloride electrolytes

    NASA Astrophysics Data System (ADS)

    Mech, K.; Wróbel, M.; Wojnicki, M.; Mech-Piskorz, J.; Żabiński, P.; Kowalik, R.

    2016-12-01

    Presented results describing properties of alloys deposited at potentiostatic conditions in Ni2+ - Pd2+ - Cl- - H2O system. Electrolysis parameters were defined based on results of thermodynamic analysis as well as voltammetry coupled with electrochemical quartz crystal microbalance (EQCM). Influence of electrode potential and electrolyte components concentration on alloy composition, morphology and its structure was investigated. Alloys were deposited at different Ni(II) and Pd(II) complexes concentrations. Results indicated possibilities of electrochemical synthesis of alloys of wide composition range. Deposits structure as well as crystallites size were discussed based on results of XRD measurements. Alloys composition was determined with the use of energy dispersive spectroscopy (EDS). Morphology of alloys was characterized with the use of scanning electron microscopy (SEM).

  18. Density functional theory study of the interfacial properties of Ni/Ni3Si eutectic alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Yuhong; Wen, Zhiqin; Hou, Hua; Guo, Wei; Han, Peide

    2014-06-01

    In order to clarify the heterogeneous nucleation potential of α-Ni grains on Ni3Si particles in Ni-Ni3Si eutectic alloy, the work of adhesion (Wad), fracture toughness (G), interfacial energy (γi), and electronic structure of the index (0 0 1), (1 1 0) and (1 1 1) Ni/Ni3Si interfaces with two different cohesive manners are investigated using first-principles method based on density functional theory. Results indicate that the center site stacking sequence (OM) is preferable to continue the natural stacking sequence of bulk Ni and Ni3Si. Since OM stacking interfaces have larger Wad, G and γi than that of the top site stacking (OT) interfaces. The Ni/Ni3Si (1 1 0) interface with OM stacking has the best mechanical properties. Therefore, the formation of this interface can improve the stability, ductility and fracture toughness of Ni-Ni3Si eutectic alloy. The calculated interfacial energy of Ni/Ni3Si (0 0 1), (1 1 0) and (1 1 1) interfaces with OM stacking proves the excellent nucleation potency of Ni3Si particles for α-Ni phase from thermodynamic considerations. Besides, the electronic structure and chemical bonding of (1 1 0) interface with OM stacking are also discussed.

  19. Growth of nanotubular oxide layer on Ti-Ni alloys with different Ni contents

    NASA Astrophysics Data System (ADS)

    Kim, Min-Su; Tsuchiya, Hiroaki; Fujimoto, Shinji

    2016-04-01

    Anodization of near-equiatomic Ti-Ni alloys was performed in an ethylene glycol based electrolyte under various conditions in order to investigate the effects of crystal structure and chemical composition of the Ti-Ni alloy on the morphology of the resulting oxide layers. X-ray diffraction patterns revealed that Ti-Ni substrates with Ni content lower than 50.0 at.% were in the martensitic phase, while substrates with Ni content higher than 50.0 at.% were in the austenitic phase. Oxide layers formed at 20 or 35 V for 5 min exhibited no distinct nanotubular structures; however, at 50 V, nanotubular oxide layers were formed. After anodization at 50 V for 20 min, the growth of an irregular-shaped porous layer underneath the nanotubular oxide layer was observed for Ti-Ni alloys with Ni content lower than 52.2 at.%, whereas the oxide layer consisted of only irregular-shaped porous structures for the Ti-52.5 at.% Ni alloy. Further anodization resulted in the formation of irregular-shaped porous oxide layers on all Ti-Ni alloys examined. Energy-dispersive X-ray analysis indicated that this morphological transition is related to Ni accumulation in the vicinity of the interface between the bottoms of the oxide layers and the surfaces of the substrate alloys. Therefore, nanotubular oxide layers cannot be grown, and instead irregular-shaped porous oxide layers are formed underneath the nanotubular layers. These results indicate that the morphology of anodic oxide layers formed on the near-equiatomic Ti-Ni alloys is not affected by their crystal structure, but by Ni content and anodization time.

  20. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  1. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  2. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-01

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al, and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO3 lattice. An important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  3. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  4. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  5. Design of splints based on the NiTi alloy for the correction of joint deformities in the fingers

    PubMed Central

    2010-01-01

    Background The proximal interphalange joint (PIP) is fundamental for the functional nature of the hand. The contracture in flexion of the PIP, secondary to traumatisms or illnesses leads to an important functional loss. The use of correcting splints is the common procedure for treating this problem. Its functioning is based on the application of a small load and a prolonged stress which can be dynamic, static progressive or static serial. It is important that the therapist has a splint available which can release a constant and sufficient force to correct the contracture in flexion. Nowadays NiTi is commonly used in bio-engineering, due to its superelastical characteristics. The experience of the authors in the design of other devices based on the NiTi alloy, makes it possible to carry out a new design in this work - the production of a finger splint for the treatment of the contracture in flexion of the PIP joint. Methods Commercial orthosis have been characterized using a universal INSTRON 5565 machine. A computational simulation of the proposed design has been conducted, reproducing its performance and using a model "ad hoc" for the NiTi material. Once the parameters have been adjusted, the design is validated using the same type of test as those carried out on commercial orthosis. Results and Discussion For commercial splint the recovering force falls to excessively low values as the angle increases. Angle curves for different lengths and thicknesses of the proposed design have been obtained, with a practically constant recovering force value over a wide range of angles that vary between 30° and 150° in every case. Then the whole treatment is possible with only one splint, and without the need of progressive replacements as the joint recovers. Conclusions A new model of splint based on NiTi alloy has been designed, simulated and tested comparing its behaviour with two of the most regularly used splints. Its uses is recommended instead of other dynamic

  6. Structure and composition of higher-rhenium-content superalloy based on La-alloyed Ni-Al-Cr

    SciTech Connect

    Kozlov, Eduard V.; Koneva, Nina A.; Nikonenko, Elena L.; Popova, Natalya A.; Fedorischeva, Marina V.

    2015-10-27

    The paper presents the transmission and scanning electronic microscope investigations of Ni-Al-Cr superalloy alloyed with additional Re and La elements. This superalloy is obtained by a directional solidification method. It is shown that such additional elements as Re and La result in formation of new phases in Ni-Al-Cr accompanied by considerable modifications of quasi-cuboid structure in its γ’-phase.

  7. Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors

    NASA Astrophysics Data System (ADS)

    Amalina Raja Seman, Raja Noor; Asyadi Azam, Mohd; Ambri Mohamed, Mohd

    2016-12-01

    Supercapacitors are highly promising energy devices with superior charge storage performance and a long lifecycle. Construction of the supercapacitor cell, especially electrode fabrication, is critical to ensure good performance in applications. This work demonstrates direct growth of vertically aligned carbon nanotubes (CNTs) on Fe-Ni based metal alloy foils, namely SUS 310S, Inconel 600 and YEF 50, and their use in symmetric vertically aligned CNT supercapacitor electrodes. Alumina and cobalt thin film catalysts were deposited onto the foils, and then CNT growth was performed using alcohol catalytic chemical vapour deposition. By this method, vertically aligned CNTs were successfully grown and used directly as a binder-free supercapacitor electrode to deliver excellent electrochemical performance. The device showed relatively good specific capacitance, a superior rate capability and excellent cycle stability, maintaining about 96% capacitance up to 1000 cycles.

  8. Comparison of high temperature, high frequency core loss and dynamic B-H loops of two 50 Ni-Fe crystalline alloys and an iron-based amorphous alloy

    NASA Technical Reports Server (NTRS)

    Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.

    1991-01-01

    The availability of experimental data that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency is almost nonexistent. An experimental investigation was conducted over the temperature range of 23 to 300 C and frequency range of 1 to 50 kHz to determine the effects of temperature and frequency on the core loss and dynamic B-H loops of three different soft magnetic materials; and oriented grain 50Ni-50Fe alloy, a nonoriented grain 50Ni-Fe alloy, and an iron based amorphous material (Metglas 2605SC). A comparison of these materials shows that the nonoriented grain 50Ni-50Fe alloy tends to have either the lowest or next lowest core loss for all temperatures and frequencies investigated.

  9. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  10. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    SciTech Connect

    Zhu, J.H.; Liaw, P.K.; Liu, C.T.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  11. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  12. Transforming Gas-Phase-Alloyed, Ni-Based Wires into Microtubes via the Kirkendall Effect

    NASA Astrophysics Data System (ADS)

    Paz y Puente, Ashley Elizabeth

    Metallic structures containing open porosity have low density and high surface area, which are characteristics of interest for a variety of applications from batteries to biomedical implants. In particular, the fabrication of hollow nano- and micro-objects has recently garnered significant attention. Because traditional methods for forming hollow structures, such as tubes, shells, and cages, typically require template removal from the outside in, these geometries are not easily achieved at such small scales. However, by taking advantage of the radial symmetry and spatial confinement of nano- and micro-objects, these hollow structures can be formed using an inside-out approach. The Kirkendall effect, a consequence of the imbalance of diffusivities among atomic species, can result in a supersaturation of vacancies in the material, which often condense to form so-called Kirkendall pores. Typically these Kirkendall pores are considered detrimental because they deteriorate the mechanical, thermal, and electrical properties of materials, but this thesis focuses on the use of the Kirkendall effect as a novel route for the fabrication of beta-NiAl(Cr) and shape memory NiTi microtubes. Both conventional ex situ metallography techniques and in situ X-ray tomography were used to study the phase and Kirkendall pore formation and evolution in these systems. The extension of this Kirkendall-based technique to other material systems and to 2D structures and 3D scaffolds is also discussed for potential future research.

  13. Durability and degradation of HT9 based alloy waste forms with variable Ni and Cr content

    SciTech Connect

    Olson, L.

    2016-12-31

    Short-term electrochemical and long-term hybrid electrochemical corrosion tests were performed on alloy waste forms in reference aqueous solutions that bound postulated repository conditions. The alloy waste forms investigated represent candidate formulations that can be produced with advanced electrochemical treatment of used nuclear fuel. The studies helped to better understand the alloy waste form durability with differing concentrations of nickel and chromium, species that can be added to alloy waste forms to potentially increase their durability and decrease radionuclide release into the environment.

  14. Nickel self-diffusion along grain boundaries in Ni{sub 3}Al-base intermetallic alloys

    SciTech Connect

    Zulina, N.P.; Bolberova, E.V.; Razumovskii, I.M.

    1996-09-01

    {sup 63}Ni self-diffusion along grain boundaries (GBs) in intermetallic alloys Ni-25.2Al, Ni-24.9Al-4.8W, Ni-24.2Al-4.7Cr, Ni-19.3Al-4.5Hf and Ni-27.6Al-4.9Co (at.%) has been investigated by the radiotracer technique. The usual darkening in the positions of GBs on the autoradiographs obtained on the parallel and inclined sections of the specimens was observed. The diffusion penetration profiles were measured by the serial sectioning technique. Using the near-surface parts of the profiles which characterize lattice diffusion, the volume diffusion coefficients D were estimated. For pure Ni{sub 3}Al the agreement of the measured high temperature values of D with those of Bronfin et al. is good. By using the D-values and processing the tails of the measured profiles the GB diffusivity P (P = D{prime}{delta}, where D{prime} is the GB diffusion coefficient, {delta} the GB width) was calculated. The obtained P values followed an Arrhenius dependence at high temperatures: Ni-Al, T = 1,273--1,073 K, Q{prime} = 195 kJ/mol, P{sub 0} = 1 {times} 10{sup {minus}12}m{sup 3}/s; Ni-Al-Hf, T = 1,373--1,023 K, Q{prime} = 219 kJ/mol, P{sub 0} = 6.4 {times} 10{sup {minus}12}m{sup 3}/s; Ni-Al-W, T = 1,373--1,023 K, Q{prime} = 217 kJ/mol, P{sub 0} = 3.3 {times} 10{sup {minus}12}m{sup 3}/s; Ni-Al-Co, T = 1,273--1,023 K, Q{prime} = 189 kJ/mol, P{sub 0} = 6.8 {times} 10{sup {minus}13}m{sup 3}/s; Ni-Al-Cr, T = 1,323--1,023 K, Q{prime} = 265 kJ/mol, P{sub 0} = 1.8 {times} 10{sup {minus}9}m{sup 3}/s. By using the obtained D and P values the GB energy {gamma} in Ni{sub 3}Al and its alloys was estimated by the Borisov et al. semiempirical relationship. The {gamma}-values calculated exhibit a strong positive temperature dependence, which is usually revealed in metallic alloys containing elements with a strong tendency to GB segregation.

  15. Effect of directional solidification on the structure and properties of Ni3Al-based alloy single crystals alloyed with W, Mo, Cr, and REM

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Bondarenko, Yu. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Morozov, A. E.; Antonova, A. V.

    2014-07-01

    The effect of the solidification gradient ( G = 60 and 150°C/cm) at a solidification rate R = 10 mm/min on the structural parameters and the short- and long-term strength characteristics of blade-type single-crystal workpieces made of a heterophase γ' + γ VKNA-1V-type γ'(Ni3Al)-based alloy with low contents of refractory metals is studied. The single crystals have a cellular-dendritic structure: dendrites are heterophase and consist of thin discontinuous nickel-based γ solid solution layers between γ'(Ni3Al)-matrix regions. Primary γ'-phase precipitates are located in the interdendritic space. An increase in solidification gradient G from 60 to 150°C/cm (by a factor of 2.5) at a solidification rate R = 10 mm/min leads to a decrease in the dendrite arm spacing by ˜1.5 times, the size of primary γ'-phase precipitates by 2.5-3 times, and the refinement of γ' regions between γ layers in dendrite arms and at the periphery of dendrites by 2-3 times. The strength characteristics of the single crystals grown at G = 150°C/cm are higher than those of the single crystals grown at G = 60°C/cm by 10%. An increase in gradient G weakly affects the long-term strength of the single crystals. During long-term high-temperature tests under loading, secondary disperse γsec' particles precipitate in the discontinuous γ solid solution layers forming inclusions in two-phase γ' + γ dendrites, and the morphology of the γ layers changes (they become thicker and shorter). The <111> VKNA-1V alloy single crystals grown at G = 150°C/cm and R = 10 mm/min have a set of the required properties, namely, a high high-temperature strength over the entire temperature range, moderate high-temperature plasticity, and the absence of the plasticity drop at 800°C (which is characteristic of single crystals with other crystallographic orientations). These properties make <111> VKNA-1V alloy single crystals promising for working and nozzle gas turbine engine blades, including the blades in

  16. Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Shiva, S.; Palani, I. A.; Mishra, S. K.; Paul, C. P.; Kukreja, L. M.

    2015-06-01

    Among the various shaped memory alloys (SMA), nitinol (Ni-Ti alloy) finds applications in automotive, aerospace, biomedical and robotics. The conventional route of fabrication of SMA has several limitations, like formation of stable secondary phases, fabrication of simple geometries, etc. This paper reports a novel method of fabricating SMA using a laser based additive manufacturing technique. Three different compositions of Ni and Ti powders (Ni-45% Ti-55%; Ni-50% Ti-50%; Ni-55% Ti45%) were pre-mixed using ball-milling and laser based additive manufacturing system was employed to fabricate circular rings. The material properties of fabricated rings were evaluated using Scanning Electron Microscopy (SEM), Differential scanning calorimeter (DSC), X-ray diffraction (XRD) system and micro-hardness test. All the characterized results showed that SMA could be manufactured using the laser based additive manufacturing process. The properties of laser additive manufactured SMA (Ni-50% Ti-50%) were found to be close to that of conventionally processed SMA.

  17. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  18. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  19. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  20. Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys

    DOE PAGES

    Zhang, Fuxiang; Zhao, Shijun; Jin, Ke; ...

    2017-01-04

    In this research, pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure wasfound in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~ 40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fccmore » and the hcp phases for the three alloys are very small, but they are sensitive to temperature. Finally, the critical transition pressure in NiCoCrFe varies from 1 GPa at room temperature to 6 GPa at 500 K.« less

  1. Raising the Structural Strength of Systematically Alloyed Fe - Cr - Ni - Mo-Base Maraging Steels

    NASA Astrophysics Data System (ADS)

    Gladkovskii, S. V.; Ishina, E. A.; Kuteneva, S. V.

    2016-03-01

    The effect of systematical Mo, Ti, Al and Ca alloying of corrosion-resistant maraging steels of type Kh11N10M2T and of the modes of their heat treatment on the phase composition, combination of properties and resistance to brittle fracture is studied. It is shown that the structural strength of the steels can be raised by additional alloying with copper and formation of a regulated content of metastable retained austenite.

  2. Performance of chromia- and alumina-forming Fe- and Ni-base alloys exposed to metal dusting environments: The effect of water vapor and temperature

    SciTech Connect

    Rouaix-Vande Put, Aurelie; Unocic, Kinga A.; Brady, Michael P.; Pint, Bruce A.

    2015-11-18

    Fe- and Ni-base alloys including an alumina-forming austenitic alloy were exposed for 500 h under metal dusting environments with varying temperature, gas composition and total pressure. For one H2–CO–CO2–H2O environment, the increase in temperature from 550 to 750 °C generally decreased metal dusting. When H2O was added to a H2–CO–CO2 environment at 650 °C, the metal dusting attack was reduced. Even after 5000 h at a total pressure of 9.1 atm with 20%H2O, the higher alloyed specimens retained a thin protective oxide. Lastly, for gas mixtures containing little or no H2O, the Fe-base alloys were less resistant to metal dusting than Ni-base alloys.

  3. Corrosion behavior of Ni-Base alloys in a hot lithium molten salt under an oxidizing atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Soo-Haeng; Cho, Il-Je; You, Gil-Sung; Yoon, Ji-Sup; Park, Seong-Won

    2007-08-01

    The electrolytic reduction of a spent oxide fuel involves the liberation of the oxygen in molten LiCl electrolyte, which is a chemically aggressive environment that is excessively corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the molten salt. In this study, the corrosion behaviors of Haynes 263, Haynes 75, Inconel 718 and Inconel X-750 in a molten LiCl-Li2O salt under an oxidizing atmosphere were investigated at 650°C for 72 to 216 hrs. The Haynes 263 alloy showed the best corrosion resistance among the examined alloys. The corrosion products of Haynes 263 were Li(Ni,Co)O2 and LiTiO2; those of Haynes 75 were Cr2O3, NiFe2O4, LiNiO2 and Li2FiFe2O4; while Cr2O3, NiFe2O4 and CrNbO4 were identified as the corrosion products of Inconel 718. Inconel X-750 produced Cr2O3, NiFe2O4 and (Cr, Nb, Ti)O2 as its corrosion products. Haynes 263 showed a localized corrosion behavior while Haynes 75, Inconel 718 and Inconel X-750 showed a uniform corrosion behavior.

  4. Effect of the method of introduction of Y2O3 into NiAl-based powder alloys on their structure: I. Agitation in a ball mill

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Vershinina, T. N.; Skachkov, O. A.; Drozdov, A. A.; Morozov, A. E.; Pozharov, S. V.

    2012-09-01

    The effect of the sintering temperature (1100-1400°C) of NiAl alloy samples with oxide Y2O3 produced by hydrostatic pressing on their structure and phase composition and the distribution of oxide particles in a NiAl-based intermetallic matrix alloyed with ˜0.5 at % Fe is considered. It is found that dispersed oxide particles in the compact material prepared from a mixture of oxide Y2O3 powder and a NiAl alloy (produced by calcium hydride reduction of a mixture of nickel and aluminum oxides) powder in a standard ball mill are nonuniformly distributed in the volume. The morphology of oxides changes during sintering: sintered samples contain rounded particles, which differ strongly from the clearly faceted angular particles of oxide Y2O3 added to a mixture (they represent conglomerates of single crystals). In the sintered samples, large aggregates of oxides are revealed along grain boundaries. Mass transfer is possible at the NiAl/Y2O3 interface in the system: it leads to partial substitution of aluminum and/or iron atoms for yttrium atoms in the Y2O3 lattice and to the formation of submicroscopic particles of (Fe,Al)5Y3O12-type oxides.

  5. Probing the possibility of coexistence of martensite transition and half-metallicity in Ni and Co-based full-Heusler alloys: An ab initio calculation

    NASA Astrophysics Data System (ADS)

    Roy, Tufan; Pandey, Dhanshree; Chakrabarti, Aparna

    2016-05-01

    Using first-principles calculations based on density functional theory, we have studied the mechanical, electronic, and magnetic properties of Heusler alloys, namely, Ni2B C and Co2B C (B = Sc, Ti, V, Cr, and Mn as well as Y, Zr, Nb, Mo, and Tc; C = Ga and Sn). On the basis of electronic structure (density of states) and mechanical properties (tetragonal shear constant), as well as magnetic interactions (Heisenberg exchange coupling parameters), we probe the properties of these materials in detail. We calculate the formation energy of these alloys in the (face-centered) cubic austenite structure to probe the stability of all these materials. From the energetic point of view, we have studied the possibility of the electronically stable alloys having a tetragonal phase lower in energy compared to the respective cubic phase. A large number of the magnetic alloys is found to have the cubic phase as their ground state. On the other hand, for another class of alloys, the tetragonal phase has been found to have lower energy compared to the cubic phase. Further, we find that the values of tetragonal shear constant show a consistent trend: a high positive value for materials not prone to tetragonal transition and low or negative for others. In the literature, materials which have been seen to undergo the martensite transition are found to be metallic in nature. We probe here if there is any Heusler alloy which has a tendency to undergo a tetragonal transition and at the same time possesses a high spin polarization at the Fermi level. From our study, it is found that out of the four materials which exhibit a martensite phase as their ground state, three of these, namely, Ni2MnGa , Ni2MoGa , and Co2NbSn have a metallic nature; on the contrary, Co2MoGa exhibits a high spin polarization.

  6. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  7. Ni-Mn based alloys as versatile catalyst for different electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Ali-Omar, Ahmed-Yassin; Dzoyem, Eunice; Marthe, Jimmy; Boudifa, Mohamed

    2014-12-01

    To develop large scale use of hydrogen and fuel cells as a renewable energy source it is need to increase their durability and reduce their cost mainly due to the use of precious metals. We have examined new type of the low cost binary nickel-manganese (Ni-Mn) catalysts electrodeposited from ammonium chloride bath onto copper substrates. By varying bath composition, polarization potential and essentially bath temperature the operating deposition conditions were optimized to produce Ni-Mn coatings with high active surface (e.g. spongy aspect). The outstanding catalytic activity, the durability and the versatility of the deposited films have been characterized in basic media using several electrochemical processes, such as hydrogen evolution reaction (HER), water oxidation reaction (OER) and ethanol oxidation reaction (EOR).

  8. Nanoscale design of Ni-Al shape memory alloys.

    PubMed

    Subramaniyan, Arun K; Sun, C T

    2009-02-25

    Nanoscale design of Ni-Al alloys was performed to optimize the phase transformation behavior. The distribution of nickel and aluminum atoms was identified as a key parameter in the phase transformation process. A design criterion based on thermal expansion asymmetry was proposed. The effectiveness of the design criterion was validated using molecular dynamics simulations.

  9. [Study on grinding of base metal alloys. 5. Constant pressure grinding of a Ni-Cr alloy with electro-deposited wheels].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1989-09-01

    The grinding techniques and electro-deposited wheels suitable for a 13% Cr-Ni dental casting alloy were determined. The lever-type grinding test machine modified in the previous study was used to investigate the grinding performance of experimental wheels of CBN- and diamond-particles. Depression of the diamond wheel against the work yielded unfavorable grinding results. Not only depression of the wheel against it but also moving the wheel over it with a heavier pressure is desired for higher grinding efficiency and its durability. Probably, the undurability of this wheel is associated with abrasive attrition due to oxidation or some chemical reaction with the work. The CBN wheel had not been suitable for the Co-Cr alloy tested in the third paper, but it exhibited very excellent performance for grinding of the Ni-Cr alloy, even without being moved over the work. Although being high in cost, the CBN wheel may pay for the very high performance and its durability.

  10. Recent advances in alloy design of Ni{sub 3}Al alloys for structural use

    SciTech Connect

    Liu, C.T.; George, E.P.

    1996-12-31

    This is a comprehensive review of recent advances in R&D of Ni{sub 3}Al-based alloys for structural use at elevated temperatures in hostile environments. Recent studies indicate that polycrystalline Ni{sub 3}Al is intrinsically quite ductile at ambient temperatures, and its poor tensile ductility and brittle grain-boundary fracture are caused mainly by moisture-induced hydrogen embrittlement when the aluminide is tested in moisture- or hydrogen-containing environments. Tensile ductility is improved by alloying with substitutional and interstitial elements. Among these additives, B is most effective in suppressing environmental embrittlement and enhancing grain-boundary cohesion, resulting in a dramatic increase of tensile ductility at room temperature. Both B-doped and B-free Ni{sub 3}Al alloys exhibit brittle intergranular fracture and low ductility at intermediate temperatures (300-850 C) because of oxygen-induced embrittlement in oxidizing environments. Cr is found to be most effective in alleviating elevated-temperature embrittlement. Parallel efforts on alloy development using physical metallurgy principles have led to development of several Ni{sub 3}Al alloys for industrial use. The unique properties of these alloys are briefly discussed. 56 refs, 15 figs, 3 tabs.

  11. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  12. Fatigue properties of MA 6000E, a gamma-prime strengthened ODS alloy. [Oxide Dispersion Strengthened Ni-base alloy for gas turbine blade applications

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Merrick, H. F.

    1980-01-01

    MA 6000E is a corrosion resistant, gamma-prime strengthened ODS alloy under development for advanced turbine blade applications. The high temperature, 1093 C, rupture strength is superior to conventional nickel-base alloys. This paper addresses the fatigue behavior of the alloy. Excellent properties are exhibited in low and high cycle fatigue and also thermal fatigue. This is attributed to a unique combination of microstructural features, i.e., a fine distribution of dispersed oxides and other nonmetallics, and the highly elongated grain structure which advantageously modify the deformation characteristics and crack initiation and propagation modes from that characteristic of conventional gamma-prime hardened superalloys.

  13. A Study on the Recrystallization Behavior of Ni-Based Alloy G3 During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Jiang, He; Dong, Jianxin; Zhang, Maicang; Yao, Zhihao; Jue, Wang

    2016-12-01

    An integrated microstructure evolution model of thermomechanical processing was developed in terms of dynamic recrystallization (DRX), post-dynamic recrystallization (PDRX) and grain growth. Hot compression tests were carried out on a Gleeble-1500 thermal simulator under different conditions to model DRX, PDRX and short-time grain growth during the post-deformation and cooling process. Furthermore, in combination with the established microstructure evolution models, an elastic-plastic finite element model was built using DEFORM-2D software to simulate the microstructure evolution during the hot extrusion process. The simulation result was compared with the microstructure of a hot-extruded pipe of alloy G3 manufactured in a factory. The simulation results agree well with the experimental ones, validating the accuracy of the established microstructure evolution model. Furthermore, the finite element simulation is an effective method for hot deformation analysis, which can provide theoretical guidance for the optimization manufacturing parameters.

  14. Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy

    NASA Astrophysics Data System (ADS)

    Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng

    2013-07-01

    The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.

  15. Initial assessment of Ni-base alloy performance in 0.1 MPa and supercritical CO2

    SciTech Connect

    Pint, B. A.; Keiser, J. R.

    2015-09-25

    There is considerable interest in increasing the working temperature of both open and closed supercritical CO2 (sCO2) cycles to ≥700 °C. At these temperatures, it is unlikely that any Fe-base alloys have suitable strength and therefore the focus is on Ni-base alloys for this application. To begin addressing the lack of compatibility data under these conditions, initial work exposed a wide range of candidate alloys in 500-h exposures at 20 MPa (200 bar) CO2 at 650 -750 °C in high purity CO2. In general, the reaction products were thin and protective in these exposures. A smaller group of alloy coupons focusing on chromia- and alumina-forming alloys was exposed for 500h in 0.1 MPa (1bar) air, CO2, CO2+O2 and CO2+H2O for comparison. Thus, the thin surface oxides formed were very similar to those formed at high pressure and no clear detrimental effect of CO2 oxidation or O2 or H2O impurities could be observed in these exposures.

  16. Phase separation and antisite defects in the thermoelectric TiNiSn half-Heusler alloys

    SciTech Connect

    Kirievsky, K.; Gelbstein, Y. Fuks, D.

    2013-07-15

    The half-Heusler TiNiSn alloys have recently gained an attention as promising candidates for thermoelectric applications. Improvement of these alloys for such applications can be obtained by both electronic and compositional optimizations. The latter can result in a miscibility gap, allowing a phase separation in the nano-scale and consequently a thermal conductivity reduction. Combination of ab initio calculations and statistical thermodynamics was applied for studying the relative stability of a number of superstructures in TiNiSn based alloys. The quasi-binary phase diagram beyond T=0 K for TiNiSn–TiNi{sub 2}Sn solid solutions was calculated using energy parameters extracted from the total energy calculations for ordered structures in the Ni sublattice. We demonstrated that a decomposition of the off-stoichiometric Ni-rich half-Heusler alloy into the stoichiometric TiNiSn phase and into Ni deficient Heusler TiNi{sub 2}Sn phase occurs at elevated temperatures—an effect which recently had been observed experimentally. Furthermore, favorable energetic conditions for antisite defects formation were deduced, based on calculations of the energy of formation, an effect which was explained as a cooperative process of partial disordering on the Ni sublattice. The influence of these two effects on improvement of the thermoelectric performance of TiNiSn based half Heusler compounds is discussed. - Graphical abstract: Phase separation and antisite defects in the thermoelectric TiNiSn alloy, are covered as methods for nanostructuring and thereby enhancement of the thermoelectric potential. - Highlights: • Ab initio calculations/statistical thermodynamics was applied for studying the TiNiSn system. • The phase diagram for TiNiSn–TiNi{sub 2}Sn solid solutions was calculated. • Decomposition of the Ni-rich HH into TiNiSn and Ni deficient TiNi{sub 2}Sn phases was observed. • Favorable energetic conditions for antisite defects formation were deduced.

  17. Nondestructive Evaluation of Ni-Ti Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Meir, S.; Gordon, S.; Karsh, M.; Wiezman, A.; Ayers, R.; Olson, D. L.

    2011-06-01

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  18. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  19. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  20. Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys

    SciTech Connect

    Jin, Ke; Mu, Sai; An, Ke; Porter, Wallace D.; Samolyuk, German D.; Stocks, George Malcolm; Bei, Hongbin

    2016-12-27

    For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g-1·K-1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exception that NiFe and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.

  1. Thermophysical properties of Ni-containing single-phase concentrated solid solution alloys

    DOE PAGES

    Jin, Ke; Mu, Sai; An, Ke; ...

    2016-12-27

    For this research temperature dependent thermophysical properties, including specific heat capacity, lattice thermal expansion, thermal diffusivity and conductivity, have been systematically studied in Ni and eight Ni-containing single-phase face-centered-cubic concentrated solid solution alloys, at elevated temperatures up to 1273 K. The alloys have similar specific heat values of 0.4–0.5 J·g-1·K-1 at room temperature, but their temperature dependence varies greatly due to Curie and K-state transitions. The lattice, electronic, and magnetic contributions to the specific heat have been separated based on first-principles methods in NiCo, NiFe, Ni-20Cr and NiCoFeCr. The alloys have similar thermal expansion behavior, with the exception that NiFemore » and NiCoFe have much lower thermal expansion coefficient in their ferromagnetic state due to magnetostriction effects. Calculations based on the quasi-harmonic approximation accurately predict the temperature dependent lattice parameter of NiCo and NiFe with < 0.2% error, but underestimated that of Ni-20Cr by 1%, compared to the values determined from neutron diffraction. In addition, all the alloys containing Cr have very similar thermal conductivity, which is much lower than that of Ni and the alloys without Cr, due to the large magnetic disorder.« less

  2. Atomistic Modeling of RuAl and (RuNi) Al Alloys

    NASA Technical Reports Server (NTRS)

    Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.

  3. Precipitation in a rapidly solidified and aged Ni-Al-Mo alloy

    NASA Technical Reports Server (NTRS)

    Nash, P.; Glasgow, T. K.

    1987-01-01

    The early stages of decomposition of a highly supersaturated nickel-base alloy have been studied using TEM, SEM, and X-ray diffraction. The material was produced as a metastable solid solution by chill-block melt-spinning. On aging, the material exhibited a number of decomposition products appearing in series or concomitantly. Some of the decomposition products of this alloy, Ni4Mo, Ni3Mo, and Ni2Mo, are related to those found in Ni-Mo binary alloys. Alpha-Mo formed during solidification was distinguished from that formed by precipitation in the solid state by orientation relationships.

  4. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  5. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  6. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  7. Novel high-strength NiCuCoTiTa alloy with plasticity

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu

    2013-07-01

    The present investigation reports a novel Ni-Ti-based Ni48Cu10Co2Ti38Ta2 alloy, obtained by arc melting cum suction casting route under ultrahigh-purity Ar atmosphere. X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy (TEM) investigations reveal a microstructure consisting of nanostructured eutectic between cubic NiTi and hexagonal Ni3Ti with micron-scale NiTi and cubic Ti2Ni dendrites. Detailed TEM investigation indicates substantial reduction in the interlamellar spacing as the alloy chemistry changes from binary to quinary. The alloy shows a high compressive strength, 2 GPa, with high plasticity 13 %. Fractography surface of this new alloy reveals mixed mode of fracture. The results are discussed in light of the available literature on deformation of nanostructured eutectic with micron-sized dendrites in the microstructures.

  8. Investigation of the effect of cyclic laser heating for creating dispersed structures in the austenitic-martensitic alloys based on Fe-Cr-Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Mironov, V. D.; Petrovskii, V. N.; Orlov, A. V.; Libman, M. A.

    2016-09-01

    The effect of cyclic laser heating on the formation of the austenite structure in the austenitic-martensitic alloys based on Fe-Cr-Ni system is investigated. It is shown that under the influence of ultra-fast laser heating on the martensite, which was formed during plastic deformation, the reverse martensitic transformation occurs, and austenite with high strength characteristics is formed. Repeated and multiple laser heating effectively grinds areas of austenite to a size close to the large nanoparticles. There is an additional increase in the strength characteristics of austenite as a result of this fragmentation.

  9. Microstructure and properties of Cu-Ti-Ni alloys

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Wang, Xian-hui; Guo, Ting-ting; Zou, Jun-tao; Yang, Xiao-hong

    2015-11-01

    The effects of Ni addition and aging treatments on the microstructure and properties of a Cu-3Ti alloy were investigated. The microstructure and precipitation phases were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy; the hardness, electrical conductivity, and elastic modulus of the resulting alloys were also tested. The results show that Ni addition increases the electrical conductivity and elastic modulus, but decreases the hardness of the aged Cu-3Ti alloy. Within the range of the experimentally investigated parameters, the optimal two-stage aging treatment for the Cu-3Ti-1Ni and Cu-3Ti-5Ni alloy was 300°C for 2 h and 450°C for 7 h. The hardness, electrical conductivity, and elastic modulus of the Cu-3Ti-1Ni alloy were HV 205, 18.2% IACS, and 146 GPa, respectively, whereas the hardness, electrical conductivity, and elastic modulus of the Cu-3Ti-5Ni alloy were HV 187, 31.32% IACS, and 147 GPa, respectively. Microstructural analyses revealed that β'-Ni3Ti and β'-Cu4Ti precipitate from the Cu matrix during aging of the Cu-3Ti-5Ni alloy and that some residual NiTi phase remains. The increased electrical conductivity is ascribed to the formation of NiTi, β'-Ni3Ti, and β'-Cu4Ti phases.

  10. A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, M. Imran; Kim, Hee Young; Miyazaki, Shuichi

    2015-06-01

    High temperature shape memory alloys (HTSMAs) are important smart materials and possess a significant potential to improve many engineering systems. Many TiNi-based high temperature ternary alloy systems have been reported in literature including TiNiPd, TiNiPt, TiNiZr, TiNiAu, TiNiHf, etc. Some quaternary additions of certain elements in the above systems have been successful to further improve many important shape memory and mechanical properties. The success criteria for an HTSMA become strict in terms of its cyclic stability, maximum recoverable strain, creep resistance, and corrosion resistance at high temperatures. TiNiPdCu alloy system has been recently proposed as a promising HTSMA. Unique nanoscaled precipitates formed in TiNiPdCu-based HTSMAs are found to be stable at temperatures above 773 K, while keeping the benefits of ease of fabrication. It is expected that this alloy system possesses significant potential especially for the high temperature shape memory applications. Till now many research reports have been published on this alloy system. In the present work, a comprehensive review of the TiNiPdCu system is presented in terms of thermomechanical behavior, nanoscale precipitation mechanism, microstructural features, high temperature shape memory and mechanical properties, and the important parameters to control the high temperature performance of these alloys.

  11. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe-Ni alloy nanocomposite for phosmet detection in olive oil.

    PubMed

    El-Moghazy, A Y; Soliman, E A; Ibrahim, H Z; Noguer, T; Marty, J-L; Istamboulie, G

    2016-07-15

    An ultra-sensitive screen-printed biosensor was successfully developed for phosmet detection in olive oil, based on a genetically-engineered acetylcholinesterase (AChE) immobilized in a azide-unit water-pendant polyvinyl alcohol (PVA-AWP)/Fe-Ni alloy nanocomposite. Fe-Ni not only allowed amplifying the response current but also lowering the applied potential from 80 mV to 30 mV vs Ag/AgCl. The biosensor showed a very good analytical performance for phosmet detection, with a detection limit of 0.1 nM. This detection limit is lower than the allowable concentrations set by international regulations. In addition to the good reproducibility, operational and storage stability, the developed biosensor was successfully used for the determination of phosmet in olive oil samples without any laborious pre-treatment. The phosmet recovery rate was about 96% after a simple liquid-liquid extraction.

  12. Surface Composition of NiPd Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.

  13. Effects of alloying elements on fracture toughness in the transition temperature region of base metals and simulated heat-affected zones of Mn-Mo-Ni low-alloy steels

    NASA Astrophysics Data System (ADS)

    Kim, Sangho; Im, Young-Roc; Lee, Sunghak; Lee, Hu-Chul; Kim, Sung-Joon; Hong, Jun Hwa

    2004-07-01

    This study is concerned with the effects of alloying elements on fracture toughness in the transition temperature region of base metals and heat-affected zones (HAZs) of Mn-Mo-Ni low-alloy steels. Three kinds of steels whose compositions were varied from the composition specification of SA 508 steel (grade 3) were fabricated by vacuum-induction melting and heat treatment, and their fracture toughness was examined using an ASTM E1921 standard test method. In the steels that have decreased C and increased Mo and Ni content, the number of fine M2C carbides was greatly increased and the number of coarse M3C carbides was decreased, thereby leading to the simultaneous improvement of tensile properties and fracture toughness. Brittle martensite-austenite (M-A) constituents were also formed in these steels during cooling, but did not deteriorate fracture toughness because they were decomposed to ferrite and fine carbides after tempering. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment. These findings indicated that the reduction in C content to inhibit the formation of coarse cementite and to improve toughness and the increase in Mo and Ni to prevent the reduction in hardenability and to precipitate fine M2C carbides were useful ways to improve simultaneously the tensile and fracture properties of the HAZs as well as the base metals.

  14. Nanostructurization of Fe-Ni Alloy

    NASA Astrophysics Data System (ADS)

    Danilhenko, Vitaliy E.

    2017-03-01

    Data about an effect of cyclic γ-α-γ martensitic transformations on the structure state of reverted austenite Fe-31.7 wt.% Ni-0.06 wt.% C alloy are presented. The effect of multiple direct γ-α and reverse α-γ martensitic transformations on fragmentation of austenitic grains has been investigated by electron microscopy and X-ray diffraction methods. An ultrafine structure has been formed by nanofragmentation inside the initial austenite grains due to the successive misorientation of their crystal lattice. Austenite was nanofragmented as a result of multiple γ-α-γ martensitic transformations. Slow heating of the nanofragmented alloy at a rate below 2 °C/s results in nanograin refinement of the structure by multiplication of the reverted γ-phase orientations. The conditions of structure refinement up to ultrafine and nanocrystalline levels as a result of both shear and diffusion mechanisms of reverse α-γ transformation are determined.

  15. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    NASA Astrophysics Data System (ADS)

    Porobova, Svetlana; Markova, Tat'jana; Klopotov, Vladimir; Klopotov, Anatoliy; Loskutov, Oleg; Vlasov, Viktor

    2016-01-01

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen's law.

  16. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    SciTech Connect

    Porobova, Svetlana Loskutov, Oleg; Markova, Tat’jana; Klopotov, Vladimir; Klopotov, Anatoliy; Vlasov, Viktor

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  17. Developments in the Ni-Nb-Zr amorphous alloy membranes

    NASA Astrophysics Data System (ADS)

    Sarker, S.; Chandra, D.; Hirscher, M.; Dolan, M.; Isheim, D.; Wermer, J.; Viano, D.; Baricco, M.; Udovic, T. J.; Grant, D.; Palumbo, O.; Paolone, A.; Cantelli, R.

    2016-03-01

    Most of the global H2 production is derived from hydrocarbon-based fuels, and efficient H2/CO2 separation is necessary to deliver a high-purity H2 product. Hydrogen-selective alloy membranes are emerging as a viable alternative to traditional pressure swing adsorption processes as a means for H2/CO2 separation. These membranes can be formed from a wide range of alloys, and those based on Pd are the closest to commercial deployment. The high cost of Pd (USD ~31,000 kg-1) is driving the development of less-expensive alternatives, including inexpensive amorphous (Ni60Nb40)100- x Zr x alloys. Amorphous alloy membranes can be fabricated directly from the molten state into continuous ribbons via melt spinning and depending on the composition can exhibit relatively high hydrogen permeability between 473 and 673 K. Here we review recent developments in these low-cost membrane materials, especially with respect to permeation behavior, electrical transport properties, and understanding of local atomic order. To further understand the nature of these solids, atom probe tomography has been performed, revealing amorphous Nb-rich and Zr-rich clusters embedded in majority Ni matrix whose compositions deviated from the nominal overall composition of the membrane.

  18. Double dumbbell shaped AgNi alloy by pulsed electrodeposition

    SciTech Connect

    Dhanapal, K.; Vasumathi, M.; Santhi, Kalavathy; Narayanan, V. Stephen, A.

    2014-01-28

    Silver-Nickel is the well-known thermally immiscible system that makes them quite complex for the formation of alloy. This kind of alloy can be attained from electrodeposition method. In the present work, AgNi alloy was synthesized by pulsed electrodeposition in a single bath two electrode system with the use of anodic alumina membrane. The prepared AgNi alloy and pure Ag were characterized with X-ray Diffraction (XRD) for structural confirmation, Scanning Electron Microscopy (SEM) for morphological, and magnetic properties by Vibrating Sample Magnetometer, respectively. The X-ray Diffraction study shows the formation of cubic structure for pure Ag. SEM analysis reveals the double dumbbell morphology for AgNi alloy and spherically agglomeration for pure silver. Hysteresis behaviour from VSM measurement indicates that the AgNi alloy have good ferro-magnetic properties.

  19. Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature

    NASA Astrophysics Data System (ADS)

    Sun, Kewei; Zhou, Wancheng; Tang, Xiufeng; Luo, Fa

    2016-09-01

    Indium tin oxide (ITO) films as the low emissivity coatings of Ni-based alloy at high temperature were studies. ITO films were deposited on the polished surface of alloy K424 by direct current magnetron sputtering. These ITO-coated samples were heat-treated in air at 600-900 °C for 150 h to explore the effect of high temperature environment on the emissivity. The samples were analyzed by X-ray diffraction (XRD), SEM and EDS. The results show that the surface of sample is integrity after heat processing at 700 °C and below it. A small amount of fine crack is observed on the surface of sample heated at 800 °C and Ti oxide appears. There are lots of fine cracks on the sample annealed at 900 °C and a large number of various oxides are detected. The average infrared emissivities at 3-5 μm and 8-14 μm wavebands were tested by an infrared emissivity measurement instrument. The results show the emissivity of the sample after annealed at 600 and 700 °C is still kept at a low value as the sample before annealed. The ITO film can be used as a low emissivity coating of super alloy K424 up to 700 °C.

  20. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2015-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn -like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based Monte Carlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found

  1. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  2. A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2017-01-01

    A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt and detwinned martensite Md , as well as the phase transitions occurring between each pair of phases (A→ M t , Mt→ A , A→ M d , Md→ A , and Mt→ M d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases (A, Mt , and Md) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.

  3. Certain aspects of the melting, casting and welding of Ni{sub 3}Al alloys

    SciTech Connect

    Santella, M.L.; Sikka, V.K.

    1994-06-01

    Two alloys under development for castings are IC221M, (nominal composition Ni-8Al-7.7Cr-1.4Mo-1.7Zr wt %), and IC396M (nominal composition Ni-8Al-7.7Cr-3Mo-0.85Zr wt %). These alloys can be melted and cast using the techniques normally used for Ni-based materials. Oxidation of the liquid alloys can be controlled by vacuum processing or inert gas cover during processing. The liquid alloys can react with silica and zircon sands during casting, but this can be controlled through the use of appropriate mold washes like carbon-based materials. Welding studies showed that these alloys are susceptible to solidification cracking in weld fusion zones; the cracks are generally associated with occurrence of Ni-Ni{sub 5}Zr eutectic in interdendritic regions of the weld. Amount of eutectic in the weld microstructures increases with Zr concentration in weld filler metal. Weld filler metal Zr concentrations of 3 wt % and higher prevented solidification cracking of weld deposits on the base casting alloys; This is consistent with accepted phenomonological theory of this process. A weld filler metal with a composition of Ni-8Al-7.7Cr-1.5Mo-3.0Zr wt % was prepared and used to gas tungsten arc weld together 15-mm-thick plates of the IC221M alloy. This weldment was free of cracks. Weldment tensile specimens were machined from the plate and tested at 21, 800, and 900 C. Weldment yield strength at elevated temperatures was higher than room temperature and nearly comparable with that of the base IC221M alloy. Evaluation of the cast Ni{sub 3}Al alloys for furnace furniture, turbocharger rotors, and manufacturing tooling is also briefly discussed.

  4. Radiopaque Shape Memory Alloys: NiTi-Er with Stable Superelasticity

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Carr, Shane; Butler, James; Gandhi, Abbasi A.; O'Donoghue, Lisa; McNamara, Karrina; Carlson, James M.; Lavelle, Shay; Tiernan, Peter; Biffi, Carlo A.; Bassani, Paola; Tofail, Syed A. M.

    2016-06-01

    Binary NiTi alloy is one of the most important biomaterials currently used in minimally invasive procedures and indwelling devices. The poor visibility of intermetallic NiTi under X-ray could be an unsatisfactory feature especially for developing low-dimensional implantable devices for the body. It is a matter of fact that the alloying of a third radiopaque element, such as noble or heavy metals, in NiTi can significantly enhance the alloy's radiopacity. Recently, it was demonstrated that the addition of a rare earth element such as Erbium has led to an equivalent radiopacity at a much lower cost than the equivalent addition of noble metals. This work reviews the main physical aspects related to the radiopacity of NiTi alloys and compares the radiopacity of NiTi-Er compositions with other NiTi-based alloys containing Pd, Pt, W and Cr. Furthermore, a NiTi-6Er alloy is produced by spark plasma sintering, and successfully processed by conventional hot and cold working procedures to a continuous wire showing stable superelastic behaviour (up to 4 % in strain), suitable for developing biomedical devices.

  5. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  6. Internal-nitriding behavior of Ni-V and Ni-3Nb alloys

    SciTech Connect

    Allen, A.T.; Douglass, D.L.

    1999-02-01

    Ni-2V, Ni-5V, Ni-12V, and Ni-3Nb alloys (w/o) were nitrided in 10 v/o NH{sub 3} (bal H{sub 2}) over the range of 700--1000 C. The growth rates of the reaction zones followed parabolic behavior for all of the alloys from 700 to 900 C. At 1000 C, Ni-2V and Ni-3Nb formed nitride scales, whereas Ni-5V and Ni-12V formed internal-nitride zones. Nitridation rates decreased with increasing vanadium content for the Ni-V alloys. VN precipitated in the Ni-V alloys and NbN precipitated in Ni-3Nb for all exposure conditions in which internal nitridation occurred. The precipitate morphology changed with temperature and distance from the gas-metal surface. The VN and NbN precipitates were generally small and spheroidal near the surface, increasing in size with distance and temperature. The NbN precipitates became Widmanstaetten at higher temperatures and/or increasing distance within the nitrided zone. The solubility of nitrogen in pure Ni was determined and found to decrease with increasing temperature from 700 to 1000 C. Expressions for the diffusion coefficient of nitrogen in nickel were determined from the measured permeabilities of each alloy and the nitrogen solubilities in nickel.

  7. [Composition and morphology of oxides on porcelain fused to Ni-Cr alloys. Be containing alloys].

    PubMed

    Watanabe, T

    1989-06-01

    Bonding strength between porcelain and Ni-Cr alloy for the porcelain fused-to metal crown in which Be is contained in the alloy is known to be higher than those in which Be is not contained. Since, bonding between porcelain and alloy is the reaction of oxides and porcelain, the bonding is thought to be influenced by the quality the oxides film which forms on the alloy surface. The purpose of this study was to determine the composition and morphology of the oxides formed on both Be containing and non-Be contained Ni-Cr alloys. The oxides analysis was done using an EPMA and Auger analysis. Also, the Porcelain/Ni-Cr alloy interface was observed by a scanning electron microscope (SEM). The following results are indicated from this investigation: 1. The oxides from the alloys not containing Be are corundum type Cr2O3 and spinel type NiCr2O4. These oxide layers are uniform, thick and porous and the adhesion to alloy is poor. 2. The oxides from alloy containing Be is BeO only. The BeO is uniform, thin and condensed. The adhesion to the alloy is good. 3. The oxide layer formed when the porcelain is fused to alloy containing Be is thin (1 micron average) and has good adhesion to alloy. 4. Be is selectively oxidized and controlled the form of Cr2O3 and NiO.

  8. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  9. Phase and structural states in the NiTi-based alloy surface layer formed by electron-ion-plasma methods using tantalum

    SciTech Connect

    Neiman, Aleksei A. Lotkov, Aleksandr I.; Gudimova, Ekaterina Y.; Meisner, Ludmila L. Semin, Viktor O.

    2015-10-27

    The paper reports on a study of regularities of formation gradient nano-, submicron and microstructural conditions in the surface layers of the samples after pulsed electron-beam melting of tantalum coating on the substrate NiTi alloy. Experimentally revealed the presence of submicron columnar structure in the upper layers of the tantalum coating. After irradiation modified NiTi surface takes on a layered structure in which each layer differs in phase composition and structural phase state.

  10. Weldability of a high entropy CrMnFeCoNi alloy

    SciTech Connect

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; Bei, Hongbin

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ of the tested alloy.

  11. Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi

    2015-07-01

    Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.

  12. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  13. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  14. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    SciTech Connect

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  15. Influence of W, Mo and Ti trace elements on the phase separation in Al8Co17Cr17Cu8Fe17Ni33 based high entropy alloy.

    PubMed

    Manzoni, Anna M; Daoud, Haneen M; Voelkl, Rainer; Glatzel, Uwe; Wanderka, Nelia

    2015-12-01

    Compositionally complex alloys, also called high entropy alloys, have been investigated for over a decade in view of different applications, but so far only a small number of alloys can be considered as presenting good enough properties for industrial application. The most common family of elements is Al-Co-Cr-Cu-Fe-Ni. The equiatomic alloy having 5 phases and being too brittle, the composition has been modified in order to improve the mechanical properties. Different compositions have been tested and as a first result ductile Al8Co17Cr17Cu8Fe17Ni33 has been chosen for deeper investigation. It shows a dendritic segregation into Co-Cr-Fe rich cores and Al-Cu-Ni rich interdendritic sites. The as-cast state is characterized mainly by two phases, namely Al-Cu-Ni rich precipitates of L12 structure inside a solid solution matrix. After homogenization both alloys consists of a single solid solution phase. Results are compared to calculations by ThermoCalc. In order to further improve the properties of the alloy the Cr content has been decreased and replaced by trace elements W, Mo and Ti, which, according to ThermoCalc, increase the melting point and the phase transition temperature which leads to the formation of the L12 phase. As-cast and heat treated samples of the base and the modified alloy have been investigated by transmission electron microscopy and three dimensional atom probe. Results of the investigations will be discussed in terms of microstructure, hardness and coherence with Thermo Calc predictions.

  16. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  17. Insulating 'nanocables': Invar Fe Ni alloy nanorods inside BN nanotubes

    NASA Astrophysics Data System (ADS)

    Bando, Y.; Ogawa, K.; Golberg, D.

    2001-10-01

    Here we present the results on synthesis, structural and chemical analysis of insulating boron nitride (BN) nanotubes (NTs) which have been filled with conducting Invar Fe-Ni alloy (˜60 at.% Fe; ˜40 at.% Ni) nanorods. The result was accomplished by a two-step process: (i) carbon (C) NTs containing Invar alloy nanoparticles placed at the tube tips were synthesized by plasma-assisted chemical vapor deposition (CVD) on an Invar Fe-Ni alloy substrate; and (ii) the material was heated to the melting point of the alloy (1723 K) in a flow of B 2O 3 and N 2 gases and held for 30 min. During this second stage, simultaneous filling of NTs with the Fe-Ni melt through capillarity and chemical modification of C tubular shells to form BN tubules occurred.

  18. Microstructure and tailoring hydrogenation performance of Y-doped Mg2Ni alloys

    NASA Astrophysics Data System (ADS)

    Song, Wenjie; Li, Jinshan; Zhang, Tiebang; Kou, Hongchao; Xue, Xiangyi

    2014-01-01

    In this work, the microstructure and the hydrogenation properties of melt-spun Mg67Ni33-xYx alloys are studied with the purpose to investigate the influence of Y doping and rapid solidification on hydrogenation performance of Mg2Ni. Mg67Ni33-xYx (x = 0, 1, 3, 6) alloys are firstly prepared in an electric resistance furnace under the protection of a covering reagent. Then, the as-cast alloys are re-melted and spun on a rotating copper roller. The phase compositions and microstructures of as-cast and melt-spun alloys are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS). The hydrogen activation properties and absorption/desorption kinetics of melt-spun Mg67Ni33-xYx (x = 0, 1, 3, 6) ribbons are evaluated using an automatic Sieverts apparatus. The melt-spun Mg67Ni32Y alloy preserves high hydrogen absorption capacity and kinetics and absorbs 96% of the maximum capacity (3.79 wt. %) within 8 min. The lattice distortion caused by Y doping and the shrinkage porosity by melt-spun not only raise the hydrogen absorption/desorption rate, but significantly improve the hydrogen storage capacity of Mg67Ni33-xYx (x = 0, 1, 3, 6) alloys. The activation and hydrogen absorption/desorption mechanisms are also discussed based on a nucleation and growth theory.

  19. Predicting the oxidative lifetime of beta NiAl-Zr alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Vinarcik, E. J.

    1991-01-01

    Nickel aluminides containing 40 to 50 at. pct Al and 0.1 at. pct Zr were studied following cyclic oxidation at 1400 C. The selective oxidation of Al resulted in the formation of protective Al2O3 scales on each alloy composition. However, repeated cycling eventually resulted in the gradual formation of less-protective NiAl2O4, first appearing on the 40Al alloys followed at longer times on the 45Al alloys. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime (Ni3Al) which formed as a result of the loss of Al from the sample. A diffusion model, based on finite-difference techniques, was developed to predict the protective life of beta Ni-Al alloys. This model predicts Ni and Al concentration profiles after various oxidation exposures. The model can predict the oxidative lifetime due to Al depletion when the Al concentration decreases to a critical concentration. Measured Al concentration profiles on two alloys after various oxidation exposures are compared to those predicted by the diffusion model. The time to the appearance of the NiAl2O4 and that predicted by the diffusion model are compared and discussed.

  20. First-principles study on the thermal expansion of Ni-X binary alloys based on the quasi-harmonic Debye model

    NASA Astrophysics Data System (ADS)

    Shin, Yongjin; Jung, Woo-Sang; Lee, Young-Su

    2016-11-01

    In this study, we use the quasi-harmonic Debye model to predict the coefficient of thermal expansion of Ni- X binary alloys. The method bridges between the macroscopic elastic behavior and thermodynamic properties of materials without an expensive calculation of the volume dependence of the phonon density of states. Furthermore, the Grüneisen parameter is derived from the volume dependence of the Debye temperature, which is calculated from the first-principles elastic stiffness constants. The experimental coefficient of thermal expansion (CTE) of pure nickel is well reproduced, especially in the low temperature region. Among the few alloying elements tested, Al is predicted to slightly decrease the CTE whereas Mo and W are more effective in reducing the CTE. For the cases of Ni-X binary alloy systems, where the variation in the CTE is relatively small, the method used here appears to perform better than certain other formulations that rely entirely on the energy vs. volume relationship.

  1. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zheng, Zhou; Xu, Jing; Wang, Yan

    2014-04-01

    In this paper, the effects of milling duration and composition on the microstructure and magnetic properties of equi-atomic FeSiBAlNi and FeSiBAlNiNb high entropy alloys during mechanical alloying have been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, transmission electron microscopy and alternating gradient magnetometry. The amorphous high entropy alloys have been successfully fabricated using the mechanical alloying method. The results show that the Nb addition prolongs the milling time for the formation of the fully FeSiBAlNi amorphous phase and decreases the glass forming ability. However, FeSiBAlNiNb amorphous high entropy alloy has the higher thermal stability and heat resisting properties. Moreover, the as-milled FeSiBAlNi(Nb) powders are soft-magnetic materials indicated by their low coercivity. The saturation magnetization of the as-milled FeSiBAlNi(Nb) powders decreases with prolonging of the milling time and shows the lowest value when the amorphous high entropy alloys are formed. It suggests that the as-milled products with solid solution phases show the better soft-magnetic properties than those with fully amorphous phases. The Nb addition does not improve the soft-magnetic properties of the FeSiBAlNi high entropy alloys. Rather, both amorphous high entropy alloys have similar soft-magnetic properties after a long milling time.

  2. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications.

    PubMed

    Es-Souni, Mohammed; Es-Souni, Martha; Fischer-Brandies, Helge

    2005-02-01

    The present paper reviews aspects related to the biocompatibility of NiTi shape memory alloys used for medical applications. These smart metallic materials, which are characterised by outstanding mechanical properties, have been gaining increasing importance over the last two decades in many minimal invasive surgery and diagnostic applications, as well as for other uses, such as in orthodontic appliances. Due to the presence of high amounts of Ni, the cytotoxicity of such alloys is under scrutiny. In this review paper we analyse work published on the biocompatibility of NiTi alloys, considering aspects related to: (1) corrosion properties and the different methods used to test them, as well as specimen surface states; (2) biocompatibility tests in vitro and in vivo; (3) the release of Ni ions. It is shown that NiTi shape memory alloys are generally characterised by good corrosion properties, in most cases superior to those of conventional stainless steel or Co-Cr-Mo-based biomedical materials. The majority of biocompatibility studies suggest that these alloys have low cytotoxicity (both in vitro and in vivo) as well as low genotoxicity. The release of Ni ions depends on the surface state and the surface chemistry. Smooth surfaces with well-controlled structures and chemistries of the outermost protective TiO2 layer lead to negligible release of Ni ions, with concentrations below the normal human daily intake.

  3. Structural and magnetic transformations in Ni51 - x Mn36 + x Sn13 alloys

    NASA Astrophysics Data System (ADS)

    Kaletina, Yu. V.; Gerasimov, E. G.; Schastlivtsev, V. M.; Gaviko, V. S.; Terentev, P. B.

    2015-02-01

    The structural and magnetic phase transitions in Ni-Mn-Sn-based alloys have been studied. The temperature dependences of the martensitic and magnetic phase transformations in Ni51 - x Mn36 + x Sn13 alloys (0 ≤ x ≤ 4) have been determined in the case where manganese atoms substitute for nickel atoms. For the studied alloys, the concentration phase diagram has been constructed and the temperature regions of the existence of the high-temperature austenite phase L21 and the low-temperature martensite phase in different magnetic states have been determined.

  4. The coupled effect of grain size and solute on work hardening of Cu-Ni alloys

    NASA Astrophysics Data System (ADS)

    Shadkam, A.; Sinclair, C. W.

    2015-12-01

    A modified grain size-dependent model developed to capture the combined effects of solute and grain size on the work hardening behaviour of fine-grained Cu-Ni alloys is provided. This work builds on a recent model that attributes the grain size-dependent work hardening of fine-grained Cu to backstresses. In the case of Cu-Ni alloys, unlike commercially pure Cu, a grain size-dependent separation between the Kocks-Mecking curves develops, this being explained here based on an extra contribution from geometrically necessary dislocations in the solid solution alloy. This is corroborated by strain-rate sensitivity experiments.

  5. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Stocks, G. M.; Újfalussy, B.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternary alloying additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO{sub 3} lattice. An important finding is that the magnetic moments of transition metals in Fe{sub 3}Al and Co{sub 3}Al are ordered ferromagnetically, whereas the Ni{sub 3}Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.

  6. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO3 Fe3Al, Co3Al, and Ni3Al based intermetallic phases

    SciTech Connect

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternary alloying additions in DO3 Fe3Al, Co3Al and Ni3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe3Al and Co3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.

  7. New Ni-free superelastic alloy for orthodontic applications.

    PubMed

    Arciniegas, M; Manero, J M; Espinar, E; Llamas, J M; Barrera, J M; Gil, F J

    2013-08-01

    A potential new Ni-free Ti alloy for biomedical applications was assessed in order to investigate the superelastic behavior, corrosion resistance and the biocompatibility. The alloy studied was Ti19.1Nb8.8Zr. The chemical composition was determined by X-ray microanalysis, the thermoelastic martensitic transformation was characterized by high sensitivity calorimeter. The critical stresses were determined by electromechanical testing machine and the corrosion behavior was analyzed by potentiostatic equipment in artificial saliva immersion at 37°C. The results were compared with six different NiTi orthodontic archwire brands. The biocompatibility was studied by means of cultures of MG63 cells. Ni-free Ti alloy exhibits thermoelastic martensitic transformation with Ms=45°C. The phase present at 37°C was austenite which under stress can induce martensite. The stress-strain curves show a superelastic effect with physiological critical stress (low and continuous) and a minimal lost of the recovery around 150 mechanical cycles. The corrosion resistance improves the values obtained by different NiTi alloys avoiding the problem of the Ni adverse reactions caused by Ni ion release. Cell culture results showed that adhered cell number in new substrate was comparable to that obtained in a commercially pure Ti grade II or beta-titanium alloy evaluated in the same conditions. Consequently, the new alloy presents an excellent in-vitro response.

  8. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  9. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Chang, Chi-Hung; You, Bo-Chien; Yeh, Tsung-Kuang; Kai, Ji-Jung

    2013-06-01

    We investigated the corrosion characteristics on several selected alloys at 600 and 700 °C in FLiNaK molten salts with different moisture contents. Hastelloys-N and Hastelloys-B3 exhibited better corrosion resistances, while Haynes 263 showed the poorest corrosion resistance. The mass loss of the tested alloys is primarily determined by the purity of FLiNaK salts; however, the effect of temperature becomes more important on the mass loss of the tested alloys in the non-purified FLiNaK salts. When the residual moisture is present in the FLiNaK salts, the mass losses of the tested alloys varied linearly with original Cr content plus one-third of Mo content. The results of structural characterization revealed that the tested alloys in the FLiNaK salts with higher moisture content would aggravate intergranular corrosion and pitting.

  10. Preparation of electrodeposited Zn-Ni-B alloy coatings

    NASA Astrophysics Data System (ADS)

    Sakai, Taro; Kamimoto, Yuki; Ichino, Ryoichi

    2016-01-01

    We prepared Zn-Ni-B alloys with high Zn content and high corrosion resistance. The composition of the alloys was controlled by potentiostatic electrolysis. In the electroplating bath, dimethylamineborane was used as the B source. The characterization of the alloys and corrosion resistance evaluation were carried out by X-ray diffraction (XRD) analysis, optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-atomic emission spectrometry (ICP-AES), Tafel plots, and cyclic corrosion tests. All films were categorized into three groups on the basis of the results of XRD analysis, and it was found by TEM analysis that the Ni-B-type showed an amorphous structure. The Ni-B-type could contain up to 50.6 mol % Zn and showed similar or better anticorrosion properties than the amorphous Ni-B films. In the Ni-B-type, the higher the Zn content, the higher the corrosion resistance. The Zn-Ni-B alloys had almost the same electrochemical corrosion resistance and Zn content as the Zn-Ni-P alloys.

  11. New Fe-Co-Ni-Cu-Al-Ti Alloy for Single-Crystal Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Bazhenov, V. E.; Moiseev, A. V.; Kireev, A. V.

    2016-03-01

    A new alloy intended for single-crystal permanent magnets has been suggested. The new alloy has been designed based on the well-known Fe-Co-Ni-Cu-Al-Ti system and contains to 1 wt % Hf. The alloy demonstrates an enhanced potential ability for single-crystal forming in the course of unidirectional solidification of ingot. Single-crystal permanent magnets manufactured from this alloy are characterized by a high level of magnetic properties. When designing the new alloy, computer simulation of the phase composition and calculations of solidification parameters of complex metallic systems have been performed using the Thermo-Calc software and calculation and experimental procedures based on quantitative metallographic analysis of quenched structures. After the corresponding heat treatment, the content of high-magnetic phase in the alloy is 10% higher than that in available analogous alloys.

  12. oxide and FeNi alloy: product dependence on the reduction ability

    NASA Astrophysics Data System (ADS)

    Cao, Jungang; Qin, Yuyang; Li, Minglun; Zhao, Shuyuan; Li, Jianjun

    2014-12-01

    Based on the sol-gel combustion method, stoichiometric Fe3+, Mn2+, Ni2+ ions and citric acid were chosen as the initial reactants for the preparation of magnetic particles. Due to the different reduction ability of metal ions, completely different magnetic products (MnFe2O4 oxide and FeNi alloy) were obtained by heating the flakes at 600 °C under nitrogen atmosphere. MnFe2O4 particles exhibit superparamagnetic behavior at room temperature, and martensitic phase transformation is observed magnetically at 125 K for FeNi alloy particles.

  13. Cyclic voltammetric study of Co-Ni-Fe alloys electrodeposition in sulfate medium

    SciTech Connect

    Hanafi, I.; Daud, A. R.; Radiman, S.

    2013-11-27

    Electrochemical technique has been used to study the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy on indium tin oxide (ITO) coated glass substrate. To obtain the nucleation mechanism, cyclic voltammetry is used to characterize the Co-Ni-Fe system. The scanning rate effect on the deposition process was investigated. Deposition of single metal occurs at potential values more positive than that estimated stability potential. Based on the cyclic voltammetry results, the electrodeposition of cobalt, nickel, iron and Co-Ni-Fe alloy clearly show that the process of diffusion occurs is controlled by the typical nucleation mechanism.

  14. Multi-stage martensitic transformation in Ni-rich NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xiebin; Verlinden, Bert; Kustov, Sergey

    Precipitation hardening is an effective way to improve the functional stability of NiTi shape memory alloys. The precipitates, mainly Ni4Ti3, could be introduced by aging treatment in Ni-rich NiTi alloys. However, the presence of Ni4Ti3 precipitates could disturb the transformation behavior, resulting in the multi-stage martensitic transformation (MMT). With the presence of MMT, it is difficult to control the transformation behavior, and thus limits the applicability of NiTi alloys. In this work, previous efforts on explaining the observed MMT are summarized. The difficulties in developing a unified explanation are discussed, and a possible way to avoid the MMT is proposed.

  15. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  16. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  17. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  18. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1986-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at. percent Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at. percent. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  19. Structural evolution of NiAg heterogeneous alloys upon annealing

    NASA Astrophysics Data System (ADS)

    Proux, O.; Mimault, J.; Revenant-Brizard, C.; Regnard, J. R.; Mevel, B.

    1999-01-01

    NiAg heterogeneous alloys were studied by x-ray diffraction and x-ray absorption spectroscopy at the Ni K-edge using a total electron yield detection. In the as-deposited 0953-8984/11/1/013/img8 alloys of 0.10 and 0.15 Ni atomic fraction, most of the Ni atoms are in substitutional sites in the Ag matrix. At higher Ni concentration, the Ni atoms outside the Ag-rich phase become numerous enough to group together in small clusters. An important disorder in the neighbourhood of Ni atoms is demonstrated. At low annealing temperature (up to 0953-8984/11/1/013/img9C), in 0953-8984/11/1/013/img10 and 0953-8984/11/1/013/img11, some Ni atoms are still present in substitutional sites in the Ag matrix and the small Ni particles are under strain. A very short-range order exists in this state. After a 0953-8984/11/1/013/img9C annealing, the Ni particles grow, and the Ag-rich phase remains in a steady structural state. After a higher annealing (0953-8984/11/1/013/img13C), the local Ni atomic environment becomes well ordered and typical of the pure Ni FCC phase. The Ag-rich crystallites are impoverished in Ni atoms and grow with elimination of defects. Ni grains are generally smaller than 1 nm for as-deposited alloys and reach several nanometres after a 0953-8984/11/1/013/img13C annealing for 10 min.

  20. Supercoducting property of Zr-Cu-Al-Ni-Nb alloys

    NASA Astrophysics Data System (ADS)

    Okai, D.; Motoyama, G.; Kimura, H.; Inoue, A.

    The superconducting property of Zr55Cu(30-X)Al10Ni5NbX alloys prepared by arc melting and liquid quenching methods was investigated by magnetic susceptibility measurements. The crystalline alloys with X = 0∼25 at.% prepared by arc melting method exhibited superconductivity with maximum Tc,on of 10.1 K. The alloys (X = 10∼23 at.%) with crystalline particles embedded in an amorphous structure, which were fabricated by melt spinning method, showed superconductivity with Tc,on of less than 4.0 K. The superconducting property of the Zr-Cu-Al-Ni-Nb alloys was attributed to superconducting phases of Zr2Cu, Zr2Ni, Zr65Al10Nb25 and Zr-Nb contained in the Zr-Cu-Al-Ni-Nb alloys. The melt-spun Zr55Cu(30-X)Al10Ni5NbX (X = 10∼20 at.%) alloys exhibited glass transition at 718∼743 K and were found to be superconducting metallic glasses.

  1. Modeling of radiation-induced segregation in austenitic Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Allen, Todd Randall

    Radiation-induced segregation (RIS) was studied in Fe-Cr-Ni alloys irradiated with protons to better understand the mechanisms causing changes in grain boundary chemistry and to improve the ability to predict RIS in austenitic Fe-Cr-Ni alloys. Ni-18Cr, Ni-18Cr-9Fe, Ni-18Cr-0.08P, and Fe-20Cr-9Fe were irradiated with 3.2MeV protons at temperatures from 200sp°C to 500sp°C and to doses from 0.1 to 3 dpa. Grain boundary chemistry was measured using both Auger electron spectroscopy (AES) and scanning transmission electron microscopy with energy dispersive x-ray spectroscopy (STEM/EDS). The significant driving mechanism far segregation in Fe-Cr-Ni alloys is shown to be the inverse Kirkendall (IK) mechanism, specifically the coupling between alloying elements and the vacancy flux. The inclusion of interstitial binding effects to RIS models results in poor agreement between model predictions and segregation measurements, severely overpredicting the measured Ni enrichment and Fe depletion. Grain boundary segregation is unique for each bulk alloy composition in that the amount and the rate of segregation differs for alloys irradiated under the same conditions. Kinetic parameters must be known for each alloy to accurately predict segregation, but the kinetic parameters in Fe-Cr-Ni alloys at low temperature are not well studied. Additionally, short range ordering interactions are important in determining the segregation in all Fe-Cr-Ni alloys. Ordering enthalpies must be included in RIS models to correctly describe the segregation process. Therefore, to develop a predictive RIS model, a method for calculating diffusivities from the bulk composition that includes ordering enthalpies was developed. The Perks (IK) model has been modified to account for composition dependent segregation kinetics by calculating the migration energy using pair interaction potentials, ordering enthalpies, and the local concentration. Based on segregation measurements from seven different alloys

  2. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  3. Controllably Alloyed, Low Density, Free-standing Ni-Co and Ni-Graphene Sponges for Electrocatalytic Water Splitting

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Mubarak, Suhail; Hahm, Myung Gwan; Prabu, V.; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2016-08-01

    Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm‑2 (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm‑2 @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices.

  4. Controllably Alloyed, Low Density, Free-standing Ni-Co and Ni-Graphene Sponges for Electrocatalytic Water Splitting

    PubMed Central

    Vineesh, Thazhe Veettil; Mubarak, Suhail; Hahm, Myung Gwan; Prabu, V.; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2016-01-01

    Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm−2 (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm−2 @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices. PMID:27510857

  5. Research on pulse electrodeposition of Fe-Ni alloy

    SciTech Connect

    Peng, Yongsen; Zhu, Zengwei Ren, Jianhua; Chen, Jiangbo; Han, Taojie

    2014-03-15

    Fe-Ni alloys were fabricated on steel substrates by means of pulse electrodeposition in sulfate solutions. The layers were electrodeposited using different peak current densities, duty cycles and frequencies. Fe contents, microhardnesses and crystalline phases were examined systematically. The Fe content in the deposit decreased and the microhardness increased with increasing duty cycle and peak current density. The pulse frequency had little effect on Fe content but led to a slight decrease in microhardness. X-ray diffraction patterns show that the crystalline phases vary with changes in peak current density and duty cycle but are barely influenced by frequency. When the peak current density or duty cycle is relatively low, crystalline Fe-Ni alloy and pure Fe phases coexist; the pure Fe phases disappear as the peak current density or duty cycle increases. At still larger peak current densities or duty cycles, crystalline Fe-Ni alloy and pure Ni phases coexist.

  6. Oxygen diffusion in vanadium-based alloys

    SciTech Connect

    de Avillez, R.R.

    1981-01-01

    The experimental study of transport and equilibrium properties of oxygen in vanadium-based alloys was made by EMF measurements on solid electrolytic cells over the temperature range of 873 to 1423/sup 0/K. The oxygen diffusion in vanadium was not significantly modified by small additions of Ti, Cr, Ni, Nb and Ta. The increase in the activation energy for oxygen diffusion in the V-based alloys containing Cr, Ni, Nb and Ta probably reflects the effect of these substitutional solutes on the activity coefficient of oxygen. The oxygen activity was increased by the addition of 1 at % of Cr, Ni and Nb, and decreased by the addition of Ti and Ta. However, the effects in the alloys containing Nb and Ta are very small.

  7. Influence of hot isostatic pressing on the structure and properties of an innovative low-alloy high-strength aluminum cast alloy based on the Al-Zn-Mg-Cu-Ni-Fe system

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.

    2015-11-01

    Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.

  8. Diffusional transport and predicting oxidative failure during cyclic oxidation of beta-NiAl alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Vinarcik, E. J.; Barrett, C. A.; Doychak, J.

    1992-01-01

    Nickel aluminides (NiAl) containing 40-50 at. percent Al and up to 0.1 at. percent Zr have been studied following cyclic oxidation at 1200, 1300, 1350 and 1400 C. The selective oxidation of aluminum resulted in the formation of protective Al2O3 scales on each alloy composition at each temperature. However, repeated cycling eventually resulted in the gradual formation of less protective NiAl2O4. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime-(Ni3Al) which formed as a result of the loss of aluminum from the sample. A simple methodology is presented to predict the protective life of beta-NiAl alloys. This method predicts the oxidative lifetime due to aluminum depletion when the aluminum concentration decreases to a critical concentration. The time interval preceding NiAl2O4 formation (i.e., the lifetime based on protective Al2O3 formation) and predicted lifetimes are compared and discussed. Use of the method to predict the maximum use temperature for NiAl-Zr alloys is also discussed.

  9. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    SciTech Connect

    Negache, M.; Souami, N.

    2010-01-05

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(gamma), Ni{sub 3}Al(gamma'), Ni{sub 6}AlTa(tau{sub 3}), Ni{sub 3}Ta(delta) or in equilibrium: two solid phases (gamma'-tau{sub 3}), (tau{sub 3}-delta), (tau{sub 3}-gamma), (gamma-delta) or three solid phases (gamma'-tau{sub 3}-delta). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni{sub 75}Al{sub x}Ta{sub y} (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (gamma), the formed intermetallics compounds (gamma', tau{sub 3} and delta) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni{sub 3}Ta(delta) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  10. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    NASA Astrophysics Data System (ADS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; de Araújo Figueiredo, C.

    2016-08-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H2/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition.

  11. Single-Crystal NiAl-X Alloys Tested for Hot Corrosion

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1999-01-01

    Single-crystal nickel aluminide (NiAl) has been investigated extensively throughout the last several years as a potential structural material in aero-gas turbine engines. The attractive features of NiAl in comparison to Ni-base superalloys include a higher melting point, lower density, higher thermal conductivity, and excellent oxidation resistance. However, NiAl suffers from a lack of ductility and fracture toughness at low temperatures and a low creep strength at high temperatures. Alloying additions of hafnium (Hf), gallium (Ga), titanium (Ti), and chromium (Cr) have each shown some benefit to the mechanical properties over that of the binary alloy. However, the collective effect of these alloying additions on the environmental resistance of NiAl-X was unclear. Hence, the present study was undertaken to examine the hot corrosion behavior of these alloys. A companion study examined the cyclic oxidation resistance of these alloys. Several single-crystal NiAl-X alloys (where X is Hf, Ti, Cr, or Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at the NASA Lewis Research Center. Samples were tested for up to 300 1-hr cycles at a temperature of 900 C. It was found that increasing the Ti content from 1 to 5 at.% degraded the hot corrosion behavior. This decline in the behavior was reflected in high weight gains and large corrosion mound formation during testing (see the figures). However, the addition of 1 to 2 at.% Cr to alloys containing 4 to 5 at.% Ti appeared to greatly reduce the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the increased Ti addition.

  12. On the dual slope Coffin-Manson relationship during low cycle fatigue of Ni-base alloy IN 718

    SciTech Connect

    Bhattacharyya, A.; Sastry, G.V.S.; Kutumbarao, V.V.

    1997-02-15

    the low cycle fatigue (LCF) behavior of a material is commonly characterized by the Coffin-Manson (C-M) relationship. Sanders et al. have observed bilinear C-M behavior of alloy Inconel 718, in the temperature range 477 to 700K, but have not identified any clear mechanism that leads to this behavior. No detailed report on the room temperature (RT) C-M behavior of this material is available. In the present investigation the room temperature LCF behavior of alloy 718 is evaluated to determine the dual slope C-M relationship.

  13. Residual stress and crack initiation in laser clad composite layer with Co-based alloy and WC + NiCr

    NASA Astrophysics Data System (ADS)

    Lee, Changmin; Park, Hyungkwon; Yoo, Jaehong; Lee, Changhee; Woo, WanChuck; Park, Sunhong

    2015-08-01

    Although laser cladding process has been widely used to improve the wear and corrosion resistance, there are unwanted cracking issues during and/or after laser cladding. This study investigates the tendency of Co-based WC + NiCr composite layers to cracking during the laser cladding process. Residual stress distributions of the specimen are measured using neutron diffraction and elucidate the correlation between the residual stress and the cracking in three types of cylindrical specimens; (i) no cladding substrate only, (ii) cladding with 100% stellite#6, and (iii) cladding with 55% stellite#6 and 45% technolase40s. The microstructure of the clad layer was composed of Co-based dendrite and brittle eutectic phases at the dendritic boundaries. And WC particles were distributed on the matrix forming intermediate composition region by partial melting of the surface of particles. The overlaid specimen exhibited tensile residual stress, which was accumulated through the beads due to contraction of the coating layer generated by rapid solidification, while the non-clad specimen showed compressive. Also, the specimen overlaid with 55 wt% stellite#6 and 45 wt% technolase40s showed a tensile stress higher than the specimen overlaid with 100% stellite#6 possibly, due to the difference between thermal expansion coefficients of the matrix and WC particles. Such tensile stresses can be potential driving force to provide an easy crack path ways for large brittle fractures combined with the crack initiation sites such as the fractured WC particles, pores and solidification cracks. WC particles directly caused clad cracks by particle fracture under the tensile stress. The pores and solidification cracks also affected as initiation sites and provided an easy crack path ways for large brittle fractures.

  14. Optimizing the Hot-Corrosion Resistance-of-Novel gamma-Ni+gamma-prime-Ni3A1-Based Alloys and Coatings

    DTIC Science & Technology

    2006-07-01

    range of alloys with different properties . Strengthening of superalloys is achieved by solid-solution hardening (by substituting elements with...thermally grown oxide (TGO) scale - be self-healing in forming a protective TGO scale - does not degrade the mechanical properties of the superalloy...Silicon in a coating tends to diffuse rapidly into the substrate, forming low melting phases and brittle silicides by interacting with the superalloy

  15. Structural, topographical and magnetic evolution of RF-sputtered Fe-Ni alloy based thin films with thermal annealing

    NASA Astrophysics Data System (ADS)

    Lisha, R.; Hysen, T.; Geetha, P.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2014-03-01

    Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electro-mechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes.

  16. Phase stability and magnetic behavior of FeCrCoNiGe high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Vida, Ádám; Molnár, Dávid; Kádas, Krisztina; Varga, Lajos Károly; Holmström, Erik; Vitos, Levente

    2015-12-01

    We report an alternative FeCrCoNiGe magnetic material based on FeCrCoNi high-entropy alloy with Curie point far below the room temperature. Investigations are done using first-principles calculations and key experimental measurements. Results show that the equimolar FeCrCoNiGe system is decomposed into a mixture of face-centered cubic and body-centered cubic solid solution phases. The increased stability of the ferromagnetic order in the as-cast FeCrCoNiGe composite, with measured Curie temperature of 640 K, is explained using the exchange interactions.

  17. Microstructural characterization of a Zr-Ti-Ni-Mn-V-Cr based AB2-type battery alloy

    SciTech Connect

    Shi, Zhan

    1999-01-01

    Transmission Electron Microscopy (TEM), combined with X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) was employed to investigate a proprietary and multicomponent AB2 type Nickel-Metal Hydride (Ni-MH) battery alloy. This material was prepared by High Pressure Gas Atomization (HPGA) and examined in both the as-atomized and heat treated condition. TEM examination showed a heavily faulted dendritic growth structure in as-atomized powder. Selected Area Diffraction (SAD) showed that this region consisted of both a cubic C15 structure with lattice constant a=7.03 and a hexagonal C14 structure with lattice parameter a=4.97 Å, c=8.11 Å. The Orientation Relationship (OR) between the C14 and C15 structures was determined to be (111)[1$\\bar{1}$0]C15//(0001)[11$\\bar{2}$0]C14. An interdendritic phase possessing the C14 structure was also seen. There was also a very fine grain region consisting of the C14 structure. Upon heat treatment, the faulted structure became more defined and appeared as intercalation layers within the grains. Spherical particles rich in Zr and Ni appeared scattered at the grain boundaries instead of the C14 interdendritic phase. The polycrystalline region also changed to a mixture of C14 and C15 structures. These results as well as phase stability of the C15 and C14 structures based on a consideration of atomic size factor and the average electron concentration are discussed.

  18. Fabrication and electromagnetic properties of bio-based helical soft-core particles by way of Ni-Fe alloy electroplating

    NASA Astrophysics Data System (ADS)

    Lan, Mingming; Zhang, Deyuan; Cai, Jun; Zhang, Wenqiang; Yuan, Liming

    2011-12-01

    Ni-Fe alloy electroplating was used as a bio-limited forming process to fabricate bio-based helical soft-core ferromagnetic particles, and a low frequency vibration device was applied to the cathode to avoid microorganism (Spirulina platens) cells adhesion to the copper net during the course of plating. The morphologies and ingredients of the coated Spirulina cells were characterized using scanning electron microscopy and energy dispersive spectrometer. The complex permittivity and permeability of the samples containing the coated Spirulina cells before and after heat treatment were measured and investigated by a vector network analyzer. The results show that the Spirulina cells after plating keep their initial helical shape, and applying low frequency vibration to the copper net cathode in the plating process can effectively prevent agglomeration and intertwinement of the Spirulina cells. The microwave absorbing and electromagnetic properties of the samples containing the coated Spirulina cells particles with heat treatment are superior to those samples containing the coated Spirulina cells particles without heat treatment.

  19. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K

    2014-12-18

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5-90 V), electrolyte temperature (10-50°C) and electrolyte NH4F content (0.025-0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0-1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15-70 nm) and length (45-1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants.

  20. Fabrication of Ni-Ti-O nanotube arrays by anodization of NiTi alloy and their potential applications

    PubMed Central

    Hang, Ruiqiang; Liu, Yanlian; Zhao, Lingzhou; Gao, Ang; Bai, Long; Huang, Xiaobo; Zhang, Xiangyu; Tang, Bin; Chu, Paul K.

    2014-01-01

    Nickel-titanium-oxide (Ni-Ti-O) nanotube arrays (NTAs) prepared on nearly equiatomic NiTi alloy shall have broad application potential such as for energy storage and biomedicine, but their precise structure control is a great challenge because of the high content of alloying element of Ni, a non-valve metal that cannot form a compact electronic insulating passive layer when anodized. In the present work, we systemically investigated the influence of various anodization parameters on the formation and structure of Ni-Ti-O NTAs and their potential applications. Our results show that well controlled NTAs can be fabricated during relatively wide ranges of the anodization voltage (5–90 V), electrolyte temperature (10–50°C) and electrolyte NH4F content (0.025–0.8 wt%) but within a narrow window of the electrolyte H2O content (0.0–1.0 vol%). Through modulating these parameters, the Ni-Ti-O NTAs with different diameter (15–70 nm) and length (45–1320 nm) can be produced in a controlled manner. Regarding potential applications, the Ni-Ti-O NTAs may be used as electrodes for electrochemical energy storage and non-enzymic glucose detection, and may constitute nanoscaled biofunctional coating to improve the biological performance of NiTi based biomedical implants. PMID:25520180

  1. Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal

    NASA Astrophysics Data System (ADS)

    Wei, Qingguo; Gilder, Stuart Alan; Maier, Bernd

    2014-10-01

    We measured the acquisition of magnetic remanence of iron-nickel alloys (Fe64Ni36, Fe58Ni42, and Fe50Ni50) and pure Ni under pressures up to 23 GPa at room temperature. Magnetization decreases markedly for Fe64Ni36 between 5 and 7 GPa yet remains ferromagnetic until at least 16 GPa. Magnetization rises by a factor of 2-3 for the other compositions during compression to the highest applied pressures. Immediately upon decompression, magnetic remanence increases for all Fe-Ni alloys while magnetic coercivity remains fairly constant at relatively low values (5-20 mT). The amount of magnetization gained upon complete decompression correlates with the maximum pressure experienced by the sample. Martensitic effects best explain the increase in remanence rather than grain-size reduction, as the creation of single domain sized grains would raise the coercivity. The magnetic remanence of low Ni Invar alloys increases faster with pressure than for other body-centered-cubic compositions due to the higher magnetostriction of the low Ni Invar metals. Thermal demagnetization spectra of Fe64Ni36 measured after pressure release broaden as a function of peak pressure, with a systematic decrease in Curie temperature. Irreversible strain accumulation from the martensitic transition likely explains the broadening of the Curie temperature spectra, consistent with our x-ray diffraction analyses.

  2. Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase

    NASA Astrophysics Data System (ADS)

    Xie, Lishuai; Li, Jinshan; Zhang, Tiebang; Song, Lin; Kou, Hongchao

    2017-01-01

    On the basis of catalytic actions of transition metals and rare earth metals on Mg-based hydrogen storage alloys and aiming at alleviating the adverse influence of Mg oxidation, Mg-Ni-Ce alloys with different Ni and Ce contents were prepared by near equilibrium solidification. A new 18R-type long-period stacking ordered phase (LPSO) was formed coherently with Mg, Ni-substituted Mg12Ce and Mg2Ni in Mg-rich Mg-Ni-Ce ternary alloys. Distinct from the reported LPSO structures in other Mg-based alloys, in which the LPSO structures were fundamentally long period stacking variants of hexagonal close-packed structure of Mg, the LPSO structure found in the present work was a variant of Mg12Ce. Nanocrystalline alloys were obtained by high-energy ball milling the as-cast alloys. Nanocrystals of Mg, Mg2Ni and Mg12Ce with grain size in the range of 3-5 nm were observed in ball milled samples. The activation performance, isothermal hydrogenation behavior and anti-oxidation properties of the ball milled samples were systematically investigated and corresponding mechanisms were discussed based on detailed microstructural characteristics. CeH2.73 was formed after hydrogenation and spontaneously transformed into CeO2 during air exposure. The anti-oxidation properties of Mg-based hydrogen storage alloy were substantially improved with the addition of Ce by forming CeH2.73/CeO2 composite.

  3. Modeling of the Site Preference in Ternary B2-Ordered Ni-Al-Fe Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Khalil, Joseph; Noebe, Ronald D.

    2002-01-01

    The underlying equilibrium structure, site substitution behavior, and lattice parameter of ternary Ni-Fe-Al alloys are determined via Monte Carlo-Metropolis computer simulations and analytical calculations using the BFS method for alloys for the energetics. As a result of the theoretical calculations presented, a simple approach based on the energetics of small atomic clusters is introduced to explain the observed site preference schemes.

  4. Investigation of FeNiCrWMn - a new high entropy alloy

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Bălţătescu, O.; Florea, R. M.; Carcea, I.

    2015-11-01

    The term of high entropy alloys started from the analysis of multicomponent alloys, which were produced at an experimental level since 1995 by developing a new concept related to the development of metallic materials. Recent developments in the field of high-entropy alloys have revealed that they have versatile properties like: ductility, toughness, hardness and corrosion resistance [1]. Up until now, it has been demonstrated that the explored this alloys are feasible to be synthesized, processed and analyzed contrary to the misunderstanding based on traditional experiences. Moreover, there are many opportunities in this field for academic studies and industrial applications [1, 2]. As the combinations of composition and process for producing high entropy alloys are numerous and each high entropy alloy has its own microstructure and properties to be identified and understood, the research work is truly limitless. The novelty of these alloys consists of chemical composition. These alloys have been named high entropy alloys due to the atomic scale mixing entropies higher than traditional alloys. In this paper, I will present the microscopy and the mechanical properties of high entropy alloy FeNiCrWMn.

  5. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  6. Calorimetry study of the synthesis of amorphous Ni-Ti alloys by mechanical alloying. [Ni33 Ti67

    SciTech Connect

    Schwarz, R.B.; Petrich, R.R.

    1988-01-01

    We synthesized amorphous Ni/sub 33/Ti/sub 67/ alloy powder by ball milling (a) a mixture of elemental nickel and titanium powders and (b) powders of the crystalline intermetallic NiTi/sub 2/. We characterized the reaction products as a function of ball-milling time by differential scanning calorimetry and x-ray diffraction. The measurements suggest that in process (a) the amorphous alloy forms by a solid-state interdiffusion reaction at the clean Ni/Ti interfaces generated by the mechanical attrition. In process (b), the crystalline alloy powder stores energy in the form of chemical disorder and lattice and point defects. The crystal-to-amorphous transformation occurs when the stored energy reaches a critical value. The achievement of the critical stored energy competes with the dynamic recovery of the lattice. 23 refs., 7 figs.

  7. Microhardness of Ni-Cr alloys under different casting conditions.

    PubMed

    Bauer, José Roberto de Oliveira; Loguercio, Alessandro Dourado; Reis, Alessandra; Rodrigues Filho, Leonardo Eloy

    2006-01-01

    This study evaluated the microhardness of Ni-Cr alloys used in fixed prosthodontics after casting under different conditions. The casting conditions were: (1-flame/air torch) flame made of a gas/oxygen mixture and centrifugal casting machine in a non-controlled casting environment; (2-induction/argon) electromagnetic induction in an environment controlled with argon; (3-induction/vacuum) electromagnetic induction in a vacuum environment; (4-induction/air) electromagnetic induction in a non-controlled casting environment. The 3 alloys used were Ni-Cr-Mo-Ti, Ni-Cr-Mo-Be, and Ni-Cr-Mo-Nb. Four castings with 5 cylindrical, 15 mm-long specimens (diameter: 1.6 mm) in each casting ring were prepared. After casting, the specimens were embedded in resin and polished for Vickers microhardness (VH) measurements in a Shimadzu HMV-2 (1,000 g for 10 s). A total of 5 indentations were done for each ring, one in each specimen. The data was subjected to two-way ANOVA and Tukey's multiple comparison tests (alpha = 0.05). The VH values of Ni-Cr-Mo-Ti (422 +/- 7.8) were statistically higher (p < 0.05) than those of Ni-Cr-Mo-Nb (415 +/- 7.6). The lowest VH values were found for Ni-Cr-Mo-Be (359 +/- 10.7). The VH values obtained in the conditions induction/argon and induction/vacuum were similar (p > 0.05) and lower than the values obtained in the conditions induction/air and flame/air torch (p < 0.05). The VH values in the conditions induction/air and flame/air were similar (p > 0.05). The microhardness of the alloys is influenced by their composition and casting method. The hardness of the Ni-Cr alloys was higher when they were cast with the induction/air and flame/air torch methods.

  8. Constitutive model for the dynamic response of a NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan

    2016-07-01

    In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.

  9. Oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, Ken; Baxter, David J.

    1984-01-01

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1-8 wt. % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500.degree.-1000.degree. C.

  10. Improved oxidation sulfidation resistance of Fe-Cr-Ni alloys

    DOEpatents

    Natesan, K.; Baxter, D.J.

    1983-07-26

    High temperature resistance of Fe-Cr-Ni alloy compositions to oxidative and/or sulfidative conditions is provided by the incorporation of about 1 to 8 wt % of Zr or Nb and results in a two-phase composition having an alloy matrix as the first phase and a fine grained intermetallic composition as the second phase. The presence and location of the intermetallic composition between grains of the matrix provides mechanical strength, enhanced surface scale adhesion, and resistance to corrosive attack between grains of the alloy matrix at temperatures of 500 to 1000/sup 0/C.

  11. Nonequilibrium structural condition in the medical TiNi-based alloy surface layer treated by electron beam

    SciTech Connect

    Neiman, Aleksei A. Lotkov, Aleksandr I.; Meisner, Ludmila L. Semin, Viktor O.; Koval, Nikolai N.; Teresov, Anton D.

    2014-11-14

    The research is devoted to study the structural condition and their evolution from the surface to the depth of TiNi specimens treated by low-energy high-current electron beams with surface melting at a beam energy density E = 10 J/cm{sup 2}, number of pulses N = 10, and pulse duration τ = 50 μs. Determined thickness of the remelted layer, found that it has a layered structure in which each layer differs in phase composition and structural phase state. Refinement B2 phase lattice parameters in local areas showed the presence of strong inhomogeneous lattice strain.

  12. Giant magnetoresistance of Co-Ni-Cu alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Q.; Zhang, Z. D.; Xiao, Q. F.; Geng, D. Y.; Zhao, X. G.; Zhang, W. S.; You, C. Y.

    2003-05-01

    The structure, magnetic properties and magnetoresistance (MR) effect of Co20NixCu80-x alloys produced by mechanical alloying and subsequent annealing have been investigated. After milling for 5 h, a supersaturated solid solution forms for all the alloys. Co20NixCu80-x alloys annealed at 973 K for 30 min segregated into two-phases of fcc-Co and fcc-Cu. The maximum value for MR ratio, at room temperature is 4.7% at a field of 1.2 T, and at 5 K is 15% at a field of 2 T for Co20Cu80 annealed at 718 K for 30 min. The MR ratio of Co-Ni-Cu alloys decreases monotonically with increasing Ni content. The MR and its dependence on particle size are discussed.

  13. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy

    NASA Astrophysics Data System (ADS)

    Farhat, Zoheir; Jarjoura, George; Shahirnia, Meisam

    2013-08-01

    The large recoverable deformation associated with reversible stress-induced martensitic transformation for superelastic TiNi alloys has been widely exploited in many applications. However, to employ superelastic TiNi in applications where high impact loading is expected, as in bearings, the effect of loading rate on superelasticity needs to be understood. In the current article, the effect of indentation loading rate on dent resistance and superelasticity of TiNi is studied. Indentation tests are performed, at different loading rates on superelastic TiNi alloy and correlated to tensile stress-strain data. It is found that the reversible deformation drops as loading rate is increased and superelasticity diminishes. Based on data collected and results analysis it is proposed that the loss in superelastic behavior under high indentation loading rate is related to retardation of the stress-induced martensitic transformation. Furthermore, a simple heat model was proposed and showed that the temperature rise during indentation is not significant.

  14. Atomic Mobilities and Interdiffusivities for fcc Ni-Cr-Nb Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Gaochi; Liu, Yajun; Kang, Zhitao

    2016-10-01

    The atomic mobilities and diffusion characteristics for fcc Ni-Cr-Nb alloys are explored by diffusion couples annealed at 1273 K (1000 °C) for 200 hours. The interdiffusion coefficients are extracted from intersection points of two diffusion paths, after which the atomic mobilities of Ni, Cr, and Nb in fcc Ni-Cr-Nb alloys are inversely obtained within the CALPHAD framework with the aid of related thermodynamic descriptions. In order to verify the quality of obtained kinetic parameters so that an accurate Ni-based atomic mobility database can be established, the composition profiles in diffusion couples and the diffusion paths superimposed upon Gibbs triangle are explored, where the experimentally measured and calculated values show good agreement.

  15. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  16. Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.

    2002-01-01

    The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.

  17. Structure relaxation and crystallization of the CoW-CoNiW-NiW electrodeposited alloys

    PubMed Central

    2014-01-01

    The structure of electrolytically deposited nanocrystalline alloys of the CoW-CoNiW-NiW systems under low-temperature heating was investigated by means of high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM), and analytical methods such as energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Structural relaxation and crystallization were investigated at temperatures of 200°C to 300°C. The structural and compositional inhomogeneities were found in the CoW-CoNiW-NiW alloys, while the local changes in composition were found to reach 18 at.%. Nanocrystals in the alloys grew most intensely in the presence of a free surface, and we found their nuclei density to range from 2 × 1023 /m3 to 3 × 1023 /m3. It was determined that the local diffusion coefficient ranged from 0.9 to 1.7 10−18 m2/s, which could be explained by the prevalence of surface diffusion. The data gathered in these investigations can be used to predict the thermal stability of CoW-CoNiW-NiW alloys. PMID:24506913

  18. Point defect properties of ternary fcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, J. S.; Nguyen-Manh, D.; Dudarev, S. L.; Kurzydłowski, K. J.

    2017-02-01

    The properties of point defects in Fe-Cr-Ni alloys are investigated, using density functional theory (DFT), for two alloy compositions, Fe50Cr25Ni25 and Fe55Cr15Ni30, assuming various degrees of short-range order. DFT-based Monte Carlo simulations are applied to explore short-range order parameters and generate representative structures of alloys. Chemical potentials for the relevant structures are estimated from the minimum of the substitutional energy at representative atoms sites. Vacancies and <1 0 0> dumbbells are introduced in the Fe2CrNi intermetallic phase as well as in two Fe55Cr15Ni30 alloy structures: the disordered and short range-ordered structures, generated using Monte Carlo simulations at 2000 K and 300 K, respectively. Formation energies and relaxation volumes of defects as well as changes of magnetic moments caused by the presence of defects are investigated as functions of the local environment of a defect.

  19. Evaluation of electrodeposited ternary Ni-alloys for thermal stability

    NASA Astrophysics Data System (ADS)

    Kim, Myong Jin; Kim, Joung Soo; Kim, Dong Jin; Kim, Hong Pyo

    2011-04-01

    Electroplating methods for ternary Ni-alloys, such as Ni-P-Fe and Ni-P-B, in a Ni sulfamate solution on the inner wall surfaces of Alloy 600 tubing have been developed in order to use them to repair steam generator tubes damaged by a variety of corrosion mechanisms, in particular, by stress corrosion cracking. In this study, the stability of their microstructures and mechanical properties were evaluated to check if they could be used for a long period of time at the operating temperature of a PWR (pressurized water reactor) in nuclear power plants. The specimens were heat treated at 325 °C and 400 °C for 10, 20 and 30 days, followed by observation of their microstructures and measurement of their microhardness and tensile property. According to the experiment results, there was no noticeable change in their microstructures or microhardness with the heat treatment temperature and time conditions used in this study. For a Ni-P-B deposit, the ultimate tensile strength (UTS) slightly increased with the heat treatment time, while their elongation decreased. In the case of a Ni-P-Fe deposit, however, its tensile property varied with the applied current density. For a Ni-P-Fe deposit plated at an applied current density of 50 mA/cm2, its UTS slightly decreased, but its elongation slightly increased with the heat treatment time. We concluded that the thermal stability of the ternary Ni-alloy deposits used in this study is good enough to be used with the materials of operating nuclear power plants.

  20. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  1. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  2. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  3. Weldability of a high entropy CrMnFeCoNi alloy

    DOE PAGES

    Wu, Zhenggang; David, Stan A.; Feng, Zhili; ...

    2016-07-19

    We present the high-entropy alloys are unique alloys in which five or more elements are all in high concentrations. In order to determine its potential as a structural alloy, a model face-centered-cubic CrMnFeCoNi alloy was selected to investigate its weldability. Welds produced by electron beam welding show no cracking. The grain structures within the fusion zone (FZ) are controlled by the solidification behavior of the weld pool. The weldment possesses mechanical properties comparable to those of the base metal (BM) at both room and cryogenic temperatures. Finally, compared with the BM, deformation twinning was more pronounced in the FZ ofmore » the tested alloy.« less

  4. Characterization of Stoichiometric and Aging Effects on NiTiHf High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Coughlin, Daniel Robert

    NiTiHf ternary alloys exhibit attractive high temperature shape memory alloy (HTSMA) properties. Material properties include moderate transformation strain, relatively high transformation temperature, stable pseudoelastic (PE) behavior, and very small irrecoverable strain during load biased tests. The addition of Hf is more attractive than Pt and Pd due to the fact that Hf has a lower cost. Four NiTiHf alloys with different chemical compositions spanning stoichiometry were used to analyze microstructure and mechanical behavior. Research will mainly be focused on the Ni-rich alloys based on that the Ni-lean alloys do not exhibit the previously mentioned HTSMA material properties. The alloys analyzed all had 20(at.)% Hf with varying Ti concentrations (29(at.)%, 29.7(at.)%, 30(at.)%, and 30.5(at.)%). All of the alloys were formed by induction melting, homogenized at 1050C for 72hrs, and then hot extruded with a diameter reduction of 7:1 at a temperature of 900C. In addition to the homogenized and extruded condition, several short-term aging cycles above 400C were completed on each of the alloys. Certain microstructure and mechanical properties are obtained when Hf is added to NiTi and a proper aging cycle is used. Results from isothermal compression tests that were executed above the austenite finish temperature determined that the Ni-rich NiTiHf alloys exhibited all the necessary properties to be considered for HTSMA applications. The test temperature range of the isothermal compression tests were chosen to characterize the transition from PE behavior to austenite plasticity and to examine the deformation behavior of the B2 phase at high temperatures. Results from compression tests showed a strengthening effect when the test temperature was increased through the PE test region. The strengthening effect is due to the yield stress and plasticity being related to the stress induced martensite that is created during the compression test executed above the austenite

  5. Structure and microwave absorption properties of (Pr,Dy)Ni4Fe alloy

    NASA Astrophysics Data System (ADS)

    Xiong, Jilei; Pan, Shunkang; Qiao, Ziqiang

    2017-03-01

    The DyxPr1-xNi4Fe (x=0.0, 0.1, 0.2, 0.3, 0.4) alloys were synthesized by arc-smelting and high energy ball milling method. The structure, morphology, particle size and electromagnetic parameters of the powder were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser diffraction-based particle size analyzer and vector network analyzer (VNA), respectively. The results reveal that the DyxPr1-xNi4Fe compounds are crystallized in PrNi4Fe structure. The minimum absorption peak frequency of DyxPr1-xNi4Fe shifts towards higher frequency region upon the Fe content. The minimum reflection loss of the DyxPr1-xNi4Fe alloys increases first and then decreases with increasing Dy substitution. The Dy0.3Pr0.7Ni4Fe alloy possess the best absorbing properties: the minimum reflection loss is -31.65 dB at 15.28 GHz with the best matching thickness d =1.0 mm and the reflection loss with the thickness ranging of 1.0-4.0 mm could reach -10 dB.

  6. Characterization of PEG-Like Macromolecular Coatings on Plasma Modified NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Gao, Jiacheng; Chang, Peng; Wang, Jianhua

    2008-04-01

    A poly (ethylene glycol) (PEG-like) coating was developed to improve the biocompatibility of Nickel-Titanium (NiTi) alloy implants. The PEG-like macromolecular coatings were deposited on NiTi substrates at a room temperature of 298 K through a ECR (electron-cyclotron resonance) cold-plasma enhanced chemical vapor deposition method using tetraglyme (CH3-O-(CH2-CH2-O)4-CH3) as a precursor. A power supply with a frequency of 2.45 GHz was applied to ignite the plasma with Ar(argon) used as the carrier gas. Based on the atomic force microscopy (AFM) studies, a thin smooth coating on NiTi substrates with highly amorphous functional groups on the modified NiTi surfaces were mainly the same accumulated stoichiometric ratio of C and O with PEG. The vitro studies showed that platelet-rich plasma (PRP) adsorption on the modified NiTi alloy surface was significantly reduced. This study indicated that plasma surface modification changes the surface components of NiTi alloy and subsequently improves its biocompatibility.

  7. Spectrophotometric studies and applications for the determination of Ni²+ in zinc-nickel alloy electrolyte.

    PubMed

    Qiao, Xiaoping; Li, Helin; Zhao, Wenzhen; Li, Dejun

    2012-09-01

    The absorption properties of zinc-nickel alloy electrolyte were studied by visible spectrophotometer. The results show that the relationship between the absorbance of the zinc-nickel alloy electrolyte and Ni(2+) concentration in the electrolyte obeys Beer's law at 660 nm. In addition, other components except Ni(2+) in the zinc-nickel alloy electrolyte such as zinc chloride, ammonium chloride, potassium chloride and boric acid have no obvious effect on the absorbance of zinc-nickel alloy electrolyte. Based on these properties, a new method is developed to determine Ni(2+) concentration in zinc-nickel alloy electrolyte. Comparing with other methods, this method is simple, direct and accurate. Moreover, the whole testing process does not consume any reagent and dilution, and after testing, the electrolyte samples can be reused without any pollution to the environment.

  8. Creep behavior of a {beta}{prime}(NiAl) precipitation strengthened ferritic Fe-Cr-Ni-Al alloy

    SciTech Connect

    Zhu, S.M.; Tjong, S.C.; Lai, J.K.L.

    1998-05-22

    Creep in precipitation-strengthened alloys usually exhibits a pronounced transition in the stress vs creep rate relationship due to dislocations bypassing of particles by climb at low stresses. In the present study, a single-slope behavior is observed in creep of {beta}{prime}(NiAl) strengthened ferritic Fe-19Cr-4Ni-2Al alloy in the temperature range 873--923 K. The alloy exhibits anomalously high values of apparent stress exponent and activation energy (980 kJ/mol). Transmission electron microscopy examination of the deformation microstructure reveals the occurrence of attractive dislocation/particle interaction, a feature which is usually observed in dispersion-strengthened alloys. Such an attractive dislocation particle interaction makes the local climb of dislocations over particles a realistic configuration at low stresses. The creep data are analyzed by the back-stress approach and by the recent dislocation-climb theories based on attractive interaction between dislocations and particles. By considering a back stress, all data can be rationalized by a power-law with a stress exponent of 4 and a creep activation energy close to the self-diffusion energy of the matrix lattice. Local climb together with the attractive but not strong interactions between the dislocations and particles is suggested to be the operative deformation mechanism at low stresses and to account for the single-slope behavior in the stress/creep rate relationship of this alloy.

  9. Impact Behavior of A356 Foundry Alloys in the Presence of Trace Elements Ni and V

    NASA Astrophysics Data System (ADS)

    Casari, Daniele; Ludwig, Thomas H.; Merlin, Mattia; Arnberg, Lars; Garagnani, Gian Luca

    2015-02-01

    In the present work, the impact behavior of unmodified A356 alloys with the addition of Ni or V in as-cast and T6 heat-treated conditions was assessed. Charpy V-notched specimens obtained from sand and permanent mold casting showed low total absorbed energy average values ( W t < 2 J). SEM analysis of fracture profiles and surfaces indicated a Si-driven crack propagation with a predominant transgranular fracture mode. Occasionally, intergranular contributions to fracture were detected in the permanent mold cast alloys due to the locally finer microstructure. Concurrent mechanisms related to the chemical composition, solidification conditions and heat treatment were found to control the impact properties of the alloys. While the trace element Ni exerted only minor effects on the impact toughness of the A356 alloy, V had a strong influence: (i) V-containing sand cast alloys absorbed slightly higher impact energies compared to the corresponding A356 base alloys; (ii) in the permanent mold cast alloys, V in solid solution led to a considerable loss of ductility, which in turn decreased the total absorbed energy.

  10. Chromium Grain-boundary Segregation and Effect of Ion Beam Cleaning on Fe-Ni-Cr Alloys

    SciTech Connect

    Saraf, Laxmikant V.

    2011-04-01

    The grain boundaries play important role to control the mechanical strength of ternary alloys. From spacecrafts to naval vessels to nuclear reactors, stress corrosion cracking, brittleness, oxidation mostly originates at the grain boundaries and cause long term structural stability problems in most of the metallic structures [1]. Fe-Ni-Cr based ternary metal alloys have been widely studied for more than fifty years [2, 3]. Despite of vast amount of research, chromium diffusion in stainless steel or other Ni-Fe-Cr based ternary alloys is still an open scientific problem with challenges in structural stability and corrosion resistance [4]. Particularly, austenite Fe-Ni-Cr is looked upon favorably in space and jet engine industry for their improved resistance to stress corrosion cracking [5]. In solid oxide fuel cells (SOFC), Ni-alloys are frequently used as interconnects and seals [6]. In this communication, simultaneous energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) mapping is utilized to study chemical and structural aspects of chromium segregation in Fe-Ni-Cr alloy. A focused Ga-ion beam is also utilized to study the effect of ion beam cleaning on EBSD image quality (IQ) and inverse pole figure (IPF) maps of Fe-Ni-Cr alloy.

  11. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-10-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni- xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  12. CoNi alloy incorporated, N doped porous carbon as efficient counter electrode for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Wang, Lan; Chang, Jiuli; Chen, Chen; Wu, Dapeng; Xu, Fang; Jiang, Kai

    2017-04-01

    The design of efficient non-Pt counter electrode (CE) materials is highly desired in field of dye sensitized solar cell (DSC). Herein, by combining the catalytic features of N doped carbon (NC) and CoNi alloy, CoNi alloy incorporated porous N doped carbon hybrid (CoNi-NC) is synthesized for application as catalytic CE of DSC. Benefiting from the proper meso-/macroporosity with high electroactive surface area, the CoNi-NC electrode demonstrates apparently higher electrocatalytic activity for iodine reduction reaction (IRR) over pyrolyzed Pt electrode. As a consequence, the DSC based on CoNi-NC CE yields a power conversion efficiency (PCE) of 7.6%, which is superior over that of Pt CE based cell (7.2%), highlighting the bright potential of CoNi-NC in efficient and economical CE of DSC.

  13. Fabric cutting application of FeAl-based alloys

    SciTech Connect

    Sikka, V.K.; Blue, C.A.; Sklad, S.P.; Deevi, S.C.; Shih, H.R.

    1998-11-01

    Four intermetallic-based alloys were evaluated for cutting blade applications. These alloys included Fe{sub 3}Al-based (FAS-II and FA-129), FeAl-based (PM-60), and Ni{sub 3}Al-based (IC-50). These alloys were of interest because of their much higher work-hardening rates than the conventionally used carbon and stainless steels. The FeAl-based PM-60 alloy was of further interest because of its hardening possibility through retention of vacancies. The vacancy retention treatment is much simpler than the heat treatments used for hardening of steel blades. Blades of four intermetallic alloys and commercially used M2 tool steel blades were evaluated under identical conditions to cut two-ply heavy paper. Comparative results under identical conditions revealed that the FeAl-based alloy PM-60 outperformed the other intermetallic alloys and was equal to or somewhat better than the commercially used M2 tool steel.

  14. Microstructural evolution and mechanical properties of an Fe-18Ni-16Cr-4Al base alloy during aging at 950°C

    NASA Astrophysics Data System (ADS)

    Wang, Man; Sun, Yong-duo; Feng, Jing-kai; Zhang, Rui-qian; Tang, Rui; Zhou, Zhang-jian

    2016-03-01

    The development of Gen-IV nuclear systems and ultra-supercritical power plants proposes greater demands on structural materials used for key components. An Fe-18Ni-16Cr-4Al (316-base) alumina-forming austenitic steel was developed in our laboratory. Its microstructural evolution and mechanical properties during aging at 950°C were investigated subsequently. Micro-structural changes were characterized by scanning electron microscopy, electron backscatter diffraction, and transmission electron microscopy. Needle-shaped NiAl particles begin to precipitate in austenite after ageing for 10 h, whereas round NiAl particles in ferrite are coarsened during aging. Precipitates of NiAl with different shapes in different matrices result from differences in lattice misfits. The tensile plasticity increases by 32.4% after aging because of the improvement in the percentage of coincidence site lattice grain boundaries, whereas the tensile strength remains relatively high at approximately 790 MPa.

  15. Oxidation of CoCrFeMnNi High Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Holcomb, Gordon R.; Tylczak, Joseph; Carney, Casey

    2015-06-01

    Eight model high entropy alloys (HEAs) in the CoCrFeMnNi family (including one alloy each in the CoCrFeNi and CoFeMnNi subfamilies) were made, prepared, and exposed to laboratory air for 1100 h at 650°C and 750°C. Two commercial alloys, nickel-base superalloy 230 (N06230) and austenitic stainless steel 304H (S30409), were simultaneously exposed for comparison. Mass change oxidation kinetics were measured and cross-sections of exposed samples were observed. Seven of these HEAs contained much more Mn (12-24 wt.%) than is found in commercial heat-resistant stainless steels and superalloys. The oxidation resistance of CoCrFeNi was excellent and comparable to 304H at 650°C and only slightly worse at 750°C. The thin oxide scale on CoCrFeNi was primarily Cr oxide (presumably Cr2O3) with some Mn oxide at the outer part of the scale. The CoCrFeMnNi HEAs all experienced more rapid oxidation than CoCrFeNi and, especially at 750°C, experienced oxide scale spallation. The addition of Y in the alloy to lower S improved the oxidation resistance of these HEAs. Alloy CoFeMnNi, without Cr, experienced much higher oxidation rates and scale spallation than the Cr-containing alloys. A linear regression analysis of the log of the parabolic rate constant, log(kp), as functions of wt.% Cr and Mn found a good correlation for the compositional dependence of the oxidation rate constant, especially at 650°C. Mn was found to be more detrimental increasing log(k p) than Cr was helpful reducing log(k p). If CoCrFeMnNi HEAs are to be used in high temperature oxidizing environments, then examining lower levels of Mn, while maintaining Cr levels, should be pursued.

  16. Defect Structure of Beta NiAl Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Amador, Carlos; Ferrante, John; Noebe, Ronald D.

    1996-01-01

    The semiempirical BFS method for alloys is generalized by replacing experimental input with first-principles results thus allowing for the study of complex systems. In order to examine trends and behavior of a system in the vicinity of a given point of the phase diagram a search procedure based on a sampling of selected configurations is employed. This new approach is applied to the study of the beta phase of the Ni-Al system, which exists over a range of composition from 45-60 at.% Ni. This methodology results in a straightforward and economical way of reproducing and understanding the basic features of this system. At the stoichiometric composition, NiAl should exist in a perfectly ordered B2 structure. Ni-rich alloys are characterized by antisite point defects (with Ni atoms in the Al sites) with a decrease in lattice parameters. On the Al-rich side of stoichiometry there is a steep decrease in lattice parameter and density with increasing Al content. The presence of vacancies in Ni sites would explain such behavior. Recent X-ray diffraction experiments suggest a richer structure: the evidence, while strongly favoring the presence of vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio. Moreover, local ordering of vacant sites may be preferred over a random distribution of individual point defects.

  17. A novel active fire protection approach for structural steel members using NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sadiq, H.; Wong, M. B.; Al-Mahaidi, R.; Zhao, X. L.

    2013-02-01

    A novel active fire protection approach, based on integrating a shape memory alloy, NiTi, with a steel structure, was proposed to satisfy the fire resistance requirements in structural design. To demonstrate the principles of this approach, a simple structure in the form of a simply supported steel beam was used. The internal action of the beam due to a transverse applied load was reduced by utilizing the shape memory effect in the NiTi alloy at rising temperatures. As a result, the net internal action from the load design was kept below the deteriorated load capacity of the beam during the fire scenario for period of time that was longer than that of the original beam without the NiTi alloy. By integrating the NiTi alloy into the beam system, the structure remained stable even though the steel temperature exceeded the critical temperature which may have caused the original beam structure to collapse. Prior to testing the composite NiTi-steel beam under simulated fire conditions, the NiTi alloy specimens were characterized at high temperatures. At 300 °C, the stiffness of the specimens increased by three times and its strength by four times over that at room temperature. The results obtained from the high-temperature characterization highlighted the great potential of the alloy being used in fire engineering applications.

  18. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  19. Corrosion behavior of Au and Ag modified Cu-Ni-Mn alloys.

    PubMed

    Wright, S R; Cocks, F H; Gettleman, L

    1980-04-01

    The linear electrochemical polarization method was used to provide quantitative in vitro measurements of corrosion rates as a function of exposure time for Cu-Ni-Mn, Cu-Ni-Mn-Au, Cu-Ni-Mn-Ag, and Cu-Ni-Mn-Au-Ag alloys in artificial saliva. Both Au and Ag additives to dental-cast Cu-Ni-Mn alloys lowered the corrosion rate significantly.

  20. Coatings on NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Kei, C. C.; Yu, Y. S.; Racek, J.; Vokoun, D.; Šittner, P.

    2014-07-01

    Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.

  1. Electrolytic Synthesis and Characterization of Electrocatalytic Ni-W Alloy

    NASA Astrophysics Data System (ADS)

    Elias, Liju; Scott, Keith; Hegde, A. Chitharanjan

    2015-11-01

    Inspired by the more positive (about 0.38 V nobler) discharge potential of hydrogen on Ni-W alloy compared to that on both Ni and W, a Ni-W alloy has been developed electrolytically as an efficient electrode material for water electrolysis. The deposition conditions, for peak performance of the electrodeposits for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH medium have been optimized. Electrocatalytic activity of the coatings, deposited at different current densities (c.d.'s) for water splitting reactions of HER and OER was tested by cyclic voltammetry and chronopotentiometry. It was found that Ni-W alloys deposited, at 4.0 A/dm2 (having about 12.49 wt.% W) and 1.0 A/dm2 (having about 0.95 wt.% W) are good electrode materials as cathode (for HER) and anode (for OER), respectively. A dependency of the electrocatalytic activity for HER and OER with relative amount of Ni and W, in the deposit was found. The variation of electrocatalytic activity with W content showed the existence of a synergism between high-catalytic property of W (due to low hydrogen overvoltage) and Ni (having increased adsorption of OH- ions), for hydrogen (as cathode) and oxygen (as anode) evolution, respectively. Electrocatalytic activities of the coatings, developed at different c.d.'s were explained in the light of their phase structure, surface morphology, and chemical composition, confirmed by XRD, FESEM, and EDX analysis. The effect of c.d. on thickness, hardness, composition, HER, and OER was analyzed, and results were discussed with possible mechanisms.

  2. Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Naqiong; Wang, Hao; Lu, Xiao-Gang

    2016-12-01

    Ternary fcc Ni-Co-Al diffusion couples annealed at 1173 K (900 °C), 1373 K (1100 °C), and 1573 K (1300 °C) have been studied by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Sauer-Freise and Whittle-Green methods from the measured concentration profiles of binary and ternary diffusion couples, respectively. Based on the diffusion coefficients reported in the literature and those determined in the present work, the diffusion mobilities for fcc Ni-Co-Al alloys were assessed. In general, reasonable agreements were reached and the resulted mobility database can be used to study the diffusion behavior of the ternary fcc Ni-Co-Al alloys in a wide composition range.

  3. Interdiffusion and Diffusion Mobility for fcc Ni-Co-Al Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhu, Naqiong; Wang, Hao; Lu, Xiao-Gang

    2017-03-01

    Ternary fcc Ni-Co-Al diffusion couples annealed at 1173 K (900 °C), 1373 K (1100 °C), and 1573 K (1300 °C) have been studied by using electron probe microanalysis. The interdiffusion coefficients were extracted using the Sauer-Freise and Whittle-Green methods from the measured concentration profiles of binary and ternary diffusion couples, respectively. Based on the diffusion coefficients reported in the literature and those determined in the present work, the diffusion mobilities for fcc Ni-Co-Al alloys were assessed. In general, reasonable agreements were reached and the resulted mobility database can be used to study the diffusion behavior of the ternary fcc Ni-Co-Al alloys in a wide composition range.

  4. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1991-04-30

    anions as well as being highly stable. Thus the addition of Al to Ni, as in the case of aluminide coatings on nickel-base alloys , or Si to Mo, as in...For example, Ni-Al alloys form protective alumina scales more readily at high temperatures whereas y-TiAl forms alumina scales at low temperatures in... coatings on Ni-base alloys (1’, Fe-silicides €9), and Ni-silicides(" ) indicate similar behavior to that described above. 8 EFFECTS OF ALLOYING ELEMENTS

  5. Electrochemical Evaluation of LaNi(sub 5-x)Ge(sub x) Metal Hydride Alloys

    NASA Technical Reports Server (NTRS)

    Whitham, C.; Ratnakumar, B. V.; Bowman, R. C., Jr.; Hightower, A.; Fultz, B.

    1996-01-01

    We report a detailed evaluation of Ge-substituted LaNi(sub 5) for electrochemical application as a negative electrode inalkaline rechargeable cells. Alloys with small substitutions of Ge for Ni show operating pressures, chargeability, cyclic lifetime, and kinetics for hydrogen absorption and desorption all superior to those found in many substituted LaNi(sub 5) alloys.

  6. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    SciTech Connect

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  7. Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory

    NASA Astrophysics Data System (ADS)

    Tian, Fuyang; Delczeg, Lorand; Chen, Nanxian; Varga, Lajos Karoly; Shen, Jiang; Vitos, Levente

    2013-08-01

    First-principles alloy theory predicts that at room temperature the paramagnetic NiCoFeCrAlx high entropy alloys adopt the face centered cubic (fcc) structure for x≲0.60 and the body centered cubic (bcc) structure for x≳1.23, with an fcc-bcc duplex region in between the two pure phases. The calculated single- and polycrystal elastic parameters exhibit strong composition and crystal structure dependence. Based on the present theoretical findings, it is concluded that alloys around the equimolar NiCoFeCrAl composition have superior mechanical performance as compared to the single-phase regions.

  8. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt.

  9. Boriding of Binary Ni-Ti Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Ucar, Nazim; Dogan, Sule; Karakas, Mustafa Serdar; Calik, Adnan

    2016-11-01

    Boriding of binary Ni-Ti shape memory alloys was carried out in a solid medium at 1273 K for 2, 4, 6, and 8 h using the powder pack method with proprietary Ekabor-Ni powders. Characterization of the boride layer formed on the surface of alloys was done by optical microscopy and scanning electron microscopy. The presence of boride, silicide, and borosilicide phases in the boride layers was confirmed by X-ray diffraction analysis. The thickness and microhardness of the boride layers increased with increasing boriding time. Hardness profiles showed a rapid decrease in hardness moving from the boride layer to the main structure. The high hardness of the boride layer was attributed mainly to the formation of TiB2. A parabolic relationship was observed between layer thickness and boriding time, and the growth rate constant for the boriding treatment was calculated as 0.62×10-8 cm2 s-1.

  10. Study of the feasibility of producing Al-Ni intermetallic compounds by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Mohammed, Kahtan S.; Naeem, Haider T.; Iskak, Siti Nadira

    2016-08-01

    Mechanical alloying (MA) was employed to synthesize Al-Zn-Mg-Cu alloys of high weight percentage of the nickel component from the elemental powders of constituents via high-energy ball milling. The mixed powders underwent 15 h of milling time at 350 rpm speed and 10: 1 balls/powder weight ratio. The samples were cold-compacted and sintered thereafter. The sintered compacts underwent homogenization treatments at various temperatures conditions and were aged at 120°C for 24 h (T6). The milled powders and heat-treated Al alloy products were characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The crystallite sizes and microstrains of the alloyed powder were estimated via measuring the broadening of XRD peaks using the Williamson-Hall equation. The results have revealed that optimum MA time of 15 h has led to the formation of Al-based solid solutions of Zn, Mg, Cu, and Ni. The outcomes showed that the Vickers hardness of the sintered Al-Zn-Mg-Cu compacts of Ni alloys was enhanced following aging at T6 tempering treatments. Higher compression strength of Al-alloys with the addition of 15% nickel was obtained next to the aging treatment.

  11. Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup

    2003-08-01

    It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.

  12. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at. pct Mo. Although the microstructures observed by undercooling and melt spinning were similar, the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  13. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  14. Production of Ni100-x-yMnxGay magnetic shape memory alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Hatchard, T. D.; Thorne, J. S.; Farrell, S. P.; Dunlap, R. A.

    2008-11-01

    Powdered samples of a variety of compositions of the off-stoichiometric magnetic shape memory alloy Ni2MnGa have been prepared by mechanical alloying from elemental precursors. As-milled powders are highly disordered and show very weak ferromagnetic order. Annealing produces a well-ordered L21 Heusler phase with high saturation magnetization. Annealing results in a consistent loss of Ga of about 1-4 at.% (of total sample composition). Structural and magnetic properties of a range of compositions have been measured and are reported in the present work. A magnetically oriented metal-polymer composite has been prepared by mixing the powdered sample in epoxy and curing under an externally applied magnetic field. The magnetic anisotropy energy of the composite sample has been measured and found to be about 20% of the value expected for a single crystal of similar composition. Possibilities for increasing the magnetic anisotropy of metal-polymer composites are discussed. Results are discussed in terms of the effects of structural and chemical order on the resulting magnetic properties in the context of a model based on indirect exchange interactions.

  15. Low-melting-point titanium-base brazing alloys. Part 2: Characteristics of brazing Ti-21Ni-14Cu on Ti-6Al-4V substrate

    SciTech Connect

    Chang, E.; Chen, C.H.

    1997-12-01

    Filler metal of a low-melting-point (917 C) Ti-21Ni-14Cu was brazed onto the substrate of Ti-6Al-4V alloy at 960 C for 2, 4, and 8 h to investigate the microstructural evolution and electrochemical characteristics of the brazed metal as a function of the period of brazing time. Optical microscopy, scanning and transmission electron microscopy, and x-ray diffractometry were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that diffusion of copper and nickel from the filler metal into the equiaxed {alpha} plus intergranular {beta} structure of Ti-6Al-4V substrate causes the lamellar Widmanstaetten structure to form. The intermetallic Ti{sub 2}Ni phase existing in the prior filler metal diminishes, while the Ti{sub 2}Cu phase can be identified for the metal brazed at 960 C for 2 h, but the latter phase decreases with time. Advantage might be taken from the evidence of faster diffusion of nickel than copper along the {beta} phase to the substrate. In deaerated Hank`s solution, corrosion potential, corrosion current density, and critical potential for active-to-passive transition decrease while the passivation range broadens with the period of brazing time. However, all the brazed metals, immersed for different periods in oxygen-saturated Hank`s solution, show similar corrosion behavior, irrespective of the brazing time.

  16. Preparation of Functionally Graded Materials (FGMs) Using Coal Fly Ash and NiCr-Based Alloy Powder by Spark Plasma Sintering (SPS)

    NASA Astrophysics Data System (ADS)

    Kaneko, Gen-yo; Kitagawa, Hiroyuki; Hasezaki, Kazuhiro; Ito, Yuji; Kakuda, Hideaki

    2008-02-01

    Functionally Graded Materials (FGMs) were prepared by spark plasma sintering (SPS) using coal fly ash and NiCr alloy powder. The coal fly ash was produced by the Misumi Coal Thermal Power Station (Chugoku Electric Power Co., Inc.), with 80 wt% nickel and 20 wt% chromium (Fukuda Metal Foil & Powder Co., Ltd.) used as source materials. The sintering temperature in the graphite die was 1000 °C. X-ray diffraction patterns of the sintered coal fly ash materials indicated that mullite (3Al2O3ṡ2SiO2) and silica (SiO2) phases were predominant. Direct joining of coal fly ash and NiCr causes fracture at the interface. This is due to the mismatch in the thermal expansion coefficients (CTE). A crack in the FGM was observed between the two layers with a CTE difference of over 4.86×10-6 K-1, while a crack in the FGM was difficult to detect when the CTE difference was less than 2.77×10-6 K-1.

  17. Microstructure and erosive wear behaviors of Ti6Al4V alloy treated by plasma Ni alloying

    NASA Astrophysics Data System (ADS)

    Wang, Z. X.; Wu, H. R.; Shan, X. L.; Lin, N. M.; He, Z. Y.; Liu, X. P.

    2016-12-01

    The Ni modified layers were prepared on the surface of Ti6Al4V substrate by the plasma surface alloying technique. The surface and cross-section morphology, element concentration and phase composition were investigated by thermal field emission scanning electron microscopy (SEM), and glow discharge optical emission spectroscopy (GDOES), X-ray diffraction (XRD), respectively. The cross-section nano-scale hardness of the Ni modified layer was measured by nanoindenter. The results showed that the Ni modified layers exhibited triple-layer structure and continuous gradient distribution of the concentration. From the surface to the matrix, they were 2 μm Ni deposition layer, 8 μm Ni-rich alloying layer including the phases of Ni3Ti, NiTi, Ti2Ni, AlNi3 and 24 μm Ni-poor alloying layer forming the solid solution of nickel. With increasing of the thickness of the Ni modified layer, the microhardness increased first, reached the climax, then gradient decreased. The erosion tests were performed on the surfaces of the untreated and treated Ti6Al4V samples using MSE (Micro-slurry-jet Erosion) method. The experiment results showed that the wear rate of every layer showed different values, and the Ni-rich alloying layer was the lowest. The strengthening mechanism of the Ni modified layer showed micro-cutting wearing.

  18. An APFIM/AEM Study of Phase Decompositions in Fe-Ni Alloys at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Miller, M. K.; Williams, D. B.; Goldstein, J. I.

    1992-01-01

    A combined atom probe field ion microscopy and analytical electron microscopy characterization has been performed on laboratory aged martensitic and austenitic specimens of FeNi and FeNiP alloys. These techniques revealed that the martensitic 24.1 and 28.6 at.% Ni alloys decomposed during aging for 1 year at 300 C to form face centered cubic precipitates of approx. 56 at.% Ni in a body centered cubic matrix containing approx. 20 at.% Ni. Some thin platelets were observed in the field ion micrographs of the austenitic Fe-42.9 at. % Ni alloy and the Fe-43.2 at.% Ni-0.44 at.% P alloy after aging at 400 and 350 C. Atom probe analysis revealed phosphorus clustering in the ternary alloy aged at 300 C.

  19. Structure and thermomechanical behavior of NiTiPt shape memory alloy wires.

    PubMed

    Lin, Brian; Gall, Ken; Maier, Hans J; Waldron, Robbie

    2009-01-01

    The objective of this work is to understand the structure-property relationships in polycrystalline NiTiPt (Ti 42.7 at.% Ni 7.5 at %Pt) with a composition showing pseudoelasticity at ambient temperatures. Structural characterization of the alloy includes grain size determination and texture analysis while the thermomechanical properties are explored using tensile testing. Variation in heat treatment is used as a vehicle to modify microstructure. The results are compared to experiments on Ni-rich NiTi alloy wires (Ti-51.0 at.% Ni), which are in commercial use in various biomedical applications. With regards to microstructure, both alloys exhibit a <111> fiber texture along the wire drawing axis; however, the NiTiPt alloy grain size is smaller than that of the Ni-rich NiTi wires, while the latter materials contain second-phase precipitates. Given the nanometer-scale grain size in NiTiPt and the dispersed, nanometer-scale precipitate size in NiTi, the overall strength and ductility of the alloys are essentially identical when given appropriate heat treatments. Property differences include a much smaller stress hysteresis and smaller temperature dependence of the transformation stress for NiTiPt alloys compared to NiTi alloys. Potential benefits and implications for use in vascular stent applications are discussed.

  20. Influence of TiN coating on the biocompatibility of medical NiTi alloy.

    PubMed

    Jin, Shi; Zhang, Yang; Wang, Qiang; Zhang, Dan; Zhang, Song

    2013-01-01

    The biocompatibility of TiN coated nickel-titanium shape memory alloy (NiTi-SMA) was evaluated to compare with that of the uncoated NiTi-SMA. Based on the orthodontic clinical application, the surface properties and biocompatibility were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), wettability test, mechanical test and in vitro tests including MTT, cell apoptosis and cell adhesion tests. It was observed that the bonding between the substrate and TiN coating is excellent. The roughness and wettability increased as for the TiN coating compared with the uncoated NiTi-SMA. MTT test showed no significant difference between the coated and uncoated NiTi-SMA, however the percentage of early cell apoptosis was significantly higher as for the uncoated NiTi alloy. SEM results showed that TiN coating could enhance the cell attachment, spreading and proliferation on NiTi-SMA. The results indicated that TiN coating bonded with the substrate well and could lead to a better biocompatibility.

  1. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials.

    PubMed

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-11-03

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0 × 10(19) to 2.3 × 10(21) cm(-3) by changing Sb dopant content. The optimized carrier concentration nH ≈ 3-4 × 10(20) cm(-2) results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features.

  2. The intrinsic disorder related alloy scattering in ZrNiSn half-Heusler thermoelectric materials

    PubMed Central

    Xie, Hanhui; Wang, Heng; Fu, Chenguang; Liu, Yintu; Snyder, G. Jeffrey; Zhao, Xinbing; Zhu, Tiejun

    2014-01-01

    The intrinsic structural disorder dramatically affects the thermal and electronic transport in semiconductors. Although normally considered an ordered compound, the half-Heusler ZrNiSn displays many transport characteristics of a disordered alloy. Similar to the (Zr,Hf)NiSn based solid solutions, the unsubstituted ZrNiSn compound also exhibits charge transport dominated by alloy scattering, as demonstrated in this work. The unexpected charge transport, even in ZrNiSn which is normally considered fully ordered, can be explained by the Ni partially filling interstitial sites in this half-Heusler system. The influence of the disordering and defects in crystal structure on the electron transport process has also been quantitatively analyzed in ZrNiSn1-xSbx with carrier concentration nH ranging from 5.0×1019 to 2.3×1021 cm−3 by changing Sb dopant content. The optimized carrier concentration nH ≈ 3–4×1020 cm−2 results in ZT ≈ 0.8 at 875K. This work suggests that MNiSn (M = Hf, Zr, Ti) and perhaps most other half-Heusler thermoelectric materials should be considered highly disordered especially when trying to understand the electronic and phonon structure and transport features. PMID:25363573

  3. Heat treatment of NiCrFe alloy to optimize resistance to intergrannular stress corrosion

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprising heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cool the alloy body, and heat the cooled body to a temperature between 1100.degree. to 1500.degree. F. for about 1 to 30 hours.

  4. Heat treatment of NiCrFe alloy 600 to optimize resistance to intergranular stress corrosion

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    A process of producing a NiCrFe alloy having a high resistance to stress corrosion cracking comprises heating a NiCrFe alloy to a temperature sufficient to enable the carbon present in the alloy body in the form of carbide deposits to enter into solution, rapidly cooling the alloy body, and heating the cooled body to a temperature between 1100 to 1500/sup 0/F for about 1 to 30 hours.

  5. Stress Corrosion Cracking and Oxidation Characteristics of Boride-Strengthend Microcrystalline Iron and Nickel Based Alloys.

    DTIC Science & Technology

    1984-10-22

    through subsequent thermomechanical treatments make this class of alloy attractive for many applications. One such relatively new class of alloys based...crystallizing it in the solid state) using controlled thermal or thermomechanical treatments. Preliminary evaluations of the Fe, Ni, and Co-based micrystalline...and iron in alloys 3 and 4). Each of the four microcrystalline alloys was processed in similar ways. Each alloy was induction melted and chill block

  6. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    NASA Astrophysics Data System (ADS)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  7. A systematic ALCHEMI study of Fe-doped NiAl alloys

    SciTech Connect

    Anderson, I.M.; Bentley, J.; Duncan, A.J.

    1995-06-01

    ALCHEMI site-occupation studies of alloying additions to ordered aluminide intermetallic alloys have been performed with varying degrees of success, depending on the ionization delocalization correction. This study examines the variation in the site-occupancy of Fe in B2-ordered NiAl vs solute concentration and alloy stoichiometry. The fraction of Fe on the `Ni` site is plotted vs Fe concentration. The good separation among the data from alloys of the three stoichiometries shows that the site occupancy of iron depends on the relative concentrations of the Ni and Al host elements; however a preference for the `Ni` site is clearly indicated.

  8. Bonding Ni-Cr alloy to tooth structure with adhesive resin cements.

    PubMed

    Penugonda, B; Scherer, W; Cooper, H; Kokoletsos, N; Koifman, V

    1992-01-01

    This study was to determine the shear bond strengths of Ni-Cr alloy to Ni-Cr alloy (Group I), Ni-Cr alloy to enamel (Group II), and Ni-Cr alloy to dentin (Group III) using Imperva Dual, DC Metabond, All-Bond, Geristore, and Panavia. All bonded specimens were thermocycled 2000 x (5 degrees C-55 degrees C) after 24 hours and subjected to shear bond testing on a Universal Instron Testing Machine. In all groups of the study, Imperva Dual and CB Metabond had significantly (p < .05) higher bond values than Panavia.

  9. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  10. Three-Dimensional EBSD Analysis of YSZ, NiO-YSZ and Ni-Alloy

    SciTech Connect

    Saraf, Laxmikant V.

    2012-01-03

    In this report, a method is discussed to perform successive milling on yttria-stabilized zirconia (YSZ), NiO-YSZ and Ni-alloy at the intervals of 85 nm 50 nm and 100 nm, respectively using a focused ion beam (FIB) followed by electron backscatter diffraction (EBSD) analysis on each slice. The EBSD data is then reconstructed to generate 3D volume. The 3D-EBSD band quality data is superimposed on inverse pole figure (IPF) grain orientation analysis to get a correlation with quality of band indexing. For the NiO-YSZ case, grain orientations and band quality factors were matched for grains {approx}250 nm diameters producing a high resolution 3D-EBSD data. For this case, a pore space in 3D volume was visible due to nanocrystalline NiO-YSZ grain network. The advantages of 3D EBSD are discussed in the context of its applications to SOFC research community.

  11. High thermally stable Ni /Ag(Al) alloy contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.

    2007-01-01

    Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  12. In-situ studies of the TGO growth stresses and the martensitic transformation in the B2 phase in commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys.

    SciTech Connect

    Hovis, D.; Hu, L.; Reddy, A.; Heuer, A. H.; Paulikas, A. P.; Veal, B. W.

    2007-12-01

    Oxide growth stresses were measured in situ at 1100 C on commercial Pt-modified NiAl and NiCoCrAlY bond coat alloys using synchrotron X-rays. Measurements were taken on samples that had no preoxidation, as well as on samples that had experienced 24 one-hour thermal exposures at 1150 C, a condition known to induce rumpling in the Pt-modified NiAl alloy, but not in the NiCoCrAlY alloy. The NiCoCrAlY alloy showed continuous stress relaxation under all conditions, whereas the Pt-modified NiAl alloys would typically stabilize at a fixed (often non-zero) stress suggesting a higher creep strength in the 'Thermally Grown Oxide' on the latter alloy, though the precise behavior was dependent on initial surface preparation. The formation of martensite in the Pt-modified NiAl alloys was also observed upon cooling and occurred at temperatures below 200 C for all of the samples observed. Based on existing models, this M{sub s} temperature is too low to account for the rumpling observed in these alloys.

  13. Structure of the c(2x2) Mn/Ni(001) surface alloy by quantitative photoelectron diffraction

    SciTech Connect

    Banerjee, S.; Denlinger, J.; Chen, X.

    1997-04-01

    Surface alloys are two-dimensional metallic systems that can have structures that are unique to the surface, and have no counterpart in the bulk binary phase diagram. A very unusual structure was reported for the Mn-Ni system, based on a quantitative LEED structure determination, which showed that the Mn atoms were displaced out of the surface by a substantial amount. This displacement was attributed to a large magnetic moment on the Mn atoms. The structure of the Mn-Ni surface alloy was proposed to be based on a bulk termination model. Magnetic measurements on the Mn-Ni surface alloys, however, showed conclusively that the magnetic structure of these surface alloys is completely different from the bulk alloy analogs. For example, bulk MnNi is an antiferromagnet, whereas the surface alloy is ferromagnetic. This suggests that the proposed structure based on bulk termination, may not be correct. X-ray Photoelectron Diffraction (XPD) techniques were used to investigate this structure, using both a comparison to multiple scattering calculations and photoelectron holography. In this article the authors present some of the results from the quantitative analysis of individual diffraction patterns by comparison to theory.

  14. Performance of the nano-structured Cu-Ni (alloy) -CeO2 anode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Minquan; Wang, Shaolan; Chen, Ting; Yuan, Chun; Zhou, Yucun; Wang, Shaorong; Huang, Jun

    2015-01-01

    In this work, copper and nickel oxides (CuO-NiO) powders with various mole ratios were synthesized by the glycine nitrate process (GNP) and the Cu-Ni alloy was obtained by reducing the CuO-NiO powders at 600 °C for 0.75 h. Furthermore, Cu1-xNix (alloy) -CeO2 impregnated YSZ anodes were fabricated by the impregnation method and the optimized anode composition was evaluated. It was found that the optimized mole ratio of Cu:Ni was 5:5, while the weight ratio of Cu-Ni alloy to CeO2 was 3:1. Additionally, impregnated anode with 40 wt % loading of Cu0.5Ni0.5 (alloy)-CeO2 exhibited the best performance and the polarization resistance of such anode was only 0.097, 0.115, 0.145 and 0.212 Ω cm2 at 750, 700, 650 and 600 °C, respectively. Finally, the performance of the optimized anode in methane (CH4) was investigated and the carbon deposition is greatly suppressed compared to the Ni-based anode.

  15. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  16. Electrochemical methods to detect susceptibility of Ni-Cr-Mo-W alloy 22 to intergranular corrosion

    NASA Astrophysics Data System (ADS)

    Gorhe, D. D.; Raja, K. S.; Namjoshi, S. A.; Radmilovic, Velimir; Tolly, Alfredo; Jones, D. A.

    2005-05-01

    Alloy 22 (UNS N06022), a Ni-Cr-Mo-W based alloy, is a candidate material for the outer wall of nuclear waste package (NWP) containers. Even though the alloy is highly stable at low temperatures, it could undergo microstructural changes during processing such as welding and stress relieving. Formation of topologically close-packed (TCP) phases such as μ, P, σ, etc. and Cr-rich carbides could make the material susceptible to localized corrosion. Hence, it is important to correlate the microstructural changes with the corrosion resistance of the alloy by nondestructive and rapid electrochemical tests. In this investigation, different electrochemical test solutions were used to quantify the microstructural changes associated with aging and welding of the wrought alloy 22. The results of double-loop (DL) electrochemical potentiodynamic reactivation (EPR) tests in 1 M H2SO4+0.5 M NaCl+0.01 M KSCN solution indicated Cr depletion during initial stages of aging of wrought alloy 22. Results of EPR tests in 2 M HCl+0.01 M KSCN solution at 60 °C correlated well with the Mo depletion that occurred near TCP phases formed during aging of both weld and wrought alloy 22 materials. The EPR test results were compared with standard chemical weight loss measurements specified by ASTM standard G-28 methods A and B.

  17. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model.

  18. Microstructures and oxidation behavior of some Molybdenum based alloys

    SciTech Connect

    Ray, Pratik Kumar

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  19. Transmutation-induced embrittlement of V-Ti-Ni and V-Ni alloys in HFIR

    SciTech Connect

    Ohnuki, S.; Takahashi, H.; Garner, F.A.; Pawel, J.E.

    1996-04-01

    Vanadium, V-1Ni, V-10Ti and V-10Ti-1Ni (at %) were irradiated in HFIR to doses ranging from 18 to 30 dpa and temperatures between 300 and 600C. Since the irradiation was conducted in a highly thermalized neutron spectrum without shielding against thermal neutrons, significant levels of chromium (15-22%) were formed by transmutation. The addition of such large chromium levels strongly elevated the ductile to brittle transition temperature. At higher irradiation temperatures radiation-induced segregation of transmutant Cr and solute Ti at specimen surfaces leads to strong increases in the density of the alloy.

  20. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples.

  1. Reclamation and additional alloying of 18Ni(350) maraging steel

    SciTech Connect

    Ahmed, M.; Salam, I.; Nasim, I.; Hussain, S.W.; Hashmi, F.H.; Khan, A.Q. )

    1994-06-01

    The possibility of gainfully utilizing grade 18Ni(350) maraging steel scrap has been investigated, along with the effect of additional alloying with niobium. A vacuum induction melting and casting furnace was used for melting and additional alloying. The cast ingots were hot forged and their properties compared with those of the stock material. The composition of the reprocessed material was found to be within the prescribed range for 18Ni(350) steel, except for some loss in titanium content. The hardness and tensile strength of the recycled steels were similar to those of the stock material. A slight decrease in hardness in the aged condition could be attributed to loss of titanium during remelting. Charpy V-notch impact testing indicated significantly higher toughness in the remelted material; this has been attributed to a homogeneous, refined microstructure and a lower level of inclusions. Additional alloying with 2% Nb not only improved the mechanical properties but also affected the amount of reverted austenite obtained after aging.

  2. Optimization of conductivity and strength in Cu-Ni-Si alloys by suppressing discontinuous precipitation

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lee, Jehyun; Lim, Sung Hwan; Ahn, Jee Hyuk; Kim, Kwangho; Kim, Sangshik

    2016-11-01

    Cu-Ni-Si alloys with and without Ti were solution treated at 980 °C for 1 h and cooled by air cooling and water quenching, after which the specimens were aged at 500 °C. The two alloys showed different aging characteristics with different cooling rates during the aging process. The conductivity of all alloys increased during aging; for alloys that were water quenched, hardness increased at the early stage of aging and then drastically decreased. The air-cooled Cu-Ni-Si alloy without Ti also experienced an increase in hardness, which then decreased during aging, but the air-cooled Cu-Ni-Si alloy with Ti did not show a drastic decrease in hardness during prolonged aging. A combination of yield strength and conductivity of 820 MPa and 42% IACS, respectively, was achieved in the air-cooled Cu-Ni-Si-Ti alloy after solution treatment.

  3. Preparation and electrocatalytic activity of nanocrystalline Ni-Mo-Co alloy electrode for hydrogen evolution.

    PubMed

    Xu, Lijian; Du, Jingjing; Chen, Baizhen

    2013-03-01

    Ni-Mo-Co alloy electrodes were prepared by electrodeposition technique with citric acid as a complexing agent. The influence of the main technical parameters such as the concentration of CoSO4 7H2O, the current density and the bath temperature on the component content in the Ni-Mo-Co alloy electrode were investigated by electron dispersive spectrometer (EDS), the microstructure and surface morphology of Ni-Mo-Co alloy electrodes were characterized by employing X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was investigated by the method of the cathode polarization curves. The results showed that the excellent Ni-Mo-Co alloy electrode with 41.39 wt% Ni, 53.82 wt% Mo and 4.79 wt% Co was obtained when the concentration of CoSO4 x 7H2O was 8 g/L, the current density was 12 A/dm2 and the bath temperature was 25 degrees C. The mircostructure of the Ni-Mo-Co alloy was nanocrystalline and the average grain size was about 25 nm by calculating using Scherrer Equation. The electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was better than that of Ni-Mo alloy electrode.

  4. Ab initio investigation of the surface properties of austenitic Fe-Ni-Cr alloys in aqueous environments

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Brenner, D. W.

    2017-04-01

    The surface energetics of two austenitic stainless steel alloys (Type 304 and 316) and three Ni-based alloys (Alloy 600, 690, and 800) are investigated using theoretical methods within the density functional theory. The relative stability of the low index surfaces display the same trend for all alloys; the most closely packed orientation and the most stable is the (111), followed by the (100) and the (110) surfaces. Calculations on the (111) surfaces using various surface chemical and magnetic configurations reveal that Ni has the tendency to segregate toward the surface and Cr has the tendency to segregate toward the bulk. The magnetic frustration present on the (111) surfaces plays an important role in the observed segregation tendencies of Ni and Cr. The stability of the (111) surfaces in contact with aqueous solution are evaluated as a function of temperature, pH, and concentration of aqueous species. The results indicate that the surface stability of the alloys decrease with temperature and pH, and increase slightly with concentration. Under conditions characteristic to an operating pressurized water reactor, the Ni-based alloy series appears to be of better quality than the stainless steel series with respect to corrosion resistance and release of aqueous species when in contact with aqueous solutions.

  5. Investigation on compressive behavior of Cu-35Ni-15Al alloy at high temperatures

    NASA Astrophysics Data System (ADS)

    Li, Cong; Chen, Jian; Li, Wei; Hu, Yongle; Ren, Yanjie; Qiu, Wei; He, Jianjun; Chen, Jianlin

    2014-09-01

    Microstructures and mechanical properties of Cu-35Ni-15Al alloy in cast and porous states were studied by scanning electron microscopy and compression tests. The influence of porosity, deformation temperature and loading rate on mechanical properties of the two kinds of alloys was investigated. The results show that the as cast alloy and porous alloys have almost the same phase constitution: Cu rich phase, Ni rich phase and K intermetallics. The yield strength of porous alloys increases continuously with decreasing porosity, the relationship between porosity and yield stress follows Gibson-Ashby equation. With decreasing deformation temperature, the yield strength of as cast alloy and porous alloy increase. With the increase of loading rate, the yield strength of these alloys shows an increasing trend. After compression, the microstructure of as cast alloy is more uniform, and porous alloys are more prone to have localized deformations.

  6. Fabrication and Characterization of Novel Fe-Ni Alloy Coated Carbon Fibers for High-Performance Shielding Materials

    NASA Astrophysics Data System (ADS)

    He, Fang; Li, Junjiao; Chen, Liang; Chen, Lixia; Huang, Yuan

    2015-03-01

    Novel Fe-Ni alloy coated carbon fibers (Fe-Ni-CFs) were prepared via two-step electrodeposition with an initial synthesis of Fe coatings on the activated carbon fibers and followed by the co-deposition of Fe and Ni. The effect of annealing treatment on structure and properties of Fe-Ni-CFs was studied through SEM, TEM, XRD and VSM. The results indicated that the Fe-Ni alloy coatings with the thickness of only 0.25 um are highly wrapped on the surface of carbon fibers. The un-annealed coatings showed high saturation magnetization values with 52 dB from 300-1200 MHz, which mainly due to Fe content (18.4 wt.%) of the coatings meets the requirements of high magnetic perm-alloy. The surface quality, crystallinity and conductivity of the Fe-Ni-CFs were obviously improved despite of the reduction of the saturation magnetization resulted from the bigger grains after annealing. Based on the above aspects, annealing at 400∘C was preferred for the Fe-Ni-CFs to obtain good comprehensive performance. Importantly, the Fe-Ni-CFs filled ABS resin composites showed better Electromagnetic Interference shielding effectiveness than the CFs reinforced ABS composites.

  7. Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy

    SciTech Connect

    Wang, J. G.; Choi, B. W.; Nieh, T. G.; Liu, C. T.

    2000-03-01

    The crystallization and nanoindentation behavior of a Zr-10Al-5Ti-17.9Cu-14.6Ni (at.%) bulk amorphous alloy (BAA) were studied. Resulting from the kinetic nature of phase transformation in multicomponent alloys, the crystallization path is complex. Despite the complexity of different crystallization paths, the main final crystallized product in the Zr-based BAA is Zr{sub 2}Cu. Young's modulus and hardness of the BAA were found to increase with an increase in annealing temperature. The observed mechanical properties were correlated with the microstructure of the material. Also, in the present paper, both the observed crystallization and nanoindentation behavior are compared with existing data. Zr-based BAAs exhibit a ratio of hardness to Young's modulus (H/E ratio) of about 1/10, suggesting the interatomic bonding in the alloys is close to being covalent. (c) 2000 Materials Research Society.

  8. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  9. The effect of zirconium on the isothermal oxidation of nominal Ni-14Cr-24Al alloys

    NASA Technical Reports Server (NTRS)

    Kahn, A. S.; Lowell, C. E.; Barrett, C. A.

    1980-01-01

    The isothermal oxidation of Ni-14Cr-24Al-xZr-type alloys was performed in still air at 1100, 1150, and 1200 C for times up to 200 hr. The zirconium content of the alloys varied from 0-0.63 atom percent (a/o). The oxidized surfaces were studied by optical microscopy, X-ray diffraction, and scanning electron microscopy. The base alloy was an alumina former with the zirconium-containing alloys also developing some ZrO2. The addition of zirconium above 0.066 a/o increased the rate of weight gain relative to the base alloy. Due to oxide penetratio, the weight gain increased with Zr content; however, the scale thickness did not increase. The Zr did increase the adherence of the oxide, particularly at 1200 C. The delta W/A vs. time data fit the parabolic model of oxidation. The specific diffusion mechanism operative could not be identified by analysis of the calculated activation energies. Measurements of the Al2O3 scale lattice constants yielded the same values for all alloys.

  10. Characterization of ultrafine grained Cu-Ni-Si alloys by electron backscatter diffraction

    NASA Astrophysics Data System (ADS)

    Altenberger, I.; Kuhn, H. A.; Gholami, M.; Mhaede, M.; Wagner, L.

    2014-08-01

    A combination of rotary swaging and optimized precipitation hardening was applied to generate ultra fine grained (UFG) microstructures in low alloyed high performance Cu-based alloy CuNi3Si1Mg. As a result, ultrafine grained (UFG) microstructures with nanoscopically small Ni2Si-precipitates exhibiting high strength, ductility and electrical conductivity can be obtained. Grain boundary pinning by nano-precipitates enhances the thermal stability. Electron channeling contrast imaging (ECCI) and especially electron backscattering diffraction (EBSD) are predestined to characterize the evolving microstructures due to excellent resolution and vast crystallographic information. The following study summarizes the microstructure after different processing steps and points out the consequences for the most important mechanical and physical properties such as strength, ductility and conductivity.

  11. Lattice dynamics of Ni-Mn-Al Heusler alloys

    SciTech Connect

    Moya, Xavier; Manosa, Lluis; Planes, A.; Krenke, T.; Acet, Mehmet; Wassermann, E. F.; Morin, M.; Garlea, Vasile O; Lograsso, Tom; Zarestky, Jerel L.

    2008-01-01

    We have studied the lattice dynamics of a Ni54Mn23Al23 (at.%) Heusler single-crystalline alloy by means of neutron scattering and ultrasonic techniques. Results show the existence of a number of precursor phenomena. We have found an anomaly (dip) in the low TA2 phonon branch at the wave number 0.33 (in reciprocal lattice units) that becomes more pronounced (phonon softening) with decreasing temperature. We have also observed softening of the associated shear elastic constant (C ) with decreasing temperature. Ultrasonic measurements under applied magnetic field, both isothermally and varying the temperature show that the values of elastic constants depend on magnetic order thus evidencing magnetoelastic coupling.

  12. Effect of nano-hydroxyapatite reinforcement in mechanically alloyed NiTi composites for biomedical implant.

    PubMed

    Akmal, Muhammad; Raza, Ahmad; Khan, Muhammad Mudasser; Khan, M Imran; Hussain, Muhammad Asif

    2016-11-01

    Equi-atomic NiTi alloy composites reinforced with 0, 2, 4 and 6vol.% nano-hydroxyapatite (HA) were successfully synthesized using pressureless sintering. Pure Ni and Ti elements were ball milled for 10h in order to produce a mechanically alloyed equi-atomic NiTi alloy (MA-NiTi). Mechanically alloyed NiTi and HA powders were blended, compacted and then sintered for 3h at 1325K. The sintered density varied inversely with volume percent of HA reinforcement. The X-Ray diffraction spectra and SEM images showed the formation of multiple phases like NiTi, NiTi2, Ni3Ti, and Ni4Ti3. The back scattered-SEM image analysis confirmed the presence of Ni-rich and Ti-rich phases with increasing HA content. The 6vol.% HA reinforced composite showed Ni3Ti as the major phase having the highest hardness value which can be attributed to the presence of relatively harder phases along with higher HA content as a reinforcement. The composite of MA-NiTi with 2vol.% HA manifested the most desirable results in the form of better sintering density mainly due to the minute decomposition of NiTi into other phases. Therefore, the 2vol.% reinforced MA-NiTi composite can be exploited as a novel material for manufacturing biomedical implants.

  13. Magneto Caloric Effect in Ni-Mn-Ga alloys: First Principles and Experimental studies

    NASA Astrophysics Data System (ADS)

    Odbadrakh, Khorgolkhuu; Nicholson, Don; Brown, Gregory; Rusanu, Aurelian; Rios, Orlando; Hodges, Jason; Safa-Sefat, Athena; Ludtka, Gerard; Eisenbach, Markus; Evans, Boyd

    2012-02-01

    Understanding the Magneto-Caloric Effect (MCE) in alloys with real technological potential is important to the development of viable MCE based products. We report results of computational and experimental investigation of a candidate MCE materials Ni-Mn-Ga alloys. The Wang-Landau statistical method is used in tandem with Locally Self-consistent Multiple Scattering (LSMS) method to explore magnetic states of the system. A classical Heisenberg Hamiltonian is parametrized based on these states and used in obtaining the density of magnetic states. The Currie temperature, isothermal entropy change, and adiabatic temperature change are then calculated from the density of states. Experiments to observe the structural and magnetic phase transformations were performed at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) on alloys of Ni-Mn-Ga and Fe-Ni-Mn-Ga-Cu. Data from the observations are discussed in comparison with the computational studies. This work was sponsored by the Laboratory Directed Research and Development Program (ORNL), by the Mathematical, Information, and Computational Sciences Division; Office of Advanced Scientific Computing Research (US DOE), and by the Materials Sciences and Engineering Division; Office of Basic Energy Sciences (US DOE).

  14. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  15. Structural and magnetic properties of nanocrystalline Fe-Co-Ni alloy processed by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Raanaei, Hossein; Eskandari, Hossein; Mohammad-Hosseini, Vahid

    2016-01-01

    In this present work, a nanostructured iron-cobalt-nickel alloy with Fe50Co30Ni20 composition has been processed by mechanical alloying. The structural and magnetic properties have been investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometer. It is shown that the crystallize size reaches to about 18.7 nm after 32 h milling time. A remarkable decrease in coercivity after 16 h milling time and also a continuous increase in remanent magnetization during the mechanical alloying process are observed. Heat treatment of the samples milled at 32 and 48 h demonstrates the crystalline constituent elements and also Fe3O4 crystalline phase.

  16. Stress Intensity Effect on Solid State Oxidation of Ni-Cr Alloy with Different Chromium Concentrates

    NASA Astrophysics Data System (ADS)

    Tirtom, Ismail; Das, Nishith Kumar; Shoji, Tetsuo

    Ni-base alloy is widely used in light water reactor component and the recent study has shown stress corrosion cracking (SCC). Over the years various attempts have been made to obtain mechanism of SCC but it still require more fundamental study to understand clearly. This study presents an approach based on the multiscale modeling, to assess the influence of alloy composition and stress intensity on the initial stage of solid state oxidation of the Ni-Cr alloy. The multiscale modeling considers different length scales such as finite element method (FEM) / quasi-continuum (QC) / quantum chemical molecular dynamics (QCMD), for analyzing crack tip molecular domain. The compact tension (CT) specimen of alloy 600 has been loaded for stress intensity, after that the micro region has chosen for the QC model which is a combination of continuum and atomic method. Finally, the deformed atomic position has picked for the QCMD simulation with some water molecules. The simulated results show that the chromium segregates faster than nickel atoms from the surface and make preferential bonding with oxygen. The preferential bonding forms a passive film. Applied stress intensity deformed the structure which may increase the atomic distance. As distance increases the absorption of water molecule or OH or oxygen into lattice increases. The stress intensity raises the crack tip solid state oxidation that may enhance SCC initiation.

  17. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (˜5-15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  18. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.

    PubMed

    Xu, J L; Bao, L Z; Liu, A H; Jin, X J; Tong, Y X; Luo, J M; Zhong, Z C; Zheng, Y F

    2015-01-01

    Porous NiTi alloys were prepared by microwave sintering using ammonium hydrogen carbonate (NH4HCO3) as the space holder agent to adjust the porosity in the range of 22-62%. The effects of porosities on the microstructure, hardness, compressive strength, bending strength, elastic modulus, phase transformation temperature and superelasticity of the porous NiTi alloys were investigated. The results showed that the porosities and average pore sizes of the porous NiTi alloys increased with increasing the contents of NH4HCO3. The porous NiTi alloys consisted of nearly single NiTi phase, with a very small amount of two secondary phases (Ni3Ti, NiTi2) when the porosities are lower than 50%. The amount of Ni3Ti and NiTi2 phases increased with further increasing of the porosity proportion. The porosities had few effects on the phase transformation temperatures of the porous NiTi alloys. By increasing the porosities, all of the hardness, compressive strength, elastic modulus, bending strength and superelasticity of the porous NiTi alloys decreased. However, the compressive strength and bending strength were higher or close to those of natural bone and the elastic modulus was close to the natural bone. The superelastic recovery strain of the trained porous NiTi alloys could reach between 3.1 and 4.7% at the pre-strain of 5%, even if the porosity was up to 62%. Moreover, partial shape memory effect was observed for all porosity levels under the experiment conditions. Therefore, the microwave sintered porous NiTi alloys could be a promising candidate for bone implant.

  19. Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials

    NASA Astrophysics Data System (ADS)

    Dutta, R. S.

    2009-09-01

    This paper reviews corrosion related issues of Ni-Cr-Fe based (in a general sense) and Ni-Cu based steam generator tube materials for nuclear power plants those have been dealt with for last more than four decades along with some updated information on corrosion research. The materials include austenitic stainless steels (SSs), Alloy 600, Monel 400, Alloy 800 and Alloy 690. Compatibility related issues of these alloys are briefly discussed along with the alloy chemistry and microstructure. For austenitic SSs, stress corrosion cracking (SCC) behaviour in high temperature aqueous environments is discussed. For Alloy 600, intergranular cracking in high temperature water including hydrogen-induced intergranular cracking is highlighted along with the interactions of material in various environments. In case of Monel 400, intergranular corrosion and pitting corrosion at ambient temperature and SCC behaviour at elevated temperature are briefly described. For Alloy 800, the discussion covers SCC behaviour, surface characterization and microstructural aspects of pitting, whereas hydrogen-related issues are also highlighted for Alloy 690.

  20. Electrical transport properties of amorphous Ni32Pd53P15 alloy

    NASA Astrophysics Data System (ADS)

    Prakruti, Chaudhari; Joshi, R. H.; Bhatt, N. K.; Thakore, B. Y.

    2015-08-01

    A ternary alloy containing nickel, palladium and phosphorous in amorphous form has been studied. The electrical transport properties viz. electrical resistivity, thermoelectrical power (TEP), thermal conductivity are computed using our recently proposed potential. In the present work, five screening functions have been employed to incorporate the exchange and correlation effects. The theoretical structure factors due to hard core fluid theory have been used in the calculations. The liquid alloy is studied as a function of its composition at temperature 294 K. The partial structure factors of the compound-forming Ni32Pd53P15 ternary alloy has been calculated by considering Hoshino's m-component hard-sphere mixture, which is based on Percus-Yevic equation of Hiroike.

  1. Cryo-quenched Fe-Ni-Cr alloy single crystals: A new decorative steel

    SciTech Connect

    Boatner, Lynn A.; Kolopus, James A.; Lavrik, Nicolay V.; Phani, P. Sudharshan

    2016-08-31

    In this paper, a decorative steel is described that is formed by a process that is unlike that of the fabrication methods utilized in making the original Damascus steels over 2000 years ago. The decorative aspect of the steel arises from a three-dimensional surface pattern that results from cryogenically quenching polished austenitic alloy single crystals into the martensitic phase that is present below 190 K. No forging operations are involved – the mechanism is entirely based on the metallurgical phase properties of the ternary alloy. The symmetry of the decorative pattern is determined and controlled by the crystallographic orientation and symmetry of the 70%Fe,15%Ni,15%Cr alloy single crystals. Finally, in addition to using “cuts” made along principal crystallographic surface directions, an effectively infinite number of other random-orientation “cuts” can be utilized to produce decorative patterns where each pattern is unique after the austenitic-to-martensitic phase transformation.

  2. 60NiTi Alloy for Tribological and Biomedical Surface Engineering Applications

    NASA Astrophysics Data System (ADS)

    Ingole, Sudeep

    2013-06-01

    60NiTi is an alloy with 60 wt% of nickel (Ni) and 40 wt% of titanium (Ti). This alloy was developed in the 1950s at the Naval Ordnance Laboratory (NOL) along with 55NiTi (55 wt% of Ni and 45 wt% of Ti). Both of these alloys exhibit the shape memory effect to different extents. The unique properties of 60NiTi, which are suitable for surface engineering (tribological) applications, are enumerated here. With appropriate heat treatment, this alloy can achieve high hardness (between Rc 55 and Rc 63). It has very good corrosion resistance and is resilient. Machinable before its final heat treatment, this alloy can be ground to fine surface finish and to tight dimensions. At one time, due to the popularity and wider applications of 55NiTi, the study of 60NiTi suffered. Recently, 60NiTi alloy gained some technological advantages due to advanced materials synthesis processes and progress in surface engineering. A feasibility study of 60NiTi bearings for space application has shown promise for its further development and suitability for other tribological applications. This report focuses on an overview of the properties and potential tribological and biomedical applications of 60NiTi.

  3. X-Ray Absorption Fine Structure Study for Fe60Ni40 Alloy

    SciTech Connect

    Yang, Dong-Seok; Oh, Kyuseung; Na, Wonkyung; Kim, Nayoung; Yoo, Yong-Goo; Min, Seung-Gi; Yu, Seong-Cho

    2007-02-02

    Fe60Ni40 alloys were fabricated by the mechanical alloying process with process periods of 1, 2, 4, 6, 12 and 24 hours, respectively. The formation of alloy and the structural evolution of the alloy were examined by X-ray diffraction and extended X-ray absorption fine structure methods. With increase of alloying time the BCC phase of iron was changed significantly during the mechanical alloying process. The alloying was activated in about 6 hours and completed in about 24 hours.

  4. Structure and properties of cast and splat-quenched high-entropy Al-Cu-Fe-Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Bashev, V. F.; Kushnerov, O. I.

    2017-01-01

    The effect of the composition and cooling rate of the melt on the microhardness, phase composition, and fine-structure parameters of as-cast and splat-quenched (SQ) high-entropy (HE) Al-Cu-Fe-Ni-Si alloys was studied. The quenching was performed by conventional splat-cooling technique. The cooling rate was estimated to be 106 K/s. Components of the studied HE alloys were selected taking into account both criteria for designing and estimating their phase composition, which are available in the literature and based on the calculations of the entropy and enthalpy of mixing, and the difference between atomic radii of components as well. According to X-ray diffraction data, the majority of studied Al-Cu-Fe-Ni-Si compositions are two-phase HE alloys, the structure of which consists of disordered solid solutions with bcc and fcc structures. At the same time, the Al0.5CuFeNi alloy is single-phase in terms of X-ray diffraction and has an fcc structure. The studied alloys in the as-cast state have a dendritic structure, whereas, after splat quenching, the uniform small-grained structure is formed. It was found that, as the volume fraction of bcc solid solution in the studied HE alloys increases, the microhardness increases; the as-cast HE Al-Cu-Fe-Ni-Si alloys are characterized by higher microhardness compared to that of splat-quenched alloys. This is likely due to the more equilibrium multiphase state of as-cast alloys.

  5. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    SciTech Connect

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al2O3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower

  6. Improved endothelialization of NiTi alloy by VEGF functionalized nanocoating.

    PubMed

    Shen, Weixing; Cai, Kaiyong; Yang, Zaixiang; Yan, Ying; Yang, Weihu; Liu, Peng

    2012-06-01

    To improve surface endothelialization of NiTi alloy substrate, a nano-structured coating functionalized with vascular endothelial growth factor (VEGF) was fabricated via polydopamine (PDOP) as intermediate layer. The successful preparation of VEGF conjugated nanocoating was demonstrated by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS), respectively. Inductively coupled plasma mass spectrometry (ICP-MS) test showed that the formed nanocoating significantly reduced the release of Ni ion from NiTi alloy in simulated body fluid. The biological behaviors of endothelial cells adhered to modified NiTi alloy substrates, including cell proliferation, cell spreading and production of nitric oxide and prostacyclin were investigated in vitro. The results suggest that surface functionalization of NiTi alloy substrate with VEGF is beneficial for cell growth. The approach presented here affords an alternative for surface modification of NiTi implants applied as heart and vascular implant devices.

  7. On the development and investigation of quaternary Pt-based superalloys with Ni additions

    NASA Astrophysics Data System (ADS)

    Wenderoth, M.; Glatzel, U.; Völkl, R.; Cornish, L. A.; Süss, R.; Vorberg, S.; Fischer, B.

    2005-03-01

    The objective of this work is to mimic the microstructure and strengthening mechanisms of Ni-based superalloys in a new group of high-temperature alloys based on the system Pt-Al. The elements Cr and Ni were chosen as further alloying components. Having a face-centered cubic (fcc) crystal structure with an Ll2-ordered and coherently embedded phase, these new alloys should increase creep and corrosion resistance beyond Ni-based superalloys. After arc melting and heat treatment, the alloys were investigated by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the aged condition, the alloy composition 13 at. pct Al, 3 at. pct Cr, 7 at. pct Ni, and balance Pt showed the most promising microstructure with cubical precipitates, 30 pct precipitate volume fraction, and a lattice misfit of about -0.1 pct at room temperature.

  8. Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kayani, Saif Haider; Imran Khan, M.; Khalid, Fazal Ahmad; Kim, Hee Young; Miyazaki, Shuichi

    2016-03-01

    In the present work, precipitation behavior of TiNiAuCu-based high-temperature shape-memory alloys is studied. Two alloys with compositions Ti50Ni30Au20 and Ti50Ni20Au20Cu10 were prepared. After 30 % cold rolling, both alloys were then annealed at different temperatures. Formation of Cu-rich TiAuCu and Ti-rich Ti3Au precipitates was observed in Ti50Ni20Au20Cu10 alloy when annealed at different temperatures after cold deformation. It was noticed that prior cold deformation has significant effect on the precipitation behavior. A similar kind of precipitation behavior has been previously reported in TiNiPdCu alloys. Both TiAuCu and Ti3Au type precipitates were found to be deficient in Ni content which causes an increase in Ni content of the matrix and a small decrease in transformation temperatures of the Ti50Ni20Au20Cu10 alloy.

  9. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    PubMed Central

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  10. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation.

    PubMed

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-26

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  11. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  12. Structure and microwave absorption properties of Pr-Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Xiong, Jilei; Pan, Shunkang; Cheng, Lichun; Liu, Xing; Lin, Peihao

    2015-06-01

    The Pr2Fe17-xNix (X=0.0, 0.2, 0.6, 1.0) alloy powders were obtained by arc smelting and high energy ball milling method. The phase structure, morphology and particle size of the powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser diffraction-based particle size analyzer, respectively. The saturation magnetization and electromagnetic parameters were determined by vibrating sample magnetometer (VSM) and vector network analyzer (VNA), respectively. The results indicate that the lattice parameter and the saturation magnetization of Pr2Fe17-xNix alloys decrease with increasing Ni content. And the minimum absorption peak frequency shifts towards the higher region with increasing Ni content. Compared to the powders without heat treatment, the powders tempered at 100 °C for 2 h have better absorbing properties. The minimum reflectivity peak value of Pr2Fe16Ni alloy reaches about -23.6 dB at 2.72 GHz with the matching thickness of 3.5 mm.

  13. Corrosion Behavior of Ti-55Ni-1.2Co High Stiffness Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Norwich, Dennis W.; Ehrlinspiel, Michael

    2014-07-01

    The corrosion behavior of high stiffness nominal Ti-55Ni-1.2Co (wt.%) shape memory alloys (SMAs) was systematically investigated in the present study including straight wires, wire-formed stents, and laser-cut stents. It was found that the corrosion behavior of Ti-55Ni-1.2Co alloys is comparable with those of binary NiTiNol counterparts, which is attributed to the small alloying amount of cobalt. Additionally, the corrosion resistance of high stiffness Ti-55Ni-1.2Co SMAs is independent of the stent-forming method. To explore the galvanic corrosion susceptibility between Ti-55Ni-1.2Co and binary NiTiNol alloys, a NiTiNol sleeve was laser welded to the Ti-55Ni-1.2Co stent. Interestingly, there is no galvanic corrosion observed in this NiTiCo-NiTiNol component, even after immersion of the component in phosphate-buffered saline solution at 37 °C for three months. This study will shed some light on the industrial applications of high stiffness Ti-55Ni-1.2Co shape memory alloys.

  14. Synthesis, characterization, and microwave absorption properties of Fe-40 wt%Ni alloy prepared by mechanical alloying and annealing

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Feng, Yongbao; Qiu, Tai

    2011-12-01

    Fe-40 wt%Ni alloys with granular shape and flake shape were prepared by a mechanical alloying (MA) and annealing method. The phase composition and morphology of the FeNi alloys, electromagnetic parameters, and microwave absorbing properties of the silicone rubber composite absorbers filled with the as-prepared FeNi alloy particles were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) and vector network analyzer. The XRD results indicate that the crystalline structures of the Fe-40 wt%Ni alloys prepared by both one-step and two-step MA processes are face-centered cubic (fcc) Ni (Fe) solid solutions, and the structures can be retained after annealing at 600 °C for 2 h. SEM images show that the FeNi alloy powders for one-step process have a granular shape; however the particles turned into flake form when they were sequentially milled with absolute ethyl alcohol. With the increase in thickness of composite absorber, the reflection loss (RL) decreases, and the peak for minimum reflection loss shifts towards the lower frequency range. Compared to the absorbers filled with the granular FeNi alloy, the absorbers filled with flaky FeNi alloys possess higher complex permittivities and permeabilities and have a lower RL and peak frequency under the same thickness. Microwave absorbing materials with a low reflection loss peak in the range of 1-4 GHz are obtained, and their microwave absorbing properties can be adjustable by changing their thicknesses.

  15. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via

  16. Intergranular diffusion and embrittlement of a Ni-16Mo-7Cr alloy in Te vapor environment

    NASA Astrophysics Data System (ADS)

    Cheng, Hongwei; Li, Zhijun; Leng, Bin; Zhang, Wenzhu; Han, Fenfen; Jia, Yanyan; Zhou, Xingtai

    2015-12-01

    Nickel and some nickel-base alloys are extremely sensitive to intergranular embrittlement and tellurium (Te) enhanced cracking, which should be concerned during their serving in molten salt reactors. Here, a systematic study about the effects of its temperature on the reaction products at its surface, the intergranular diffusion of Te in its body and its embrittlement for a Ni-16Mo-7Cr alloy contacting Te is reported. For exposed to Te vapor at high temperature (823-1073 K), the reaction products formed on the surface of the alloy were Ni3Te2, CrTe, and MoTe2, and the most serious embrittlement was observed at 1073 K. The kinetic measurement in terms of Te penetration depth in the alloy samples gives an activation energy of 204 kJ/mol. Electron probe microanalysis confirmed the local enrichment of Te at grain boundaries. And clearly, the embrittlement was results from the intergranular diffusion and segregation of element Te.

  17. STM/AFM studies of the evolution of morphology of electroplated Ni/W alloys

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Younes, O.; Ashkenasy, N.; Shacham-Diamand, Y.; Gileadi, E.

    2002-11-01

    The surface morphology evolution of Ni/W alloys was studied, as a function of the alloy composition. Using the modified plating baths developed in our laboratory recently, electroplated Ni/W alloys with different W content, in the range of 7-67 atom percent (a/o), can be obtained. This was found to lead to different structures, ranging from polycrystalline fcc-Ni type structure to amorphous, followed by orthorhombic with increasing W content in the alloy. Powder XRD was studied to determine the crystal structures. Ex situ STM, AFM and SEM were used to study in detail the surface morphologies of the different alloys, and their evolution with increasing W content. The important findings are that a mixture of two crystalline forms can give rise to an amorphous structure. Hillocks that are usually a characteristic of epitaxial growth can also exist in the amorphous alloys. Oriented scratches caused by stress can also be formed. Up to 20 a/o of W is deposited in the alloys in crystalline form, with the fcc-Ni type structure. Between 20 and about 40 a/o an amorphous structure is observed, and above that an orthorhombic crystal structure is seen, which is characteristic of the NiW binary alloy. Careful choice of the composition of the plating bath allowed us to deposit an alloy containing 67 a/o W, which corresponds to the composition NiW 2.

  18. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.

  19. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  20. Evaluation of high strength, high conductivity CuNiBe alloys for fusion energy applications

    SciTech Connect

    Zinkle, Steven J

    2014-06-01

    candidate for certain fusion energy structural applications. Conversely, CuNiBe may not be preferred at intermediate temperatures of 250-500 C due to the poor ductility and fracture toughness of CuNiBe alloys at temperatures >250 C. The potential deformation mechanisms responsible for the transition from transgranular to intergranular fracture are discussed. The possible implications for other precipitation hardened alloys such as nickel based superalloys are briefly discussed.

  1. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  2. A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhu, Huaiyu; Yang, Guangming; Park, Hee Jung; Jung, Doh Won; Kwak, Chan; Shao, Zongping

    2014-07-01

    In this study, a new anode catalyst based on a NiFeCu alloy is investigated for use in direct-methane solid oxide fuel cells (SOFCs). The influence of the conductive copper introduced into the anode catalyst layer on the performance of the SOFCs is systematically studied. The catalytic activity for partial oxidation of methane and coking resistance tests are proposed with various anode catalyst layer materials prepared using different methods, including glycine nitrate process (GNP), physical mixing (PM) and impregnation (IMP). The surface conductivity tests indicate that the conductivities of the NiFe-ZrO2/Cu (PM) and NiFe-ZrO2/Cu (IMP) catalysts are considerably greater than that of NiFe-ZrO2/Cu (GNP), which is consistent with the SEM results. Among the three preparation methods, the cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer performs best on CH4-O2 fuel, especially under reduced temperatures, because the coking resistance should be considered in real fuel cell conditions. The cell containing the NiFe-ZrO2/Cu (IMP) catalyst layer also delivers an excellent operational stability using CH4-O2 fuel for 100 h without any signs of decay. In summary, this work provides new alternative anode catalytic materials to accelerate the commercialization of SOFC technology.

  3. Oxidation Behavior and Electrical Properties of NiO- and Cr2O3- Forming Alloys for Solid Oxide Fuel Cell Interconnects.

    SciTech Connect

    Brady, Michael P; Pint, Bruce A; Lu, Z G; Zhu, Jiahong; Milliken, C; kreidler, E; Miller, Leslie S; Armstrong, Timothy R.; Walker, Larry R

    2006-01-01

    The goal of this paper was to determine if NiO-forming alloys are a viable alternative to Cr{sub 2}O{sub 3}-forming alloys for solid-oxide fuel-cell (SOFC) metallic interconnects. The oxide-scale growth kinetics and electrical properties of a series of Li- and Y{sub 2}O{sub 3}-alloyed, NiO-forming Ni-base alloys and La-, Mn-, and Ti-alloyed Fe-18Cr-9W and Fe-25Cr base ferritic Cr{sub 2}O{sub 3}-forming alloys were evaluated. The addition of Y{sub 2}O{sub 3} and Li reduced the NiO scale growth rate and increased its electrical conductivity. The area-specific-resistance (ASR) values were comparable to those of the best (lowest ASR) ferritic alloys examined. Oxidation of the ferritic alloys at 800 C in air and air+10% H{sub 2}O (water vapor) indicated that Mn additions resulted in faster oxidation kinetics/thicker oxide scales, but also lower oxide scale ASRs. Relative in-cell performance in model SOFC stacks operated at 850 C indicated a 60-80% reduction in ASR by Ni+Y{sub 2}O{sub 3}, Ni+Y{sub 2}O{sub 3}, Li, and Fe-25Cr+La,Mn,Ti interconnects over those made from a baseline, commercial Cr{sub 2}O{sub 3}-forming alloy. Collectively, these results indicate that NiO-forming alloys show potential for use as metallic interconnects.

  4. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  5. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  6. Effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-03-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  7. The effect of temperature and stress on creep behavior of ultrafine grained nanocrystalline Ni-3 at% Zr alloy

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Pal, Snehanshu

    2017-02-01

    In this paper, molecular dynamics (MD) simulation based study of creep behavior for nanocrystalline (NC) Ni-3 at% Zr alloy having grain size 6 nm has been performed using embedded atom method (EAM) potential to study the influence of variation of temperature (1220-1450 K) as well as change in stress (0.5-1.5 GPa) on creep behavior. All the simulated creep curves for this ultra-fine grained NC Ni-Zr alloy has extensive tertiary creep regime. Primary creep regime is very short and steady state creep part is almost absent. The effect of temperatures and stress is prominent on the nature of the simulated creep curves and corresponding atomic configurations. Additionally, mean square displacement calculation has been performed at 1220 K, 1250 K, 1350 K, and 1450 K temperatures to correlate the activation energy of atomic diffusion and creep. The activation energy of creep process found to be less compared to activation energies of self-diffusion for Ni and Zr in NC Ni-3 at% Zr alloy. Formation of martensite is identified during creep process by common neighbour analysis. Presence of dislocations is observed only in primary regime of creep curve up till 20 ps, as evident from calculated dislocation density through MD simulations. Coble creep is found to be main operative mechanism for creep deformation of ultrafine grained NC Ni-3 at% Zr alloy.

  8. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

    NASA Astrophysics Data System (ADS)

    Song, Jie; Field, Robert; Konitzer, Doug; Kaufman, Michael

    2017-02-01

    In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ'-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ' precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ' precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

  9. Tissue Response to Base-Metal Dental Alloys.

    DTIC Science & Technology

    RESPONSE(BIOLOGY), *CASTING ALLOYS, *BASE METAL, * DENTAL PROSTHESES, TISSUES(BIOLOGY), COMPATIBILITY, NICKEL ALLOYS, BERYLLIUM, DENTISTRY, CANCER, HISTOLOGY, DENTAL IMPLANTOLOGY , COBALT ALLOYS, CHROMIUM ALLOYS.

  10. Alloying effects on mechanical and metallurgical properties of NiAl

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Lee, E.H.; George, E.P.

    1993-06-01

    Alloying effects were investigated in near-stoichiometric NiAl for improving its mechanical and metallurgical properties. Ternary additions of 19 elements at levels up to 10 at. % were added to NiAl; among them, molybdenum is found to be most effective in improving the room-temperature ductility and high-temperature strength. Alloying with 1.0 {plus_minus} 0.6% molybdenum almost doubles the room-temperature tensile ductility of NiAl and triples its yield strength at 1000C. The creep properties of molybdenum-modified NiAl alloys can be dramatically improved by alloying with up to 1% of niobium or tantalum. Because of the low solubilities of molybdenum and niobium in NiAl, the beneficial effects mainly come from precipitation hardening. Fine and coarse precipitates are revealed by both transmission electron microscopy (TEM) and electron microprobe analyses. Molybdenum-containing alloys possess excellent oxidation resistance and can be fabricated into rod stock by hot extrusion at 900 to 1050C. This study of alloying effects provides a critical input for the alloy design of ductile and strong NiAl aluminide alloys for high-temperature structural applications.

  11. Magnetocaloric effect with low magnetic hysteresis loss in ferromagnetic Ni-Mn-Sb-Si alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Ruochen; Qian, Mingfang; Zhang, Xuexi; Qin, Faxiang; Wei, Longsha; Xing, Dawei; Cui, Xiping; Sun, Jianfei; Geng, Lin; Peng, Huaxin

    2017-04-01

    Giant magnetocaloric effect in Ni-Mn-X (X=In, Sn, Sb) Heusler alloys has been revealed due to the significant shift of the martensite transformation temperatures under a bias magnetic field. However, the magnetic hysteresis during the magnetization and demagnetization cycles creates a large hysteresis loss and reduces the refrigeration capacity. Here we demonstrated that the magnetic hysteresis loss in Ni-Mn-Sb alloys was effectively reduced by Si-doping. The quaternary Ni49.0Mn38.4Sb11.7Si0.9 alloy exhibited martensite and magnetic transitions around room temperature. Maximum magnetic entropy change ΔSm 9.4 J/kg K and working temperature interval 7.0 K were achieved attributed to the martensite transformation under a magnetic field of 5 T. Meanwhile, the average magnetic hysteresis loss for Ni49.0Mn38.4Sb11.7Si0.9 alloy was 2.1 J/kg, much smaller than that for Ni49.0Mn38.5Sb12.5 alloy, 11.4 J/kg. As a result, a refrigeration capacity of 50.2 J/kg was obtained in the Ni49.0Mn38.4Sb11.7Si0.9 alloy. This result shows that Si-doped Ni-Mn-Sb alloys may act as a potential material system for magnetic refrigeration.

  12. Appropriate deposition parameters for formation of fcc Co-Ni alloy nanowires during electrochemical deposition process

    NASA Astrophysics Data System (ADS)

    Mukhtar, Aiman; Shahzad Khan, Babar; Mehmood, Tahir

    2016-12-01

    The effect of deposition potential on the crystal structure and composition of Co-Ni alloy nanowires is studied by XRD, FE-SEM and EDX. The alloy nanowires deposited at -3.2 V are metastable fcc phase Co-Ni. The alloy nanowires deposited at -1.8 V are hcp phase Co-Ni. The formation of the metastable fcc alloy nanowires can be attributed to smaller critical clusters formed at the high potential as the smaller critical clusters favor fcc structure because of the significant surface energy effect. The content of Co inside nanowires increases with increasing potential. This can be understood by the polarization curves of depositing Co and Ni nanowires, which show that the current density ratio of Ni to Co at low potential has larger value than that at high potential.

  13. Electrodeposition of high corrosion resistance Cu/Ni-P coating on AZ91D magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Shan; Cao, Fahe; Chang, Linrong; Zheng, JunJun; Zhang, Zhao; Zhang, Jianqing; Cao, Chunan

    2011-08-01

    High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density ( Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.

  14. Environmentally Assisted Cracking of Commercial Ni-Cr-Mo Alloys - A Review

    SciTech Connect

    Rebak, R B

    2004-11-09

    Nickel-Chromium-Molybdenum alloys (Ni-Cr-Mo) are highly resistant to general corrosion, localized corrosion and environmentally assisted cracking (EAC). Cr acts as a beneficial element under oxidizing acidic conditions and Mo under reducing conditions. All three elements (Ni, Cr and Mo) act synergistically to provide resistance to EAC in environments such as hot concentrated chloride solutions. Ni-Cr-Mo alloys may suffer EAC in environments such as hot caustic solutions, hot wet hydrofluoric acid (HF) solutions and in super critical water oxidation (SCWO) applications. Not all the Ni-Cr-Mo alloys have the same susceptibility to cracking in the mentioned environments. Most of the available data regarding EAC is for the oldest Ni-Cr-Mo alloys such as N10276 and N06625.

  15. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    PubMed Central

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-01-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections. PMID:27897182

  16. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application.

    PubMed

    Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F

    2016-11-29

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  17. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  18. Microstructure and corrosion behaviour in biological environments of the new forged low-Ni Co-Cr-Mo alloys.

    PubMed

    Hiromoto, Sachiko; Onodera, Emi; Chiba, Akihiko; Asami, Katsuhiko; Hanawa, Takao

    2005-08-01

    Corrosion behaviour and microstructure of developed low-Ni Co-29Cr-(6, 8)Mo (mass%) alloys and a conventional Co-29Cr-6Mo-1Ni alloy (ASTM F75-92) were investigated in saline solution (saline), Hanks' solution (Hanks), and cell culture medium (E-MEM + FBS). The forging ratios of the Co-29Cr-6Mo alloy were 50% and 88% and that of the Co-29Cr-8Mo alloy was 88%. Ni content in the air-formed surface oxide film of the low-Ni alloys was under the detection limit of XPS. The passive current densities of the low-Ni alloys were of the same order of magnitude as that of the ASTM alloy in all the solutions. The passive current densities of all the alloys did not significantly change with the inorganic ions and the biomolecules. The anodic current densities in the secondary passive region of the low-Ni alloys were lower than that of the ASTM alloy in the E-MEM + FBS. Consequently, the low-Ni alloys are expected to show as high corrosion resistance as the ASTM alloy. On the other hand, the passive current density of the Co-29Cr-6Mo alloy with a forging ratio of 50% was slightly lower than that with a forging ratio of 88% in the saline. The refining of grains by further forging causes the increase in the passive current density of the low-Ni alloy.

  19. The development of lightweight hydride alloys based on magnesium

    SciTech Connect

    Guthrie, S.E.; Thomas, G.J.; Yang, N.Y.C.; Bauer, W.

    1996-02-01

    The development of a magnesium based hydride material is explored for use as a lightweight hydrogen storage medium. It is found that the vapor transport of magnesium during hydrogen uptake greatly influences the surface and hydride reactions in these alloys. This is exploited by purposely forming near-surface phases of Mg{sub 2}Ni on bulk Mg-Al-Zn alloys which result in improved hydrogen adsorption and desorption behavior. Conditions were found where these near-surface reactions yielded a complex and heterogeneous microstructure that coincided with excellent bulk hydride behavior. A Mg-Al alloy hydride is reported with near atmospheric plateau pressures at temperatures below 200{degrees}C. Additionally, a scheme is described for low temperature in-situ fabrication of Mg{sub 2}Ni single phase alloys utilizing the high vapor pressure of Mg.

  20. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    SciTech Connect

    Pereira, J.C.; Zambrano, J.C.; Afonso, C.R.M.; Amigó, V.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock. High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high porosity and

  1. Dealloying NiCo and NiCoCu Alloy Thin Films Using Linear Sweep Voltammetry

    NASA Astrophysics Data System (ADS)

    Peecher, Benjamin; Hampton, Jennifer

    When electrodeposited into thin films, metals have well-known electrochemical potentials at which they will be removed from the film. These potential differences can be utilized to re-oxidize only certain metals in an alloy, altering the film's structure and composition. Here we discuss NiCo and NiCoCu thin films' response to linear sweep voltammetry (LSV) as a means of electrochemical dealloying. For each of four different metal ratios, films were dealloyed to various potentials in order to gain insight into the evolution of the film over the course of the LSV. Capacitance, topography, and composition were examined for each sample before and after linear sweep voltammetry was performed. For NiCo films with high percentages of Ni, dealloying resulted in almost no change in composition, but did result in an increased capacitance, with greater increases occurring at higher LSV potentials. Dealloying also resulted in the appearance of large (100-1000 nm) pores on the surface of the film. For NiCoCu films with high percentages of Ni, Cu was almost completely removed from the film at LSV potentials greater than 500 mV. The LSV first removed larger copper-rich dendrites from the film's surface before creating numerous nano-pores, resulting in a net increase in area. This work is supported by an Award to Hope College from the HHMI Undergraduate Science Education Program, the Hope College Department of Physics Frissel Research Fund, and the National Science Foundation under Grants RUI-DMR-1104725 and MRI-CHE-0959282.

  2. [Studies on silver soldering of super-elastic Ti-Ni alloy wire to Co-Cr alloy wire].

    PubMed

    Kuroda, K

    1994-12-01

    In order to attain joining the super-elastic Ti-Ni alloy wire to the Co-Cr alloy wire and be able to maintain the super-elasticity of the Ti-Ni alloy wire, a new soldering method was devised. The silver solder was first molten on the 0.016 x 0.022 inch Co-Cr alloy wire (Co-Cr) and then flowed onto the 0.016 x 0.022 inch super-elastic Ti-Ni alloy wire (Ti-Ni) to form soldering. The specimens of soldered Ti-Ni to Co-Cr butt joint, TN-CC, were examined for its super-elasticity, torsional strength, tensile strength and the metallographic structure of the soldered joint. The findings were as follows: 1. TN-CC still maintained its super-elasticity. 2. The torsional strength of TN-CC was equal to that of Ti-Ni. The tensile strength of TN-CC was 73% of that of Ti-Ni. 3. The tensile strength of TN-CC immersed in 1%NaCl solution at 37 degrees C for 30 days was considered to be still strong enough for clinical use. 4. During the tensile strength test, the breakage of TN-CC occurred at the area of merger of the solder and Ti-Ni. As the reason for this breakage, it suggested that Ti-Ni was stretched and narrowed at the soldered area and that the Sn-rich phase in the solder was induced along Ti-Ni. 5. This new soldering method was shown to be useful in clinical cases, and the fabrication of new orthodontic appliance using two distinct types of wire, one to independently move teeth and the other to be the anchorage, has already been developed.

  3. Electroless Ni alloy plating as a diffusion barrier for through silicon vias in three-dimensional packaging

    NASA Astrophysics Data System (ADS)

    Kim, Taeyoo; Ahn, Byungwook; Lim, SeungKyu; Son, Hwajin; Suh, Sujeong

    2016-02-01

    Ni- and Co-based amorphous films are alternative diffusion barrier materials for Cu interconnection in three-dimensional (3D) packaging applications. In this paper, electroless Ni-P and Ni-W-P films deposited in through-silicon vias (TSVs) were prepared as a diffusion barrier and seed layer of Cu filling by using Sn-Pd activation pretreatment. The thermal stability of the electroless Ni alloy films subjected to rapid thermal annealing (RTA) in H2 atmosphere was investigated. The barrier properties of the electroless Ni alloy films were evaluated over a range of temperatures using auger electron spectroscopy (AES) and energy dispersive X-ray spectroscopy (EDS) line-scan. The microstructures, crystal structures and electrical resistivity were also examined. It was found that Ni alloy films are amorphous as deposited, that the films retain amorphous or amorphous-like structures after undergoing annealing at 400 °C for 1 h, and that they are feasible for the diffusion barrier layer for 3D Cu interconnect technology.

  4. Engineered Coatings for Ni Alloys in High Temperature Reactors

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth A.; Yang, James Y.; Kumar, Deepak; Was, Gary S.; Levi, Carlos G.

    2013-02-01

    Alloy 617 is a candidate material for the intermediate heat exchanger of the He-cooled very high temperature reactor. At target temperatures ≥1223 K (950 °C), low level impurities in the gas stream may cause carburization, decarburization, and/or oxidation of 617 with deleterious effects on its mechanical properties. The chromia scale formed naturally by 617 does not provide adequate protection in the expected environment. Alpha alumina offers a greater potential as an effective diffusion barrier with superior stability, but it requires modification of the alloy surface. This work explores two approaches to surface modification based on aluminizing, either alone or in combination with FeCrAlY cladding, followed by pre-oxidation to form alpha alumina. Both approaches yield coatings with promising diffusional stability on alloy 617. Initial corrosion studies in impure He environments reveal that the alpha alumina is stable and protects the underlying substrate in both carburizing and decarburizing environments.

  5. Plasma Arc Melting (PAM) and Corrosion Resistance of Pure NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Tuissi, A.; Rondelli, G.; Bassani, P.

    2015-03-01

    Plasma arc melting (PAM) as a suitable non-contaminating melting route for manufacturing high-quality NiTi alloy was successfully examined. The corrosion resistance of PAM Nitinol was evaluated by both potentiodynamic and potentiostatic tests and compared with lower purity NiTi produced by vacuum induction melting (VIM). For the electro-polished surfaces, excellent corrosion resistance of NiTi comparable with the Ti alloys was found with no pitting up to 800 mV versus saturated calomel electrode in simulated body fluid at 37 °C. Potentiostatic results of PAM Nitinol indicate slightly better corrosion resistance than the lower quality VIM alloy.

  6. Theory of the Invar Effect in FeNi Alloy

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro

    1981-07-01

    Anomalous thermal expansion of FeNi alloy is calculated on the basis of Liberman-Pettifor’s virial theorem and the full single site approximation in the functional integral method. Results explain well the Invar effect. In general, the electronic contribution to the thermal expansion consists of three terms, i.e. the positive term proportional to the specific heat, the local moment term caused by the temperature variation of the amplitudes of the local moments and the term due to the s-d charge transfer. It is verified that the large negative thermal expansion of the electron system is caused by the local moment term. The lattice parameter, the bulk modulus at T{=}0 K and other magnetic quantities are also calculated, which are consistent with the experimental results.

  7. Supercooling and structure of levitation melted Fe-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Flemings, M. C.

    1983-01-01

    A study has been made of the effect of supercooling, quenching rate, growth inhibitors, and grain refiners on the structure of levitation-melted Fe- 25 pct Ni alloys. A combination of three morphologies, dendritic, spherical, and mixed dendritic and spherical, is observed in samples superheated or supercooled by less than 175 K. At larger supercooling, however, only the spherical morphology is observed. The grain size and the grain boundary shape are found to be strongly dependent on the subgrain morphology but not on the quenching temperature. Considerable grain growth is evident in samples with spherical and mixed morphologies but not in the dendriitic samples. The average cooling rates during solidification and the heat transfer coefficients at the metal-quenching medium boundary are calculated. For samples solidified in water, molten lead, and ceramic molds, the heat transfer coefficients are 0.41, 0.52, and 0.15 w/sq cm, respectively.

  8. Diffusive Interaction Between Ni-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Tkacz-Śmiech, Katarzyna; Danielewski, Marek; Bożek, Bogusław; Berent, Katarzyna; Zientara, Dariusz; Zajusz, Marek

    2017-03-01

    In high-temperature coatings, welded parts, and a range of other applications, components in the contact zone interdiffuse at elevated temperatures and may react to change the phase composition. The diffusion zone can be complex and can consist of sequential layers of intermediate phases, solid solutions, and in the case of multicomponent systems also of multiphase layers. In this work, the interdiffusion in Ni-Cr-Al alloys is studied experimentally and modeled numerically. The diffusion multiples were prepared by hot isostatic pressing and post-annealing at 1473 K (1200 °C). The concentration profiles were measured with wide-line EDS technique which allowed obtaining high-accuracy diffusion paths. The experimental profiles and diffusion paths were compared with numerical results simulated with application of very recent model of interdiffusion in muticomponent-multiphase systems. The calculated and experimental data show good agreement.

  9. Fe-based long range ordered alloys

    DOEpatents

    Liu, Chain T; Inouye, Henry; Schaffhauser, Anthony C.

    1980-01-01

    Malleable long range ordered alloys having high critical ordering temperatures exist in the V(Co,Fe).sub.3 and V(Co,Fe,Ni).sub.3 system having the composition comprising by weight 22-23% V, 35-50% Fe, 0-22% Co and 19-40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22-23% V, 35-45% Fe, 0-10% Co, 25-35% Ni; 22-23% V, 28-33% Ni and the remainder Fe; and 22-23% V, 19-22% Ni, 19-22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  10. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  11. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Douglass, D. L.; Nasrallah, M.

    1974-01-01

    The investigation reported included a determination of the optimum composition of a Ni-Cr-Al ternary alloy with respect to oxidation resistance and minimum film-spalling tendencies. Yttrium and thorium in small amounts were added to the ternary alloy and an investigation of the oxidation mechanism and the oxide scale adherence was conducted. It was found that the oxidation mechanism of Ni-Cr-Al ternary alloys depends upon the composition of the alloy as well as the time, oxygen pressure, and temperature of oxidation.

  12. Several Issues in the Development of Ti-Nb-Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Hee Young; Miyazaki, Shuichi

    2016-12-01

    Ni-free Ti-based shape memory alloys, particularly Ti-Nb-based alloys, have attracted increasing attraction since the early 2000s due to their wide application potentials in biomedical fields. Recently, there has been significant progress in understanding the martensitic transformation behavior of Ti-Nb-based alloys and many novel superelastic alloys have been developed. The superelastic properties of Ti-Nb-based alloys have been remarkably improved through the optimization of alloying elements and microstructure control. In this paper, in order to explore and establish the alloy design strategy, several important issues in the development of Ti-Nb-based shape memory alloys are reviewed. Particularly, the effects of alloying elements on the martensitic transformation temperature and the transformation strain are analyzed. The effects of omega phase and texture on the superelastic properties are also discussed.

  13. Intelligent Computation for Optimal Fabrication Condition of a Protein Chip with Ni-Co Alloy-Coated Surface.

    PubMed

    Chang, Yaw-Jen; Chang, Cheng-Hao

    2016-06-01

    Based on the principle of immobilized metal affinity chromatography (IMAC), it has been found that a Ni-Co alloy-coated protein chip is able to immobilize functional proteins with a His-tag attached. In this study, an intelligent computational approach was developed to promote the performance and repeatability of a Ni-Co alloy-coated protein chip. This approach was launched out of L18 experiments. Based on the experimental data, the fabrication process model of a Ni-Co protein chip was established by using an artificial neural network, and then an optimal fabrication condition was obtained using the Taguchi genetic algorithm. The result was validated experimentally and compared with a nitrocellulose chip. Consequentially, experimental outcomes revealed that the Ni-Co alloy-coated chip, fabricated using the proposed approach, had the best performance and repeatability compared with the Ni-Co chips of an L18 orthogonal array design and the nitrocellulose chip. Moreover, the low fluorescent background of the chip surface gives a more precise fluorescent detection. Based on a small quantity of experiments, this proposed intelligent computation approach can significantly reduce the experimental cost and improve the product's quality.

  14. The dependence of helium generation rate on nickel content of Fe-Cr-Ni alloys irradiated at high dpa levels in fast reactors

    SciTech Connect

    Garner, F.A.; Oliver, B.M.; Greenwood, L.R.

    1997-04-01

    With a few exceptions in the literature, it is generally accepted that it is nickel in Fe-Cr-Ni alloys that produces most of the transmutant helium and that the helium generation rate should scale linearly with the nickel content. Surprisingly, this assumption is based only on irradiations of pure nickel and has never been tested in an alloy series. There have also been no extensive tests of the predictions for helium production in alloys in various fast reactors spectra.

  15. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface

    NASA Astrophysics Data System (ADS)

    Fu, Hui; Wu, Wenshi; Dou, Yang; Liu, Baozhong; Li, Hanning; Peng, Qiuming

    2016-07-01

    A strategy of low-angle orientation dendrite interface-high index planes-which prepared by super-high pressure (SHP) technique, is proposed and successfully improved the hydrogen storage properties of Mg based materials for the first time, wherein a simple binary Mg-Ni alloy is used as a sample to elucidate its related mechanisms. The phase composition, morphology variation and hydrogen storage properties of the as-cast and SHP Mg-5Ni alloys in the temperature range of 1100-1600 °C are systemically investigated. The reversible hydrogen storage capacities and plateau hydrogen pressure of the as-cast and SHP alloys are close due to the same hydrogen storage phases (Mg and Mg2Ni). Note that although SHP treatment at 1600 °C has a large weight fraction of Mg6Ni compound, it still effectively reduces the onset temperature of dehydriding (∼262 °C), as well as improves the hydrogen desorption kinetics at low temperatures and structural integrity. The low onset temperature and outstanding hydrogen sorption/desorption kinetics are mainly associated with the formation of a large number of dendrite interface, in which the hydrogen atoms readily occur "zig-zag" jumps along {11-20} prismatic planes. This dendrite interface of high index planes which prepared by SHP technique paves a new pathway to enhance the hydrogen storage performances of magnesium based alloys.

  16. Electrochemical Testing of Ni-Cr-Mo-Gd Alloys

    SciTech Connect

    T. E. Lister; R. E. Mizia; H. Tian

    2005-10-01

    The waste package site recommendation design specified a boron-containing stainless steel, Neutronit 976/978, for fabrication of the internal baskets that will be used as a corrosion-resistant neutron-absorbing material. Recent corrosion test results gave higher-than-expected corrosion rates for this material. The material callout for these components has been changed to a Ni-Cr-Mo-Gd alloy (ASTM-B 932-04, UNS N06464) that is being developed at the Idaho National Laboratory. This report discusses the results of initial corrosion testing of this material in simulated in-package environments that could contact the fuel baskets after breach of the waste package outer barrier. The corrosion test matrix was executed using the potentiodynamic and potentiostatic electrochemical test techniques. The alloy performance shows low rates of general corrosion after initial removal of a gadolinium-rich second phase that intersects the surface. The high halide-containing test solutions exhibited greater tendencies toward initiation of crevice corrosion.

  17. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  18. Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth's inner core

    NASA Astrophysics Data System (ADS)

    Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Hu, Michael Y.; Zhao, Jiyong; Dubrovinsky, Leonid

    2016-02-01

    Iron alloyed with Ni and Si has been suggested to be a major component of the Earth's inner core. High-pressure results on the combined alloying effects of Ni and Si on seismic parameters of iron are thus essential for establishing satisfactory geophysical and geochemical models of the region. Here we have investigated the compressional (VP) and shear (Vs) wave velocity-density (ρ) relations, Poisson's ratio (ν), and seismic heterogeneity ratios (dlnρ/dlnVP, dlnρ/dlnVS, and dlnVP/dlnVS) of hcp-Fe and hcp-Fe86.8Ni8.6Si4.6 alloy up to 206 GPa and 136 GPa, respectively, using multiple complementary techniques. Compared with the literature velocity values for hcp-Fe and Fe-Ni-Si alloys, our results show that the combined addition of 9.0 wt % Ni and 2.3 wt % Si slightly increases the VP but significantly decreases the VS of hcp-Fe at a given density relevant to the inner core. Such distinct alloying effects on velocities of hcp-Fe produce a high ν of about 0.40 for the alloy at inner core densities, which is approximately 20% higher than that for hcp-Fe. Analysis of the literature high P-T results on VP and VS of Fe alloyed with light elements shows that high temperature can further enhance the ν of hcp-Fe alloyed with Ni and Si. Most significantly, the derived seismic heterogeneity ratios of this hcp alloy present a better match with global seismic observations. Our results provide a multifactored geophysical constraint on the compositional model of the inner core which is consistent with silicon being a major light element alloyed with Fe and 5 wt % Ni.

  19. An overview of the welding of Ni{sub 3}Al and Fe{sub 3}Al alloys

    SciTech Connect

    Santella, M.L.

    1996-12-31

    Weldability (degree to which defect formation is resisted when an alloy is welded) is an issue in fabrication of Ni{sub 3}Al and Fe{sub 3}Al. Work to define and improve welding of Ni{sub 3}Al and Fe{sub 3}Al alloys is reviewed and progress illustrated by examples of current activities. The cast Ni{sub 3}Al alloys currently under development, IC221M and IC396M, have low resistance to solidification cracking and hence difficult to weld. Modifications to the composition of both base alloys and weld deposits,however, increase their resistance to cracking. Crack-free, full-penetration welds were made in centrifugally cast tubes of IC221M. Tensile and stress- rupture properties of the weldments compare favorably with base metal properties. Weldability issues have limited the use of Fe{sub 3}Al alloys to weld overlay applications. Filler metal compositions suitable for weld overlay cladding were developed, and the preheat and postweld heat treatment needed to avoid cracking, were determined experimentally.

  20. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  1. Abnormal magnetization behaviors in Sm-Ni-Fe-Cu alloys

    NASA Astrophysics Data System (ADS)

    Yang, W. Y.; Zhang, Y. F.; Zhao, H.; Chen, G. F.; Zhang, Y.; Du, H. L.; Liu, S. Q.; Wang, C. S.; Han, J. Z.; Yang, Y. C.; Yang, J. B.

    2016-06-01

    The magnetization behaviors in Sm-Ni-Fe-Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu5-type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu5-type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (Hcm) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10-15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion.

  2. Microstructure and electrochemical hydrogenation/dehydrogenation performance of melt-spun La-doped Mg{sub 2}Ni alloys

    SciTech Connect

    Hou, Xiaojiang; Hu, Rui; Zhang, Tiebang Kou, Hongchao; Song, Wenjie; Li, Jinshan

    2015-08-15

    This work focuses on microstructure and electrochemical hydrogen storage properties of La-doped Mg{sub 2}Ni alloys. The alloys with nominal compositions of Mg{sub 2}Ni{sub 1−x}La{sub x} (x = 0, 0.1, 0.3, 0.5) were prepared via metallurgical smelting and melt-spun on a rotating copper wheel. The scanning electron microscope, X-ray diffraction, differential scanning calorimetry and transition electron microscope, galvanostatic charging/discharging and other electrochemical measurements were employed to investigate. The results show that the increasing of La content and melt-spinning speed favors the formation of Mg–Ni–La amorphous/nanocrystalline alloys. It is found that the melt-spun ribbons display increased discharge capacities and superior cycle stabilities compared to the as-cast alloys with and without La. The potentiodynamic polarization results indicate that melt-spun La-doped Mg{sub 2}Ni ribbons possess more positive corrosion potential E{sub corr} and exhibit relatively high corrosion resistance against the alkaline solution. The mechanism for electrochemical hydrogenation/dehydrogenation has been proposed based on the effect of microstructures on the mass/charge transfer process for electrode electrochemical reaction. - Highlights: • Nanocrystalline/amorphous Mg–Ni–La alloys are obtained by melt-spinning. • Microstructures of as-cast and rapid quenched Mg{sub 2}Ni{sub 1−x}La{sub x} alloys are investigated. • Electrochemical hydrogenation properties of experimental alloys are characterized. • Electrochemical hydrogen absorption/desorption mechanism is proposed.

  3. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation.

  4. Neutron diffraction study of a non-strichiometric Ni-Mn-Ga MSM alloy

    SciTech Connect

    Ari-Gur, Pnina; Garlea, Vasile O

    2013-01-01

    The structure and chemical order of a Heusler alloy of non-stoichiometric composition Ni-Mn-Ga were studied using constant-wavelength (1.538 ) neutron diffraction at 363K and the diffraction pattern was refined using the FullProf software. At this temperature the structure is austenite (cubic) with Fm-3m space group and lattice constant of a = 5.83913(4) [ ]. The chemical order is of critical importance in these alloys, as Mn becomes antiferromagnetic when the atoms are closer than the radius of the 3d shell. In the studied alloy the refinement of the site occupancy showed that the 4b (Ga site) contained as much as 22% Mn; that significantly alters the distances between the Mn atoms in the crystal and, as a result, also the exchange energy between some of the Mn atoms. Based on the refinement, the composition was determined to be Ni1.91Mn1.29Ga0.8

  5. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  6. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  7. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  8. The Specific Volumes and Viscosities of the Ni-Zr Liquid Alloys and their Correlation with the Glass Formability of the Alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Chung, S. K.; Rhim, W. K.

    1997-01-01

    The specific volumes and viscosities of the Ni-Zr liquid alloys as a function of temperature are determined by employing a digitizing technique and numeric analysis methods applied to the optical images of the electrostatically levitated liquid alloys.

  9. Structure and properties of Ti-Ni-Au shape memory alloys

    NASA Astrophysics Data System (ADS)

    Butler, Todd

    Ternary Ti-Ni-X based alloys, where X = Pt, Pd, Hf, Au or Zr, show promise as high temperature shape memory alloys (HTSMAs). In comparison to binary Ni-Ti alloys, some hypo-stoichiometric versions of these ternary compositions exhibit higher transformation temperatures and better mechanical stability due to the formation of nano-scale precipitates. In this study, a Ti 49Ni26Au25 (at.%) alloy was solution annealed at 1050°C for 3 hours and isothermally aged at 400°C and 550°C. A specimen was also annealed at 1050°C for 3 hours and furnace cooled. Ageing resulted in a very high peak micro-hardness for both temperatures. The structures and chemistries of the phases formed during ageing were characterized by wavelength dispersive x-ray spectroscopy (WDS), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM), three-dimensional atom probe tomography (3DAP), x-ray diffraction (XRD), and differential scanning calorimetry (DSC). It was found that ageing at both 400°C and 550°C resulted in the formation of two different precipitates. First, two variants of a (Au,Ni)4Ti3 type phase form with SADPs similar to tetragonal D1a. The proposed orientation relationships with the matrix are the following: [001]D1a || [100] B2 with (011)B2 // (310)D1a and [001¯ ]D1a || [100]B2 with {011}B2 || (310) D1a. It is then postulated that the (Au,Ni)-rich phase creates local Ti-rich regions that promote the precipitation of two Ti2(Ni,Au) variants with tetragonal (I4/mmm) type symmetry. Their proposed orientation relationships with the matrix are the following: [100]Ti2(Ni,Au) || [100]B2 with (001)B2 || (001)Ti2(Ni.Au) and (001)B2 || (100)Ti2(Ni,Au). The combination of both phases appears to inhibit martensitic transformation by stabilizing the high temperature austenite phase, as evident by no transformation peaks in the aged specimens via DSC. However, it is interesting to note that the as-cast and 1050°C furnace cooled

  10. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  11. Free-standing NiTi alloy nanowires fabricated by nanoskiving.

    PubMed

    Hou, Huilong; Hamilton, Reginald F

    2015-08-28

    We report on free-standing NiTi alloy nanowires (120 nm × 75 nm) fabricated using a technique referred to as "nanoskiving", which complements conventional thin film sputter deposition with ultramicrotomy for thin sectioning. To date, the technique has been limited to pure metals without exploring metallic alloys. Leveraging the technique for the fabrication of shape memory alloy (SMA) nanostructures meets two critical requirements: compositional control (via film deposition) and controlled dimensions (via film deposition and programmable sectioning). Microstructure and composition analysis confirm continuity of the produced nanowires and Ni and Ti elemental uniformity. Free-standing NiTi nanowires are robust and remain intact throughout physical manipulation. The fabrication of NiTi alloy nanowires by nanoskiving will advance fundamental characterization of small scale SMA behavior.

  12. On the Anomalous Thermal Expansion of FeNi Invar Alloy

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro

    1980-12-01

    The thermal expansion of FeNi invar alloy is calculated by using Liberman-Pettifor’s virial theorem and CPA-static approximation in the functional integral method. The results explain well the invar anomaly.

  13. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  14. Ni-Si Alloys for the S-I Reactor-Hydrogen Production Process Interface

    SciTech Connect

    Joseph W. Newkirk; Richard K. Brow

    2010-01-21

    The overall goal of this project was to develop Ni-Si alloys for use in vessels to contain hot, pressurized sulfuric acid. The application was to be in the decomposition loop of the thermochemical cycle for production of hydrogen.

  15. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  16. New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility.

    PubMed

    Michiardi, A; Aparicio, C; Planell, J A; Gil, F J

    2006-05-01

    Various oxidation treatments were applied to nearly equiatomic NiTi alloys so as to form a Ni-free protective oxide on the surface. Sample surfaces were analyzed by X-ray Photoelectron Spectroscopy, and NiTi transformation temperatures were determined by differential scanning calorimetry (DSC) before and after the surface treatment. An ion release experiment was carried out up to one month of immersion in SBF for both oxidized and untreated surfaces. The results show that oxidation treatment in a low-oxygen pressure atmosphere leads to a high surface Ti/Ni ratio, a very low Ni surface concentration and a thick oxide layer. This oxidation treatment does not significantly affect the shape memory properties of the alloy. Moreover, the oxide formed significantly decreases Ni release into exterior medium comparing with untreated surfaces. As a consequence, this new oxidation treatment could be of great interest for biomedical applications, as it could minimize sensitization and allergies and improve biocompatibility and corrosion resistance of NiTi shape memory alloys.

  17. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  18. Surface amorphization of NiTi alloy induced by Ultrasonic Nanocrystal Surface Modification for improved mechanical properties.

    PubMed

    Ye, Chang; Zhou, Xianfeng; Telang, Abhishek; Gao, Hongyu; Ren, Zhencheng; Qin, Haifeng; Suslov, Sergey; Gill, Amrinder S; Mannava, S R; Qian, Dong; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Vasudevan, Vijay K

    2016-01-01

    We report herein the effects of Ultrasonic Nano-crystal Surface Modification (UNSM), a severe surface plastic deformation process, on the microstructure, mechanical (hardness, wear), wettability and biocompatibility properties of NiTi shape memory alloy. Complete surface amorphization of NiTi was achieved by this process, which was confirmed by X-ray diffraction and high-resolution transmission electron microscopy. The wear resistance of the samples after UNSM processing was significantly improved compared with the non-processed samples due to increased surface hardness of the alloy by this process. In addition, cell culture study demonstrated that the biocompatibility of the samples after UNSM processing has not been compromised compared to the non-processed sample. The combination of high wear resistance and good biocompatibility makes UNSM an appealing process for treating alloy-based biomedical devices.

  19. Radiation Hardening of Ni-Ti Alloy Under Implantation of Inert Gases Heavy Ions

    NASA Astrophysics Data System (ADS)

    Poltavtseva, V.; Larionov, A.; Satpaev, D.; Gyngazova, M.

    2016-02-01

    The consistent patterns of changes in nano- and micro-hardness of Ni-Ti alloy with the shape memory effect after implantation of 40Ar8+ and 84Kr15+ ions depending on phase composition and implantation parameters have been experimentally studied. It has been shown that softening by 4 and 14% near the surface of the two-phase Ni-Ti alloy after implantation of 40Ar8+ and 84Kr15+ ions is connected with the differences in the nanostructure. Hardening of the near-surface layer of this alloy maximum by 118% at h = ∼3 pm and single-phase alloy in the entire region of the 40Ar8+ and 84Kr15+ ions range and in the out-range (h > Rp) area have been detected. The role of the current intensity of the ions beam in the change of nanohardness for the two-phase Ni-Ti alloy has been established.

  20. Thermoelastic Martensitic Transformations in Single Crystals of FeNiCoAlX(B) Alloys

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Platonova, Yu. N.; Poklonov, V. V.; Kukshauzen, I. V.; Kukshauzen, D. A.; Panchenko, M. Yu.; Reunova, K. A.

    2016-03-01

    Using single crystals of Fe-based disordered alloys (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% X (0.05% B) (at.%) (X = Ti, Nb(B), (Ti + Nb)B), undergoing thermoelastic γ-α '-martensitic transformations (MTs), it is shown that precipitation of particles of the ordered γ'-phase in the course of aging at T = 973 K for 5 h results in the development of shape memory (SME) and superelasticity (SE) effects. It is experimentally found that variation in chemical composition and size of disperse particles of the γ'-phase allows controlling both mechanical and functional properties - SME and SE.

  1. Effect of warm rolling on the martensite transformation temperatures, shape memory effect, and superelasticity in Ti49.2Ni50.8 alloy

    NASA Astrophysics Data System (ADS)

    Lotkov, Aleksander; Zhapova, Dorzhima; Grishkov, Victor; Cherniavsky, Alexander; Timkin, Victor

    2016-11-01

    The paper presents research data demonstrating the effect of warm caliber rolling on the martensite transformation temperatures, shape memory effect, and superelasticity in Ti49.2Ni50.8 (at %). The experimental values of inelastic strain in coarse-grained and microcrystalline Ti49.2Ni50.8 (at %) specimens exceed the theoretical limit of recoverable strain or maximum lattice strain for TiNi-based alloys.

  2. Rapidly solidified surface melts of Ni-B-Si-Cr brazing alloy

    NASA Astrophysics Data System (ADS)

    Tucker, T. R.; Ayers, J. D.

    1981-10-01

    Sintered powder layers of a Ni-based brazing alloy were consolidated by scanned electron beam radiation to produce a continuous fused coating. The surface of this coating was then remelted by laser and electron beams under differing conditions, resulting in a variety of resolidification structures. Alloy BNi2 was chosen for these studies because it exhibits substantial hardening on grain refinement and because it can be prepared in the glassy state relatively easily. Surface microhardness for BNi2 reaches a maximum of about 1200 DPH at a cooling rate approaching 105 K/s. For higher quench rates, hardness decreases and ductility increases. As the cooling rate approaches 107 k/s, overlapping beam scans produce an extended amorphous surface. A solidification rate higher than that needed to produce an amorphous structure in a single melt pass is necessary to avoid surface cracking or crystallization when overlapping melt passes are employed.

  3. A 3D porous Ni-Cu alloy film for high-performance hydrazine electrooxidation

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Lu, Zhiyi; Luo, Liang; Chang, Zheng; Sun, Xiaoming

    2016-01-01

    Structural design and catalyst screening are two most important factors for achieving exceptional electrocatalytic performance. Herein we demonstrate that constructing a three-dimensional (3D) porous Ni-Cu alloy film is greatly beneficial for improving the hydrazine oxidation reaction (HzOR) performance. A facile electrodeposition process is employed to synthesize a Ni-Cu alloy film with a 3D hierarchical porous structure. As an integrated electrode for HzOR, the Ni-Cu alloy film exhibits superior catalytic activity and stability to the Ni or Cu counterparts. The synthesis parameters are also systematically tuned for optimizing the HzOR performance. The excellent HzOR performance of the Ni-Cu alloy film is attributed to its high intrinsic activity, large electrochemical specific surface area, and 3D porous architecture which offers a ``superaerophobic'' surface to effectively remove the gas product in a small volume. It is believed that the Ni-Cu alloy film electrode has potential application in direct hydrazine fuel cells as well as other catalytic fields.Structural design and catalyst screening are two most important factors for achieving exceptional electrocatalytic performance. Herein we demonstrate that constructing a three-dimensional (3D) porous Ni-Cu alloy film is greatly beneficial for improving the hydrazine oxidation reaction (HzOR) performance. A facile electrodeposition process is employed to synthesize a Ni-Cu alloy film with a 3D hierarchical porous structure. As an integrated electrode for HzOR, the Ni-Cu alloy film exhibits superior catalytic activity and stability to the Ni or Cu counterparts. The synthesis parameters are also systematically tuned for optimizing the HzOR performance. The excellent HzOR performance of the Ni-Cu alloy film is attributed to its high intrinsic activity, large electrochemical specific surface area, and 3D porous architecture which offers a ``superaerophobic'' surface to effectively remove the gas product in a small

  4. Processing and mechanical properties of NiAl-based in-situ composites. Ph. D. Thesis Final report

    SciTech Connect

    Johnson, D.R.

    1994-05-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  5. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  6. Stress Corrosion Cracking of Ni-Fe-Cr Alloys Relevant to Nuclear Power Plants

    NASA Astrophysics Data System (ADS)

    Persaud, Suraj

    Stress corrosion cracking (SCC) of Ni-Fe-Cr alloys and weld metals was investigated in simulated environments representative of high temperature water used in the primary and secondary circuits of nuclear power plants. The mechanism of primary water SCC (PWSCC) was studied in Alloys 600, 690, 800 and Alloy 82 dissimilar metal welds using the internal oxidation model as a guide. Initial experiments were carried out in a 480°C hydrogenated steam environment considered to simulate high temperature reducing primary water. Ni alloys underwent classical internal oxidation intragranularly resulting in the expulsion of the solvent metal, Ni, to the surface. Selective intergranular oxidation of Cr in Alloy 600 resulted in embrittlement, while other alloys were resistant owing to their increased Cr contents. Atom probe tomography was used to determine the short-circuit diffusion path used for Ni expulsion at a sub-nanometer scale, which was concluded to be oxide-metal interfaces. Further exposures of Alloys 600 and 800 were done in 315°C simulated primary water and intergranular oxidation tendency was comparable to 480°C hydrogenated steam. Secondary side work involved SCC experiments and electrochemical measurements, which were done at 315°C in acid sulfate solutions. Alloy 800 C-rings were found to undergo acid sulfate SCC (AcSCC) to a depth of up to 300 microm in 0.55 M sulfate solution at pH 4.3. A focused-ion beam was used to extract a crack tip from a C-ring and high resolution analytical electron microscopy revealed a duplex oxide structure and the presence of sulfur. Electrochemical measurements were taken on Ni alloys to complement crack tip analysis; sulfate was concluded to be the aggressive anion in mixed sulfate and chloride systems. Results from electrochemical measurements and crack tip analysis suggested a slip dissolution-type mechanism to explain AcSCC in Ni alloys.

  7. Development of Advanced Corrosion-Resistant Fe-Cr-Ni Austenitic Stainless Steel Alloy with Improved High-Temperature Strength and Creep-Resistance

    SciTech Connect

    Maziasz, P.J.; Swindeman, R.W.

    2001-06-15

    In February of 1999, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory (ORNL) and Special Metals Corporation - Huntington Alloys (formerly INCO Alloys International, Inc.) to develop a modified wrought austenitic stainless alloy with considerably more strength and corrosion resistance than alloy 800H or 800HT, but with otherwise similar engineering and application characteristics. Alloy 800H and related alloys have extensive use in coal flue gas environments, as well as for tubing or structural components in chemical and petrochemical applications. The main concept of the project was make small, deliberate elemental microalloying additions to this Fe-based alloy to produce, with proper processing, fine stable carbide dispersions for enhanced high temperature creep-strength and rupture resistance, with similar or better oxidation/corrosion resistance. The project began with alloy 803, a Fe-25Cr-35NiTi,Nb alloy recently developed by INCO, as the base alloy for modification. Smaller commercial developmental alloy heats were produced by Special Metal. At the end of the project, three rounds of alloy development had produced a modified 803 alloy with significantly better creep resistance above 815 C (1500 C) than standard alloy 803 in the solution-annealed (SA) condition. The new upgraded 803 alloy also had the potential for a processing boost in that creep resistance for certain kinds of manufactured components that was not found in the standard alloy. The upgraded 803 alloy showed similar or slightly better oxidation and corrosion resistance relative to standard 803. Creep strength and oxidation/corrosion resistance of the upgraded 803 alloy were significantly better than found in alloy 800 H, as originally intended. The CRADA was terminated in February 2003. A contributing factor was Special Metals Corporation being in Chapter 11 Bankruptcy. Additional testing, further commercial scale-up, and any potential

  8. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  9. Investigation on microstructure and martensitic transformation of neodymium-added NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Maashaa, Dovchinvanchig; Dorj, Ulzii-Orshikh; Lee, Malrey; Lee, Min Hi; Zhao, Chunwang; Dashjav, Munguntsetseg; Woo, Seon-Mi

    2016-10-01

    The effect of rare earth element neodymium (Nd) addition on the microstructure and martensitic transformation behavior of Ni50Ti50-xNdx (x = 0, 0.1, 0.3, 0.5 and 0.7 at.%) shape memory alloy was investigated by scanning electronic microscope, X-ray diffraction and differential scanning calorimetry. The results show that the microstructure of Ni-Ti-Nd ternary alloy consists of NiNd phase, NiTi2 and the NiTi matrix. A one-step martensitic transformation is observed in the alloys. The martensitic transformation temperature Ms increases sharply increasing 0.1-0.7 at.% Nd content is added.

  10. Growth of Au on Ni(110): A Semiempirical Modeling of Surface Alloy Phases

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John

    1995-01-01

    Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(110), where experiments by Pleth Nielsen el al.indicate that at low Au coverage (less than 0. 5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this paper, we present results of a theoretical modeling of this phenomenon using the recently developed Bozzolo-Ferrante-Smith method for alloys. We provide results of an extensive analysis of the growth process that strongly support the conclusions drawn from the experiment: at very low coverages, there is a tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formation as well as other alternative short-range-order patterns are discussed.

  11. Growth of Au on Ni(110): a BFS Modelling of Surface Alloy Phases

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ibanez-Meier, Rodrigo; Ferrante, John

    1994-01-01

    Recent experiments using scanning tunneling microscopy show evidence for the formation of surface alloys of otherwise immiscible metals. Such is the case for Au deposited in Ni(11), where experiments by Pleth Nielsen et al. indicate that at low Au coverage (less than 0.5 ML), Au atoms replace Ni atoms in the surface layer forming a surface alloy while the Ni atoms form islands on the surface. In this work, we present results of a theoretical modeling of this phenomenon using the recently developed BFS method for alloys. We provide results of an extensive analysis of the growth process which strongly support the conclusions drawn from the experiment; at very low coverages, there is tendency for dimer formation on the overlayer, which later exchange positions with Ni atoms in the surface layer, thus accounting for the large number of substituted dimers. Ni island formations as well as other alternative short range order patterns are discussed.

  12. Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the Solubility of carbonitrides in low-carbon low-alloy steels

    NASA Astrophysics Data System (ADS)

    Gorbachev, I. I.; Popov, V. V.; Pasynkov, A. Yu.

    2016-12-01

    Based on the CALPHAD method, a thermodynamic description of the Fe- M-V-NB-Ti-C-N system (where M is Al, Cr, Mn, Ni, or Si) has been constructed and, using this description, the solubilities of carbonitrides in austenite for low-alloy low-carbon steels with V, Nb, and Ti have been calculated using 10G2FB steel as an example. The influence of the alloy composition and temperature on the composition and amount of carbonitride phases and on the concentration of these elements in the solid solution has been analyzed.

  13. Fe-based long range ordered alloys

    DOEpatents

    Liu, C.T.

    Malleable long range ordered alloys with high critical ordering temperatures exist in the V(Co,Fe)/sub 3/ and V(Co,Fe,Ni)/sub 3/ system. The composition comprising by weight 22 to 23% V, 35 to 50% Fe, 0 to 22% Co and 19 to 40% Ni with an electron density no greater than 8.00. Excellent high temperature properties occur in alloys having compositions comprising by weight 22 to 23% V, 35 to 45% Fe, 0 to 10% Co, 25 to 35% Ni; 22 to 23% V, 28 to 33% Ni and the remainder Fe; and 22 to 23% V, 19 to 22% Co and the remainder Fe. The alloys are fabricable by casting, deforming and annealing for sufficient time to provide ordered structure.

  14. Recent breakthrough development of the magnetic shape memory effect in Ni Mn Ga alloys

    NASA Astrophysics Data System (ADS)

    Söderberg, O.; Ge, Y.; Sozinov, A.; Hannula, S.-P.; Lindroos, V. K.

    2005-10-01

    Magnetic shape memory (MSM) alloys or ferromagnetic shape memory alloy (FSMA) materials discovered by Ullakko et al (1996 Appl. Phys. Lett. 69 1966-8) have received increasing interest, since they can produce a large strain with rather high frequencies without a change in the external temperature. These materials have potential for actuator and sensor applications. MSM materials exhibit giant magnetic field induced strain (MFIS) based on the rearrangements of the crystallographic domains (twin variants). The magnetization energy of the material is lowered when such twin variants that have the easy axis of magnetization along the field start to grow due to twin boundary motion. Currently, the best working MSM materials are the near-stoichiometric Ni2MnGa Heusler alloys in which the properties are highly composition dependent. Their modulated martensitic structures, 5M and 7M, show 6% or 10% response respectively in a magnetic field less than 800 kA m-1. The MSM service temperature of the 5M alloys is between 150 and 333 K, and the optimal frequency region is up to 500 Hz. The fatigue life of the MSM elements has been shown to be at least 50 × 106 shape change cycles. This paper reviews the research work carried out at Helsinki University of Technology on MSM materials since 1998.

  15. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping.

    PubMed

    Krishna, B Vamsi; Bose, Susmita; Bandyopadhyay, Amit

    2009-05-01

    Porous NiTi alloy samples were fabricated with 12-36% porosity from equiatomic NiTi alloy powder using laser engineered net shaping (LENS). The effects of processing parameters on density and properties of laser-processed NiTi alloy samples were investigated. It was found that the density increased rapidly with increasing the specific energy input up to 50 J/mm(3). Further increase in the energy input had small effect on density. High cooling rates associated with LENS processing resulted in higher amount of cubic B2 phase, and increased the reverse transformation temperatures of porous NiTi samples due to thermally induced stresses and defects. Transformation temperatures were found to be independent of pore volume, though higher pore volume in the samples decreased the maximum recoverable strain from 6% to 4%. Porous NiTi alloy samples with 12-36% porosity exhibited low Young's modulus between 2 and 18 GPa as well as high compressive strength and recoverable strain. Because of high open pore volume between 36% and 62% of total volume fraction porosity, these porous NiTi alloy samples can potentially accelerate the healing process and improve biological fixation when implanted in vivo. Thus porous NiTi is a promising biomaterial for hard tissue replacements.

  16. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials can be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.

  17. Nano-twin Mediated Plasticity in Carbon-containing FeNiCoCrMn High Entropy Alloys

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Parish, Chad M

    2015-06-14

    Equiatomic FeNiCoCrMn alloy has been reported to exhibit promising strength and ductility at cryogenic temperature and deformation mediated by nano-twining appeared to be one of the main reasons. We use the FeNiCoCrMn alloy as a base alloy to seek further improvement of its mechanical properties by alloying additional elements, i.e., interstitial carbon. Moreover, the effects of carbon on microstructures, mechanical properties and twinning activities were investigated in two different temperatures (77 and 293 K). With addition of 0.5 at% C, the high entropy alloy still remains entirely single phase face-centered cubic (FCC) crystal structure. We found that these materials canmore » be cold rolled and recrystallized to produce a microstructure with equiaxed grains. Both strain hardening rate and strength are enhanced while high uniform elongations to fracture (~70% at 77 K and ~40% at 293 K) are still maintained. The increased strain hardening and strength could be caused by the promptness of deformation twinning in C-containing high entropy alloys.« less

  18. Kinetic study of hydrogen evolution reaction on Ni{sub 30} Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70} and Co{sub 10}Ni{sub 20}Mo{sub 70} alloy electrodes

    SciTech Connect

    Dominguez-Crespo, M.A.; Plata-Torres, M.; Torres-Huerta, A.M.; Arce-Estrada, E.M. . E-mail: earce@ipn.mx; Hallen-Lopez, J.M.

    2005-07-15

    The hydrogen evolution reaction on nanocrystalline Ni{sub 30}Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70}, and Co{sub 10}Ni{sub 20}Mo{sub 70}, metallic powders prepared by mechanical alloying was investigated with linear polarization and ac impedance methods, in 30 wt.% KOH aqueous solution at room temperature. The formation process and structural properties of these nanocrystalline materials were characterized by X-ray diffraction and transmission electron microscopy. Alloyed powders showed the presence of two phases: an fcc solid solution and intermetallic compounds of Ni, Co and Mo. Based on polarization and ac impedance measurements, an improved electrocatalytic activity for hydrogen evolution reaction was observed in mechanically alloyed Co{sub 30}Ni{sub 70} powders, which is slightly higher than milled metallic Ni powders.

  19. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  20. Development of Cu alloy anode and separator coated with Al-Ni intermetallic compound

    SciTech Connect

    Toyokura, K.; Hoshino, K.; Yamamoto, M.

    1996-12-31

    Anode made of Cu alloy and separator coated with Al-Ni intermetallic compound have been developed for VCFC. Anode of Ni alloy is usually used. However, the alternative of cost lower than Ni alloy anode should be needed, because Ni is expensive. Cu is attractive as an anode material for VCFC because it is inexpensive and electrochemically noble. However, the creep resistance of Cu is not sufficient, compared with Ni alloy. In this study, strengthening due to oxide-dispersed microstructure has been developed in Cu-Ni-Al alloy with the two-step sintering process. A wet-seal technique has been widely applied for gas-sealing and supporting of electrolyte in MCFC. Since the wet-seal area is exposed to a severe corrosive environment, corrosion resistance of material for wet sealing is related with the cell performance. Al-Ni plating with post-heat treating for stainless steel has been investigated. Stainless steel substrate was plated with Al after being coated with Ni, then heat-treated at 750 {degrees}C for 1 hour in Ar gas atmosphere. Due to the treatment, Al-Ni intermetallic compound ( mainly Al3Ni2 ) layer is formed on stainless steel surface. The long-term immersion test was carried out till 14,500 hours in 62 mol% Li{sub 2}CO{sub 3}-38 mol% K{sub 2}CO{sub 3} at 650 {degrees}C under air-30%CO{sub 2} atmosphere, for the purpose of evaluating the corrosion resistance and thermal stability of Al-Ni intermetallic compound layer in actual generating with VCFC.

  1. Atomic diffusion in liquid Ni, NiP, PdNiP, and PdNiCuP alloys

    SciTech Connect

    Chathoth, S. Mavila; Meyer, A.; Koza, M.M.; Juranyi, F.

    2004-11-22

    We investigated the self-diffusion of Ni in liquid Ni, Ni{sub 80}P{sub 20}, Pd{sub 40}Ni{sub 40}P{sub 20}, and Pd{sub 43}Ni{sub 10}Cu{sub 27}P{sub 20} at temperatures up to 1795 K with incoherent, quasielastic neutron scattering. Values of measured self-diffusion coefficients vary over the accessible temperature ranges as a function of composition only within 10%. Although mixing has a drastic effect on the liquidus temperature and the undercooling capabilities, a relation between these properties and the atomic diffusion in the liquid is not observed. Apparently, diffusive motion is governed by the packing fraction of the atoms, that is very similar in these dense liquids.

  2. Localized Corrosion of a Neutron Absorbing Ni-Cr-Mo-Gd Alloy

    SciTech Connect

    R.E. Mizia; T. E. Lister; P. J. Pinhero; T. L. Trowbridge

    2005-04-01

    The National Spent Nuclear Fuel Program, located at the Idaho National Laboratory (INL), has developed a new nickel-chromium-molybdenum-gadolinium structural alloy for storage and long-term disposal of spent nuclear fuel (SNF). The new alloy will be used for SNF storage container inserts for nuclear criticality control. Gadolinium has been chosen as the neutron absorption alloying element due to its high thermal neutron absorption cross section. This alloy must be resistant to localized corrosion when exposed to postulated Yucca Mountain in-package chemistries. The corrosion resistance properties of three experimental heats of this alloy are presented. The alloys performance are be compared to Alloy 22 and borated stainless steel. The results show that initially the new Ni-Cr-Mo-Gd alloy is less resistant to corrosion as compared to another Ni-Cr-Mo-Gd alloy (Alloy 22); but when the secondary phase that contains gadolinium (gadolinide) is dissolved, the alloy surface becomes passive. The focus of this work is to qualify these gadolinium containing materials for ASME code qualification and acceptance in the Yucca Mountain Repository.

  3. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

  4. Environmental Effects in Niobium Base Alloys and Other Selected Intermetallic Compounds

    DTIC Science & Technology

    1988-12-15

    Niobium aluminides and silicides as well as other intermetallic corn unds have potential for use in advanced gas turbines where increased operating...diffusion aluminide coatings on Ni-base alloys(10), Fe- silicides (l 1), and Ni- ’ silicides (12) indicate similar behavior to that in Figure 8. Typical... Niobium W MAR- 2 7 1983 Base Alloys and Other Selected Intermetallic Compounds &Simukx Defense Advanced Research Projects Agency . DARPA Order No. 6155

  5. Tailoring Fe-Base Alloys for Intermediate Temperature SOFC Interconnect Application

    SciTech Connect

    J.H. Zhu; M.P. Brady; H.U. Anderson

    2007-12-31

    This report summarized the research efforts and major conclusions for our SECA Phase I and II project focused on Cr-free or low Cr Fe-Ni based alloy development for intermediate temperature solid oxide fuel cell (SOFC) interconnect application. Electrical conductivity measurement on bulk (Fe,Ni){sub 3}O{sub 4} coupons indicated that this spinel phase possessed a higher electrical conductivity than Cr{sub 1.5}Mn{sub 1.5}O{sub 4} spinel and Cr{sub 2}O{sub 3}, which was consistent with the low area specific resistance (ASR) of the oxide scale formed on these Fe-Ni based alloys. For Cr-free Fe-Ni binary alloys, although the increase in Ni content in the alloys improved the oxidation resistance, and the Fe-Ni binary alloys exhibited adequate CTE and oxide scale ASR, their oxidation resistance needs to be further improved. Systematic alloy design efforts have led to the identification of one low-Cr (6wt.%) Fe-Ni-Co based alloy which formed a protective, electrically-conductive Cr{sub 2}O{sub 3} inner layer underneath a Cr-free, highly conductive spinel outer layer. This low-Cr, Fe-Ni-Co alloy has demonstrated a good CTE match with other cell components; high oxidation resistance comparable to that of Crofer; low oxide scale ASR with the formation of electrically-insulating phases in the oxide scale; no scale spallation during thermal cycling; adequate compatibility with cathode materials; and comparable mechanical properties with Crofer. The existence of the Cr-free (Fe,Co,Ni){sub 3}O{sub 4} outer layer effectively reduced the Cr evaporation and in transpiration testing resulted in a 6-fold decrease in Cr evaporation as compared to a state-of-the-art ferritic interconnect alloy. In-cell testing using an anode supported cell with a configuration of Alloy/Pt/LSM/YSZ/Ni+YSZ indicates that the formation of the Cr-free spinel layer via thermal oxidation was effective in blocking the Cr migration and thus improving the cell performance stability. Electroplating of the Fe-Ni

  6. A discussion on decay of discharge capacity for amorphous Mg-Ni-Nd hydrogen storage alloy

    NASA Astrophysics Data System (ADS)

    Liang, G. Y.; Wu, D. C.; Li, Lu; Huang, L. J.

    Amorphous Mg-Ni-Nd alloys were prepared by melt-spun technique and their discharge capacity was measured. Microstructure of amorphous ribbons after different charge-discharge cycles was observed using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and selected area electron diffraction (SAED). The structure evolution of amorphous (Mg 60Ni 25) 90Nd 10 alloy during the charge-discharge cycles was investigated in detail. Experimental results showed that the structure evolution of amorphous ribbon was responsible for the decay of discharge capacity. During the charge-discharge cycles of amorphous (Mg 60Ni 25) 90Nd 10 alloy, NdMg 2Ni 9 phase appeared after four cycles and Mg 2Ni phase appeared after six cycles. After 20 cycles the stable phases Mg 2Ni, α-Mg and Nd 2H 5 were present and the former NdMg 2Ni 9 phase disappeared. With crystallization of amorphous ribbon, the discharge capacity of amorphous (Mg 60Ni 25) 90Nd 10 alloy dropped off. After 10 cycles the curve of discharge capacity tended to be smooth.

  7. Tailoring the magnetic properties of CoFeNi alloys with variations in copper contents

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Oh; Kim, Hyun Kyung; Kim, Gyeung Ho; Jeung, Won Young

    2006-04-01

    CoFeNi alloys are some of the most studied soft magnetic materials because of their superior properties over FeNi alloys as write head core materials in hard disk drives. Pulsed electrodeposition was shown to be an interesting approach to vary the crystalline structure of the fcc-bcc mixed phase CoFeNi and CoFeNiCu films without changing the composition and the grain size by using a single bath. The permeability μ of CoFeNiCu films plated from bath composition exceeded 4.6×106. Coercivity Hc was 20-73 A/m. The high saturation magnetic flux Bs was 1.8 T. The soft magnetic CoFeNiCu film prepared satisfies all the requirements needed for the preparation of magnetic recording heads, as all magnetic properties were improved in this direction.

  8. The hot corrosion of Co-25Cr-10Ni-5Ta-3Al-0.5Y alloy /S-57/

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1978-01-01

    A cobalt-base alloy, Co-25Cr-10Ni-5Ta-3Al-0.5Y (S-57), was subjected to hot corrosion in Mach 0.3 burner-rig combustion gases at maximum alloy temperatures of 900 and 1000 C. Various salt concentrations were injected into the burner: 0.5, 2,5, and 10 parts per million synthetic sea salt and 4 parts per million sodium sulfate (Na2SO4). The extent of corrosion was determined by measuring the maximum depth of corrosion in the alloy, and the corrosion process was studied by metallography, X-ray diffraction, scanning electron microscopy, and electron microprobe analysis. While S-57 was found to possess only moderate oxidation resistance at these temperatures, this alloy resisted significant hot corrosion attack under all but the most severe test conditions. The process of hot corrosion attack under the most severe conditions of this study was primarily sulfidation.

  9. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Wu, Guosong; Yeung, Kelvin W K; Zheng, Dong; Chung, C Y; Xu, Z S; Chu, Paul K

    2013-09-01

    The abraded debris might cause osteocytic osteolysis on the interface between implants and bone tissues, thus inducing the subsequent mobilization of implants gradually and finally resulting in the failure of bone implants, which imposes restrictions on the applications of porous NiTi shape memory alloys (SMAs) scaffolds for bone tissue engineering. In this work, the effects of the annealing temperature, applied load, and porosity on the tribological behavior and wear resistance of three-dimensional porous NiTi SMA are investigated systematically. The porous structure and phase transformation during the exothermic process affect the tribological properties and wear mechanism significantly. In general, a larger porosity leads to better tribological resistance but sometimes, SMAs with small porosity possess better wear resistance than ones with higher porosity during the initial sliding stage. It can be ascribed to the better superelasticity of the former at the test temperature. The porous NiTi phase during the exothermic reaction also plays an important role in the wear resistance. Generally, porous NiTi has smaller friction coefficients under high loads due to stress-induced superelasticity. The wear mechanism is discussed based on plastic deformation and microcrack propagation.

  10. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  11. Coarsening of Ni(3)Si precipitates in binary Ni-Si alloys

    NASA Astrophysics Data System (ADS)

    Cho, Jin-Hoon

    The coarsening behavior of coherent gammasp'\\ (Nisb3Si) precipitates with volume fractions, f, ranging from 0.017 to 0.32 in binary Ni-Si alloys was investigated. All of the alloys were aged at 650sp° C for times as long as 2760 h and measurements were made of the kinetics of coarsening, particle size distributions and the evolution of particle morphologies using transmission electron microscopy. The kinetics of solute depletion were investigated using measurements of the ferromagnetic Curie temperature. We successfully overcame the difficulties in obtaining uniform spatial distributions of precipitates at small f by employing an up-quenching treatment; alloys with f less than 0.1 were pre-aged at 530sp° C prior to re-aging at the normal aging temperature of 650sp° C. Almost identical coarsening behavior exhibited by an alloy subjected to both isothermal and up-quenching treatments confirm that the up-quenching treatments do not affect any aspect of the coarsening behavior. Consistent with previous studies, the particles are spherical in shape when small and evolve to a cuboidal shape, with flat faces parallel to {}, as they grow. This shape transition was characterized quantitatively by analyzing the intensity distributions of Fast Fourier Transform spectra generated from the digitized images of TEM micrographs. The precipitates display no tendency towards becoming plate-shaped and they resist coalescence even at the largest sizes, which approach 400 nm in diameter at 2760 h of aging for higher volume fraction alloys. For f < 0.1, the kinetics of coarsening and solute depletion as well as the standard deviation of the particle size distributions decrease as f increases. This anomalous behavior has been documented previously by other investigators, but is contrary to the predictions of theories that incorporate the volume fraction effect in coarsening kinetics. We find no convincing evidence to suggest that f influences any aspect of the coarsening behavior at

  12. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  13. Phase separation in equiatomic AlCoCrFeNi high-entropy alloy.

    PubMed

    Manzoni, A; Daoud, H; Völkl, R; Glatzel, U; Wanderka, N

    2013-09-01

    The microstructure of the as-cast AlCoCrFeNi high entropy alloy has been investigated by transmission electron microscopy and atom probe tomography. The alloy shows a very pronounced microstructure with clearly distinguishable dendrites and interdendrites. In both regions a separation into an Al-Ni rich matrix and Cr-Fe-rich precipitates can be observed. Moreover, fluctuations of single elements within the Cr-Fe rich phase have been singled out by three dimensional atom probe measurements. The results of investigations are discussed in terms of spinodal decomposition of the alloying elements inside the Cr-Fe-rich precipitates.

  14. The Bain path of paramagnetic Fe-Cr based alloys

    NASA Astrophysics Data System (ADS)

    Al-Zoubi, N.; Johansson, B.; Nilson, G.; Vitos, L.

    2011-07-01

    Employing the first-principles exact muffin-tin orbital method in combination with the coherent potential approximation, we calculated the total energy and local magnetic moments of paramagnetic Fe-Cr-M (M = Cr, Mn, Fe, Co, Ni) alloys along the tetragonal distortion (Bain) path connecting the body centered cubic (bcc) and the face centered cubic (fcc) structures. The paramagnetic phase is modeled by the disordered local magnetic moment scheme. For all alloys, the local magnetic moments on Fe atoms decrease from the maximum value corresponding to the bcc phase toward the minimum value realized for the fcc phase. Cobalt atoms have non-vanishing local magnetic moments only for tetragonal lattices with c/a < 1.30, whereas the local magnetic moments of Mn show weak crystal structure dependence. We find that Cr stabilizes the bcc lattice and increases the energy barrier as going from the bcc toward the fcc phase. Both Co and Ni favor the fcc lattice and decrease the energy barrier relative to the bcc phase. On the other hand, the tetragonal distortion around the fcc phase is facilitated by Cr and to a somewhat lesser extent also by Ni, but strongly impeded by Co. Manganese has negligible effect on the structural energy difference as well as on the energy barrier along the Bain path. Our findings on the alloying induced softening or hardening of Fe-Cr based alloys against tetragonal distortions are important for understanding the interstitial driven martensitic transformations in alloy steels.

  15. Ni-WC composite coatings by carburizing electrodeposited amorphous and nanocrystalline Ni-W alloys

    NASA Astrophysics Data System (ADS)

    Latif, Saadia; Mehmood, Mazhar; Ahmad, Jamil; Aslam, Muhammad; Ahmed, Maqsood; Zhang, Zhi-dong

    2010-03-01

    In situ formation of tungsten carbide in the matrix of FCC nickel has been achieved by carburizing of the electrodeposited Ni-W alloy coatings. The size of the carbide particles ranges between 100 and 500 nm. The carbide phase is also present in the form of very small precipitates inside the nickel grains. The size of such precipitates is between 10 and 40 nm. The carburizing environment was created by introducing a flowing mixture of vaporized 95.5% alcohol (0.25 ml/min, liquid) and argon (0.5 L/min, gas) into the carburizing furnace. Supersaturated nature of electrodeposited amorphous and nanocrystalline alloys, in addition to high diffusivity, have been attributed for the formation of carbide phase in the deposits at a temperature range of 700-850 °C. The carbide-metal interface is clean and the composite coatings are compact. Hardness values up to about 1100 KHN are achieved. Hardness increases with tungsten content and carburizing temperature.

  16. Studies on microstructural changes and phase transition during preparation of FeGeNi ternary alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Lin, Fangting; Shi, Wangzhou; Jiang, Dongmei; Ma, Xueming; Shen, Gang

    2006-01-01

    FeGeNi ternary alloy has been prepared by mechanical alloying followed by thermal treatment. Microstructure of the as-milled and annealed samples as well as thermally induced phase transition and variations in degree of order were investigated through a combination of X-ray diffraction and Mössbauer spectroscopy. The results show that alloying in the (Fe 0.81Ni 0.19) 3.94Ge 2 ternary system initiates during ball milling, with the appearance of partially D0 3-ordered A2 solid solution phase and paramagnetic B8 2 FeGeNi ternary phase. A subsequent thermal treatment of 2 h at 800 K produces a remarkable increase in the degree of the D0 3 order, whilst ferromagnetic phase with amorphous character in the as-milled sample is transformed into paramagnetic B8 2 FeGeNi ternary phase where almost all Ni atoms occupy the vacant 2d site. Therefore in the annealed system coexist two phases, namely the D0 3 phase and paramagnetic B8 2 FeGeNi ternary phase.

  17. Thermal Stabilization of NiTiCuV Shape Memory Alloys: Observations During Elastocaloric Training

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Schütze, Andreas; Eggeler, Gunther; Seelecke, Stefan

    2015-06-01

    The paper presents novel findings observed during the training process of superelastic, elastocalorically optimized Ni-Ti-based shape memory alloys (SMA). NiTiCuV alloys exhibit large latent heats and a small mechanical hysteresis, which may potentially lead to the development of efficient solid-state-based cooling processes. The paper starts with a brief introduction to the underlying principles of elastocaloric cooling, illustrating the effect by means of a typical thermodynamic cycle. It proceeds with the description of a custom-built testing platform that allows observation of temperature profiles and heat transfer between SMA and heat source/sink during high-loading-rate tensile tests. Similar to other SMA applications, a training process is necessary in order to guarantee stable performance. This well-known mechanical stabilization affects the stress-strain hysteresis and the cycle-dependent evolution of differential scanning calorimetry results. In addition, it can be shown here that the training is also accompanied by a cycle-dependent evolution of temperature profiles on the surface of an SMA ribbon. The applied training leads to local temperature peaks with intensity, number, and distribution of the temperature fronts showing a cycle dependency. The homogeneity of the elastocaloric effect has a significant influence on the efficiency of elastocaloric cooling process and is a key aspect of the specific material characterization.

  18. Enhancement of ferromagnetism by Cr doping in Ni-Mn-Cr-Sb Heusler alloys

    NASA Astrophysics Data System (ADS)

    Khan, Mahmud; Dubenko, Igor; Stadler, Shane; Jung, J.; Stoyko, S. S.; Mar, Arthur; Quetz, Abdiel; Samanta, Tapas; Ali, Naushad; Chow, K. H.

    2013-03-01

    A series of Mn rich Ni50Mn37-xCrxSb13 Heusler alloys have been investigated by dc magnetization and electrical resistivity measurements. Due to the weakening of the Ni-Mn hybridization, the martensitic transition shifts to lower temperatures with increasing Cr concentration, while the saturation magnetization at 5 K increases. The magnetoresistance and exchange bias properties are dramatically suppressed with increasing Cr concentration. The observed behaviors suggest that substitution of Cr for Mn in Ni50Mn37-xCrxSb13 Heusler alloys not only destabilizes the martensitic phase but also enhances ferromagnetism in the system. The possible mechanisms responsible for the observed behavior are discussed.

  19. Thermodynamic analysis of compatibility of several reinforcement materials with beta phase NiAl alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  20. Phonon densities of states of face-centered-cubic Ni-Fe alloys

    SciTech Connect

    Lucas, Matthew; Mauger, L; Munoz, Jorge A.; Halevy, I; Horwath, J; Semiatin, S L; Leontsev, S. O.; Stone, Matthew B; Abernathy, Douglas L; Xiao, Yuming; Chow, P; Fultz, B.

    2013-01-01

    Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to determine the phonon densities of states of face-centered-cubic Ni-Fe alloys. Increasing Fe concentration results in an average softening of the phonon modes. Chemical ordering of the Ni0.72Fe0.28 alloy results in a reduction of the partial vibrational entropy of the Fe atoms but does not significantly change the partial vibrational entropy of the Ni atoms. Changes in the phonon densities of states with composition and chemical ordering are discussed and analyzed with a cluster expansion method.

  1. Microstructural Development and Ternary Interdiffusion in Ni-Mn-Ga Alloys

    NASA Astrophysics Data System (ADS)

    Zhou, Le; Kammerer, Catherine; Giri, Anit; Cho, Kyu; Sohn, Yongho

    2015-12-01

    NiMnGa alloys functioning as either ferromagnetic shape memory alloys or magnetocaloric materials have both practical applications and fundamental research value. In this study, solid-to-solid diffusion couple experiments were carried out to investigate the phase equilibria, microstructural development, and interdiffusion behavior in Ni-Mn-Ga ternary alloys. Selected diffusion couples between pure Ni, Ni25Mn75 and four ternary off-stoichiometric NiMnGa alloys ( i.e., Ni52Mn18Ga30, Ni46Mn30Ga24, Ni52Mn30Ga18, Ni58Mn18Ga24) were assembled and annealed at 1073 K, 1123 K, and 1173 K (800 °C, 850 °C, and 900 °C) for 480, 240, and 120 hours, respectively. At these high temperatures, the β NiMnGa phase has a B2 crystal structure. The microstructure of the interdiffusion zone was examined by scanning electron microscopy and transmission electron microscopy. Concentration profiles across the interdiffusion zone were determined by electron probe micro analysis. Solubility values obtained for various phases were mostly consistent with the existing isothermal phase diagrams, but the phase boundary of the γ(Mn) + β two-phase region was slightly modified. In addition, equilibrium compositions for the γ(Ni) and α' phases at 1173 K (900 °C) were also determined for the respective two-phase region. Both austenitic and martensitic phases were found at room temperature in each diffusion couple with a clear boundary. The compositions at the interfaces corresponded close to valence electron concentration (e/a) of 7.6, but trended to lower values when Mn increased to more than 35 at. pct. Average effective interdiffusion coefficients for the β phase over different compositional ranges were determined and reported in the light of temperature-dependence. Ternary interdiffusion coefficients were also determined and examined to assess the ternary diffusional interactions among Ni, Mn, and Ga. Ni was observed to interdiffuse the fastest, followed by Mn then Ga. Interdiffusion flux

  2. Rumpling phenomenon in platinum modified Ni-Al alloys

    SciTech Connect

    Zimmerman, Benjamin Joseph

    2005-05-01

    Surface undulations known as rumpling have been shown to develop at the surface of bond coats used in advanced thermal barrier coating systems. Rumpling can result in cracking and eventual spallation of the top coat. Many mechanisms to explain rumpling have been proposed, and among them is a martensitic transformation. High-temperature x-ray diffraction, differential scanning calorimetry and potentiometry were used to investigate the nature of the martensitic transformation in bulk platinum-modified nickel aluminides. It was found that the martensitic transformation has strong time dependence and can form over a range of temperatures. Cyclic oxidation experiments were performed on the bulk alloys to investigate the effect of the martensitic transformation on surface rumpling. It was found that the occurrence of rumpling was associated with the martensitic transformation. The degree of rumpling was found to increase with an increasing number of cycles and was independent of the heating and cooling rates used. The thickness of the oxide layer at the surface of the samples had a significant impact on the amplitude of the resulting undulations, with amplitude increasing with increasing oxide-layer thickness. Rumpling was also observed in an alloy based on the γ-γ' region of the nickel-aluminum-platinum phase diagram. Rumpling in this alloy was found to occur during isothermal oxidation and is associated with a subsurface layer containing a platinum-rich phase known as a. Rumpling in both alloy systems may be explained by creep deformation of a weakened subsurface layer in response to the compressive stresses in the thermally grown oxide layer.

  3. Magnetic and thermodynamic properties of face-centered cubic Fe-Ni alloys.

    PubMed

    Lavrentiev, M Yu; Wróbel, J S; Nguyen-Manh, D; Dudarev, S L

    2014-08-14

    A model lattice ab initio parameterized Heisenberg-Landau magnetic cluster expansion Hamiltonian spanning a broad range of alloy compositions and a large variety of chemical and magnetic configurations has been developed for face-centered cubic Fe-Ni alloys. The thermodynamic and magnetic properties of the alloys are explored using configuration and magnetic Monte Carlo simulations over a temperature range extending well over 1000 K. The predicted face-centered cubic-body-centered cubic coexistence curve, the phase stability of ordered Fe3Ni, FeNi, and FeNi3 intermetallic compounds, and the predicted temperatures of magnetic transitions simulated as functions of alloy composition agree well with experimental observations. Simulations show that magnetic interactions stabilize the face-centered cubic phase of Fe-Ni alloys. Both the model Hamiltonian simulations and ab initio data exhibit a particularly large number of magnetic configurations in a relatively narrow range of alloy compositions corresponding to the occurrence of the Invar effect.

  4. Diffusional transport during the cyclic oxidation of. gamma. +. beta. , Ni-Cr-Al(Y, Zr) alloys

    SciTech Connect

    Nesbitt, J.A.; Heckel, R.W. )

    1988-02-01

    The cyclic oxidation behavior of several cast {gamma} + {beta}, Ni-Cr-Al(Y, Zr) alloys and one LPPS {gamma} + {beta}, Ni-Co-Cr-Al(Y) alloy was examined ({gamma}, fcc; {beta}, NiAl structure). Cyclic oxidation was performed by cycling between 1200{degree}C and approximately 70{degree}C. Oxide morphologies and microstructural changes during cyclic oxidation were noted. Recession of the high-Al {beta} phase was nonparabolic with time. Kirkendall porosity resulting from diffusional transport within the alloy was observed in the near-surface {gamma}-phase layer of one alloy. Concentration profiles for Ni, Cr, and Al were measured in the {gamma}-phase layer after various cyclic oxidation exposures. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide-metal interface due to a high demand for Al (a high rate of Al consumption) associated with oxide scale cracking and spalling. In addition, diffusion paths plotted on the ternary phase diagram shifted to higher Ni concentrations with increasing cyclic oxidation exposures. The alloy with the highest rate of Al consumption, and highest Al content, underwent breakway oxidation after 500 1-hr cycles at 1200{degree}C. Breakaway oxidation occurred when the Al concentration at the oxide-metal interface approached zero. The relationship between the Al transport in the alloy and breakaway oxidation is discussed.

  5. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  6. Vacancy analysis in a Ni-Nb-Zr-H glassy alloy by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio

    2012-02-01

    The positron lifetimes of Ni36Nb24Zr40 and (Ni0.36Nb0.24Zr0.40)90H10 glassy alloys are almost the same but longer than those of pure Zr, Nb, and Ni crystals, indicating that they have higher density of vacancies with smaller size than in crystals. The coincidence Doppler broadening spectrum for both specimens shows that the contribution of Ni around the vacancies is lower than that of Zr and Nb, suggesting that hydrogen atoms favour to exist between Ni atoms comprising neighboring distorted icosahedral Zr5Ni5Nb3 clusters. Thus, these results provide a substitute model of quantum dot tunneling along Ni-H-Ni atomic bond arrays among the clusters.

  7. High strength forgeable tantalum base alloy

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  8. Dynamics of domain walls in Ti-Ni-Cu alloy

    NASA Astrophysics Data System (ADS)

    Liang, X. L.; Zhang, Z. F.; Liu, Q.; Shen, H. M.; Wang, Y. N.; Shi, P.; Chen, F. X.; Yang, D. Z.

    1999-12-01

    The internal friction for Ti-Ni-Cu shape memory alloys (SMAs) was measured in the Hz and kHz range. The peak temperature in the Hz range is independent of the measuring frequencies. Only in the tens of kHz range does the peak temperature shift with the frequencies, showing a thermally activated progress with icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/> = icons/Journals/Common/tau" ALT="tau" ALIGN="TOP"/>0e-B/Tc - T, characteristic of viscous motion of domain walls, instead of the Arrhenius relation. Taking into account the change of the density of the domain walls during the phase transformation, we modified the Q-1-formula by using a model of viscous motion of domain walls, obtaining a good result in agreement with the experimental data. Additionally, corresponding parameters, which play a key role in the shape memory effect, such as the viscosity coefficient and the effective pinning force constant, were obtained.

  9. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  10. Dynamic oxidation behavior of TD-NiCr alloy with different surface pretreatments

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Tenney, D. R.; Herring, H. W.

    1975-01-01

    Oxidation tests of TD-NiCr alloy with different surface pretreatments were conducted in a Mach-5 arc-jet at 1200 C and 0.002 lb/sec flowing air environment. The mechanisms responsible for the observed oxidation behavior are examined. The presence of atomic oxygen in the air stream plays a significant role in determining the oxidation characteristic of the alloy. The rate of Cr2O3 vaporization by formation of volatile CrO3 is greatly enhanced by the flowing conditions. The typical microstructure of oxides formed in the dynamic tests consists of an external layer of NiO with a porous mushroom-type morphology, an intermediate layer of NiO and Cr2O3 oxide mixture, and a continuous inner layer of Cr2O3 in contact with the Cr-depleted alloy substrate. Three basic processes underlying the formation of mushroom-type NiO are identified and discussed. The oxidation rate is determined by the rate of vaporization of NiO. Surface pretreatment has a significant effect on the oxidation behavior of the alloy in the early stage of oxidation, but becomes less important as exposure time increases. Mechanical polishing induces surface recrystallization, but promotes the concurrence of external growth of NiO and internal oxidation of the alloy in the dynamic atmosphere.

  11. Effect of Pore Size and Porosity on the Biomechanical Properties and Cytocompatibility of Porous NiTi Alloys.

    PubMed

    Jian, Yu-Tao; Yang, Yue; Tian, Tian; Stanford, Clark; Zhang, Xin-Ping; Zhao, Ke

    2015-01-01

    Five types of porous Nickel-Titanium (NiTi) alloy samples of different porosities and pore sizes were fabricated. According to compressive and fracture strengths, three groups of porous NiTi alloy samples underwent further cytocompatibility experiments. Porous NiTi alloys exhibited a lower Young's modulus (2.0 GPa ~ 0.8 GPa). Both compressive strength (108.8 MPa ~ 56.2 MPa) and fracture strength (64.6 MPa ~ 41.6 MPa) decreased gradually with increasing mean pore size (MPS). Cells grew and spread well on all porous NiTi alloy samples. Cells attached more strongly on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cell adhesion on porous NiTi alloys was correlated negatively to MPS (277.2 μm ~ 566.5 μm; p < 0.05). More cells proliferated on control group and blank group than on all porous NiTi alloy samples (p < 0.05). Cellular ALP activity on all porous NiTi alloy samples was higher than on control group and blank group (p < 0.05). The porous NiTi alloys with optimized pore size could be a potential orthopedic material.

  12. The erosion-corrosion of copper-based and nickel-based alloys in warm polluted Arabian Gulf seawater

    SciTech Connect

    Carew, J.A.; Islam, M.

    1994-12-31

    This paper presents the results of an investigation of the erosion-corrosion behavior of copper-nickel alloys (90:10 Cu/Ni and 7030 Cu/Ni), nickel-copper alloy UNS N04400 and nickel-based alloys (UNS N06022, N06030 and UNS S32550) used as heat exchanger tubes, in warm flowing Arabian Gulf seawater containing up to 5 ppm of sulphide ions. Visual and optical examinations of the internal surfaces of the tubes were carried out to compare the susceptibilities to erosion-corrosion attack of the different alloys, taking into consideration the nature of the product films formed.

  13. Molecular Dynamics Simulation of the Phonon Conductivity in Cu-Ni Binary Alloy

    NASA Astrophysics Data System (ADS)

    Konishi, Yusuke; Fukushima, Tetsuya; Sato, Kazunori; Asai, Yoshihiro; Katayama-Yoshida, Hiroshi

    2014-03-01

    In 2010, a giant Peltier effect was observed in a Cu-Ni/Au junction. It is considered that this giant Peltier effect is caused by nano-scale phase separation formed in the sputtering process. The giant Peltier coefficient in the Cu-Ni/Au junction indicates the great Seebeck coefficient in Cu-Ni alloy. Although this alloy is a prospective thermoelectric material because of its great Seebeck coefficient, the low phonon thermal conductivity is also necessary for a large thermoelectric coefficient ZT. In order to find conditions for the low phonon conductivity, we calculate the thermal conductivity in Cu-Ni Alloy in various shapes with or without nanostructures by using nonequilibrium molecular dynamics simulation. In this simulation, we use a semi-empirical potential and the reverse nonequilibrium molecular dynamics method.

  14. Characterization of Polylactide Layer Deposited on Ni-Ti Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Goryczka, Tomasz; Szaraniec, Barbara

    2014-07-01

    Polylactide (PLA) thin layer was deposited on the surface of the as-quenched NiTi shape memory alloy. First, NiTi alloy was quenched from the 850°C, then its surface was covered with PLA. Deposited PLA is in an amorphous state, whereas the as-quenched NiTi alloy stays in the B2 structure. PLA deposition caused smoothing of the surface and changed its hydrophilic character to hydrophobic one. In general, procedure of PLA deposition does not influence the course of the reversible martensitic transformation. After deformation of NiTi sample covered with PLA up to 4%, its surface does not reveal any cracks and still remains continuous.

  15. Structural ordering tendencies in the new ferromagnetic Ni-Co-Fe-Ga-Zn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Dannenberg, Antje; Siewert, Mario; Gruner, Markus E.; Wuttig, Manfred; Entel, Peter

    In search for new ferromagnetic shape memory alloys (FSMA) we have calculated structural energy differences, magnetic exchange interaction constants and mixing energies of quaternary (X1X2)YZ Heusler alloys with X1,X2,Y =Ni,Co,Fe and Z=Ga, Zn using density functional theory. The comparison of the energy profiles of (NiCo)FeZ, (FeNi)CoZ, and (FeCo)NiZ with Z=Ga and Zn as a function of the tetragonal distortion c / a reveals that the energetically preferred ordering type is (NiCo)FeGa and (NiCo)FeZn which shows that Fe prefers to occupy the same cubic sublattice as Ga or Zn what implies that Fe favors Co and Ni as nearest neighbors, respectively. The Curie temperatures of (NiCo)FeGa and (NiCo)FeZn are high of the order of 600 K. (NiCo)FeGa, which has the same valence electron concentration (e/a=7.5) as Ni2MnGa and also possesses a high martensitic transformation temperature (>500 K), is of interest for future magnetic shape memory devices.

  16. Pulsed Laser Deposition of the Ni-Base Superalloy Films

    NASA Astrophysics Data System (ADS)

    Shin, Joonghan; Mazumder, Jyotirmoy

    2016-03-01

    Ni-base superalloy films were deposited on single-crystal (SC) Ni-base superalloy substrates from a target with the same alloy composition by pulsed laser deposition (PLD) technique. Microstructure and growth behavior of the films deposited were investigated by X-ray diffraction and scanning electron microscopy, and atomic force microscope. The homoepitaxial growth of the SC Ni-base superalloy film occurred at the 1123 K (850 °C) substrate temperature and 2 J/cm2 pulse energy. Films generally exhibited a strong polycrystalline characteristic as the substrate temperature and pulse energy increased. The SC film had a smooth surface. The measured root mean square roughness of the SC film surface was ~6 nm. Based on the Taguchi analysis, the substrate temperature and pulse energy were the most significant process parameters influencing the structural characteristics of the films. Also, the influence of the pulse repletion rate and deposition time was not found to be significant.

  17. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  18. LaNi{sub 5{minus}x}M{sub x} metal hydride alloys for alkaline rechargeable cells

    SciTech Connect

    Witham, C.K.; Hightower, A.; Bowman, R.C. Jr.; Fultz, B.; Ratnakumar, B.V.

    1997-12-01

    This work centers on making alloy modifications to LaNi{sub 5} by replacing Ni with various metal elements. The primary goal of the alloy modifications is to stabilize the alloy during electrochemical cycling in an alkaline medium. The reasons that some elements promote cyclic stability are explored, and the relative magnitude of their effect is Ge > Sn > Si > Ga > Al > In > Ni. Other properties are determined for each alloy, such as maximum capacity, charge transfer kinetics, hydrogen diffusion, charge overpotentials, and charge efficiency. Alloy microstructural information is measured by X-ray diffraction, and gas-phase.

  19. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    SciTech Connect

    Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  20. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Shetty, Sandhya; Hegde, A. Chitharanjan

    2017-02-01

    In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

  1. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    SciTech Connect

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-07

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  2. Oral keratinocyte responses to nickel-based dental casting alloys in vitro.

    PubMed

    Wylie, C M; Davenport, A J; Cooper, P R; Shelton, R M

    2010-09-01

    Adverse reactions of oral mucosa to nickel-based dental casting alloys are probably due to corrosion metal ion release. We exposed H400 oral keratinocytes to two Ni-based dental alloys (Matchmate and Dsign10) as well as NiCl( 2) (1-40 microg/mL Ni(2+)). Alloy derived Ni(2+) media concentrations were determined. Direct culture on both alloys resulted in inhibited growth with a greater effect observed for Dsign10 (higher ion release). Indirect exposure of cells to conditioned media from Dsign10 negatively affected cell numbers (approximately 64% of control by 6 days) and morphology while Matchmate-derived media did not. Exposure to increasing NiCl(2) negatively affected cell growth and morphology, and the Granulocyte-macrophage colony-stimulating factor (GM-CSF) transcript was significantly up-regulated in cells following direct and indirect exposure to Dsign10. NiCl(2) exposure up-regulated all cytokine transcripts at 1 day. At day 6, IL-1beta and IL-8 transcripts were suppressed while GM-CSF and IL-11 increased with Ni(2+) dose. Accumulation of Ni(2+) ions from alloys in oral tissues may affect keratinocyte viability and chronic inflammation.

  3. Corrosion and carburization behavior of Al-rich surface layer on Ni-base alloy in supercritical-carbon dioxide environment

    NASA Astrophysics Data System (ADS)

    Lee, Ho Jung; Kim, Sung Hwan; Kim, Hyunmyung; Jang, Changheui

    2016-12-01

    In order to improve the corrosion and carburization resistance in a high-temperature supercritical-carbon dioxide (S-CO2) environment, an Al-rich surface layer was developed on Alloy 600 by Al deposition and a subsequent high energy electron beam (EB) remelting. As a result of the EB surface treatment, an Al enriched (5-7 wt.%) micro-alloying zone (40 μm) was produced. When the EB surface-treated Alloy 600 was corroded in S-CO2 at 600 °C (20 MPa) for 500 h, the surface oxide layer mostly consisted of chromia (Cr2O3) with small amount of transition alumina (Al2O3). In addition, a carburized region of an amorphous C layer inter-mixed with the alumina was observed at the oxide/matrix interface. Meanwhile, when the EB surface-treated specimen was pre-oxidized in helium at 900 °C, α-alumina layer was formed on the surface, which showed superior corrosion and carburization resistance in S-CO2 environment. Therefore, it could be said that the presence of Al-rich surface layer alone is not enough to provide sufficient corrosion and carburization resistance in S-CO2 environment at 600 °C, unless pre-oxidation at higher temperature is applied to form a more protective α-alumina on the surface.

  4. Forge Welding of Magnesium Alloy to Aluminum Alloy Using a Cu, Ni, or Ti Interlayer

    NASA Astrophysics Data System (ADS)

    Yamagishi, Hideki; Sumioka, Junji; Kakiuchi, Shigeki; Tomida, Shogo; Takeda, Kouichi; Shimazaki, Kouichi

    2015-08-01

    The forge-welding process was examined to develop a high-strength bonding application of magnesium (Mg) alloy to aluminum (Al) alloy under high-productivity conditions. The effect of the insert material on the tensile strength of the joints, under various preheat temperatures and pressures, was investigated by analyzing the reaction layers of the bonded interface. The tensile strengths resulting from direct bonding, using pure copper (Cu), pure nickel (Ni), and pure titanium (Ti) inserts were 56, 100, 119, and 151 MPa, respectively. The maximum joint strength reached 93 pct with respect to the Mg cast billet. During high-pressure bonding, a microscopic plastic flow occurred that contributed to an anchor effect and the generation of a newly formed surface at the interface, particularly prominent with the Ti insert in the form of an oxide layer. The bonded interfaces of the maximum-strength inserts were investigated using scanning electron microscopy-energy-dispersive spectroscopy and electron probe microanalysis. The diffusion reaction layer at the bonded interface consisted of brittle Al-Mg intermetallics having a thickness of approximately 30 μm. In contrast, for the three inserts, the thicknesses of the diffusion reaction layer were infinitely thin. For the pure Ti insert, exhibiting the maximum tensile strength value among the inserts tested, focused ion beam-transmission electron microscopy-EDS analysis revealed a 60-nm-thick Al-Ti reaction layer, which had formed at the bonded interface on the Mg alloy side. Thus, a high-strength Al-Mg bonding method in air was demonstrated, suitable for mass production.

  5. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility.

  6. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  7. Recrystallization Behavior of CoCrCuFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Park, Nokeun; Watanabe, Ikuto; Terada, Daisuke; Yokoyama, Yoshihiko; Liaw, Peter K.; Tsuji, Nobuhiro

    2015-04-01

    We investigated the recrystallization behavior of a cold-rolled CoCrCuFeNi high-entropy alloy (HEA). Two different face-centered cubic phases having different chemical compositions and lattice constants in the as-cast specimen have different chemical compositions: One phase was the Cu-lean matrix and the other was the Cu-rich second phase. The second phase remained even after a heat treatment at 1373 K (1100 °C) and Cu enriched more in the Cu-rich second phase. The calculated mixing enthalpies of both Cu-lean and Cu-rich phases in the as-cast and heat-treated specimens explained that Cu partitioning during the heat treatment decreased the mixing enthalpy in both phases. In the specimens 90 pct cold rolled and annealed at 923 K, 973 K, and 1073 K (650 °C, 700 °C, and 800 °C), recrystallization proceeded with increasing the annealing temperature, and ultrafine recrystallized grains with grain sizes around 1 μm could be obtained. The microhardness tended to decrease with increasing the fraction recrystallized, but it was found that the microhardness values of partially recrystallized specimens were much higher than those expected by a simple rule of mixture between the initial and cold-rolled specimens. The reason for the higher hardness was discussed based on the ultrafine grain size, sluggish diffusion expected in HEAs, and two-phase structure in the CoCrCuFeNi alloy.

  8. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    SciTech Connect

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis; Planes, A.; Lograsso, Tom; Schlagel, D. L.; Zarestky, Jerel L.; Acet, Mehmet; Garlea, Vasile O

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperature softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.

  9. Ab initio prediction of the mechanical properties of alloys: The case of Ni/Mn-doped ferromagnetic Fe

    NASA Astrophysics Data System (ADS)

    Wang, Guisheng; Schönecker, Stephan; Hertzman, Staffan; Hu, Qing-Miao; Johansson, Börje; Kwon, Se Kyun; Vitos, Levente

    2015-06-01

    First-principles alloy theory, formulated within the exact muffin-tin orbital method in combination with the coherent-potential approximation, is used to study the mechanical properties of ferromagnetic body-centered cubic (bcc) Fe1 -xMx alloys (M = Mn or Ni, 0 ≤x ≤0.1 ). We consider several physical parameters accessible from ab initio calculations and their combinations in various phenomenological models to compare the effect of Mn and Ni on the properties of Fe. Alloying is found to slightly alter the lattice parameters and produce noticeable influence on elastic moduli. Both Mn and Ni decrease the surface energy and the unstable stacking fault energy associated with the {110 } surface facet and the {110 }<111 > slip system, respectively. Nickel is found to produce larger effect on the planar fault energies than Mn. The semiempirical ductility criteria by Rice and Pugh consistently predict that Ni enhances the ductility of Fe but give contradictory results in the case of Mn doping. The origin of the discrepancy between the two criteria is discussed and an alternative measure of the ductile-brittle behavior based on the theoretical cleavage strength and single-crystal shear modulus G {110 }<111 > is proposed.

  10. Characteristics of Fe-Ni-Sm alloys in the as-cast state

    NASA Astrophysics Data System (ADS)

    Koval', Yu. M.; Ponomarova, S. O.; Odnosum, V. V.; Ponomarov, O. P.; Efimova, T. V.; Shimko, Yu. M.

    2015-04-01

    The effect of samarium on the microstructure and the parameters of martensitic and magnetic transformations in Fe-Ni alloys is studied, and the alloys with 0.5-2 u. % Sm are found to exhibit a martensitic transformation in the as-cast state. The temperatures of the onset of the direct and reverse martensitic transformations increase with the samarium content as compared to the corresponding binary alloys. Moreover, samarium substantially increases the Curie temperature and significantly decreases the grain size in the alloys.

  11. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  12. Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Axinte, Eugen; Zhao, Zhengfeng; Wang, Yan

    2016-09-01

    The effects of elemental addition, C and Ce, on the microstructure, thermal property and magnetic property of mechanically alloyed FeSiBAlNi (based-W5) high entropy alloys (HEAs) have been investigated in depth in the present work. The amorphous HEAs have been successfully fabricated by mechanical alloying. The results reveal that Ce addition obviously shortens the formation time of fully amorphous phase, therefore leading to the enhanced glass forming ability (GFA) of the based-W5. The final products of as-milled FeSiBAlNiC alloy consist of the main amorphous phase and a small amount of Si nanocrystals. In addition, C and Ce addition are both beneficial to enhance the thermal stability. The coercivity force (Hc) of the tested samples lies in the range of 50-378 Oe, suggesting the semi-hard magnetic property. The saturation magnetization (Ms) becomes decreased with increasing the milling time. C addition effectively increases Ms exhibiting the good magnetic property, however, Ce addition presents the negative effect. It should be noted that the amorphous phase tends to be formed when the radius ratio (Rr) is larger than 1, and the GFA is enhanced with increasing Rr and valence electron concentration.

  13. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films

    NASA Astrophysics Data System (ADS)

    Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M.

    2015-12-01

    Al-Cr-Fe-Mn-Ni and Al-Cr-Cu-Fe-Mn-Ni high entropy alloy thin films were prepared by potentiostatic electrodeposition and the microstructure of the deposits was investigated. The thin films were co-deposited in an electrolyte based on a DMF (N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound. The energy dispersive spectrometry investigation (EDS) indicated that all the five respectively six elements were successfully co-deposited. The scanning electron microscopy (SEM) analysis revealed that the film consists of compact and uniform particles with particle sizes of 500 nm to 4 μm. The X-ray diffractometry (XRD) patterns indicated that the as-deposited thin films were amorphous. Body-centered-cubic (BCC) structures were identified by XRD after the films were annealed at various temperatures under inert Ar atmosphere. The alloys adhesion on the substrate was determined by the scratch-testing method, with higher values obtained for the Al-Cr-Cu-Fe-Mn-Ni alloy.

  14. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys.

    PubMed

    Lifeng, Zhao; Yan, Hong; Dayun, Yang; Xiaoying, Lü; Tingfei, Xi; Deyuan, Zhang; Ying, Hong; Jinfeng, Yuan

    2011-04-01

    TiN coating has been demonstrated to improve the biocompatibility of bare NiTi alloys; however, essential biocompatibility differences between NiTi alloys before and after TiN coating are not known so far. In this study, to explore the underlying biological mechanisms of biocompatibility differences between them, the changes of bare and TiN-coated NiTi alloys in surface chemical composition, morphology, hydrophilicity, Ni ions release, cytotoxicity, apoptosis, and gene expression profiles were compared using energy-dispersive spectroscopy, scanning electron microscopy, contact angle, surface energy, Ni ions release analysis, the methylthiazoltetrazolium (MTT) method, flow cytometry and microarray methods, respectively. Pathways binding to networks and real-time polymerase chain reaction (PCR) were employed to analyze and validate the microarray data, respectively. It was found that, compared with the bare NiTi alloys, TiN coating significantly decreased Ni ions content on the surfaces of the NiTi alloys and reduced the release of Ni ions from the alloys, attenuated the inhibition of Ni ions to the expression of genes associated with anti-inflammatory, and also suppressed the promotion of Ni ions to the expression of apoptosis-related genes. Moreover, TiN coating distinctly improved the hydrophilicity and uniformity of the surfaces of the NiTi alloys, and contributed to the expression of genes participating in cell adhesion and other physiological activities. These results indicate that the TiN-coated NiTi alloys will help overcome the shortcomings of NiTi alloys used in clinical application currently, and can be expected to be a replacement of biomaterials for a medical device field.

  15. High pressure molecular dynamics simulation of Au-x%Ni alloys

    SciTech Connect

    Davoodi, J. Katouzi, F.

    2014-03-07

    The aim of this investigation was to calculate thermodynamics properties of Au-x%Ni (atomic percent) by molecular dynamics (MD) simulation technique under high pressure. The many body quantum Sutton-Chen potential was employed to obtain cohesive energy and force experienced by every atom at the isothermal, isobaric (NPT) ensemble. The effect of pressure and Ni concentration on the physical properties, including cohesive energy, melting temperature, isobaric heat capacity, redial distribution function, and order parameter were calculated for Au-x%Ni alloys. The obtained MD results show that cohesive energy and melting temperature increase upon pressure increase. In addition, linear thermal expansion as well as isobaric heat capacity decreases with increasing pressure. Moreover, the phase diagrams of Au-x%Ni alloys were plotted at different pressure showing melting points as a function of Ni concentration.

  16. Thermally Induced Structural Transformations of Fe40Ni40P14B6 Amorphous Alloy

    NASA Astrophysics Data System (ADS)

    Vasić, Milica M.; Roupcová, Pavla; Pizúrová, Naděžda; Stevanović, Sanja; Blagojević, Vladimir A.; Žák, Tomáš; Minić, Dragica M.

    2016-01-01

    Thermal stability and thermally induced structural transformations of Fe40Ni40P14B6 amorphous alloy were examined under non-isothermal and isothermal conditions. Formation of metastable α-(Fe,Ni), and stable γ-(Fe,Ni) and (Fe,Ni)3(P,B) crystalline phases as the main crystallization products was observed, while the presence of small amounts of other crystalline phases like Fe23B6 and Fe2NiB was indicated by electron diffraction in HRTEM. Thermomagnetic curve indicated that Fe content in different crystalline phases is very different, resulting in markedly different Curie temperatures after crystallization. Transmission electron microscopy and atomic force microscopy study suggested multiple-layered platelet-shaped morphology, both on the surface and in the bulk of the crystallized alloy sample. The thermal treatment heating rate and maximum temperature affected surface roughness and grain size inhomogeneity.

  17. High pressure molecular dynamics simulation of Au-x%Ni alloys

    NASA Astrophysics Data System (ADS)

    Davoodi, J.; Katouzi, F.

    2014-03-01

    The aim of this investigation was to calculate thermodynamics properties of Au-x%Ni (atomic percent) by molecular dynamics (MD) simulation technique under high pressure. The many body quantum Sutton-Chen potential was employed to obtain cohesive energy and force experienced by every atom at the isothermal, isobaric (NPT) ensemble. The effect of pressure and Ni concentration on the physical properties, including cohesive energy, melting temperature, isobaric heat capacity, redial distribution function, and order parameter were calculated for Au-x%Ni alloys. The obtained MD results show that cohesive energy and melting temperature increase upon pressure increase. In addition, linear thermal expansion as well as isobaric heat capacity decreases with increasing pressure. Moreover, the phase diagrams of Au-x%Ni alloys were plotted at different pressure showing melting points as a function of Ni concentration.

  18. Electrochemical Studies on LaNi(sub 5-x)Sn(sub x) Metal Hydride Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Witham, C.; Bowman, R. C., Jr.; Hightower, A.; Fultz, B.

    1996-01-01

    Electrochemical studies were performed on LaNi(sub 5-x)Sn(sub x) with 0(less than or equal to)x(less than or equal to)0.5. We measured the effect of the Sn substituent on the kinetics of charge transfer and diffusion during hydrogen absorption and desorption, and the cyclic lifetimes of LaNi(sub 5-x)Sn(sub x) electrodes in 250 mAh laboratory test cells. We report beneficial effects of making small substitutions of Sn for Ni in LaNi(sub 5) on the performance of metal hydride alloy anode in terms of cyclic lifetime, capacity and kinetics. The optimal concentration of Sn in LaNi(sub 5-x)Sn(sub x) alloys for negative electrodes in alkaline rechargable secondary cells was found to lie in the range 0.25(less than or equal to)x(less than or equal to)0.3.

  19. The role of Zr and Nb in oxidation/sulfidation behavior of Fe-Cr-Ni alloys

    SciTech Connect

    Natesan, K. ); Baxter, D.J. INCO Alloy Ltd., Hereford, England )

    1990-11-01

    05Structural Fe-Cr-Ni alloys may undergo rapid degradation at elevated temperatures unless protective surface oxide scales are formed and maintained. The ability of alloys to resist rapid degradation strongly depends on their Cr content and the chemistry of the exposure environment. Normally, 20 wt % Cr is required for service at temperatures up to 1000{degree}C; the presence of sulfur, however, inhibits formation of a protective surface oxide scale. The oxidation and sulfidation behavior of Fe-Cr-