Science.gov

Sample records for ni okeru reaction

  1. Solid state SiC/Ni alloy reaction

    NASA Astrophysics Data System (ADS)

    Jackson, M. R.; Mehan, R. L.; Davis, A. M.; Hall, E. L.

    1983-02-01

    The solid state reaction between silicon carbide and a model superalloy consisting of 70 at. pct Ni, 20 at. pct Cr, and 10 at. pct Al was studied between 700 °C and 1150 °C for times ranging from “0” hours to 330 hours. Reaction couples consisting of SiC/Ni, SiC/Cr, and SiC/NiCr were also studied. The reactions were carried out in air with the materials, in the shape of discs, maintained in contact under a pressure of 7 MPa. A reaction was detected with SiC and the model alloy at all temperatures studied, and the reaction was diffusion controlled with an activation energy of 184 kJ/mole. In the ceramic the reaction was dominated by the diffusion of Ni into the ceramic forming a banded structure consisting of alternating layers of δ-Ni2Si and a two phase mixture of graphite and δ. On the metal side, the reaction was very dependent on the presence of alloying elements, with pure Ni reacting to the greatest extent, followed by the binary NiCr alloy, and finally by NiCrAl. The growth and presence of the phases detected in these reactions is consistent with phase equilibria concepts.

  2. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  3. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  4. Effect of polarity on Ni/InN interfacial reactions

    SciTech Connect

    Kragh-Buetow, K. C.; Weng, X.; Readinger, E. D.; Wraback, M.; Mohney, S. E.

    2013-01-14

    Ni films on (0001) and (0001) InN exhibited different reaction kinetics upon annealing at 673K. Structural and chemical analysis using grazing incidence X-ray diffraction, transmission electron microscopy, and X-ray energy dispersive spectrometry indicated that an interfacial reaction did not occur between the Ni film and the In-polar (0001) InN layer. However, the N-polar face reacted with Ni to form the Ni{sub 3}InN{sub x} ternary phase with an anti-perovskite structure. The difference in reactivity for Ni on In-face and N-face InN indicates that polarity alters the reaction and may also affect interactions between other metals and group III-nitride semiconductors.

  5. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    SciTech Connect

    Zhu, M.F.; Suni, I.; Nicolet, M.; Sands, T.

    1984-11-15

    Amorphous films of Ni-W and Ni-N-W were deposited on single-crystal silicon with discharge gases of Ar or Ar+N/sub 2/ by rf cosputtering of Ni and W. The reaction of these Ni-W and Ni-N-W films with the Si substrate were studied in the temperature range of 450--750 /sup 0/C by a combination of backscattering spectrometry, x-ray diffraction, cross-sectional transmission electron microscopy, and resistivity measurements. Films with composition Ni/sub 36/W/sub 64/ are stable below 500 /sup 0/C. NiSi and NiSi/sub 2/ form at 500 /sup 0/C, and WSi/sub 2/ forms rapidly in the temperature range of 625--650 /sup 0/C. The nickel silicide forms adjacent to and within the silicon, while the outer layer becomes a mixture of WSi/sub 2/ and NiSi/sub 2/. The morphologies of the reacted layers are revealed by cross-sectional transmission electron microscopy. The crystallization temperature of amorphous Ni/sub 36/W/sub 64/ films on SiO/sub 2/ is near 650 /sup 0/C also. Adding nitrogen to form amorphous Ni/sub 30/N/sub 21/W/sub 49/ films lowers the crystallization temperature, but raises the reaction temperature with Si to 750 /sup 0/C.

  6. Fusion reactions of Ni,6458+124Sn

    NASA Astrophysics Data System (ADS)

    Jiang, C. L.; Stefanini, A. M.; Esbensen, H.; Rehm, K. E.; Almaraz-Calderon, S.; Avila, M. L.; Back, B. B.; Bourgin, D.; Corradi, L.; Courtin, S.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M. M.; Montanari, D.; Montagnoli, G.; Mijatovic, T.; Sagaidak, R.; Santiago-Gonzalez, D.; Scarlassara, F.; Strano, E. E.; Szilner, S.

    2015-04-01

    Measurements of fusion excitation functions of 58Ni+124Sn and 64Ni+124Sn are extended towards lower energy to cross sections of 1 μ b and are compared to detailed coupled-channels calculations. The calculations clearly show the importance of including transfer reactions in a coupled-channels treatment for such heavy systems. This result is different from the conclusion made in a previous article which claimed that the influence of transfer on fusion is not important for fusion reactions of Ni +Sn . In the energy region studied in this experiment no indication of fusion hindrance has been observed, which is consistent with a systematic study of this behavior.

  7. Dominating Role of Ni(0) on the Interface of Ni/NiO for Enhanced Hydrogen Evolution Reaction.

    PubMed

    Wang, Jing; Mao, Shanjun; Liu, Zeyan; Wei, Zhongzhe; Wang, Haiyan; Chen, Yiqing; Wang, Yong

    2017-03-01

    The research of a robust catalytic system based on single NiOx electrocatalyst for hydrogen evolution reaction (HER) remains a huge challenge. Particularly, the factors that dominate the catalytic properties of NiOx-based hybrids for HER have not been clearly demonstrated. Herein, a convenient protocol for the fabrication of NiOx@bamboo-like carbon nanotube hybrids (NiOx@BCNTs) is designed. The hybrids exhibit superb catalytic ability and considerable durability in alkaline solution. A benchmark HER current density of 10 mA cm(-2) has been achieved at an overpotential of ∼79 mV. In combination with the experimental results and density functional theory (DFT) calculations, this for the first time definitely validates that the inherent high Ni(0) ratio and the Ni(0) on the interface of Ni/NiO play a vital role in the outstanding catalytic performance. Especially, the Ni(0) on the interface of Ni/NiO performs superior activity for water splitting compared with that of bulk Ni(0). These conclusions provide guidance for the rational design of the future non-noble metallic catalysts.

  8. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    SciTech Connect

    Bates, MK; Jia, QY; Ramaswamy, N; Allen, RJ; Mukerjee, S

    2015-03-12

    We report a Ni-Cr/C electrocatalyst with unpreeedented massactivity for the hydrogen evolution reaction (HER). in alkaline electrolyte. The HER Oietics of numerous binary and ternary Ni-alloys and composite Ni/metal-euride/C samples were evaluated in aquebus 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni-Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to munerous binary dor ternary Ni-alloys, inCluding Ni Mg materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a, sink for the H-ads, intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiO content and that the Cr2O3 appears to stabilize the composite NiO component-under HER conditions (where NiOx would typically be reduced to metallic Ni-0). Furthermore, in contrast to Pt, the Ni(O-x)/Cr2O3 catalyst appears resistant to poisoning by the anion.exchange ionomer (AEI), a serloua consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a: detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI.

  9. Reaction synthesis of Ni-Al based particle composite coatings

    SciTech Connect

    SUSAN,DONALD F.; MISIOLEK,WOICECK Z.; MARDER,ARNOLD R.

    2000-02-11

    Electrodeposited metal matrix/metal particle composite (EMMC) coatings were produced with a nickel matrix and aluminum particles. By optimizing the process parameters, coatings were deposited with 20 volume percent aluminum particles. Coating morphology and composition were characterized using light optical microscopy (LOM), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). Differential thermal analysis (DTA) was employed to study reactive phase formation. The effect of heat treatment on coating phase formation was studied in the temperature range 415 to 1,000 C. Long-time exposure at low temperature results in the formation of several intermetallic phases at the Ni matrix/Al particle interfaces and concentrically around the original Al particles. Upon heating to the 500--600 C range, the aluminum particles react with the nickel matrix to form NiAl islands within the Ni matrix. When exposed to higher temperatures (600--1,000 C), diffusional reaction between NiAl and nickel produces ({gamma})Ni{sub 3}Al. The final equilibrium microstructure consists of blocks of ({gamma}{prime})Ni{sub 3}Al in a {gamma}(Ni) solid solution matrix, with small pores also present. Pore formation is explained based on local density changes during intermetallic phase formation and microstructural development is discussed with reference to reaction synthesis of bulk nickel aluminides.

  10. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  11. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE PAGES

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-17

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  12. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    NASA Astrophysics Data System (ADS)

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-01

    A comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces is performed at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O-H bonds. A significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitation of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to ˜0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. However, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Overall, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.

  13. Crystalline/amorphous Ni/NiO core/shell nanosheets as highly active electrocatalysts for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Xiaodong; Tian, Lihong; Chen, Xiaobo

    2015-12-01

    Novel crystalline/amorphous core/shell Ni/NiO nanosheets have shown a high electrocatalytic activity in hydrogen evolution reaction (HER). In 1 M KOH, they display an HER current of 5 mA cm-2 at an overpotential of 110 mV with a good stability. It is proposed that their excellent HER performance is achieved through the synergistic effect between the Ni core and the amorphous NiO shell, where the Ni core can reduce the resistance and the amorphous NiO shell can accelerate both Volmer and Heyrovsky processes to drive HER at low overpotentials.

  14. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  15. Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction

    PubMed Central

    2014-01-01

    We are presenting our recent research results about the Ni-NiO nanoparticles on poly-(diallyldimethylammonium chloride)-modified graphene sheet (Ni-NiO/PDDA-G) nanocomposites prepared by the hydrothermal method at 90°C for 24 h. The Ni-NiO nanoparticles on PDDA-modified graphene sheets are measured by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) pattern for exploring the structural evidence to apply in the electrochemical catalysts. The size of Ni-NiO nanoparticles is around 5 nm based on TEM observations. The X-ray diffraction (XRD) results show the Ni in the (012), (110), (110), (200), and (220) crystalline orientations, respectively. Moreover, the crystalline peaks of NiO are found in (111) and (220). The thermal gravimetric analysis (TGA) result represents the loading content of the Ni metal which is about 34.82 wt%. The electron spectroscopy for chemical analysis/X-ray photoelectron spectroscopy (ESCA/XPS) reveals the Ni0 to NiII ratio in metal phase. The electrochemical studies with Ni-NiO/PDDA-G in 0.5 M aqueous H2SO4 were studied for oxygen reduction reaction (ORR). PMID:25246863

  16. Reaction dynamics studies for the system 7Be+58Ni

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Mazzocco, M.; Acosta, L.; Boiano, A.; Boiano, C.; Diaz-Torres, A.; Fierro, N.; Glodariu, T.; Grilj, L.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Martel, I.; Mazzocchi, C.; Molini, P.; Pakou, A.; Parascandolo, C.; Parkar, V. V.; Patronis, N.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-04-01

    The study of reactions induced by exotic weakly bound nuclei at energies around the Coulomb barrier had attracted a large interest in the last decade, since the features of these nuclei can deeply affect the reaction dynamics. The discrimination between different reaction mechanisms is, in general, a rather difficult task. It can be achieved by using detector arrays covering high solid angle and with high granularity that allow to measure the reaction products and, possibly, coincidences between them, as, for example, recently done for stable weakly bound nuclei [1, 2]. We investigated the collision of the weakly bound nucleus 7Be on a 58Ni target at the beam energy of 1.1 times the Coulomb barrier, measuring the elastic scattering angular distribution and the energy and angular distributions of 3He and 4He. The 7Be radioactive ion beam was produced by the facility EXOTIC at INFN-LNL with an energy of 22 MeV and an intensity of ~3×105 pps. Results showed that the 4He yeld is about 4 times larger than 3He yield, suggesting that reaction mechanisms other than the break-up mostly produce the He isotopes. Theoretical calculations for transfer channels and compound nucleus reactions suggest that complete fusion accounts for (41±5%) of the total reaction cross section extracted from optical model analysis of the elastic scattering data, and that 3He and 4He stripping are the most populated reaction channels among direct processes. Eventually estimation of incomplete fusion contributions to the 3,4He production cross sections was performed through semi-classical calculations with the code PLATYPUS [3].

  17. Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li-S batteries

    NASA Astrophysics Data System (ADS)

    Liu, Li-Jun; Chen, Yang; Zhang, Zhi-Feng; You, Xiao-Long; Walle, Maru Dessie; Li, Ya-Juan; Liu, You-Nian

    2016-09-01

    The electrochemical properties of sulfur cathode with Ni foam current collector are investigated in detail. Different from sulfur cathode with stain steel current collector, it is interesting found that novel redox peaks at 1.95 V/1.35 V are observed for sulfur cathode with Ni foam. The electrochemical behavior is further verified by ex-situ XRD, SEM and XPS analyses. The results indicate that Ni foam current collector is involved in the redox reaction in Li/S rechargeable battery, and NiS forms at the surface of the Ni foam. These results demonstrate that the sulfur electrode is transformed into NiS.

  18. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang; Li, Mian; Fan, Liquan; Han, Jianan; Xiong, Yueping

    2017-04-01

    The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-Nx and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  19. Reaction of amorphous Ni-W and Ni-N-W films with substrate silicon

    NASA Technical Reports Server (NTRS)

    Zhu, M. F.; Suni, I.; Nicolet, M.-A.; Sands, T.

    1984-01-01

    Wiley et al. (1982) have studied sputtered amorphous films of Nb-Ni, Mo-Ni, Si-W, and Si-Mo. Kung et al. (1984) have found that amorphous Ni-Mo films as diffusion barriers between multilayer metallizations on silicon demonstrate good electrical and thermal stability. In the present investigation, the Ni-W system was selected because it is similar to the Ni-Mo system. However, W has a higher silicide formation temperature than Mo. Attention is given to aspects of sample preparation, sample characterization, the interaction between amorphous Ni-W films and Si, the crystallization of amorphous Ni(36)W(64) films on SiO2, amorphous Ni-N-W films, silicide formation and phase separation, and the crystallization of amorphous Ni(36)W(64) and Ni(30)N(21)W(49) layers.

  20. Synthesis Mechanism and Strengthening Effects of Laminated NiAl by Reaction Annealing

    NASA Astrophysics Data System (ADS)

    Du, Yan; Fan, Guohua; Wang, Qingwei; Geng, Lin

    2017-01-01

    N iA l with a laminated microstructure has been fabricated by reaction annealing of Ni-Al system at 1473 K (1200 °C). The laminated NiAl shows heterogeneity of chemical gradient and bimodal grain size distribution. The objective of this study is to investigate the synthesis mechanism and the strengthening effect of this laminated NiAl, therefore to promote further application of NiAl as a high-temperature structural material. Heat treatments at 1473 K (1200 °C) and subsequent characterization were utilized to study the synthesis mechanism. It shows that in original Al regions NiAl nuclei precipitate from Al(Ni) liquid phase and form fine-grained NiAl layers, whereas in original Ni regions NiAl nuclei precipitate from Ni(Al) saturated solution through diffusion and form coarse-grained NiAl layers. Moreover, heterogeneity of chemical gradient is generated through diffusion during annealing. The mechanical properties of laminated NiAl have also been studied via nanoindentation method. It shows that both chemical gradient and bimodal grain size distribution could strengthen the laminated NiAl.

  1. Effects of Cr and Ni on Interdiffusion and Reaction between U and Fe-Cr-Ni Alloys

    SciTech Connect

    K. Huang; Y. Park; L. Zhou; K.R. Coffey; Y.H. Sohn; B.H. Sencer; J. R. Kennedy

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe–15 wt.%Cr or Fe–15 wt.%Cr–15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe–Cr–Ni exhibited a similar temperature dependence, while the U vs. Fe–Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases – lower growth rate at lower temperature but higher growth rate at higher temperature.

  2. Effects of Cr and Ni on interdiffusion and reaction between U and Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Huang, K.; Park, Y.; Zhou, L.; Coffey, K. R.; Sohn, Y. H.; Sencer, B. H.; Kennedy, J. R.

    2014-08-01

    Metallic U-alloy fuel cladded in steel has been examined for high temperature fast reactor technology wherein the fuel cladding chemical interaction is a challenge that requires a fundamental and quantitative understanding. In order to study the fundamental diffusional interactions between U with Fe and the alloying effect of Cr and Ni, solid-to-solid diffusion couples were assembled between pure U and Fe, Fe-15 wt.%Cr or Fe-15 wt.%Cr-15 wt.%Ni alloy, and annealed at high temperature ranging from 580 to 700 °C. The microstructures and concentration profiles that developed from the diffusion anneal were examined by scanning electron microscopy, and X-ray energy dispersive spectroscopy (XEDS), respectively. Thick U6Fe and thin UFe2 phases were observed to develop with solubilities: up to 2.5 at.% Ni in U6(Fe,Ni), up to 20 at.%Cr in U(Fe, Cr)2, and up to 7 at.%Cr and 14 at.% Ni in U(Fe, Cr, Ni)2. The interdiffusion and reactions in the U vs. Fe and U vs. Fe-Cr-Ni exhibited a similar temperature dependence, while the U vs. Fe-Cr diffusion couples, without the presence of Ni, yielded greater activation energy for the growth of intermetallic phases - lower growth rate at lower temperature but higher growth rate at higher temperature.

  3. Rate-limiting step in the low-energy unimolecular decomposition reaction of Ni+* acetone into Ni+CO + ethane.

    PubMed

    Dee, S Jason; Castleberry, Vanessa A; Villarroel, Otsmar J; Laboren, Ivanna E; Frey, Sarah E; Ashley, Daniel; Bellert, Darrin J

    2009-12-24

    Rate constants for the low-energy Ni(+)-assisted C-C bond cleavage reaction of deuterium-labeled acetone have been acquired under jet-cooled conditions in the gas phase. The energies used to initiate the dissociative reactions of the precursor complex ion Ni(+)(d(6)-Ac) are well below that required to cleave C-C sigma-bonds in isolated organic molecules. The rate constants are compared to those acquired previously for the lighter Ni(+)(h(6)-Ac) isotope and result in a substantial kinetic isotope effect (k(H)/k(D) approximately 5.5). Arguments are made that implicate isomerization leading to C-C bond coupling as the rate-limiting step (not C-C sigma-bond activation) in the dissociative reaction.

  4. Effects of Ga Addition on Interfacial Reactions Between Sn-Based Solders and Ni

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Hong; Li, Kuan-Ting

    2016-12-01

    The use of Ga as a micro-alloying element in Sn-based solders can change the microstructure of solder joints to improve the mechanical properties, and even suppress the interfacial intermetallic compound (IMC) growth. This research investigated the effects of Ga addition (0.2-1 wt.%Ga) on the IMC formation and morphological evolution in the Sn-based solder joints with Ni substrate. In the soldering reaction at 250°C and with less than 0.2 wt.%Ga addition, the formed phase was Ni3Sn4. When the Ga addition increased to 0.5 wt.%, it changed to a thin Ni2Ga3 layer of ˜1 μm thick, which stably existed at the interface in the initial 1-h reaction. Subsequently, the whole Ni2Ga3 layer detached from the Ni substrate and drifted into the molten solder. The Ni3Sn4 phase became dominant in the later stage. Notably, the Ga addition significantly reduced the grain size of Ni3Sn4, resulting in the massive spalling of Ni3Sn4 grains. With 1 wt.%Ga addition, the Ni2Ga3 layer remained very thin with no significant growth, and it stably existed at the interface for more than 10 h. In addition, the solid-state reactions were examined at temperatures of 160°C to 200°C. With addition of 0.5 wt.%Ga, the Ni3Sn4 phase dominated the whole reaction. By contrast, with increasing to 1 wt.%Ga, only a thin Ni2Ga3 layer was found even after aging at 160°C for more than 1200 h. The 1 wt.%Ga addition in solder can effectively inhibit the Ni3Sn4 formation in soldering and the long-term aging process.

  5. Neutron spectroscopic factors of 55Ni hole-states from (p,d) transfer reactions

    NASA Astrophysics Data System (ADS)

    Sanetullaev, A.; Tsang, M. B.; Lynch, W. G.; Lee, Jenny; Bazin, D.; Chan, K. P.; Coupland, D.; Henzl, V.; Henzlova, D.; Kilburn, M.; Rogers, A. M.; Sun, Z. Y.; Youngs, M.; Charity, R. J.; Sobotka, L. G.; Famiano, M.; Hudan, S.; Shapira, D.; Peters, W. A.; Barbieri, C.; Hjorth-Jensen, M.; Horoi, M.; Otsuka, T.; Suzuki, T.; Utsuno, Y.

    2014-09-01

    Spectroscopic information has been extracted on the hole-states of 55Ni, the least known of the quartet of nuclei (55Ni, 57Ni, 55Co and 57Cu), one nucleon away from 56Ni, the N=Z=28 double magic nucleus. Using the H1(Ni56,d)Ni55 transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. State of the art calculations have been performed to describe the excitation energies and spectroscopic factors of the s1/2 hole-state below Fermi energy.

  6. Unusual reaction of [NiFe]-hydrogenases with cyanide.

    PubMed

    Hexter, Suzannah V; Chung, Min-Wen; Vincent, Kylie A; Armstrong, Fraser A

    2014-07-23

    Cyanide reacts rapidly with [NiFe]-hydrogenases (hydrogenase-1 and hydrogenase-2 from Escherichia coli) under mild oxidizing conditions, inhibiting the electrocatalytic oxidation of hydrogen as recorded by protein film electrochemistry. Electrochemical, EPR, and FTIR measurements show that the final enzyme product, formed within a second (even under 100% H2), is the resting state known as Ni-B, which contains a hydroxido-bridged species, Ni(III)-μ(OH)-Fe(II), at the active site. "Cyanide inhibition" is easily reversed because it is simply the reductive activation of Ni-B. This paper brings back into focus an observation originally made in the 1940s that cyanide inhibits microbial H2 oxidation and addresses the interesting mechanism by which cyanide promotes the formation of Ni-B. As a much stronger nucleophile than hydroxide, cyanide binds more rapidly and promotes oxidation of Ni(II) to Ni(III); however, it is quickly replaced by hydroxide which is a far superior bridging ligand.

  7. Shaped Ir-Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction.

    PubMed

    Lim, Jinkyu; Yang, Sungeun; Kim, Chanyeon; Roh, Chi-Woo; Kwon, Yongwoo; Kim, Yong-Tae; Lee, Hyunjoo

    2016-04-25

    Shaped Ir-Ni bimetallic nanoparticles were synthesized and used for electrocatalytic oxygen evolution reaction (OER). The obtained bimetallic nanoparticles showed significantly enhanced Ir mass activity and durability compared with Ir nanoparticles.

  8. High-rate oxygen evolution reaction on Al-doped LiNiO2.

    PubMed

    Gupta, Asha; Chemelewski, William D; Buddie Mullins, C; Goodenough, John B

    2015-10-21

    LiNi0.8 Al0.2 O2 with a higher Ni(3+) /Li(+) ordering, synthesized by the solution-combustion method, gives oxygen-evolution-reaction (OER) activity in alkaline solution that is comparable to that of IrO2 . This confirms that the octahedral-site Ni(IV) /Ni(III) couple in an oxide is an active redox center for the OER with -redox energy pinned at the top of the O-2p bands.

  9. The effect of urea on microstructures of Ni3S2 on nickel foam and its hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang

    2016-11-01

    The effects of urea concentration on microstructures of Ni3S2formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni3S2 nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni3S2 nanotube arrays. The resulting Ni3S2 nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni3S2 nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction.

  10. Structural response of Ni/ZrO2 to feed modulations during CH4 reforming reactions

    NASA Astrophysics Data System (ADS)

    Steib, M.; Jentys, A.; Lercher, J. A.

    2016-05-01

    Time resolved oxidation and reduction cycles of ZrO2-supported Ni catalysts for dry reforming of CH4 (CO2 + CH4 ↔ 2 CO + 2 H2) during feed modulations have been studied. Under reaction conditions (1073 K) Ni remains fully reduced, whereas switching the feed gas to pure CO2 results in a slow (25 sec) formation of a stable NiO phase. When switching back to reaction conditions the NiO phase is rapidly reduced (∼ 1 sec) to metallic Ni. In the context of this study, a novel capillary cell has been built, allowing the parallel treatment of 5 catalyst samples with different gas compositions and different pressures. A comparison of the capillary cell to conventional systems regarding the spectral quality and the kinetic data shows that the capillary cell can be used to obtain identical kinetic data and high quality X-ray absorption spectra.

  11. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway.

    PubMed

    Krause, Mary E; Glass, Amanda M; Jackson, Timothy A; Laurence, Jennifer S

    2013-01-07

    The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.

  12. Enhancing stability of octahedral PtNi nanoparticles for oxygen reduction reaction by halide treatment

    NASA Astrophysics Data System (ADS)

    Choi, Juhyuk; Lee, Youhan; Kim, Jihan; Lee, Hyunjoo

    2016-03-01

    Because a reduction in the amount of Pt catalysts is essential for the commercialization of fuel cells, various approaches have been tested to maximize the mass activity of Pt-based catalysts. Among these, the most successful results so far were obtained using shaped PtNi alloy nanoparticles, preferably with PtNi(111) facets. However, these nanoparticles typically suffer from much lower activity after the durability tests due to the leaching out of the surface Ni during the oxygen reduction reaction (ORR), which leads to the disappearance of the activity-enhancing effect caused by electronic structure modification. Here, we showed that halide treatment of the octahedral PtNi nanoparticles could significantly enhance their durability. Halides are adsorbed on surface Ni more strongly than on surface Pt, and the surface halides are found to preserve the surface Ni that induces the ORR activity enhancement. Especially, Br can preserve the surface Ni effectively. Durability testing by repeating cyclic voltammetry 10,000 times in the 0.6-1.1 V range showed that the mass activity decreased by 52.6% for the as-prepared PtNi octahedral nanoparticles, whereas the mass activity decreased by only 15.0% for the Br-treated PtNi nanoparticles. The simple treatment significantly enhanced the long-term stability of the highly active PtNi alloy nano-octahedra.

  13. First-principles study of CO adsorption and further reactions on Ni(111) surfaces

    NASA Astrophysics Data System (ADS)

    Remediakis, Ioannis N.; Abild-Pedersen, Frank; Norskov, Jens K.

    2003-03-01

    We study CO chemisorption and further reaction with hydrogen and oxygen on flat and stepped Ni(111), as a process of great importance for catalysis. We use Density-Functional Theory to calculate the geometries and energies of the various configurations, and the Nudged Elastic Band method to calculate energy barriers and thus estimate reaction rates. We first calculate the favorable adsorption sites and the relative adsorption energies for CO, CO2 and H on both the flat and stepped Ni(111). We then focus on two reactions: first, the dissociation of CO, giving rise to CO2 formation and second, the hydrogenation of CO to form Formyl radical (COH).

  14. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    PubMed Central

    Kobashi, Makoto; Kanetake, Naoyuki

    2009-01-01

    The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  15. Investigation of the shock-induced chemical reaction (SICR) in Ni + Al nanoparticle mixtures.

    PubMed

    Xiong, Yongnan; Xiao, Shifang; Deng, Huiqiu; Zhu, Wenjun; Hu, Wangyu

    2017-07-21

    Molecular dynamics (MD) simulations are used to investigate the shock-compression response of Ni + Al spherical nanoparticles arranged in a NaCl-like structure. The deformation and reaction characteristics are studied from the particle level to the atomic scale at various piston velocities. Shock-induced chemical reactions (SICRs) occur during non-equilibrium processes, accompanied by a sharp rise in temperature and rapid mixing of atoms. The preferentially deformed Al particles form a high-speed mass flow relative to the Ni at the shock front, which impinges on the Ni particles, and mixing of Ni and Al atoms occurs immediately at the interface. The particle velocity dispersion (PVD) that appears at the shock front has important implications for the initiation of shock-induced chemical reactions. We show that dislocations are mainly generated at the beginning of particle deformation or at the shock front, and do not directly affect the occurrence of SICRs. The intimate contact of the molten Al and the amorphous Ni is found to be critical to the subsequent reactions for the extensive mixing of Ni and Al. We conclude that the mechanisms of SICRs involve mechanochemical processes near the shock front and subsequent interdiffusion processes.

  16. Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-ming; Chen, Sinn-wen

    2001-08-01

    This study investigates the effect of electromigration upon the interfacial reactions between the promising lead-free solders, Sn-Cu and Sn-Ag, with Ni substrate. Sandwich-type reaction couples, Sn-0.7 wt% Cu/Ni/Sn-0.7 wt% Cu and Sn-3.5 wt% Ag/Ni/Sn-3.5 wt% Ag, were reacted at 160, 180, and 200 °C for various lengths of time with and without the passage of electric currents. Without passage of electric currents through the couples, only one intermetallic compound Ni3Sn4 with ˜7 at. % Cu solubility was found at both interfaces of the Sn-0.7 wt% Cu/Ni couples. With the passage of an electric current of 500 A/cm2 density, the Cu6Sn5 phase was formed at the solder/Ni interface besides the Ni3Sn4 phase. Similar to those without the passage of electric currents, only the Ni3Sn4 phase was found at the Ni/solder interface. Directions of movement of electrons, Sn, and Cu atoms are the same at the solder/Ni interface, and the growth rates of the intermetallic layers were enhanced. At the Ni/solder interface, the electrons flow in the opposite direction of the Sn and Cu movement, and the growth rates of the intermetallic layers were retarded. Only the Ni3Sn4 phase was formed from the Sn-3.5 wt% Ag/Ni interfacial reaction with and without the passage of electric currents. Similar to the Sn-0.7 wt% Cu/Ni system, the movement of electrons enhances or retards the growth rates of the intermetallic layers at the solder/Ni and Ni/solder interfaces, respectively. Calculation results show the apparent effective charge za* decreases in magnitude with raising temperatures, which indicates the electromigration effect becomes insignificant at higher temperatures.

  17. Methanol oxidation and hydrogen reactions on NiZr in acid solution

    NASA Astrophysics Data System (ADS)

    Hays, C. C.; Manoharan, R.; Goodenough, J. B.

    The electrochemical properties of a Ni 50Zr 50 (at.%) alloy have been investigated by cyclic voltammetry and steady-state polarization measurements. The alloy forms a passivating oxyhydroxide film that makes it electrochemically stable in an acid solution. The oxyhydroxide film is shown to be an electrocatalyst for the methanol oxidation reaction (MOR). The reaction proceeds at surface O 2- ions neighboring a Ni 3+ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film. A reaction pathway is presented that accounts for the observation of an optimum thickness for the passivating film. The NiZr alloy was also found to catalyze both hydrogen-oxidation and proton-reduction reactions (HOR and PRR) if it has a thinner surface oxyhydroxide film. The alloy appears to form mixed NiZrH and NiZrH 3- x hydrides on cycling negative of the normal hydrogen potential. The activity of the hydrogen-oxidation reaction on a hydride surface was found to increase in the presence of streaming hydrogen gas and also with increasing negative initial potential. Although the hydride is unstable in acid, it may be an attractive candidate for use as a rechargeable negative electrode in an alkaline metal/air or nickel-metal hydride secondary battery.

  18. Combustion Synthesis Reaction Behavior of Cold-Rolled Ni/Al and Ti/Al Multilayers

    DTIC Science & Technology

    2011-04-01

    6   Figure 4 . Combustion synthesis process of the cold-rolled Ni/Al multilayer foils: (a) reaction front of the displacement of the reaction...Reactive Nanostructured Foil Used as a Heat Source for Joining Titanium . J. Appl. Phys. 2004, 96 ( 4 ), 2336–2342. 16. Wang, J.; Besnoin, E...2011 2. REPORT TYPE Final 3. DATES COVERED (From - To) January 2006–January 2008 4 . TITLE AND SUBTITLE Combustion Synthesis Reaction Behavior of

  19. Hollow mesoporous NiCo2O4 nanocages as efficient electrocatalysts for oxygen evolution reaction.

    PubMed

    Lv, Xiaoming; Zhu, Yihua; Jiang, Hongliang; Yang, Xiaoling; Liu, Yanyan; Su, Yunhe; Huang, Jianfei; Yao, Yifan; Li, Chunzhong

    2015-03-07

    The design and fabrication of efficient and inexpensive electrodes for oxygen evolution reaction (OER) is essential for energy-conversion technologies. Herein, high OER activity is achieved using hollow mesoporous NiCo2O4 nanocages synthesized via a Cu2O-templated strategy combined with coordination reaction. The NiCo2O4 nanostructures with a hollow cavity, large roughness and high porosity show only a small overpotential of ∼0.34 V at the current density of 10 mA cm(-2) and a Tafel slope of 75 mV per decade, which is comparable with the performance of the best reported transition metal oxide based OER catalysts in the literature. Meanwhile, the positive impacts of the nanocage structure and the Ni incorporation on the electrocatalytic performance are also demonstrated by comparing the OER activities of NiCo2O4 nanocages with Co3O4 nanocages, NiCo2O4 nanoparticles and 20 wt% Pt/C. Moreover, the NiCo2O4 nanocages also manifest superior stability to other materials. All these merits indicate that the hollow mesoporous NiCo2O4 nanocages are promising electrocatalysts for water oxidation.

  20. Effect of defects on reaction of NiO surface with Pb-contained solution

    NASA Astrophysics Data System (ADS)

    Kim, Jongjin; Hou, Binyang; Park, Changyong; Bahn, Chi Bum; Hoffman, Jason; Black, Jennifer; Bhattacharya, Anand; Balke, Nina; Hong, Hawoong; Kim, Ji Hyun; Hong, Seungbum

    2017-03-01

    In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case of native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution.

  1. Effect of defects on reaction of NiO surface with Pb-contained solution

    PubMed Central

    Kim, Jongjin; Hou, Binyang; Park, Changyong; Bahn, Chi Bum; Hoffman, Jason; Black, Jennifer; Bhattacharya, Anand; Balke, Nina; Hong, Hawoong; Kim, Ji Hyun; Hong, Seungbum

    2017-01-01

    In order to understand the role of defects in chemical reactions, we used two types of samples, which are molecular beam epitaxy (MBE) grown NiO(001) film on Mg(001) substrate as the defect free NiO prototype and NiO grown on Ni(110) single crystal as the one with defects. In-situ observations for oxide-liquid interfacial structure and surface morphology were performed for both samples in water and Pb-contained solution using high-resolution X-ray reflectivity and atomic force microscopy. For the MBE grown NiO, no significant changes were detected in the high-resolution X-ray reflectivity data with monotonic increase in roughness. Meanwhile, in the case of native grown NiO on Ni(110), significant changes in both the morphology and atomistic structure at the interface were observed when immersed in water and Pb-contained solution. Our results provide simple and direct experimental evidence of the role of the defects in chemical reaction of oxide surfaces with both water and Pb-contained solution. PMID:28317881

  2. Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles

    NASA Astrophysics Data System (ADS)

    Henz, Brian J.; Hawa, Takumi; Zachariah, Michael

    2009-06-01

    Molecular dynamics simulations are used to simulate the energetic reaction of Ni and Al particles at the nanometer scale. The effect of particle size on reaction time and temperature for separate nanoparticles has been considered as a model system for a powder metallurgy system. Coated nanoparticles in the form of Ni-coated Al nanoparticles and Al-coated Ni nanoparticles are also analyzed as a model for nanoparticles embedded within a matrix. The differences in melting temperature and phase change behavior, e.g., the volumetric expansion of Al between Al and Ni, are expected to produce differing results for the coated nanoparticle systems. For instance, the volumetric expansion of Al upon melting is expected to produce large tensile stresses and possibly rupture in the Ni shell for Ni-coated Al. Simulation results show that the sintering time for separate and coated nanoparticles is nearly linearly dependent on the number of atoms or volume of the sintering nanoparticles. We have also found that nanoparticle size and surface energy are important factors in determining the adiabatic reaction temperature for both systems at nanoparticle sizes of less than 10 nm in diameter.

  3. A fascinating combination of Co, Ni and Al nanomaterial for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Khan, Sher Bahadar; Khan, Shahid Ali; Asiri, Abdullah M.

    2016-05-01

    Interesting combination of Co, Ni and Al have been assessed for oxygen evolution reaction (OER). Layered double hydroxide (LDH) nanosheets of NiCoAl, Co-Al oxide nanoparticles and Co-Ni oxide nanoparticles were prepared and studied for the first time as OER catalyst. Among all the subjected catalysts, the binary LDH comprise of NiCoAl showed comparatively high catalytic activity than Co-Al oxide nanoparticles and Co-Ni oxide nanoparticles. The Co-Al and Co-Ni oxide nanoparticles showed current densities of 34.6 and 24.5 mA cm-2, respectively at 1 V in 0.3 M KOH solution. However at the same conditions, NiCoAl-LDH showed comparatively low overpotential, high current density (40.8 mA cm-2) and lower Tafel slope. The low overpotential and high catalytic activity of NiCoAl-LDH stipulate the possibility to reduce the demand of precious, rare earth and expensive transition metal catalyst in electrochemical water splitting for OER.

  4. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

    PubMed Central

    2016-01-01

    This report focuses on a novel strategy for the preparation of transition metal–MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance. PMID:27818842

  5. Comparative analysis of the fusion reactions 48Ti+58Fe and 58Ni+54Fe

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Scheid, W.; Zhang, H. Q.

    2017-05-01

    The experimental fusion excitation functions of the reactions 48Ti+58Fe and 58Ni+54Fe , measured down to the low sub-barrier energies, are described within the quantum diffusion approach and the universal fusion function representation. For these systems, the s -wave capture probabilities are extracted from the experimental excitation functions and are also analyzed. An enhancement of the sub-barrier fusion cross section observed in the 48Ti+58Fe reaction in comparison to the relatively close system 58Ni+54Fe is explained.

  6. Magnetic Ni-Co alloys induced by water gas shift reaction, Ni-Co oxides by CO oxidation and their supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Lee, Seungwon; Kang, Jung-Soo; Leung, Kam Tong; Kim, Seog K.; Sohn, Youngku

    2016-11-01

    Ni-Co alloys and oxides have attracted considerable attention in diverse fields, such as magnetic materials, energy storage and environmental/energy producing catalysts. Herein, the formation of magnetic Ni-Co alloys was induced by the water-gas shift reaction (WGSR) and the oxides were prepared by post-annealing and a CO oxidation reaction. The materials were characterized using a range of techniques. The annealed and post-CO oxidation Ni and Co-rich samples showed the crystal structures of NiCo2O4(Co3O4)/NiO and NiCo2O4/Co3O4, respectively. The Ni-Co oxides showed better supercapacitor performance than the corresponding Ni-Co alloys. The Co-rich samples exhibited better supercapacitor performance and CO oxidation activity than the Ni-rich sample. In addition, the Co-rich alloy showed a magnetization of 114 emu/g, which was approximately 2× larger than that of the Ni-rich alloy. The WGS reaction and the wide application tests are useful for designing new materials applicable to a wide range of areas.

  7. Electrodeposition of Ni on Bi2Te3 and Interfacial Reaction Between Sn and Ni-Coated Bi2Te3

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chen; Lee, Hsuan; Hau, Nga Yu; Feng, Shien-Ping; Chen, Chih-Ming

    2017-09-01

    Bismuth-telluride (Bi2Te3)-based compounds are common thermoelectric materials used for low-temperature applications, and nickel (Ni) is usually deposited on the Bi2Te3 substrates as a diffusion barrier. Deposition of Ni on the p-type (Sb-doped) and n-type (Se-doped) Bi2Te3 substrates using electroplating and interfacial reactions between Sn and Ni-coated Bi2Te3 substrates are investigated. Electrodeposition of Ni on different Bi2Te3 substrates is characterized based on cyclic voltammetry and Tafel measurements. Microstructural characterizations of the Ni deposition and the Sn/Ni/Bi2Te3 interfacial reactions are performed using scanning electron microscopy. A faster growth rate is observed for the Ni deposition on the n-type Bi2Te3 substrate which is attributed to a lower activation energy of reduction due to a higher density of free electrons in the n-type Bi2Te3 material. The common Ni3Sn4 phase is formed at the Sn/Ni interfaces on both the p-type and n-type Bi2Te3 substrates, while the NiTe phase is formed at a faster rate at the interface between Ni and n-type Bi2Te3 substrates.

  8. Influence of M-B (M = Fe, Co, Ni) on aluminum-water reaction

    NASA Astrophysics Data System (ADS)

    Meng, H. X.; Wang, N.; Dong, Y. M.; Jia, Z. L.; Gao, L. J.; Chai, Y. J.

    2014-12-01

    In this work, the aluminum-water reaction induced by Fe-B, Co-B and Ni-B particles was studied. The catalysts were mixtures of the metal boride and metallic particles. The chainlike Fe-B catalyst forms a network structure under the influence of an external magnetic field and has a large specific surface area. Aggregated particles of Co-B and Ni-B catalyst have small specific surface area. Catalytic activity in the initial corrosion of aluminum increases with increasing Fe-B content because of the large specific surface area and the formation of a micro galvanic cell. However, the amount of hydrogen generated slowly decreases with increasing amount of Co-B and Ni-B. The activity of Fe-B, Co-B and Ni-B in the initial Al/H2O reaction decreases in the order Fe-B > Ni-B > Co-B. The calculated apparent activation energies in the presence of Fe-B, Co-B and Ni catalysts are 38.2, 39 and 29.6 kJ mol-1, respectively. Aluminum is rapidly and completely corroded in a weakly alkaline solution (pH < 10) after consecutive additions of Al batches because of high concentrations of OH- in the local domain and an increase in the amount of Al(OH)3 precipitate.

  9. Solid State Reaction Mechanism and Microstructure Evolution of Ni-Al Powders during High Energy Ball Milling Revisited by TEM.

    PubMed

    Fan, Guohua; Geng, Lin; Feng, Yicheng; Cui, Xiping; Yan, Xudong

    2015-08-01

    Microstructure evolution during the formation of B2-NiAl by high energy ball milling of equiatomic elemental mixtures was studied by X-ray diffractometer, scanning electron microscopy, and transmission electron microscopy (TEM). The crystallite size, lattice defects and ordering of the B2-NiAl were monitored via TEM as function of milling time. The diffusion reaction, Ni+Al→NiAl3 or/and Ni2Al3, occurred during high energy ball milling, and to a certain extent offered the stored energy for the explosive exothermic reaction, Ni+Al→B2-NiAl. The fine microstructure of newly formed B2-NiAl after 5 h milling involved high density defects, e.g. antiphase boundary, long range ordering domains, vacancies, and dislocations.

  10. Transient and End Silicide Phase Formation in Thin Film Ni/polycrystalline-Si Reactions for Fully Silicided Gate Applications

    SciTech Connect

    Kittl,J.; Pawlak, M.; Torregiani, C.; Lauwers, A.; Demeurisse, C.; Vrancken, C.; Absil, P.; Biesemans, S.; Coia, C.; et. al

    2007-01-01

    The Ni/polycrystalline-Si thin film reaction was monitored by in situ x-ray diffraction during ramp annealings, obtaining a detailed view of the formation and evolution of silicide phases in stacks of interest for fully silicided gate applications. Samples consisted of Ni (30-170 nm)/polycrystalline-Si (100 nm)/SiO2 (10-30 nm) stacks deposited on (100) Si. The dominant end phase (after full silicidation) was found to be well controlled by the deposited Ni to polycrystalline-Si thickness ratio (tNi/tSi), with formation of NiSi2 ( {approx} 600 C), NiSi ( {approx} 400 C), Ni3Si2 ( {approx} 500 C), Ni2Si, Ni31Si12 ( {approx} 420 C), and Ni3Si ( {approx} 600 C) in stacks with tNi/tSi of 0.3, 0.6, 0.9, 1.2, 1.4, and 1.7, respectively. NiSi and Ni31Si12 were observed to precede formation of NiSi2 and Ni3Si, respectively, as expected for the phase sequence conventionally reported. Formation of Ni2Si was observed at early stages of the reaction. These studies revealed, in addition, the formation of transient phases that appeared and disappeared in narrow temperature ranges, competing with formation of the phases expected in the conventional phase sequence. These included the transient formation of NiSi and Ni31Si12 in stacks in which these phases are not expected to form (e.g., tNi/tSi of 1.7 and 0.9, respectively), at temperatures similar to those in which these phases normally grow.

  11. Hole-states of 55Ni from (p,d) transfer reactions

    NASA Astrophysics Data System (ADS)

    Tsang, Betty; Sanetullaev, Alisher; Lynch, William; Lee, Jenny; Bazin, Daniel; Chan, K. P.; Coupland, Daniel; Henzl, Vlad; Henzlova, Daniela; Kilburn, Micha; Rogers, Andrew; Sun, Z. Y.; Youngs, Michael; Charity, Robert; Sobotka, Lee; Famiano, Michael; Hudan, Sylvie; Shapira, Daniel; Peters, W. A.; Barbieri, C.; Hjorth-Jensen, M.; Horoi, M.; Otsuka, T.; Suzuki, T.; Utsuno, Y.

    2014-09-01

    Spectroscopic information has been extracted on the hole-states of 55Ni. Using the 1H(56Ni,d)55Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. Most shell models describe the ground state and the first p3/2 excited state very well. However, most models have difficulties describing the deep hole state in the sd orbits. In this talk, we will compare the experimental energy levels and spectroscopic factors to state of the art shell model calculations. Spectroscopic information has been extracted on the hole-states of 55Ni. Using the 1H(56Ni,d)55Ni transfer reaction in inverse kinematics, neutron spectroscopic factors, spins and parities have been extracted for the f7/2, p3/2 and the s1/2 hole-states of 55Ni. These new data provide a benchmark for large basis calculations that include nucleonic orbits in both the sd and pf shells. Most shell models describe the ground state and the first p3/2 excited state very well. However, most models have difficulties describing the deep hole state in the sd orbits. In this talk, we will compare the experimental energy levels and spectroscopic factors to state of the art shell model calculations. PHY-1102511.

  12. Molecular Dynamics Simulation Of The Energetic Reaction Between Ni And Al Nanoparticle Aggregates

    NASA Astrophysics Data System (ADS)

    Sparks, Jacob; Hawa, Takumi

    2013-03-01

    Molecular Dynamics simulations are used to simulate the energetic reaction of Ni and Al particles at the nanometer scale. The effect of particle size and structures on reaction time and temperature for Ni and Al separate nanoparticles has been considered. The differences in melting temperature and phase change behavior between Al and Ni are expected to produce differing results for the nanoparticle aggregates systems. Simulation results show that the sintering time increases with increasing mass of the aggregates and with decreasing the fractal dimension of the aggregate. The final temperature of the systems increases with decreasing the primary particle sizes when mass of the aggregates remains unchanged. The phenomenological model is a power law including a dependence on the number of particles in an aggregates and fractal dimension is also developed.

  13. Reaction pathways of model compounds of biomass-derived oxygenates on Fe/Ni bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Weiting; Chen, Jingguang G.

    2015-10-01

    Controlling the activity and selectivity of converting biomass-derivatives to fuels and valuable chemicals is critical for the utilization of biomass feedstocks. There are primarily three classes of non-food competing biomass, cellulose, hemicellulose and lignin. In the current work, glycolaldehyde, furfural and acetaldehyde are studied as model compounds of the three classes of biomass-derivatives. Monometallic Ni(111) and monolayer (ML) Fe/Ni(111) bimetallic surfaces are studied for the reaction pathways of the three biomass surrogates. The ML Fe/Ni(111) surface is identified as an efficient surface for the conversion of biomass-derivatives from the combined results of density functional theory (DFT) calculations and temperature programmed desorption (TPD) experiments. A correlation is also established between the optimized adsorption geometry and experimental reaction pathways. These results should provide helpful insights in catalyst design for the upgrading and conversion of biomass.

  14. Shock-induced chemical reactions in a Ni/Al powder mixture

    SciTech Connect

    Yang, Y.; Gould, R.D.; Horie, Y.; Iyer, K.R.

    1997-06-01

    A new 50 mm powder gun was used to reproduce and to extend the real-time observations of ultra-fast exothermic reactions in a Ni/Al powder mixture at the shock front. Shock profiles measured by a manganin gauge show that (1) the threshold pressure for reaction is about 14 GPa; (2) the initiation criteria based either on shock energy or melting are in contradiction with experimental evidence. {copyright} {ital 1997 American Institute of Physics.}

  15. An Investigation of Fragments Produced in the 58,64Ni + 9Be Fragmentation Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Ma, C. W.; Wang, S. S.; Qiao, C. Y.

    The cross sections of the fragments produced in the 140A MeV 58,64Ni + 9Be reactions have been studied using the empirical parametrization formula EPAX2 and EPAX3, the modified statistical abrasion-ablation (SAA) model, and the antisymmetrized molecular dynamics (AMD) model. The calculated cross sections of fragments are compared and discussed.

  16. 252Cf spectrum-averaged cross section for the 63Cu(n, p)63Ni reaction

    NASA Astrophysics Data System (ADS)

    Imamura, M.; Shibata, T.; Shibata, S.; Ohkubo, T.; Satoh, S.; Nogawa, N.

    1999-01-01

    The 63Ni produced by the 63Cu(n, p)63Ni reaction provides a unique measure to estimate the fast-neutron fluence of the Hiroshima/Nagasaki atomic bomb. In the similarity of the fission neutron spectrum of 252Cf to that of 235U, we have measured activation cross sections of the 63Cu(n, p)63Ni reaction averaged for the 252Cf fission spectrum.

  17. Preliminary studies on NiAl/Nb2Be17 reaction and effectiveness of BeO as an interfacial reaction barrier

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1991-01-01

    The interfacial reaction between NiAl and Nb2Be17 (used as a reinforcement for the alloy) was studied by measuring diffusion bonding of NiAl and Nb2Be17 plates in a hot press under a vacuum of 10 exp -5 atm. It was found that, after 2 hrs of hot pressing at 1373 K, the reaction between NiAl and Nb2Be17 was extensive. A 40 to 50-micron-thick reaction zone consisted of three distinct layers at the NiAl/Nb2Be17 interface: layer A next to Nb2Be17, layer B in the middle, and layer C next to NiAl. Results of analysis of the reaction layers using energy dispersive spectroscopy (EDS) were inconclusive because of the inabiliaty of EDS to detect Be.

  18. Theoretical characterisation of irreversible and reversible hydrogen storage reactions on Ni-doped C60 fullerene

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; El Mahdy, A. M.; Soliman, K. A.; Taha, H. O.

    2014-12-01

    An attempt has been made to characterise the irreversible and reversible hydrogen storage reactions on Ni-doped C60 fullerene by using the state of the art density functional theory calculations. The single Ni atom prefers to bind at the bridge site between two hexagonal rings of C60 fullerene, and can bind up to four hydrogen molecules with average adsorption energies of -0.85, -0.83, -0.58, and -0.31 eV per hydrogen molecule. No evidence for metal clustering in the ideal circumstances and the hydrogen storage capacity is expected to be as large as 8.9 wt%. While the desorption activation barriers of the complexes nH2NiC60 (n = 1, 2) are outside the desirable energy window recommended by the department of energy for practical applications (-0.2 to -0.6 eV), the desorption activation barriers of the complexes nH2NiC60 (n = 3, 4) are inside this window. The irreversible 2H2 + NiC60 and reversible 3H2 + NiC60 interactions are characterised in terms of several theoretical parameters such as: (1) densities of states and projected densities of states, (2) pairwise and non-pairwise additivity, (3) infrared, Raman, and proton magnetic resonance spectra, (4) electrophilicity, and (5) statistical thermodynamic stability.

  19. Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays

    PubMed Central

    Zhou, Tingting; Cao, Zhen; Zhang, Pan; Ma, Houyi; Gao, Zhen; Wang, Heng; Lu, Yue; He, Jia; Zhao, Yunfeng

    2017-01-01

    Nickel-based hydroxide hierarchical nanoarrays (NiyM(OH)x HNAs M = Fe or Zn) are doped with non-noble transition metals to create nanostructures and regulate their activities for the oxygen evolution reaction. Catalytic performance in these materials depends on their chemical composition and the presence of nanostructures. These novel hierarchical nanostructures contain small secondary nanosheets that are grown on the primary nanowire arrays, providing a higher surface area and more efficient mass transport for electrochemical reactions. The activities of the NiyM(OH)x HNAs for the oxygen evolution reaction (OER) followed the order of Ni2.2Fe(OH)x > Ni(OH)2 > Ni2.1Zn(OH)x, and these trends are supported by density functional theory (DFT) calculations. The Fe-doped nickel hydroxide hierarchical nanoarrays (Ni2.2Fe(OH)x HNAs), which had an appropriate elemental composition and hierarchical nanostructures, achieve the lowest onset overpotential of 234 mV and the smallest Tafel slope of 64.3 mV dec−1. The specific activity, which is normalized to the Brunauer–Emmett–Teller (BET) surface area of the catalyst, of the Ni2.2Fe(OH)x HNAs is 1.15 mA cm−2BET at an overpotential of 350 mV. This is ~4-times higher than that of Ni(OH)2. These values are also superior to those of a commercial IrOx electrocatalyst. PMID:28383065

  20. Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays

    NASA Astrophysics Data System (ADS)

    Zhou, Tingting; Cao, Zhen; Zhang, Pan; Ma, Houyi; Gao, Zhen; Wang, Heng; Lu, Yue; He, Jia; Zhao, Yunfeng

    2017-04-01

    Nickel-based hydroxide hierarchical nanoarrays (NiyM(OH)x HNAs M = Fe or Zn) are doped with non-noble transition metals to create nanostructures and regulate their activities for the oxygen evolution reaction. Catalytic performance in these materials depends on their chemical composition and the presence of nanostructures. These novel hierarchical nanostructures contain small secondary nanosheets that are grown on the primary nanowire arrays, providing a higher surface area and more efficient mass transport for electrochemical reactions. The activities of the NiyM(OH)x HNAs for the oxygen evolution reaction (OER) followed the order of Ni2.2Fe(OH)x > Ni(OH)2 > Ni2.1Zn(OH)x, and these trends are supported by density functional theory (DFT) calculations. The Fe-doped nickel hydroxide hierarchical nanoarrays (Ni2.2Fe(OH)x HNAs), which had an appropriate elemental composition and hierarchical nanostructures, achieve the lowest onset overpotential of 234 mV and the smallest Tafel slope of 64.3 mV dec-1. The specific activity, which is normalized to the Brunauer-Emmett-Teller (BET) surface area of the catalyst, of the Ni2.2Fe(OH)x HNAs is 1.15 mA cm-2BET at an overpotential of 350 mV. This is ~4-times higher than that of Ni(OH)2. These values are also superior to those of a commercial IrOx electrocatalyst.

  1. Adsorption and reactions of methanethiol on clean and modified Ni(110)

    SciTech Connect

    Huntley, D.R. )

    1989-08-10

    The reactions of methanethiol on clean and modified Ni(110) have been studied under ultrahigh-vacuum conditions by temperature-programmed reactions (TPR), including deuterium incorporation studies. Surface bound molecular fragments were identified by X-ray photoelectron spectroscopy (XPS) and high-resolution electron energy loss spectroscopy (HREELS). The TPR data indicate that the major products of the reactions of methanethiol with clean Ni(110) surfaces are methane and hydrogen. Methane desorbs in a reaction-limited peak at 276 K, which does not shift with methanethiol exposure. Hydrogen desorption occurs in several peaks depending on the exposure. The coverage dependence of the methane yield indicates a competition between decomposition and reaction to form methane. At low coverages, decomposition is the major pathway while at higher coverages methane formation dominates. Vibrational spectroscopy (HREELS) indicates the presence of the methyl thiolate intermediate at temperatures less than 200 K. X-ray photoelectron spectroscopy and deuterium incorporation experiments confirm this assignment. A mechanism has been proposed based on hydrogenolysis of the methyl thiolate species and is consistent with all of the data. The appropriate rate equations associated with this mechanism have been solved numerically to predict the TPR data, and qualitative agreement was achieved. Methanethiol reacts with sulfur- and oxygen-modified Ni(110) surfaces to produce methane, hydrogen, and, in the case of the oxidized surfaces, water. The major effect of the modifier was to enhance the formation of methane relative to decomposition. These observations can be explained by either electronic or structural effects.

  2. Ni-Mn based alloys as versatile catalyst for different electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Ali-Omar, Ahmed-Yassin; Dzoyem, Eunice; Marthe, Jimmy; Boudifa, Mohamed

    2014-12-01

    To develop large scale use of hydrogen and fuel cells as a renewable energy source it is need to increase their durability and reduce their cost mainly due to the use of precious metals. We have examined new type of the low cost binary nickel-manganese (Ni-Mn) catalysts electrodeposited from ammonium chloride bath onto copper substrates. By varying bath composition, polarization potential and essentially bath temperature the operating deposition conditions were optimized to produce Ni-Mn coatings with high active surface (e.g. spongy aspect). The outstanding catalytic activity, the durability and the versatility of the deposited films have been characterized in basic media using several electrochemical processes, such as hydrogen evolution reaction (HER), water oxidation reaction (OER) and ethanol oxidation reaction (EOR).

  3. Elastic scattering and transfer reactions for the system 7Be + 58Ni at Coulomb barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; Keeley, N.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Parkar, V. V.; Pierroutsakou, D.; Romoli, M.; Rusek, K.; Sanchez-Benitez, A. M.; Sandoli, M.; Signorini, C.; Silvestri, R.; Soramel, F.; Strano, E.; Stroe, L.

    2015-09-01

    We investigated the reaction induced by the Radioactive Ion Beam 7Be on the closed proton shell nucleus 58Ni at 22.0 MeV bombarding energy. The 7Be beam was produced by means of the in-flight technique with the facility EXOTIC at INFN-LNL (Italy). Charged reaction products were mass and charge identified in a rather wide angular range and their energy distributions were analyzed to infer some information on the production mechanism. The relevance of direct processes, especially 3He- and 4He-stripping, as well as compound nucleus reactions is critically reviewed.

  4. Reaction mechanisms in the sup 32 S+ sup 64 Ni collision

    SciTech Connect

    De Rosa, A.; Fioretto, E.; Inglima, G.; Romoli, M.; Sandoli, M. ); Cardella, G.; Papa, M.; Rizzo, F. ); Napoli, D.R.; Stefanini, A.M. ); Signorini, C. )

    1991-08-01

    Excitation functions of fragments produced in the {sup 32}S+{sup 64}Ni reaction have been measured in the incident energy range {ital E}{sub lab}=142 to 150 MeV at {theta}{sub lab}=10{degree}, 20{degree}, 35.7{degree}, 40{degree}, 44.3{degree}, and 50{degree}. Angular distributions and excitation functions were analyzed in the framework of the Strutinsky transfer reaction model and the Kun dissipative reaction statistical model, respectively. The role of the dinuclear configuration of the intermediate system in determining the features of both the angular distributions and the cross-section coherence widths was evidenced.

  5. Deformation-induced nanoscale mixing reactions in Cu/Ni and Ag/Pd multilayers

    SciTech Connect

    Wang, Z.; Perepezko, J. H.

    2013-11-04

    During the repeated cold rolling of Cu/Ni and Ag/Pd multilayers, a solid solution forms at the interfaces as nanoscale layer structure with a composition that replicates the overall multilayer composition. The interfacial mixing behavior was investigated by means of X-ray diffraction and scanning transmission electron microscopy. During deformation induced reaction, the intermixing behavior of the Cu/Ni and Ag/Pd multilayers is in contrast to thermally activated diffusion behavior. This distinct behavior can provide new kinetic pathways and offer opportunities for microstructure control that cannot be achieved by thermal processing.

  6. Deuteron-induced reactions on Ni isotopes up to 60 MeV

    NASA Astrophysics Data System (ADS)

    Avrigeanu, M.; Šimečková, E.; Fischer, U.; Mrázek, J.; Novak, J.; Štefánik, M.; Costache, C.; Avrigeanu, V.

    2016-07-01

    Background: The high complexity of the deuteron-nucleus interaction from the deuteron weak binding energy of 2.224 MeV is also related to a variety of reactions induced by the deuteron-breakup (BU) nucleons. Thus, specific noncompound processes as BU and direct reactions (DR) make the deuteron-induced reactions so different from reactions with other incident particles. The scarce consideration of only pre-equilibrium emission (PE) and compound-nucleus (CN) mechanisms led to significant discrepancies with experimental results so that recommended reaction cross sections of high-priority elements as, e.g., Ni have mainly been obtained by fit of the data. Purpose: The unitary and consistent BU and DR account in deuteron-induced reactions on natural nickel may take advantage of an extended database for this element, including new accurate measurements of particular reaction cross sections. Method: The activation cross sections of 64,61,60Cu, Ni,5765, and 55,56,57,58,59m,60Co nuclei for deuterons incident on natural Ni at energies up to 20 MeV, were measured by the stacked-foil technique and high-resolution gamma spectrometry using U-120M cyclotron of CANAM, NPI CAS. Then, within an extended analysis of deuteron interactions with Ni isotopes up to 60 MeV, all processes from elastic scattering until the evaporation from fully equilibrated compound system have been taken into account while an increased attention is paid especially to the BU and DR mechanisms. Results: The deuteron activation cross-section analysis, completed by consideration of the PE and CN contributions corrected for decrease of the total-reaction cross section from the leakage of the initial deuteron flux towards BU and DR processes, is proved satisfactory for the first time to all available data. Conclusions: The overall agreement of the measured data and model calculations validates the description of nuclear mechanisms taken into account for deuteron-induced reactions on Ni, particularly the BU and

  7. Surface segregation effects in electrocatalysis: Kinetics ofoxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces

    SciTech Connect

    Stamenkovic, V.; Schmidt, T.J.; Ross, P.N.; Markovic, N.M.

    2002-11-01

    Effects of surface segregation on the oxygen reduction reaction (ORR) have been studied on a polycrystalline Pt3Ni alloy in acid electrolyte using ultra high vacuum (UHV) surface sensitive probes and the rotating ring disk electrode (RRDE) method. Preparation, modification and characterization of alloy surfaces were done in ultra high vacuum (UHV). Depending on the preparation method, two different surface compositions of the Pt3Ni alloy are produced: a sputtered surface with 75 % Pt and an annealed surface (950 K ) with 100 % Pt. The latter surface is designated as the 'Pt-skin' structure, and is a consequence of surface segregation, i.e., replacement of Ni with Pt atoms in the first few atomic layers. Definitive surface compositions were established by low energy ion scattering spectroscopy (LEISS). The cyclic voltammetry of the 'Pt-skin' surface as well as the pseudocapacitance in the hydrogen adsorption/desorption potential region is similar to a polycrystalline Pt electrode. Activities of ORR on Pt3Ni alloy surfaces were compared to polycrystalline Pt in 0.1M HClO4 electrolyte for the observed temperature range of 293 < T < 333 K. The order of activities at 333 K was: 'Pt-skin' > Pt3Ni (75% Pt) > Pt with the maximum catalytic enhancement obtained for the 'Pt-skin' being 4 times that for pure Pt. Catalytic improvement of the ORR on Pt3Ni and 'Pt-skin' surfaces was assigned to the inhibition of Pt-OHad formation (on Pt sites) versus polycrystalline Pt. Production of H2O2 on both surfaces were similar compared to the pure Pt. Kinetic analyses of RRDE data confirmed that kinetic parameters for the ORR on the Pt3Ni and 'Pt-skin' surfaces are the same as on pure Pt: reaction order, m=1, two identical Tafel slopes, activation energy, {approx} 21-25 kJ/mol. Therefore the reaction mechanism on both Pt3Ni and 'Pt-skin' surfaces is the same as one proposed for pure Pt i.e. 4e{sup -} reduction pathway.

  8. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    DOE PAGES

    Barron, S. C.; Knepper, R.; Walker, N.; ...

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) inmore » high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.« less

  9. 17O+58Ni scattering and reaction dynamics around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Strano, E.; Torresi, D.; Mazzocco, M.; Keeley, N.; Boiano, A.; Boiano, C.; Di Meo, P.; Guglielmetti, A.; La Commara, M.; Molini, P.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Grebosz, J.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Nicoletto, M.; Pakou, A.; Rusek, K.; Sgouros, O.; Soukeras, V.; Stroe, L.; Toniolo, N.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-08-01

    This work aims at investigating the projectile binding energy influence on the reaction dynamics, introducing new results and new data analysis methods in order to overcome some typically encountered problems, such as the identification of reaction products differing by few mass units and the discrimination of direct reaction processes. The 17O+58Ni collision was studied at five near-barrier energies employing a compact experimental setup consisting of four double-sided silicon strip detectors (DSSSDs). Different reaction processes, namely the elastic and inelastic scattering and the 1 n stripping, were discriminated by means of a detailed analysis of the experimental energy spectra based on Monte Carlo simulations. The elastic scattering angular distributions were investigated within the framework of the optical model using Woods-Saxon and double-folding potentials. The total reaction cross sections were extracted and the reduced cross sections compared with those obtained for 17F (Sp=0.600 MeV), the mirror nucleus of 17O (Sn=4.143 MeV), and for the tightly bound 16O projectile. The 17O+58Ni total reaction cross sections were larger than those for 16O on the same target at the lowest energies studied, becoming identical, within errors, as the incident energy increased above the Coulomb barrier. This behavior was related to a strong contribution from the 1 n -stripping channel at the lowest energies.

  10. Synthetic Control of Kinetic Reaction Pathway and Cationic Ordering in High-Ni Layered Oxide Cathodes

    DOE PAGES

    Wang, Dawei; Kou, Ronghui; Ren, Yang; ...

    2017-08-25

    Nickel-rich layered transition metal oxides, LiNi1-x(MnCo)xO2 (1-x ≥ 0.5), are appealing candidates for cathodes in next-generation lithium-ion batteries (LIBs) for electric vehicles and other large-scale applications, due to their high capacity and low cost. However, synthetic control of the structural ordering in such a complex quaternary system has been a great challenge, especially in the presence of high Ni content. Herein, synthesis reactions for preparing layered LiNi0.7Mn0.15Co0.15O2 (NMC71515) by solid-state methods are investigated through a combination of time-resolved in situ high-energy X-ray diffraction and absorption spectroscopy measurements. The real-time observation reveals a strong temperature dependence of the kinetics of cationicmore » ordering in NMC71515 as a result of thermal-driven oxidation of transition metals and lithium/oxygen loss that concomitantly occur during heat treatment. Through synthetic control of the kinetic reaction pathway, a layered NMC71515 with low cationic disordering and a high reversible capacity is prepared in air. The findings may help to pave the way for designing high-Ni layered oxide cathodes for LIBs« less

  11. α and 2 p 2 n emission in fast neutron-induced reactions on 60Ni

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Devlin, M.; Haight, R. C.; Nelson, R. O.; Kunieda, S.; Kawano, T.

    2015-06-01

    Background: The cross sections for populating the residual nucleus in the reaction ZAX(n,x) Z -2 A -4Y exhibit peaks as a function of incident neutron energy corresponding to the (n ,n'α ) reaction and, at higher energy, to the (n ,2 p 3 n ) reaction. The relative magnitudes of these peaks vary with the Z of the target nucleus. Purpose: Study fast neutron-induced reactions on 60Ni. Locate experimentally the nuclear charge region along the line of stability where the cross sections for α emission and for 2 p 2 n emission in fast neutron-induced reactions are comparable as a further test of reaction models. Methods: Data were taken by using the Germanium Array for Neutron-Induced Excitations. The broad-spectrum pulsed neutron beam of the Los Alamos Neutron Science Center's Weapons Neutron Research facility provided neutrons in the energy range from 1 to 250 MeV. The time-of-flight technique was used to determine the incident-neutron energies. Results: Absolute partial cross sections for production of seven discrete Fe γ rays populated in 60Ni (n ,α /2 p x n γ ) reactions with 2 ≤x ≤5 were measured for neutron energies 1 MeVreactions on stable targets via α emission at the peak of the (n ,α ) and (n ,n'α ) reactions is comparable to that for 2 p 2 n and 2 p 3 n emission at higher incident energies in the nuclear charge region around Fe.

  12. Astrophysical reaction rates for Ni-58,Ni-60(n,gamma) from new neutron capture cross section measurements

    SciTech Connect

    Guber, Klaus H; Derrien, Herve; Leal, Luiz C; Arbanas, Goran; Wiarda, Dorothea; Koehler, Paul; Harvey, John A

    2010-01-01

    New neutron capture cross section of 58,60Ni were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator (ORELA). The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture (DC) cross sections were included in the analyses. From these resonance parameters and the DC contribution, new (n,y) astrophysical reaction rates were determined over the entire energy range needed by the lastest stellar models describing the so-called weak s process. PACS numbers: 25.40.Lw, 26.20Kn, 27.40.+z, 27.50.+e, 97.10.Cv

  13. Coupled, Simultaneous Displacement and Dealloying Reactions into Fe-Ni-Co Nanowires for Thinning Nanowire Segments.

    PubMed

    Geng, Xiaohua; Podlaha, Elizabeth J

    2016-12-14

    A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H(+)), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

  14. Laser Shock Compression Induced Reaction and Spalling of Reactive Ni-Al Laminate Composites

    NASA Astrophysics Data System (ADS)

    Wei, Chung-Ting; Maddox, Brian; Weihs, Timothy; Nesterenko, Vitali; Meyers, Marc

    2009-06-01

    Reactive laminates produced by rolling layers of Ni and Al (bilayer thicknesses of 8.3 and 48μm) were subjected to extreme laser loading. Laser energy was varied between ˜8.3 x 103J/cm2 (estimated initial pressure 140GPa) and ˜3.33 x 104J/cm2 (˜350GPa) with two initial durations: 3 and 8ns. Hydrodynamic calculations (HYADES) were used to predict propagation of shockwave in laminates. SEM and EDS were carried out to study the damage, failure modes, reaction propagation and spall. The 8.3μm bilayer thickness laminate exhibited localized interfacial reaction at 3.33 x 104J/cm2 laser energy; the reaction products were identified as NiAl and Al rich intermetallic compounds. The reactionfront forming intermetallic compounds propagated about 50μm into the sample with thinner bi-layer thickness (8.3μm). Estimated cooling rate was 5.7 x 105 K/s. The estimated highest temperature was about 1470K. Increase in the duration of laser shock wave induces increased reaction, which occurs also in the thicker bilayer laminate samples (48μm bi-layer thickness). The laser shock methodology is well suited to investigate the threshold conditions for dynamic mechanical reaction initiation.

  15. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  16. In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction.

    PubMed

    Lu, Kuo-Chang; Wu, Wen-Wei; Wu, Han-Wei; Tanner, Carey M; Chang, Jane P; Chen, Lih J; Tu, K N

    2007-08-01

    Nanoheterostructures of NiSi/Si/NiSi in which the length of the Si region can be controlled down to 2 nm have been produced using in situ point contact reaction between Si and Ni nanowires in an ultrahigh vacuum transmission electron microscope. The Si region was found to be highly strained (more than 12%). The strain increases with the decreasing Si layer thickness and can be controlled by varying the heating temperature. It was observed that the Si nanowire is transformed into a bamboo-type grain of single-crystal NiSi from both ends following the path with low-activation energy. We propose the reaction is assisted by interstitial diffusion of Ni atoms within the Si nanowire and is limited by the rate of dissolution of Ni into Si at the point contact interface. The rate of incorporation of Ni atoms to support the growth of NiSi has been measured to be 7 x 10(-4) s per Ni atom. The nanoscale epitaxial growth rate of single-crystal NiSi has been measured using high-resolution lattice-imaging videos. On the basis of the rate, we can control the consumption of Si and, in turn, the dimensions of the nanoheterostructure down to less than 2 nm, thereby far exceeding the limit of conventional patterning process. The controlled huge strain in the controlled atomic scale Si region, potential gate of Si nanowire-based transistors, is expected to significantly impact the performance of electronic devices.

  17. Impact of Mn(II)-Manganese Oxide Reactions on Ni and Zn Speciation.

    PubMed

    Hinkle, Margaret A G; Dye, Katherine G; Catalano, Jeffrey G

    2017-03-21

    Layered Mn oxide minerals (phyllomanganates) often control trace metal fate in natural systems. The strong uptake of metals such as Ni and Zn by phyllomanganates results from adsorption on or incorporation into vacancy sites. Mn(II) also binds to vacancies and subsequent comproportionation with structural Mn(IV) may alter sheet structures by forming larger and distorted Mn(III)O6 octahedra. Such Mn(II)-phyllomanganate reactions may thus alter metal uptake by blocking key reactive sites. Here we investigate the effect of Mn(II) on Ni and Zn binding to phyllomanganates of varying initial vacancy content (δ-MnO2, hexagonal birnessite, and triclinic birnessite) at pH 4 and 7 under anaerobic conditions. Dissolved Mn(II) decreases macroscopic Ni and Zn uptake at pH 4 but not pH 7. Extended X-ray absorption fine structure spectroscopy demonstrates that decreased uptake at pH 4 corresponds with altered Ni and Zn adsorption mechanisms. These metals transition from binding in the interlayer to sheet edges, with Zn increasing its tetrahedrally coordinated fraction. These effects on metal uptake and binding correlate with Mn(II)-induced structural changes, which are more substantial at pH 4 than 7. Through these structural effects and the pH-dependence of Mn(II)-metal competitive adsorption, system pH largely controls metal binding to phyllomanganates in the presence of dissolved Mn(II).

  18. Iron-doped NiCoO2 nanoplates as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Duan, Xiaojing; Yang, Yang; Liu, Chunli; Zhou, Ming; Yang, Lin; He, Huichao; Zhang, Yunhuai; Xiao, Peng

    2017-06-01

    Electrocatalysts play a vital role to overcome the slow kinetics of the oxygen evolution reaction (OER). Herein, we developed iron-doped (Fe-doped) NiCoO2 nanoplates with NaCl-type structure as an efficient electrocatalyst to speed up OER. NiCoO2 nanoplates doping with different concentration of Fe were optimized. Specifically, the catalytic properties of 10 mol% Fe-doped NiCoO2 (denoted as FNC0.1) showed outstanding OER catalytic activity, with an overpotential of 302 mV and a low Tafel slope of 42 mV dec-1 at 10 mA cm-2 in 0.1 M KOH. More importantly, the activity of FNC0.1 was only about 3% loss after 10 h of stability measurements at 1.53 V vs. RHE. The dramatically enhanced OER performance of the FNC0.1 might derive from the synergistic interplay of Co, Ni and Fe, a certain level of amorphization and easily hydroxylation after doping Fe. This work demonstrated that doping Fe would be beneficial to improve the OER activities and the stabilities of the catalysts.

  19. Reaction pathway of CH4/CO2 reforming over Ni8/MgO(100)

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Peng; Li, Wen-Ying; Feng, Jie

    2017-06-01

    First-principles calculations depended on density functional theory have been employed to explore the reaction mechanism of CH4/CO2 reforming on Ni/MgO catalyst. The Ni8 cluster supported on the MgO(100) slab has been used to model the Ni/MgO catalyst. CO2 can decompose on a Ni8 cluster and produce O species through either direct dissociation or hydrogenated dissociation. As a key intermediate produced by CH4 dissociation, CH2 could be oxygenated by O species (atomic O or OH), generating CH2O or CH2OH; or dehydrogenate into CH, which is then oxygenated by atomic O, resulting in the CHO dissociating. These three pathways can occur in parallel because of the similar energy barrier of their rate-determining steps (less than 0.1 eV). Furthermore, the formation and removal of surface carbon have been analyzed at length. Atomic H from CHx decomposition has the best reactivity to surface C elimination, followed by O and OH species. The energy barriers of the rate-determining steps are underlined.

  20. Rate-Limiting Step in the Low-Energy Unimolecular Decomposition Reaction of Ni+•Acetone into Ni+CO + Ethane

    NASA Astrophysics Data System (ADS)

    Dee, S. Jason; Castleberry, Vanessa A.; Villarroel, Otsmar J.; Laboren, Ivanna E.; Frey, Sarah E.; Ashley, Daniel; Bellert, Darrin J.

    2009-10-01

    Rate constants for the low-energy Ni+-assisted C-C bond cleavage reaction of deuterium-labeled acetone have been acquired under jet-cooled conditions in the gas phase. The energies used to initiate the dissociative reactions of the precursor complex ion Ni+(d6-Ac) are well below that required to cleave C-C σ-bonds in isolated organic molecules. The rate constants are compared to those acquired previously for the lighter Ni+(h6-Ac) isotope and result in a substantial kinetic isotope effect (kH/kD ˜ 5.5). Arguments are made that implicate isomerization leading to C-C bond coupling as the rate-limiting step (not C-C σ-bond activation) in the dissociative reaction.

  1. Interfacial Reactions Between ZnAl(Ge) Solders on Cu and Ni Substrates

    NASA Astrophysics Data System (ADS)

    Rautiainen, Antti; Vuorinen, Vesa; Paulasto-Kröckel, Mervi

    2017-04-01

    Reactions between zinc-aluminum-germanium solder and copper/nickel substrates were investigated after 30 min of soldering at 420°C that simulates a wafer-level bonding process, and the results were compared to a eutectic zinc-aluminum solder. The ZnAlGe system (81.4 at.% Zn, 13.1 at.% Al, 5.5 at.% Ge) was selected in order to decrease the eutectic temperature of the ZnAleut (88.7 at.% Zn, 11.3 at.% Al) for high-temperature lead-free solder applications. In addition, a standard high temperature storage test at 150°C was performed up to 3000 h in order to investigate the evolution of the interconnection microstructures. Extensive copper dissolution was discovered during the soldering process. Germanium did not participate in any of the interfacial reactions on a copper substrate. On a nickel substrate, rapid formation of intermetallic compounds was discovered with both solders, and all the aluminum from the 500 μm thick solder was consumed by the formation of the Al3Ni2 phase during bonding. Germanium was observed to dissolve in the Al3Ni2 phase, but the addition of germanium to the solder was not found to affect markedly the interfacial microstructure. Based on the results, isothermal sections at 150°C of Al-Cu-Zn and Al-Ni-Zn systems are presented with superimposed diffusion paths.

  2. Fabrication of Ni-silicide/Si heterostructured nanowire arrays by glancing angle deposition and solid state reaction

    PubMed Central

    2013-01-01

    This work develops a method for growing Ni-silicide/Si heterostructured nanowire arrays by glancing angle Ni deposition and solid state reaction on ordered Si nanowire arrays. Samples of ordered Si nanowire arrays were fabricated by nanosphere lithography and metal-induced catalytic etching. Glancing angle Ni deposition deposited Ni only on the top of Si nanowires. When the annealing temperature was 500°C, a Ni3Si2 phase was formed at the apex of the nanowires. The phase of silicide at the Ni-silicide/Si interface depended on the diameter of the Si nanowires, such that epitaxial NiSi2 with a {111} facet was formed at the Ni-silicide/Si interface in Si nanowires with large diameter, and NiSi was formed in Si nanowires with small diameter. A mechanism that is based on flux divergence and a nucleation-limited reaction is proposed to explain this phenomenon of size-dependent phase formation. PMID:23663726

  3. Size effect in self-propagating exothermic reaction of Al/Ni multilayer block on a Si wafer

    NASA Astrophysics Data System (ADS)

    Namazu, Takahiro; Ito, Shun; Kanetsuki, Shunsuke; Miyake, Shugo

    2017-06-01

    In this paper, the threshold size of sputtered Al/Ni multilayer blocks required for inducing a self-propagating exothermic reaction on a Si wafer is described. An Al/Ni multilayer film with a bilayer thickness of 100 nm is deposited on a Si wafer, and then micronsized Al/Ni multilayer blocks from the film are fabricated using a focused ion beam. By inducing small sparks in the vicinity of the blocks, we investigate reactivity. From scanning electron microscopy observations, we confirm that Al/Ni multilayer blocks with high aspect ratios and small widths can react easily. The effect of Al/Ni multilayer block size on reactivity is discussed from the viewpoint of heat conduction from the block to a Si wafer during an exothermic reaction.

  4. Ni-C-N Nanosheets as Catalyst for Hydrogen Evolution Reaction.

    PubMed

    Yin, Jie; Fan, Qiaohui; Li, Yuxuan; Cheng, Fangyi; Zhou, Panpan; Xi, Pinxian; Sun, Shouheng

    2016-11-09

    We report a facile nitrogenation/exfoliation process to prepare hybrid Ni-C-N nanosheets. These nanosheets are <2 nm thin, chemically stable, and metallically conductive. They serve as a robust catalyst for the hydrogen evolution reaction in 0.5 M H2SO4, or 1.0 M KOH or 1.0 M PBS (pH = 7). For example, they catalyze the hydrogen evolution reaction in 0.5 M H2SO4 at an onset potential of 34.7 mV, an overpotential of 60.9 mV (at j = 10 mA cm(-2)) and with remarkable long-term stability (∼10% current drop after 70 h testing period). They are promising as a non-Pt catalyst for practical hydrogen evolution reaction.

  5. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    SciTech Connect

    Geist, D.; Gammer, C.; Rentenberger, C.; Karnthaler, H. P.

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocation reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.

  6. Reaction studies near the barrier for medium heavy systems: Ni + Sn

    SciTech Connect

    Henning, W.

    1985-01-01

    Cross sections for elastic and inelastic scattering, single- and multi-nucleon transfer, fusion followed by particle evaporation leaving an evaporation residue, and fusion followed by fission have been measured for /sup 58/ /sup 64/Ni beams incident on even Sn targets at energies from below to above the Coulomb barrier. The Ni beams were provided by the Argonne Superconducting Linac. The aim of these measurements is a comprehensive study of the reaction systematics in a medium-heavy collision system. At present, a small fraction of the data has been fully analyzed and published, a larger part is presently being compared to model calculations. Some of the data needs to be confirmed by additional measurements. This summary should be viewed as a status report and an attempt to formulate some of the open questions. 9 references.

  7. Composition dependence of ternary Pt-Ni-Cr catalyst activity for the methanol electro-oxidation reaction

    NASA Astrophysics Data System (ADS)

    Jeon, Min Ku; McGinn, Paul J.

    Various compositions of binary and ternary Pt-Ni-Cr alloys were investigated as catalysts for the methanol electro-oxidation reaction (MOR). Among the binary (Pt 28Ni 72/C and Pt 28Cr 72/C) and ternary Pt-Ni-Cr catalysts (Pt 28Ni 36Cr 36/C, Pt 22Ni 39Cr 39/C, Pt 33Ni 31Cr 36/C, and Pt 33Ni 36Cr 31/C) examined, the Pt 28Ni 36Cr 36/C composition exhibited the highest MOR mass activity (4.42 A g cat. -1) in the as-prepared version, which was higher than the 3.58 A g cat. -1 value of the PtRu/C catalyst after 60 min of chronoamperometry testing. The order of mass activity for the MOR was Pt 28Ni 36Cr 36/C > Pt 33Ni 36Cr 31/C > Pt 22Ni 39Cr 39/C > Pt 33Ni 31Cr 36/C > Pt 28Cr 72/C > Pt 28Ni 72/C, which was slightly changed to Pt 28Ni 36Cr 36/C > Pt 22Ni 39Cr 39/C > Pt 33Ni 36Cr 31/C > Pt 33Ni 31Cr 36/C > Pt 28Cr 72/C > Pt 28Ni 72/C after a conditioning process. The effect of anodic conditioning was also studied. A combination of X-ray diffraction, cyclic voltammetry, and chronoamperometry experiments revealed that the conditioning process caused dissolution and an oxidation state change of metallic Ni and Cr 2O 3 in the binary catalysts. The higher MOR mass activities of the ternary catalysts compared to the binary ones is attributed to co-alloying of Ni and Cr, leading to exposure of more Pt on the catalyst surface without reducing specific activities of the catalysts. The results of this study also correlate well with a prior ranking of catalytic activity of the same compositions in the form of thin film catalysts that we processed and evaluated by a high-throughput combinatorial approach [J.S. Cooper, M.K. Jeon, P.J. McGinn, Electrochem. Commun. 10 (2008) 1545-1547].

  8. Magnetic and structural properties of nanosize Ni Zn Cr ferrite particles synthesized by combustion reaction

    NASA Astrophysics Data System (ADS)

    Gama, L.; Hernandez, E. P.; Cornejo, D. R.; Costa, A. A.; Rezende, S. M.; Kiminami, R. H. G. A.; Costa, A. C. F. M.

    2007-10-01

    This paper reports on Cr 3+-doped and undoped Ni-Zn nanosize ferrite obtained by reaction combustion synthesis. The powders resulting from this synthesis were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their magnetic properties examined with an alternative gradient magnetometer (AGM) and by ferromagnetic resonance (FMR). The XRD results confirmed the formation of Ni 0.5Zn 0.5Fe 2O 4 bulk spinel and small quantities of second phase hematite (αFe 2O 4) to the powders without chromium. However, the powders containing 0.1 mol of chromium showed only a Ni-Zn ferrite cubic phase. The Ni 0.5Zn 0.5Fe 2O 4 and Ni 0.5Zn 0.5Fe 1.9Cr 0.1O 4 showed average crystallite sizes of 20.7 and 22.7 nm, respectively. The SEM micrographs of the powders to the sample without chromium reveals nanoparticles with a regular morphology without pre-sintering and with the presence of soft agglomerations. The powder with 0.1 mol of chromium displays homogeneous and finer nanoparticles, which are more reactive and hence more agglomerated. Saturation magnetization of the phase without Cr 3+ was 61.97 emu/g, while that of the powder with chromium was 40.56 emu/g. The inclusion of chromium caused the magnetization index to drop by 34% and decreased the coercive field, Hc, by 77%. It is known that the inclusion of chromium is advantageous for high-frequency transformer applications.

  9. Exploring possible reaction pathways for the o-atom transfer reactions to unsaturated substrates catalyzed by a [Ni-NO2 ] ↔ [Ni-NO] redox couple using DFT methods.

    PubMed

    Tsipis, Athanassios C

    2017-07-15

    The (nitro)(N-methyldithiocarbamato)(trimethylphospane)nickel(II), [Ni(NO2 )(S2 CNHMe)(PMe3 )] complex catalyses efficiently the O-atom transfer reactions to CO and acetylene. Energetically feasible sequence of elementary steps involved in the catalytic cycle of the air oxidation of CO and acetylene are proposed promoted by the Ni(NO2 )(S2 CNHMe)(PMe3 )] ↔ Ni(NO2 )(S2 CNHMe)(PMe3 ) redox couple using DFT methods both in vacuum and dichloromethane solutions. The catalytic air oxidation of HC≡CH involves formation of a five-member metallacycle intermediate, via a [3 + 2] cyclo-addition reaction of HC≡CH to the Ni-N = O moiety of the Ni(NO2 )(S2 CNHMe)(PMe3 )] complex, followed by a β H-atom migration toward the Cα carbon atom of the coordinated acetylene and release of the oxidation product (ketene). The geometric and energetic reaction profile for the reversible [Ni( κN1-NO2 )(S2 CNHMe)(PMe3 )] ⇌ [Ni( κO,O2-ONO)(S2 CNHMe)(PMe3 )] linkage isomerization has also been modeled by DFT calculations. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Single Photon Initiated Decomposition Rearrangement Reactions (spidrr) of Organic Molecules Mediated by the Ni+ Cation

    NASA Astrophysics Data System (ADS)

    Bellert, Darrin; Mansell, Adam; Theis, Zachary; Gutierrez, Michael

    2016-06-01

    The Bellert group at Baylor University has developed a novel method for performing single photon initiated decomposition rearrangement reactions (SPIDRR) of organic molecules mediated by a transition metal cation. The advantage that SPIDRR affords is the direct measurement of first order microcanonical rate constants, k(E), determined at resolved internal energies. Furthermore, the SPIDRR technique measures kinetic details of exothermic reactions where product production is limited only by submerged activation barriers (kinetic barriers that are at energies below the separated reactant limit). Thus, such reactions approach unit efficiency, are thermodynamically driven, and are of greater relevance to catalytic research. Direct measurements of k(E) values extend to isotopically labelled species that provide direct measurement of the kinetic isotope effect (KIE), furnishing unique insight into the mechanistic details of a reaction. This talk presents results from the visible photon initiated, Ni+ induced decarbonylation reaction of propionaldehyde. Here a rather unique energy dependent behavior of the measured rate constants was observed and attributed to a dynamic competition between parallel reaction coordinates available to the photo-excited precursor. RRKM calculations in concert with high level DFT is used to support and further experimental results.

  11. Water-Gas Shift and CO Methanation Reactions over Ni-CeO2(111) Catalysts

    SciTech Connect

    Senanayake, Sanjaya D; Evans, Jaime; Agnoli, Stefano; Barrio, Laura; Chen, Tsung-Liang; Hrbek, Jan; Radriguez, Jose

    2011-01-01

    X-ray and ultraviolet photoelectron spectroscopies were used to study the interaction of Ni atoms with CeO2(111) surfaces. Upon adsorption on CeO2(111) at 300 K, nickel remains in a metallic state. Heating to elevated temperatures (500 800 K) leads to partial reduction of the ceria substrate with the formation of Ni2? species that exists as NiO and/or Ce1-xNixO2-y. Interactions of nickel with the oxide substrate significantly reduce the density of occupied Ni 3d states near the Fermi level. The results of core-level photoemission and near-edge X-ray absorption fine structure point to weakly bound CO species on CeO2(111) which are clearly distinguishable from the formation of chemisorbed carbonates. In the presence of Ni, a stronger interaction is observed with chemisorption of CO on the admetal. When the Ni is in contact with Ce?3 cations, CO dissociates on the surface at 300 K forming NiCx compounds that may be involved in the formation of CH4 at higher temperatures. At medium and large Ni coverages ([0.3 ML), the Ni/CeO2(111) surfaces are able to catalyze the production of methane from CO and H2, with an activity slightly higher than that of Ni(100) or Ni(111). On the other hand, at small coverages of Ni (\\0.3 ML), the Ni/CeO2(111) surfaces exhibit a very low activity for CO methanation but are very good catalysts for the water gas shift reaction.

  12. Facile Synthesis of Vanadium-Doped Ni3S2 Nanowire Arrays as Active Electrocatalyst for Hydrogen Evolution Reaction.

    PubMed

    Qu, Yuanju; Yang, Mingyang; Chai, Jianwei; Tang, Zhe; Shao, Mengmeng; Kwok, Chi Tat; Yang, Ming; Wang, Zhenyu; Chua, Daniel; Wang, Shijie; Lu, Zhouguang; Pan, Hui

    2017-02-22

    Ni3S2 nanowire arrays doped with vanadium(V) are directly grown on nickel foam by a facile one-step hydrothermal method. It is found that the doping can promote the formation of Ni3S2 nanowires at a low temperature. The doped nanowires show excellent electrocatalytic performance toward hydrogen evolution reaction (HER), and outperform pure Ni3S2 and other Ni3S2-based compounds. The stability test shows that the performance of V-doped Ni3S2 nanowires is improved and stabilized after thousands of linear sweep voltammetry test. The onset potential of V-doped Ni3S2 nanowire can be as low as 39 mV, which is comparable to platinum. The nanowire has an overpotential of 68 mV at 10 mA cm(-2), a relatively low Tafel slope of 112 mV dec(-1), good stability and high Faradaic efficiency. First-principles calculations show that the V-doping in Ni3S2 extremely enhances the free carrier density near the Fermi level, resulting in much improved catalytic activities. We expect that the doping can be an effective way to enhance the catalytic performance of metal disulfides in hydrogen evolution reaction and V-doped Ni3S2 nanowire is one of the most promising electrocatalysts for hydrogen production.

  13. Investigation of interfacial reaction between Sn-Ag eutectic solder and Au/Ni/Cu/Ti thin film metallization

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Yang, C. W.; Ha, J. S.; Kim, C.-U.; Kwon, E. J.; Jung, S. B.; Kang, C. S.

    2001-09-01

    This paper reports the formation of intermetallic compounds in Au/Ni/Cu/Ti under-bump-metallization (UBM) structure reacted with Ag-Sn eutectic solder. In this study, UBM is prepared by evaporating Au(500 Å)/Ni(1000 Å)/Cu(7500 Å) /Ti (700 Å) thin films on top of Si substrates. It is then reacted with Ag-Sn eutectic solder at 260 C for various times to induce different stages of the interfacial reaction. Microstructural examination of the interface, using both chemical and crystallographic analysis, indicates that two types of intermetallic compounds are formed during the interfacial reaction. The first phase, formed at the intial stage of the reaction, is predominantly Ni3Sn4. At longer times the Ni3Sn4 phase transforms into (Cu, Ni)6Sn6, probably induced by interdiffusion of Cu and Ni. At this stage, the underlying Cu layer also reacts with Sn and forms the same phase, (Cu,Ni)6Sn5. As a result, the fully reacted interface is found to consist of two intermetallic layers with the same phase but different morphologies.

  14. Characterization of self-propagating formation reactions in Ni/Zr multilayered foils using reaction heats, velocities, and temperature-time profiles

    SciTech Connect

    Barron, S. C.; Knepper, R.; Walker, N.; Weihs, T. P.

    2011-01-11

    We report on intermetallic formation reactions in vapor-deposited multilayered foils of Ni/Zr with 70 nm bilayers and overall atomic ratios of Ni:Zr, 2 Ni:Zr, and 7 Ni:2 Zr. The sequence of alloy phase formation and the stored energy is evaluated at slow heating rates (~1 K/s) using differential scanning calorimetry (DSC) traces to 725ºC. All three chemistries initially form a Ni-Zr amorphous phase which crystallizes first to the intermetallic NiZr. The heat of reaction to the final phase is 34-36 kJ/mol atom for all chemistries. Intermetallic formation reactions are also studied at rapid heating rates (greater than 105 K/s) in high temperature, self-propagating reactions which can be ignited in these foils by an electric spark. We find that reaction velocities and maximum reaction temperatures (Tmax) are largely independent of foil chemistry at 0.6 ± 0.1 m/s and 1220 ± 50 K, respectively, and that the measured Tmax is more than 200 K lower than predicted adiabatic temperatures (Tad). The difference between Tmax and Tad is explained by the prediction that transformation to the final intermetallic phases occurs after Tmax and results in the release of 20-30 % of the total heat of reaction and a delay in rapid cooling.

  15. The borohydride oxidation reaction on La-Ni-based hydrogen-storage alloys.

    PubMed

    Paschoalino, Waldemir J; Thompson, Stephen J; Russell, Andrea E; Ticianelli, Edson A

    2014-07-21

    This work provides insights into the processes involved in the borohydride oxidation reaction (BOR) in alkaline media on metal hydride alloys formed by LaNi(4.7)Sn(0.2)Cu(0.1) and LaNi(4.78)Al(0.22) with and without deposited Pt, Pd, and Au. The results confirm the occurrence of hydrolysis of the borohydride ions when the materials are exposed to BH(4)(-) and a continuous hydriding of the alloys during BH(4)(-) oxidation measurements at low current densities. The activity for the direct BOR is low in both bare metal hydride alloys, but the rate of the BH(4)(-) hydrolysis and the hydrogen-storage capacity are higher, while the rate of H diffusion is slower for bare LaNi(4.78) Al(0.22). The addition of Pt and Pd to both alloys results in an increase of the BH(4)(-) hydrolysis, but the H(2) formed is rapidly oxidized at the Pt-modified catalysts. In the case of Au modification, a small increase in the BH(4)(-) hydrolysis is observed as compared to the bare alloys. The presence of Au and Pd also leads to a reduction of the rates of alloy hydriding/de-hydriding.

  16. ({ital p},{ital d}) reaction on {sup 62}Ni at 65 MeV

    SciTech Connect

    Matoba, M.; Kurohmaru, K.; Iwamoto, O.; Nohtomi, A.; Uozumi, Y.; Sakae, T.; Koori, N.; Ohgaki, H.; Ijiri, H.; Maki, T.; Nakano, M.; Sen Gupta, H.M.

    1996-04-01

    The {sup 62}Ni({ital p},{ital d}){sup 61}Ni reaction has been studied with 65 MeV polarized protons. Angular distributions of the differential cross section and analyzing power have been measured for neutron hole states in {sup 61}Ni up to an excitation energy of 7 MeV. The data analysis with a standard distorted-wave Born approximation theory provides transferred angular momenta {ital l} and {ital j} and spectroscopic factors for several strongly excited states. The 1{ital f}{sub 7/2} hole state spreads largely in the excitation energy region of 2{endash}6 MeV, while the 1{ital f}{sub 5/2}, 2{ital p}{sub 3/2}, and 2{ital p}{sub 1/2} hole states into only 2{endash}4 levels. The strength function of the 1{ital f}{sub 7/2} hole state is analyzed with an asymmetrical Lorentzian function. The damping mechanism of the single hole states is discussed. {copyright} {ital 1996 The American Physical Society.}

  17. The reaction of H 2S with surface oxygen on Ni(110)

    NASA Astrophysics Data System (ADS)

    Huntley, D. R.

    1990-12-01

    The reactions of H 2S with predosed surface oxygen on Ni(110) surfaces were studied for a variety of coverage conditions. The primary reaction product is H 2O, but the details of the water formation and desorption depends on the coverage of both O and H 2S. For high coverages of oxygen (p(2 × 1)- O; 0.5 ML), the reaction to form water is quantitative. The loss of oxygen from the surface (as measured by AES) is equal to the increase in sulfur coverage. XPS and HREELS measurements indicate the presence of chemisorbed H 2O immediately following large exposures of H 2S on the oxygen predosed surface at 110 K. Deuterium incorporation results suggest that the primary mechanism for these coverage conditions involves direct transfer of hydrogen from SH or H 2S moieties to the oxygen. A second mechanism involving reaction of surface hydroxyl groups with surface hydrogen was also identified. This mechanism is particularly important for high coverages of oxygen (0.5 ML) and low coverages of H 2S (0.15 ML), where water desorption was observed at 235 K, but was not observed spectroscopically at 110 K. The sequential addition of two surface hydrogen atoms to surface oxygen is not an important mechanism in this system. These reactions were modeled using a bond-order conservation method, and the model successfully reproduced the important mechanistic conclusions.

  18. Identification of a self-limiting reaction layer in Ni 3 at.% W rolling-assisted biaxially textured substrates

    NASA Astrophysics Data System (ADS)

    Leonard, K. J.; Goyal, A.; Kang, S.; Yarborough, K. A.; Kroeger, D. M.

    2004-11-01

    Analytical transmission electron microscopy was used to identify the presence of a self-limiting reaction layer developed within rolling-assisted biaxially textured Ni-3 at.% W substrates during the pulsed laser deposition of thick YBa2Cu3O7-dgr (YBCO) films. Improvements in YBCO film quality and physical properties were attributed in part to the development of a NiWO4 layer at the buffer-substrate interface. The formation of NiWO4 between NiO and the Ni-3 at.% W substrate was observed to restrict the growth of NiO within the coated conductor during YBCO deposition at elevated temperatures. A 5-8 nm thick NiWO4 layer, identified through both electron diffraction and energy dispersive spectroscopy, was found to limit NiO growth to between 20 and 25 nm in thickness. The NiWO4 layer was found to have a [100] orientation relationship to the substrate normal, with multiple variants observed.

  19. Interfacial reactions and microstructural evolution of periodic Ni nanodot arrays on N2+-implanted amorphous Si substrates

    NASA Astrophysics Data System (ADS)

    Cheng, S. L.; Lai, R. H.; Huang, Y. D.; Lin, H. C.

    2017-03-01

    We report here on the results of a systematic investigation of the interfacial reactions and microstructural evolution of nanoscale Ni metal dots on N2+-implanted amorphous Si (a-Si) substrates under different annealing conditions. During annealing, Ni2Si was the first phase to form, followed by NiSi and NiSi2. The three Ni-silicide phases formed were polycrystalline and the average sizes of the annealed nanodots were observed to increase with the annealing temperature, up to 500 °C. After a further increase of the annealing temperature and/or time, it is interesting to note that the NiSi2 grains gradually migrated outward from their original nanodot positions to the a-Si regions, which resulted in the formation of a remarkable NiSi2 nanoring structure. The inner regions of the NiSi2 nanorings were found to be comprised of a single crystalline Si phase, indicating mediation of the epitaxial crystallization of N2+-implanted a-Si by the lateral migration of the NiSi2 nanodots. Furthermore, the annealing temperature required for complete recrystallization of the a-Si layer in the Ni nanodot/N2+-implanted a-Si sample could be significantly reduced to 550 °C, 200 °C lower than that which was required the blank N2+-implanted a-Si sample. It is suggested that the formation of these remarkable NiSi2 nanoring structures and the enhancement of N2+-implanted a-Si recrystallization in the presence of NiSi2 nanodots were due to the silicide-induced crystallization mechanism.

  20. Combined Thermodynamic-Kinetic Analysis of the Interfacial Reactions between Ni Metallization and Various Lead-Free Solders

    PubMed Central

    Laurila, Tomi; Vuorinen, Vesa

    2009-01-01

    In this paper we will demonstrate how a thermodynamic-kinetic method can be utilized to rationalize a wide range of interfacial phenomena between Sn-based lead-free solders and Ni metallizations. First, the effect of P on the interfacial reactions, and thus on the reliability, between Sn-based solders and electroless Ni/immersion Au (ENIG) metallizations, will be discussed. Next, the effect of small amounts of Cu in Sn-based solders on the intermetallic compound (IMC), which forms first on top of Ni metallization, will be covered. With the help of thermodynamic arguments a so called critical Cu concentration for the formation of (Cu,Ni)6Sn5 can be determined as a function of temperature. Then the important phenomenon of redeposition of (Au,Ni)Sn4 layer on top of Ni3Sn4 IMC will be discussed in detail. The reasons leading to this behaviour will be rationalized with the help of thermodynamic information and an explanation of why this phenomenon does not occur when an appropriate amount of Cu is present in the soldering system will be given. Finally, interfacial reaction issues related to low temperature Sn-Zn and Sn-Bi based solders and Ni metallization will be discussed.

  1. Strongly Coupled FeNi Alloys/NiFe2O4@Carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction.

    PubMed

    Ma, Yangde; Dai, Xiaoping; Liu, Mengzhao; Yong, Jiaxi; Qiao, Hongyan; Jin, Axiang; Li, Zhanzhao; Huang, Xingliang; Wang, Hai; Zhang, Xin

    2016-12-21

    Hydrogen produced from electrocatalytic water splitting is a promising route due to the sustainable powers derived from the solar and wind energy. However, the sluggish kinetics at the anode for water splitting makes the highly effective and inexpensive electrocatalysts desirable in oxygen evolution reaction (OER) by structure and composition modulations. Metal-organic frameworks (MOFs) have been intensively used as the templates/precursors to synthesize complex hollow structures for various energy-related applications. Herein, an effective and facile template-engaged strategy originated from bimetal MOFs is developed to construct hollow microcubes assembled by interconnected nanopolyhedron, consisting of intimately dominant FeNi alloys coupled with a small NiFe2O4 oxide, which was confined within carbonitride outer shell (denoted as FeNi/NiFe2O4@NC) via one-step annealing treatment. The optimized FeNi/NiFe2O4@NC exhibits excellent electrocatalytic performances toward OER in alkaline media, showing 10 mA·cm(-2) at η = 316 mV, lower Tafel slope (60 mV·dec(-1)), and excellent durability without decay after 5000 CV cycles, which also surpasses the IrO2 catalyst and most of non-noble catalysts in the OER, demonstrating a great perspective. The superior OER performance is ascribed to the hollow interior for fast mass transport, in situ formed strong coupling between FeNi alloys and NiFe2O4 for electron transfer, and the protection of carbonitride layers for long stability.

  2. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.

    PubMed

    Kharaji, Abolfazl Gharibi; Shariati, Ahmad; Ostadi, Mohammad

    2014-09-01

    In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction.

  3. Ni nanoparticles supported on graphene layers: An excellent 3D electrode for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Wang, Lixin; Li, Yao; Xia, Meirong; Li, Zhiping; Chen, Zhouhao; Ma, Zhipeng; Qin, Xiujuan; Shao, Guangjie

    2017-04-01

    Metal Ni is a plentiful resource that can actively split water toward hydrogen evolution reaction (HER) in alkaline solution, but exploiting high-efficiency Ni-based composite catalysts is still a significant assignment. Therefore, we design a catalytic material with one-step approach to co-electrodeposit Ni nanoparticles and reduced graphene oxide (rGO) sheets on a three-dimensional Ni foam. When the carbon content existed in Ni-rGO composite catalyst is 3.335 at%, the catalyst exhibits excellent activity on HER with a low Tafel slope (b = 77 mV dec-1), a high exchange current density (j0 = 3.408 mA cm-2), small overpotentials of only 36, 129, and 183 mV to drive 10, 60, and 100 mA cm-2 respectively, and high stability under the different current densities. Such remarkable hydrogen evolution performance is attributed to good electrical conductivity, large specific surface area and harmonious synergistic effect between Ni particles and rGO sheets. In addition, density functional theory (DFT) calculations explain that Ni-rGO composite material presents superior interfacial activity in adsorption/desorption of H* compared with pure Ni and rGO sheet.

  4. Enhanced Reaction Kinetics and Structure Integrity of Ni/SnO2 Nanocluster toward High-Performance Lithium Storage.

    PubMed

    Jiang, Yinzhu; Li, Yong; Zhou, Peng; Yu, Shenglan; Sun, Wenping; Dou, Shixue

    2015-12-09

    SnO2 is regarded as one of the most promising anodes via conversion-alloying mechanism for advanced lithium ion batteries. However, the sluggish conversion reaction severely degrades the reversible capacity, Coulombic efficiency and rate capability. In this paper, through constructing porous Ni/SnO2 composite electrode composed of homogeneously distributed SnO2 and Ni nanoparticles, the reaction kinetics of SnO2 is greatly enhanced, leading to full conversion reaction, superior cycling stability and improved rate capability. The uniformly distributed Ni nanoparticles provide a fast charge transport pathway for electrochemical reactions, and restrict the direct contact and aggregation of SnO2 nanoparticles during cycling. In the meantime, the void space among the nanoclusters increases the contact area between the electrolyte and active materials, and accommodates the huge volume change during cycling as well. The Ni/SnO2 composite electrode possesses a high reversible capacity of 820.5 mAh g(-1) at 1 A g(-1) up to 100 cycles. More impressively, large capacity of 841.9, 806.6, and 770.7 mAh g(-1) can still be maintained at high current densities of 2, 5, and 10 A g(-1) respectively. The results demonstrate that Ni/SnO2 is a high-performance anode for advanced lithium-ion batteries with high specific capacity, excellent rate capability, and cycling stability.

  5. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    SciTech Connect

    Grapes, Michael D. E-mail: david.lavan@nist.gov; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Woll, Karsten; LaVan, David A. E-mail: david.lavan@nist.gov; Weihs, Timothy P. E-mail: david.lavan@nist.gov

    2014-11-01

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  6. Reaction characteristic of Fe-Ni nano-alloy with organic chloride

    SciTech Connect

    Dong Guojun Ru Xiuling; Han Hanbo; Wang Guixiang

    2008-08-04

    Fe-Ni nano-alloy which was prepared by chemical reduction with KBH{sub 4} as reductant and polyethylene glycol (PEG) as dispersant had high surface energy after being deoxidized in H{sub 2} atmosphere at 400 deg. C. It could cause breakage of C-Cl bond of organic chloride in the presence of a small amount of oxygen. The result of elemental analysis indicated that the reaction products were FeCl{sub 2}, NiCl{sub 2} and Cl{sub 2}, the production of Cl{sub 2} was because of the combination of Cl atom or Cl free radical that came from the breakage of C-Cl bond. High-performance liquid chromatography (HPLC) result showed that the existence of new organic compound such as biphenyl and so on. The results of X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) showed that carbon free radical or carbonaceous free radical enchased on the surface of nano-alloy and produced Fe{sub 3}C, Fe{sub 2}C after being baked in N{sub 2} atmosphere at 600 deg. C.

  7. Sessile dislocations by reactions in NiAl severely deformed at room temperature

    DOE PAGES

    Geist, D.; Gammer, C.; Rentenberger, C.; ...

    2015-02-05

    B2 ordered NiAl is known for its poor room temperature (RT) ductility; failure occurs in a brittle like manner even in ductile single crystals deforming by single slip. In the present study NiAl was severely deformed at RT using the method of high pressure torsion (HPT) enabling the hitherto impossible investigation of multiple slip deformation. Methods of transmission electron microscopy were used to analyze the dislocations formed by the plastic deformation showing that as expected dislocations with Burgers vector a(100) carry the plasticity during HPT deformation at RT. In addition, we observe that they often form a(110) dislocations by dislocationmore » reactions; the a(110) dislocations are considered to be sessile based on calculations found in the literature. It is therefore concluded that the frequently encountered 3D dislocation networks containing sessile a(110) dislocations are pinned and lead to deformation-induced embrittlement. In spite of the severe deformation, the chemical order remains unchanged.« less

  8. Orientated binding of photosynthetic reaction centers on gold using Ni-NTA self-assembled monolayers.

    PubMed

    Trammell, Scott A; Wang, Leyu; Zullo, Joseph M; Shashidhar, Ranganathan; Lebedev, Nikolai

    2004-07-15

    Coupling of photosynthetic reaction centers (RCs) with inorganic surfaces is attractive for the identification of the mechanisms of interprotein electron transfer (ET) and for possible applications in construction of photo- and chemosensors. Here we show that RCs from Rhodobacter sphaeroides can be immobilized on gold surfaces with the RC primary donor looking towards the substrate by using a genetically engineered poly-histidine tag (His(7)) at the C-terminal end of the M-subunit and a Ni-NTA terminated self-assembled monolayer (SAM). In the presence of an electron acceptor, ubiquinone-10, illumination of this RC electrode generates a cathodic photocurrent. The action spectrum of the photocurrent coincides with the absorption spectrum of RC and the photocurrent decreases in response to the herbicide, atrazine, confirming that the RC is the primary source of the photoresponse. Disruption of the Ni-NTA-RC bond by imidazole leads to about 80% reduction of the photocurrent indicating that most of the photoactive protein is specifically bound to the electrode through the linker.

  9. Adsorption and reactions of NO on NiAl(111) at 75 K

    NASA Astrophysics Data System (ADS)

    Schmitz, G.; Bartolucci, F.; Gassmann, P.; Masuch, J.; Franchy, R.

    1997-11-01

    The adsorption and reactions of NO on NiAl(111) at 75 K were studied by high resolution electron energy loss spectroscopy, temperature programmed desorption, Auger electron spectroscopy, and low energy electron diffraction. At low exposure (⩽1 L), NO mainly adsorbs molecularly on top in an upright geometry on Ni atoms. Simultaneously, a small amount of NO dissociates. Higher exposures (⩾2 L up to saturation) lead to the formation of a thin amorphous Al-oxynitride (am-ALON) film. In the presence of am-ALON, a molecular adsorption of NO on am-ALON sites and/or in the neighborhood of ALON islands is observed. Besides the upright geometry, NO molecules are adsorbed in disarranged (bent or tilted) configurations. The growing am-ALON film acts as a catalyst for the reduction of NO to N2O. Substantial amounts of N2O are formed for NO exposures higher than 5 L, and are coadsorbed molecularly. The main thermal desorption products are N2O, N2, and NO. For an exposure of 20 L NO, the ratios of the amounts of desorbing molecules are: N2O:N2:NO=1:0.43:0.36. It could be shown that the N2 signal is due to a recombinative desorption of adsorbed nitrogen atoms.

  10. Micelle-catalyzed reaction between ninhydrin and nickel dipeptide complex [Ni(II)-Gly-Tyr]+.

    PubMed

    Akram, Mohd; Kumar, Dileep; Kabir-ud-Din

    2012-06-01

    The interaction of nickel dipeptide complex [Ni(II)-Gly-Tyr](+) with ninhydrin has been investigated in the absence and presence of cationic cetyltrimethylammonium bromide (CTAB) and gemini (16-s-16, s=4, 5, 6) surfactants spectrophotometrically at 80°C and pH 5.0. The product formed was the same and the reaction followed first- and fractional-order kinetics with respect to [Ni(II)-Gly-Tyr](+) and [ninhydrin], respectively, in both aqueous as well as micellar media. In the presence of CTAB, rate increased and reached up to a maximum, then decreased. Also, whereas typical rate constant (k(Ψ)) increase and leveling-off regions, just like CTAB, were observed with geminis, the latter produced a third region of increasing k(Ψ) at higher concentrations. This unusual third-region effect of the gemini micelles is assigned to changes in their micellar morphologies. The micellar catalysis is explained in terms of pseudo-phase model. The binding constants and the values of activation parameters such as activation energy (E(a)), enthalpy of activation (ΔH(#)) and entropy of activation (ΔS(#)) have been evaluated.

  11. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I) , Ni(II) , and Ni(III) intermediates.

    PubMed

    Lipschutz, Michael I; Tilley, T Don

    2014-07-07

    Recently, the development of more sustainable catalytic systems based on abundant first-row metals, especially nickel, for cross-coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a Ni(III) -alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon-carbon cross-coupling system based on a two-coordinate Ni(II) -bis(amido) complex in which a Ni(III) -alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this Ni(III) -alkyl species as well as those of other key Ni(I) and Ni(II) intermediates. The catalytic cycle described herein is also one of the first examples of a two-coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first-row transition metals to accommodate two-coordinate complexes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    SciTech Connect

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-02-23

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration which led to the HDO of furfural on Ni/Cu(111). Lastly, the ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  13. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    NASA Astrophysics Data System (ADS)

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-10-01

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111) through an η2(C,O) configuration, which led to the HDO of furfural on Ni/Cu(111). The ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).

  14. Reaction pathways of furfural, furfuryl alcohol and 2-methylfuran on Cu(111) and NiCu bimetallic surfaces

    DOE PAGES

    Xiong, Ke; Wan, Weiming; Chen, Jingguang G.

    2016-02-23

    Hydrodeoxygenation (HDO) is an important reaction for converting biomass-derived furfural to value-added 2-methylfuran, which is a promising fuel additive. In this work, the HDO of furfural to produce 2-methylfuran occurred on the NiCu bimetallic surfaces prepared on either Ni(111) or Cu(111). The reaction pathways of furfural were investigated on Cu(111) and Ni/Cu(111) surfaces using density functional theory (DFT) calculations, temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS) experiments. These studies provided mechanistic insights into the effects of bimetallic formation on enhancing the HDO activity. Specifically, furfural weakly adsorbed on Cu(111), while it strongly adsorbed on Ni/Cu(111)more » through an η2(C,O) configuration which led to the HDO of furfural on Ni/Cu(111). Lastly, the ability to dissociate H2 on Ni/Cu(111) is also an important factor for enhancing the HDO activity over Cu(111).« less

  15. Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems

    NASA Astrophysics Data System (ADS)

    Marino, C.; Dupré, N.; Villevieille, C.

    2017-10-01

    Electrochemical performance of Ni2SnP was assessed in Li-ion and Na-ion battery systems. When cycled versus Li, Ni2SnP exhibited a reversible specific charge of 700 mAh.g-1 (theoretical specific charge: 742 mAh.g-1). In the Na system, the specific observed charge was ca. 200 mAh.g-1 (theoretical specific charge: 676 mAh.g-1). X-ray diffraction, Ni K-edge X-ray absorption spectroscopy, and 31P and 7Li/23Na nuclear magnetic resonance spectroscopy were used to elucidate the electrochemical mechanisms in both systems. Versus Li, Ni2SnP undergoes a conversion reaction resulting in the extrusion of Ni and the alloying of Li-Sn and Li-P. On delithiation, the material partially recombines into a Sn- and Ni-deficient form. In the Na system, Ni2SnP reacts through the conversion of P into Na3P. These results indicate that the recombination of the pristine material (even partially) increases cycling stability.

  16. Stainless Steel Mesh-Supported NiS Nanosheet Array as Highly Efficient Catalyst for Oxygen Evolution Reaction.

    PubMed

    Chen, Jun Song; Ren, Jiawen; Shalom, Menny; Fellinger, Tim; Antonietti, Markus

    2016-03-02

    Nickel(II) sulfide (NiS) nanosheets with a thickness of 10 nm and a size of 200 nm were facilely grown on stainless steel (SLS) meshes via a one-pot hydrothermal method. This unique construction renders an excellent electrical contact between the porous film of active NiS sheets and the highly conductive substrate, which exhibits a superior catalytic activity toward oxygen evolution reaction (OER). The NiS@SLS electrocatalyst exhibits an unusually low overpotential of 297 mV (i.e., 1.524 V vs RHE) at a current density of 11 mA·cm(-2), and an extra small Tafel slope of only 47 mV·dec(-1) proves an even more competitive performance at high to very high current densities. This performance compares very favorably to other Ni-based catalysts and even to the precious state-of-the-art IrO2 or RuO2 catalyst.

  17. Tracking Catalyst Redox States and Reaction Dynamics in Ni-Fe Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts: The Role of Catalyst Support and Electrolyte pH.

    PubMed

    Görlin, Mikaela; Ferreira de Araújo, Jorge; Schmies, Henrike; Bernsmeier, Denis; Dresp, Sören; Gliech, Manuel; Jusys, Zenonas; Chernev, Petko; Kraehnert, Ralph; Dau, Holger; Strasser, Peter

    2017-02-08

    Ni-Fe oxyhydroxides are the most active known electrocatalysts for the oxygen evolution reaction (OER) in alkaline electrolytes and are therefore of great scientific and technological importance in the context of electrochemical energy conversion. Here we uncover, investigate, and discuss previously unaddressed effects of conductive supports and the electrolyte pH on the Ni-Fe(OOH) catalyst redox behavior and catalytic OER activity, combining in situ UV-vis spectro-electrochemistry, operando electrochemical mass spectrometry (DEMS), and in situ cryo X-ray absorption spectroscopy (XAS). Supports and pH > 13 strongly enhanced the precatalytic voltammetric charge of the Ni-Fe oxyhydroxide redox peak couple, shifted them more cathodically, and caused a 2-3-fold increase in the catalytic OER activity. Analysis of DEMS-based faradaic oxygen efficiency and electrochemical UV-vis traces consistently confirmed our voltammetric observations, evidencing both a more cathodic O2 release and a more cathodic onset of Ni oxidation at higher pH. Using UV-vis, which can monitor the amount of oxidized Ni(+3/+4) in situ, confirmed an earlier onset of the redox process at high electrolyte pH and further provided evidence of a smaller fraction of Ni(+3/+4) in mixed Ni-Fe centers, confirming the unresolved paradox of a reduced metal redox activity with increasing Fe content. A nonmonotonic super-Nernstian pH dependence of the redox peaks with increasing Fe content-displaying Pourbaix slopes as steep as -120 mV/pH-suggested a two proton-one electron transfer. We explain and discuss the experimental pH effects using refined coupled (PCET) and decoupled proton transfer-electron transfer (PT/ET) schemes involving negatively charged oxygenate ligands generated at Fe centers. Together, we offer new insight into the catalytic reaction dynamics and associated catalyst redox chemistry of the most important class of alkaline OER catalysts.

  18. Preparation of Soft Magnetic Fe-Ni-Pb-B Alloy Nanoparticles by Room Temperature Solid-Solid Reaction

    PubMed Central

    Zhong, Qin

    2013-01-01

    The Fe-Ni-Pb-B alloy nanoparticles was prepared by a solid-solid chemical reaction of ferric trichloride, nickel chloride, lead acetate, and potassium borohydride powders at room temperature. The research results of the ICP and thermal analysis indicate that the resultants are composed of iron, nickel, lead, boron, and PVP, and the component of the alloy is connected with the mole ratio of potassium borohydride and the metal salts. The TEM images show that the resultants are ultrafine and spherical particles, and the particle size is about a diameter of 25 nm. The largest saturation magnetization value of the 21.18 emu g−1 is obtained in the Fe-Ni-Pb-B alloy. The mechanism of the preparation reaction for the Fe-Ni-Pb-B multicomponent alloys is discussed. PMID:24348196

  19. Ternary NiCo2 Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction.

    PubMed

    Zhang, Rui; Wang, Xiangxue; Yu, Shujun; Wen, Tao; Zhu, Xiangwei; Yang, Fangxu; Sun, Xiangnan; Wang, Xiangke; Hu, Wenping

    2017-03-01

    A bimetallic-structured ternary phosphide (NiCo2 Px ) as a novel pH-universal electrocatalyst for hydrogen evolution reaction is presented. It exhibits both high activity and long-term stability in all the tested alkaline, neutral, and acidic media. The excellent catalytic performance endows it with a bright future in the large-scale electrochemical water splitting industry.

  20. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.

    PubMed

    Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia

    2016-11-01

    A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water.

  1. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions.

    PubMed

    Li, Shuirong; Gong, Jinlong

    2014-11-07

    Owing to the considerable publicity that has been given to petroleum related economic, environmental, and political problems, renewed attention has been focused on the development of highly efficient and stable catalytic materials for the production of chemical/fuel from renewable resources. Supported nickel nanoclusters are widely used for catalytic reforming reactions, which are key processes for generating synthetic gas and/or hydrogen. New challenges were brought out by the extension of feedstock from hydrocarbons to oxygenates derivable from biomass, which could minimize the environmental impact of carbonaceous fuels and allow a smooth transition from fossil fuels to a sustainable energy economy. This tutorial review describes the recent efforts made toward the development of nickel-based catalysts for the production of hydrogen from oxygenated hydrocarbons via steam reforming reactions. In general, three challenges facing the design of Ni catalysts should be addressed. Nickel nanoclusters are apt to sinter under catalytic reforming conditions of high temperatures and in the presence of steam. Severe carbon deposition could also be observed on the catalyst if the surface carbon species adsorbed on metal surface are not removed in time. Additionally, the production of hydrogen rich gas with a low concentration of CO is a challenge using nickel catalysts, which are not so active in the water gas shift reaction. Accordingly, three strategies were presented to address these challenges. First, the methodologies for the preparation of highly dispersed nickel catalysts with strong metal-support interaction were discussed. A second approach-the promotion in the mobility of the surface oxygen-is favored for the yield of desired products while promoting the removal of surface carbon deposition. Finally, the process intensification via the in situ absorption of CO2 could produce a hydrogen rich gas with low CO concentration. These approaches could also guide the design

  2. Secondary Reaction Zone Formations in coated Ni-base Single Crystal Superalloys

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Rae, C. M. F.

    2009-05-01

    Ruthenium (Ru) has been added to the latest 4th Generation Ni-base superalloys to improve phase stability and modify creep life. Various coatings are routinely applied to these advanced alloys to protect the turbine blade at elevated temperature, however, this creates several problems such as the precipitation of brittle Topologically Close-Packed (TCP) phases and the formation of Secondary Reaction Zones (SRZ). The SRZ forms under the plat-aluminized coating of turbine blades and consists of γ, γ and TCP phases growing into substrate by the migration of high-angle grain boundaries. Surface residual stress and chemical super-saturation of alloying elements are associated to SRZ formation. In the thin sections of high-pressure turbine blades this is critical in determining blade performance and longevity. It is essential to know how Ru additions affect coating and SRZ morphologies during exposure. In this study, we focus on the effects of three variables on the SRZ formation: Ru concentration, alloy composition in Ru-containing alloys and surface finish. A series of Platinum-Aluminised superalloys containing 2-5wt% Ru and having various surface finishes was studied after isothermal exposure at 1100°C for up to 500h. The alloys were classified into two groups by their distinctive SRZ morphology. At the lowest Ru levels sporadic formation of SRZ was observed, whilst a continuous SRZ was formed in the higher Ru alloys. EBSD analysis revealed that the latter group have a higher nucleation rate of individual SRZ grains and also showed more rapid SRZ growth. The precipitation of TCPs in the substrate also inhibited the growth of the SRZ towards the end of the exposure further reducing the penetration of the SRZ into the substrate. It is concluded that Ru-additions to Ni-base superalloys are effective in impeding TCP phase formation in the substrate, but increase both the extent and the rate of SRZ formation beneath coating.

  3. Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction

    PubMed Central

    Hassan, Diab; El-safty, Sherif; Khalil, Khalil Abdelrazek; Dewidar, Montasser; Abu El-magd, Gamal

    2016-01-01

    The design of cheap and efficient oxygen reduction reaction (ORR) electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo2O4 nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition. The mixed-valence oxide can offer numerous accessible active sites. In addition, the as-obtained C/NiCo2O4 hybrid reveals significantly remarkable electrocatalytic performance with a highly positive onset potential of 0.65 V, which is only 50 mV lower than that of commercially available Pt/C catalysts. The analyses indicate that C/NiCo2O4 catalyst can catalyze O2-molecules via direct four electron pathway in a similar behavior as commercial Pt/C catalysts dose. Compared to single NiCo2O4 and carbon free NiCo2O4, the C/NiCo2O4 hybrid displays higher ORR current and more positive half-wave potential. The incorporated carbon matrices are beneficial for fast electron transfer and can significantly impose an outstanding contribution to the electrocatalytic activity. Results indicate that the synthetic strategy hold a potential as efficient route to fabricate highly active nanostructures for practical use in energy technologies. PMID:28773878

  4. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    SciTech Connect

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au to replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.

  5. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGES

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  6. Time-dependent Hartree-Fock calculations for multinucleon transfer and quasifission processes in the 238U+64Ni reaction

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki; Yabana, Kazuhiro

    2016-05-01

    Background: Multinucleon transfer (MNT) and quasifission (QF) processes are dominant processes in low-energy collisions of two heavy nuclei. They are expected to be useful to produce neutron-rich unstable nuclei. Nuclear dynamics leading to these processes depends sensitively on nuclear properties such as deformation and shell structure. Purpose: We elucidate reaction mechanisms of MNT and QF processes involving heavy deformed nuclei, making detailed comparisons between microscopic time-dependent Hartree-Fock (TDHF) calculations and measurements for the 238U+64Ni reaction. Methods: Three-dimensional Skyrme-TDHF calculations are performed. Particle-number projection method is used to evaluate MNT cross sections from the TDHF wave function after collision. Results: Fragment masses, total kinetic energy (TKE), scattering angle, contact time, and MNT cross sections are investigated for the 238U+64Ni reaction. They show reasonable agreements with measurements. At small impact parameters, collision dynamics depends sensitively on the orientation of deformed 238U. In tip (side) collisions, we find a larger (smaller) TKE and a shorter (longer) contact time. In tip collisions, we find a strong influence of quantum shells around 208Pb. Conclusions: It is confirmed that the TDHF calculations reasonably describe both MNT and QF processes in the 238U64Ni reaction. Analyses of this system indicate the significance of the nuclear structure effects such as deformation and quantum shells in nuclear reaction dynamics at low energies.

  7. Facile synthesis of ultrathin Ni(OH)2-Cu2S hexagonal nanosheets hybrid for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yang, Duo; Gao, Li; Yang, Jing-He

    2017-08-01

    The development of non-noble metal water oxidation catalyst has been a challenge in oxygen evolution reaction. A two-dimensional (2D) ultrathin Ni(OH)2-Cu2S hexagonal nanosheet hybrid is in situ synthesized by hydrothermal reaction as electrocatalyst for oxygen evolution reaction. The 2D ultrathin hexagonal Ni(OH)2-Cu2S nanosheets are homogeneous in size with edge lengths of 20-30 nm. This catalyst exhibits a current density of 10 mA cm-2 at an over-potential of 0.5 V and Tafel slope of 89 mV dec-1 for water oxidation in 0.1 M KOH. Moreover, the nanosheets are stable and no deactivation is observed during the following cyclic voltammetry cycles, even up to 3500 cycles.

  8. NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy

    DOE PAGES

    Unocic, Kinga A.; Shin, Dongwon; Unocic, Raymond R.; ...

    2017-02-07

    The nanoscale oxidation mechanisms and kinetics of a model β-NiAl system were investigated using in situ closed-cell gas reaction scanning transmission electron microscopy (STEM). Here, we directly visualize the dynamic structural and chemical changes that occur during high-temperature oxidation at a high spatial resolution of 50.3Ni–49.7Al (at.%) nanoparticles under static air conditions at 730 Torr with heating up to 750 °C at 5 °C/s. A MEMS-based gas cell system, with microfabricated heater devices and a gas delivery system, was used to reveal site-specific oxidation initiation sites. Through time-resolved annular dark-field STEM imaging, we tracked the nanoscale oxidation kinetics of Al2O3.more » After oxidation at 750 °C, nucleation of voids at the Ni/Al2O3 interface was observed along a NiAl grain boundary, followed by the formation of faceted NiO crystals. Small faceted cubic crystals of NiO were formed at the initial stage of oxidation at high PO2 due to the outward self-diffusion of Ni2+ ions, followed by the formation of a mixture of metastable and stable α-Al2O3 at the oxide/metal interface that is attributed to a PO2 decrease with oxidation time, which agreed with thermodynamic modeling calculations. Furthermore, the results from these in situ oxidation experiments in the β-NiAl system are in agreement with the established oxidation mechanisms; however, with in situ closed-cell gas microscopy it is now feasible to investigate nanoscale oxidation mechanisms and kinetics in real time and at high spatial resolution and can be broadly applied to understand the basic high-temperature oxidation mechanisms for a wide range of alloy compositions.« less

  9. NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Huiyong; Wang, Haiyan; He, Kejian; Wang, Shuangyin; Tang, Yougen; Chen, Jiajie

    2015-04-01

    Developing low-cost catalyst for high-performance oxygen reduction reaction (ORR) is highly desirable. Herein, NiCo2O4/N-doped reduced graphene oxide (NiCo2O4/N-rGO) hybrid is proposed as a high-performance catalyst for ORR for the first time. The well-formed NiCo2O4/N-rGO hybrid is studied by cyclic voltammetry (CV) curves and linear-sweep voltammetry (LSV) performed on the rotating-ring-disk-electrode (RDE) in comparison with N-rGO-free NiCo2O4 and the bare N-rGO. Due to the synergistic effect, the NiCo2O4/N-rGO hybrid exhibits significant improvement of catalytic performance with an onset potential of -0.12 V, which mainly favors a direct four electron pathway in ORR process, close to the behavior of commercial carbon-supported Pt. Also, the benefits of N-incorporation are investigated by comparing NiCo2O4/N-rGO with NiCo2O4/rGO, where higher cathodic currents, much more positive half-wave potential and more electron transfer numbers are observed for the N-doping one, which should be ascribed to the new highly efficient active sites created by N incorporation into graphene. The NiCo2O4/N-rGO hybrid could be used as a promising catalyst for high power metal/air battery.

  10. Ternary mixed metal Fe-doped NiCo2O4 nanowires as efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yan, Kai-Li; Shang, Xiao; Li, Zhen; Dong, Bin; Li, Xiao; Gao, Wen-Kun; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-09-01

    Designing mixed metal oxides with unique nanostructures as efficient electrocatalysts for water electrolysis has been an attractive approach for the storage of renewable energies. The ternary mixed metal spinel oxides FexNi1-xCo2O4 (x = 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1) have been synthesized by a facile hydrothermal approach and calcination treatment using nickel foam as substrate. Fe/Ni ratios have been proved to affect the nanostructures of FexNi1-xCo2O, which imply different intrinsic activity for oxygen evolution reaction (OER). SEM images show that Fe0.5Ni0.5Co2O4 has the uniform nanowires morphology with about 30 nm of the diameter and 200-300 nm of the length. The OER measurements show that Fe0.5Ni0.5Co2O4 exhibits the better electrocatalytic performances with lower overpotential of 350 mV at J = 10 mA cm-2. In addition, the smaller Tafel slope of 27 mV dec-1 than other samples with different Fe/Ni ratios for Fe0.5Ni0.5Co2O4 is obtained. The improved OER activity of Fe0.5Ni0.5Co2O4 may be attributed to the synergistic effects from ternary mixed metals especially Fe-doping and the uniform nanowires supported on NF. Therefore, synthesizing Fe-doped multi-metal oxides with novel nanostructures may be a promising strategy for excellent OER electrocatalysts and it also provides a facile way for the fabrication of high-activity ternary mixed metal oxides electrocatalysts.

  11. Carbon reaction and diffusion on Ni(111), Ni(100), and Fe(110): Kinetic parameters from x-ray photoelectron spectroscopy and density functional theory analysis

    SciTech Connect

    Wiltner, A.; Linsmeier, Ch.; Jacob, T.

    2008-08-28

    This paper investigates the reactivity of elemental carbon films deposited from the vapor phase with Fe and Ni substrates at room temperature. X-ray photoelectron spectroscopy (XPS) measurements are presented as a method for evaluating kinetic reaction data. Carbon films are deposited on different surface orientations representing geometries from a dense atom packing as in fcc (111) to an open surface structure as in fcc (100). During annealing experiments several reactions are observed (carbon subsurface diffusion, carbide formation, carbide decomposition, and graphite ordering). These reactions and the respective kinetic parameters are analyzed and quantified by XPS measurements performed while annealing at elevated temperatures (620-820 K). The resulting activation barriers for carbon subsurface diffusion are compared with calculated values using the density functional theory. The determined kinetic parameters are used to reproduce the thermal behavior of carbon films on nickel surfaces.

  12. Synthesis of Ni3S2 nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Miura, Hideo; Meng, Yang; Tongxiang, Liang

    2017-03-01

    The thermal reduced graphene oxide deposition on nickel foam was successfully synthesized by ultrasonic and subsequent thermal reduction process. Ultrathin mesoporous Ni3S2 was formed on the bare nickel foam after hydrothermal process, while Ni3S2 nanotube arrays were formed on the surface of nickel foam with the thermal reduced graphene oxide due to catalysis action of thermal reduced graphene oxide. The resulting Ni3S2 nanotube arrays exhibited higher catalytic activity than ultrathin mesoporous Ni3S2 for hydrogen evolution reaction. In addition, and excellent stability was also obtained in Ni3S2 nanotube arrays.

  13. (p,α) Reaction Cross Sections Calculations of Fe and Ni Target Nuclei Using New Developed Semi-empirical Formula

    NASA Astrophysics Data System (ADS)

    Tel, E.; Akca, S.; Kara, A.; Yiğit, M.; Aydın, A.

    2013-10-01

    Iron (Fe) and nickel (Ni) are important fusion structural materials in reactor technology. The gas production in the metallic structure arising from many different types of nuclear reactions has been a significant damage mechanism in structural components of fusion reactors. The hydrogen and its isotopes at high temperatures leave out of the metallic lattice but the alpha (α) particles that remain in the lattice generate helium (He) gas bubbles. In other words, the α particles can cause serious changes in the physical and mechanical properties of the fusion structural materials. In this study, the excitation functions of 54,57Fe(p,α) and 58,60,61,64Ni(p,α) reactions have been investigated in the incident proton energy range of 10-40 MeV to estimate the radiation damage effects on fusion structural materials used in the construction of the first walls and core of the reactor. The calculations of (p,α) reaction cross sections on 54,57Fe and 58,60,61,64Ni have been made by using PCROSS code and CEM95 code. The full exciton and cascade exciton model (CEM95) for pre-equilibrium calculations and Weisskopf-Ewing model for equilibrium calculations are used. Besides, the semi-empirical cross section formula with new coefficient obtained by Tel et al. (Pramana J Phys 74:931-943, 2010) has been applied for (p,α) reactions at 17.9 MeV proton incident energy.

  14. The dissociative chemisorption of methane on Ni(100) and Ni(111): Classical and quantum studies based on the reaction path Hamiltonian

    SciTech Connect

    Mastromatteo, Michael; Jackson, Bret

    2013-11-21

    Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH{sub 4} dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrational excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.

  15. Cyclic oxidation resistance of a reaction milled NiAl-AlN composite

    NASA Technical Reports Server (NTRS)

    Lowell, Carl E.; Barrett, Charles A.; Whittenberger, J. D.

    1990-01-01

    Based upon recent mechanical property tests a NiAl-AlN composite produced by cryomilling has very attractive high temperature strength. This paper focuses on the oxidation resistance of the NiAl-AlN composite at 1473 and 1573 K as compared to that of Ni-47Al-0.15Zr, one of the most oxidation resistant intermetallics. The results of cyclic oxidation tests show that the NiAl-AlN composite has excellent properties although not quite as good as those of Ni-47Al-0.15Zr. The onset of failure of the NiAl-AlN was unique in that it was not accompanied by a change in scale composition from alumina to less protective oxides. Failure in the composite appears to be related to the entrapment of AlN particles within the alumina scale.

  16. Ni distribution in MORB-source-mantle pyroxenites: Traces of melt-rock reaction on a cm-scale

    NASA Astrophysics Data System (ADS)

    Sergeev, D.; Dijkstra, A.; Pettke, T.

    2010-12-01

    Introduction The origin of pyroxenites in mantle peridotites is widely discussed as they represent the most important observed lithological inhomogeneity in the upper mantle. We have studied a case of such mantle heterogeneity, consisting of 1-10 cm thick concordant layers of websteritic pyroxenites within residual MORB-source mantle peridotites, in the Jurassic Pindos Ophiolite (N. Greece). Here we report Ni concentrations in minerals in pyroxenites and we compare them with those in the enclosing peridotites We use this data to test whether these pyroxenite layers are cumulate veins, or the product of melt-rock reactions. Results Ni concentrations analysed by Laser ablation ICP-MS on single olivine grains in thick sections show values for the wall-rock peridotites 2580-3480 μg/g, while 2825-3815 μg/g are measured in pyroxenites layers. We consistently observe higher Ni concentrations (10-20%) in pyroxenites compared to peridotites and we observe the same trend in thick sections containing peridotite and pyroxenite parts. The highest Ni concentrations, up to 4145 μg/g, are found in olivine inclusions - older grains surrounded by newly formed orthopyroxene in pyroxenites. Similar elevated Ni concentrations are also characteristic for single orthopyroxene and clinopyroxene grains in pyroxenites compared to peridotites. Intermediate values are typical for transition zones, as there is no strict contact line on the thick section scale between peridotite and pyroxenite. Discussion The data is consistent with a melt-rock reaction origin for the pyroxenites. Melt-rock reaction in the upper mantle between peridotites and SiO2-rich melts would not significantly lower the whole-rock Ni concentration in the newly-formed hybrid rock (pyroxenites). The transformation of olivine to orthopyroxene would strongly concentrate Ni in the remaining olivine and would also enrich other minerals (Sobolev et al. 2007). This interpretation is fully supported by petrographical

  17. Structure and properties of porous TiNi(Co, Mo)-based alloy produced by the reaction sintering

    NASA Astrophysics Data System (ADS)

    Artyukhova, Nadezda; Yasenchuk, Yuriy; Chekalkin, Timofey; Gunther, Victor; Kim, Ji-Soon; Kang, Ji-Hoon

    2016-10-01

    Modern medical technologies have developed many new devices that can be implanted into humans to repair, assist or take the place of diseased or defective bones, arteries and even organs. The materials, especially porous ones, used for these devices have evolved steadily over the past twenty years with TiNi-based alloys replacing stainless steels and titanium. The aim of the paper is to presents results for examination of porous TiNi(Co,Mo)-based alloys intended further to be used in clinical practice. The structure and properties of porous TiNi-based alloys obtained by reaction sintering of Ti and Ni powders with additions of Co and Mo have been studied. It has been shown that alloying additions both Co and Mo inhibit the compaction of nickel powders in the initial stage of sintering. The maximum irreversible strain of porous samples under loading in the austenitic state is fixed with the Co addition, and the minimum one is fixed with the Mo addition. The Co addition leads to the fact that the martensite transformation in the TiNi phase becomes close to a one-step, and the Mo addition leads to the fact that the martensite transformation becomes more uniform. Both Co and Mo lead to an increase in the maximum accumulated strain as a result of the formation of temperature martensite. The additional increase in the maximum accumulated strain of the Ti50Ni49Co1 alloy is caused by decreased resistance of the porous Ni γ -based mass during the load.

  18. Tiny crystalline grain nanocrystal NiCo2O4/N-doped graphene composite for efficient oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Wan, Li-li; Zang, Guo-long; Wang, Xin; Zhou, Le-an; Li, Tian; Zhou, Qi-xing

    2017-03-01

    Oxygen reduction reaction (ORR) plays an important role in green energy conversion, although catalysts are necessary for overcoming its sluggish kinetic. Herein, a nanocrystal NiCo2O4/N-doped graphene composite material showing high ORR electrocatalytic activity is prepared. The resulting NiCo2O4/N-doped graphene composite (NiCo2O4-NG/C) combines the advantages of both component materials and shows enhanced ORR electrocatalytic activity (i.e., more positive peak potential and half-wave potential compared with NiCo2O4) while having higher diffusion-limited current density values (-5.7 mA cm-2, 1600 rpm), better tolerance to methanol, and improved stability than 20 wt% Pt/C. NiCo2O4 anchored on N-doped graphene are demonstrated to be nanocrystal with tiny crystalline grain (diameter < 5 nm) and result in large surface area, thereby allowing more active sites to be exposed. Moreover, the potential exposure of high-index planes may be also responsible for the observed high activity of these materials.

  19. Three-dimensional PtNi hollow nanochains as an enhanced electrocatalyst for the oxygen reduction reaction

    SciTech Connect

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark H.; He, Yang; Du, Dan; Wang, Chongmin; Lin, Yuehe

    2016-01-01

    Three-dimensional porous PtNi hollow nanochains are successfully synthesized via galvanic replacement method using Ni nanosponges as sacrificial templates in an aqueous solution. It is found that the composition and shell thickness of the 3D PtNi hollow nanochains can be easily controlled by tuning the concentration of Pt precursors. The as-prepared PtNi hollow nanochains with optimized composition present high electrochemical surface area (70.8 m2 g-1), which is close to that of commercial Pt/C (83 m2 g-1). Moreover, the PtNi catalyst with Pt content of ~77% presents superior electrocatalytic performance for oxygen reduction reaction compared to commercial Pt/C. It shows a mass activity of 0.58 A mgPt-1, which is around 3 times higher than that of Pt/C. This strategy may be extended to the preparation of other multimetallic nanocrystals with 3D hollow nanostructures, which are expected to present high catalytic properties.

  20. Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions

    SciTech Connect

    Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.; Rentz, Nikki S.; Showalter, Allison R.; Pylypenko, Svitlana; Bunker, Bruce A.; Lee, Sungsik; Reinhart, Benjamin; Ren, Yang; Ertem, S. Piril; Coughlin, E. Bryan; Sather, Nicholas A.; Horan, James L.; Herring, Andrew M.; Greenlee, Lauren F.

    2016-11-29

    Here, iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reac-tion (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron-nickel nanoparticles were synthesized using a multi-step procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe-Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm2, the overpotential for monometallic iron and nickel nanoparticles was 421 mV and 476 mV, respectively, while the bimetallic Fe-Ni nanoparticles had a greatly reduced overpotential of 256 mV. At 10 mA/cm2, bimetallic Fe-Ni nanoparticles had an overpotential of 311 mV. Spec-troscopy characterization suggests that the primary phase of nickel in Fe-Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.

  1. Temperature behavior of exothermic reaction of Al/Ni multilayer powder materials based on cold-rolling and pulverizing method

    NASA Astrophysics Data System (ADS)

    Kametani, Nagamasa; Izumi, Taisei; Miyake, Shugo; Kanetsuki, Shunsuke; Namazu, Takahiro

    2017-06-01

    In this paper, the characteristics of self-propagating exothermic reactions of an Al/Ni multilayer powder materials fabricated by a cold-rolling and powdering procedure are reported as initial findings of the first trial on a heat source for various applications with the energy-saving feature. Experimental results showed that, following the reaction of the developed Al/Ni multilayer powder materials in air atmosphere, the maximum temperature increased from approximately 1450 °C to over 1768 °C with increasing number of passes from 20 to 40 in cold-rolling. Furthermore, observations by scanning electron microscopy and crystallographic identification by X-ray diffraction measurements showed that the multilayer structure of powdered Al/Ni after 40 passes of cold-rolling was deformed, became thinner with below sub-micrometer thickness, and almost completely reacted to NiAl intermetallic compounds. It is possible that optimizing cold-rolling conditions enables us to control exothermic heat, which will be useful for heat sources.

  2. Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions

    DOE PAGES

    Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.; ...

    2016-11-29

    Here, iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reac-tion (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron-nickel nanoparticles were synthesized using a multi-step procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe-Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm2, the overpotential for monometallic iron and nickel nanoparticles was 421 mV and 476 mV, respectively, while the bimetallic Fe-Ni nanoparticlesmore » had a greatly reduced overpotential of 256 mV. At 10 mA/cm2, bimetallic Fe-Ni nanoparticles had an overpotential of 311 mV. Spec-troscopy characterization suggests that the primary phase of nickel in Fe-Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.« less

  3. Tuning crystal phase of NiSx through electro-oxidized nickel foam: A novel route for preparing efficient electrocatalysts for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Shang, Xiao; Rao, Yi; Dong, Bin; Han, Guan-Qun; Hu, Wen-Hui; Liu, Yan-Ru; Yan, Kai-Li; Chi, Jing-Qi; Chai, Yong-Ming; Liu, Chen-Guang

    2017-02-01

    A facile solvothermal sulfurization using electro-oxidized nickel foam (NF(Ox)) as support has been applied to prepare NiSx/NF(Ox) electrocatalyst with highly efficient activity for oxygen evolution reaction (OER). XRD patterns confirm the composition of NiSx/NF(Ox): two kinds of crystal phase including β-NiS and Ni3S2. While using bare NF as support under identical conditions, only Ni3S2 phase can be detected. SEM images reveal two kinds of morphologies of NiSx/NF(Ox) including pyramids structure of β-NiS and nanorod-like structure of Ni3S2, which implies the tuning effect of electro-pretreatment of NF on the selective preparation of NiSx crystal phase. It can be speculated that Ni(OH)2 layer derived from electro-oxidized NF is responsible for the growth of β-NiS while metallic Ni is transformed into Ni2S3 during sulfurization. Electrochemical measurements for OER indicate the enhanced electrocatalytic activity of NiSx/NF(Ox) with a small overpotential of 72 mV to reach 10 mA cm-2 compared with Ni3S2/NF, which may be ascribed to the improved electron-transfer kinetics relating to the unique atomic configurations and crystalline structures of β-NiS. The electro-oxidation pretreatment of nickel foam provides a simple and convenient method by tuning different NiSx crystal phases for preparing excellent OER eletrocatalysts.

  4. Ni- and Mn-Promoted Mesoporous Co3O4: A Stable Bifunctional Catalyst with Surface-Structure-Dependent Activity for Oxygen Reduction Reaction and Oxygen Evolution Reaction.

    PubMed

    Song, Wenqiao; Ren, Zheng; Chen, Sheng-Yu; Meng, Yongtao; Biswas, Sourav; Nandi, Partha; Elsen, Heather A; Gao, Pu-Xian; Suib, Steven L

    2016-08-17

    Efficient bifunctional catalysts for electrochemical oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desirable due to their wide applications in fuel cells and rechargeable metal air batteries. However, the development of nonprecious metal catalysts with comparable activities to noble metals is still challenging. Here we report a one-step wet-chemical synthesis of Ni-/Mn-promoted mesoporous cobalt oxides through an inverse micelle process. Various characterization techniques including powder X-ray diffraction (PXRD), N2 sorption, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) confirm the successful incorporation of Ni and Mn leading to the formation of Co-Ni(Mn)-O solid solutions with retained mesoporosity. Among these catalysts, cobalt oxide with 5% Ni doping demonstrates promising activities for both ORR and OER, with an overpotential of 399 mV for ORR (at -3 mA/cm(2)) and 381 mV (at 10 mA/cm(2)) for OER. Furthermore, it shows better durability than precious metals featuring little activity decay throughout 24 h continuous operation. Analyses of cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), Raman, and O2-temperature-programmed desorption (O2-TPD) reveal that redox activity of Co(3+) to Co(4+) is crucial for OER performance, while the population of surface oxygen vacancies and surface area determine ORR activities. The comprehensive investigation of the intrinsic active sites for ORR and OER by correlating different physicochemical properties to the electrochemical activities is believed to provide important insight toward the rational design of high-performance electrocatalysts for ORR and OER reactions.

  5. Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system

    SciTech Connect

    Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Gasques, L.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.; Mendes Jr, D. R.; Faria, P. N. de; Pires, K. C. C.; Barioni, A.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.

    2014-11-11

    Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.

  6. Facile synthesis of magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals via a cation-exchange reaction.

    PubMed

    Ning, Jiajia; Xiao, Guanjun; Wang, Li; Zou, Bo; Liu, Bingbing; Zou, Guangtian

    2011-02-01

    Magnetic metal (Mn, Fe, Co, and Ni) oxides nanocrystals with small size and uniform size distribution are synthesized via a cation-exchange reaction. Two experimental stages are included in the synthesis of metal oxides nanocrystals. Firstly, Cu(OH)2 decomposes to CuO nanocrystals, induced by free metal cations. Compared to CuO nanocrystals produced without any free metal cation, the free metal cation has an important influence on the shape and size of CuO. Secondly, free metal cations exchange with the Cu2+ cation in the CuO nanocrystals to get Mn3O4, Fe2O3, CoO and NiO nanocrystals by cation-exchange reactions. The magnetic properties of these metal oxides nanocrystals have been investigated, all the nanocrystals are superparamagnetic at room temperature.

  7. Dinuclear oxidative addition reactions using an isostructural series of Ni2, Co2, and Fe2 complexes.

    PubMed

    Behlen, Michael J; Zhou, You-Yun; Steiman, Talia J; Pal, Sudipta; Hartline, Douglas R; Zeller, Matthias; Uyeda, Christopher

    2016-12-20

    A family of low-valent Ni2, Co2, and Fe2 naphthyridine-diimine (NDI) complexes is presented. Ligand-based π* orbitals are sufficiently low-lying to fall within the metal 3d manifold, resulting in electronic structures that are highly delocalized across the conjugated [NDI]M2 system. This feature confers stability to metal-metal interactions during two-electron redox reactions, as demonstrated in a prototypical oxidative addition of allyl chloride.

  8. Ni(II) Tol-BINAP-catalyzed enantioselective Michael reactions of beta-ketoesters and unsaturated N-acylthiazolidinethiones.

    PubMed

    Evans, David A; Thomson, Regan J; Franco, Francisco

    2005-08-10

    The enantioselective addition of beta-ketoesters to unsaturated N-acylthiazolidinethiones catalyzed by Ni(II) Tol-BINAP Lewis acid complexes is reported. Notable features of this reaction are its operation simplicity, the obviated need for the addition of an external base, and the ease with which the adducts are converted into a range of potentially useful derivatives. In particular, the dihydropyrone adducts are versatile scaffolds for further stereoselective elaboration.

  9. Hydrogen oxidation reaction at the Ni/YSZ anode of solid oxide fuel cells from first principles.

    PubMed

    Cucinotta, Clotilde S; Bernasconi, Marco; Parrinello, Michele

    2011-11-11

    By means of ab initio simulations we here provide a comprehensive scenario for hydrogen oxidation reactions at the Ni/zirconia anode of solid oxide fuel cells. The simulations have also revealed that in the presence of water chemisorbed at the oxide surface, the active region for H oxidation actually extends beyond the metal/zirconia interface unraveling the role of water partial pressure in the decrease of the polarization resistance observed experimentally.

  10. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  11. NiAl{sub 2}O{sub 4} catalysts prepared by combustion reaction using glycine as fuel

    SciTech Connect

    Leal, Elvia; Figueiredo de Melo Costa, Ana Cristina; Lino de Freita, Normanda; Lucena Lira, Helio de; Goldschmidt Aliaga Kiminami, Ruth Herta; Gama, Lucianna

    2011-09-15

    Graphical abstract: The reaction temperature was found to remain is practically constant throughout the interval preceding ignition, after which the temperature increased abruptly, reaching the maximum combustion temperature. All the reactions occurred in a matter of minutes, i.e., 5.8, 5.8 and 6 min, respectively, for compositions GES, 10GE and 20GE. Among the benefits of the combustion synthesis method are low processing cost, energy efficiency, high production rate and, especially, short reaction periods when compared with conventional methods (solid state reaction) to prepare ceramic oxide powders that require high calcination temperatures and long reaction periods. Highlights: {yields} We use a simple, fast and inexpensive technique for processing NiAl{sub 2}O{sub 4} catalyst nanopowders. {yields} We study the preparation of powders with nanometric sized particles. {yields} This material is extremely attractive for use in the development of new catalysts for a variety of chemical processes. {yields} Nanometric sized particles depend of the amount of glycine used in the synthesis process. -- Abstract: The aim of this work is to evaluate the influence of glycine fuel used in a stoichiometric proportion and with a 10% and 20% excess of this fuel in the preparation of NiAl{sub 2}O{sub 4} catalyst by combustion reaction. The powders were characterized by XRD, textural analysis by the BET nitrogen adsorption method, particle size distribution, and FTIR. The results show the presence of NiAl{sub 2}O{sub 4} as a major phase and traces of NiO and Ni in all the catalysts studied here. The crystallite sizes were 22 nm in the stoichiometric composition and 18 and 9 nm, respectively, in the composition containing 10% and 20% excess glycine. The powder obtained from all the compositions presented morphological characteristics with irregular plate-shaped agglomerates. The increase in excess glycine caused the particle size in the three compositions to decrease to 59, 54 and

  12. Study of multi-nucleon transfer reactions in 58, 64Ni + 207Pb collisions at the velocity filter SHIP

    NASA Astrophysics Data System (ADS)

    Comas, V. F.; Heinz, S.; Hofmann, S.; Ackermann, D.; Heredia, J. A.; Heßberger, F. P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R.

    2013-09-01

    We investigated multi-nucleon transfer reactions in collisions of 58Ni + 207Pb and 64Ni + 207Pb at Coulomb barrier energies. The new aspect is that we used a velocity filter (SHIP at GSI) for the separation of the heavy target-like transfer products from background events. The isotopic identification was performed via the decay properties of the reaction products. The goal of the experiment was to study the characteristics of multi-nucleon transfer reactions in the region of heavy nuclei and the applicability of existing separation and detection techniques, which are usually used for identification of heavy fusion-evaporation residues, to heavy transfer products. This was motivated by recent theoretical results from macroscopic-microscopic models which suggest deep inelastic transfer reactions in heavy systems as a means to produce new neutron-rich isotopes in the region of N = 126 and in the region of superheavy nuclei. In this paper we present the isotopic yields, the excitation functions and the excitation energies of the heavy transfer products with Z > 82 as well as the influence of shell effects on the reaction products. The influence of the different neutron numbers of the projectiles is also discussed.

  13. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4

    NASA Astrophysics Data System (ADS)

    Bo, Xiangjie; Zhang, Yufan; Li, Mian; Nsabimana, Anaclet; Guo, Liping

    2015-08-01

    Three ordered mesoporous carbons (OMCs) with different structures are used as catalyst supports for growth of NiCo2O4 spinel. The high surface area of OMCs provides more active sites to adsorb metal precursors. The porous structure confines the growth of NiCo2O4 and supplies more efficient transport passage for reactant molecules to access the active sites. Due to the structural characteristics of OMCs and catalytic properties of NiCo2O4, NiCo2O4/OMCs composites are highly active, cheap, and selective noble metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. The electrochemical activity of NiCo2O4 supported on three OMCs with different structures, surface areas, pore sizes, pore volumes, and defective sites is studied. NiCo2O4/OMCs composites may be further used as efficient and inexpensive noble metal-free ORR catalysts in alkaline solution.

  14. Vertically Aligned FeOOH/NiFe Layered Double Hydroxides Electrode for Highly Efficient Oxygen Evolution Reaction.

    PubMed

    Chi, Jun; Yu, Hongmei; Qin, Bowen; Fu, Li; Jia, Jia; Yi, Baolian; Shao, Zhigang

    2017-01-11

    Employing a low-cost and highly efficient electrocatalyst to replace Ir-based catalysts for oxygen evolution reaction (OER) has drawn increasing interest in renewable energy storage. In this work, a vertically aligned FeOOH/NiFe layered double hydroxides (LDHs) nanosheets supported on Ni foam (VA FeOOH/NiFe LDHs-NF) is prepared as a highly effective OER electrode in alkaline electrolyte. The VA FeOOH/NiFe LDHs-NF represents nanosheet arrays on nickel foam with some interspace among them. The vertically aligned and interlayer-structured architecture is binder-free and contributes to facile strain relaxation, relieving the exfoliation of the catalysts layer caused by the oxygen evolution process. The as-prepared electrode shows current densities of 10 and 500 mA cm(-2) at overpotentials of 208 and 288 mV, and good stability in a half-cell electrolyzer. Besides, the alkaline polymer electrolyte water electrolyzer (APEWE) with this electrode showed 1.71 V at 200 mA cm(-2), and 2.041 V at 500 mA cm(-2), exhibiting the corresponding energy efficiency of 86.0% and 72.0% (based on the lower heating value of hydrogen), which is better than the typical commercial alkaline water electrolyzer.

  15. Superaerophobic Ultrathin Ni-Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction.

    PubMed

    Zhang, Qian; Li, Pengsong; Zhou, Daojin; Chang, Zheng; Kuang, Yun; Sun, Xiaoming

    2017-09-11

    Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm(-2) , along with a Tafel slope of 45 mV decade(-1) , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Strong enhancement of dynamical emission of heavy fragments in the neutron-rich {sup 124}Sn+{sup 64}Ni reaction at 35A MeV

    SciTech Connect

    Russotto, P.; Amorini, F.; Cavallaro, S.; Di Toro, M.; Giustolisi, F.; Porto, F.; Rizzo, F.; De Filippo, E.; Pagano, A.; Cardella, G.; Lanzano, G.; Papa, M.; Pirrone, S.; Piasecki, E.; Auditore, L.; Trifiro, A.; Trimarchi, M.

    2010-06-15

    A quantitative comparison is made between the absolute cross sections associated with statistical and dynamical emission of heavy fragments in the {sup 124}Sn+{sup 64}Ni and {sup 112}Sn+{sup 58}Ni collisions experimentally investigated at 35A MeV beam energy using the multidetector CHIMERA. The result shows that the dynamical process is about twice as probable in the neutron-rich {sup 124}Sn+{sup 64}Ni system as in the {sup 112}Sn+{sup 58}Ni neutron-poor one. This unexpected and significant difference indicates that the reaction mechanism is strongly dependent on the entrance-channel isospin (N/Z) content.

  17. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

    NASA Astrophysics Data System (ADS)

    Zhan, Tianrong; Zhang, Yumei; Liu, Xiaolin; Lu, SiSi; Hou, Wanguo

    2016-11-01

    Highly active and low-cost bifunctional electrocatalysts for oxygen evolution and reduction reactions (OER and ORR) hold a heart position for the renewable energy technologies such as metal-air batteries and fuel cells. Here, we reported the synthesis of NiFe layered double hydroxide/reduced graphene oxide (NiFe-LDH/rGO) nanohybrid via the facile solvothermal method followed by chemical reduction. The template role of surfactant and the hybridization of rGO supplied the NiFe-LDH/rGO catalyst with a porous nanostructure and an enhanced conductivity, favoring both mass transport and charge communication of electrocatalytic reactions. The NiFe-LDH/rGO composite not only displayed highly efficient OER activity in alkaline solution with a low onset overpotential of 240 mV, but also only needed an overpotential of 250 mV to reach the 10 mA cm-2 current density. The NiFe-LDH/rGO nanohybrid also offered excellent ORR catalytic activity with onset potential at 0.796 V in alkaline media. The rotating-disk and rotating-ring-disk electrodes both revealed that the ORR on NiFe-LDH/rGO mainly involved a direct four-electron reaction pathways accompanying part of the two-electron process. The excellent bifunctional activity of the NiFe-LDH/rGO nanohybrid could be attributed to the synergistic effects of rGO and NiFe-LDH components due to the strongly coupled interactions.

  18. Oxygen Evolution Reaction Dynamics, Faradaic Charge Efficiency, and the Active Metal Redox States of Ni-Fe Oxide Water Splitting Electrocatalysts.

    PubMed

    Görlin, Mikaela; Chernev, Petko; Ferreira de Araújo, Jorge; Reier, Tobias; Dresp, Sören; Paul, Benjamin; Krähnert, Ralph; Dau, Holger; Strasser, Peter

    2016-05-04

    Mixed Ni-Fe oxides are attractive anode catalysts for efficient water splitting in solar fuels reactors. Because of conflicting past reports, the catalytically active metal redox state of the catalyst has remained under debate. Here, we report an in operando quantitative deconvolution of the charge injected into the nanostructured Ni-Fe oxyhydroxide OER catalysts or into reaction product molecules. To achieve this, we explore the oxygen evolution reaction dynamics and the individual faradaic charge efficiencies using operando differential electrochemical mass spectrometry (DEMS). We further use X-ray absorption spectroscopy (XAS) under OER conditions at the Ni and Fe K-edges of the electrocatalysts to evaluate oxidation states and local atomic structure motifs. DEMS and XAS data consistently reveal that up to 75% of the Ni centers increase their oxidation state from +2 to +3, while up to 25% arrive in the +4 state for the NiOOH catalyst under OER catalysis. The Fe centers consistently remain in the +3 state, regardless of potential and composition. For mixed Ni100-xFex catalysts, where x exceeds 9 atomic %, the faradaic efficiency of O2 sharply increases from ∼30% to 90%, suggesting that Ni atoms largely remain in the oxidation state +2 under catalytic conditions. To reconcile the apparent low level of oxidized Ni in mixed Ni-Fe catalysts, we hypothesize that a kinetic competition between the (i) metal oxidation process and the (ii) metal reduction step during O2 release may account for an insignificant accumulation of detectable high-valent metal states if the reaction rate of process (ii) outweighs that of (i). We conclude that a discussion of the superior catalytic OER activity of Ni-FeOOH electrocatalysts in terms of surface catalysis and redox-inactive metal sites likely represents an oversimplification that fails to capture essential aspects of the synergisms at highly active Ni-Fe sites.

  19. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    NASA Astrophysics Data System (ADS)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  20. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  1. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  2. 1300 K compressive properties of a reaction milled NiAl-AlN composites

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Arzt, Eduard; Luton, Michael J.

    1990-01-01

    When B2 crystal-structure nickel aluminide is subjected to high-intensity mechanical ball milling in a liquid nitrogen bath, or 'cryomilling', an NiAl composite is obtained which contains about 10 vol pct AlN particles. This composition arises from the incorporation of N during cryomilling; during subsequent thermomechanical processing, the N reacts with Al. While compressive testing of extruded or isostatically pressed specimens at 1300 K indicated that strength at relatively fast strain rates is slightly dependent on consolidation method, slower strain rates indicate no clear dependency on densification technique: four different consolidation methods were found to yield similar creep strengths. The creep properties of NiAl-AlN are similar to those of the single-crystal Ni-base superalloy NASAIR 100.

  3. Reaction diffusion in the NiCrAl and CoCrAl systems

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    The paper assesses the effect of overlay coating and substrate composition on the kinetics of coating depletion by interdiffusion. This is accomplished by examining the constitution, kinetics and activation energies for a series of diffusion couples primarily of the NiCrAl/Ni-10Cr or CoCrAl/Ni-10Cr type annealed at temperatures in the range 1000-1205 C for times up to 500 hr. A general procedure is developed for analyzing diffusion in multicomponent multiphase systems. It is shown that by introducing the concept of beta-source strength, which can be determined from appropriate phase diagrams, the Wagner solution for consumption of a second phase in a semiinfinite couple is successfully applied to the analysis of MCrAl couples. Thus, correlation of beta-recession rate constants with couple composition, total and diffusional activation energies, and interdiffusion coefficients are determined.

  4. Studies of N ~ 40 Ni isotopes via neutron-knockout (nKO) and deep-inelastic (DI) reactions

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Recchia, F.; Gade, A.; Janssens, R. V. F.; Walters, W. B.

    2013-10-01

    V. BADER, T. BAUGHER, D. BAZIN, J.S. BERRYMAN, B.A. BROWN, C. LANGER, N. LARSON, S.N. LIDDICK, E. LUNDERBERG, S. NOJI, C. PROKOP, S.R. STROBERG, S. SUCHYTA, D. WEISSHAAR, S. WILLIAMS, NSCL/MSU, M. ALBERS, M. ALCORTA, P.F. BERTONE, M.P. CARPENTER, J. CHEN, C.R. HOFFMAN, F.G. KONDEV, T. LAURITSEN, A.M. ROGERS, D. SEWERYNIAK, S. ZHU, ANL, C.M. CAMPBELL, LBNL, H.M. DAVID, D.T. DOHERTY, U. of Edinburgh/ANL, A. KORICHI, CSNSM-IN2P3/ANL, C.J. LISTER, U. of Mass.-Lowell, K. WIMMER, Central Mich. U. -- Excited states in 68Ni were populated in 2nKO reactions at NSCL. Prompt γ rays were detected with the GRETINA array located in front of the S800 separator. A hodoscope at the S800 focal plane captured the 68Ni ions, where isomeric decays could be correlated with prompt γ rays. Decay of the first excited state, a 0+ isomer, was observed, confirming that its energy substantially differs from the literature value. Comparing the decay patterns of excited states with shell-model calculations provides insight into their underlying structure. Data from 70Zn + 208Pb DI reactions studied with Gammasphere provide results consistent with the 2nKO. Single-particle strengths are also under investigation in the odd- A Ni isotopes via 1nKO reactions. Supported in part by the DoE (DE-FG02-94ER40834, DE-AC02-06CH11357), NSF (PHY-1102511), and NNSA (DE-NA0000979).

  5. Reactions sup 58,64 Ni( p ,. pi. sup + ) at 201 MeV

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S.; Bonasera, A. ); Riggi, F.; Adorno, A. ); Bimbot, L. )

    1992-08-01

    The production of positive and negative pions induced by 201 MeV protons on {sup 58}Ni and {sup 64}Ni isotopes has been studied. The double differential cross sections have been measured at the laboratory angles 22{degree}, 35{degree}, 55{degree}, 72{degree}, 90{degree}, 105{degree}, 120{degree}, 138{degree}, 155{degree} and from 20 MeV kinetic energy up to the kinematical limit. Features of the double differential cross sections relative to the two targets are discussed and compared to results obtained at higher incident energies.

  6. Spectroscopy of neutron-rich Fe isotopes populated in the {sup 64}Ni+{sup 238}U reaction

    SciTech Connect

    Lunardi, S.; Lenzi, S. M.; Farnea, E.; Bazzacco, D.; Beghini, S.; Mason, P.; Mengoni, D.; Montagnoli, G.; Recchia, F.; Scarlassara, F.; Ur, C. A.; Vedova, F. Della; Gadea, A.; Corradi, L.; Angelis, G. de; Fioretto, E.; Napoli, D. R.; Orlandi, R.; Stefanini, A. M.; Valiente-Dobon, J. J.

    2007-09-15

    The neutron-rich Fe isotopes from A=61 to 66 were studied through multinucleon transfer reactions by bombarding a {sup 238}U target with a 400 MeV {sup 64}Ni beam. Unambiguous identification of prompt {gamma} rays belonging to each nucleus was achieved using coincidence relationships with the ions detected in a high-acceptance magnetic spectrometer. The new data extend our knowledge of the level structure of Fe isotopes, which is discussed in terms of the systematics of the region and compared with large-scale shell-model calculations.

  7. Astrophysical reaction rates for {sup 58,60}Ni(n,{gamma}) from new neutron capture cross section measurements

    SciTech Connect

    Guber, K. H.; Derrien, H.; Leal, L. C.; Arbanas, G.; Wiarda, D.; Koehler, P. E.; Harvey, J. A.

    2010-11-15

    New neutron capture cross sections of {sup 58,60}Ni were measured in the energy range from 100 eV to 600 keV using the Oak Ridge Electron Linear Accelerator. The combination of these new neutron capture data with previous transmission data allowed a resonance analysis up to 900 keV using R-matrix theory. The theoretically determined direct capture cross sections were included in the analyses. From these resonance parameters and the direct capture contribution, new (n,{gamma}) astrophysical reaction rates were determined over the entire energy range needed by the latest stellar models describing the so-called weak s process.

  8. Isothermal Reaction of NiO Powder with Undiluted CH4 at 1000 K to 1300 K (727 °C to 1027 °C)

    NASA Astrophysics Data System (ADS)

    Altay, Melek Cumbul; Eroglu, Serafettin

    2017-08-01

    In this study, isothermal reaction behavior of loose NiO powder in a flowing undiluted CH4 atmosphere at the temperature range 1000 K to 1300 K (727 °C to 1027 °C) is investigated. Thermodynamic analyses at this temperature range revealed that single phase Ni forms at the input n_{CH}_{4}^{o} + n_{NiO}^{o}) (n_{CH}_{4}^{{o} + n_{NiO}^{o}) mole fractions ( X_{CH}_{4} ) between 0.2 and 0.5. It was also predicted that free C co-exists with Ni at X_{{{{CH}}_{ 4} }} values higher than 0.5. The experiments were carried out as a function of temperature, time, and CH4 flow rate. Mass measurement, XRD and SEM-EDX were used to characterize the products at various stages of the reaction. At 1200 K and 1300 K (927 °C and 1027 °C), the reaction of NiO with undiluted CH4 essentially consisted of two successive distinct stages: NiO reduction and pyrolytic C deposition on pre-reduced Ni particles. At 1200 K (927 °C), 1100 K (827 °C), and 1000 K (727 °C), complete oxide reduction was observed within 7.5, 17.5, and 45 minutes, respectively. It was suggested that NiO was essentially reduced to Ni by a CH4 decomposition product, H2. Possible reactions leading to NiO reduction were suggested. An attempt was made to describe the NiO reduction kinetics using nucleation-growth and geometrical contraction models. It was observed that the extent of NiO reduction and free C deposition increased with the square root of CH4 flow rate as predicted by a mass transport theory. A mixed controlling mechanism, partly chemical kinetics and partly external gaseous mass transfer, was responsible for the overall reaction rate. The present study demonstrated that the extent of the reduction can be determined quantitatively using the XRD patterns and also using a formula theoretically derived from the basic XRD data.

  9. Density functional theory studies of negishi alkyl-alkyl cross-coupling reactions catalyzed by a methylterpyridyl-Ni(I) complex.

    PubMed

    Lin, Xufeng; Phillips, David Lee

    2008-05-16

    Density functional theory calculations were done to examine the potential energy surfaces of Ni(I)-catalyzed Negishi alkyl-alkyl cross-coupling reactions by using propyl iodide and isopropyl iodide as model alkyl electrophiles and CH 3ZnI as a model alkyl nucleophile. A four-step catalytic cycle involving iodine transfer, radical addition, reductive elimination, and transmetalation steps were characterized structurally and energetically. The reaction mechanism for this catalytic cycle appears feasible based on the calculated free energy profiles for the reactions. The iodine transfer step is the rate-determining step for the Ni(tpy)-CH 3 (tpy = 2,2'6',2''-terpyridine) reactions with alkyl iodides. For secondary alkyl electrophiles, the oxidative addition intermediate, Ni(III), prefers to undergo decomposition over reductive elimination, whereas for the primary alkyl electrophiles, Ni(III) prefers to undergo reductive elimination over decomposition based on comparison of the relative reaction rates for these two types of steps. In addition, thermodynamic data were employed to help explain why the yield of the coupled product is very low from the Ni(II)-alkyl halide reactions with organozinc reagents.

  10. Reactions of Ni-B on printed Ag pattern by using nearly neutral electroless bath.

    PubMed

    Rha, Sa-Kyun; Kim, Hyung Chul; Lee, Youn-Seoung

    2014-11-01

    In this study, we investigated the characteristics of a nearly neutral Ni source solution including dimethylamine borane (DMAB) used to develop the metal PCB (printed circuit board) of high power LED (light-emitting diode) package. In accordance with the bath temperature ranging from 50 degrees C to 75 degrees C, an electroless Ni-B plating on a screen-printed Ag pattern with an anodized Al substrate was carried out. The depositon rate of the electroless plated Ni-B film at bath temperature ranging from 50 degrees C to 75 degrees C was estimated by measurements of the thickness and the mass. The deposition rates by change of thickness and mass of the electroless plated Ni-B film at 50 degrees C were - 58 nm/min and 0.113 mg/min respectively. The activation energy obtained from slope of Arrhenius plot using these deposition rates was - 59 kJ/mol. Finally, selectively the film growth was achieved at all plating temperatures, without a damage of anodized Al substrate.

  11. Reaction of Ni film with In0.53Ga0.47As: Phase formation and texture

    NASA Astrophysics Data System (ADS)

    Zhiou, Seifeddine; Nguyen-Thanh, Tra; Rodriguez, Philippe; Nemouchi, Fabrice; Rapenne, Laetitia; Blanc, Nils; Boudet, Nathalie; Gergaud, Patrice

    2016-10-01

    The solid-state reaction between Ni and In0.53Ga0.47As on an InP substrate was studied by X-ray diffraction (XRD) and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy techniques. Due to the monocrystalline structural aspect of the so-formed intermetallic, it was necessary to measure by XRD a full 3D reciprocal space mapping in order to have a complete overlook over the crystalline structure and texture of the intermetallic. The formation of the intermetallic was studied upon several different Rapid Thermal Annealings on the as-deposited samples. Pole figures analysis shows that the intermetallic features a hexagonal structure (P63/mmc) with an NiAs-type (B8) structure. Although only one hexagonal structure is highlighted, the intermetallic exhibits two different domains characterized by different azimuthal orientations, axiotaxial relationship, and lattice parameters. The intermetallic phases seem to present a rather wide range of stoichiometry according to annealing temperature. The texture, structure, and stoichiometry of the intermetallic are discussed along with the evolution of lattice parameters of the Ni-InGaAs phase.

  12. HETERODIMERIZATION OF PROPYLENE AND VINYLARENES: FUNCTIONAL GROUP COMPATIBILITY IN A HIGHLY EFFICIENT NI-CATALYZED CARBON-CARBON BOND-FORMING REACTION. (R826120)

    EPA Science Inventory

    Abstract

    Unlike heterodimerization reactions of ethylene and vinylarenes, no such synthetically useful reactions using propylene are known. We find that propylene reacts with various vinylarenes in the presence of catalytic amounts of [(allyl)NiBr]2, triphen...

  13. Chemiluminescence of the NI(b 1Σ + → X 3Σ -) transition in active nitrogen reactions with aliphatic iodine compounds

    NASA Astrophysics Data System (ADS)

    Tang, Xiaoshuan; Wang, Hongmei; Chu, Yannan; Zhang, Weijun; Zhou, Shikang

    2006-05-01

    The emission spectra from the reactions of C 2H 5I, C 4H 9I and CH 2I 2 with active nitrogen are observed in a flowing afterglow reactor. The experimental results show that these reactions exhibit identical chemiluminescence characteristics. Thirty-five spectral peaks in the 620-840 nm wavelength range are assigned to vibrational transitions of the NI(b 1Σ +, v' = 0 ˜ 6 → X 3Σ -) band system. This is the first experimental evidence for the generation of excited state NI(b 1Σ +) via chemical reactions in the gas phase. The possible formation mechanism of the electronically excited NI(b 1Σ +) is proposed to be the reaction of N( 2P) in active nitrogen with C 2H 5I, C 4H 9I, and CH 2I 2.

  14. Formation of Secondary Reaction Zones in Diffusion Aluminide-Coated Ni-Base Single-Crystal Superalloys Containing Ruthenium

    NASA Astrophysics Data System (ADS)

    Das, Dipak K.; Murphy, Kenneth S.; Ma, Shuwei; Pollock, Tresa M.

    2008-07-01

    The formation of secondary reaction zones (SRZs) beneath aluminide coatings in several Ru-bearing single-crystal Ni-base superalloys has been investigated. The presence of significant amounts of Ru in the superalloys did not prevent the formation of the secondary reaction zone. However, the Ru content of the alloys affected the type of refractory element-rich phase formed during the transformation. As the Ru content increased, the phase involved in the transformation shifted from the orthorhombic P to the β-RuAl phase. A differential tendency to SRZ formation was observed between the dendritic and interdendritic regions of the alloys. Significant growth of the SRZ was also observed during the high-temperature oxidation exposure of the coated alloys. The effects of the alloying elements on SRZ formation are discussed.

  15. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    SciTech Connect

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  16. Direct and compound-nucleus reaction mechanisms in the 7Be+58Ni system at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Mazzocco, M.; Torresi, D.; Pierroutsakou, D.; Keeley, N.; Acosta, L.; Boiano, A.; Boiano, C.; Glodariu, T.; Guglielmetti, A.; La Commara, M.; Lay, J. A.; Martel, I.; Mazzocchi, C.; Molini, P.; Parascandolo, C.; Pakou, A.; Parkar, V. V.; Romoli, M.; Rusek, K.; Sánchez-Benítez, A. M.; Sandoli, M.; Sgouros, O.; Signorini, C.; Silvestri, R.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Stroe, L.; Zerva, K.

    2015-08-01

    The energy and angular distributions of 3He and 4He ions produced in the 7Be +58Ni reaction at a bombarding energy of 22 MeV have been measured for the first time. The yield of the heavier helium isotope was four to five times more abundant than that of its lighter counterpart, ruling out the possibility that in this energy range the 7Be reaction dynamics is dominated by the exclusive breakup process 7Be→3He +4He (Sα=1.586 MeV). Extensive kinematic and theoretical calculations suggest that the 3He ions mostly originate from the 4He-stripping process and the 4He production is mainly triggered by the fusion-evaporation channel. The role played by the breakup, 3He-stripping, 1 n -stripping, and 1 n -pickup processes is also discussed.

  17. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    SciTech Connect

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  18. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    PubMed Central

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-01-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale. PMID:25410966

  19. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity.

    PubMed

    Boesenberg, Ulrike; Marcus, Matthew A; Shukla, Alpesh K; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  20. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    NASA Astrophysics Data System (ADS)

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; Yi, Tanghong; McDermott, Eamon; Teh, Pei Fen; Srinivasan, Madhavi; Moewes, Alexander; Cabana, Jordi

    2014-11-01

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, is likely to apply to other transition metal oxide systems. The presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.

  1. Functional MoS2 by the Co/Ni doping as the catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, B. B.; Zhang, P.; Han, L. P.; Wen, Z.

    2015-11-01

    Since the discovery of the oxygen reduction reaction (ORR) activity of the metal phthalocyanine, the great enthusiasm is ignited for searching the catalysts with low price replacing Pt-based catalysts. Here, the catalytic activities for the ORR on the Co or Ni doped MoS2 are studied by using density-functional theory (DFT). It is found that Co/MoS2 resembles FeN4 active site while Ni/MoS2 is similar with CoN4 active site. In details, for Co/MoS2, under the acid medium, the rate-determining step (RDS) is located at the second H2O formation with a barrier of 1.49 eV. While under the alkaline medium, RDS is the final OH- formation with the barrier of 0.94 eV. For Ni/MoS2, under the acid medium, the RDS is the same as that of Co/MoS2 with a barrier of 0.87 eV. However, RDS is the O formation with the barrier of 0.92 eV under the alkaline medium. Furthermore, due to the intact HOOH adsorption, it is expected that the 2e- ORR is present on Ni/MoS2, which means inferior activity compared with Co/MoS2. Our calculation demonstrates the ability to functionalize inert materials for the ORR and provides new materials to design effective Pt-free catalysts for fuel-cell technology.

  2. Kinetic study of hydrogen evolution reaction on Ni{sub 30} Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70} and Co{sub 10}Ni{sub 20}Mo{sub 70} alloy electrodes

    SciTech Connect

    Dominguez-Crespo, M.A.; Plata-Torres, M.; Torres-Huerta, A.M.; Arce-Estrada, E.M. . E-mail: earce@ipn.mx; Hallen-Lopez, J.M.

    2005-07-15

    The hydrogen evolution reaction on nanocrystalline Ni{sub 30}Mo{sub 70}, Co{sub 30}Mo{sub 70}, Co{sub 30}Ni{sub 70}, and Co{sub 10}Ni{sub 20}Mo{sub 70}, metallic powders prepared by mechanical alloying was investigated with linear polarization and ac impedance methods, in 30 wt.% KOH aqueous solution at room temperature. The formation process and structural properties of these nanocrystalline materials were characterized by X-ray diffraction and transmission electron microscopy. Alloyed powders showed the presence of two phases: an fcc solid solution and intermetallic compounds of Ni, Co and Mo. Based on polarization and ac impedance measurements, an improved electrocatalytic activity for hydrogen evolution reaction was observed in mechanically alloyed Co{sub 30}Ni{sub 70} powders, which is slightly higher than milled metallic Ni powders.

  3. Fission and quasifission of composite systems with Z =108 -120 : Transition from heavy-ion reactions involving S and Ca to Ti and Ni ions

    NASA Astrophysics Data System (ADS)

    Kozulin, E. M.; Knyazheva, G. N.; Novikov, K. V.; Itkis, I. M.; Itkis, M. G.; Dmitriev, S. N.; Oganessian, Yu. Ts.; Bogachev, A. A.; Kozulina, N. I.; Harca, I.; Trzaska, W. H.; Ghosh, T. K.

    2016-11-01

    Background: Suppression of compound nucleus formation in the reactions with heavy ions by a quasifission process in dependence on the reaction entrance channel. Purpose: Investigation of fission and quasifission processes in the reactions 36S,48Ca,48Ti , and 64Ni+238U at energies around the Coulomb barrier. Methods: Mass-energy distributions of fissionlike fragments formed in the reaction 48Ti+238U at energies of 247, 258, and 271 MeV have been measured using the double-arm time-of-flight spectrometer CORSET at the U400 cyclotron of the Flerov Laboratory of Nuclear Reactions and compared with mass-energy distributions for the reactions 36S,48Ca,64Ni+238U . Results: The most probable fragment masses as well as total kinetic energies and their dispersions in dependence on the interaction energies have been investigated for asymmetric and symmetric fragments for the studied reactions. The fusion probabilities have been deduced from the analysis of mass-energy distributions. Conclusion: The estimated fusion probability for the reactions S, Ca, Ti, and Ni ions with actinide nuclei shows that it depends exponentially on the mean fissility parameter of the system. For the reactions with actinide nuclei leading to the formation of superheavy elements the fusion probabilities are of several orders of magnitude higher than in the case of cold fusion reactions.

  4. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Martınez-Arias, A.; Hanson, J.C.; Fernandez-Garcıa, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  5. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    SciTech Connect

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  6. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    PubMed Central

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-01-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER. PMID:26996816

  7. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction.

    PubMed

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-03-21

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co(4+) and Ni(3+) cations as the active centres for the OER.

  8. Au-NiCo2O4 supported on three-dimensional hierarchical porous graphene-like material for highly effective oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xia, Wei-Yan; Li, Nan; Li, Qing-Yu; Ye, Kai-Hang; Xu, Chang-Wei

    2016-03-01

    A three-dimensional hierarchical porous graphene-like (3D HPG) material was synthesized by a one-step ion-exchange/activation combination method using a cheap metal ion exchanged resin as carbon precursor. The 3D HPG material as support for Au-NiCo2O4 gives good activity and stability for oxygen evolution reaction (OER). The 3D HPG material is induced into NiCo2O4 as conductive support to increase the specific area and improve the poor conductivity of NiCo2O4. The activity of and stability of NiCo2O4 significantly are enhanced by a small amount of Au for OER. Au is a highly electronegative metal and acts as an electron adsorbate, which is believed to facilitate to generate and stabilize Co4+ and Ni3+ cations as the active centres for the OER.

  9. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    SciTech Connect

    Lederer, C.; Giubrone, G.; Massimi, C.; Žugec, P.; Barbagallo, M.; Colonna, N.; Domingo-Pardo, C.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Tain, J.L.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bečvář, F.; and others

    2014-06-15

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n{sub T}OF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  10. α and 2p2n emission in fast neutron-induced reactions on Ni60

    DOE PAGES

    Fotiades, N.; Devlin, M.; Haight, R. C.; ...

    2015-06-19

    The cross sections for populating the residual nucleus in the reaction AZX(n,x)A-4Z-2Y exhibit peaks as a function of incident neutron energy corresponding to the (n,n'α) reaction and, at higher energy, to the (n,2p3n) reaction. In addition, the relative magnitudes of these peaks vary with the Z of the target nucleus.

  11. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  12. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  13. Characterization of nanostructured photosensitive (NiS){sub x}(CdS){sub (1-x)} composite thin films grown by successive ionic layer adsorption and reaction (SILAR) route

    SciTech Connect

    Ubale, A.U.; Bargal, A.N.

    2011-07-15

    Highlights: {yields} Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1 to 0) were deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. {yields} The structural, surface morphological and electrical characterizations of the as deposited and annealed films were studied. {yields} The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature. -- Abstract: Recently ternary semiconductor nanostructured composite materials have attracted the interest of researchers because of their photovoltaic applications. Thin films of (NiS){sub x}(CdS){sub (1-x)} with variable composition (x = 1-0) had been deposited onto glass substrates by the successive ionic layer adsorption and reaction (SILAR) method. As grown and annealed films were characterised by X-ray diffraction, scanning electron microscopy and EDAX to investigate structural and morphological properties. The (NiS){sub x}(CdS){sub (1-x)} films were polycrystalline in nature having mixed phase of rhombohedral and hexagonal crystal structure due to NiS and CdS respectively. The optical and electrical properties of (NiS){sub x}(CdS){sub (1-x)} thin films were studied to determine compsition dependent bandgap, activation energy and photconductivity. The bandgap and activation energy of annealed (NiS){sub x}(CdS){sub (1-x)} film decrease with improvement in photosensitive nature.

  14. TEM study on the interfacial reaction between electroless plated Ni-P/Au UBM and Sn-3.5Ag solder

    NASA Astrophysics Data System (ADS)

    Park, Min-Ho; Kwon, Eun-Jung; Kang, Han-Byul; Jung, Seung-Boo; Yang, Cheol-Woong

    2007-06-01

    This study examined the interfacial reaction between electroless plated Ni-P/Au under bump metallization (UBM) and a eutectic Sn-3.5Ag solder using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The chemical and crystallographic analysis using TEM provided important information on the microstructural evolution at the interface. In this study, UBM was prepared by the electroless plating of Au (0.15 μm)/Ni-15 at %P (5 μm) on a bare Cu substrate and was then reacted with a Sn-3.5Ag eutectic solder at 260°C for various amounts of time to examine the different sequential stages of the interfacial reaction TEM analyses confirmed that beside the Ni3Sn4 layer, there were three more IMC layers at the interface: the Ni-Sn-P ternary layer, Ni3P layer, and the layer of phase mixture of the Ni3P and Ni2SnP ternary phases.

  15. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Mutz, B.; Carvalho, H. W. P.; Kleist, W.; Grunwaldt, J.-D.

    2016-05-01

    A 10 wt.-% Ni/Al2O3 catalyst with Ni particles of about 4 nm was prepared and applied in the methanation of CO2 under dynamic reaction conditions. Fast phase transformations between metallic Ni, NiO and NiCO3 were observed under changing reaction atmospheres using operando X-ray absorption spectroscopy (XAS). Removing H2 from the feed gas and, thus, simulating a H2 dropout during the methanation reaction led to oxidation of the active sites. The initial reduced state of the Ni particles could not be recovered under methanation atmosphere (H2/CO2 = 4); this was only possible with an effective reactivation step applying H2 at increased temperatures. Furthermore, the cycling of the gas atmospheres resulted in a steady deactivation of the catalyst. Operando XAS is a powerful tool to monitor these changes and the behavior of the catalyst under working conditions to improve the understanding of the catalytic processes and deactivation phenomena.

  16. The Low-Energy Unimolecular Reaction Rate Constants for the Gas Phase, Ni+-Mediated Dissociation of the C-C σ Bond in Acetone

    NASA Astrophysics Data System (ADS)

    Castleberry, Vanessa A.; Dee, S. Jason; Villarroel, Otsmar J.; Laboren, Ivanna E.; Frey, Sarah E.; Bellert, Darrin J.

    2009-09-01

    The time dependence of the gaseous unimolecular decomposition of the jet-cooled adduct ion, Ni+-OC(CH3)2, was monitored through selective detection of the Ni+CO fragment ion. Various resolved amounts of energy in the range 15600-18800 cm-1 were supplied to initiate the dissociation reaction through absorption of laser photons by the title molecular complex. First-order rate constants, k(E), ranged from 113000 to 55000 s-1 and decreased with decreasing amounts of internal excitation. The energy used to initiate the reaction is well below that required to fragment C-C σ bonds and indicates the necessity of the Ni+ cation to induce bond activation and fragmentation. These measurements are carried out in a unique apparatus and represent the first direct kinetic study of such catalytic type reactions.

  17. Synthesis and characterization of NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst for hydrogenation reaction

    SciTech Connect

    Karaoğlu, E.; Özel, U.; Caner, C.; Baykal, A.; Summak, M.M.; Sözeri, H.

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Novel superparamagnetic NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst was fabricated through co-precipitation. ► It could be reused several times without significant loss in catalytic activity for hydrogenation reaction. ► No further modification of the NiFe{sub 2}O{sub 4}–Pd magnetically recyclable catalyst is necessary for utilization as catalyst. -- Abstract: Herein we report the fabrication and characterization magnetically recyclable catalysts of NiFe{sub 2}O{sub 4}–Pd nanocomposite as highly effective catalysts for reduction reactions in liquid phase. The reduction Pd{sup 2+} was accomplished with polyethylene glycol 400 (PEG-400) instead of sodium borohydride (NaBH{sub 4}) and NiFe{sub 2}O{sub 4} nanoparticles was prepared by sonochemically using FeCI{sub 3}·6H{sub 2}O and NiCl{sub 2}. The chemical characterization of the product was done with X-ray diffractometry, Infrared spectroscopy, transmission electron microscopy, UV–Vis spectroscopy, thermal gravimetry and inductively coupled plasma. Thus formed NiFe{sub 2}O{sub 4}–Pd MRCs showed a very high activity in reduction reactions of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase. It was found out that the catalytic activity of NiFe{sub 2}O{sub 4}–Pd MRCs on the reduction of 4-nitro aniline and 1,3-dinitrobenzene in liquid phase are between 99–93% and 98–93%, respectively. Magnetic character of this system allowed recovery and multiple use without significant loss of its catalytic activity. It is found that NiFe{sub 2}O{sub 4}–Pd MRCs showed very efficient catalytic activity and multiple usability.

  18. The influence of transfer reactions on the sub-barrier fusion enhancement in the systems {sup 58.64}Ni +, {sup 92,100}Mo

    SciTech Connect

    Rehm, K.E.; Jiang, C.L.; Esbensen, H.

    1995-08-01

    High resolution experiments performed during the past few years demonstrated that the various reaction modes occurring in heavy ion collisions can strongly influence each other. This interrelation of the different reaction modes brings a nuclear structure dependence to the fusion and deep-inelastic channels that were previously described in the framework of pure statistical models. In order to fully understand the interrelation between these reaction channels, a complete set of measurements including elastic and inelastic scattering, few-nucleon transfer and fusion is required. In continuation of our earlier measurements of the fusion cross sections in the system {sup 58,64}Ni + {sup 92,100}Mo we finished the studies of the quasielastic process in these systems. The experiments were done in inverse reaction kinematics using the split-pole spectrograph with its hybrid focal-plane detector for particle identification. The experiments with {sup 100}Mo beams were performed previously. First test runs with {sup 92}Mo showed the possible interference with {sup 98}Mo ions which could be eliminated by using the 13{sup +} charge state from the ECR source. The data from these experiments were completely analyzed. The smallest transfer cross sections are observed for the systems {sup 64}Ni + {sup 100}Mo and {sup 58}Ni + {sup 92}Mo, i.e., the most neutron-rich and neutron-deficient systems, respectively. For the other systems, {sup 64}Ni + {sup 92}Mo and {sup 58}Ni + {sup 100}Mo, the transfer cross sections at energies close to the barrier are about of equal magnitude. This observation does not correlate with the deviation of the experimental fusion cross sections from the coupled-channels predictions. While for {sup 58}Ni + {sup 100}Mo discrepancies between the experimental and theoretical fusion cross sections are observed, the system {sup 64}Ni + {sup 92}Mo which shows about the same transfer yields, is quite well described by the coupled-channels calculations.

  19. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.

  20. Recycling of CO2: Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy.

    PubMed

    Heine, Christian; Lechner, Barbara A J; Bluhm, Hendrik; Salmeron, Miquel

    2016-10-12

    Using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS), we studied the adsorption and reactions of CO2 and CO2 + H2 on the Ni(111) surface to identify the surface chemical state and the nature of the adsorbed species during the methanation reaction. In 200 mTorr CO2, we found that NiO is formed from CO2 dissociation into CO and atomic oxygen. Additionally, carbonate (CO3(2-)) is present on the surface from further reaction of CO2 with NiO. The addition of H2 into the reaction environment leads to reduction of NiO and the disappearance of CO3(2-). At temperatures >160 °C, CO adsorbed on hollow sites, and atomic carbon and OH species are present on the surface. We conclude that the methanation reaction proceeds via dissociation of CO2, followed by reduction of CO to atomic carbon and its hydrogenation to methane.

  1. PdM nanoparticles (M = Ni, Co, Fe, Mn) with high activity and stability in formic acid oxidation synthesized by sonochemical reactions

    NASA Astrophysics Data System (ADS)

    Matin, Md. Abdul; Jang, Ji-Hoon; Kwon, Young-Uk

    2014-09-01

    Bimetallic alloy PdnM (n = 1 for M = Mn, Fe, and Co; n = 1, 2, and 3 for M = Ni) nanoparticles (NPs) are synthesized on carbon supports by sonochemical reactions of Pd(acac)2 (acac = acetylacetonate) with M(acac)2 (M = Ni, Co, Mn) or Fe(acac)3 in ethylene glycol. The NPs are characterized by powder X-ray diffractometry, transmission electron microscopy (TEM), and inductively coupled plasma-atomic emission spectroscopy to determine their crystal structures, particle sizes, morphology, and elemental compositions. Alloy formation of the NPs is proven by energy dispersive X-ray spectroscopy line profiles using scanning TEM. The electronic structures and the surface compositions of NPs are analyzed using X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, respectively. PdnM NPs are applied as electrocatalysts for formic acid oxidation. The incorporation of M in Pd reduces the poisoning by surface hydroxyl groups. Activities based on the current densities are in the order of PdNi > PdFe > PdCo > PdMn. Within the PdnNi series, the activity is in the order of PdNi > Pd2Ni > Pd3Ni. The PdnM NP electrocatalysts show higher activity by a factor of 2-3.5 and improved durability than similarly prepared Pd NP electrocatalyst.

  2. Hierarchical hybrid of Ni3N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Li, Yingjun; Li, Yetong; Huang, Keke; Wang, Qin; Zhang, Jun

    2017-04-01

    Novel nickel nitride (Ni3N) nanoparticles supported on nitrogen-doped reduced graphene oxide nanosheets (N-RGOs) are synthesized via a facile strategy including hydrothermal and subsequent calcination methods, in which the reduced graphene oxide nanosheets (RGOs) are simultaneously doped with nitrogen species. By varying the content of the RGOs, a series of Ni3N/N-RGO nanocomposites are obtained. The Ni3N/N-RGO-30% hybrid nanocomposite exhibits superior catalytic activity towards oxygen reduction reaction (ORR) under alkaline condition (0.1 M KOH). Furthermore, this hybrid catalyst also demonstrates high tolerance to methanol poisoning. The RGO containing rich N confers the nanocomposite with large specific surface area and high electronic conduction ability, which can enhance the catalytic efficiency of Ni3N nanoparticles. The enhanced catalytic activity can be attributed to the synergistic effect between Ni3N and nitrogen doped reduced graphene oxide. In addition, the sufficient contact between Ni3N nanoparticles and the N-RGO nanosheets simultaneously promotes good nanoparticle dispersion and provides a consecutive activity sites to accelerate electron transport continuously, which further enhance the ORR performance. The Ni3N/N-RGO may be further an ideal candidate as efficient and inexpensive noble metal-free ORR electrocatalyst in fuel cells.

  3. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  4. From Mixed-Metal MOFs to Carbon-Coated Core-Shell Metal Alloy@Metal Oxide Solid Solutions: Transformation of Co/Ni-MOF-74 to CoxNi1-x@CoyNi1-yO@C for the Oxygen Evolution Reaction.

    PubMed

    Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui

    2017-04-07

    Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated CoxNi1-x@CoyNi1-yO with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the CoxNi1-x@CoyNi1-yO nanoparticles in small size. The CoxNi1-x@CoyNi1-yO@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.

  5. Investigating the Role of νp-Process: Preparations for the Measurement of the 56Co(p, n)56Ni Reaction

    NASA Astrophysics Data System (ADS)

    Gastis, Panagiotis; Perdikakis, George; Frohlich, Carla; Alt, Daniel; Horoi, Mihai; Kontos, Antonios; Liddick, Sean; Lin, Ling-Ying; Montes, Fernando; Nikas, Stylianos; Redpath, Thomas; Redshaw, Matthew; Senkov, Roman; Spyrou, Artemisia; Camargo Villari, Antonio Carlos; Wimmer, Kathrin; Zegers, Remco

    A cross section measurement of the 56Co(p, n)56Ni reaction in inverse kinematics, will take place in the new ReA3 facility at the National Superconducting Cyclotron Laboratory (NSCL). The result will constrain the reaction rate of the 56Ni(n, p)56Co reaction and will provide significant information about the role of the νp-process in the synthesis of heavy elements. In this report, a possible test experiment in the ReA3 setup using a 40Ar beam is investigated. The experimental technique and results from beam dynamics simulations for the 40Ar(p, n)40K reaction are shown.

  6. The reactions of Cr(CO)6, Fe(CO)5, and Ni(CO)4 with O2 yield viable oxo-metal carbonyls.

    PubMed

    Sun, Zhi; Schaefer, Henry F; Xie, Yaoming; Liu, Yongdong; Zhong, Rugang

    2014-05-15

    Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo-metal [(OC)5Cr-O, (OC)4Fe-O, and (OC)3 Ni-O] and dioxygen-metal carbonyls [(OC)5Cr-OO, (OC)4Fe-OO, and (OC)3Ni-OO] are studied theoretically. All three oxo-metal carbonyls were found to have triplet ground states, with metal-oxo bond dissociation energies of 77 (Cr-O), 74 (Fe-O), and 51 (Ni-O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal-oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr-OO), 21 (Fe-OO), and 4 (Ni-OO) kcal/mol] for the dioxygen-metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2 , driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. Copyright © 2014 Wiley Periodicals, Inc.

  7. Regulating the active species of Ni(OH)2 using CeO2: 3D CeO2/Ni(OH)2/carbon foam as an efficient electrode for the oxygen evolution reaction.

    PubMed

    Liu, Zhengqing; Li, Na; Zhao, Hongyang; Zhang, Yi; Huang, Yunhui; Yin, Zongyou; Du, Yaping

    2017-04-01

    Three dimensional (3D) N, O and S doped carbon foam (NOSCF) is prepared as a substrate for in situ vertically grown Ni(OH)2 nanosheets. As designed Ni(OH)2/NOSCF possesses strong electrostatic interactions with OH(-) ions due to many C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 O groups existing in NOSCF, which can facilitate the formation of crucial NiOOH intermediates during the OER process. CeO2 nanoparticles (NPs) of ∼3.3 nm in size are decorated on Ni(OH)2 nanosheets to design a highly efficient CeO2/Ni(OH)2/NOSCF electrocatalyst for the oxygen evolution reaction (OER). The CeO2 NP decorated Ni(OH)2/NOSCF not only exhibits a remarkably improved OER performance with an onset potential of 240 mV, outperforming most reported non-noble metal based OER electrocatalysts, but also possesses a small Tafel slope of 57 mV dec(-1) and excellent

  8. Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H₂S in single-metal and multi-metal systems.

    PubMed

    Tokuda, H; Kuchar, D; Mihara, N; Kubota, M; Matsuda, H; Fukuta, T

    2008-11-01

    Determination of reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H(2)S in single-metal and multi-metal systems were studied to develop a process of metal recovery from plating wastewater. As samples, single-metal model wastewaters containing Cu, Sn, Zn or Ni, and multi-metal model wastewater containing Cu-Zn-Ni or Sn-Zn mixtures were used. In both single-metal and multi-metal systems, the pH value was precisely controlled at a value of 1.5 for CuS and SnS precipitation, 4.5 for ZnS precipitation and 6.5-7.0 for NiS precipitation. Subsequently, the sulfidation of Cu, Sn, Zn and Ni was evaluated. It was found that an amount of H(2)S equimolar to a given metal was sufficient to achieve almost complete precipitation of the particular metal. Further, the selectivity of metal precipitation was found to be higher than 95% in the Cu-Zn-Ni multi-metal system and higher than 91% in the Sn-Zn system. It was also found that the sulfidation reaction proceeded in accordance with Higbie's penetration theory and reaction rate constants and mass-transfer coefficients under various experimental conditions were determined. Finally, the reaction rate constants obtained in single-metal and multi-metal systems were found to be almost the same indicating that the precipitation of a particular metal was not significantly affected by the presence of other components.

  9. Low-energy reaction rate constants for the Ni+-assisted decomposition of acetaldehyde: observation of C-H and C-C activation.

    PubMed

    Dee, S Jason; Castleberry, Vanessa A; Villarroel, Otsmar J; Laboren, Ivanna E; Bellert, Darrin J

    2010-02-04

    Rate constants for the low-energy Ni(+)-assisted dissociative reaction of acetaldehyde have been measured under jet-cooled conditions in the gas phase. The rate constants are acquired through monitoring the time dependence of fragment Ni(+)CO formation. The decomposition of the precursor Ni(+)-acetaldehyde cluster ion proceeds via consecutive, parallel reaction coordinates that originate with the Ni(+)-assisted cleavage of either a C-C or an aldehyde C-H bond. The energies used to initiate these reactions are well below that required to cleave sigma-bonds in the isolated acetaldehyde molecule. Direct measurement of the reaction kinetics over a range of energies indicates that the rate-limiting step in the dissociative mechanism changes at cluster ion internal energies = 17,200 +/- 400 cm(-1). Arguments are presented that this energy marks the closure of the dissociative coordinate that initiates with C-H sigma-bond activation and thus provides a measure of the activation energy of this dissociative pathway.

  10. Dynamics of 16,18O-induced reactions using Ni, Ge and Mo targets

    NASA Astrophysics Data System (ADS)

    Rajni; Kaur, Gurvinder; Sharma, Manoj K.

    2016-11-01

    Dynamical cluster decay model (DCM) based on the collective clusterization approach is employed to explore the dynamics of various even-mass Zr isotopes formed in 16O-induced reactions. In reference to the measured fusion cross-section data, various decay modes contributing towards 86,88,90,92Zr∗ nuclei are investigated. Also, the role of deformations and orientation degree of freedom is analyzed by comparing results with spherical choice of fragmentation. In addition to this, the effect of entrance channel is explored for 92Zr∗ and 76Kr∗ nuclei formed in 16O and 18O-induced reactions. Besides this, the dynamics of relatively heavier mass Sn isotopes is exercised using 16O and 18O projectiles. The DCM calculated decay cross-sections find good agreement with available experimental data.

  11. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.

    PubMed

    Armstrong, Fraser A; Albracht, Simon P J

    2005-04-15

    Production and usage of di-hydrogen, H2, in micro-organisms is catalysed by highly active, 'ancient' metalloenzymes known as hydrogenases. Based on the number and identity of metal atoms in their active sites, hydrogenases fall into three main classes, [NiFe]-, [FeFe]- and [Fe]-. All contain the unusual ligand CO (and in most cases CN- as well) making them intriguing examples of 'organometallic' cofactors. These ligands render the active sites superbly 'visible' using infrared spectroscopy, which complements the use of electron paramagnetic resonance spectroscopy in studying mechanisms and identifying intermediates. Hydrogenases are becoming a focus of attention for research into future energy technologies, not only H2 production but also H2 oxidation in fuel cells. Hydrogenases immobilized on electrodes exhibit high electrocatalytic activity, providing not only an important new technique for their investigation, but also a basis for novel fuel cells either using the enzyme itself, or inspired synthetic catalysts. Favourable comparisons have been made with platinum electrocatalysts, an advantage of enzymes being their specificity for H2 and tolerance of CO. A challenge for exploiting hydrogenases is their sensitivity to O2, but some organisms are known to produce enzymes that overcome this problem by subtle alterations of the active site and gas access channels.

  12. Preparation and Use of Samarium Diiodide (SmI2) in Organic Synthesis: The Mechanistic Role of HMPA and Ni(II) Salts in the Samarium Barbier Reaction

    PubMed Central

    Sadasivam, Dhandapani V.; Choquette, Kimberly A.; Flowers, Robert A.

    2013-01-01

    Although initially considered an esoteric reagent, SmI2 has become a common tool for synthetic organic chemists. SmI2 is generated through the addition of molecular iodine to samarium metal in THF.1,2-3 It is a mild and selective single electron reductant and its versatility is a result of its ability to initiate a wide range of reductions including C-C bond-forming and cascade or sequential reactions. SmI2 can reduce a variety of functional groups including sulfoxides and sulfones, phosphine oxides, epoxides, alkyl and aryl halides, carbonyls, and conjugated double bonds.2-12 One of the fascinating features of SmI-2-mediated reactions is the ability to manipulate the outcome of reactions through the selective use of cosolvents or additives. In most instances, additives are essential in controlling the rate of reduction and the chemo- or stereoselectivity of reactions.13-14 Additives commonly utilized to fine tune the reactivity of SmI2 can be classified into three major groups: (1) Lewis bases (HMPA, other electron-donor ligands, chelating ethers, etc.), (2) proton sources (alcohols, water etc.), and (3) inorganic additives (Ni(acac)2, FeCl3, etc).3 Understanding the mechanism of SmI2 reactions and the role of the additives enables utilization of the full potential of the reagent in organic synthesis. The Sm-Barbier reaction is chosen to illustrate the synthetic importance and mechanistic role of two common additives: HMPA and Ni(II) in this reaction. The Sm-Barbier reaction is similar to the traditional Grignard reaction with the only difference being that the alkyl halide, carbonyl, and Sm reductant are mixed simultaneously in one pot.1,15 Examples of Sm-mediated Barbier reactions with a range of coupling partners have been reported,1,3,7,10,12 and have been utilized in key steps of the synthesis of large natural products.16,17 Previous studies on the effect of additives on SmI2 reactions have shown that HMPA enhances the reduction potential of SmI2 by

  13. Preparation and use of samarium diiodide (SmI(2)) in organic synthesis: the mechanistic role of HMPA and Ni(II) salts in the samarium Barbier reaction.

    PubMed

    Sadasivam, Dhandapani V; Choquette, Kimberly A; Flowers, Robert A

    2013-02-04

    Although initially considered an esoteric reagent, SmI(2) has become a common tool for synthetic organic chemists. SmI(2) is generated through the addition of molecular iodine to samarium metal in THF.(1,2-3) It is a mild and selective single electron reductant and its versatility is a result of its ability to initiate a wide range of reductions including C-C bond-forming and cascade or sequential reactions. SmI(2) can reduce a variety of functional groups including sulfoxides and sulfones, phosphine oxides, epoxides, alkyl and aryl halides, carbonyls, and conjugated double bonds.(2-12) One of the fascinating features of SmI-(2)-mediated reactions is the ability to manipulate the outcome of reactions through the selective use of cosolvents or additives. In most instances, additives are essential in controlling the rate of reduction and the chemo- or stereoselectivity of reactions.(13-14) Additives commonly utilized to fine tune the reactivity of SmI(2) can be classified into three major groups: (1) Lewis bases (HMPA, other electron-donor ligands, chelating ethers, etc.), (2) proton sources (alcohols, water etc.), and (3) inorganic additives (Ni(acac)(2), FeCl(3), etc).(3) Understanding the mechanism of SmI(2) reactions and the role of the additives enables utilization of the full potential of the reagent in organic synthesis. The Sm-Barbier reaction is chosen to illustrate the synthetic importance and mechanistic role of two common additives: HMPA and Ni(II) in this reaction. The Sm-Barbier reaction is similar to the traditional Grignard reaction with the only difference being that the alkyl halide, carbonyl, and Sm reductant are mixed simultaneously in one pot.(1,15) Examples of Sm-mediated Barbier reactions with a range of coupling partners have been reported,(1,3,7,10,12) and have been utilized in key steps of the synthesis of large natural products.(16,17) Previous studies on the effect of additives on SmI(2) reactions have shown that HMPA enhances the

  14. Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments

    NASA Astrophysics Data System (ADS)

    Santarelli, Massimo; Quesito, Francesco; Novaresio, Valerio; Guerra, Cosimo; Lanzini, Andrea; Beretta, Davide

    2013-11-01

    This work focuses on the heterogeneous reactions taking place in a tubular anode-supported solid oxide fuel cell (SOFC) when the designated fuel is biogas from anaerobic digestion directly feeding the fuel cell. Operational maps of the fuel cell running on direct reforming of biogas were first obtained. Hence a mathematical model incorporating the kinetics of reforming reactions on Ni catalyst was used to predict the gas composition profile along the fuel channel. The model was validated against experimental data based on polarization curves. Also, the anode off-gas composition was collected and analyzed through a gas chromatograph. Finally, the model has been used to predict and analyze the gas composition change along the anode channel to evaluate effectiveness of the direct steam reforming when varying cell temperature, inlet fuel composition and the type of reforming process. The simulations results confirmed that thermodynamic-equilibrium conditions are not fully achieved inside the anode channel. It also outlines that a direct biogas utilization in an anode-supported SOFC is able to provide good performance and to ensure a good conversion of the methane even though when the cell temperature is far from the nominal value.

  15. Asymmetric pathways in the electrochemical conversion reaction of NiO as battery electrode with high storage capacity

    DOE PAGES

    Boesenberg, Ulrike; Marcus, Matthew A.; Shukla, Alpesh K.; ...

    2014-11-20

    Electrochemical conversion reactions of transition metal compounds create opportunities for large energy storage capabilities exceeding modern Li-ion batteries. However, for practical electrodes to be envisaged, a detailed understanding of their mechanisms is needed, especially vis-à-vis the voltage hysteresis observed between reduction and oxidation. Here, we present such insight at scales from local atomic arrangements to whole electrodes. NiO was chosen as a simple model system. The most important finding is that the voltage hysteresis has its origin in the differing chemical pathways during reduction and oxidation. This asymmetry is enabled by the presence of small metallic clusters and, thus, ismore » likely to apply to other transition metal oxide systems. Lastly, the presence of nanoparticles also influences the electrochemical activity of the electrolyte and its degradation products and can create differences in transport properties within an electrode, resulting in localized reactions around converted domains that lead to compositional inhomogeneities at the microscale.« less

  16. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    NASA Astrophysics Data System (ADS)

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in ~ 1 bar of CO at ~ 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  17. Selective activation/coupling of polyhalogenated nucleophiles in ni/cr-mediated reactions: synthesis of c1-c19 building block of halichondrin bs.

    PubMed

    Yan, Wuming; Li, Zhanjie; Kishi, Yoshito

    2015-05-20

    The C1-C19 building block 46 of halichondrin Bs was synthesized via a selective activation/coupling of β-bromoenone 34 with aldehyde 35 in a Ni/Cr-mediated reaction. The first phase of study was a method development to effect a coupling of a "naked" vinylogous anion with an aldehyde. The study with the coupling of 9 + 10 → 11 revealed: (1) β-bromoenone 9b is a better nucleophile than the corresponding β-iodo- and β-chloroenones 9a,c; (2) (Me)2Phen(OMe)2·NiCl2 13b is a better Ni-catalyst than (Me)2Phen(H)2·NiCl2 13a; and (3) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for an effective coupling. The second phase of study was a method development to realize a selective activation/coupling of polyhalogenated nucleophiles such as 34. The competition experiment of 10 + 9b over 10 + 31a-c revealed: (1) (Me)2Phen(OMe)2·NiCl2 13b is more effective than (Me)2Phen(H)2·NiCl2 13a for the required selective activation/coupling; (2) a low Ni-catalyst loading, for example, 0.05-0.1 mol % Ni-catalyst against 10 mol % Cr-catalyst, is crucial for discriminating β-bromoenone 9b from the three types of vinyl iodides 31a-c. The third phase of study was an application of the developed method to execute the proposed coupling of 34 + 35 → 36. For this application, a polyether-type Ni-catalyst 37c, readily soluble in the reaction medium, was introduced to achieve the selective activation/coupling with higher efficiency. With use of ion-exchange resin-based device, the coupling product 36 was transformed to the C1-C19 building block 46 of halichondrin Bs without purification/separation of the intermediates.

  18. Polar intermetallic compounds as catalysts for hydrogenation reactions: synthesis, structures, bonding, and catalytic properties of Ca(1-x)Sr(x)Ni4Sn2 (x=0.0, 0.5, 1.0) and catalytic properties of Ni3Sn and Ni3Sn2.

    PubMed

    Hlukhyy, Viktor; Raif, Fabian; Claus, Peter; Fässler, Thomas F

    2008-01-01

    The potential of polar intermetallic compounds to catalyze hydrogenation reactions was evaluated. The novel compounds CaNi4Sn2, SrNi4Sn2, and Ca(0.5)Sr(0.5)Ni(4)Sn(2) were tested as unsupported alloys in the liquid-phase hydrogenation of citral. Depending on the reaction conditions, conversions of up to 21.0 % (253 K and 9.0 MPa hydrogen pressure) were reached. The binary compounds Ni3Sn and Ni3Sn2 were also tested in citral hydrogenation under the same conditions. These materials gave conversions of up to 37.5 %. The product mixtures contained mainly geraniol, nerol, citronellal, and citronellol. The isotypic stannides CaNi4Sn2, Ca(0.5)Sr(0.5)Ni4Sn2, and SrNi4Sn2 were obtained by melting mixtures of the elements in an arc-furnace under an argon atmosphere. Single crystals were synthesized in tantalum ampoules using special temperature modes. The novel structures were established by single-crystal X-ray diffraction. They crystallize in the tetragonal space group I4/mcm with parameters: a=7.6991(7), c=7.8150(8) A, wR2=0.034, 162 F(2) values, 14 variable parameters for CaNi4Sn2; a=7.7936(2), c=7.7816(3) A, wR2=0.052, 193 F(2) values, 15 variable parameters for Ca(0.5)Sr(0.5)Ni4Sn2; and a=7.8916(4), c=7.7485(5) A, wR2=0.071, 208 F(2) values, 14 variable parameters for SrNi4Sn2. The Ca(1-x)Sr(x)Ni(4)Sn(2) (x=0.0, 0.5, 1.0) structures can be represented as a stuffed variant of the CuAl2 type by the formal insertion of one-dimensional infinite Ni-cluster chains [Ni4] into the Ca(Sr)Sn2 substructure. The Ni and Sn atoms form a three-dimensional infinite [Ni4Sn2] network in which the Ca or Sr atoms fill distorted octagonal channels. The densities of states obtained from TB-LMTO-ASA calculations show metallic character for both compounds.

  19. Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates

    NASA Astrophysics Data System (ADS)

    Nogita, K.; Gourlay, C. M.; Nishimura, T.

    2009-06-01

    A method of limiting cracking in the Cu6Sn5 intermetallic compounds (IMCs) at the interface between lead-free solders and copper substrates has been developed. To explore the mechanism of crack inhibition in the nickel-containing IMC reaction layers, detailed synchrotron x-ray powder diffraction with Rietveld analysis and differential scanning calorimetry have been used. The results show that nickel stabilizes the high-temperature hexagonal allotrope of Cu6Sn5, avoiding stresses induced by a volumetric change that would otherwise occur on transformation to the monoclinic phase.

  20. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    DOE PAGES

    Ren, Zheng; Wu, Zili; Gao, Puxian; ...

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. Themore » thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less

  1. Low Temperature Propane Oxidation over Co3O4 based Nano-array Catalysts. Ni Dopant Effect, Reaction Mechanism and Structural Stability

    SciTech Connect

    Ren, Zheng; Wu, Zili; Gao, Puxian; Song, Wenqiao; Xiao, Wen; Guo, Yanbing; Ding, Jun; Suib, Steven L.; Gao, Pu-Xian

    2015-06-09

    Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co3O4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co3O4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.

  2. Insight into the phase evolution of a NiMgAl catalyst from the reduction stage to the post-reaction stage during the dry reforming of methane [Insight into the phase evolution of NiMgAl catalyst from reduction to post-reaction for dry reforming of methane

    DOE PAGES

    Bao, Zhenghong; Zhan, Yiqiu; Street, Jason; ...

    2017-05-04

    Herein, phase evolution of a NiMgAl oxide catalyst at the reduction stage was qualitatively analysed and quantitatively determined by employing the continuous changes in its XRD intensity and TPR information. In conclusion, the stable crystallite size of both the active metal and spinel support was responsible for the long stability of the NiMgAl catalyst without carbon deposition during the DRM reaction.

  3. Experimental and theoretical study of the reactions between MO2- (M = Fe, Co, Ni, Cu, and Zn) cluster anions and hydrogen sulfide.

    PubMed

    Jia, Mei-Ye; Ding, Xun-Lei; He, Sheng-Gui; Ge, Mao-Fa

    2013-09-05

    Transition metal oxide cluster anions M(m)(18)O(n)(-) (M = Fe, Co, Ni, Cu, and Zn) were prepared by laser ablation and reacted with H2S in a fast flow reactor under thermal collision conditions. A time-of-flight mass spectrometer was used to detect the cluster distributions before and after the interactions with H2S. The experiments reveal a suite of oxygen/sulfur (O/S) exchange and oxygen/sulfydryl (O/SH) exchange reactions. The O/S exchange reaction to release water was evidenced for all of the MO2(-) cluster anions: MO2(-) + H2S → MOS(-) + H2O, whereas the O/SH exchange reaction to derive MOSH(-) and OH species was only observed for reactions of NiO2(-), CuO2(-), and ZnO2(-). Density functional theory calculations were performed for reaction mechanisms of MO2(-) + H2S (M = Fe, Co, Ni, Cu, and Zn). The computational results are generally in good agreement with the experimental results. This gas-phase study provides an insight into the metal dependent reactivity in the removal of H2S over metal oxides.

  4. Development of an odd-Z-projectile reaction for heavy element synthesis: 208Pb(64Ni, n)271Ds and 208Pb(65Cu, n)272111

    SciTech Connect

    Folden III, C.M.; Gregorich, K.E.; Dullmann, Ch.E.; Mahmud, H.; Pang, G.K.; Schwantes, J.M.; Sudowe, R.; Zielinski, P.M.; Nitsche, H.; Hoffman, D.C.

    2004-08-16

    Seven {sup 271}Ds decay chains were identified in the bombardment of {sup 208}Pb targets with 311.5- and 314.3-MeV {sup 64}Ni projectiles using the Berkeley Gas-filled Separator. These data, combined with previous results, provide an excitation function for this reaction. From these results, an optimum energy of 321 MeV was estimated for the production of {sup 272}111 in the reaction {sup 208}Pb({sup 65}Cu, n). One decay chain was observed, resulting in a cross section of 1.7{sub -1.4}{sup +3.9} pb. This experiment confirms the discovery of element 111 by the Darmstadt group who used the {sup 209}Bi({sup 64}Ni, n){sup 272}111 reaction.

  5. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    PubMed Central

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-ichi

    2014-01-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C–C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials. PMID:27877696

  6. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials.

    PubMed

    Xu, Shiqing; Kim, Eun Hoo; Wei, Alexander; Negishi, Ei-Ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  7. Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials

    NASA Astrophysics Data System (ADS)

    Xu, Shiqing; Hoo Kim, Eun; Wei, Alexander; Negishi, Ei-ichi

    2014-08-01

    Organic molecules and polymers with extended π-conjugation are appealing as advanced electronic materials, and have already found practical applications in thin-film transistors, light emitting diodes, and chemical sensors. Transition metal (TM)-catalyzed cross-coupling methodologies have evolved over the past four decades into one of the most powerful and versatile methods for C-C bond formation, enabling the construction of a diverse and sophisticated range of π-conjugated oligomers and polymers. In this review, we focus our discussion on recent synthetic developments of several important classes of π-conjugated systems using TM-catalyzed cross-coupling reactions, with a perspective on their utility for organic electronic materials.

  8. Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction

    DTIC Science & Technology

    2009-11-04

    transition-metal-doped ceria materials, which include coprecipitation (19-21), hydro- thermal (22), microemulsion (23-25), sol - gel (26, 27), and solution...Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction Ranjan K. Pati, Ivan C. Lee, Sicong Hou...ABSTRACT A flame synthesis method has been used to prepare nanosized, high-surface-area Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O catalysts from aqueous

  9. Operando QEXAFS studies of Ni₂P during thiophene hydrodesulfurization: direct observation of Ni-S bond formation under reaction conditions.

    PubMed

    Wada, Takahiro; Bando, Kyoko K; Miyamoto, Takeshi; Takakusagi, Satoru; Oyama, S Ted; Asakura, Kiyotaka

    2012-03-01

    Structural changes in Ni(2)P/MCM-41 were followed by quick extended X-ray absorption fine structure (QEXAFS) and were directly related to changes in X-ray absorption near-edge structure (XANES) which had been used earlier for the study of the active catalyst phase. An equation is proposed to correct the transient QEXAFS spectra up to second-order in time to remove spectral distortions induced by structural changes occurring during measurements. A good correlation between the corrected QEXAFS and the XANES spectral changes was found, giving support to the conclusions derived from the XANES in the previous work, namely that the formation of a Ni-S bond in a surface NiPS phase is involved in the active site for the hydrodesulfurization reaction.

  10. Ni-Cu Hydrotalcite-Derived Mixed Oxides as Highly Selective and Stable Catalysts for the Synthesis of β-Branched Bioalcohols by the Guerbet Reaction.

    PubMed

    Hernández, Willinton Y; De Vlieger, Kevin; Van Der Voort, Pascal; Verberckmoes, An

    2016-11-23

    A series of Ni-Cu hydrotalcite-derived mixed oxides have been synthesized and evaluated as heterogeneous catalysts for the dimerization of linear aliphatic alcohols to afford β-branched Guerbet alcohols. The use of the hydrotalcite-structured catalyst precursor highly favors the catalyst stability. This Cu/Ni catalyst has an enhanced reducibility of Ni(2+) species under reaction conditions, favoring the hydrogen transfer and hydrogenation capacity of the catalyst system. Catalytic results are reported for C8 , mixed C8 /C10 , and C18 alcohol feeds, with full conversions and Guerbet product purities of 72.5-96 %. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Study of the Oxygen Evolution Reaction Catalytic Behavior of CoxNi1-xFe2O4 in Alkaline Medium.

    PubMed

    Maruthapandian, Viruthasalam; Mathankumar, Mahendran; Saraswathy, Velu; Subramanian, Balasubramanian; Muralidharan, Srinivasan

    2017-04-04

    Catalysts for the oxygen evolution reaction (OER) play an important role in the conversion of solar energy to fuel of earth-abundant water into H2 and O2 through splitting/electrolysis. Heterogeneous electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) exhibit catalytic activity that depends on the electronic properties, oxidation states, and local surface structure. Spinel ferrites (MFe2O4; M = Ni and Co) based materials have been attractive for the catalytic water oxidation due to their well-known stability in alkaline medium, easy synthesis, existence of metal cations with various oxidation states, low cost, and tunable properties by the desired metal substitution. To understand the better catalytic activity of MFe2O4 in detail the role of Ni and Co was studied through MxNi1-xFe2O4 (M = Co; 0 < x < 1), which was prepared by the sol-gel method. The results showed that bare NiFe2O4 has better catalytic activity (η = 381 mV at 10 mA cm(-2) and Tafel slope of 46.4 mV dec(-1)) compared to Co-containing MxNi1-xFe2O4 (η = 450-470 mV at 10 mA cm(-2) and Tafel slope of 50-73 mV dec(-1)) in alkaline medium, and the substitution of Co is found to suppress the catalytic activity of NiFe2O4. The degradation of catalytic activity with an increase in Co content was accounted for in further detailed investigations.

  12. [NiFe]Hydrogenase from Citrobacter sp. S-77 surpasses platinum as an electrode for H2 oxidation reaction.

    PubMed

    Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka; Hibino, Takashi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-18

    Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1 mg of [NiFe]S77 or Pt) at 50 mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100 % after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt.

  13. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    DOE PAGES

    Bourgin, D.; Courtin, S.; Haas, F.; ...

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  14. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  15. One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction.

    PubMed

    Qazi, Umair Yaqub; Yuan, Cheng-Zong; Ullah, Naseeb; Jiang, Yi-Fan; Imran, Muhammad; Zeb, Akif; Zhao, Sheng-Jie; Javaid, Rahat; Xu, An-Wu

    2017-08-30

    Electrochemical water splitting is an important process to produce hydrogen and oxygen for energy storage and conversion devices. However, it is often restricted by the oxygen evolution reaction (OER) due to its sluggish kinetics. To overcome the problem, precious metal oxide-based electrocatalysts, such as RuO2 and IrO2, are widely used. The lack of availability and the high cost of precious metals compel researchers to find other resources for the development of cost-effective, environmentally friendly, earth-abundant, nonprecious electrocatalysts for OER. Such catalysts should have high OER performance and good stability in comparison to those of available commercial precious metal-based electrocatalysts. Herein, we report an inexpensive fabrication of bimetallic iron-nickel nanoparticles on FeNi-foil (FeNi4.34@FeNi-foil) as an integrated OER electrode using a one-step calcination process. FeNi4.34@FeNi-foil obtained at 900 °C shows superior OER activity in alkaline solution with an overpotential as low as 283 mV to achieve a current density of 10 mA cm(-2) and a small Tafel slope of 53 mV dec(-1). The high performance and durability of the as-prepared nonprecious metal electrode even exceeds those of the available commercial RuO2 and IrO2 catalysts, showing great potential in replacing the expensive noble metal-based electrocatalysts for OER.

  16. Mo doped Ni2P nanowire arrays: an efficient electrocatalyst for the hydrogen evolution reaction with enhanced activity at all pH values.

    PubMed

    Sun, Yiqiang; Hang, Lifeng; Shen, Qi; Zhang, Tao; Li, Huilin; Zhang, Xiaomin; Lyu, Xianjun; Li, Yue

    2017-08-18

    We report the successful synthesis of Mo doped Ni2P nanowires (NWs) on a Ni foam (NF) substrate by a two-step strategy, which could be used as an efficient and stable hydrogen evolution reaction (HER) electrocatalyst over the whole pH range (0-14). Electrochemical investigations demonstrated that Mo doping made the catalytic activity of Ni2P significantly enhanced. To achieve a current density of 10 mA cm(-2), Mo-Ni2P NWs/NF required an overpotential of 67 mV in acidic solution, 78 mV in alkaline solution and 84 mV in neutral solution. It also showed superior stability with negligible activity decay after its use in the HER under different pH conditions for 24 h. Such excellent HER activity might originate from the synergistic effect between molybdenum (Mo) and nickel (Ni) atoms. The present work provides a valuable route for the design and synthesis of inexpensive and efficient all-pH HER electrocatalysts.

  17. Effect of Reaction Period on Stoichiometry, Phase Purity, and Morphology of Hydrothermally Synthesized Cu2NiSnS4 Nanopowder

    NASA Astrophysics Data System (ADS)

    Babu, G. Sahaya Dennish; Shajan, X. Sahaya; Alwin, S.; Ramasubbu, V.; Balerao, Gopal M.

    2017-09-01

    The effect of reaction period on the phase purity, morphology, and stoichiometry of Cu2NiSnS4 (CNTS) nanopowder prepared by hydrothermal method has been investigated. Polyvinylpyrrolidone (PVP) and thioglycolic acid were used as capping agent and sulfur source, respectively. The presence of cubic stannite crystal structure and its phase purity were confirmed by powder x-ray diffraction analysis and Raman spectroscopy. Furthermore, the morphological, crystallographic, and optical features of the prepared CNTS nanopowder were characterized by field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-visible (UV-Vis) spectrophotometry. The elemental ratios of Cu/(Ni + Sn) and Ni/Sn showed that the stoichiometry of CNTS was maintained for the compounds synthesized at 230°C with reaction period of 24 h. The occurrence of Cu+, Ni2+, Sn4+, and S2- was evaluated by x-ray photoelectron spectroscopy. The prepared material was used as counter electrode in a dye-sensitized solar cell (DSSC) as an alternative to platinum (Pt), resulting in conversion efficiency of 0.92%. These results indicate that CNTS is a prospective material to replace conventional Pt-based counter electrodes in DSSCs.

  18. A study of the electrochemical lithium intercalation behavior of porous LiNiO 2 electrodes prepared by solid-state reaction and sol-gel methods

    NASA Astrophysics Data System (ADS)

    Choi, Young-Min; Pyun, Su-Il; Moon, Seong-In; Hyung, Yoo-Eup

    The electrochemical lithium intercalation behavior of porous LiNiO 2 electrodes prepared by solid-state reaction and sol-gel methods is investigated by using X-ray diffractometry (XRD), a galvanostatic intermittent charge-discharge experiment, electrochemical impedance spectroscopy(EIS), and a charge-discharge cycling test. The ultrafine LiNiO 2 powder is prepared by the sol-gel method in order to overcome the disadvantage of the conventional solid-state reaction method. From the results of XRD, the layered LiNiO 2 phase proves to be stable above 400°C. The conventional oxide electrode suffers a larger capacity loss, a greater instantaneous IR drop during the first intermittent discharge, and a smaller chemical diffusivity than the gel-derived electrode. The results are discussed with respect to the marked cation mixing effect in the former electrode. Furthermore, the charge-discharge cycling test shows that the cell Li/organic electrolyte/gel-derived LiNiO 2 electrode displays improved performance, i.e., an initial specific capacity of 150 Ah kg -1 and a specific energy density above 500 Wh kg -1.

  19. Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions.

    PubMed

    Yan, Yucong; Shan, Hao; Li, Ge; Xiao, Fan; Jiang, Yingying; Yan, Youyi; Jin, Chuanhong; Zhang, Hui; Wu, Jianbo; Yang, Deren

    2016-12-14

    Pt-based multimetallic core-shell nanoplates have received great attention as advanced catalysts, but the synthesis is still challenging. Here we report the synthesis of multimetallic Pd@PtM (M = Ni, Rh, Ru) nanoplates including Pd@Pt nanoplates, in which Pt or Pt alloy shells with controlled thickness epitaxially grow on plate-like Pd seeds. The key to achieve high-quality Pt-based multimetallic nanoplates is in situ generation of CO through interfacial catalytic reactions associated with Pd nanoplates and benzyl alcohol. In addition, the accurate control in a trace amount of CO is also of great importance for conformal growth of multimetallic core-shell nanoplates. The Pd@PtNi nanoplates exhibit substantially improved activity and stability for methanol oxidation reaction (MOR) compared to the Pd@Pt nanoplates and commercial Pt catalysts due to the advantages arising from plate-like, core-shell, and alloy structures.

  20. Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: reaction intermediates determination.

    PubMed

    Ovejero, G; Rodríguez, A; Vallet, A; García, J

    2013-01-01

    In this work, Basic Yellow 11 (BY 11) was employed as model compound to study catalytic wet air oxidation as a pre-treatment step to the conventional biological oxidation. Ni and Fe catalysts supported over hydrotalcite (HT) were prepared by incipient wetness and excess impregnation to obtain catalysts with different metal loadings (from 1 to 10 wt.%). HTs were synthesized by co-precipitation and characterized with XRD, X-ray fluorescence (XRF), BET, thermogravimetric analysis and SEM. Results showed that dye conversion increased with Ni and Fe content up to 7 wt.% and that the most effective catalyst were prepared by incipient wetness impregnation. The influence of metal loading in the catalyst, and the preparation method as well as the reaction conditions was investigated. A mechanism and reaction pathways for BY 11 during catalytic liquid phase oxidation have also been proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Electronic structure aspects of the complete O2 transfer reaction between Ni(II) and Mn(II) complexes with cyclam ligands.

    PubMed

    Zapata-Rivera, Jhon; Caballol, Rosa; Calzado, Carmen J

    2015-01-28

    This work explores the electronic structure aspects involving the complete intermolecular O2 transfer between Ni(ii) and Mn(ii) complexes, both containing N-tetramethylated cyclams (TMC). The energy of the low-lying states of reactants, intermediates and products is established at the CASSCF level and also the DDCI level when possible. The orthogonal valence bond analysis of the wave functions obtained from CASSCF and DDCI calculations indicates the dominant superoxide nature of all the adducts participating in the reaction, and consequently that the whole reaction can be described as the transfer of the superoxide O2(-) between Ni(ii) and Mn(ii) complexes, without any additional change in the electronic structure of the fragments.

  2. Observation of high energy electromagnetic dipole radiation in 14N+Ni reactions at Elab/A = 35 MeV

    NASA Astrophysics Data System (ADS)

    Alamanos, N.; Braun-Munzinger, P.; Freifelder, R. F.; Paul, P.; Stachel, J.; Awes, T. C.; Ferguson, R. L.; Obenshain, F. E.; Plasil, F.; Young, G. R.

    1986-06-01

    High energy photons (20Ni-->γ+X reactions were unambiguously observed in a Pb-glass detector array. The measured angular distributions exhibit a predominant dipole pattern. This rules out statistical and/or nucleon-nucleon production mechanisms. The data indicate instead a more coherent production mechanism reflecting the direction of relative motion of target and projectile.

  3. Mechanistic information from volume profiles for water exchange and complex-formation reactions of aquated Ni(II). pH, buffer and medium effects.

    PubMed

    Gazzaz, Hanaa Asaad; Ember, Erika; Zahl, Achim; van Eldik, Rudi

    2009-11-21

    Rate and activation parameters for the complex-formation reaction of Ni(2+) with 4-(2-pyridylazo)-N,N-dimethyl aniline (PADA) were studied as a function of pH in different buffers in both aqueous and sodium dodecyl sulfate (SDS) micelle solutions. In aqueous Tris buffer solution, the forward and backward rate constants increased with increasing pH, while the complex-formation constant decreased due to a larger increase in the backward rate constant. The activation entropy, DeltaS(#), and activation volume, DeltaV(#), changed with increasing pH from positive to negative values, suggesting an apparent changeover from a dissociative to a more associative mechanism. Complex-formation reactions with 2,2'-bipyridine in Tris buffer showed almost no increase in the forward and backward rate constants on increasing the pH, but the DeltaS(#) and DeltaV(#) values became more negative. N-ethylmorpholine buffer showed no pH effect on the rate constants and activation parameters. Water exchange reactions of aquated Ni(2+) were also studied as a function of pH under the same conditions. The reported rate and activation parameters for water exchange in Tris and N-ethylmorpholine buffers are consistent with those found for the complex-formation reactions of Ni(2+) with PADA. The observed pH and buffer effects for both the complex-formation and water exchange reactions of aquated Ni(2+) can be accounted for in terms of the formation of a Ni(2+)-Tris complex in Tris buffer and general base catalysis by the buffer components. In SDS micelle solution, the complex-formation reaction with PADA was much faster than in aqueous solution, but the increase in rate constant with increasing pH was less significant, while DeltaS(#) and DeltaV(#) became more positive, pointing to a more dissociative mechanism. For SDS micelle solutions there was no effect on the water exchange rate constant or activation volume. Mechanistic interpretations are offered for all observed pH, buffer and medium

  4. Synthesis, structure, and cooperative proton-electron transfer reaction of Bis(5,6-diethylpyrazinedithiolato)metal complexes (M = Ni, Pd, Pt).

    PubMed

    Kubo, Takashi; Ohashi, Misako; Miyazaki, Katsuaki; Ichimura, Akio; Nakasuji, Kazuhiro

    2004-11-15

    New proton and electron donors, M(II)(HL)(2) (M = Ni, Pd, Pt; L = 5,6-diethylpyradzinedithiolate), as well as a proton and electron acceptor, Pt(IV)(L)(2), were prepared and characterized. The pH-dependent cyclic voltammetry of the M(II)(HL)(2) complexes revealed a favorable Gibbs free energy (K(com) > 1) for the proton and electron transfer reactions from M(II)(HL)(2) to M(IV)(L)(2); i.e., the equilibrium for the following reaction lies to the right: M(II)(HL)(2) + M(IV)(L)(2) <==>2M(III)(HL)(L).

  5. One-Pot Fabrication of Mesoporous Core-Shell Au@PtNi Ternary Metallic Nanoparticles and Their Enhanced Efficiency for Oxygen Reduction Reaction.

    PubMed

    Shi, Qiurong; Zhu, Chengzhou; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-02-01

    Currently, Pt-based nanomaterials with tailorable shapes, structures, and morphologies are the most popular electrocatalysts for oxygen reduction reaction, which is a significant cathode reaction in fuel cells for renewable energy applications. We have successfully synthesized mesoporous core-shell Au@PtNi ternary metallic nanoparticles through a one-pot reduction method for cathodic materials used as oxygen reduction reaction catalysts. The as-synthesized nanoparticles exhibited superior catalytic activities and long-term stabilities compared with mesoporous core-shell Au@Pt nanoparticles and commercial Pt/C. The unique mesoporous core-shell structures as well as the alloy shells enable the enhanced electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect and geometric effect, holding great promise in fuel cell application.

  6. Effects of lithium content on the electrochemical lithium intercalation reaction into LiNiO 2 and LiCoO 2 electrodes

    NASA Astrophysics Data System (ADS)

    Choi, Young-Min; Pyun, Su-Il; Bae, Joon-Sung; Moon, Seong-In

    The electrochemical lithium intercalation reaction into LiNiO 2 and LiCoO 2 electrodes in 1 M LiClO 4—propylene carbonate solution is investigated as a function of lithium content in the oxide electrodes by using X-ray diffractometry (XRD), electrochemical impedance spectroscopy (EIS), and a galvanostatic intermittent titration technique (GITT). Li 1-δNiO 2 shows a greater loss in capacity during the first intermittent discharge, as well as a higher resistance for the electrochemical intercalation reaction, in comparison with Li 1-δCoO 2. This is attributed to a partial cation mixing in Li 1-δNiO 2 which is substantiated by XRD studies. The electrochemical impedance spectra of the Li 1-δNiO 2 electrode reveals that the magnitude of the intermediate frequency arc that is associated with the absorption reaction decreases with increasing lithium content, (1 — δ), in the range from 0.5 to 0.7. By contrast, Li 1-δCoO 2 exhibits the reverse behaviour.—The component diffusivities of lithium ions display a nearly constant value, in the order of 10 -11 cm 2 s -1, for both electrodes at room temperature, irrespective of the value of (1 — δ) over the range 0.5-0.7. It is suggested that lithium-ion diffusion through both the layered oxides is affected by the number of empty sites within the lithium-ion layer, and not by the lattice parameter.

  7. Electron capture strength for Ni60,62 and Ni58,60,62,64(p, n)Cu58,60,62,64 reactions at 134.3 MeV

    NASA Astrophysics Data System (ADS)

    Anantaraman, N.; Austin, Sam M.; Brown, B. A.; Crawley, G. M.; Galonsky, A.; Zegers, R. G. T.; Anderson, B. D.; Baldwin, A. R.; Flanders, B. S.; Madey, R.; Watson, J. W.; Foster, C. C.

    2008-12-01

    Background: The strength of electron capture for medium mass nuclei has a significant effect on the evolution of supernovae. There is insufficient knowledge of these strengths and very little data for important radioactive nuclei. Purpose: Determine whether it is feasible to obtain EC strength from studies of To+1 excitations in (p, n) reactions, and whether this might yield information for radioactive nuclei. Methods: Cross sections for the Ni58,60,62,64(p, n)Cu58,60,62,64 reactions were measured over the angular range of 0.3∘ to 11.6∘ at 134.3 MeV using the IUCF neutron time-of-flight facility. Results: The To+1 excitations in Ni60,62 were identified by comparison with inelastic proton scattering spectra, their B(GT) were extracted, and the corresponding electron capture rates in supernovae were calculated. Data from the TRIUMF (n, p) experiments at 198 MeV were reanalyzed; the electron capture rates for the reanalyzed data are in moderately good agreement with the higher resolution (p, n) results, but differ in detail. The possibility of future measurements with radioactive nuclei was considered. Conclusions: It may be possible to obtain low-lying electron capture strength for radioactive nuclei by studying (p, n) reactions in inverse kinematics.

  8. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    PubMed Central

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-01-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm−2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER. PMID:27658968

  9. N-doped graphene layers encapsulated NiFe alloy nanoparticles derived from MOFs with superior electrochemical performance for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Yu, Xin-Yao; Paik, Ungyu

    2016-09-01

    Water splitting, an efficient approach for hydrogen production, is often hindered by unfavorable kinetics of oxygen evolution reaction (OER). In order to reduce the overpotential, noble metal oxides-based electrocatalysts like RuO2 and IrO2 are usually utilized. However, due to their scarcity, the development of cost-effective non-precious OER electrocatalysts with high efficiency and good stability is urgently required. Herein, we report a facile one-step annealing of metal-organic frameworks (MOFs) strategy to synthesize N-doped graphene layers encapsulated NiFe alloy nanoparticles (NiFe@C). Through tuning the nanoparticle size and calcination temperature, NiFe@C with an average size of around 16 nm obtained at 700 °C exhibits superior OER performance with an overpotential of only 281 mV at 10 mA cm-2 and high durability. The facile synthesis method and excellent electrochemical performance show great potential of NiFe@C in replacing the precious metal-based electrocatalysts in the OER.

  10. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Chen, Zhouhao; Ma, Zhipeng; Song, Jianjun; Wang, Lixin; Shao, Guangjie

    2016-08-01

    In this work, supergravity fields are performed to prepare Ni-CNTs composite cathodes with wool-ball-like morphology from the Watts bath containing well-distributed functionalized CNTs. The prepared Ni-CNTs composite cathodes are used as noble metal-free electrocatalyst with favorable electrocatalytic activity for hydrogen evolution reaction (HER) in alkaline solutions. The crystal structure and morphology of the composite cathodes are characterized by XRD and SEM measurements. The electrochemical activities of the cathodes are characterized through Tafel polarization measurement, electrochemical impedance spectroscopy and cyclic voltammetric study in 1.0 M NaOH solution. The results indicate that catalytic activities of the Ni-CNTs cathodes prepared under supergravity fields are enhanced significantly, and the sample prepared at rotating speed 3000 rpm from the bath containing 1 g dm-3 CNTs exhibits the highest HER activity with smallest Tafel slope and largest exchange current density of 823.9 μA cm-2. Furthermore, the effects of both the CNTs concentrations and the intensities of supergravity fields on the properties of the Ni-CNTs cathodes are investigated.

  11. Revelation of the Excellent Intrinsic Activity of MoS2|NiS|MoO3 Nanowires for Hydrogen Evolution Reaction in Alkaline Medium.

    PubMed

    Wang, Chuanqin; Tian, Bin; Wu, Mei; Wang, Jiahai

    2017-03-01

    Loading an electrocatalyst on poorly conducting substrate can easily lead to undervaluation of its intrinsic property. In this study, the excellent activity of MoS2|NiS|MoO3 nanowires for hydrogen evolution is revealed. The precursor NiMoO4 synthesized on chemically polished Ti foil can be successfully converted to MoS2|NiS|MoO3 catalyst via gas-phase sulfurization. Without deep polish in sulfuric acid for 2 h, the as-synthesized materials do not show competitive results. After sulfurization, the surface morphology of the precursor is transformed into rough features, and the peripheries of these electrocatalysts are coated by multilayered and misaligned MoS2 with a high density of active sites and conductive component NiS. Further analysis shows that defect MoO3 is embedded inside each nanowire, which may facilitate fast electron transfer. Such nanostructured architecture shows promising results for hydrogen evolution reaction in alkaline medium with only 91 mV overpotential for the current density of 10 mA cm(-2) and robust long-term stability during more than 20 h of tests.

  12. One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways.

    PubMed

    Xing, Shiyou; Lv, Pengmei; Wang, Jiayan; Fu, Junying; Fan, Pei; Yang, Lingmei; Yang, Gaixiu; Yuan, Zhenhong; Chen, Yong

    2017-01-25

    For high caloricity and stability in bio-aviation fuels, a certain content of aromatic hydrocarbons (AHCs, 8-25 wt%) is crucial. Fatty acids, obtained from waste or inedible oils, are a renewable and economic feedstock for AHC production. Considerable amounts of AHCs, up to 64.61 wt%, were produced through the one-step hydroprocessing of fatty acids over Ni/HZSM-5 catalysts. Hydrogenation, hydrocracking, and aromatization constituted the principal AHC formation processes. At a lower temperature, fatty acids were first hydrosaturated and then hydrodeoxygenated at metal sites to form long-chain hydrocarbons. Alternatively, the unsaturated fatty acids could be directly deoxygenated at acid sites without first being saturated. The long-chain hydrocarbons were cracked into gases such as ethane, propane, and C6-C8 olefins over the catalysts' Brønsted acid sites; these underwent Diels-Alder reactions on the catalysts' Lewis acid sites to form AHCs. C6-C8 olefins were determined as critical intermediates for AHC formation. As the Ni content in the catalyst increased, the Brønsted-acid site density was reduced due to coverage by the metal nanoparticles. Good performance was achieved with a loading of 10 wt% Ni, where the Ni nanoparticles exhibited a polyhedral morphology which exposed more active sites for aromatization.

  13. Mechanisms of the sup 64 Zn(d, sup 6 Li) sup 60 Ni reaction at E sub lab = 16. 4 MeV

    SciTech Connect

    Bowsher, J.E.

    1989-01-01

    Cross-sections, A{sub y}, A{sub yy}, and A{sub xx} for the {sup 64}Zn(d, {sup 6}Li) reaction forming the ground and first excited states of {sup 60}Ni were measured in 5{degree} steps from {theta}{sub lab} = 25{degree} to 80{degree} using an E{sub lab} = 16.4 MeV beam of vector and tensor polarized deuterons. These data include the first measurement of A{sub xx} and A{sub yy} for the (d, {sup 6}Li) reaction on a medium to heavy target nucleus. The A{sub y} measurement is also among the first for (d,{sup 6}Li) reactions. Also measured were excitation functions of d{sigma}/d{Omega}, A{sub y}, A{sub yy}, and A{sub xx} for {sup 64}Zn(d,d) scattering at E{sub lab} = 16.4 MeV. The {sup 6}Li ground state and seven other wave functions, each representing {sup 6}Li continuum states of a given spin, I, and internal orbital angular momentum, l, l {le} 2, were included in coupled-channels (CC) calculations of {sup 60}Ni({sup 6}Li, {sup 6}Li) elastic scattering and finite-range, coupled channel Born approximation (CCBA) calculations for the {sup 64}Zn(d,{sup 6}Li) reaction forming the {sup 60}Ni ground state. This analysis is the first to consider the influence of {sup 6}Li continuum states on the (d, {sup 6}Li) reaction. The {sup 6}Li-{sup 60}Ni interactions were generated using a cluster folding model. Both the folding model and the CC and CCBA calculations were performed by the code FRESCO. For the {sup 64}Zn(d, {sup 6}Li) reaction, CCBA calculations demonstrated that {alpha} transfers forming the 3{sup +} state of {sup 6}Li affect d{sigma}/d{Omega} and A{sub y} very strongly.

  14. A facile strategy for the synthesis of NiSe@CoOOH core-shell nanowires on nickel foam with high surface area as efficient electrocatalyst for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Xu, Yuan-Zi; Yuan, Cheng-Zong; Chen, Xue-Ping

    2017-12-01

    In this article, we describe a NiSe@CoOOH core-shell nanostructure nanowires supported on nickel foam(NiSe@CoOOH NWs/NF) have been successfully synthesized by a facile approach for the first time. The NiSe@CoOOH NWs/NF has been confirmed by XRD, SEM images, TEM images, XPS, EDX and HRTEM. The NiSe@CoOOH NWs/NF, as a 3D oxygen-evolving and nonprecious-metal catalyst, shows high catalytic performance for oxygen evolution reaction.

  15. Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions

    SciTech Connect

    Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin; Shen, Guoyin; Chow, Paul; Xiao, Yuming

    2011-12-09

    We present novel time- and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of {approx}30 {micro}s over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 {micro}s over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 x 10{sup 6} K/s, and conductive cooling rate of 4.5 x 10{sup 4} K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 {micro}s, thermal expansion coefficient of 1.1 x 10{sup -6} K for NiAl, and crystallization of V and Ag{sub 3}In in later time.

  16. Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions.

    PubMed

    Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin; Shen, Guoyin; Chow, Paul; Xiao, Yuming

    2011-11-01

    We present novel time- and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of ~30 μs over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 μs over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 × 10(6) K/s, and conductive cooling rate of 4.5 × 10(4) K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 μs, thermal expansion coefficient of 1.1 × 10(-6) K for NiAl, and crystallization of V and Ag(3)In in later time.

  17. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media

    DOE PAGES

    McBean, Coray L.; Liu, Haiqing; Scofield, Megan E.; ...

    2017-07-17

    We present that the oxygen evolution reaction (OER) is a key reaction for water electrolysis cells and air-powered battery applications. However, conventional metal oxide catalysts, used for high-performing OER, tend to incorporate comparatively expensive and less abundant precious metals such as Ru and Ir, and, moreover, suffer from poor stability. To attempt to mitigate for all of these issues, we have prepared one-dimensional (1D) OER-active perovskite nanorods using a unique, simple, generalizable, and robust method. Significantly, our work demonstrates the feasibility of a novel electroless, seedless, surfactant-free, wet solution-based protocol for fabricating “high aspect ratio” LaNiO3 and LaMnO3 nanostructures. Asmore » the main focus of our demonstration of principle, we prepared as-synthesized LaNiO3 rods and correlated the various temperatures at which these materials were annealed with their resulting OER performance. In addition, we observed generally better OER performance for samples prepared with lower annealing temperatures. Specifically, when annealed at 600 °C, in the absence of a conventional conductive carbon support, our as-synthesized LaNiO3 rods not only evinced (i) a reasonable level of activity toward OER but also displayed (ii) an improved stability, as demonstrated by chronoamperometric measurements, especially when compared with a control sample of commercially available (and more expensive) RuO2.« less

  18. Glycolaldehyde as a Probe Molecule for Biomass Derivatives: Reaction of C-OH and C=O Functional Groups on Monolayer Ni Surfaces

    SciTech Connect

    Yu, Weiting; Barteau, Mark A.; Chen, Jingguang G.

    2011-12-21

    Controlling the activity and selectivity of converting biomass derivatives to syngas (H₂ and CO) is critical for the utilization of biomass feedstocks as renewable sources for chemicals and fuels. One key chemistry in the conversion is the selective bond scission of the C—OH and C=O functionalities, which are present in many biomass derivatives. Because of the high molecular weight and low vapor pressure, it is relatively difficult to perform fundamental surface science studies of C6 sugars, such as glucose and fructose, using ultrahigh vacuum techniques. Glycolaldehyde (HOCH₂CH=O) is the smallest molecule that contains both the C—OH and C=O functional groups, as well as the same C/O ratio as C6 sugars, and thus is selected as a probe molecule in the current study to determine how the presence of the C=O bond affects the reaction mechanism. Using a combination of density functional theory calculations and experimental measurements, our results indicate that the reaction pathway of glycolaldehyde to produce syngas can be enhanced by supporting monolayer Ni on a Pt substrate, which shows higher activity than either of the parent metals. Furthermore, the Pt substrate can be replaced by tungsten monocarbide to achieve similar activity and selectivity, indicating the possibility of using Ni/WC to replace Ni/Pt as active and selective catalysts with higher stability and lower cost.

  19. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery.

    PubMed

    Fan, Yuchi; Ida, Shintaro; Staykov, Aleksandar; Akbay, Taner; Hagiwara, Hidehisa; Matsuda, Junko; Kaneko, Kenji; Ishihara, Tatsumi

    2017-07-01

    Obtaining bifunctional electrocatalysts with high activity for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is a main hurdle in the application of rechargeable metal-air batteries. Earth-abundant 3d transition metal-based catalysts have been developed for the OER and ORR; however, most of these are based on oxides, whose insulating nature strongly restricts their catalytic performance. This study describes a metallic Ni-Fe nitride/nitrogen-doped graphene hybrid in which 2D Ni-Fe nitride nanoplates are strongly coupled with the graphene support. Electronic structure of the Ni-Fe nitride is changed by hybridizing with the nitrogen-doped graphene. The unique heterostructure of this hybrid catalyst results in very high OER activity with the lowest onset overpotential (150 mV) reported, and good ORR activity comparable to that for commercial Pt/C. The high activity and durability of this bifunctional catalyst are also confirmed in rechargeable zinc-air batteries that are stable for 180 cycles with an overall overpotential of only 0.77 V at 10 mA(-2) . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Kinetics and mechanisms of the reactions of alkyl radicals with oxygen and with complexes of Co(III), Ru(III), and Ni(III)

    SciTech Connect

    Kelley, D.

    1990-10-08

    The kinetics of the reactions of C{sub 2}H{sub 5} radical with Co(NH{sub 3}){sub 5}X{sup 2+}, Ru(NH{sub 3}){sub 5}X{sup 2+}, and Co(dmgH){sub 2} (X) (Y) (X = Br, Cl, N{sub 3}, SCN; Y = H{sub 2}O, CH{sub 3}CN) complexes were studied using laser flash photolysis of ethylcobalt complexes. The kinetics were obtained by the kinetic probe method. Some relative rate constants were also determined by a competition method based on ethyl halide product ratios. The kinetics of colligation reactions of a series of alkyl radicals with {beta}-Ni(cyclam){sup 2+} were studied using flaser flash photolysis of alkylcobalt complexes. Again, the kinetics were obtained by employing the kinetic probe competition method. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} were studied. Activation parameters were obtained for the unimolecular homolysis of C{sub 2}H{sub 5}Ni(cyclam)H{sub 2}O{sup 2+}. Kinetic and thermodynamic data obtained from these reactions were compared with those for the {sigma}-bonded organometallic complexes. The kinetics of the unimolecular homolysis of a series of RNi(cyclam)H{sub 2}O{sup 2+} complexes were studied by monitoring the formation of the oxygen insertion product RO{sub 2}Ni(cyclam)H{sub 2}O{sup 2+}. The higher rate constants for the reactions of alkyl radicals with oxygen in solution, as compared with those measured in the gas phase, were discussed. 30 refs.

  1. Remarkable Features of the McMurry Reaction Conditions in Dimerization of Formyl- and 2-Formylvinylpurpurinimides. Electrochemistry of Monomeric Ni(II) Purpurinimide and the Corresponding Dyads

    PubMed Central

    Goswami, Lalit N.; Ethirajan, Manivannan; Dobhal, Mahabeer P.; Zhang, Min; Missert, Joseph R.; Shibata, Masayuki; Kadish, Karl M.; Pandey, Ravindra K.

    2009-01-01

    To investigate the electrochemical properties of purpurinimide dyads and electron transfer sites for their reduction and oxidation, a series of dimers with variable C-C linkages were synthesized. For the preparation of these novel structures, the formyl and 2-formylvinyl substituents were regioselectively introduced at positions-3 and 20 of Ni(II) purpurinimides by the Vilsmeier reaction. The Ni(II) complexes were then subjected to the McMurry reaction under two different conditions with unexpected results being obtained. For example, the reaction of formyl purpurinimides with TiCl3(DME)1.5 failed to produce the desired C-C dimers and the starting compounds were recovered almost quantitatively. Under similar reaction conditions, the 20-(2-formylvinyl)purpurinimide also did not dimerize but gave instead unexpected benzoisobacteriochlorins via an intramolecular cyclization. However, treatment of the 3-formyl- and 20-formyl-purpurinimides with TiCl4/Zn gave the corresponding dimers linked with one double bond (trans-) in modest yields. Under similar conditions, Ni(II) purpurinimides containing a 2-formylvinyl substituent either at position-3 or position-20 afforded the respective C-C dimers, where the purpurinimide moieties were joined with a trans-trans-trans- hexatriene linker. Molecular modeling data suggest that the nature of the conformational energy difference found in all trans- vs. trans-cis-trans- conformers of the dimers connected by a hexatriene linker at the meso- or β-position of the macrocycle is not due to the intrinsic conformational energy difference of the linker region, which is identical for both dimers. PMID:19072690

  2. Quantitative Analysis of Homogeneous Electrocatalytic Reactions at IDA Electrodes: The Example of [Ni(PPh2NBn2)2]2+

    SciTech Connect

    Liu, Fei; Parkinson, B. A.; Divan, Ralu; Roberts, John; Liang, Yanping

    2016-12-01

    Interdigitated array (IDA) electrodes have been applied to study the EC’ (electron transfer reaction followed by a catalytic reaction) reactions and a new method of quantitative analysis of IDA results was developed. In this new method, currents on IDA generator and collector electrodes for an EC’ mechanism are derived from the number of redox cycles and the contribution of non-catalytic current. And the fractions of bipotential recycling species and catalytic-active species are calculated, which helps understanding the catalytic reaction mechanism. The homogeneous hydrogen evolution reaction catalyzed by [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) electrocatalyst was examined and analyzed with IDA electrodes. Besides, the existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. This quantitative analysis of IDA electrode cyclic voltammetry currents can be used as a simple and straightforward method for determining reaction mechanism in other catalytic systems as well.

  3. Fine-sized LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Kang, Yun Chan

    The Ni-rich precursor powders with spherical shape and filled morphologies were prepared by spray pyrolysis from the spray solution with citric acid, ethylene glycol and a drying control chemical additive. The precursor powders with controlled morphologies formed the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size by solid-state reaction with lithium hydroxide. However, the cathode powders prepared from the spray solution without additives had irregular morphologies and were large in size. The precursor powders with hollow and porous morphologies formed cathode powders with irregular and aggregated morphologies. The composition ratios of the nickel, cobalt and manganese components were maintained in the as-prepared, precursor and cathode powders. The initial discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size tested at a temperature of 55 °C under a constant current density of 0.5 C was 215 mAh g -1. The discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders decreased to 81% of the initial value after 30 cycles.

  4. Development of Negative Ion Proton Transfer Reaction Time-of-Flight Mass Spectrometry (NI-PTR TOFMS) for the Measurement of Gas Phase Acids in the Troposphere

    NASA Astrophysics Data System (ADS)

    Cochran, A. K.; Begashaw, I.; Jessamy, C.; Bililign, S.

    2008-12-01

    We report on the progress and feasibility tests of an on-line time-of-flight (TOF) technique for negative ion proton transfer reactive mass spectrometry (NI-PTRMS) for the measurement of trace gas phase carboxylic acids. Acetate ions are produced via alpha particle ionization of acetic acid through a polonium-210. The target carboxylic gases undergo proton transfer reactions with the acetate ions due to the affinity differences. This technique has the potential for improvement in mass resolution as well as shorter integration periods which lead to faster measurements with greater sensitivity. We report on initial instrument sensitivity, calibrations, and clustering effects of some known gases as well as some carboxylic acids for some comparisons with recent negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) results. This work is supported in part by both NOAA (Award NA06OAR4810187) and NSF (award 0803016).

  5. Biochar supported Ni/Fe bimetallic nanoparticles to remove 1,1,1-trichloroethane under various reaction conditions.

    PubMed

    Li, Hui; Qiu, Yue-Feng; Wang, Xiao-Li; Yang, Jie; Yu, Yun-Jiang; Chen, Ya-Qin; Liu, Yong-di

    2017-02-01

    In this study, Ni/Fe nanoparticles supported by biochar to stimulate the reduction of 1,1,1-trichloroethane (1,1,1-TCA) in groundwater remediation was investigated. In order to enhance the reactivity of ZVI (zero valent iron) nanoparticles, surface modification of ZVI was performed using nickel and biochar. The removal efficiency of 1,1,1-TCA increased from 42.3% to 99.3% as the biochar-to-Ni/Fe mass ratio increased from 0 to 1.0. However a higher biochar-to-Ni/Fe ratio showed little difference in the 1,1,1-TCA degradation efficiency. In the presence of Ni, atomic hydrogen generated by ZVI corrosion could be absorbed in the metal additive's lattice and then produce a hydride-like species (H) that represented the primary redox-active entity. The effects of various factors were evaluated, including pH, humic acid (HA) and inorganic matters (Cl(-), CO3(2-), HCO3(-), NO3(-) and SO4(2-)). The degradation of 1,1,1-TCA was greatly affected by pH. The presence of Cl(-), CO3(2-), HCO3(-) and SO4(2-) had negligible effects, but NO3(-) and HA showed a significant inhibitory effects on 1,1,1-TCA degradation. In conclusion, biochar supported Ni/Fe nanoparticles could be highly effective for 1,1,1-TCA degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  7. Thermodynamic properties for bunsenite, NiO, magnetite, Fe3O4, and hematite, Fe2O3, with comments on selected oxygen buffer reactions

    USGS Publications Warehouse

    Hemingway, B.S.

    1990-01-01

    Smoothed values of the heat capacities and derived thermodynamic functions are given for bunsenite, magnetite, and hematite for the temperature interval 298.15 to 1800 K. The Gibbs free energy for the reaction Ni + 0.5O2 = NiO is given by the equation ??rG0T = -238.39 + 0.1146T - 3.72 ?? 10-3T ln T and is valid from 298.15 K to 1700 K. The Gibbs free energy (in kJ) of the reaction 2 magnetite + 3 quartz = 3 fayalite + O2 may be calculated from the equation ??rG0T = 474.155 - 0.16120 T in kJ and between 800 and 1400 K. The Gibbs free energy (in kJ) of the reaction 6 hematite = 4 magnetite + O2 may be calculated from the following equations: ??rG0T = 496.215 - 0.27114T, ??rG0T = 514.690 - 0.29753T, ??rG0T = 501.348 - 0.2854T. -from Author

  8. Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad

    NASA Astrophysics Data System (ADS)

    Alam, M. O.; Chan, Y. C.; Tu, K. N.

    2003-09-01

    In this work, shear strengths of the solder joints for Sn-Ag eutectic alloy with the Au/electroless Ni(P)/Cu bond pad were measured for three different electroless Ni(P) layers. Sn-Ag eutectic solder alloy was kept in molten condition (240 °C) on the Au/electroless Ni(P)/Cu bond pad for different time periods ranging from 0.5 min to 180 min to render the ultimate interfacial reaction and the consecutive shear strength. After the shear test, fracture surfaces were investigated by scanning electron microscopy equipped with energy dispersed x ray. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces. It was found that formation of crystalline phosphorous-rich Ni layer at the solder interface of Au/electroless Ni(P)/Cu bond pad with Sn-Ag eutectic alloy deteriorates the mechanical strength of the joints significantly. It was also noticed that such weak P-rich Ni layer appears quickly for high-P content electroless Ni(P) layer. However, when this P-rich Ni layer disappears from a prolonged reaction, the shear strength increases again.

  9. Modeling of chemical reactions in the mixture of Al-Ni powders under shock-wave compression

    SciTech Connect

    Horie, Y.; Kipp, M.E.

    1987-07-01

    Based upon microstructural observations of post-shock samples, a mathematical model was developed for chemical changes in the mixture of elemental Al and Ni powders from the passage of high-pressure shock-wave. The model was solved and illustrated using the one-dimensional Sandia code WONDY-IV.

  10. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries.

    PubMed

    Sumboja, Afriyanti; Chen, Jingwei; Zong, Yun; Lee, Pooi See; Liu, Zhaolin

    2017-01-05

    High performance catalysts for the oxygen evolution reaction (OER) are in demand to improve the re-chargeability of Zn-air batteries. In this work, atomically dispersed NiMn layered double hydroxides are prepared via simple hydrothermal synthesis and tested as the OER catalyst in rechargeable Zn-air batteries. NiMn layered double hydroxides with the optimized Ni : Mn molar feeding ratio have good crystallinity, big interlayer spacing, and large surface area, which are beneficial to enhance their catalytic activity. They are highly active and stable during the OER, showing an overpotential of 0.35 V, a Tafel slope of 40 mV dec(-1), and remarkable stability during 16 h of a chronopotentiometry test. Rechargeable Zn-air batteries with NiMn layered double hydroxides as the OER catalyst exhibit a low charge voltage of ≈2 V which is stable for up to 200 cycles. This study illustrates a platform to enhance the catalytic activity of the OER catalyst via fine-tuning the composition and physical properties of the materials and their application for rechargeable metal-air batteries.

  11. Mesoporous NiCo2O4 Nanoplates on Three-Dimensional Graphene Foam as an Efficient Electrocatalyst for the Oxygen Reduction Reaction.

    PubMed

    Tong, Xili; Chen, Shuai; Guo, Congxiu; Xia, Xinhui; Guo, Xiang-Yun

    2016-01-21

    Catalysts for the oxygen reduction reaction (ORR) are highly important in fuel cells and metal-air batteries. Cheap ORR catalysts with ultrahigh electrochemical activity, selectivity, and stability are extremely desirable but still remain challenging. Herein, mesoporous NiCo2O4 nanoplate (NP) arrays on three-dimensional (3D) graphene foam are shown to be a highly economical ORR catalyst. This mesoporous mixed-valence oxide can provide more electrocatalytic active sites with increased accessible surface area. In addition, graphene-foam-supported NiCo2O4 NP arrays have a 3D hierarchical porous structure, which is of great benefit to ion diffusion and electron transfer. As a result, the mesoporous NiCo2O4 NP arrays/graphene foam catalyst exhibits outstanding ORR performance with the four-electron reduction of O2 to H2O in alkaline media. Furthermore, the mesoporous catalyst shows enhanced electrocatalytic activity with a half-wave potential of 0.86 V vs RHE and better stability compared with a commercial Pt/C catalyst.

  12. Mg segregation in Mg-rich Mg-Ni switchable mirror studied by Rutherford backscattering, elastic recoil detection analysis, and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Sekiba, D.; Horikoshi, M.; Abe, S.; Ishii, S.

    2009-12-01

    Pd/Mg3.3Ni films were prepared by dc sputtering deposition on three different substrates of glass, diamondlike carbon/Si, and Si. Hydrogenation and dehydrogenation cycles were performed on these samples simultaneously. The optical switching property due to the hydrogenation and dehydrogenation was monitored by the transmission of laser light via the glass substrate. The switching ability was totally lost after 120 cycles. We made comparative study of the composition change between the new (as-deposited) and old (after 120 switching cycles) samples by Rutherford backscattering (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). From the RBS results we found out the segregation of a Mg layer between the Pd cap layer and the rest of the Mg-Ni layer. At the Pd/Mg interface in the old sample, thin MgO layer formed probably during the dehydrogenation process with O2. ERDA showed that there is much hydrogen in the old sample. NRA displayed the depth profiles of hydrogen distribution in the old sample. It is revealed that much hydrogen is accumulated at the interface between the Pd cap layer and the segregated Mg layer. It can be concluded that the formations of oxide and hydride of the segregated Mg layer are the main reasons for the degradation of the Mg3.3Ni switchable mirror.

  13. Mg segregation in Mg-rich Mg-Ni switchable mirror studied by Rutherford backscattering, elastic recoil detection analysis, and nuclear reaction analysis

    SciTech Connect

    Sekiba, D.; Horikoshi, M.; Abe, S.; Ishii, S.

    2009-12-01

    Pd/Mg{sub 3.3}Ni films were prepared by dc sputtering deposition on three different substrates of glass, diamondlike carbon/Si, and Si. Hydrogenation and dehydrogenation cycles were performed on these samples simultaneously. The optical switching property due to the hydrogenation and dehydrogenation was monitored by the transmission of laser light via the glass substrate. The switching ability was totally lost after 120 cycles. We made comparative study of the composition change between the new (as-deposited) and old (after 120 switching cycles) samples by Rutherford backscattering (RBS), elastic recoil detection analysis (ERDA), and nuclear reaction analysis (NRA). From the RBS results we found out the segregation of a Mg layer between the Pd cap layer and the rest of the Mg-Ni layer. At the Pd/Mg interface in the old sample, thin MgO layer formed probably during the dehydrogenation process with O{sub 2}. ERDA showed that there is much hydrogen in the old sample. NRA displayed the depth profiles of hydrogen distribution in the old sample. It is revealed that much hydrogen is accumulated at the interface between the Pd cap layer and the segregated Mg layer. It can be concluded that the formations of oxide and hydride of the segregated Mg layer are the main reasons for the degradation of the Mg{sub 3.3}Ni switchable mirror.

  14. Characterization of quasi-nano-sized TiCx-Ni-Fe thin composite sheet prepared by using self-propagating high-temperature synthesis reaction and electroforming

    NASA Astrophysics Data System (ADS)

    Choi, Yong

    2014-05-01

    Thin TiCx-Ni-Fe composites sheet was prepared by self-propagating high-temperature synthesis (SHS) and electroforming. The quasi-nano-sized titanium carbide particles were prepared by self-propagating high temperature synthesis (SHS) followed by mechanical milling and ultrasonic floating agitation for classifying particles. The composite sheet was fabricated by co-deposition of the classified titanium carbide particles in a modified Watts nickel bath containing iron chloride during nickel-iron electro-forming. Neutron diffraction showed that the non-stoichiometric number of titanium carbides formed by the SHS reaction were in the range of 0.68 to 0.97, which depended on the initial carbon sources. X-ray diffraction and electron probe micro-analysis revealed that co-deposition of the carbides in Ni-Fe bath during the electroforming process produced a thin TiCx-Ni-Fe composite sheet, in which quasi-nano-sized titanium carbides were embedded about 7 at.%. The average surface resistance of the thin composite sheet was 1.053 ohm/sq. The corrosion potential and rate of the composites in a 50% NaOH solution were -920.6 mVSHE and 8.4×10-6 Acm-2, respectively.

  15. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    PubMed

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Role of lead in electrochemical reaction of alloy 600, alloy 690, Ni, Cr, and Fe in water

    NASA Astrophysics Data System (ADS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Ju Yup

    2003-08-01

    It has been reported that lead causes stress corrosion cracking (SCC) in the secondary side of steam generators (SG) in pressurized water reactors (PWR). The materials of SG tubings are alloy 600, alloy 690, or alloy 800, among which the main alloying elements are Ni, Cr, and Fe. The effect of lead on the electrochemical behaviors of alloy 600 and alloy 690 using an anodic polarization technique was evaluated. We also obtained polarization curves of pure Ni, Cr, and Fe in water containing lead. As the amount of lead in the solution increased, critical current densities and passive current densities of alloy 600 and alloy 690 increased, while the breakdown potential of the alloys decreased. Lead increased critical current density and the passive current of Cr in pH 4 and pH 10. The instability of passive film of steam generator tubings in water containing lead might arise from the instability of Cr passivity.

  17. Kinetics of water vapor reactions with intergranular fracture surfaces of Ni{sub 3}Al with and without boron

    SciTech Connect

    Lee, K.H.; Lukowski, J.T.; White, C.L.

    1996-11-15

    In recent years, there has appeared some convincing evidence that the brittleness normally observed in Ni{sub 3}Al polycrystals at ambient temperature and pressure is at least partially due to an environmental effect associated with trace levels of moisture present in many testing environments. In a previous study, the authors found that undoped Ni{sub 3}Al is susceptible to environmental embrittlement in either moist Ar or Ar + 5%H{sub 2} gas, indicating similar embrittling effect of both environments. In contrast to this, boron-doped Ni{sub 3}Al is not very susceptible to moisture-induced embrittlement whereas it is susceptible to gaseous hydrogen-induced intergranular embrittlement. In both H{sub 2}O and H{sub 2} environments, crack tip processes leading to embrittlement may involve gas phase transport to the crack tip, adsorption of the gaseous species (associative and dissociative), absorption and diffusion of atomic hydrogen. Once atomic hydrogen is produced at the surface, its absorption and diffusion should be the same regardless of whether it originates as environmental H{sub 2}O or as H{sub 2}.

  18. (Ni,Mg)3Si2O5(OH)4 solid-solution nanotubes supported by sub-0.06 wt % palladium as a robust high-efficiency catalyst for Suzuki-Miyaura cross-coupling reactions.

    PubMed

    Zhu, Wancheng; Yang, Yan; Hu, Shi; Xiang, Guolei; Xu, Biao; Zhuang, Jing; Wang, Xun

    2012-06-04

    (Ni(1-x),Mg(x))(3)Si(2)O(5)(OH)(4) solid-solution nanotubes (NTs) with tunable compositions were hydrothermally synthesized by altering the molar ratio of Mg(2+) to Ni(2+). The as-synthesized NTs were loaded with sub-0.06 wt % palladium (Pd; ∼0.045 wt %) for Suzuki-Miyaura (SM) coupling reactions between iodobenzene or 4-iodotoluene and phenylboronic acid. The (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) NTs supported by 0.045 wt % Pd promoted the iodobenzene-participated coupling reaction with a high yield of >99%, an excellent recycling catalytic performance during 10 cycles of catalysis with yields of ∼99%, and also an extremely low Pd releasing level of ∼0.02 ppm. High-activity Pd and PdO clusters, multitudes of dislocations, and defects and terraces contained within the NTs should contribute to the (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) NTs supported by 0.045 wt % Pd as a robust, reusable, and high-efficiency catalyst for SM coupling reactions with an extremely low Pd releasing level. The present hydrothermally stable (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) solid-solution silicate NTs provided an ideal alternative tubular-structured support for noble- or transition-metal catalysts with low Pd loading, good recycling, and extremely low ppb levels of Pd release, which could also be extended to some other SM coupling reactions.

  19. [The effect of bacteria reaction time on corrosion properties of Ni-Cr alloys pretreated with different proteins].

    PubMed

    Qi, Han-quan; Zhang, Song-mei; Qian, Chao; Yuan-Li, Zheng

    2015-12-01

    To evaluate the corrosion properties of absorbed protein on the surface of NiCr alloys, and provide experimental base for corrosion resistance of dental casting alloys. NiCr alloy specimens were divided into 3 groups: one group was exposed to the artificial saliva(control group), and the other 2 groups were exposed to the artificial saliva with 1% bovine serum albumin(BSA), or 0.22% lysozyme(LSZ). Group of BSA and group of LSZ were the experimental group. Specimens in 3 groups were cultured in solution of Streptococcus mutans for 12 h, 24 h, 36 h and 48h, and investigated with electrochemical impedance spectroscopy measurement(EIS) and potentiodynamic polarization measurement(POT) to determine the corrosion resistance of the alloys. The data was analyzed with SPSS 17.0 software package. The results indicated that the corrosion resistance of both BSA group and LSZ group were higher than that of the control group (P<0.05) and LSZ group was superior to BSA group cultured in the solution of Streptococcus mutans for 12 h. When cultured for 24 h, the corrosion resistance of BSA group and LSZ group had no significant difference (P>0.05), but was still higher than that of the control group. After 36 h culture time, the control group and the BSA group had no statistical difference in corrosion resistance (P>0.05), while the LSZ group had the poorest corrosion resistance. When the culture time extended to 48 h, the control group had a better corrosion resistance compared with the BAS group and the LSZ group(P<0.05), but BSA group had displayed lower corrosion properties than LSZ group. The potentiodynamic polarization curve and electrochemical impedance spectroscopy had similar results. The adhesion of BSA and LSZ on the surface of the NiCr alloys in the early time could effectively inhibit the corrosive effect of Streptococcus mutans. The LSZ had better effect than BSA. With the continuing role of bacteria and the consumption of the absorb protein, the corrosion

  20. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    NASA Technical Reports Server (NTRS)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  1. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    DOE PAGES

    Shao, Lin; Chen, Di; Wei, Chaochen; ...

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reachmore » the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.« less

  2. Radiation effects on interface reactions of U/Fe, U/(Fe+Cr), and U/(Fe+Cr+Ni)

    SciTech Connect

    Shao, Lin; Chen, Di; Wei, Chaochen; Martin, Michael S.; Wang, Xuemei; Park, Youngjoo; Dein, Ed; Coffey, Kevin R.; Sohn, Yongho; Sencer, Bulent H.; Rory Kennedy, J.

    2014-10-01

    We study the effects of radiation damage on interdiffusion and intermetallic phase formation at the interfaces of U/Fe, U/(Fe + Cr), and U/(Fe + Cr + Ni) diffusion couples. Magnetron sputtering is used to deposit thin films of Fe, Fe + Cr, or Fe + Cr + Ni on U substrates to form the diffusion couples. One set of samples are thermally annealed under high vacuum at 450 C or 550 C for one hour. A second set of samples are annealed identically but with concurrent 3.5 MeV Fe++ ion irradiation. The Fe++ ion penetration depth is sufficient to reach the original interfaces. Rutherford backscattering spectrometry analysis with high fidelity spectral simulations is used to obtain interdiffusion profiles, which are used to examine differences in U diffusion and intermetallic phase formation at the buried interfaces. For all three diffusion systems, Fe++ ion irradiations enhance U diffusion. Furthermore, the irradiations accelerate the formation of intermetallic phases. In U/Fe couples, for example, the unirradiated samples show typical interdiffusion governed by Fick’s laws, while the irradiated ones show step-like profiles influenced by Gibbs phase rules.

  3. Synthesis of the Z =122 superheavy nucleus via 58Fe- and 64Ni-induced reactions using the dynamical cluster-decay model

    NASA Astrophysics Data System (ADS)

    Chopra, Sahila; Hemdeep, Gupta, Raj K.

    2017-04-01

    Within the framework of the dynamical cluster-decay model (DCM), we have studied the nuclear system with Z =122 and mass number A = 306 formed via two "hot" fusion reactions 58Fe+248Cm and 64Ni+242Pu . The up-to-date measured data are available only for the first reaction, and for fusion-fission cross section σff and quasifission cross section σqf, only at one compound nucleus (CN) excitation energy E*=33 MeV . In this study, we have included the deformation effects up to quadrupole deformations β2 i and with "optimum" orientations θiopt . for coplanar (Φ =00 ) configurations. The only parameter of the model is the neck-length parameter Δ R whose value, for the nuclear proximity potential used here, remains within its range of validity (˜2 fm ). Using the best fitted Δ R 's to the observed data for σff, calculated for mass region A /2 ±20 , and σqf for the incoming channel of Fe-induced reaction at E*=33 MeV , we have extended the DCM calculations to the other Ni-induced reaction, and to E*'s in the energy range 25-68 MeV. The interesting result is that the predicted evaporation residue cross section σER for 1-4 neutrons is largest for 4n decay at E*=45 MeV , having the value σER≡σ4 n˜10-5 pb for both reactions, and that the Δ R 's for the three processes (ER, ff, and qf) are different, i.e., they belong to different time scales where ff occurs first, then qf and the ER at the end. Other results of interest are the predictions of the magic N =82 136Xe fragment in the ff region of mass A /2 ±20 , and the doubly magic 208Pb in the qf region, in near close agreement with observed data (the observed fission fragment is of mass 132, instead of the predicted mass 136). The role of the weakly bound neutron-rich intermediate mass fragments and of the nucleus in the neighborhood of deformed magic Z = 108 are also indicated in the DCM calculations, which need experimental verification. For the predicted σER, the largest value of CN fusion probability PCN

  4. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; Su, Dong; Hwang, Sun -Mi; Yim, Sung -Dae; Yang, Tae -Hyun; Park, Gu -Gon; Adzic, Radoslav R.

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of the IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.

  5. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    SciTech Connect

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; Su, Dong; Hwang, Sun -Mi; Yim, Sung -Dae; Yang, Tae -Hyun; Park, Gu -Gon; Adzic, Radoslav R.

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of the IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.

  6. Insight into the reaction mechanism of CO2 activation for CH4 reforming over NiO-MgO: A combination of DRIFTS and DFT study

    NASA Astrophysics Data System (ADS)

    Jiang, Shiping; Lu, Yao; Wang, Shengping; Zhao, Yujun; Ma, Xinbin

    2017-09-01

    The interaction mechanisms of dry reforming of methane, especially in the part of CO2 activation on the reduced NiO-MgO catalyst, have been systematically investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations. Based on the results, it is indicated that, what more favorable for CO generation is gaseous CO2 reaction with deposited C intermediates, namely E-R type mechanism, rather than CO2 direct dissociation to form CO and atomic O. In addition, with the help of H species, monodentate carbonate, which derives from the adsorbed CO2 on the MgO surface, can be also activated and hydrogenated dissociation to generate CO.

  7. {sup 64}Cu levels from the {sup 62 }Ni({sup 3}He,p) reaction at 18 MeV

    SciTech Connect

    Basak, A.K. |; Basher, M.A.; Mondal, A.S.; Uddin, M.A.; Bhattacherjee, S.; Husain, A.; Das, S.K.; Haque, M.; Sen Gupta, H.M.

    1997-10-01

    The ({sup 3}He,p) reaction has been studied on {sup 62}Ni using a beam of 18 MeV {sup 3}He particles. Angular distributions of the outgoing protons have been measured for 65 levels including the new levels at 2.323, 3.231, 5.043, and 7.339 MeV and the analog states at 6.821 MeV (0{sup + };4) and 8.188 MeV (2{sup +};4) in the angular range {theta}{sub lab}=5{degree}{endash}80 {degree}. Data have been analyzed in terms of the distorted-wave Born approximation (DWBA). The L transfers have been obtained, J{sup {pi}} limits have been assigned, and the normalization constant has been deduced for several low-lying states. {copyright} {ital 1997} {ital The American Physical Society}

  8. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; ...

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of themore » IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.« less

  9. Influence of the Coulomb Field on Charged Particle Emission in Ar + Ni Reaction at 77 MeV/u

    NASA Astrophysics Data System (ADS)

    Wosinska, K.; Pluta, J.; Hanappe, F.; Stuttge, L.; Angelique, J. C.; Basrak, Z.; Benoit, B.; de Goes Brennand, E.; Bizard, G.; Colin, J.; Costa, G.; Desesquelles, P.; Dorvaux, O.; Durand, D.; Erazmus, B.; Kuleshov, S.; Lednicky, R.; Leszczynski, P.; Marques, M.; Materna, Th.; Mikhailov, K.; Papatheofanous, G.; Pawlak, T.; Przewlocki, M.; Staranowicz, A.; Stavinskiy, A.; Sztenkiel, A.; Tamain, B.; Vlasov, A.; Vorobyev, L.

    2004-03-01

    Ar+Ni collisions at 77 MeV/u were studied in the experiment E286 performed at GANIL. An important advantage of this experiment was an application of the neutron detector DEMON for registration of both neutral and charged particles. This feature allows to compare characteristics of neutrons and protons detected by the same detector and gives a possibility to determine the influence of the Coulomb field on the proton emission. Estimation of a charge of the emitting source was performed by comparing energy spectra of neutrons and protons detected under identical experimental conditions. The experimental results were compared with the prediction of the SIMON model [D. Durand, Nucl. Phys. A541, 266 (1992)] and Landau--Vlasov model [Z. Basrak, Ph. Eudes, P. Abgrall, F. Haddad, F. Sébille, Nucl. Phys. A624, 472 (1997)].

  10. Ab Initio Modeling of Electrolyte Molecule Ethylene Carbonate Decomposition Reaction on Li(Ni,Mn,Co)O2 Cathode Surface.

    PubMed

    Xu, Shenzhen; Luo, Guangfu; Jacobs, Ryan; Fang, Shuyu; Mahanthappa, Mahesh K; Hamers, Robert J; Morgan, Dane

    2017-06-21

    Electrolyte decomposition reactions on Li-ion battery electrodes contribute to the formation of solid electrolyte interphase (SEI) layers. These SEI layers are one of the known causes for the loss in battery voltage and capacity over repeated charge/discharge cycles. In this work, density functional theory (DFT)-based ab initio calculations are applied to study the initial steps of the decomposition of the organic electrolyte component ethylene carbonate (EC) on the (101̅4) surface of a layered Li(Nix,Mny,Co1-x-y)O2 (NMC) cathode crystal, which is commonly used in commercial Li-ion batteries. The effects on the EC reaction pathway due to dissolved Li(+) ions in the electrolyte solution and different NMC cathode surface terminations containing adsorbed hydroxyl -OH or fluorine -F species are explicitly considered. We predict a very fast chemical reaction consisting of an EC ring-opening process on the bare cathode surface, the rate of which is independent of the battery operation voltage. This EC ring-opening reaction is unavoidable once the cathode material contacts with the electrolyte because this process is purely chemical rather than electrochemical in nature. The -OH and -F adsorbed species display a passivation effect on the surface against the reaction with EC, but the extent is limited except for the case of -OH bonded to a surface transition metal atom. Our work implies that the possible rate-limiting steps of the electrolyte molecule decomposition are the reactions on the decomposed organic products on the cathode surface rather than on the bare cathode surface.

  11. Bis(imidazolidine)pyridine-NiCl2 Catalyst for nitro-Mannich reaction of isatin-derived N-Boc ketimines: asymmetric synthesis of chiral 3-substituted 3-amino-2-oxindoles.

    PubMed

    Arai, Takayoshi; Matsumura, Eri; Masu, Hyuma

    2014-05-16

    An (S,S)-diphenyldiamine-derived bis(imidazolidine)pyridine (PyBidine)-NiCl2 complex catalyzed the nitro-Mannich reaction of isatin-derived N-Boc ketimines to construct a chiral quaternary aminocarbon center at the C3 position of oxindoles in yields of up to 99% with 95% ee.

  12. Uptake properties of Ni2+ by nCaO.Al2O3.2SiO2 (n=1-4) prepared from solid-state reaction of kaolinite and calcite.

    PubMed

    Jha, Vinay Kumar; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi; MacKenzie, Kenneth J D

    2005-08-31

    A series of nCaO.Al2O3.2SiO2 samples (n=1-4) were prepared by solid-state reaction of mechanochemically treated mixtures of kaolinite and calcite fired at 600-1000 degrees C for 24 h. All the samples were X-ray amorphous after firing at 600-800 degrees C but had crystallized by 900 degrees C. The main crystalline phases were anorthite (n=1), gehlenite (n=2 and 3) and larnite (n=4). The uptake of Ni2+ by nCaO.Al2O3.2SiO2 samples fired at 800 and 900 degrees C was investigated at room temperature using solutions with initial Ni2+ concentrations of 0.1-50 mmol/l. Amorphous samples (fired at 800 degrees C) showed a higher Ni2+ uptake capacity than crystalline samples (fired at 900 degrees C). Ni2+ uptake was found to increase with increasing of CaO content. Amorphous 4CaO.Al2O3.2SiO2 showed the highest Ni2+ uptake capacity (about 9 mmol/g). The Ni2+ uptake abilities of the present samples are higher than those of other materials reported in the literature. Since the sorbed Ni2+/released Ca2+ ratios of these samples are close to unity, ion replacement of Ni2+ for Ca2+ is thought to be the principal mechanism of Ni2+ uptake by the present samples.

  13. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    DOE PAGES

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; ...

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With themore » core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]« less

  14. Surface profile control of FeNiPt/Pt core/shell nanowires for oxygen reduction reaction

    SciTech Connect

    Zhu, Huiyuan; Zhang, Sen; Su, Dong; Jiang, Guangming; Sun, Shouheng

    2015-03-18

    The ever-increasing energy demand requires renewable energy schemes with low environmental impacts. Electrochemical energy conversion devices, such as fuel cells, combine fuel oxidization and oxygen reduction reactions and have been studied extensively for renewable energy applications. However, their energy conversion efficiency is often limited by kinetically sluggish chemical conversion reactions, especially oxygen reduction reaction (ORR). [1-5] To date, extensive efforts have been put into developing efficient ORR catalysts with controls on catalyst sizes, compositions, shapes and structures. [6-12] Recently, Pt-based catalysts with core/shell and one-dimensional nanowire (NW) morphologies were found to be promising to further enhance ORR catalysis. With the core/shell structure, the ORR catalysis of a nanoparticle (NP) catalyst can be tuned by both electronic and geometric effects at the core/shell interface. [10,13,14] With the NW structure, the catalyst interaction with the conductive support can be enhanced to facilitate electron transfer between the support and the NW catalyst and to promote ORR. [11,15,16]

  15. Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2014-12-01

    Hierarchical hollow urchins of NiCo2O4 (HU-NiCo2O4) were synthesized by a hard templating method followed by thermal decomposition. The structure consists of three levels of hierarchy i.e., zero-dimensional nanoparticle with a diameter of about 6 nm, one-dimensional chain, and three-dimensional hollow urchin, respectively. Nanoparticle aggregates of NiCo2O4 (NA-NiCo2O4) were also synthesized by the same procedure in the absence of the hard template. Relative to NA-NiCo2O4, HU-NiCo2O4 features a well-connected three-dimensional porous structure, which is beneficial for diffusion of oxygen. Consequently, HU-NiCo2O4 displayed superior electrocatalytic activity towards oxygen evolution processes with lower overpotential, higher current density, and higher stability than NA-NiCo2O4.

  16. Hydrogen generation arising from the {sup 59}Ni(n,p) reaction and its impact on fission-fusion correlations

    SciTech Connect

    Greenwood, L.R.; Garner, A.F.

    1996-04-01

    Whilte the influence of transmutant helium on radiation-induced microstructural evolution has often been studied, there is a tendency to overlook the influence of concurrently-generated hydrogen. There have been some recent speculation and studies, however, that suggest that the influence of hydrogen may be enhanced in the presence of large amounts of helium, especially at lower irradiation temperatures typical of projected ITER operation. The impact of the (n,p) reaction on both hydrogen generation rates and displacement rates are evaluated in this paper for a variety of neutron spectra employed in fission-fusion correlation.

  17. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  18. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface.

  19. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  20. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2⇌ CH + H on Ni(111) as a case study.

    PubMed

    Sun, Geng; Jiang, Hong

    2015-12-21

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH2⇌CH+H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for accurate description of

  1. Strengthened Synergistic Effect of Metallic Mx Py (M = Co, Ni, and Cu) and Carbon Layer via Peapod-Like Architecture for Both Hydrogen and Oxygen Evolution Reactions.

    PubMed

    Bai, Yuanjuan; Fang, Ling; Xu, Haitao; Gu, Xiao; Zhang, Huijuan; Wang, Yu

    2017-02-06

    The smooth electric transmission is crucial for the high-efficient electrocatalysis. Herein, a series of peapod-like metallic Mx Py /C (M = Co, Ni, and Cu) composites is developed as bifunctional catalysts toward hydrogen and oxygen evolution reactions. For the first time, the metallic property of Cu3 P is confirmed through the theoretical calculation. The in-depth composition, structural and catalytic mechanism analysis of Mx Py /C discloses that the comparable activity and considerable durability of these catalysts mainly result from the strengthened synergistic effect between metallic Mx Py and carbon layer based on the unique peapod-like architecture. Especially, the atomic contact between Mx Py and carbon not only provides an open channel for electronic transmission but also ensures the integrity of peapod-like structure. Furthermore, the high electric conductivity of the inner metallic Mx Py and the outer carbon layer endows the Mx Py /C catalyst with rapid charge migration during the electrocatalytic pathway. These findings shed light on the origin of high catalytic activity of Mx Py /C and open a path for purposefully rationally synthesizing superior electrocatalysts.

  2. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  3. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.

    PubMed

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-12-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g(-1) is achieved at a current density of 50 mA g(-1). It also shows a greatly improved cycle life (~215 mAh g(-1) after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g(-1)). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  4. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Shin, Hyun-Sup; Lee, Chan-Woo; Jung, Kyu-Nam

    2016-02-01

    Sodium (Na)-ion batteries (NIBs) have attracted significant interest as an alternative chemistry to lithium (Li)-ion batteries for large-scale stationary energy storage systems. Discovering high-performance anode materials is a great challenge for the commercial success of NIB technology. Transition metal oxides with tailored nanoarchitectures have been considered as promising anodes for NIBs due to their high capacity. Here, we demonstrate the fabrication of a nanostructured oxide-only electrode, i.e., carbon- and binder-free NiCo2O4 nanoneedle array (NCO-NNA), and its feasibility as an anode for NIBs. Furthermore, we provide an in-depth experimental study of the Na storage reaction (sodiation and desodiation) in NCO-NNA. The NCO-NNA electrode is fabricated on a conducting substrate by a hydrothermal method with subsequent heat treatment. When tested in an electrochemical Na half-cell, the NCO-NNA electrode exhibits excellent Na storage capability: a charge capacity as high as 400 mAh g-1 is achieved at a current density of 50 mA g-1. It also shows a greatly improved cycle life (~215 mAh g-1 after 50 cycles) in comparison to a conventional powder-type electrode (~30 mAh g-1). However, the Na storage performance is still inferior to that of Li, which is mainly due to sluggish kinetics of sodiation-desodiation accompanied by severe volume change.

  5. Synthesis and characterization of NiFe2O4 electrocatalyst for the hydrogen evolution reaction in alkaline water electrolysis using different polymer binders

    NASA Astrophysics Data System (ADS)

    Chanda, Debabrata; Hnát, Jaromír; Paidar, Martin; Schauer, Jan; Bouzek, Karel

    2015-07-01

    NiFe2O4 electrocatalyst for the hydrogen evolution reaction (HER) has been synthesized using the co-precipitation method of the respective metal ions from water solution. After calcination of the precipitate, the resulting electrocatalyst was characterized by a broad range of techniques to obtain information on its crystallographic structure, specific surface area, morphology and chemical composition. The electrocatalytic activity towards HER in alkaline water electrolysis was investigated by means of linear sweep voltammetry. The catalyst showed promising electrocatalytic properties. Subsequently three types of binders were used to prepare a cathode catalytic layer based on a catalyst synthesized on top of a nickel foam support, namely an anion-selective quaternized poly(phenylene oxide) (qPPO) ionomer, an electroneutral polymer polytetrafluoroethylene and cation-selective Nafion®. The resulting membrane-electrode assemblies (MEAs), based on an anion-selective membrane, were tested in an alkaline water electrolyzer. In a single-cell test the MEA with a qPPO ionomer exhibited higher HER activity compared to the remaining binders tested. The current density obtained using a MEA containing qPPO binder attained a value of 125 mA cm-2 at a cell voltage of 1.85 V. The stability of the MEA containing qPPO binder was examined by continuous operation for 143 h, followed by 55 h intermittent electrolysis.

  6. Magnetic properties and microwave absorption in Ni-Zn and Mn-Zn ferrite nanoparticles synthesized by low-temperature solid-state reaction

    NASA Astrophysics Data System (ADS)

    Amiri, Gh. R.; Yousefi, M. H.; Abolhassani, M. R.; Manouchehri, S.; Keshavarz, M. H.; Fatahian, S.

    2011-03-01

    In this work, Mn0.7Zn0.3Fe2O4 and Ni0.7Zn0.3Fe2O4 nanoparticles with super-paramagnetic properties and size distribution from 10 to 52 nm were investigated. These particles were produced by a low-temperature solid-state reaction method without the ball-milling process. The size and morphology of the nanocrystallites were determined by X-ray diffraction, transmission electron microscopy and scanning tunneling microscopy methods. Magnetic measurements such as alternating gradient field magnetometers were used to justify the super-paramagnetic properties of these nanoparticles. Their microwave absorption in the range of 8-18 GHz was studied by a vector network analyzer. Responses of the device under tests were studied. Also, the percentage of the resin, the size and thickness of the mount were determined. The band width of 2.3 GHz was obtained with reflection-loss/written-loss of -16 dB around 10.4 GHz.

  7. Proton-helium correlation in 94 MeV/nucleon sup 16 O-induced reactions on Al, Ni, and Au targets

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. ); Bizard, G.; Durand, D.; Laville, J.L. )

    1992-04-01

    Azimuthal distributions of helium ions have been measured in coincidence with high-energy protons in reactions induced by {sup 16}O at 94 MeV/nucleon on {sup 27}Al, {sup 58}Ni, and {sup 197}Au. Helium ions have been detected in a large area multidetector. Protons have been observed at 90{degree}. Mean multiplicities of light charged particles (H and He) are found slightly dependent on the target mass. Strong azimuthal asymmetries whose intensity is larger for the Al target and vanishes with the increasing of the target mass are observed in the He distributions. Experimental data are discussed in the framework of the participant-spectator picture of a modified fireball model, taking into account intermediate energy corrections. In this framework the behavior of the azimuthal asymmetries, as a function of the target mass, indicates a strong final-state interaction between participant and spectator fragments. Such a result is found in agreement with interaction time predictions of a microscopical calculation based on the Boltzmann-Nordheim-Vlasov equation.

  8. Reaction of H{sub 2} and H{sub 2}S with CoMoO{sub 4} and NiMoO{sub 4}: TPR, XANES, time-resolved XRD, and molecular-orbital studies

    SciTech Connect

    Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L.

    1999-02-04

    The combination of two metals in an oxide matrix can produce materials with novel physical and chemical properties. The reactivity of a series of cobalt and nickel molybdates ({alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}, and AmoO{sub 4}{center_dot}nH{sub 2}O; A = Co or Ni) toward H{sub 2} and H{sub 2}S was examined using temperature programmed reduction (TPR), synchrotron-based X-ray powder diffraction (XRD), and X-ray absorption near-edge-spectroscopy (XANES). In general, the cobalt and nickel molybdates are more reactive toward H{sub 2} and easier to reduce than pure molybdenum oxides: MoO{sub 2} < MoO{sub 3} < CoMoO{sub 4} < NiMoO{sub 4}. The interaction of H{sub 2} with surfaces of {alpha}-NiMoO{sub 4}, {alpha}-CoMoO{sub 4}, and {alpha}-MoO{sub 3} was investigated using ab initio SCF calculations and cluster models. The mixed-metal oxides are easier to reduce due to the combination of two factors. First, it is easier to adsorb and dissociate H{sub 2} on Ni or Co sites than on Mo sites of an oxide. And second, as a result of differences in the strength of the metal-oxygen bonds, it is easier to remove oxygen as water from the nickel and cobalt molybdates than from MoO{sub 3} or MoO{sub 2}. The extra reactivity that the Co and Ni atoms provide also makes the rate of sulfidation of the cobalt and nickel molybdates faster than that of pure molybdenum oxides. For the adsorption of H{sub 2}S, HS, and S on {alpha}-NiMoO{sub 4} and {alpha}-MoO{sub 3} clusters, the results of ab initio SCF calculations show bigger bonding energies on the Ni sites than on the Mo sites. In these systems, the oxidation state of the Ni atoms is substantially lower (i.e., larger electron density) than that of the Mo atoms, favoring the formation of Ni {r_arrow} SH and Ni {r_arrow} S dative bonds. Results of time-resolved XRD and XANES indicate that the reduced AMoO{sub 4} compounds can be regenerated by reaction with O{sub 2} at high temperatures (350--450 C). A similar procedure (S{sub a} + O

  9. Self-assembled NiO-ZrO2 nanocrystals with mesoscopic void space: an efficient and green catalyst for C-S cross-coupling reaction in water.

    PubMed

    Pal, Nabanita; Bhaumik, Asim

    2012-08-14

    New NiO-ZrO(2) nanocrystals (MNZ-1) with mesoscopic self-assembly have been synthesized by using a non-ionic surfactant as the structure directing agent (SDA) via evaporation induced self-assembly (EISA) method. Powder X-ray diffraction (PXRD), N(2) sorption study and transmission electron microscopic (TEM) image analyses revealed the cubic structure, mesoporosity and mesoscopic self-assembly of ca. 7.0 nm sized tiny nanocrystals in the material. MNZ-1 catalyzes the aerobic aryl-sulfur cross-coupling reactions for a series of aryl-iodides with 4-chlorothiophenol in environment friendly water medium at elevated as well as room temperature. Pure ZrO(2) mesoporous nanocrystals are inactive, whereas pure NiO nanocrystals showed much lower catalytic activity under similar reaction conditions. The MNZ-1 nanocatalyst is completely non-air sensitive, inexpensive and effective for the synthesis of a series of essential biomolecules derived from diaryl sulfides.

  10. Exploring the influence of transfer channels on fusion reactions: The case of 40 Ca + 58,64 Ni

    SciTech Connect

    Bourgin, D.; Courtin, S.; Haas, F.; Goasduff, A.; Stefanini, A. M.; Montagnoli, G.; Montanari, D.; Corradi, L.; Huiming, J.; Scarlassara, F.; Fioretto, E.; Simenel, C.; Rowley, N.; Jiang, C. L.; Szilner, S.; Mijatović, T.

    2015-01-29

    Fusion cross sections have been measured in the 40Ca + 58Ni and 40Ca + 64Ni systems at beam energies ranging from Elab = 104.75 MeV to 153.5 MeV using the Laboratori Nazionali di Legnaro electrostatic deflector. Distributions of barriers have been extracted from the experimental data. Preliminary coupled channel calculations were performed and hints of effects of neutron transfers on the fusion below the barrier in the 40Ca + 64Ni are discussed.

  11. Improvement of hydrogen-storage properties of MgH2 by addition of Ni and Ti via reactive mechanical grinding and a rate-controlling step in its dehydriding reaction

    NASA Astrophysics Data System (ADS)

    Song, Myoung Youp; Kwak, Young Jun; Lee, Seong Ho; Park, Hye Ryoung; Kim, Byoung-Goan

    2013-07-01

    In a shift from prior work, MgH2, instead of Mg, was used as a starting material in this work. A sample with a composition of 86 wt% MgH2-10 wt% Ni-4 wt% Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. The effects of reactive mechanical grinding of Mg with Ni and Ti were discussed. The formation of Mg2Ni increased the hydriding and dehydriding rates of the sample. The addition of Ti increased the hydriding rate and greatly increased the dehydriding rate of the sample. The titanium hydride, TiH1.924, was formed during reactive mechanical grinding. This titanium hydride, which is brittle, is thought to help the mixture pulverized by being pulverized during reactive mechanical grinding and further to prevent agglomeration of the magnesium by staying as a hydride among Mg particles. A rate-controlling step for the dehydriding reaction of the hydrided MgH2-10Ni-4Ti was analyzed by using a spherical moving boundary model on an assumption that particles have a spherical shape with a uniform diameter.

  12. Synthesis and characterizations of (In{sub 0.90}Sn{sub 0.05}Ni{sub 0.05}){sub 2}O{sub 3} nanoparticles using solid state reaction method

    SciTech Connect

    Babu, S. Harinath; Krishna, N. Sai; Kaleemulla, S. Rao, N. Madhusudhana; Kuppan, M.; Krishnamoorthi, C.; Joshi, Girish M.; Basheed, G. A.

    2016-05-23

    ITO (In{sub 0.95}Sn{sub 0.05}){sub 2}O{sub 3} and Ni doped ITO (In{sub 0.90}Sn{sub 0.05}Ni{sub 0.05}){sub 2}O{sub 3} nanoparticles (NPs) were synthesized by solid state reaction method and subjected to study their structural, optical and magnetic properties. The NPs had a size distribution in the range of 40 nm and were identified as the bcc cubic In{sub 2}O{sub 3} by X-ray diffraction (XRD). Optical properties of the samples were studies using UV-Vis-NIR spectrophotometer. Magnetic measurements were carried out at room temperature and at 100 K using vibrating sample magnetometer and found that the ITO nanoparticles were ferromagnetic in nature at room temperature. The strength of the magnetization decreased in ITO nanoparticles when the magnetic measurements carried out at 100 K.

  13. Surface organometallic chemistry on metals. III. Formation of a bimetallic Ni-Sn phase generated by reaction of a Sn(n-C sub 4 H sub 9 ) sub 4 and silica-supported nickel oxide

    SciTech Connect

    Agnelli, M.; Candy, J.P.; Basset, J.M. ); Bournonville, J.P.; Ferretti, O.A. )

    1990-02-01

    Reaction of Sn(n-C{sub 4}H{sub 9}){sub 4} with NiO/SiO{sub 2} occurs above 423 K according to the apparent following stoichiometry: NiO + xSn(n-C{sub 4}H{sub 9}){sub 4} {yields} NiSn{sub x} + (2x + 1)C{sub 4}H{sub 8} + (2x {minus} 1)C{sub 4}H{sub 10} + H{sub 2}O. Various compositions of the bimetallic phase can be achieved by changing the initial Sn/Ni ratio. The obtained catalysts were very active and selective in the hydrogenation of ethyl acetate to ethanol. Characterization of the bimetallic phase has shown that the particles are bimetallic (STEM). As a result of chemisorption IR, and magnetic measurements, it appears that the presence of tin has four effects: (i) it decreases significantly the amount of CO and H{sub 2} adsorbed; (ii) it isolates nickel atoms from their neighbors; (iii) it increases electron density on nickel; and (IV) it suppresses the magnetic properties of nickel. Redox behavior of Ni-Sn/SiO{sub 2} toward surface OH indicates that surface hydroxyls can oxidize Sn{sup (0)}, probably to Sn{sup (II)} with evolution of H{sub 2}, the process being reversible with H{sub 2}. It is suggested that during this oxidation process, tin migrates to the periphery of the bimetallic particle with formation of (chemical bond Si-O){sub 2}Sn{sup (II)} surface species.

  14. NiII, CuII and ZnII complexes with a sterically hindered scorpionate ligand (TpmsPh) and catalytic application in the diasteroselective nitroaldol (Henry) reaction.

    PubMed

    Rocha, Bruno G M; Mac Leod, Tatiana C O; Guedes da Silva, M Fátima C; Luzyanin, Konstantin V; Martins, Luísa M D R S; Pombeiro, Armando J L

    2014-10-28

    The Ni(II) and Zn(II) complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))3, pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu(II) complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, (1)H and (13)C{(1)H} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(n)Bu4N](Tpms(Ph)) (7), the latter obtained upon Li(+) replacement by [(n)Bu4N](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn(II) and Cu(II) complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding β-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni(II) complex 2 only shows a modest catalytic activity.

  15. Bulk Migration of Ni/NiO in Ni-YSZ during Reducing Conditions

    SciTech Connect

    Saraf, Laxmikant V.; Baer, Donald R.; Lea, Alan S.; Zhu, Zihua; Strohm, James J.; Sitzman, S. D.; King, David L.

    2010-02-09

    Understanding the migration of Ni/NiO in Ni-YSZ can potentially help to design a better solid oxide fuel cell (SOFC) anode. We have observed that extensive hydrogen reduction and methane steam reforming of Ni-YSZ caused bulk migration of Ni/NiO to at least ~ 5 µm deeper from the Ni-YSZ surface. No significant bulk migration effects were detected after simple thermal treatments in non-reducing/non-reforming environment. Surface analysis of a single zirconia grain in the first 10-20 nm region from annealed, hydrogen reduced and methane steam reformed Ni-YSZ shows Ni-enriched surface supporting earlier claims of Ni exsolution. 3D-EBSD analysis of thermally treated sample before exposing it to reducing and reforming environment indicated mixed NiO/YSZ phase with some porosity and random grain orientation. The surface analysis and mapping were carried out using ToF-SIMS and AES whereas EDS maps on FIB sliced areas on Ni-YSZ were utilized for the bulk analysis. The results provide additional information related to complex reactions occurring in SOFC during internal reforming conditions.

  16. Reaction of bis(o-phosphinophenyl)silane with M(PPh3)4 (M = Ni, Pd, Pt): synthesis and structural analysis of η2-(Si-H) metal(0) and pentacoordinate silyl metal(II) hydride complexes of the Ni triad bearing a PSiP-pincer ligand.

    PubMed

    Takaya, Jun; Iwasawa, Nobuharu

    2011-09-21

    Reactions of bis(o-(diphenylphosphino)phenyl)methylsilane with M(PPh(3))(4) (M = Ni, Pd, Pt) were investigated. When M = Ni or Pd, synthesis and isolation of η(2)-(Si-H) complexes of mononuclear Ni(0) and Pd(0) were achieved for the first time as frozen intermediates for oxidative addition of the Si-H bond. Structural analysis by X-ray and NMR spectroscopy disclosed that their η(2)-(Si-H) structures were maintained in both solid and solution states and coordination of the Si-H bond to the metal center was relatively weak. On the other hand, reaction with a platinum(0) complex afforded two kinds of pentacoordinate silyl platinum(II) hydride complexes having a PSiP-pincer ligand, which underwent unique thermal isomerization from a square-pyramidal cis-H-Pt-Si to a trigonal-bipyramidal trans-H-Pt-Si isomer. Mechanistic investigations revealed that this isomerization proceeded via an intramolecular rearrangement process probably through a turnstile rotation.

  17. Three-Legged 2,2'-Bipyridine Monomer at the Air/Water Interface: Monolayer Structure and Reactions with Ni(II) Ions from the Subphase.

    PubMed

    Dai, Wenyang; Lee, Lay-Theng; Schütz, Andri; Zelenay, Benjamin; Zheng, Zhikun; Borgschulte, Andreas; Döbeli, Max; Abuillan, Wasim; Konovalov, Oleg V; Tanaka, Motomu; Schlüter, A Dieter

    2017-02-21

    The behavior of compound 2 [1,3,5-tri(2,2'-bipyridin-5-yl)benzene] with three bipyridine units arranged in a star geometry is investigated in the presence and absence of Ni(ClO4)2. Its properties at the air-water interface as well as after transfer onto a solid substrate are studied by several techniques including Brewster angle microscopy, X-ray reflectivity, neutron reflectivity, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and atomic force microscopy combined with optical microscopy. It is found that compound 2 within the monolayers formed stays almost vertical at the interface and that at high Ni(2+)/2 (Ni(2+)/2 = 4000, 20'000) ratios two of the three bipyridine units of 2 are complexed, resulting in supramolecular sheets that are likely composed of arrays of linear metal-organic complexation polymers.

  18. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  19. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    NASA Astrophysics Data System (ADS)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  20. Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation

    SciTech Connect

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L.

    2012-12-10

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  1. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  2. Reactions of Sn-3.5Ag-Based Solders Containing Zn and Al Additions on Cu and Ni(P) Substrates

    NASA Astrophysics Data System (ADS)

    Kotadia, H. R.; Mokhtari, O.; Bottrill, M.; Clode, M. P.; Green, M. A.; Mannan, S. H.

    2010-12-01

    In this study we consider the effect of separately adding 0.5 wt.% to 1.5 wt.% Zn or 0.5 wt.% to 2 wt.% Al to the eutectic Sn-3.5Ag lead-free solder alloy to limit intermetallic compound (IMC) growth between a limited volume of solder and the contact metallization. The resultant solder joint microstructure after reflow and high-temperature storage at 150°C for up to 1000 h was investigated. Experimental results confirmed that the addition of 1.0 wt.% to 1.5 wt.% Zn leads to the formation of Cu-Zn on the Cu substrate, followed by massive spalling of the Cu-Zn IMC from the Cu substrate. Growth of the Cu6Sn5 IMC layer is significantly suppressed. The addition of 0.5 wt.% Zn does not result in the formation of a Cu-Zn layer. On Ni substrates, the Zn segregates to the Ni3Sn4 IMC layer and suppresses its growth. The addition of Al to Sn-3.5Ag solder results in the formation of Al-Cu IMC particles in the solder matrix when reflowed on the Cu substrate, while on Ni substrates Al-Ni IMCs spall into the solder matrix. The formation of a continuous barrier layer in the presence of Al and Zn, as reported when using solder baths, is not observed because of the limited solder volumes used, which are more typical of reflow soldering.

  3. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds

    EPA Science Inventory

    A magnetic separable core-shell Ag@Ni nanocatalyst was prepared by a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as surfactant. The synthesized nanoparticles were characterized by several techniques such as X-ray diffr...

  4. First application of core-shell Ag@Ni magnetic nanocatalyst for transfer hydrogenation reactions of aromatic nitro and carbonyl compounds

    EPA Science Inventory

    A magnetic separable core-shell Ag@Ni nanocatalyst was prepared by a simple one-pot synthetic route using oleylamine both as solvent and reducing agent and triphenylphosphine as surfactant. The synthesized nanoparticles were characterized by several techniques such as X-ray diffr...

  5. Bench- and Pilot-Scale Studies of Reaction and Regeneration of Ni-Mg-K/Al2O3 for Catalytic Conditioning of Biomass-Derived Syngas

    SciTech Connect

    Magrini-Bair, K. A.; Jablonski, W. S.; Parent, Y. O.; Yung, M. M.

    2012-05-01

    The National Renewable Energy Laboratory (NREL) is collaborating with both industrial and academic partners to develop technologies to help enable commercialization of biofuels produced from lignocellulosic biomass feedstocks. The focus of this paper is to report how various operating processes, utilized in-house and by collaborators, influence the catalytic activity during conditioning of biomass-derived syngas. Efficient cleaning and conditioning of biomass-derived syngas for use in fuel synthesis continues to be a significant technical barrier to commercialization. Multifunctional, fluidizable catalysts are being developed to reform undesired tars and light hydrocarbons, especially methane, to additional syngas, which can improve utilization of biomass carbon. This approach also eliminates both the need for downstream methane reforming and the production of an aqueous waste stream from tar scrubbing. This work was conducted with NiMgK/Al{sub 2}O{sub 3} catalysts. These catalysts were assessed for methane reforming performance in (i) fixed-bed, bench-scale tests with model syngas simulating that produced by oak gasification, and in pilot-scale, (ii) fluidized tests with actual oak-derived syngas, and (iii) recirculating/regenerating tests using model syngas. Bench-scale tests showed that the catalyst could be completely regenerated over several reforming reaction cycles. Pilot-scale tests using raw syngas showed that the catalyst lost activity from cycle to cycle when it was regenerated, though it was shown that bench-scale regeneration by steam oxidation and H{sub 2} reduction did not cause this deactivation. Characterization by TPR indicates that the loss of a low temperature nickel oxide reduction feature is related to the catalyst deactivation, which is ascribed to nickel being incorporated into a spinel nickel aluminate that is not reduced with the given activation protocol. Results for 100 h time-on-stream using a recirculating/regenerating reactor suggest

  6. Density functional theory simulation of titanium migration and reaction with oxygen in the early stages of oxidation of equiatomic NiTi alloy.

    PubMed

    Nolan, Michael; Tofail, Syed A M

    2010-05-01

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in self-expandable cardio-vascular stents, stone extraction baskets, catheter guide wires and other invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as the Ti in the alloy surface reacts with oxygen, resulting in a depletion of Ti in the subsurface region - experimental evidence indicates formation of a Ni-rich layer below the oxide film. In this paper, we study the initial stages of oxide growth on the (110) surface of the NiTi alloy to understand the formation of alloy/oxide interface. We initially adsorb atomic and molecular oxygen on the (110) surface and then successively add O(2) molecules, up to 2 monolayer of O(2). Oxygen adsorption always results in a large energy gain. With atomic oxygen, Ti is pulled out of the surface layer leaving behind a Ni-rich subsurface region. Molecular O(2), on the other hand adsorbs dissociatively and pulls a Ti atom farther out of the surface layer. The addition of further O(2) up to 1 monolayer is also dissociative and results in complete removal of Ti from the initial surface layer. When further O(2) is added up to 2 monolayer, Ti is pulled even further out of the surface and a single thin layer of composition O-Ti-O is formed. The electronic structure shows that the metallic character of the alloy is unaffected by interaction with oxygen and formation of the oxide layer, consistent with the oxide layer being a passivant. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Reactive Ni/Ti nanolaminates

    SciTech Connect

    Adams, D. P.; Bai, M. M.; Rodriguez, M. A.; McDonald, J. P.; Jones, E. Jr.; Brewer, L.; Moore, J. J.

    2009-11-01

    Nickel/titanium nanolaminates fabricated by sputter deposition exhibited rapid, high-temperature synthesis. When heated locally, self-sustained reactions were produced in freestanding Ni/Ti multilayer foils characterized by average propagation speeds between approx0.1 and 1.4 m/s. The speed of a propagating reaction front was affected by total foil thickness and bilayer thickness (layer periodicity). In contrast to previous work with compacted Ni-Ti powders, no preheating of Ni/Ti foils was required to maintain self-propagating reactions. High-temperature synthesis was also stimulated by rapid global heating demonstrating low ignition temperatures (T{sub ig})approx300-400 deg. C for nanolaminates. Ignition temperature was influenced by bilayer thickness with more coarse laminate designs exhibiting increased T{sub ig}. Foils reacted in a vacuum apparatus developed either as single-phase B2 cubic NiTi (austenite) or as a mixed-phase structure that was composed of monoclinic B19{sup '} NiTi (martensite), hexagonal NiTi{sub 2}, and B2 NiTi. Single-phase, cubic B2 NiTi generally formed when the initial bilayer thickness was made small.

  8. Thickness engineering of atomic layer deposited Al2O3 films to suppress interfacial reaction and diffusion of Ni/Au gate metal in AlGaN/GaN HEMTs up to 600 °C in air

    NASA Astrophysics Data System (ADS)

    Suria, Ateeq J.; Yalamarthy, Ananth Saran; Heuser, Thomas A.; Bruefach, Alexandra; Chapin, Caitlin A.; So, Hongyun; Senesky, Debbie G.

    2017-06-01

    In this paper, we describe the use of 50 nm atomic layer deposited (ALD) Al2O3 to suppress the interfacial reaction and inter-diffusion between the gate metal and semiconductor interface, to extend the operation limit up to 600 °C in air. Suppression of diffusion is verified through Auger electron spectroscopy (AES) depth profiling and X-ray diffraction (XRD) and is further supported with electrical characterization. An ALD Al2O3 thin film (10 nm and 50 nm), which functions as a dielectric layer, was inserted between the gate metal (Ni/Au) and heterostructure-based semiconductor material (AlGaN/GaN) to form a metal-insulator-semiconductor high electron mobility transistor (MIS-HEMT). This extended the 50 nm ALD Al2O3 MIS-HEMT (50-MIS) current-voltage (Ids-Vds) and gate leakage (Ig,leakage) characteristics up to 600 °C. Both, the 10 nm ALD Al2O3 MIS-HEMT (10-MIS) and HEMT, failed above 350 °C, as evidenced by a sudden increase of approximately 50 times and 5.3 × 106 times in Ig,leakage, respectively. AES on the HEMT revealed the formation of a Ni-Au alloy and Ni present in the active region. Additionally, XRD showed existence of metal gallides in the HEMT. The 50-MIS enables the operation of AlGaN/GaN based electronics in oxidizing high-temperature environments, by suppressing interfacial reaction and inter-diffusion of the gate metal with the semiconductor.

  9. Activity and Stability of Ruddlesden-Popper-Type La(n+1) Ni(n) O(3n+1) (n=1, 2, 3, and ∞) Electrocatalysts for Oxygen Reduction and Evolution Reactions in Alkaline Media.

    PubMed

    Yu, Jie; Sunarso, Jaka; Zhu, Yinlong; Xu, Xiaomin; Ran, Ran; Zhou, Wei; Shao, Zongping

    2016-02-18

    Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal-air batteries. It is highly challenging but desirable to develop low-cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden-Popper family of La(n+1)Ni(n) O(3n+1) (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni-O bond lengths and the hyperstoichiometric oxides in the rock-salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH(-) content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances.

  10. Abnormal Intermetallic Compound Evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni Micro Solder Joints Under Thermomigration

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Deng, J. F.; Zhong, Y.; Huang, M. L.; Ma, H. T.

    2017-04-01

    Interfacial reactions in Ni/Sn/Ni and Ni/Sn-9Zn/Ni micro solder joints during thermomigration (TM) have been studied by reflowing solder joints on a hot plate. Asymmetrical growth and transformation of interfacial intermetallic compounds (IMCs) were clearly observed. The growth of the Ni3Sn4 IMC in the Ni/Sn/Ni solder joints was always fast at the cold end and relatively slow at the hot end. Only asymmetrical growth of the Ni5Zn21 IMC in the Ni/Sn-9Zn/Ni solder joints occurred at the beginning because Zn was the dominant TM species; however, asymmetrical transformation of the Ni5Zn21 IMC also occurred under the combined effect of Zn depletion and Ni dissolution and migration, resulting in formation of a thin τ-phase layer at the hot end and a thick τ-phase/Ni5Zn21/τ-phase sandwich structure at the cold end. TM of Ni and Zn atoms was identified towards the cold end, being responsible for the abnormal IMC evolution. Addition of Zn was found to slow the TM-induced IMC growth and Ni dissolution.

  11. Isospin-spin excitations in the A=58 mass region: The {sup 58}Ni({sup 3}He,t){sup 58}Cu reaction

    SciTech Connect

    Bes, D. R.; Civitarese, O.

    2008-07-15

    The experimental information on isospin-spin excitations around {sup 58}Ni is analyzed by using isoscalar and isovector pairing vibrations, Gamow-Teller (GT) modes, and their couplings. It is found that the proposed coupling scheme accounts for a sizable amount of the strength associated with isospin-spin excitations, which include transitions to both one- and two-phonon states. The calculations are performed within the framework of perturbation theory, accounting for the renormalization of the charge by the collective GT excitations.

  12. Study on Reaction Mechanism of Reducing Dephosphorization of Fe-Ni-Si Melt by CaO-CaF2 Slag

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Xian; Zhang, Guo-Hua; Chu, Shao-Jun

    2016-02-01

    In the present study, the dephosphorization of Fe-Ni-Si melt by CaO-saturated CaO-CaF2 slag was investigated, from which it was found that the dephosphorization efficiency increases as increasing the silicon content, meanwhile the increase rate becomes rapid when the silicon content is more than 10 mass pct. By analyzing the phase compositions of the dephosphorization slag of a high silicon Fe-Ni-Si melt, it was first found the dephosphorization products change with the silicon content. When Si contents are 10.5, 31.48, 34.71, and 43.15 mass pct, the de-P products are Ca2P2, Ca10+ x Si12-2 x P16, Ca4SiP4, and Ca10+ x Si12-2 x P16, as well as Ca4SiP4, respectively. The corresponding dephosphorization mechanism can be described as (2x)(CaO) + (x + 2y)[Si] + 2z[P] = x(SiO2 ) + 2(Cax Siy Pz ).

  13. Reaction Rate Constants of CH4(ads) ⇌ CH3(ads) + H(ads) on Ni(111): The Effect of Lattice Motion.

    PubMed

    Wang, Wenji; Zhao, Yi

    2015-12-31

    Methane dissociation on metal surfaces is of great commercial importance. The dissociation and recombination rate constants of CH4 on Ni(111) are calculated using the quantum instanton approach with the path integral Monte Carlo method. The Ni(111) lattice is treated rigidly, classically, and quantum mechanically to reveal the effects of lattice motion and quantum tunneling. For the dissociation of CH4, the rates have the smallest value on the rigid lattice, while they possess the largest value on the quantum lattice. For instance, at 300 K, the rates on the classical and quantum lattices are 5 and 12 times larger than that on the rigid lattice, respectively. The curve of the Arrhenius plot for the dissociation rates on the rigid lattice demonstrates that the quantum tunneling effect of the ruptured H atom is remarkable, while the nearly invariable dissociation rates at low temperatures on the quantum lattice confirm that the thermally assisted tunneling should be dominant at low temperatures. For the recombination of CH4, the quantum lattice still has rates that are much larger than that of the rigid lattice. For instance, the ratio of the recombination rates on the quantum and rigid lattices is 12 at 300 K. The quantum tunneling effect seems to play a minor role in the recombination rates on the rigid lattice; however, the thermally assisted tunneling is still very significant for the recombination process.

  14. Electrochemical Performance of LiNi0.5Mn1.5O4 by Sol-gel Self-combustion Reaction Method in Different Kinds of Electrolyte for High-voltage Rechargeable Lithium Cells

    NASA Astrophysics Data System (ADS)

    Liang, Xinghua; Shi, Lin; Liu, Yusi; Zeng, Shuaibo; Ye, Chaochao

    2015-07-01

    LiNi0.5Mn1.5O4 cathode material was synthesized through sol-gel self-combustion reaction method. LiNi0.5Mn1.5O4 powders were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode with electrolyte A or electrolyte B. 1.0 mol/L Lithium Hexafluorophosphate (LiPF6) dissolved in volume ration of ethylene carbonate (EC) to ethyl methyl carbonate (EMC) to diethyl carbonate (DEC) corresponded to 4:3:3as electrolyte A, 1.0 mol/L LiPF6 dissolved in volume ration of EC to EMC to DEC corresponded to 4:2:4 as electrolyte B. Electrochemical performance of lithium cells was evaluated. These tests showed that no matter the cells with electrolyte A or electrolyte B has good discharge platform in 4.7V range (3.5V-4.75V) at the rate of 0.1C, the initial discharge capacity of cell with electrolyte B was higher than that with electrolyte A.

  15. Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2: first conversion of a protic ionic liquid into metallated ionic liquid.

    PubMed

    Mirskova, Anna N; Adamovich, Sergey N; Mirskov, Rudolf G; Schilde, Uwe

    2013-02-19

    The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H+N(CH2CH2OH)3 ∙ (-OOCCH2SC6H4Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H+N(CH2CH2OH)3]2 ∙ [M(OOCCH2SC6H4Cl-4)2Cl2]2-, M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH2SC6H4Cl-4)2 ∙ 2H2O (4). Unlike 2, compound 3 gives crystals [N(CH2CH2OH)3]2Ni2+ · [-OOCCH2SC6H4Cl-4]2 (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 → 3 → 5).

  16. Reaction of pharmacological active tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate with ZnCl2 or NiCl2: first conversion of a protic ionic liquid into metallated ionic liquid

    PubMed Central

    2013-01-01

    The reaction of pharmacological active protic ionic liquid tris-(2-hydroxyethyl)ammonium 4-chlorophenylsulfanylacetate H+N(CH2CH2OH)3 ∙ (-OOCCH2SC6H4Cl-4) (1) with zinc or nickel chloride in a ratio of 2:1 affords stable at room temperature powder-like adducts [H+N(CH2CH2OH)3]2 ∙ [M(OOCCH2SC6H4Cl-4)2Cl2]2-, M = Zn (2), Ni (3). By recrystallization from aqueous alcohol compound 2 unexpectedly gives Zn(OOCCH2SC6H4Cl-4)2 ∙ 2H2O (4). Unlike 2, compound 3 gives crystals [N(CH2CH2OH)3]2Ni2+ · [-OOCCH2SC6H4Cl-4]2 (5), which have a structure of metallated ionic liquid. The structure of 5 has been proved by X-ray diffraction analysis. It is the first example of the conversion of a protic ionic liquid into potentially biological active metallated ionic liquid (1 → 3 → 5). PMID:23421876

  17. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  18. Isotopic study of chain growth during the CO/H/sub 2/ reaction over Ni/Al/sub 2/O/sub 3/

    SciTech Connect

    Stockwell, D.M.; Bennett, C.O.

    1988-04-01

    Steady-state tracing by switches from /sup 12/COH/sub 2/ to /sup 13/COH/sub 2/ have been used to study the growth of hydrocarbon chains on a 10 wt% NiAl/sub 2/O/sub 3/ catalyst at 1 atm. Temperatures between 225 and 275/sup 0/C, and H/sub 2/CO ratios between 1 and 9 have been used in an effort to shift rate-determining steps and hydrocarbon populations. Experiments were conducted in a gradientless microreactor at low conversions. N-Alkanes and 1-olefins were produced, and the selectivity to methane varied between 40 and 91%. Traces of acetaldehyde were also detected. Under all conditions, the /sup 13/C enrichment of C/sub 3//sup +/ hydrocarbons was substantially greater than that of methane and ethane. The results indicate that some of the monomers for C/sub 3//sup +/ production may have been either CO or CH/sub x/ species derived from CO very rapidly. Discrimination between these two mechanisms was not possible

  19. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4 Electrodes

    DOE PAGES

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...

    2015-11-11

    The LiNi0.5Mn1.5O4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li+). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi0.5Mn1.5O4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi0.5Mn1.5O4 upon cycling, namely, from Ni(II) to Ni(III), thenmore » to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni2+ and Mn2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi0.5Mn1.5O4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less

  20. Structural, morphological and magnetic properties of Al3+ substituted Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction route

    NASA Astrophysics Data System (ADS)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    Ni-Cu-Zn ferrite materials have been extensively used in electronic materials because of their outstanding properties at high frequencies. This work investigates the impact of Al substitution on the structure, morphology and magnetic properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 (x = 0.00, 0.05, 0.10, 0.15 and 0.20) prepared by solid state reaction method. X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), impedance analyzer and Vibrating Sample Magnetometer (VSM) were used to characterize the properties of the samples. The XRD study confirmed the cubic spinel structure with single phase for all the samples. The lattice constant, X-ray density and bulk density decrease while the porosity and grain size increase with the increase of Al content in the samples. The frequency dependence of the complex permeability sintered at 1200 °C has been measured for toroidal samples in the frequency range between 1 kHz and 120 MHz at room temperature. The decrease in initial permeability has been explained on the basis of variation in grain size. The temperature dependence of the initial permeability has been measured in the temperature range between from 30 to 250 °C. Curie temperature (Tc) has been estimated from the temperature dependence of the permeability spectra for all samples. It is found that Curie temperatures and initial permeability (μi‧) decrease on Al substitution. The saturation magnetization has been measured at room temperature and it was found to decrease with increasing of Al3+ ions.

  1. Comparison of benzene adsorption on Ni(111) and Ni(100)

    SciTech Connect

    Myers, A.K.; Schoofs, G.R.; Benziger, J.B.

    1987-04-23

    The adsorption of benzene on the Ni(100) and the Ni(111) crystal faces was compared in order to investigate the effect of crystallographic orientation on the interaction of benzene with nickel. Temperature programmed reaction (TPR) was used to characterize adsorption bond strengths and determine product distributions. Benzene was found to adsorb 44 kJ/mol less strongly on the Ni(111) plane than on the Ni(100) surface. Di-hydrogen evolution formed after decomposition of benzene was similar for both surfaces. Benzene chemisorption was modeled by using extended Hueckel theory (EHT), a semiempirical molecular orbital method. The calculations predict bonding of benzene over a threefold hollow site on Ni(111). Multicenter bonding of the benzene carbon atoms with the nickel atoms is indicated by the calculations. The binding strength of benzene is controlled by the degree of overlap of the carbon ..pi.. orbitals with the nickel atom orbitals. Benzene binds more strongly to the Ni(100) surface because the carbon ..pi.. orbitals can overlap with four nickel atoms on the fourfold hollow site, whereas on Ni(111) the carbon atoms are closely associated with only three nickel atoms on the threefold hollow site.

  2. A density functional theory study of hydrocarbon combustion and synthesis on Ni surfaces.

    PubMed

    Mohsenzadeh, Abas; Richards, Tobias; Bolton, Kim

    2015-03-01

    Combustion and synthesis of hydrocarbons may occur directly (CH → C + H and CO → C + O) or via a formyl (CHO) intermediate. Density functional theory (DFT) calculations were performed to calculate the activation and reaction energies of these reactions on Ni(111), Ni(110), and Ni(100) surfaces. The results show that the energies are sensitive to the surface structure. The dissociation barrier for methylidyne (CH → C + H: catalytic hydrocarbon combustion) is lower than that for its oxidation reaction (CH + O → CHO) on the Ni(110) and Ni(100) surfaces. However the oxidation barrier is lower than that for dissociation on the Ni(111) surface. The dissociation barrier for methylidyne dissociation decreases in the order Ni(111) > Ni(100) > Ni(110). The barrier of formyl dissociation to CO and H is almost the same on the Ni(111) and Ni(110) surfaces and is lower compared to the Ni(100) surface. The energy barrier for carbon monoxide dissociation (CO → C + O: catalytic hydrocarbon synthesis) is higher than that of for its hydrogenation reaction (CO + H → CHO) on all three surfaces. This means that the hydrogenation to CHO is favored on these nickel surfaces. The energy barrier for both reactions decreases in the order Ni(111) > Ni(100) > Ni(110). The barrier for formyl dissociation to CH + O decreases in the order Ni(100) > Ni(111) > Ni(110). Based on these DFT calculations, the Ni(110) surface shows a better catalytic activity for hydrocarbon combustion compared to the other surfaces, and Ni is a better catalyst for the combustion reaction than for hydrocarbon synthesis, where the reaction rate constants are small. The reactions studied here support the BEP principles with R(2) values equal to 0.85 for C-H bond breaking/forming and 0.72 for C-O bond breaking /forming reactions.

  3. Pt redistribution during Ni(Pt) silicide formation

    SciTech Connect

    Demeulemeester, J.; Smeets, D.; Vantomme, A.; Van Bockstael, C.; Detavernier, C.; Comrie, C. M.; Barradas, N. P.; Vieira, A.

    2008-12-29

    We report on a real-time Rutherford backscattering spectrometry study of the erratic redistribution of Pt during Ni silicide formation in a solid phase reaction. The inhomogeneous Pt redistribution in Ni(Pt)Si films is a consequence of the low solubility of Pt in Ni{sub 2}Si compared to NiSi and the limited mobility of Pt in NiSi. Pt further acts as a diffusion barrier and resides in the Ni{sub 2}Si grain boundaries, significantly slowing down the Ni{sub 2}Si and NiSi growth kinetics. Moreover, the observed incorporation of a large amount of Pt in the NiSi seeds indicates that Pt plays a major role in selecting the crystallographic orientation of these seeds and thus in the texture of the resulting Ni{sub 1-x}Pt{sub x}Si film.

  4. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions.

    PubMed

    Yang, Jun; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2017-03-30

    We present a new concept for homogeneous spinel nanocrystal-coating on high crystalline pristine-carbon nanotubes (CNTs) for efficient and durable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Oxidized CNTs have widely been used to functionalize with metal or metal oxides since the defect sites act as anchoring for metal oxide binding. However, such defects on the tubes cause the decrease in electrical conductivity and stability, leading to lower catalyst performance. In the present study, at first, pristine multi-walled carbon nanotubes (MWNTs) were wrapped by pyridine-based polybenzimidazole (PyPBI) to which uniform NixCo3-xO4 nanocrystals were homogeneously deposited by the solvothermal method without damaging the MWNTs, in which PyPBI acted as efficient anchoring sites for the deposition of spinel oxide nanocrystals with ~5 nm size. The obtained catalyst (MWNT-PyPBI-NixCo3-xO4) outperformed most state-of-the-art non-precious metal-based bifunctional catalysts; namely, for OER, the potential at 10 mA cm(-2) and Tafel slope in 1 M KOH solution were 1.54 V vs. RHE and 42 mV dec(-1), respectively. For ORR, the onset and half-wave potentials are 0.918 V and 0.811 V vs. RHE, respectively. Moreover, the MWNT-PyPBI-NixCo3-xO4 demonstrates an excellent durability for both ORR and OER.

  5. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions

    PubMed Central

    Yang, Jun; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2017-01-01

    We present a new concept for homogeneous spinel nanocrystal-coating on high crystalline pristine-carbon nanotubes (CNTs) for efficient and durable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Oxidized CNTs have widely been used to functionalize with metal or metal oxides since the defect sites act as anchoring for metal oxide binding. However, such defects on the tubes cause the decrease in electrical conductivity and stability, leading to lower catalyst performance. In the present study, at first, pristine multi-walled carbon nanotubes (MWNTs) were wrapped by pyridine-based polybenzimidazole (PyPBI) to which uniform NixCo3−xO4 nanocrystals were homogeneously deposited by the solvothermal method without damaging the MWNTs, in which PyPBI acted as efficient anchoring sites for the deposition of spinel oxide nanocrystals with ~5 nm size. The obtained catalyst (MWNT-PyPBI-NixCo3−xO4) outperformed most state-of-the-art non-precious metal-based bifunctional catalysts; namely, for OER, the potential at 10 mA cm−2 and Tafel slope in 1 M KOH solution were 1.54 V vs. RHE and 42 mV dec−1, respectively. For ORR, the onset and half-wave potentials are 0.918 V and 0.811 V vs. RHE, respectively. Moreover, the MWNT-PyPBI-NixCo3−xO4 demonstrates an excellent durability for both ORR and OER. PMID:28358114

  6. Decorating unoxidized-carbon nanotubes with homogeneous Ni-Co spinel nanocrystals show superior performance for oxygen evolution/reduction reactions

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2017-03-01

    We present a new concept for homogeneous spinel nanocrystal-coating on high crystalline pristine-carbon nanotubes (CNTs) for efficient and durable oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Oxidized CNTs have widely been used to functionalize with metal or metal oxides since the defect sites act as anchoring for metal oxide binding. However, such defects on the tubes cause the decrease in electrical conductivity and stability, leading to lower catalyst performance. In the present study, at first, pristine multi-walled carbon nanotubes (MWNTs) were wrapped by pyridine-based polybenzimidazole (PyPBI) to which uniform NixCo3-xO4 nanocrystals were homogeneously deposited by the solvothermal method without damaging the MWNTs, in which PyPBI acted as efficient anchoring sites for the deposition of spinel oxide nanocrystals with ~5 nm size. The obtained catalyst (MWNT-PyPBI-NixCo3-xO4) outperformed most state-of-the-art non-precious metal-based bifunctional catalysts; namely, for OER, the potential at 10 mA cm-2 and Tafel slope in 1 M KOH solution were 1.54 V vs. RHE and 42 mV dec-1, respectively. For ORR, the onset and half-wave potentials are 0.918 V and 0.811 V vs. RHE, respectively. Moreover, the MWNT-PyPBI-NixCo3-xO4 demonstrates an excellent durability for both ORR and OER.

  7. Reaction Mechanism and Mechanical Properties of the Flip-Chip Sn-3.0Ag-0.5Cu Solder Bump with Cu/Ni- xCu/Ti Underbump Metallization After Various Reflows

    NASA Astrophysics Data System (ADS)

    Peng, Chung-Nan; Duh, Jenq-Gong

    2009-12-01

    Ni underbump metallization (UBM) has been widely used as the diffusion barrier between solder and Cu pads. To retard the fast dissolution rate of Ni UBM, Cu was added into Ni thin films. The Ni-Cu UBM can provide extra Cu to the solders to maintain the Cu6Sn5 intermetallic compound (IMC) at the interface, which can thus significantly decrease the Ni dissolution rate. In this study, the Cu content of the sputtered Cu/Ni- xCu/Ti UBM was varied from 0 wt.% to 20 wt.%. Sn-3Ag-0.5Cu solder was reflowed with Cu/Ni-Cu/Ti UBM one, three, and five times. Reflow and cooling conditions altered the morphology of the IMCs formed at the interface. The amount of (Cu,Ni)6Sn5 increased with increasing Cu content in the Ni-Cu film. The Cu concentration of the intermetallic compound was strongly dependent on the composition of the Ni-Cu films. The results of this study suggest that Cu-rich Ni- xCu UBM can be used to suppress interfacial spalling and improve shear strength and pull strength of solder joints.

  8. Solvotermal synthesis of NiO, Ni and NiS nanoparticles.

    PubMed

    Gutierrez, Angel; Perpiñán, M Felisa; Sánchez, Ana E; Torralba, M Carmen

    2013-01-01

    Nanoparticles of NiO, Ni or NiS have been obtained by solvothermal decomposition of different molecular precursors. The influence of several parameters, such as temperature, reaction time, solvent or capping agent used, in the nature and size of the obtained nanoparticle has been studied. The characterization by XRD and TEM techniques indicates that the nanoparticles of NiO exhibit average sizes of 3-8 nm, while those of Ni are in the 30-40 nm range. This difference in size has been attributed to the presence of molecules of the capping agent (n-octylamine or oleic acid) that surround the NiO nanoparticles but were not present in the nickel ones. The capping agent is, thus, preventing the aggregation of the smallest nanoparticles. The use of either a S-donor capping agent (4-mercaptopyridine) or a precursor having S-donor ligands (diethyldithiocarbamate) have led to the formation of NiS with average sizes around 35 nm. The magnetic properties of the nanoparticles have been studied, showing superparamagnetism and magnetic hysteresis below the blocking temperature, which, in time, is dependent of the particle size.

  9. Ab initio molecular dynamics with enhanced sampling for surface reaction kinetics at finite temperatures: CH2 ⇌ CH + H on Ni(111) as a case study

    NASA Astrophysics Data System (ADS)

    Sun, Geng; Jiang, Hong

    2015-12-01

    A comprehensive understanding of surface thermodynamics and kinetics based on first-principles approaches is crucial for rational design of novel heterogeneous catalysts, and requires combining accurate electronic structure theory and statistical mechanics modeling. In this work, ab initio molecular dynamics (AIMD) combined with the integrated tempering sampling (ITS) method has been explored to study thermodynamic and kinetic properties of elementary processes on surfaces, using a simple reaction CH 2 ⇌ CH + H on the Ni(111) surface as an example. By a careful comparison between the results from ITS-AIMD simulation and those evaluated in terms of the harmonic oscillator (HO) approximation, it is found that the reaction free energy and entropy from the HO approximation are qualitatively consistent with the results from ITS-AIMD simulation, but there are also quantitatively significant discrepancies. In particular, the HO model misses the entropy effects related to the existence of multiple adsorption configurations arising from the frustrated translation and rotation motion of adsorbed species, which are different in the reactant and product states. The rate constants are evaluated from two ITS-enhanced approaches, one using the transition state theory (TST) formulated in terms of the potential of mean force (PMF) and the other one combining ITS with the transition path sampling (TPS) technique, and are further compared to those based on harmonic TST. It is found that the rate constants from the PMF-based TST are significantly smaller than those from the harmonic TST, and that the results from PMF-TST and ITS-TPS are in a surprisingly good agreement. These findings indicate that the basic assumptions of transition state theory are valid in such elementary surface reactions, but the consideration of statistical averaging of all important adsorption configurations and reaction pathways, which are missing in the harmonic TST, are critical for

  10. Ni clay neoformation on montmorillonite surface.

    PubMed

    Dähn, R; Scheidegger, A; Manceau, A; Schlegel, M; Baeyens, B; Bradbury, M H

    2001-03-01

    Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

  11. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-09-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  12. Crystallographic Orientation Effect on Electromigration in Ni-Sn Microbump

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ting; Chen, Chih-Hao; Chakroborty, Subhendu; Wu, Albert T.

    2017-07-01

    This article addresses the reliability challenges regarding electromigration in developing three-dimensional integrated circuits (3D-ICs). The line-type sandwich structure of Ni/Sn3.5Ag(15 μm)/Ni was used to simulate microbumps to examine the reliability of electromigration in 3D-IC technology. The solder strip of Ni/Sn3.5Ag(15 μm)/Ni was stressed with a current density of 1.0 × 104 A/cm2 at 150°C. The current stressing enhanced the reaction between the solder and Ni to form Ni3Sn4, which occupied the entire joint and transformed into a Ni/Ni3Sn4/Ni structure when the solder was completely consumed. Electron backscatter diffraction was used to analyze the crystallographic characteristics of Sn and Ni3Sn4 as related to the electromigration effect. The results indicated that the crystallographic orientation of Sn plays a significant role in the Ni/Sn3.5Ag/Ni, whereas the orientation of Ni3Sn4 is the dominant factor of diffusion behavior in the Ni/Ni3Sn4/Ni.

  13. NiSn4 Formation in As-Soldered Ni-Sn and ENIG-Sn Couples

    NASA Astrophysics Data System (ADS)

    Belyakov, S. A.; Gourlay, C. M.

    2012-12-01

    Most research on Sn-Ni solder reactions has focused on the interfacial reactions with the substrate, whereas the microstructure which develops above the intermetallic layers has not been studied in detail. This paper shows that nonequilibrium NiSn4 forms during solidification of the bulk solder in Sn-Ni and Sn-electroless nickel immersion gold (ENIG) solder reactions. With both substrates, the bulk solder solidified to contain Sn-NiSn4 eutectic and primary Ni3Sn4 crystals, and the interfacial layers contained a Ni3Sn4 reaction layer on the Sn side. It is found that Cu, present from dissolution of Cu through cracks in the ENIG layer, promotes the formation of Sn-Ni3Sn4 eutectic. Thus, Sn-ENIG couples contained both Sn-NiSn4 and Sn-Ni3Sn4 eutectic. It is further shown that NiSn4 is not stable at soldering temperatures and that, during isothermal holding at 270°C to 220°C, NiSn4 transforms into Ni3Sn4 and liquid or β-Sn.

  14. Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy {sup 32}S+{sup 24}Mg{yields}{sup 56}Ni{sup *} reaction

    SciTech Connect

    Gupta, Raj K.; Kumar, Rajesh; Singh, Dalip; Balasubramaniam, M.; Beck, C.

    2005-01-01

    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (China) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q value Q{sub eff}(T) at temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies of the emitted fragments. The emission of both the light particles (LP), with A{<=}4,Z{<=}2, as well as the complex intermediate mass fragments (IMF), with 42, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission cross section {sigma}{sub LP} and IMF emission cross section {sigma}{sub IMF} calculated from the present DCM match exactly the statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for emission of light particles from hot and rotating CN. The model is applied to the decay of {sup 56}Ni* formed in the {sup 32}S+{sup 24}Mg reaction at two incident energies E{sub c.m.}=51.6 and 60.5 MeV. Both the IMFs and average TKE{sup lowbar} spectra are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The LPs' emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.

  15. Tailoring the potential window of negative electrodes: A diagnostic method for understanding parasitic oxidation reactions in cells with 5 V LiNi0.5Mn1.5O4 positive electrodes

    NASA Astrophysics Data System (ADS)

    Levi, Mikhael D.; Dargel, Vadim; Shilina, Yuliya; Borgel, Valentina; Aurbach, Doron; Halalay, Ion C.

    2015-03-01

    We present herein a diagnostic method which provides insights into the interactions between parasitic reactions at battery electrodes and their consequences for battery performance degradation. We also provide a cautionary tale about misinterpreting or misrepresenting the significance of test data, as is sometimes found in the peer-reviewed literature or in developers' claims. Reversible cycling of the LiNi0.5Mn1.5O4 positive electrode in a full cell with an electrolyte solution containing no additives may appear achievable through tailoring of the operating potential window of the cell. Self-discharging of the negative stems from parasitic oxidation products formed on the positive. We show that either excess negative electrode capacity over the positive or initial pre-lithiation of the negative suppresses their detrimental effect on capacity retention. Simultaneous monitoring the potentials of the two electrodes vs. Li/Li+ during galvanostatic cycling of a full cell shows, however, that self-discharging of the negative still takes place. The latter process was tracked by the drift of the average potential of the cell towards higher values and leads to two characteristic patterns in the failure of full cells during their long-term cycling, depending on whether a cut-off voltage or a capacity limit is used as the control criterion during cycling.

  16. Breakup of the projectile in [sup 16]O-induced reactions on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets around 100 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Palmeri, A.; Pappalardo, G.S. ); Riggi, F. Dipartimento di Fisica dell'Universita di Catania, Corso Italia 57, 95129 Catania )

    1993-08-01

    The spatial correlation among the four He ions coming from the disassembly of the [sup 16]O projectile on [sup 27]Al, [sup 58]Ni, and [sup 197]Au targets has been studied at 94 MeV/nucleon. Charged particles have been detected by a multielement array of plastic scintillators covering the angular domain between 3[degree] and 150[degree]. Standard relativistic kinematics has been used to reconstruct the excitation energy of the primary projectilelike nucleus ([ital E][sub PLN][sup *]). Mean values of this quantity are found independent of the target mass and the comparison with existing similar data taken at lower bombarding energies shows a saturation of [ital E][sub PLN][sup *] around 3 MeV/nucleon. An event-by-event analysis has been performed in order to study the distributions of some global variables such as coplanarity, sphericity, and relative angle, helpful in the understanding of the topological characteristics of the process and in the evaluation of its time scale. Experimental data have also been compared with the results of Monte Carlo simulations based on different reaction mechanisms and it is possible to conclude that sequential emission of the fragments is preferred.

  17. Joining of Ni-TiC FGM and Ni-Al Intermetallics by Centrifugal Combustion Synthesis

    SciTech Connect

    Ohmi, Tatsuya; Matsuura, Kiyotaka; Iguchi, Manabu; Mizuma, Kiminori

    2008-02-15

    A centrifugal combustion synthesis (CCS) process has been investigated to join a Ni-Al intermetallic compound and a Ni-TiC cermet. The cermet, a tubular graphite mold, and a green compact of reactants consisting of Al, Ni and NiO were set in a centrifugal caster. When the combustion synthesis reaction was induced in the centrifugal force field, a synthesized molten Ni-Al alloy flowed into the graphite mold and joined to the cermet. The soundness of the joint interface depended on the volume percentage of TiC phase in the cermet. A lot of defects were formed near the interface between the Ni-TiC cermet and the cast Ni-Al alloy when the volume percentage of TiC was 50% or higher. For this kind of cermet system, using a functionally graded cermet such as Ni-10 vol.%TiC/Ni-25 vol.%TiC/Ni-50 vol.%TiC overcame this difficulty. The four-point bending strength of the joined specimen consisting of the three-layered FGM cermet and cast Ni-29 mol%Al alloy was 1010 MPa which is close to the result for a Ni-29 mol%Al alloy specimen.

  18. Internal-nitriding behavior of Ni-V and Ni-3Nb alloys

    SciTech Connect

    Allen, A.T.; Douglass, D.L.

    1999-02-01

    Ni-2V, Ni-5V, Ni-12V, and Ni-3Nb alloys (w/o) were nitrided in 10 v/o NH{sub 3} (bal H{sub 2}) over the range of 700--1000 C. The growth rates of the reaction zones followed parabolic behavior for all of the alloys from 700 to 900 C. At 1000 C, Ni-2V and Ni-3Nb formed nitride scales, whereas Ni-5V and Ni-12V formed internal-nitride zones. Nitridation rates decreased with increasing vanadium content for the Ni-V alloys. VN precipitated in the Ni-V alloys and NbN precipitated in Ni-3Nb for all exposure conditions in which internal nitridation occurred. The precipitate morphology changed with temperature and distance from the gas-metal surface. The VN and NbN precipitates were generally small and spheroidal near the surface, increasing in size with distance and temperature. The NbN precipitates became Widmanstaetten at higher temperatures and/or increasing distance within the nitrided zone. The solubility of nitrogen in pure Ni was determined and found to decrease with increasing temperature from 700 to 1000 C. Expressions for the diffusion coefficient of nitrogen in nickel were determined from the measured permeabilities of each alloy and the nitrogen solubilities in nickel.

  19. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  20. The Ni-rich part of the Al–Ge–Ni phase diagram

    PubMed Central

    Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.

    2013-01-01

    The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754

  1. Formation of alternating interfacial layers in Au-12Ge/Ni joints

    PubMed Central

    Lin, Shih-kang; Tsai, Ming-yueh; Tsai, Ping-chun; Hsu, Bo-hsun

    2014-01-01

    Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300°C and 400°C. For the reactions at 300°C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon – the formation of (Au,Ni,Ge)/NiGe alternating layers – was observed for the reactions at 400°C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/···/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper. PMID:24690992

  2. Water dissociation on Ni(100) and Ni(111): Effect of surface temperature on reactivity

    SciTech Connect

    Seenivasan, H.; Tiwari, Ashwani K.

    2013-11-07

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111)

  3. Water dissociation on Ni(100) and Ni(111): effect of surface temperature on reactivity.

    PubMed

    Seenivasan, H; Tiwari, Ashwani K

    2013-11-07

    Water adsorption and dissociation on Ni(100) and Ni(111) surfaces are studied using density functional theory calculations. Water adsorbs on top site on both the surfaces, while H and OH adsorb on four fold hollow and three fold hollow (fcc) sites on Ni(100) and Ni(111), respectively. Transition states (TS) on both surfaces are identified using climbing image-nudged elastic band method. It is found that the barrier to dissociation on Ni(100) surface is slightly lower than that on Ni(111) surface. Dissociation on both the surfaces is exothermic, while the exothermicity on Ni(100) is large. To study the effect of lattice motion on the energy barrier, TS calculations are performed for various values of Q (lattice atom coordinate along the surface normal) and the change in the barrier height and position is determined. Calculations show that the energy barrier to reaction decreases with increasing Q and increases with decreasing Q on both the surfaces. Dissociation probability values at different surface temperatures are computed using semi-classical approximation. Results show that the influence of surface temperature on dissociation probability on the Ni(100) is significantly larger compared to that of Ni(111). Moreover, on Ni(100), a dramatic shift in energy barrier to lower incident energy values is observed with increasing surface temperature, while the shift is smaller in the case of Ni(111).

  4. Hydride reactivity of Ni(II)-X-Ni(II) entities: mixed-valent hydrido complexes and reversible metal reduction.

    PubMed

    Gehring, Henrike; Metzinger, Ramona; Herwig, Christian; Intemann, Julia; Harder, Sjoerd; Limberg, Christian

    2013-01-28

    After the lithiation of PYR-H(2) (PYR(2-) =[{NC(Me)C(H)C(Me)NC(6)H(3)(iPr)(2)}(2)(C(5)H(3)N)](2-)), which is the precursor of an expanded β-diketiminato ligand system with two binding pockets, its reaction with [NiBr(2) (dme)] led to a dinuclear nickel(II)-bromide complex, [(PYR)Ni(μ-Br)NiBr] (1). The bridging bromide ligand could be selectively exchanged for a thiolate ligand to yield [(PYR)Ni(μ-SEt)NiBr] (3). In an attempt to introduce hydride ligands, both compounds were treated with KHBEt(3). This treatment afforded [(PYR)Ni(μ-H)Ni] (2), which is a mixed valent Ni(I)-μ-H-Ni(II) complex, and [(PYR-H)Ni(μ-SEt)Ni] (4), in which two tricoordinated Ni(I) moieties are strongly antiferromagnetically coupled. Compound 4 is the product of an initial salt metathesis, followed by an intramolecular redox process that separates the original hydride ligand into two electrons, which reduce the metal centres, and a proton, which is trapped by one of the binding pockets, thereby converting it into an olefin ligand on one of the Ni(I) centres. The addition of a mild acid to complex 4 leads to the elimination of H(2) and the formation of a Ni(II)Ni(II) compound, [(PYR)Ni(μ-SEt)NiOTf] (5), so that the original Ni(II) (μ-SEt)Ni(II) X core of compound 3 is restored. All of these compounds were fully characterized, including by X-ray diffraction, and their molecular structures, as well as their formation processes, are discussed.

  5. Modeling and simulation of NiO dissolution and Ni deposition in molten carbonate fuel cells

    SciTech Connect

    Nam, Suk Woo; Choi, Hyung-Joon; Lim, Tae Hoon

    1996-12-31

    Dissolution of NiO cathode into the electrolyte matrix is an important phenomena limiting the lifetime of molten carbonate fuel cell (MCFC). The dissolved nickel diffuses into the matrix and is reduced by dissolved hydrogen leading to the formation of metallic nickel films in the pores of the matrix. The growth of Ni films in the electrolyte matrix during the continuous cell operation results eventually in shorting between cathode and anode. Various mathematical and empirical models have been developed to describe the NiO dissolution and Ni deposition processes, and these models have some success in estimating the lifetime of MCFC by correlating the amount of Ni deposited in the matrix with shorting time. Since the exact mechanism of Ni deposition was not well understood, deposition reaction was assumed to be very fast in most of the models and the Ni deposition region was limited around a point in the matrix. In fact, formation of Ni films takes place in a rather broad region in the matrix, the location and thickness of the film depending on operating conditions as well as matrix properties. In this study, we assumed simple reaction kinetics for Ni deposition and developed a mathematical model to get the distribution of nickel in the matrix.

  6. A self-assembled Ni(cyclam)-BTC network on ITO for an oxygen evolution catalyst in alkaline solution.

    PubMed

    Leem, Yun Jin; Cho, Keumnam; Oh, Kyung Hee; Han, Sung-Hwan; Nam, Ki Min; Chang, Jinho

    2017-03-25

    A self-assembled Ni(cyclam)-BTC film was formed on ITO in an acidic solution. Ni(cyclam)-BTC exhibited an enhanced electro-catalytic property for the oxygen evolution reaction (OER), which was strongly relevant to the Ni(iii)/Ni(iv) redox reaction activated by the potential dynamic process. A possible formation mechanism of Ni(cyclam)-BTC by self-assembly on ITO was also proposed.

  7. Research of surface-oxidation epitaxy of NiO films on cube textured Ni tapes

    NASA Astrophysics Data System (ADS)

    Shi, D. Q.; Ionescu, M.; McKinnon, J.; Chen, W. M.; Dou, S. X.

    2002-05-01

    Thin films of NiO were fabricated in air by surface-oxidation epitaxy (SOE) on biaxially-textured Ni substrate, for use as buffer layers for YBCO coated conductors. The surface-oxidation conditions such as the temperature and the reaction time, as well as the cooling rate, play a determining role in the process of epitaxial growth of the NiO layer. A continuous, biaxially-aligned textured NiO layer, was obtained for a 10 min oxidation in air at 1120 °C, and a cooling rate of 150 K/h. The roughness of the NiO layer is mostly controlled by a coarsening of some NiO grains.

  8. Carbon segregation-induced highly metallic ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media.

    PubMed

    Jeon, Tae-Yeol; Watanabe, Masahiro; Miyatake, Kenji

    2014-11-12

    The important roles of Ni in electrocatalytic reactions such as hydrazine oxidation are limited largely by high oxidation states because of its intrinsically high oxophilicity. Here, we report the synthesis and properties of highly metallic Ni nanoparticles (NPs) on carbon black supports. We discovered that the heat treatment of as-prepared Ni NPs with an average particle size of 5.8 nm produced highly metallic Ni NPs covered with thin carbon shells, with negligible particle coarsening. The carbon shells were formed by the segregation of carbons in the Ni lattice to the surface of the Ni NPs, leaving highly metallic Ni NPs. X-ray photoelectron spectroscopic analyses revealed that the atomic ratio of metallic Ni increased from 19.2 to 71.7% as a result of the heat treatment. The NPs exhibited higher electrocatalytic activities toward the hydrazine oxidation reaction in alkaline solution, as compared to those of the as-prepared Ni NPs and commercial Ni powders.

  9. Isospin Against Size Effects In Projectile Dynamical Fission For 112,124Sn+58,64Ni and 124Xe+64Zn Reactions At 35 A.MeV

    NASA Astrophysics Data System (ADS)

    Russotto, P.; De Filippo, E.; Pagano, A.; Piasecki, E.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Boiano, C.; Borderie, B.; Bruno, M.; Cap, T.; Cardella, G.; Castoldi, A.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; D'Andrea, M.; Di Toro, M.; Fichera, F.; Francalanza, L.; Geraci, E.; Gianì, R.; Gnoffo, B.; Grimaldi, A.; Grzeszczuk, A.; Guazzoni, C.; Guazzoni, P.; Giudice, N.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Lombardo, I.; Maiolino, C.; Marquínez-Durán, G.; Minniti, T.; Papa, M.; Pagano, E. V.; Passaro, G.; Pirrone, S.; Płaneta, R.; Politi, G.; Porto, F.; Quattrocchi, L.; Rivet, M. F.; Rosato, E.; Riccio, F.; Rizzo, F.; Saccà, G.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zambon, P.; Zetta, L.; Zipper, W.

    2014-05-01

    In past experiments, mass asymmetric projectile-target combinations124Sn+64Ni and 112Sn+58Ni were investigated at ELab(112'124Sn)=35 A.MeVbeam energybyusing the 4n multi-detector CHIMERA. From a quantitative comparison of cross sections associated to Statistical and Dynamical Fission of the Projectile-Like Fragments, it resulted that Dynamical Fission process is about two times more probable in the neutron rich 124Sn+64Ni system than in the 112 Sn +58 Ni neutron poor one. In contrast, no sizable difference was found for Statistical Fission mechanism. The observed difference in the strength of the Dynamical effects could arise from the difference in entrance channel Isospin (N/Z) content. In order to disentangle Isospin effects from effects due to the different masses of the two systems, a new experiment 124Xe+64Zn at 35 A.MeV beam energy has been recently carried out.

  10. Transient Behavior of Ni@NiOx Functionalized SrTiO3 in Overall Water Splitting

    PubMed Central

    2017-01-01

    Transients in the composition of Ni@NiOx core–shell co-catalysts deposited on SrTiO3 are discussed on the basis of state-of-the-art continuous analysis of photocatalytic water splitting, and post-XPS and TEM analyses. The formation of excessive hydrogen (H2:O2 ≫ 2) in the initial stages of illumination demonstrates oxidation of Ni(OH)2 to NiOOH (nickel oxyhydroxide), with the latter catalyzing water oxidation. A disproportionation reaction of Ni and NiOOH, yielding Ni(OH)2 with residual embedded Ni, occurs when illumination is discontinued, which explains repetitive transients in (excess) hydrogen and oxygen formation when illumination is reinitiated. PMID:28405491

  11. Stability of Ni-yttria stabilized zirconia anodes based on Ni-impregnation

    NASA Astrophysics Data System (ADS)

    Klemensø, Trine; Thydén, Karl; Chen, Ming; Wang, Hsiang-Jen

    Sintering of Ni is a key stability issue for Ni-YSZ anodes, and especially infiltration based electrodes. The potential of MgO, Al 2O 3, TiO 2, CeO 2 and Ce 0.90Gd 0.10O 1.95 (CGO10) as sintering inhibitors was investigated for infiltrated Ni based anode structures. The structures were prepared from tape cast porous YSZ layers that were impregnated with Ni to form an electronic percolating phase. The Ni-YSZ structure was subsequently impregnated with the inhibitor candidate, and the stability of the structure was evaluated from conductivity measurements. Lower conductivity degradation rates were observed for samples infiltrated with the inhibitor candidates, and the best inhibitor effect was seen with higher loadings of CGO10, and CeO 2 showed similar potential. The degradation in conductivity was not visibly reflected in the microstructure as Ni coarsening in any of the cases. An adverse effect of MgO, TiO 2 and Al 2O 3 was reduced conductivity, possibly due to reaction with Ni and the formation of higher resistive phases. The Ni-infiltrated anodes were shown to have better initial electrochemical performance at 650 °C than conventionally produced Ni-YSZ anodes, but still very poor stability, and further improvement of the inhibitor approach is necessary before applying the Ni-infiltrated anodes in SOFCs.

  12. State of Supported Nanoparticle Ni during Catalysis in Aqueous Media

    SciTech Connect

    Chase, Zizwe; Vjunov, Aleksei; Fulton, John; Camaioni, Donald; Balasubramanian, Mahalingam; Lercher, Johannes

    2015-11-09

    The state of Ni supported on HZSM-5 zeolite, silica, and sulfonated carbon was studied during aqueous-phase catalysis of phenol hydrodeoxygenation using in situ extended X-ray absorption fine structure spectroscopy. On sulfonated carbon and HZSM-5 supports, NiO and Ni(OH)(2) were readily reduced to Ni-0 under reaction conditions (approximate to 35bar H-2 in aqueous phenol solutions containing up to 0.5wt.% phosphoric acid at 473K). In contrast, Ni supported on SiO2 was not stable in a fully reduced Ni-0 state. Water enables the formation of Ni-II phyllosilicate, which is more stable, that is, difficult to reduce, than either -Ni(OH)(2) or NiO. Leaching of Ni from the supports was not observed over a broad range of reaction conditions. Ni-0 particles on HZSM-5 were stable even in presence of 15wt.% acetic acid at 473K and 35bar H-2.

  13. Enhanced Electrocatalytic Activity for Water Splitting on NiO/Ni/Carbon Fiber Paper.

    PubMed

    Zhang, Ruoyu; Wei, Hehe; Si, Wenjie; Ou, Gang; Zhao, Chunsong; Song, Mingjun; Zhang, Cheng; Wu, Hui

    2016-12-28

    Large-scale growth of low-cost, efficient, and durable non-noble metal-based electrocatalysts for water splitting is crucial for future renewable energy systems. Atomic layer deposition (ALD) provides a promising route for depositing uniform thin coatings of electrocatalysts, which are useful in many technologies, including the splitting of water. In this communication, we report the growth of a NiO/Ni catalyst directly on carbon fiber paper by atomic layer deposition and report subsequent reduction and oxidation annealing treatments. The 10-20 nm NiO/Ni nanoparticle catalysts can reach a current density of 10 mA·cm(-2) at an overpotential of 189 mV for hydrogen evolution reactions and 257 mV for oxygen evolution reactions with high stability. We further successfully achieved a water splitting current density of 10 mA·cm(-2) at 1.78 V using a typical NiO/Ni coated carbon fiber paper two-electrode setup. The results suggest that nanoparticulate NiO/Ni is an active, stable, and noble-metal-free electrocatalyst, which facilitates a method for future water splitting applications.

  14. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  15. Prompt proton decay and deformed bands in Ni56

    NASA Astrophysics Data System (ADS)

    Johansson, E. K.; Rudolph, D.; Andersson, L.-L.; Torres, D. A.; Ragnarsson, I.; Andreoiu, C.; Baktash, C.; Carpenter, M. P.; Charity, R. J.; Chiara, C. J.; Ekman, J.; Fahlander, C.; Hoel, C.; Pechenaya, O. L.; Reviol, W.; Du Rietz, R.; Sarantites, D. G.; Seweryniak, D.; Sobotka, L. G.; Yu, C. H.; Zhu, S.

    2008-06-01

    High-spin states in the doubly magic N=Z nucleus Ni56 have been investigated with three fusion-evaporation reaction experiments. New γ-ray transitions are added, and a confirmation of a previously suggested prompt proton decay from a rotational band in Ni56 into the ground state of Co55 is presented. The rotational bands in Ni56 are discussed within the framework of cranked Nilsson-Strutinsky calculations.

  16. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors.

    PubMed

    Onozuka, T; Chikamatsu, A; Katayama, T; Fukumura, T; Hasegawa, T

    2016-07-26

    A new phase of oxyhydride NdNiOxHy with a defect-fluorite structure was obtained by a soft chemical reaction of NdNiO3 epitaxial thin films on a substrate of SrTiO3 (100) with CaH2. The epitaxial relationship of this phase relative to SrTiO3 could be controlled by changing the reaction temperature. At 240 °C, NdNiOxHy grew with a [001] orientation, forming a thin layer of infinite-layer NdNiO2 at the interface between the NdNiOxHy and the substrate. Meanwhile, a high-temperature reaction at 400 °C formed [110]-oriented NdNiOxHy without NdNiO2.

  17. Enhanced Dry Reforming of Methane on Ni and Ni-Pt Catalysts Synthesized by Atomic Layer Deposition

    SciTech Connect

    Gould, Troy D.; Montemore, Matthew M.; Lubers, Alia M.; Ellis, Lucas D.; Weimer, Alan; Falconer, John L.; Medlin, James W.

    2015-02-25

    Atomic layer deposition (ALD) was used to deposit Ni and Pt on alumina supports to form monometallic and bimetallic catalysts with initial particle sizes of 1–2.4 nm. The ALD catalysts were more active (per mass of metal) than catalysts prepared by incipient wetness (IW) for dry reforming of methane (DRM), and they did not form carbon whiskers during reaction due to their sufficiently small size. Catalysts modified by Pt ALD had higher rates of reaction per mass of metal and inhibited coking, whereas NiPt catalysts synthesized by IW still formed carbon whiskers. Temperature-programmed reduction of Ni catalysts modified by Pt ALD indicated the presence of bimetallic interaction. Density functional theory calculations suggested that under reaction conditions, the NiPt surfaces form Ni-terminated surfaces that are associated with higher DRM rates (due to their C and O adsorption energies, as well as the CO formation and CH4 dissociation energies).

  18. Controlled growth of Cu-Ni nanowires and nanospheres for enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Dong, Lifeng; Zhang, Baoqin; Yu, Mingxun; Liu, Jingquan

    2016-03-01

    Copper is a good dielectric loss material but has low stability, whereas nickel is a good magnetic loss material and is corrosion resistant but with low conductivity, therefore Cu-Ni hybrid nanostructures have synergistic advantages as microwave absorption (MA) materials. Different Cu/Ni molar ratios of bimetallic nanowires (Cu13@Ni7, Cu5@Ni5 and Cu7@Ni13) and nanospheres (Cu13@Ni7, Cu5@Ni5 and Cu1@Ni3) have been successfully synthesized via facile reduction of hydrazine under similar reaction conditions, and the morphology can be easily tuned by varying the feed ratio or the complexing agent. Apart from the concentrations of Cu2+ and Ni2+, the reduction parameters are similar for all samples to confirm the effects of the Cu/Ni molar ratio and morphology on MA properties. Ni is incorporated into the Cu-Ni nanomaterials as a shell over the Cu core at low temperature, as proved by XRD, SEM, TEM and XPS. Through the complex relative permittivity and permeability, reflection loss was evaluated, which revealed that the MA capacity greatly depended on the Cu/Ni molar ratio and morphology. For Cu@Ni nanowires, as the molar ratio of Ni shell increased the MA properties decreased accordingly. However, for Cu@Ni nanospheres, the opposite trend was found, that is, as the molar ratio of the Ni shell increased the MA properties increased.

  19. Easy access to Ni3N- and Ni-carbon nanocomposite catalysts.

    PubMed

    Clavel, Guylhaine; Molinari, Valerio; Kraupner, Alexander; Giordano, Cristina

    2014-07-14

    In the search for alternative materials to current expensive catalysts, Ni has been addressed as one of the most promising and, on this trail, its corresponding nitride. However, nickel nitride is a thermally unstable compound, and therefore not easy to prepare especially as nanoparticles. In the present work, a sol-gel-based process (the urea glass route) is applied to prepare well-defined and homogeneous Ni3N and Ni nanoparticles. In both cases, the prepared crystalline nanoparticles (∼25 nm) are dispersed in a carbon matrix forming interesting Ni3N- and Ni-based composites. These nanocomposites were characterised by means of several techniques, such as XRD, HR-TEM, EELS, and the reaction mechanism was investigated by TGA and IR and herein discussed. The catalytic activity of Ni3N is investigated for the first time, to the best of our knowledge, for hydrogenation reactions involving H2, and here compared to the one of Ni. Both materials show good catalytic activities but, interestingly, give a different selectivity between different functional groups (namely, nitro, alkene and nitrile groups).

  20. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ)69Ni

    NASA Astrophysics Data System (ADS)

    Spyrou, A.; Larsen, A. C.; Liddick, S. N.; Naqvi, F.; Crider, B. P.; Dombos, A. C.; Guttormsen, M.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Lewis, R.; Mosby, S.; Mumpower, M. R.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Renstrøm, T.; Siem, S.; Surman, R.

    2017-04-01

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n, γ)69Ni reaction rate. This is done by populating the compound nucleus 69Ni via the β decay of 69Co and measuring the γ-ray deexcitation of excited states in 69Ni. The β-Oslo method was used to extract the γ-ray strength function and the nuclear level density. In addition the half-life of 69Co was extracted and found to be in agreement with previous literature values. Before the present results, the 68Ni(n, γ)69Ni reaction was unconstrained and the purely theoretical reaction rate was highly uncertain. The new uncertainty on the reaction rate based on the present experiment (variation between upper and lower limit) is approximately a factor of 3. The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-process calculations is discussed.

  1. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    PubMed

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni3 S2 @Ni(OH)2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm(-2) ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni3 S2 and Ni(OH)2 were both improved. The upper layer of Ni(OH)2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni3 S2 , whereas the Ni3 S2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH)2 and Ni foam. The graphene stabilized the Ni(OH)2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g(-1) at 1 A g(-1) or 18.81 F cm(-2) at 8.33 mA cm(-2) ) and an outstanding rate property (1010 F g(-1) at 20 Ag(-1) or 8.413 F cm(-2) at 166.6 mA cm(-2) ). This result is around double the capacitance achieved in previous research on Ni3 S2 @Ni(OH)2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Constitution of the Sr-Ni-O system

    SciTech Connect

    Zinkevich, M. . E-mail: zinkevich@mf.mpg.de

    2005-09-15

    The constitution of the Sr-Ni-O system was studied experimentally for the first time. Samples were prepared either from SrCO{sub 3} and NiO or from Sr(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}.6H{sub 2}O and characterized by high-temperature X-ray powder diffraction, scanning electron microscopy, thermogravimetric and differential thermal analyses. In the SrO-NiO quasibinary system an eutectic reaction: liquid-bar SrO+NiO was found to occur at 1396+/-5{sup o}C, while the homogeneity range of terminal solid solutions is negligible. Thermodynamic calculations using the regular solution model for the liquid and rocksalt-type phases were employed to predict liquidus and solidus curves. Three ternary compounds, SrNiO{sub 2.5}, Sr{sub 5}Ni{sub 4}O{sub 11}, and Sr{sub 9}Ni{sub 7}O{sub 21} were observed in the samples prepared from nitrate solutions, but only Sr{sub 9}Ni{sub 7}O{sub 21} was proved to be thermodynamically stable in air up to 1030+/-6{sup o}C. When heating in air, SrNiO{sub 2.5} and Sr{sub 5}Ni{sub 4}O{sub 11} were found to transform irreversibly into a mixture of Sr{sub 9}Ni{sub 7}O{sub 21} and NiO. Isothermal section of the SrO-NiO-O subsystem, which represents phase equilibria at 950-1030{sup o}C as well as an isobaric section of the Sr-Ni-O system in air were constructed.

  3. Measurement of {sup 63}Ni and {sup 59}Ni by accelerator mass spectrometry using characteristic projectile x-rays

    SciTech Connect

    McAninch, J.E.; Hainsworth, L.J.; Marchetti, A.A.

    1996-05-01

    The long-lived isotopes of nickel ({sup 59}Ni, {sup 63}Ni) have current and potential use in a number of applications including cosmic radiation studies, biomedical tracing, characterization of low-level radioactive wastes, and neutron dosimetry. Methods are being developed at LLNL for the routine detection of these isotopes by AMS. One intended application is in Hiroshima dosimetry. The reaction {sup 63}Cu(n,p){sup 63}Ni has been identified as one of a small number of reactions which might be used for the direct determination of the fast neutron fluence emitted by the Hiroshima bomb. AMS measurement of {sup 63}Ni(t{sub 1/2} = 100 y) requires the chemical removal of {sup 63}Cu, which is a stable isobar of {sup 63}Ni. Following the electrochemical separation of Ni from gram-sized copper samples, the Cu concentration is further lowered to < 2 x 10{sup -8} (Cu/Ni) using the reaction of Ni with carbon monoxide to form the gas Ni(CO){sub 4}. The Ni(CO){sub 4} is thermally decomposed directly in sample holders for measurement by AMS. After analysis in the AMS spectrometer, the ions are identified using characteristic projectile x-rays, allowing further rejection of remaining {sup 63}Cu. In a demonstration experiment, {sup 63}Ni was measured in Cu wires (2-20 g) which had been exposed to neutrons from a {sup 252}Cf source. We successfully measured {sup 63}Ni at levels necessary for the measurement of Cu samples exposed near the Hiroshima hypocenter. For the demonstration samples, the Cu content was chemically reduced by a factor of 10{sup 12} with quantitative retention of {sup 63}Ni. Detection sensitivity (3{sigma}) was {approximately}20 fg {sup 63}Ni in 1 mg Ni carrier ({sup 63}Ni/Ni {approx} 2 x 10{sup -11}). Significant improvements in sensitivity are expected with planned incremental changes in the methods. Preliminary results indicate that a similar sensitivity is achievable for {sup 59}Ni (t{sub 1/2} = 10{sup 5} y).

  4. NiAl alloys for structural uses

    NASA Technical Reports Server (NTRS)

    Koss, D. A.

    1991-01-01

    Alloys based on the intermetallic compound NiAl are of technological interest as high temperature structural alloys. These alloys possess a relatively low density, high melting temperature, good thermal conductivity, and (usually) good oxidation resistance. However, NiAl and NiAl-base alloys suffer from poor fracture resistance at low temperatures as well as inadequate creep strength at elevated temperatures. This research program explored macroalloying additions to NiAl-base alloys in order to identify possible alloying and processing routes which promote both low temperature fracture toughness and high temperature strength. Initial results from the study examined the additions of Fe, Co, and Hf on the microstructure, deformation, and fracture resistance of NiAl-based alloys. Of significance were the observations that the presence of the gamma-prime phase, based on Ni3Al, could enhance the fracture resistance if the gamma-prime were present as a continuous grain boundary film or 'necklace'; and the Ni-35Al-20Fe alloy was ductile in ribbon form despite a microstructure consisting solely of the B2 beta phase based on NiAl. The ductility inherent in the Ni-35Al-20Fe alloy was explored further in subsequent studies. Those results confirm the presence of ductility in the Ni-35Al-20Fe alloy after rapid cooling from 750 - 1000 C. However exposure at 550 C caused embrittlement; this was associated with an age-hardening reaction caused by the formation of Fe-rich precipitates. In contrast, to the Ni-35Al-20Fe alloy, exploratory research indicated that compositions in the range of Ni-35Al-12Fe retain the ordered B2 structure of NiAl, are ductile, and do not age-harden or embrittle after thermal exposure. Thus, our recent efforts have focused on the behavior of the Ni-35Al-12Fe alloy. A second parallel effort initiated in this program was to use an alternate processing technique, mechanical alloying, to improve the properties of NiAl-alloys. Mechanical alloying in the

  5. Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery

    NASA Astrophysics Data System (ADS)

    Shi, F.; Xie, D.; Zhong, Y.; Wang, D. H.; Xia, X. H.; Gu, C. D.; Wang, X. L.; Tu, J. P.

    2016-10-01

    To meet the requirements for high-rate battery with desirable performance, a self-supported Ni2P@Ni sponge electrode is synthesized via simple steps, in which the Ni sponge substrate is synthesized by a one-pot hydrothermal method and the Ni2P nanosheets grown on the novel substrate are converted from Ni(OH)2 via a phosphorization reaction. This hybrid composite combines the 3D porous structure of Ni sponge and high capacity of Ni2P nanosheets, which exhibits lightweight, flexible and highly-conductive properties, resulting in an excellent specific capacity of 430.3 mAh g-1 at a current density of 1 A g-1 and remaining as high as 77.0% capacity even at 40 A g-1. More importantly, the Ni2P@Ni sponge//C cell exhibits the maximum energy density of 182.1 W h kg-1 at a power density of 205 W kg-1 along with superior capacity retention of 85.2% after 3000 cycles. It is suggested that the Ni2P nanosheet@ Ni sponge composite is a promising electrode material for high-rate batteries.

  6. Enhanced magnetic properties of NiO powders by the mechanical activation of aluminothermic reduction of NiO prepared by a ball milling process

    NASA Astrophysics Data System (ADS)

    Padhan, Aneeta Manjari; Ravikumar, P.; Saravanan, P.; Alagarsamy, Perumal

    2016-11-01

    We report the effect of mechanical activation on NiO-Al (x wt%) reduction reaction and resulting structural and magnetic properties by carrying out high-energy planetary ball milling. The pure NiO (un-milled) and milled NiO-Al (x≤2.5) powders exhibit face centered cubic structure, but the antiferromagnetic nature of pure NiO powder shows significant room temperature ferromagnetism with moderate moment and coercivity after milling due to non-stoichiometry in NiO caused by the defects, size reduction and oxidation of Ni. On the other hand, the addition of Al between 2.5 and 10% in NiO forms solid solution of NiO-Al with considerable reduction in the moment due to the atomic disorder. With increasing Al above 10%, NiO reduction reaction progresses gradually and as a result, the average magnetization increases from 0.57 to 4.3 emu/g with increasing Al up to 25%. A maximum of 91% reduction was observed for NiO-Al (40%) powders in 30 h of milling with a large increase in magnetization (~24 emu/g) along with the development of α-Al2O3. Thermomagnetization data reveal the presence of mixed magnetic phases in milled NiO powders and the component of induced ferromagnetic phase fades out with increasing Al due to the formation of Ni from the NiO-Al reduction reaction. The changes in the structural and magnetic properties are discussed on the basis of mechanical activation on the reduction of NiO by Al. The controlled reduction reaction with different Al content in NiO-Al is encouraging for the applications in catalysis and process of ore reduction.

  7. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  8. Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation

    SciTech Connect

    Evmenenko, Guennadi; Fister, Timothy T.; Buchholz, D. Bruce; Li, Qianqian; Chen, Kan-Sheng; Wu, Jinsong; Dravid, Vinayak P.; Hersam, Mark C.; Fenter, Paul; Bedzyk, Michael J.

    2016-08-10

    Oxide conversion reactions in lithium ion batteries are challenged by substantial irreversibility associated with significant volume change during the phase separation of an oxide into lithia and metal species (e.g., NiO + 2Li(+) + 2e(-) -> Ni + Li2O). We demonstrate that the confinement of nanometer-scale NiO layers within a Ni/NiO multilayer electrode can direct lithium transport and reactivity, leading to coherent expansion of the multilayer. The morphological changes accompanying lithiation were tracked in real-time by in-operando X-ray reflectivity (XRR) and ex situ cross-sectional transmission electron microscopy on well-defined periodic Ni/NiO multilayers grown by pulsed-laser deposition. Comparison of pristine and lithiated structures reveals that the nm-thick nickel layers help initiate the conversion process at the interface and then provide an architecture that confines the lithiation to the individual oxide layers. XRR data reveal that the lithiation process starts at the top and progressed through the electrode stack, layer by layer resulting in a purely vertical expansion. Longer term cycling showed significant reversible capacity (similar to 800 mA h g(-1) after similar to 100 cycles), which we attribute to a combination of the intrinsic bulk lithiation capacity of the NiO and additional interfacial lithiation capacity. These observations provide new insight into the role of metal/metal oxide interfaces in controlling lithium ion conversion reactions by defining the relationships between morphological changes and film architecture during reaction.

  9. Mechanisms of Formation and Transformation of Ni-Fe Hydroxycarbonates

    SciTech Connect

    Refait, Ph.; Jeannin, M.; Reffass, M.; Drissi, S.H.; Abdelmoula, M.; Genin, J.-M.R.

    2005-04-26

    The mechanisms of the transformation of (Ni,Fe)(OH)2 precipitates in carbonated aqueous solutions were studied. The reactions were monitored by measuring the redox potential of the aqueous suspension, and end products were studied by Moessbauer spectroscopy, X-ray diffraction and Raman spectroscopy. The oxidation processes were compared to those occurring without Ni, that is when the initial hydroxide is Fe(OH)2. Schematically, the oxidation of Fe(OH)2 involves two intermediate compounds, the carbonated GR of formula Fe{sup II}{sub 4}Fe{sup III}{sub 2}(OH){sub 12}CO{sub 3} {center_dot} 2H{sub 2}O, and ferrihydrite, before to lead finally to goethite {alpha}-FeOOH. It proved possible to prepare Ni(II)-Fe(III) hydroxycarbonates with ratios Fe/Ni from 1/6 to 1/3. When the Fe/Ni ratio is larger than 1/3, a two stage oxidation process takes place. The first stage leads to a Ni(II)-Fe(II)-Fe(III) hydroxycarbonate. The second stage corresponds to the oxidation of the Fe(II) remaining inside the hydroxycarbonate and leads to a mixture of Ni(II)-Fe(III) hydroxycarbonate with ferrihydrite. The main effect of Ni is then to stop the reaction at an intermediate stage, as Ni(II) is not oxidised by O2, leaving unchanged the main features of the mechanisms of transformation.

  10. A new 1 --> infinity [Ni7] cluster in LaNi7In6 and distorted bcc indium cubes in LaNiIn4.

    PubMed

    Kalychak, Y M; Zaremba, V I; Galadzhun, Y V; Miliyanchuk, K Y; Hoffmann, R D; Pöttgen, R

    2001-12-17

    LaNiIn4 and LaNi7In, were prepared by reaction of the elements in an arc melting furnace and subsequent annealing at 870 K for five weeks. Both compounds were investigated by X-ray diffraction on powders and single crystals and the structures were refined from single-crystal data: Cmcm, a = 448.2(1), b = 1689.5(4). c = 722.1(1) pm, wR2 = 0.0340, 472 F2 values, 24 variables for LaNiIn4, and Ibam, a = 806.6(2). b = 924.8(2). c = 1246.5(2) pm. wR2 = 0.0681. 726 F2 values and 40 variables for LaNi7In,. LaNiIn4 adopts the YNiAl4-type structure. The nickel and indium atoms form a three-dimensional infinite [NiIn4] polyanion in which the lanthanum atoms fill distorted hexagonal channels. No Ni-Ni contacts occur. The indium substructure consists of distorted bcc-like indium cubes. LaNi7In6 crystallizes with a peculiar new structure type. The nickel atoms build a 1 --> infinity [Ni7] cluster unit with Ni-Ni distances ranging from 249 to 269 pm. The cluster units are enveloped by indium atoms. These larger units show an orthorhombic rod packing with the lanthanum atoms filling the space between the rods. Several nickel clusters in ternary rare earth metal nickel indides and the structural relations of the LaNi7In6 structure with the cubic NaZn13 type are discussed.

  11. Effects of P/Ni ratio and Ni content on performance of γ-Al2O3-supported nickel phosphides for deoxygenation of methyl laurate to hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zhang, Zhena; Tang, Mingxiao; Chen, Jixiang

    2016-01-01

    γ-Al2O3-supported nickel phosphides (mNi-Pn) were prepared by the TPR method and tested for the deoxygenation of methyl laurate to hydrocarbons. The effects of the P/Ni ratio (n = 1.0-2.5) and Ni content (m = 5-15 wt.%) in the precursors on their structure and performance were investigated. Ni/γ-Al2O3 was also studied for comparison. It was found that the formation of AlPO4 in the precursor inhibited the reduction of phosphate and so the formation of nickel phosphides. With increasing the P/Ni ratio and Ni content, the Ni, Ni3P, Ni12P5 and Ni2P phases orderly formed, accompanying with the increases of their particle size and the amount of weak acid sites (mainly due to P-OH group), while the CO uptake and the amount of medium strong acid sites (mainly related to Ni sites) reached maximum on 10%Ni-P1.5. In the deoxygenation reaction, compared with Ni/γ-Al2O3, the mNi-Pn catalysts showed much lower activities for decarbonylation, Csbnd C hydrogenolysis and methanation due to the ligand and ensemble effects of P. The conversion and the selectivity to n-C11 and n-C12 hydrocarbons achieved maximum on 10%Ni-P 2.0 for the 10%Ni-Pn catalysts and on 8%Ni-P2.0 for the mNi-P2.0 catalysts, while the turnover frequency (TOF) of methyl laurate mainly increased with the P/Ni ratio and Ni content. We propose that TOF was influenced by the nickel phosphide phases, the catalyst acidity and the particle size as well as the synergetic effect between the Ni site and acid site. Again, the hydrodeoxygenation pathway of methyl laurate was promoted with increasing P/Ni ratio and Ni content, ascribed to the phase change in the order of Ni, Ni3P, Ni12P5 and Ni2P in the prepared catalysts.

  12. Organometallic nickel(III) complexes relevant to cross-coupling and carbon-heteroatom bond formation reactions.

    PubMed

    Zheng, Bo; Tang, Fengzhi; Luo, Jia; Schultz, Jason W; Rath, Nigam P; Mirica, Liviu M

    2014-04-30

    Nickel complexes have been widely employed as catalysts in C-C and C-heteroatom bond formation reactions. In addition to Ni(0) and Ni(II) intermediates, several Ni-catalyzed reactions are proposed to also involve odd-electron Ni(I) and Ni(III) oxidation states. We report herein the isolation, structural and spectroscopic characterization, and organometallic reactivity of Ni(III) complexes containing aryl and alkyl ligands. These Ni(III) species undergo transmetalation and/or reductive elimination reactions to form new C-C or C-heteroatom bonds and are also competent catalysts for Kumada and Negishi cross-coupling reactions. Overall, these results provide strong evidence for the direct involvement of organometallic Ni(III) species in cross-coupling reactions and oxidatively induced C-heteroatom bond formation reactions.

  13. Selective interaction of Ni with an MHC-bound peptide.

    PubMed Central

    Romagnoli, P; Labhardt, A M; Sinigaglia, F

    1991-01-01

    T cells generally recognize foreign antigens as peptides associated with self-molecules encoded by genes of the major histocompatibility complex (MHC). However, T cells which are specific for non-peptidic haptens have been described, in particular in patients with contact sensitivity reactions to metals such as nickel (Ni). Previously, we isolated MHC class II-restricted Ni-specific T cell clones from patients with Ni allergy. The experiments reported here examine the molecular basis for the interaction between Ni and peptide-MHC complexes. We find that Ni alters a T cell response to a peptide and show that Ni interacts with this peptide to alter its antigenicity rather than its ability to bind to MHC molecules. These findings hold implications for a model of hapten recognition by T cells. PMID:2026136

  14. Mechanical activation on aluminothermic reduction and magnetic propertiesof NiO powders

    NASA Astrophysics Data System (ADS)

    Manjari Padhan, Aneeta; Sathish, M.; Saravanan, P.; Perumal, Alagarsamy

    2017-06-01

    We report the mechanically activated aluminothermic reduction of NiO [NiO-Al(x wt.%) with x  =  0, 20, 40] into NiO-Ni-Al2O3 nanocomposites using high-energy planetary ball milling under dry milling and the resulting structural and magnetic properties. Structural studies reveal that both NiO and NiO-Al powders exhibit a face centered cubic structure with large crystal size reduction. However, the NiO-Al milled powders unveil the process of aluminothermic reaction kinetics, which changes from gradual reaction as a function of milling time for x  =  20 powders to self-propagating combustion reaction for x  =  40. This allows us to achieve a maximum NiO reduction of 40% and 90% for x  =  20 and 40, respectively. The process of NiO reduction by Al is further confirmed through thermal studies. Pure NiO shows an antiferromagnetic (AFM) nature, which transforms into a ferromagnetic (FM) one with the moderate magnetization of about 1 emu g-1 with decreasing crystal size. The formation of FM Ni from AFM NiO matrix in milled NiO-Al powders could be precisely monitored by the change in the magnetization, which increases up to 4 emu g-1 and 28 emu g-1 for the gradual and combustion reactions, respectively. This results in a considerable exchange bias and its magnitude strongly depends on the relative fractions of NiO and Ni phases. Thermomagnetization data confirm the presence of mixed magnetic phases and the component of induced FM phase fades out due to the formation of Ni from the reduction of NiO. The changes in the structural and magnetic properties of milled NiO-Al powders are discussed on the basis of milling time-dependent mechanically activated reduction reaction of NiO into NiO-Ni-Al2O3 nanocomposites. The process of mechanical activation on the aluminothermic reduction allows for a controlled reduction of NiO; thus, it is suitable for the applications in catalysis and the ore reduction process.

  15. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes.

    PubMed

    Camasso, Nicole M; Sanford, Melanie S

    2015-03-13

    Homogeneous nickel catalysis is used for the synthesis of pharmaceuticals, natural products, and polymers. These reactions generally proceed via nickel intermediates in the Ni(0), Ni(I), Ni(II), and/or Ni(III) oxidation states. In contrast, Ni(IV) intermediates are rarely accessible. We report herein the design, synthesis, and characterization of a series of organometallic Ni(IV) complexes, accessed by the reaction of Ni(II) precursors with the widely used oxidant S-(trifluoromethyl)dibenzothiophenium triflate. These Ni(IV) complexes undergo highly selective carbon(sp(3))-oxygen, carbon(sp(3))-nitrogen, and carbon(sp(3))-sulfur coupling reactions with exogenous nucleophiles. The observed reactivity has the potential for direct applications in the development of nickel-catalyzed carbon-heteroatom coupling reactions.

  16. Discontinuous coarsening behavior of Ni(2)MnAl intermetallic compound during isothermal aging treatment of Fe-Mn-Ni-Al alloys.

    PubMed

    Heo, Yoon-Uk; Takeguchi, Masaki; Furuya, Kazuo; Lee, Hu-Chul

    2010-08-01

    The discontinuous reaction of the Ni(2)MnAl intermetallic phase was investigated during the aging of a solution-treated Fe-8.3Mn-8.2Ni-4.2Al alloy. During aging, Ni(2)MnAl lamellae formed at the prior austenite grain boundaries and twin boundaries and grew into the neighboring grains. The presence of continuously precipitated fine Ni(2)MnAl particles before the growth of the discontinuously precipitated lamellae was confirmed by dark-field transmission electron microscopy, and it was concluded that the present reaction is a type of discontinuous coarsening process, alpha' + Ni(2)MnAl (continuous precipitation) --> alpha + Ni(2)MnAl (discontinuous coarsening). The chemical driving force and the reduction of the total coherent strain energy were suggested to be the driving force for the discontinuous coarsening reaction.

  17. Sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers for chemical-looping combustion by coal char

    SciTech Connect

    Haibo Zhao; Liming Liu; Baowen Wang; Di Xu; Linlin Jiang; Chuguang Zheng

    2008-03-15

    This paper focuses on the investigation of Ni-based oxygen carriers for CLC by coal char. First, Al(OC{sub 3}H{sub 7}){sub 3} and Ni(NO{sub 3}){sub 2} are selected as the main raw materials to prepare sol-gel-derived NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The oxygen carrier with a mass content of 60% NiO, a sintering temperature of 1300{sup o}C, and a sintering time of 6 h performs comparatively well. Second, the reduction reaction of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char and the circular reduction/oxidation reactions of the NiO/NiAl{sub 2}O{sub 4} oxygen carriers with char/air or hydrogen/air are carried out in a thermogravimetric analysis (TGA) instrument to investigate the reactivities and chemical life of the prepared NiO/NiAl{sub 2}O{sub 4} oxygen carriers. The experimental results show that (a) when the TGA temperature is higher than 850{sup o}C, NiO/NiAl{sub 2}O{sub 4} starts to react with coal char rapidly, which indicates that CLC of coal char using NiO/NiAl{sub 2}O{sub 4} as oxygen carriers is a feasible technology of energy utilization in principle; (b) NiO/NiAl{sub 2}O{sub 4}, which maintains its activity over single-cycle reduction/oxidation reactions with char/air or multiple-cycle reduction/oxidation reactions with hydrogen/air, exhibits extremely good recyclablity; (c) the porous beehive structure of the NiO/NiAl{sub 2}O{sub 4} particle is maintained, and the sintering behavior between different particles is not observed during cyclic studies. Those experimental results prove the sol-gel-derived oxygen carrier NiO/NiAl{sub 2}O{sub 4} is capable of being used in chemical-looping combustion fueled by coal char or H{sub 2}. 51 refs., 5 figs., 5 tabs.

  18. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2016-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  19. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO3)2 and organic template-occluded mesoporous SiO2. For comparison, supported Ni catalysts on mesoporous SiO2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N2 adsorption, X-ray photoelectron spectroscopy, H2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO3)2 with template-occluded mesoporous SiO2, strong coordination between Ni(2+) and dodecylamine was identified in the Ni(NO3)2-HMS system. Additionally, the results of H2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H2-reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous SiO2.

  20. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  1. Ni/Al Multilayers Produced by Accumulative Roll Bonding and Sputtering

    NASA Astrophysics Data System (ADS)

    Simões, S.; Ramos, A. S.; Viana, F.; Emadinia, O.; Vieira, M. T.; Vieira, M. F.

    2016-10-01

    Ni/Al multilayers are known to transform into NiAl in a highly exothermic and self-sustaining reaction. The fact that this reaction has a high heat release rate and can be triggered by an external impulse, are reasons why it has already attracted much research attention. There is a huge potential in the use of Ni/Al multilayers as a controllable and localized heat source for joining temperature-sensitive materials such as microelectronic components. The heat released and the phases resulting from the reaction of Ni and Al multilayers depend on the production methods, their composition, as well as the bilayer thickness and annealing conditions. The present research aims to explore the influence of these variables on the reaction of different multilayers, namely those produced by accumulative roll bonding (ARB) and sputtering. Structural evolution of Ni/Al multilayers with temperature was studied by differential scanning calorimetry, x-ray diffraction and scanning electron microscopy. Phase evolution, heat release rate and NiAl final grain size are controlled by the ignition method used to trigger the reaction of Ni and Al. The potential use of these multilayers in the diffusion bonding of TiAl was analyzed. The ARB multilayers allow the production of joints with higher strength than the joints produced with commercial multilayers (NanoFoil®) produced by sputtering. However, the formation of brittle intermetallic phases (Ni3Al, Ni2Al3 and NiAl3) compromises the mechanical properties of the joint.

  2. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for ΔHf,298Ko (Ni3TeO6) using third-law analysis.

  3. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  4. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  5. Synthesis of Ni supported by CaO from Ni(0)L complexes (L=dihydrazine, bisethylenediamine)

    NASA Astrophysics Data System (ADS)

    Perangin-angin, Sabarmin; Bangun, Nimpan; Ginting, Adil; Putri, Nabila Karina

    2017-01-01

    Ni/CaO have been synthesis by using thermal reaction between Ni(0)L complexes (L=dihydrazine, bisethylenediamine) and CaO from Ca-stearate or CaCO3. Ni(0)L complexes (L=dihydrazine, bisethylenediamine) prepared by ligand substitution between Cl and hydrazine to perform dichlorohydrazine-Nickel (II) and this reaction monitored by IR spectroscopy and then mention as A. Two ways reaction have been used due to obtain dihydrazine-Nickel (0) from dichlorohydrazine-Nickel (II). The resulted dihydrazine-Nickel (0), B and E, then analyzed by FT-IR. To compare the result, dichloroethylenediamine-Nickel (II), as C, also has been prepared by ligand substitution between Cl and ethylenediamine. The obtain dichloroethylenediaminedichloro-Nickel (II) was then further reduction by using Zinc dust then analyzed by IR spectroscopy and result bisethylenediamine-Nickel (0), as D. The N-H functional groups have been indicated at 3500 - 3000 cm -1 for all A-E. Ni(0)L that obtain then characterized by SEM-EDX to confirm the morphology and molecules that contain in Ni(0)L that form. The reaction between Ca-stearate and dihydrazine-Nickel (0) then resulted black that mention as F. While the reaction between CaCO3 and Ni(0)L respectively resulted Ni/CaO, G, H and I. Ni/CaO surface then characterized by XRD, SEM-EDX and surface area analysis. The EDX analysis confirm the forming compounds of Ni/CaO. All of G, H and I are mesoporous materials.

  6. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2O3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20more » mA cm–2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  7. Blending Cr2O3 into a NiO-Ni electrocatalyst for sustained water splitting.

    PubMed

    Gong, Ming; Zhou, Wu; Kenney, Michael James; Kapusta, Rich; Cowley, Sam; Wu, Yingpeng; Lu, Bingan; Lin, Meng-Chang; Wang, Di-Yan; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-10-05

    The rising H2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr2 O3 -blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2 O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr2 O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm(-2) at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.

  8. Kinetics for simultaneous HDS, HDN and hydrogenation model reactions. Comparison between Ni-Mo/Al sub 2 O sub 3 and Co-Mo/Al sub 2 O sub 3 catalysts

    SciTech Connect

    Zeuthen, P.H.; Stoltze, P.; Bartholdy, J. )

    1987-04-01

    A kinetic analysis of simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT), hydrodenitrogenation (HDN) of indole (IN) and hydrogenation (HYD) of naphthalene (NAP) has been carried out. These compounds represent the major functional groups in heavy petroleum feeds. The goal of these experiments is to study the commercial catalysts with more complex feedstocks. A specific purpose is to determine the competitive inhibition effects of the various reactants. Kinetic data were generated over standard NiMo/Al{sub 2}O{sub 3} and CoMo/Al{sub 2}O{sub 3} catalysts at temperatures of 260 to 350{degree}C. The partial pressures of hydrogen and the other reactants were varied individually. From the data, a kinetic model is developed based on the competitive chemisorption of reactants, intermediates and products on identical surface sites. The kinetic model developed accounts for the appearance of the products and rate of disappearance of DBT, NAP and IN. It is found that sulfur, nitrogen, aromatics and aliphatic-containing compounds adsorb at very different strength. On the basis of these results, it is shown that CoMo/Al{sub 2}O{sub 3} catalyst is more sensitive to adsorbates than the NiMo/Al{sub 2}O{sub 3} catalyst.

  9. Methanethiol chemistry on TiO 2-supported Ni clusters

    NASA Astrophysics Data System (ADS)

    Ozturk, O.; Park, J. B.; Black, T. J.; Rodriguez, J. A.; Hrbek, J.; Chen, D. A.

    2008-10-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO 2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO 2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO 2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO 2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiO x and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  10. Methanethiol Chemistry on TiO2-Supported Ni Clusters

    SciTech Connect

    Ozturk,O.; Park, J.; Black, T.; Rodriguez, J.; Hrbek, J.; Chen, D.

    2008-01-01

    The thermal decomposition of methanethiol on Ni clusters grown on TiO2(1 1 0) was studied by temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). On all of the Ni surfaces investigated, methane and hydrogen were observed as gaseous products in the TPD experiments, and the only sulfur-containing species that desorbed from the surface was methanethiol itself at low temperatures. The two pathways for methanethiol reaction were hydrodesulfurization to produce methane and nonselective decomposition, which leaves atomic carbon and sulfur on the surface. From high resolution XPS studies, methyl thiolate was identified as the surface intermediate for reaction on TiO2 and on all of the Ni surfaces investigated, similar to what is observed on single-crystal Ni surfaces. However, the binding sites for methyl thiolate on the 1 ML (monolayer) Ni clusters were different from those on the Ni clusters at coverages of 2.5 ML and higher, based on the S(2p) binding energies for methyl thiolate. No distinct changes in activity or selectivity were observed for the smaller Ni clusters grown at low coverage compared to the more film-like Ni surfaces other than what could be accounted for by changes in total surface area. Interactions between the Ni clusters and the TiO2 support had two main effects on chemical activity. First, carbon was oxidized by oxygen from the TiO2 lattice to produce CO at temperatures above 800 K. Second, annealing induced encapsulation of the Ni clusters by reduced TiOx and chemisorbed oxygen. At 800 K, the Ni clusters were totally encapsulated, resulting in a complete loss of methanethiol activity; partial encapsulation at 700 K caused a smaller decrease in activity accompanied by increased oxidation of carbon by lattice oxygen.

  11. Amorphous Ni-B alloy nanoparticle film on Ni foam: rapid alternately dipping deposition for efficient overall water splitting

    NASA Astrophysics Data System (ADS)

    Liang, Yanhui; Sun, Xuping; Asiri, Abdullah M.; He, Yuquan

    2016-03-01

    It is highly attractive, but still remains challenging, to develop noble metal-free bifunctional electrocatalysts efficient for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline media. In this letter, we describe the rapid electroless deposition of amorphous Ni-B nanoparticle film on Ni foam (Ni-B/Ni foam) by alternative dipping of Ni foam into Ni precursor and reducing solutions. This Ni-B/Ni foam acts as an efficient and durable 3D catalytic electrode for water splitting, affording 100 mA cm-2 at 360 mV overpotential for the OER and 20 mA cm-2 at 125 mV overpotential for the HER in 1.0 M KOH, and its two-electrode electrolyzer demands a cell voltage of 1.69 V to afford 15 mA cm-2 water-splitting current. Moreover, the catalyst loading can be easily tuned and this alternately dipping deposition technique works universally for other conductive substrates.

  12. Fusion reactions at low energy

    SciTech Connect

    Beckerman, M.

    1985-01-01

    Fusion measurement methods at low energies are briefly described, and experimental and theoretical fusion cross sections for /sup 58/Ni + /sup 58/Ni, /sup 58/Ni + /sup 64/Ni and /sup 64/Ni + /sup 64/Ni reactions are discussed. It is shown that quantal tunneling calculations do not describe the near- and sub-barrier behavior of the fusion data. Instead, the WKB predictions fall progressively further blow the experimental results as the energy is lowered. At far subbarrier energies the measured cross sections exceed the WKB predictions by more than three orders of magnitude. The unexpectedly strong dependence of the fusion probability upon the nuclear valence structure is illustrated and discussed. The relationship of channel coupling and quantal tunneling is discussed. In conclusion, it was established that atomic nuclei fuse far more readily at low energies that would be expected from quantal tunneling considerations alone. It was found that the behavior of the cross sections for fusion depends strongly upon the valence structure of the collision partners. This structural dependence extends from light 1p-shell systems to systems involving nearly 200 nucleons. These new phenomena may be viewed as characterizing the tunneling of a quantal system with many degrees of freedom. The failure of standard tunneling models may be understood as resulting from the ability of the dinuclear system to tunnel into the classically forbidden region by means of couplings to intrinsic degrees of freedom. 38 refs. (WHK)

  13. Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production.

    PubMed

    Cho, Su Hyun; Moon, Dong Ju

    2011-08-01

    Aqueous phase reforming of glycerol over Ni-based catalysts for hydrogen production was carried out at 225 degrees C, 23 bar and LHSV = 4 h(-1). The Ni-based catalyst was prepared by an incipient wetness impregnation method. The catalysts before and after the reaction were characterized by N2 physisorption, CO chemisorption, XRD, TPR, SEM and TEM techniques. It was found that Ni(20 wt%)-Co(3 wt%)/gamma-Al2O3 catalyst showed higher glycerol conversion and hydrogen selectivity than Ni(20 wt%)/gamma-Al2O3 catalyst. There are no major changes in Ni particles after the reaction over Ni-Co/gamma-Al2O3 catalyst. The results suggest that the Ni-Co/gamma-Al2O3 catalyst can be applied to the hydrogen production system using APR of glycerol.

  14. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant.

    PubMed

    Han, Yi; Li, Wei; Zhang, Minghui; Tao, Keyi

    2008-05-01

    A unique type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant was prepared and used for dechlorination of monochlorobenzene (MCB). The sample Ni(B)/Fe(B) was synthesized by an electroless plating method, in which nanoscale Ni(B) was deposited on the surface of nanoscale Fe(B) synthesized by chemical reduction. The results suggest that the nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant has higher dechlorination efficiency than Ni/Fe(B) catalytic reductant prepared by replacing Fe(B) with Ni(2+) in aqueous solution. The Ni content was found to be an important factor in catalytic dechlorination, with the dechlorination rate increasing with Ni content. The electroless plating method improve the efficiency of the Ni(2+) in the solution. Dechlorination takes place with the existence of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant via a pseudo-first-order reaction.

  15. Electrodeposition, characterization and long term stability of NiW and NiWZn coatings on copper substrate in alkaline solution

    NASA Astrophysics Data System (ADS)

    Sürme, Yavuz; Gürten, A. Ali; Kayakırılmaz, Kadriye

    2013-07-01

    This paper describes the electrodeposition of Ni, NiW and NiWZn coatings onto copper surfaces from electrolyte solutions containing Na3C6H5O7, Na2WO4, NiSO4 and ZnSO4. The electrocatalytic effects of electrodeposited coatings were investigated for hydrogen evolution reactions in 1 M NaOH solution. Surface characterization studies were carried out by energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy and cross-section analysis. The effect of operating conditions on the chemical composition, microstructure and electrocatalytic properties of Ni-W coatings was studied. The Zn ions were used to improve the active surface area and catalytic activity of the electrodeposited surface. The electrocatalytic activity of NiW and NiWZn coated electrodes for the hydrogen evolution reaction in alkaline solution was compared with that of an electrodeposited Ni electrode and copper substrate by using cathodic polarization curves and electrochemical impedance spectroscopy techniques over 96 h of electrolysis. The results proved that the NiWZn coated electrode showed better electrocatalytic activity and durability than bare Cu, Ni and NiW coatings.

  16. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Zhu, Wenxin; Yue, Xiaoyue; Zhang, Wentao; Yu, Shaoxuan; Zhang, Yuhuan; Wang, Jing; Wang, Jianlong

    2016-01-25

    Developing low-cost, efficient, and bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is an appealing yet challenging task. Herein, for the first time, a NiS microsphere film was grown in situ on Ni foam (NiS/Ni foam) via a sulfurization reaction as an efficient bifunctional electrocatalyst for overall water splitting with superior activity and good durability. This NiS/Ni foam electrode delivers 20 mA cm(-2) at an overpotential of 158 mV for the HER and 50 mA cm(-2) at an overpotential of 335 mV for the OER in 1.0 M KOH. This bifunctional electrode also enables a high-efficiency alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of only 1.64 V, which could be promising in water splitting devices for large-scale hydrogen production.

  17. An Exploration of Catalytic Chemistry on Au/Ni(111)

    SciTech Connect

    Sylvia T. Ceyer

    2011-12-09

    This project explored the catalytic oxidation chemistry that can be effected on a Au/Ni(111) surface alloy. A Au/Ni(111) surface alloy is a Ni(111) surface on which less than 60% of the Ni atoms are replaced at random positions by Au atoms. The alloy is produced by vapor deposition of a small amount of Au onto Ni single crystals. The Au atoms do not result in an epitaxial Au overlayer or in the condensation of the Au into droplets. Instead, Au atoms displace and then replace Ni atoms on a Ni(111) surface, even though Au is immiscible in bulk Ni. The two dimensional structure of the clean Ni surface is preserved. This alloy is found to stabilize an adsorbed peroxo-like O2 species that is shown to be the critical reactant in the low temperature catalytic oxidation of CO and that is suspected to be the critical reactant in other oxidation reactions. This investigation revealed a new, practically important catalyst for CO oxidation that has since been patented.

  18. Reaction mechanism and structure-reactivity relationships in the stereospecific 1,4-polymerization of butadiene catalyzed by neutral dimeric allylnickel(II) halides [Ni(C3H5)X]2 (X- = Cl-, Br-, I-): a comprehensive density functional theory study.

    PubMed

    Tobisch, S; Taube, R

    2001-09-03

    For the first time, a comprehensive and consistent picture of the catalytic cycle of 1,4-polymerization of butadiene with neutral dimeric allylnickel(II) halides [Ni(C3H5)X]2 (X = Cl- (I), Br- (II), and I- (III)) as single-site catalysts has been derived by means of quantum chemical calculations that employ a gradient-corrected density-functional method. All crucial reaction steps of the entire catalytic course have been scrutinized, taking into account butadiene pi complex formation, symmetrical and asymmetrical splitting of dimeric pi complexes, cis-butadiene insertion, and anti-syn isomerization. The present investigation examines, in terms of located structures, energies and activation barriers, the participation of postulated intermediates, in particular it aimed to clarify whether monomeric or dimeric species are the catalytically active species. Prior qualitative mechanistic assumptions are substituted by the presented theoretically well-founded and detailed analysis of both the thermodynamic and the kinetic aspects, that substantially improve the insight into the reaction course and enlarge them with novel mechanistic proposals. From a mechanistic point of view, all three catalysts exhibit common characteristics. First, chain propagation occurs by cis-butadiene insertion into the pi-butenylnickel(II) bond with nearly identical intrinsic free-energy activation barriers. Second, the reactivity of syn-butenyl forms is distinctly higher than that of anti forms. Third, the chain-propagation step is rate-determining in the entire polymerization process, and the pre-established anti-syn equilibrium can always be regarded as attained. Accordingly, neutral dimeric allylnickel(II) halides catalyze the formation of a stereo-regular trans-1,4-polymer under kinetic control following the k1t channel with butenyl(halide)(butadiene)NiII complexes being the catalytically active species. Production of a stereoregular cis-1,4-polymer with allylnickel chloride can only be

  19. Electron spin resonance and electron spin echo modulation studies of ion-exchanged NiH-SAPO-17 and NiH-SAPO-35 molecular sieves: Comparison with ion-exchanged NiH-SAPO-34 molecular sieve

    SciTech Connect

    Djieugoue, M.A.; Prakash, A.M.; Zhu, Z.; Kevan, L.

    1999-08-26

    Erionite-like silicoaluminophosphate molecular sieve SAPO-17 and levyne-like SAPO-35, in which Ni ions were incorporated via solid-state ion-exchange into known extra framework sites, have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM). The Ni ion reducibility, location, and interaction with several adsorbates have been investigated. Among these adsorbates, the interaction with nitric oxide was emphasized and compared to that of Ni ion with NO in the previously studied chabazite-like SAPO-34. Room-temperature adsorption of C{sub 2}D{sub 4} on NiH-SAPO-17 after dehydration at 573 K, oxygen treatment at 823 K, evacuation, and subsequent hydrogen treatment at 573 K produces two Ni-ethylene complexes. Carbon monoxide adsorption gives rise to a Ni(I)-(CO){sub n} complex with unresolved {sup 13}C hyperfine lines. Following the kinetics of nitric oxide adsorption on NiH-SAPO-17 shows that initially, a Ni(I)-(NO){sup +} complex, a NO radical, and a new species which appears to be another NO species are generated. After a reaction time of 24 h, NO{sub 2} is observed. As the adsorption time further increases, NO{sub 2} becomes stronger while Ni(I)-(NO){sup +} decays, and after 5 days only NO{sub 2} remains. NO adsorption on NiH-SAPO-35 shows different features. Initially, two Ni(I)-(NO){sup +} complexes along with a NO radical are seen. As the adsorption time increases, one of the Ni(I)-(NO){sup +} complexes decreases in intensity while the other one increases, and after a few days only one Ni(I)-(NO){sup +} complex remains. Simulation of the {sup 31}P ESEM spectrum, supplemented by {sup 27}Al modulation, suggests that, upon dehydration, Ni ions in NiH-SAPO-17 migrate from the erioinite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-17 migrate from the erionite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-34 and NiH-SAPO-35, Ni ions remain in the large chabazite and levyne cages, respectively. As a

  20. Electron spin resonance and electron spin echo modulation studies of ion-exchanged NiH-SAPO-17 and NiH-SAPO-35 molecular sieves: Comparison with ion-exchanged NiH-SAPO-34 molecular sieve

    SciTech Connect

    Djieugoue, M.A.; Prakash, A.M.; Zhu, Z.; Kevan, L. . Dept. of Chemistry)

    1999-08-26

    Erionite-like silicoaluminophosphate molecular sieve SAPO-17 and levyne-like SAPO-35, in which Ni ions were incorporated via solid-state ion-exchange into known extra framework sites, have been studied by electron spin resonance (ESR) and electron spin echo modulation (ESEM). The Ni ion reducibility, location, and interaction with several adsorbates have been investigated. Among these adsorbates, the interaction with nitric oxide was emphasized and compared to that of Ni ion with NO in the previously studied chabazite-like SAPO-34. Room-temperature adsorption of C[sub 2]D[sub 4] on NiH-SAPO-17 after dehydration at 573 K, oxygen treatment at 823 K, evacuation, and subsequent hydrogen treatment at 573 K produces two Ni-ethylene complexes. Carbon monoxide adsorption gives rise to a Ni(I)-(CO)[sub n] complex with unresolved [sup 13]C hyperfine lines. Following the kinetics of nitric oxide adsorption on NiH-SAPO-17 shows that initially, a Ni(I)-(NO)[sup +] complex, a NO radical, and a new species which appears to be another NO species are generated. After a reaction time of 24 h, NO[sub 2] is observed. As the adsorption time further increases, NO[sub 2] becomes stronger while Ni(I)-(NO)[sup +] decays, and after 5 days only NO[sub 2] remains. NO adsorption on NiH-SAPO-35 shows different features. Initially, two Ni(I)-(NO)[sup +] complexes along with a NO radical are seen. As the adsorption time increases, one of the Ni(I)-(NO)[sup +] complexes decreases in intensity while the other one increases, and after a few days only one Ni(I)-(NO)[sup +] complex remains. Simulation of the [sup 31]P ESEM spectrum, supplemented by [sup 27]Al modulation, suggests that, upon dehydration, Ni ions in NiH-SAPO-17 migrate from the erioinite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-17 migrate from the erionite supercage to the smaller cancrinite cage. In dehydrated NiH-SAPO-34 and NiH-SAPO-35, Ni ions remain in the large chabazite and levyne cages, respectively. As a

  1. Microporous Ni@NiO nanoparticles prepared by chemically dealloying Al3Ni2@Al nanoparticles as a high microwave absorption material

    NASA Astrophysics Data System (ADS)

    Pang, Yu; Xie, Xiubo; Li, Da; Chou, Wusheng; Liu, Tong

    2017-03-01

    The Al3Ni2@Al nanoparticles (NPs) were prepared from Ni45Al55 master alloy by hydrogen plasma-metal reaction method, and were subsequently dealloyed to produce porous Ni@NiO NPs of 36 nm. The pore size ranges from 0.7 to 1.6 nm, leading to large specific surface area of 69.5 m2/g and big pore volume of 0.507 cc/g. The saturation magnetization (MS) and coercivity (HC) of the microporous Ni@NiO NPs are 11.5 emu/g and 5.2 Oe. They exhibit high microwave absorption performance with a minimum reflection coefficient (RC) of -86.9 dB and an absorption bandwidth of 2.6 GHz (RC≤-10 dB) at thickness of 4.5 mm. The enhanced microwave absorption properties are attributed to the synergistic effect of the magnetic Ni core and dielectric NiO shell, and the micropore architecture. The NPs with micropore morphology and core/shell structure open a new way to modify the microwave absorption performance.

  2. Synthesis, magnetism, and electrochemistry of the Ni14- and Ni5-containing heteropolytungstates [Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34- and [Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13-.

    PubMed

    Ibrahim, Masooma; Xiang, Yixian; Bassil, Bassem S; Lan, Yanhua; Powell, Annie K; de Oliveira, Pedro; Keita, Bineta; Kortz, Ulrich

    2013-08-05

    The two Ni(2+)-containing heteropolytungstates [Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4](34-) (Ni14) and [Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))](13-) (Ni5) have been successfully synthesized in aqueous, basic media under conventional reaction conditions, and they were characterized by single-crystal X-ray diffraction, IR spectroscopy, thermogravimetric and elemental analyses, electrochemistry, and magnetic studies. The cyclic voltammetry (CV) patterns of Ni14 and Ni5 showed chemically reversible multielectronic waves for slow scan time scales. For Ni14, an important acidity inversion effect between its reduced forms was observed. Magnetic studies revealed dominant ferromagnetic interactions among the nickel(II) ions in both polyanions.

  3. Growth in solution of hooked Ni-Fe fibers by oriented rotation and attachment approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang; Zhang, Wei-ze

    2016-04-01

    Inspired by the curved branches of fractal trees, hooked Ni-Fe fibers were grown in situ in Ni-Fe composite coatings on a spheroidal graphite cast iron substrate. These hooked Ni-Fe fibers exhibited inclination angles of about 39°, which was in accordance with the theoretical prediction of 37°. Ni-Fe nanostructures self-assembled to form dendrites and evolved into hooked fibers by an oriented attachment reaction. The orientation rotation of Ni-Fe nanostructures played an important role in the growth of curved hooked Ni-Fe fibers. During sliding wear tests, the volume loss of the spheroidal graphite cast iron substrate was 2.2 times as large as that of the Ni-Fe coating reinforced by hooked fibers. The good load-transferring ability of hooked Ni-Fe fibers led to an improvement in their wear properties during wear tests.

  4. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4 Electrodes

    SciTech Connect

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; Pieczonka, Nicholas P. W.; Harris, Stephen J.; Yang, Wanli

    2015-11-11

    The LiNi0.5Mn1.5O4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li+). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi0.5Mn1.5O4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi0.5Mn1.5O4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni2+ and Mn2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi0.5Mn1.5O4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.

  5. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks

    SciTech Connect

    Wang Ling; Hao Yanjing; Zhao Yan; Lai Qiongyu; Xu Xiaoyun

    2010-11-15

    NiO microspheres were successfully obtained by calcining the Ni(OH){sub 2} precursor, which were synthesized via the hydrothermal reaction of nickel chloride, glucose and ammonia. The products were characterized by TGA, XRD and SEM. The influences of glucose and reaction temperature on the morphologies of NiO samples were investigated. Moreover, the possible growth mechanism for the spherical morphology was proposed. The charge/discharge test showed that the as-prepared NiO microspheres composed of nanoparticles can serve as an ideal electrode material for supercapacitor due to the spherical hollow structure. -- Graphical Abstract: Fig. 5 is the SEM image of NiO that was prepared in the different hydrothermal reaction temperatures. It showed that reaction temperature played a crucial role for the morphology of products.

  6. Phase equilibria and structural investigations in the Ni-poor part of the system Al-Ge-Ni.

    PubMed

    Reichmann, Thomas L; Duarte, Liliana I; Effenberger, Herta S; Leinenbach, Christian; Richter, Klaus W

    2012-09-01

    The ternary phase diagram Al-Ge-Ni was investigated between 0 and 50 at.% Ni by a combination of differential thermal analysis (DTA), powder- and single-crystal X-ray diffraction (XRD), metallography and electron probe microanalysis (EPMA). Ternary phase equilibria and accurate phase compositions of the equilibrium phases were determined within two partial isothermal sections at 400 and 700 °C, respectively. The two binary intermediate phases AlNi and Al3Ni2 were found to form extended solid solutions with Ge in the ternary. Three new ternary phases were found to exist in the Ni-poor part of the phase diagram which were designated as τ1 (oC24, CoGe2-type), τ2 (at approximately Al67.5Ge18.0Ni14.5) and τ3 (cF12, CaF2-type). The ternary phases show only small homogeneity ranges. While τ1 was investigated by single crystal X-ray diffraction, τ2 and τ3 were identified from their powder diffraction pattern. Ternary phase reactions and melting behaviour were studied by means of DTA. A total number of eleven invariant reactions could be derived from these data, which are one ternary eutectic reaction, six transition reactions, three ternary peritectic reactions and one maximum. Based on the measured DTA values three vertical sections at 10, 20 and 35 at.% Ni were constructed. Additionally, all experimental results were combined to a ternary reaction scheme (Scheil diagram) and a liquidus surface projection.

  7. Phase equilibria and structural investigations in the Ni-poor part of the system Al–Ge–Ni

    PubMed Central

    Reichmann, Thomas L.; Duarte, Liliana I.; Effenberger, Herta S.; Leinenbach, Christian; Richter, Klaus W.

    2012-01-01

    The ternary phase diagram Al–Ge–Ni was investigated between 0 and 50 at.% Ni by a combination of differential thermal analysis (DTA), powder- and single-crystal X-ray diffraction (XRD), metallography and electron probe microanalysis (EPMA). Ternary phase equilibria and accurate phase compositions of the equilibrium phases were determined within two partial isothermal sections at 400 and 700 °C, respectively. The two binary intermediate phases AlNi and Al3Ni2 were found to form extended solid solutions with Ge in the ternary. Three new ternary phases were found to exist in the Ni-poor part of the phase diagram which were designated as τ1 (oC24, CoGe2-type), τ2 (at approximately Al67.5Ge18.0Ni14.5) and τ3 (cF12, CaF2-type). The ternary phases show only small homogeneity ranges. While τ1 was investigated by single crystal X-ray diffraction, τ2 and τ3 were identified from their powder diffraction pattern. Ternary phase reactions and melting behaviour were studied by means of DTA. A total number of eleven invariant reactions could be derived from these data, which are one ternary eutectic reaction, six transition reactions, three ternary peritectic reactions and one maximum. Based on the measured DTA values three vertical sections at 10, 20 and 35 at.% Ni were constructed. Additionally, all experimental results were combined to a ternary reaction scheme (Scheil diagram) and a liquidus surface projection. PMID:27087753

  8. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis.

    PubMed

    Zhu, Guoliang; Wang, Wei; Wang, Rui; Zhao, Chuanbao; Pan, Weitao; Huang, Haijun; Du, Dafan; Wang, Donghong; Shu, Da; Dong, Anping; Sun, Baode; Jiang, Sheng; Pu, Yilong

    2017-08-29

    The formation mechanism of TiC particles in a Ni-Ti-C system were revealed by using differential thermal analysis (DTA), XRD, and SEM to identify the reaction products in different temperature ranges. The results indicated that the synthesis mechanism of TiC in Ni-Ti-C system was complex; several reactions were involved in the combustion synthesis of TiC-Ni composite. The Ni-Ti intermediate phases play important roles during the formation of TiC. Moreover, the influence of heating rate on the size range of TiC was also discussed.

  9. Determination of the mean neutron energy using the Zr/Nb and the Ni method

    NASA Astrophysics Data System (ADS)

    Agrawal, H. M.; Pepelnik, R.

    1995-12-01

    The cross-section ratios for the 90Zr(n, 2n) 89g-mZr and 93Nb(n, 2n) 92mNb reactions as well as for the 58Ni(n, p) 58g+mCo and 58Ni(n, 2n) 57Ni reactions have been measured by the activation method for the purpose of neutron spectrometry around 14 MeV in a neutron tube having a cylindrical acceleration structure (KORONA). The results are compared with the theoretically calculated values. The superiority of the "Zr/Nb ratio" method over the "Ni-ratio" method is discussed.

  10. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  11. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  12. Epitaxial NiWO4 films on Ni(110): Experimental and theoretical study of surface stability

    NASA Astrophysics Data System (ADS)

    Doudin, N.; Pomp, S.; Blatnik, M.; Resel, R.; Vorokhta, M.; Goniakowski, J.; Noguera, C.; Netzer, F. P.; Surnev, S.

    2017-05-01

    Despite the application potential of nickel tungstate (NiWO4) in heterogeneous catalysis, humidity and gas sensing, etc, its surfaces have essentially remained unexplored. In this work, NiWO4 nanoparticles and films with the wolframite structure have been grown via a solid-state reaction of (WO3)3 clusters and a NiO(100) film on a Ni(110) crystal surface and characterized by a variety of experimental techniques, including x-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM) and x-ray diffraction (XRD), combined with ab-initio density functional theory (DFT) calculations. NiWO4 grows initially as three-dimensional (3D) crystalline nanoparticles displaying mainly two crystalline facets vicinal to the (100) surface, which merge with increasing the (WO3)3 coverage into a quasi-continuous epitaxial film. The DFT results provide an account of the energetics of NiWO4 low index surfaces and highlight the role of faceting in the stabilization of extended polar (100) terraces. These combined experimental and theoretical results show that interaction with a metal substrate and vertical confinement may stabilize oxide nano-objects with high energy facets, able to enhance their reactivity.

  13. In situ electrochemical activation of Ni-based colloids from an NiCl2 electrode and their advanced energy storage performance.

    PubMed

    Chen, Kunfeng; Xue, Dongfeng

    2016-10-06

    The formation of electrochemical activated cations in electrode materials to induce multiple-electron transfer reactions is a challenge for high-energy storage systems. Herein, highly electroactive Ni-based colloidal electrode materials have been synthesized by in situ electrochemical activation of a NiCl2 electrode. The highest specific capacitance of the activated Ni-based electrodes was 10 286 F g(-1) at a current density of 3 A g(-1), indicating that a three-electron Faradaic redox reaction (Ni(3+) ↔ Ni) occurred. Upon potential cycling and constant potential activation, a decrease in the charge transfer resistance can be found. Activation and utilization of multiple-electron reactions is an efficient route to increase the energy density of supercapacitors. This newly designed colloidal pseudocapacitor is compatible with inorganic pseudocapacitor chemistry, which enables us to use metal cations directly via their commercial salts rather than their oxide/hydroxide compounds.

  14. In situ DRIFTs investigation of the reaction mechanism over MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NOx with NH3

    NASA Astrophysics Data System (ADS)

    Hu, Hang; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2016-11-01

    A series of MnOx-MOy/Ce0.75Zr0.25O2 (M = Fe, Co, Ni, Cu) catalysts were synthesized by an impregnation method and used for selective catalytic reduction (SCR) of NOx with NH3. The catalytic performances of various MnOx-MOy/Ce0.75Zr0.25O2 catalysts were studied. It was found that MnOx-FeOy/Ce0.75Zr0.25O2 catalyst showed excellent low-temperature activity and a broad temperature window. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS). Characterization of the catalyst confirmed the addition of iron oxide can enhance the NO oxidation ability of the catalyst which results in the outstanding low-temperature SCR activity. Meanwhile, iron oxides were well dispersed on catalyst surface which could avoid the agglomeration of active species, contributing to the strong interaction between active species and the support. More importantly, in situ DRIFTS results confirmed that bidentate nitrates are general active species on these catalysts, whereas the reactivity of gaseous NO2 and bridged nitrates got improved because of the addition of Fe.

  15. Statistical and microscopic description of energetic products in the reactions induced by sup 16 O on sup 27 Al, sup 58 Ni, and sup 197 Au at 94 MeV/nucleon

    SciTech Connect

    Badala, A.; Barbera, R.; Bonasera, A. ); Di Toro, M. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, I-95129 Catania ); Palmeri, A.; Pappalardo, G.S. ); Riggi, F.; Russo, G. Dipartimento di Fisica, Universita di Catania, Corso Italia 57, I-95129 Catania ); Bizard, G.; Durand, D.; Laville, J.L. )

    1991-01-01

    Protons and charged pions have been detected at 70{degree}, 90{degree}, and 120{degree} in the reaction induced by {sup 16}O on various targets at 94 MeV/nucleon incident energy. Measured energy spectra are analyzed in terms of statistical emission from equilibrated sources in a participant-spectator picture. Microscopic dynamical calculations based on the Boltzmann-Nordheim-Vlasov equation are also performed. Experimental data are well reproduced by both models.

  16. Reaction between H2, CO, and H2S over Fe,Ni metal in the solar nebula: Experimental evidence for the formation of sulfur-bearing organic molecules and sulfides

    NASA Astrophysics Data System (ADS)

    Llorca, Jordi; Casanova, Ignasi

    2000-07-01

    Detailed laboratory studies have been carried out in order to simulate the interaction between nanometer-sized kamacite metal particles and different gas mixtures consisting of H2:H2S (250:0.1), H2:CO (250:1) and H2:CO:H2S (250:1:0.1) under nebular-type conditions (5x10-4 atm and 473 K). Reaction of H2+H2S with kamacite particles for 1000 h leads to the formation of pyrrhotite. Incorporation of CO into the gaseous reactant mixture results in the formation of both sulfide and carbide phases. At the same time, amorphous carbon is deposited onto the metal particles and organic molecules are evolved, namely hydrocarbons and thiols in the C1-C5 and C1-C2 range, respectively. Carbon deposition and production of organics are enhanced with respect to experiments performed with H2+CO, where a carbide phase is formed. There is no evidence for the existence of sulfur poisoning effects on the metal-catalysed hydrogenation of CO through Fischer-Tropsch-type reactions in nebular environments. In fact, it is experimentally demonstrated that sulfur-containing organic species could be synthesized by such reactions from nebular gas.

  17. Magnetic properties of Ni and Cu-Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganga, B. G.; Santhosh, P. N.; Thomas, P. John

    2012-06-01

    Ni and Cu-Ni nanoparticles were prepared by solution phase method and crystal phase was identified by XRD. SEM and EDX were used to analyze morphology and elemental composition of nanoparticles. Magnetic measurements indicate that Ni nanoparticles are superparamagnetic at room temperature and blocking temperature is around 103 K. Ferromagnetism is observed in the case of Cu-Ni nanoparticles with decrease in magnetization compared to Ni nanoparticles.

  18. New approach to phosphinoalkynes based on Pd- and Ni-catalyzed cross-coupling of terminal alkynes with chlorophosphanes.

    PubMed

    Beletskaya, Irina P; Afanasiev, Vladimir V; Kazankova, Marina A; Efimova, Irina V

    2003-11-13

    [reaction: see text] The first example of direct phosphination of terminal alkynes with chlorophosphanes catalyzed by Ni or Pd complexes is described. Both aromatic and aliphatic terminal acetylenes undergo the coupling reaction to give corresponding coupling product in high yield.

  19. Influence of phosphorous content on microstructure development at the Ni-P Plating/SAC interface

    NASA Astrophysics Data System (ADS)

    Huber, Zbigniew; Wojewoda-Budka, Joanna; Wierzbicka-Miernik, Anna; Sypien, Anna; Szczerba, Maciej; Zieba, Pawel

    2016-01-01

    Studies of the commonly used Ni-P surface finish of 4.3 and 11.6 wt. % of P content electroless plated on nickel substrates followed by their reaction with SAC305 solder were performed. It was demonstrated that the Ni-4.3P plating was crystalline, while the Ni-11.6P was mostly amorphous. The transformation of the Ni-P into Ni3P phase took place at 672 K and 605 K for low and high P amount, respectively. The activation energy ( E a ) of the crystallization processes in the Ni-P plating was lower for the Ni-11.6P plating. Interaction of SAC305 solder with both types of the inspected plating showed the creation of (Cu,Ni)6Sn5 phase in the form of thin layer and large scallops, while for Ni-11.6P/SAC305 interface also (Ni,Cu)3Sn4 phase. The thickness of these phases was larger in the case of low phosphorous containing plating. The Ni-11.6P plating after the reaction with SAC305 totally transformed into Ni12P5, while the enrichment in P up to 10.5 wt. % occurred in the Ni-4.3P which did not lead to the appearance of any NixPy type phases. After the reaction of plating with solder the Ni2SnP phase was not identified. This was related to the absence of spalling phenomenon of the intermetallics into solder. [Figure not available: see fulltext.

  20. Oxidation reaction of polyether-based material and its suppression in lithium rechargeable battery using 4 V class cathode, LiNi1/3Mn1/3Co1/3O2.

    PubMed

    Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime

    2013-12-11

    The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.

  1. Enhanced photocatalytic efficiency in zirconia buffered n-NiO/p-NiO single crystalline heterostructures by nanosecond laser treatment

    SciTech Connect

    Molaei, R.; Bayati, M. R.; Alipour, H. M.; Nori, S.; Narayan, J.

    2013-06-21

    We report the formation of NiO based single crystalline p-n junctions with enhanced photocatalytic activity induced by pulsed laser irradiation. The NiO epilayers were grown on Si(001) substrates buffered with cubic yttria-stabilized zirconia (c-YSZ) by using pulsed laser deposition. The NiO/c-YSZ/Si heterostructures were subsequently laser treated by 5 pulses of KrF excimer laser (pulse duration = 25 Multiplication-Sign 10{sup -9} s) at lower energies. Microstructural studies, conducted by X-ray diffraction ({theta}-2{theta} and {phi} techniques) and high resolution transmission electron microscope, showed a cube-on-cube epitaxial relationship at the c-YSZ/Si interface; the epitaxial relationship across the NiO/c-YSZ interface was established as NiO<111 > Double-Vertical-Line Double-Vertical-Line c-YSZ<001> and in-plane NiO<110> Double-Vertical-Line Double-Vertical-Line c-YSZ<100>. Electron microscopy studies showed that the interface between the laser annealed and the pristine region as well as the NiO/c-YSZ interface was atomically sharp and crystallographically continuous. The formation of point defects, namely oxygen vacancies and NiO, due to the coupling of the laser photons with the NiO epilayers was confirmed by XPS. The p-type electrical characteristics of the pristine NiO epilayers turned to an n-type behavior and the electrical conductivity was increased by one order of magnitude after laser treatment. Photocatalytic activity of the pristine (p-NiO/c-YSZ/Si) and the laser-annealed (n-NiO/p-NiO/c-YSZ/Si) heterostructures were assessed by measuring the decomposition rate of 4-chlorophenol under UV light. The photocatalytic reaction rate constants were determined to be 0.0059 and 0.0092 min{sup -1} for the as-deposited and the laser-treated samples, respectively. The enhanced photocatalytic efficiency was attributed to the suppressed charge carrier recombination in the NiO based p-n junctions and higher electrical conductivity. Besides, the oxygen vacancies

  2. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  3. Adjustment of temperature coefficient of resistance in NiCr/CuNi(Mn)/NiCr films

    NASA Astrophysics Data System (ADS)

    Brückner, W.; Baunack, St.; Elefant, D.; Reiss, G.

    1996-06-01

    The thin-film system Ni0.37Cr0.63/Cu0.57Ni0.42Mn0.01/Ni0.37Cr0. 63 with a typical thickness of 1 μm is used for low-ohmic precision resistors. The necessary adjustment of the temperature coefficient of resistance (TCR) by annealing has been studied by investigating the irreversible changes of the resistance during various annealing steps of NiCr/CuNi(Mn)/NiCr multilayers in comparison with single layers of CuNi(Mn) and NiCr. Auger depth profiles showed that the interdiffusion of CuNi(Mn) and NiCr results in an impoverishment of Ni in CuNi(Mn), explaining the TCR shift by comparison with data of Cu1-xNix bulk material. The decrease of the resistivity and the reduction of the width of the copper-nickel conductive layer by formation of a Ni0.6Cr0.2Cu0.2 interdiffusion zone phase (in accordance with the Cu-Ni-Cr phase diagram) cause a significant curvature of the resistance-temperature curve. As main result, it is shown that the NiCr base and cover layers and their interdiffusion with CuNi(Mn) play the decisive role in adjusting the TCR. It was checked that oxidation and topography effects have no remarkable influences.

  4. Interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating

    NASA Astrophysics Data System (ADS)

    Hwang, Chi-Won; Lee, Jung-Goo; Suganuma, Katsuaki; Mori, Hirotaro

    2003-02-01

    The microstructure of the interfacial phase of Sn-3Ag-xBi alloy on a Cu substrate with or without electrolytic Ni plating was evaluated. Bismuth additions into Sn-Ag alloys do not affect interfacial phase formations. Without plating, η-Cu6Sn5/ɛ-Cu3Sn interfacial phases developed as reaction products in the as-soldered condition. The η-phase Cu6Sn5 with a hexagonal close-packed structure grows about 1-µm scallops. The ɛ-phase Cu3Sn with an orthorhombic structure forms with small 100-nm grains between η-Cu6Sn5 and Cu. For Ni plating, a Ni3Sn4 layer of monoclinic structure formed as the primary reaction product, and a thin η-Ni3Sn2 layer of hexagonal close-packed structure forms between the Ni3Sn4 and Ni layer. In the Ni layer, Ni-Sn compound particles of nanosize distribute by Sn diffusion into Ni. On the total thickness of interfacial reaction layers, Sn-3Ag-6Bi joints are thicker by about 0.9 µm for the joint without Ni plating and 0.18 µm for the joint with Ni plating than Sn-3Ag joints, respectively. The thickening of interfacial reaction layers can affect the mechanical properties of strength and fatigue resistance.

  5. Drug Reactions

    MedlinePlus

    ... or diabetes. But medicines can also cause unwanted reactions. One problem is interactions, which may occur between ... more serious. Drug allergies are another type of reaction. They can be mild or life-threatening. Skin ...

  6. Fabrication of micron-sized Al/Ni tetrapod particles with self-propagating exothermic function

    NASA Astrophysics Data System (ADS)

    Inoue, Keita; Fujito, Toshihisa; Fujita, Kazuhiro; Kuroda, Yoshikazu; Takane, Katsuhisa; Namazu, Takahiro

    2015-06-01

    In this paper, we describe the fabrication of micron-sized Al/Ni tetrapod particles using injection molding and electroless plating techniques. By injection molding of Al powders with diameters of 3 and 30 µm, porous Al tetrapod particles are produced. The particles are subjected to electroless Ni plating to grow Ni into small pores, and the plating solution is successfully impregnated into Al particles consisting of 30-µm-diameter Al powders. Differential scanning calorimetry suggests that the produced Al/Ni particles have the same exothermic function as Al/Ni multilayer films. By applying a small electric power to the particles, an exothermic reaction can occur and slowly propagate along each leg one by one. The maximum surface temperature and reaction duration of the particles are compared with the performance characteristics of Al/Ni multilayer films.

  7. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo

    2017-09-01

    Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.

  8. Shape coexistence in 67Co, 66,68,70,72Ni, and 71Cu

    NASA Astrophysics Data System (ADS)

    Walters, W. B.; Chiara, C. J.; Janssens, R. V. F.; Weisshaar, D.; Otsuka, T.; Tsunoda, Y.; Recchia, F.; Gade, A.; Harker, J. L.; Albers, M.; Alcorta, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Bertone, P. F.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Crawford, H. L.; David, H. M.; Doherty, D. T.; Hoffman, C. R.; Honma, M.; Kondev, F. G.; Korichi, A.; Langer, C.; Larson, N.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Macchiavelli, A. O.; Noji, S.; Prokop, C.; Rogers, A. M.; Seweryniak, D.; Shimizu, N.; Stroberg, S. R.; Suchyta, S.; Utsuno, Y.; Williams, S. J.; Wimmer, K.; Zhu, S.

    2015-10-01

    Analyses of data from both deep inelastic reactions at Argonne National Laboratory and single- and multiple-particle knockout reactions at Michigan State University revealed new γ-ray transitions in even-even 66,68,70,72Ni38,40,42,44 and in 67Co40 that provide strong evidence for multiple shape coexistence at N = 38 and 40 and deep prolate minima in 70Ni42 and isotonic 71Cu42. A new transition at 642 keV is proposed for 66Ni as the prolate 2+ to 0+ transition. Two new transitions in 72Ni at 915 and 1225 keV were identified in the knock-out reaction study and could represent de-population of prolate states. Taken together with recent theoretical work using the Monte Carlo shell model, a well defined region of shape coexistence can be seen existing precisely between 38 ≤ N ≤44 for Co, Ni, and Cu nuclei.

  9. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Zhang, H. J.; Chen, Z. Q.; Wang, S. J.

    2012-01-01

    NiO/Al2O3 catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al2O3 catalysts comprise two long and two short lifetime components, where the long lifetimes τ3 and τ4 correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ4 drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ4 shows a slower decrease. Variation of λ4 (1/τ4) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ4 also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al2O3. When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 1010 g mol-1s-1 and (3.43 ± 0.20) × 109 g mol-1 s-1 for NiO content below and above

  10. Monolayer dispersion of NiO in NiO/Al2O3 catalysts probed by positronium atom.

    PubMed

    Zhang, H J; Chen, Z Q; Wang, S J

    2012-01-21

    NiO/Al(2)O(3) catalysts with different NiO loadings were prepared by impregnation method. The monolayer dispersion capacity of NiO is determined to be about 9 wt.% through XRD quantitative phase analysis. Positron lifetime spectra measured for NiO/Al(2)O(3) catalysts comprise two long and two short lifetime components, where the long lifetimes τ(3) and τ(4) correspond to ortho-positronium (o-Ps) annihilation in microvoids and large pores, respectively. With increasing loading of NiO from 0 to 9 wt.%, τ(4) drops drastically from 88 to 38 ns. However, when the NiO loading is higher than 9 wt.%, τ(4) shows a slower decrease. Variation of λ(4) (1/τ(4)) as a function of the NiO content can be well fitted by two straight lines with different slopes. The relative intensity of τ(4) also shows a fast decrease followed by a slow decrease for the NiO content lower and higher than 9 wt.%, respectively. The coincidence Doppler broadening measurements reveal a continuous increase of S parameter with increasing NiO loading up to 9 wt.% and then a decrease afterwards. This is due to the variation in intensity of the narrow component contributed by the annihilation of para-positronium (p-Ps). Our results show that the annihilation behavior of positronium is very sensitive to the dispersion state of NiO on the surface of γ-Al(2)O(3). When the NiO loading is lower than monolayer dispersion capacity, spin conversion of positronium induced by NiO is the dominant effect, which causes decrease of the longest lifetime and its intensity but increase of the narrow component intensity. After the NiO loading is higher than monolayer dispersion capacity, the spin conversion effect becomes weaker and inhibition of positronium formation by NiO is strengthened, which results in decrease of both the long lifetime intensity and the narrow component intensity. The reaction rate constant is determined to be (1.50 ± 0.04) × 10(10) g mol(-1) s(-1) and (3.43 ± 0.20) × 10(9) g mol(-1) s(-1

  11. FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Inoue, Seiya; Higuchi, Yoshiki; Hirota, Shun

    2015-10-29

    Different light-induced Ni-L states of [NiFe] hydrogenase from its Ni-C state have previously been observed by EPR spectroscopy. Herein, we succeeded in detecting simultaneously two Ni-L states of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by FT-IR spectroscopy. A new light-induced νCO band at 1890 cm(-1) and νCN bands at 2034 and 2047 cm(-1) were detected in the FT-IR spectra of the H2-activated enzyme under N2 atmosphere at basic conditions, in addition to the 1910 cm(-1) νCO band and 2047 and 2061 cm(-1) νCN bands of the Ni-L2 state. The new bands were attributed to the Ni-L3 state by comparison of the FT-IR and EPR spectra. The νCO and νCN frequencies of the Ni-L3 state are the lowest frequencies observed among the corresponding frequencies of standard-type [NiFe] hydrogenases in various redox states. These results indicate that a residue, presumably Ni-coordinating Cys546, is protonated and deprotonated in the Ni-L2 and Ni-L3 states, respectively. Relatively small ΔH (6.4 ± 0.8 kJ mol(-1)) and ΔS (25.5 ± 10.3 J mol(-1) K(-1)) values were obtained for the conversion from the Ni-L2 to Ni-L3 state, which was in agreement with the previous proposals that deprotonation of Cys546 is important for the catalytic reaction of the enzyme.

  12. Coatings on NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Kei, C. C.; Yu, Y. S.; Racek, J.; Vokoun, D.; Šittner, P.

    2014-07-01

    Atomic layer deposition is introduced as a method suitable for preparation of Al2O3 layers on the surface of NiTi medical devices such as stents because of the excellent thickness control and conformal protective coating on complex structures. The corrosion properties of NiTi plates with Al2O3 coatings of various thicknesses in an environment similar to that occurring in the human body were studied using open circuit potential, potentiostatic electrochemical impedance spectroscopy, and cyclic polarization tests. It shows that the layer thickness plays a key role in the inhibition of corrosion. The thinner layers are more diffuse and make it easier for anodic reaction of passive NiTi with protective TiO2 underneath of Al2O3, while the thicker layers have the barrier effect with local pores initiating pitting corrosion. The results of our electrochemical experiments consistently show that corrosion properties of thick Al2O3 coatings on NiTi plate are inferior compared to the thin layers.

  13. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.

    PubMed

    Yeh, Chen-Hao; Ho, Jia-Jen

    2012-09-17

    Sulfur, a pollutant known to poison fuel-cell electrodes, generally comes from S-containing species such as hydrogen sulfide (H(2)S). The S-containing species become adsorbed on a metal electrode and leave atomic S strongly bound to the metal surface. This surface sulfur is completely removed typically by oxidation with O(2) into gaseous SO(2). According to our DFT calculations, the oxidation of sulfur at 0.25 ML surface sulfur coverage on pure Pt(111) and Ni(111) metal surfaces is exothermic. The barriers to the formation of SO(2) are 0.41 and 1.07 eV, respectively. Various metals combined to form bimetallic surfaces are reported to tune the catalytic capabilities toward some reactions. Our results show that it is more difficult to remove surface sulfur from a Ni@Pt(111) surface with reaction barrier 1.86 eV for SO(2) formation than from a Pt@Ni(111) surface (0.13 eV). This result is in good agreement with the statement that bimetallic surfaces could demonstrate more or less activity than to pure metal surfaces by comparing electronic and structural effects. Furthermore, by calculating the reaction free energies we found that the sulfur oxidation reaction on the Pt@Ni(111) surface exhibits the best spontaneity of SO(2) desorption at either room temperature or high temperatures.

  14. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.

    PubMed

    Han, Joung Woo; Kim, Chanyeon; Park, Jun Seong; Lee, Hyunjoo

    2014-02-01

    Nickel catalysts are typically used for hydrogen production by reforming reactions. Reforming methane with carbon dioxide, called dry reforming of methane (DRM), is a good way to produce hydrogen or syngas (a mixture of hydrogen and carbon monoxide) from two notable greenhouse gases. However, Ni catalysts used for DRM suffer from severe coke deposition. It has been known that small Ni nanoparticles are advantageous to reduce coke formation, but the high reaction temperature of DRM (800 °C) inevitably induces aggregation of the nanoparticles, leading to severe coke formation and degraded activity. Here, we develop highly coke-resistant Ni catalysts by immobilizing premade Ni nanoparticles of 5.2 nm in size onto functionalized silica supports, and then coating the Ni/SiO2 catalyst with silica overlayers. The silica overlayers enable the transfer of reactants and products while preventing aggregation of the Ni nanoparticles. The silica-coated Ni catalysts operate stably for 170 h without any degradation in activity. No carbon deposition was observed by temperature programmed oxidation (TPO), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The Ni catalysts without silica coating show severe sintering after DRM reaction, and the formation of filamentous carbon was observed. The coke-resistant Ni catalyst is potentially useful in various hydrocarbon transformations.

  15. Synthesis and reactivity of NHC-supported Ni2(μ(2)-η(2),η(2)-S2)-bridging disulfide and Ni2(μ-S)2-bridging sulfide complexes.

    PubMed

    Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F

    2015-03-16

    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.

  16. K{sup 0} and {lambda} production in Ni+Ni collisions near threshold

    SciTech Connect

    Merschmeyer, M.; Herrmann, N.; Benabderrahmane, M. L.; Cordier, E.; Mangiarotti, A.; Pelte, D.; Xiao, Z. G.; Lopez, X.; Andronic, A.; Hartmann, O. N.; Hildenbrand, K. D.; Koczon, P.; Leifels, Y.; Reisdorf, W.; Schuettauf, A.; Bastid, N.; Crochet, P.; Barret, V.; Dupieux, P.

    2007-08-15

    New results concerning the production of neutral strange particles, K{sup 0} and {lambda} in Ni+Ni collisions at 1.93A GeV, measured with the FOPI detector at GSI Darmstadt, are presented. Rapidity density distributions and Boltzmann slope parameter distributions are measured in nearly the full phase space of the reaction. The observables are compared to existing K{sup +} and proton data. While the K{sup 0} data agree with previously reported K{sup +} measurements, the {lambda} distributions show a different behavior relative to that of protons. The strangeness balance and the production yield per participating nucleon as a function of the centrality of the reaction are discussed, for the first time at GSI Schwerionen Synchrotron (SIS) energies.

  17. CuNi Nanoparticles Assembled on Graphene for Catalytic Methanolysis of Ammonia Borane and Hydrogenation of Nitro/Nitrile Compounds

    DOE PAGES

    Yu, Chao; Fu, Jiaju; Muzzio, Michelle; ...

    2017-01-12

    Here we report a solution phase synthesis of 16 nm CuNi nanoparticles (NPs) with the Cu/Ni composition control. These NPs are assembled on graphene (G) and show Cu/Ni composition-dependent catalysis for methanolysis of ammonia borane (AB) and hydrogenation of aromatic nitro (nitrile) compounds to primary amines in methanol at room temperature. Among five different CuNi NPs studied, the G-Cu36Ni64 NPs are the best catalyst for both AB methanolysis (TOF = 49.1 molH2 molCuNi-1 min-1 and Ea = 24.4 kJ/mol) and hydrogenation reactions (conversion yield >97%). In conclusion, the G-CuNi represents a unique noble-metal-free catalyst for hydrogenation reactions in a greenmore » environment without using pure hydrogen.« less

  18. Novel preparation of highly dispersed Ni2P embedded in carbon framework and its improved catalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Wang, Kang; Wang, Xitao

    2016-11-01

    Highly dispersed Ni2P embedded in carbon framework with different phosphidation temperature was prepared through carbonizing Ni-alginate gel and followed by phosphidation with PPh3 in liquid phase. The significant effects of phosphidation temperature on Ni2P particle size and catalytic properties for isobutane dehydrogenation to isobutene were investigated. The results showed that Ni2P catalyst derived from the Ni-alginate gel (Ni2P-ADC), consisting of Ni2P particles embedded in carbon walls, possessed smaller particle size and more active site compared with Ni2P catalyst supported on active carbon (Ni2P/AC) prepared by impregnation method. The Ni2P-ADC catalyst phosphorized at 578 K for 3 h exhibited the highest catalytic performance, with the corresponding selectivity of isobutene approaching 89% and conversion approaching 15% after reaction for 4.5 h at 833 K, whereas Ni2P/AC catalyst prepared by impregnation method displays a much lower catalytic activity. The improved catalytic performance of the Ni2P-ADC can be ascribed to the smaller and highly dispersed Ni2P particles incorporated into carbon framework resulting from Ni-alginate gel.

  19. Thermal expansion behavior of NiSi/NiSi2

    NASA Technical Reports Server (NTRS)

    Wilson, D. F.; Cavin, O. B.

    1992-01-01

    The thermal expansion of NiSi/NiSi2 for a range of temperatures from 293 to 1223 K was determined using high-temperature X-ray diffraction. While a linear relation with temperature was found for the lattice parameter of NiSi2, third-order relationships were found for the three lattice parameters of NiSi, with one of the parameters showing a decrease with increasing temperature. The volumetric expansion of both materials exhibited linear relationships.

  20. Nucleation and Growth of Tetrataenite (FeNi) in Meteorites

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.

    1992-07-01

    The mineral tetrataenite (ordered FeNi) has been observed in chondrites, stony irons, and iron meteorites (1). FeNi is an equilibrium phase in the Fe-Ni phase diagram (Figure 1) and orders to tetrataenite at ~320 degrees C (2). The phase forms at temperatures at or below the eutectoid temperature (~400 degrees C) where taenite (gamma) transforms to kamacite (alpha) plus FeNi (gamma"). An understanding of the formation of tetrataenite can lead to a new method for determining cooling rates at low temperatures (<400 degrees C) for all types of meteorites. In a recent study of plessite in iron meteorites (3), two transformation sequences for the formation of tetrataenite were observed. In either sequence, during the cooling process, the taenite (gamma) phase initially undergoes a diffusionless transformation to a martensite (alpha, bcc) phase without a composition change. The martensite then decomposes either above or below the eutectoid temperature (~400 degrees C) during cooling or upon subsequent reheating. During martensite decomposition above the eutectoid, the taenite (gamma) phase nucleates by the reaction alpha(sub)2 ---> alpha + gamma and grows under volume diffusion control. The Ni composition of the taenite increases continuously following the equilibrium gamma/alpha + gamma boundary while the Ni composition of the kamacite matrix decreases following the alpha/alpha + gamma phase boundary (2), see Figure 1. Below the eutectoid temperature, the precipitate composition follows the equilibrium gamma"/alpha + gamma" boundary and reaches ~52 wt% Ni, the composition of FeNi, gamma". The kamacite (alpha) matrix composition approaches ~4 to 5 wt% Ni. The ordering transformation starts at ~320 degrees C forming the tetrataenite phase. During martensite decomposition below the eutectoid temperature, FeNi should form directly by the reaction alpha2 --> alpha + gamma" (FeNi). If this transformation sequence occurs, then the composition of kamacite and tetrataenite

  1. Controllably Alloyed, Low Density, Free-standing Ni-Co and Ni-Graphene Sponges for Electrocatalytic Water Splitting

    PubMed Central

    Vineesh, Thazhe Veettil; Mubarak, Suhail; Hahm, Myung Gwan; Prabu, V.; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2016-01-01

    Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm−2 (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm−2 @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices. PMID:27510857

  2. Controllably Alloyed, Low Density, Free-standing Ni-Co and Ni-Graphene Sponges for Electrocatalytic Water Splitting

    NASA Astrophysics Data System (ADS)

    Vineesh, Thazhe Veettil; Mubarak, Suhail; Hahm, Myung Gwan; Prabu, V.; Alwarappan, Subbiah; Narayanan, Tharangattu N.

    2016-08-01

    Synthesis of low cost, durable and efficient electrocatalysts that support oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are the bottlenecks in water electrolysis. Here we propose a strategy for the development of controllably alloyed, porous, and low density nickel (Ni) and cobalt (Co) based alloys - whose electrocatalytic properties can be tuned to make them multifunctional. Ni and Co based alloy with the chemical structure of Ni1Co2 is identified as an efficient OER catalyst among other stoichiometric structures in terms of over potential @ 10 mAcm‑2 (1.629 V), stability, low tafel slope (87.3 mV/dec), and high Faradaic efficiency (92%), and its OER performance is also found to be on par with the benchmarked IrO2. Tunability in the porous metal synthesis strategy allowed the incorporation of graphene during the Ni sponge formation, and the Ni- incorporated nitrogen doped graphene sponge (Ni-NG) is found to have very high HER activity. A water electrolysis cell fabricated and demonstrated with these freestanding electrodes is found to have high stability (>10 hours) and large current density (10 mAcm‑2 @ 1.6 V), opening new avenues in the design and development of cost effective and light weight energy devices.

  3. Electronic and structural properties of binary Pt-Ni nanoclusters

    NASA Astrophysics Data System (ADS)

    Pérez, Luis A.; Garzón, Ignacio L.

    2007-03-01

    The lowest energy structures of binary (PtNi3)n, (Pt3Ni)n, and (PtNi)m nanoclusters, with n=3-10 and m=3-20, modeled by the many-body Gupta potential, were obtained by using a genetic-symbiotic algorithm. These structures were further relaxed with DFT-GGA. In agreement with the experimental evidence, segregation is observed in these clusters, where the Ni atoms are mainly found in the cluster core and the Pt atoms on the cluster surface. Furthermore, it has been experimentally found that the (Pt3Ni)n nanoalloys present a higher catalytic activity for the N2O + H2 reaction at low temperatures than the other compositions [1], while the contrary trend is observed in the case of the oxidation of carbon monoxide in the presence of hydrogen, where the (PtNi3)n nanoparticles present a higher catalytic activity than the other ones. In order to understand these tendencies in the catalytic activity, we performed an analysis of the surface electronic structure of the bimetallic Pt-Ni nanoclusters with the mentioned compositions, by means of first-principles density functional calculations. Acknowledgments: This work was supported by CONACyT No. 43414-F. [1] Arenas-Alatorre J, Avalos-Borja M, Diaz G J. Phys. Chem. B 109, 2371 (2005).

  4. Mesoscale assembly of NiO nanosheets into spheres

    SciTech Connect

    Zhang Meng; Yan Guojin; Hou Yonggai; Wang Chunhua

    2009-05-15

    NiO solid/hollow spheres with diameters about 100 nm have been successfully synthesized through thermal decomposition of nickel acetate in ethylene glycol at 200 deg. C. These spheres are composed of nanosheets about 3-5 nm thick. Introducing poly(vinyl pyrrolidone) (PVP) surfactant to reaction system can effectively control the products' morphology. By adjusting the quantity of PVP, we accomplish surface areas-tunable NiO assembled spheres from {approx}70 to {approx}200 m{sup 2} g{sup -1}. Electrochemical tests show that NiO hollow spheres deliver a large discharge capacity of 823 mA h g{sup -1}. Furthermore, these hollow spheres also display a slow capacity-fading rate. A series of contrastive experiments demonstrate that the surface area of NiO assembled spheres has a noticeable influence on their discharge capacity. - Graphical abstract: The mesoscale assembly of NiO nanosheets into spheres have been achieved by a solvothermal method. N{sub 2} adsorption/desorption isotherms show the S{sub BET} of NiO is tunable. NiO spheres show large discharge capacity and slow capacity-fading rate.

  5. Ni-Co laterite deposits

    USGS Publications Warehouse

    Marsh, Erin E.; Anderson, Eric D.

    2011-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.

  6. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    SciTech Connect

    Guzman, D.; Ordonez, S.; Fernandez, J.F.; Sanchez, C.; Serafini, D.; Rojas, P.A.; Aguilar, C.; Tapia, P.

    2011-04-15

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{sub 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.

  7. Tuning the interface of Ni@Ni(OH)2/Pd/rGO catalyst to enhance hydrogen evolution activity and stability

    NASA Astrophysics Data System (ADS)

    Deng, Zihua; Wang, Jun; Nie, Yao; Wei, Zidong

    2017-06-01

    The interface engineering is vital to rational design and synthesis of the heterogeneous catalyst for high-performance electrochemically applications. The smart and elaborate architecture design offers several remarkable advantages, including good dispersion, more exposed active site and good electrical conductivity. We report a trace Pd induced formation of Ni@Ni(OH)2/Pd catalyst on reduced graphene oxides (rGO) by hydrothermal synthesis. We found that the presence of palladium seeds can promote the grain refinement and dispersion of the catalyst. The HRTEM results revealed that most of Ni@Ni(OH)2/Pd with a mean size of ∼10 nm are uniformly dispersed on the rGO sheets, with Pd particles and Ni@Ni(OH)2 balls located side by side. DFT calculations further confirmed a strong interaction existed in the interfaces, which leads to a stable Ni@Ni(OH)2/Pd/rGO morphology. By tailoring Ni@Ni(OH)2-Pd-rGO interfaces of the catalyst, the catalyst gives a current density of 10 mA cm-2 at a small over-potential of 76 mV and exhibits an excellent stability for the hydrogen evolution reaction in an alkaline environments.

  8. Constructing Multifunctional Metallic Ni Interface Layers in the g-C3N4 Nanosheets/Amorphous NiS Heterojunctions for Efficient Photocatalytic H2 Generation.

    PubMed

    Wen, Jiuqing; Xie, Jun; Zhang, Hongdan; Zhang, Aiping; Liu, Yingju; Chen, Xiaobo; Li, Xin

    2017-04-26

    The construction of exceptionally robust and high-quality semiconductor-cocatalyst heterojunctions remains a grand challenge toward highly efficient and durable solar-to-fuel conversion. Herein, novel graphitic carbon nitride (g-C3N4) nanosheets decorated with multifunctional metallic Ni interface layers and amorphous NiS cocatalysts were fabricated via a facile three-step process: the loading of Ni(OH)2 nanosheets, high-temperature H2 reduction, and further deposition of amorphous NiS nanosheets. The results demonstrated that both robust metallic Ni interface layers and amorphous NiS can be utilized as electron cocatalysts to markedly boost the visible-light H2 evolution over g-C3N4 semiconductor. The optimized g-C3N4-based photocatalyst containing 0.5 wt % Ni and 1.0 wt % NiS presented the highest hydrogen evolution of 515 μmol g(-1) h(-1), which was about 2.8 and 4.6 times as much as those obtained on binary g-C3N4-1.0%NiS and g-C3N4-0.5%Ni, respectively. Apparently, the metallic Ni interface layers play multifunctional roles in enhancing the visible-light H2 evolution, which could first collect the photogenerated electrons from g-C3N4, and then accelerate the surface H2-evolution reaction kinetics over amorphous NiS cocatalysts. More interestingly, the synergetic effects of metallic Ni and amorphous NiS dual-layer electron cocatalysts could also improve the TEOA-oxidation capacity through upshifting the VB levels of g-C3N4. Comparatively speaking, the multifunctional metallic Ni layers are dominantly favorable for separating and transferring photoexcited charge carriers from g-C3N4 to amorphous NiS cocatalysts owing to the formation of Schottky junctions, whereas the amorphous NiS nanosheets are mainly advantageous for decreasing the thermodynamic overpotentials for surface H2-evolution reactions. It is hoped that the implantation of multifunctional metallic interface layers can provide a versatile approach to enhance the photocatalytic H2 generation over

  9. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ)69Ni

    DOE PAGES

    Spyrou, Artemis; Larsen, Ann-Cecilie; Liddick, Sean N.; ...

    2017-02-22

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n,g)69Ni reaction rate.The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-process calculationsmore » is discussed.« less

  10. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  11. Synthesis and characterization of hierarchical NiO nanoflowers with porous structure

    NASA Astrophysics Data System (ADS)

    Ni, Xiaomin; Zhang, Yongfeng; Tian, Dayong; Zheng, Huagui; Wang, Xingwei

    2007-08-01

    Hierarchical NiO nanoflowers with porous petals were created by calcining the isomorphological β-Ni(OH) 2 precursor, which originated from the reaction between Ni(dmg) 2 (nickel dimethylglyoximate) and NaOH. Thus-prepared porous NiO flowers displayed a direct energy band of 3.59 eV and a first discharge capacity of 858 mAh g -1 vs Li metal. Compared with that of the normal nanoparticles, the higher electrochemical lithium intercalation could be ascribed to their special nanoporous structure.

  12. Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites

    SciTech Connect

    Schreiber, Moritz W.; Rodriguez-Niño, Daniella; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-01-01

    The impact of support morphology and composition on the intrinsic activity of Ni supported on MFI-type zeolite was explored in the hydrodeoxygenation of methyl stearate, tristearate, and algae oil (mixture of triglycerides). The nano-sized structure of the support (self-pillared nanosheets) is beneficial for the activity of the catalysts. Higher Ni dispersion and concomitant higher reaction rates were obtained on nano-structured supports than on zeolite with conventional morphology. Rates normalized to accessible Ni atoms (TOF), however, varied little with support morphology. Acidity of the support increases the rate of Ni-catalyzed C-O hydrogenolysis per surface metal site.

  13. Calorimetry study of the synthesis of amorphous Ni-Ti alloys by mechanical alloying. [Ni33 Ti67

    SciTech Connect

    Schwarz, R.B.; Petrich, R.R.

    1988-01-01

    We synthesized amorphous Ni/sub 33/Ti/sub 67/ alloy powder by ball milling (a) a mixture of elemental nickel and titanium powders and (b) powders of the crystalline intermetallic NiTi/sub 2/. We characterized the reaction products as a function of ball-milling time by differential scanning calorimetry and x-ray diffraction. The measurements suggest that in process (a) the amorphous alloy forms by a solid-state interdiffusion reaction at the clean Ni/Ti interfaces generated by the mechanical attrition. In process (b), the crystalline alloy powder stores energy in the form of chemical disorder and lattice and point defects. The crystal-to-amorphous transformation occurs when the stored energy reaches a critical value. The achievement of the critical stored energy competes with the dynamic recovery of the lattice. 23 refs., 7 figs.

  14. Formation of epitaxial metastable NiGe{sub 2} thin film on Ge(100) by pulsed excimer laser anneal

    SciTech Connect

    Lim, Phyllis S. Y.; Yeo, Yee-Chia; Chi, Dong Zhi; Lim, Poh Chong; Wang, Xin Cai; Chan, Taw Kuei; Osipowicz, Thomas

    2010-11-01

    Epitaxial nickel digermanide (NiGe{sub 2}), a metastable phase, was formed by laser annealing Ni on (100) germanium-on-silicon substrates. The NiGe{sub 2} formation was investigated using transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction, Rutherford backscattering spectroscopy, and first-principles calculations. The formation mechanism of NiGe{sub 2} is discussed and is attributed to both the reduced interfacial energy at the NiGe{sub 2}/Ge(100) interface and the kinetic aspects of the laser annealing reaction associated with phase transformation and film agglomeration.

  15. Chemical Reactions in Turbulent Mixing Flows

    DTIC Science & Technology

    1989-10-15

    GROUP Turbulence, shear layers, jets, mixing, combustion , 21 ni numerical simulation, light detection diagnostics 21 02 9. ABSTRACT (Conmmna on...mixing chemical reactions and combustion processes in turbulent, subsonic and supersonic flows. This program is comprised of several efforts. In...permit the full chemical kinetics of the combustion process to be incorporated. Our recent analytical efforts have concentrated on a 20

  16. Octahedral Ni-nanocluster (Ni85) for Efficient and Selective Reduction of Nitric Oxide (NO) to Nitrogen (N2)

    PubMed Central

    Mahata, Arup; Rawat, Kuber Singh; Choudhuri, Indrani; Pathak, Biswarup

    2016-01-01

    Nitric oxide (NO) reduction pathways are systematically studied on a (111) facet of the octahedral nickel (Ni85) nanocluster in the presence/absence of hydrogen. Thermodynamic (reaction free energies) and kinetic (free energy barriers, and temperature dependent reaction rates) parameters are investigated to find out the most favoured reduction pathway for NO reduction. The catalytic activity of the Ni-nanocluster is investigated in greater detail toward the product selectivity (N2 vs. N2O vs. NH3). The previous theoretical (catalyzed by Pt, Pd, Rh and Ir) and experimental reports (catalyzed by Pt, Ag, Pd) show that direct N-O bond dissociation is very much unlikely due to the high-energy barrier but our study shows that the reaction is thermodynamically and kinetically favourable when catalysed by the octahedral Ni-nanocluster. The catalytic activity of the Ni-nanocluster toward NO reduction reaction is very much efficient and selective toward N2 formation even in the presence of hydrogen. However, N2O (one of the major by-products) formation is very much unlikely due to the high activation barrier. Our microkinetic analysis shows that even at high hydrogen partial pressures, the catalyst is very much selective toward N2 formation over NH3. PMID:27157072

  17. Self-Assembly of Hierarchical Ni-Mo-Polydopamine Microflowers and their Conversion to a Ni-Mo2 C/C Composite for Water Splitting.

    PubMed

    Sun, Lianshan; Wang, Chunli; Sun, Qujiang; Cheng, Yong; Wang, Limin

    2017-02-13

    With the aim of finding efficient non-noble metal catalysts for water splitting, hierarchical Ni-Mo-polydopamine microflowers (Ni-Mo2 C/C MF) were synthesized through a facile aqueous-phase reaction at room temperature. NiMoO4 nanowires were utilized as both Ni and Mo source; they can complex with dopamine to form a hierarchical structure and affect the scale of the final product. The energy dispersive spectroscopy (EDS) measurement of Ni-Mo2 C/C microflowers (MF) shows a high content of Mo2 C and Ni (>90 wt %). For the hydrogen evolution reaction (HER), the Ni-Mo2 C/C MF displays a low overpotential of 99 mV at a current density of -10 mA cm(-2) and a small Tafel slope of 73 mV dec(-1) in 1.0 m KOH. By comparison with Mo2 C/C microspheres (MS), the nanosized Ni-doped particles offer more active sites and enhance the kinetic performance. This facile synthesis strategy is also suitable for preparing other metal-Mo2 C/C composites that can be used in the fields of catalysis and energy conversion.

  18. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    SciTech Connect

    Sharifi, Mahdi; Haghighi, Mohammad; Abdollahifar, Mozaffar

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray, Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.

  19. Synthesis and Magnetic Properties of NiSe, NiTe, CoSe, and CoTe

    NASA Astrophysics Data System (ADS)

    Umeyama, Norio; Tokumoto, Madoka; Yagi, Shota; Tomura, Masatoshi; Tokiwa, Kazuyasu; Fujii, Takenori; Toda, Ryo; Miyakawa, Nobuaki; Ikeda, Shin-Ichi

    2012-05-01

    Polycrystalline NiSe, NiTe, CoSe, and CoTe have been synthesized by two methods, i.e., (1) the solid-state reaction in an evacuated quartz ampoule (QA) and (2) the high-pressure (HP) technique (HP) in a Au capsule using a cubic anvil cell. All the obtained samples have the nickel arsenide-type hexagonal crystal structure, except CoTe (HP), and their estimated lattice parameters, a and c, show almost the same values within 0.8% in comparison between samples prepared by the QA method and those by the HP method. On the other hand, a distinct difference between samples prepared by QA and HP processes is found in the magnetization of NiSe and NiTe. In particular, for NiTe, the temperature dependence of magnetization indicates two transition temperatures at about 20 and 130 K in samples prepared by the HP process. However, samples of NiTex (x = 0.5, 0.66, 0.82, 1, 1.22, and 2) and NiTe containing Au prepared by QA process do not show similar magnetic orders in the temperature range between 2 and 300 K. Also, samples of NiSe (HP) show magnetic transition at ˜20 K, while those of NiSe (QA) show a magnetic inflection point at ˜10 K. To the best of our knowledge the remarkable difference in magnetic properties caused by the method of synthesis has not been reported. In this paper, we present comparative experimental results of magnetic, electric, and specific heat measurements of samples prepared by the two methods. A possible explanation for such a substantial difference in magnetic interaction will be discussed.

  20. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  1. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst

    PubMed Central

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability. PMID:24790945

  2. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium.

    PubMed

    Go, Gwang-Sub; Go, Yoo-Jin; Lee, Hong-Joo; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2016-02-01

    In this work, hydrogen production from glycerol by steam reforming was studied using Ni-metal oxide catalysts. Ni-based catalyst becomes deactivated during steam reforming reactions because of coke deposits and sintering. Therefore, the aim of this study was to reduce carbon deposits and sintering on the catalyst surface by adding a promoter. Ni-metal oxide catalysts supported on Al2O3 were prepared via impregnation method, and the calcined catalyst was reduced under H2 flow for 2 h prior to the reaction. The characteristics of the catalysts were examined by XRD, TPR, TGA, and SEM. The Ni-Fe-Ce/Al2O3 catalyst, which contained less than 2 wt% Ce, showed the highest hydrogen selectivity and glycerol conversion. Further analysis of the catalysts revealed that the Ni-Fe-Ce/Al2O3 catalyst required a lower reduction temperature and produced minimum carbon deposit.

  3. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst.

    PubMed

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  4. Molecules based on M(v) (M=Mo, W) and Ni(II) ions: a new class of trigonal bipyramidal cluster and confirmation of SMM behavior for the pentadecanuclear molecule {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}.

    PubMed

    Hilfiger, Matthew G; Zhao, Hanhua; Prosvirin, Andrey; Wernsdorfer, Wolfgang; Dunbar, Kim R

    2009-07-14

    The preparation, single crystal X-ray crystallography, and magnetic properties are reported for four new clusters based on [M'V(CN)8]3- octacyanometallates (M'=Mo, W). Reactions of [M'V(CN)8]3- with mononuclear NiII ions in the presence of the tmphen blocking ligand (tmphen=3,4,7,8-tetramethyl-1,10-phenanthroline) in a 2:3:6 ratio, respectively, lead to the formation of the trigonal bipyramidal clusters [NiII(tmphen)2]3[M'V(CN)8]2. Analogous reactions with the same starting materials performed in a 2:3:2 ratio, respectively, produce pentadecanuclear clusters of the type {NiII[NiII(tmphen)(MeOH)]6[Ni(H2O)3]2[micro-CN]30[WV(CN)3]6}. The W2Ni3 (1) and Mo2Ni3(2) pentanuclear clusters and the W6Ni9 (3) and Mo6Ni9 (4) pentadecanuclear molecules are isostructural to each other and crystallize in the space groups P2(1)/c and R3 respectively. Magnetic measurements indicate that the ground states for the trigonal bipyamidal clusters are S=4 as a consequence of ferromagnetic coupling with JW-Ni=9.5 cm(-1), JMo-Ni=10 cm(-1). The pentadecanuclear clusters exhibit ferromagnetic coupling as well, which leads to S=12 ground states (JW-Ni=12 cm(-1), JMo-Ni=12.2 cm(-1)). Reduced magnetization studies on the W-Ni analogues support the conclusion that they exhibit a negative axial anisotropy term; the fits give D values of -0.24 cm(-1) for the W2Ni3 cluster and D=-0.04 cm(-1)for the W6Ni9 cluster. AC susceptibility measurements indicate the beginning of an out-of-phase signal for the W2Ni3 and the W6Ni9 compounds, but detailed low temperature studies on small crystals by the microSQUID technique indicate that only the pentadecanuclear cluster exhibits hysteresis in accord with SMM behavior. Neither Mo cluster reveals any evidence for slow paramagnetic relaxation at low temperatures.

  5. Hierarchical NiCo2S4@NiFe LDH Heterostructures Supported on Nickel Foam for Enhanced Overall-Water-Splitting Activity.

    PubMed

    Liu, Jia; Wang, Jinsong; Zhang, Bao; Ruan, Yunjun; Lv, Lin; Ji, Xiao; Xu, Kui; Miao, Ling; Jiang, Jianjun

    2017-05-10

    Low-cost and highly efficient bifunctional electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are intensively investigated for overall water splitting. Herein, we combined experimental research with first-principles calculations based on density functional theory (DFT) to engineer the NiCo2S4@NiFe LDH heterostructure interface for enhancing overall water-splitting activity. The DFT calculations exhibit strong interaction and charge transfer between NiCo2S4 and NiFe LDH, which change the interfacial electronic structure and surface reactivity. The calculated chemisorption free energy of hydroxide (ΔEOH) is reduced from 1.56 eV for pure NiFe LDH to 1.03 eV for the heterostructures, indicating a dramatic improvement in OER performance, while the chemisorption free energy of hydrogen (ΔEH) maintains almost invariable. By the use of the facile hydrothermal method, NiCo2S4 nanotubes, NiFe LDH nanosheets, and NiCo2S4@NiFe LDH heterostructures are prepared on nickel foam, of which the corresponding experimental OER overpotentials are 306, 260, and 201 mV at 60 mA cm(-2), respectively. These results are good agreement with the theoretical predictions. Meanwhile, the HER performance has little improvement, with an overpotential of about 200 mV at 10 mA cm(-2). Due to the dramatic improvement in OER performance, there was an enhancement in the overall water-splitting activity of the NiCo2S4@NiFe LDH heterostructures, with a low voltage of 1.6 V.

  6. A novel square-planar Ni(II) complex with an amino-carboxamido-dithiolato-type ligand as an active-site model of NiSOD.

    PubMed

    Nakane, Daisuke; Wasada-Tsutsui, Yuko; Funahashi, Yasuhiro; Hatanaka, Tsubasa; Ozawa, Tomohiro; Masuda, Hideki

    2014-07-07

    To understand the role of the unique equatorial coordination environment at the active center in nickel superoxide dismutase (NiSOD), we prepared a novel Ni(II) complex with an amino-carboxamido-dithiolato-type square-planar ligand (1, [Ni(2+)(L1)](-)) as a model of the NiSOD active site. Complex 1 has a low-spin square-planar structure in all solvents. Interestingly, the absorption wavelength and ν(C═O) stretching vibrations of 1 are affected by solvents. This provides an indication that the carbonyl oxygens participate in hydrogen-bonding interactions with solvents. These interactions are reflected in the redox potentials; the peak potential of an anodic wave (Epa) values of Ni(II)/Ni(III) waves for 1 are shifted to a positive region for solvents with higher acceptor numbers. This indicates that the disproportionation of superoxide anion by NiSOD may be regulated by hydrogen-bonding interactions between the carboxamido carbonyl and electrophilic molecules through fine-tuning of the redox potential for optimal SOD activity. Interestingly, the Epa value of the Ni(III)/Ni(II) couple in 1 in water (+0.303 V vs normal hydrogen electrode (NHE)) is similar to that of NiSOD (+0.290 V vs NHE). We also investigated the superoxide-reducing and -oxidizing reactions of 1. First, 1 reacts with superoxide to yield the superoxide-bound Ni(II) species (UV-vis: 425, 525, and ∼650 nm; electron paramagnetic resonance (EPR) (4 K): g// = 2.21, g⊥ = 2.01; resonance Raman: ν((16)O-(16)O)/ν((18)O-(18)O) = 1020/986 cm(-1)), which is then oxidized to Ni(III) state only in the presence of both a proton and 1-methylimidazole, as evidenced by EPR spectra. Second, EPR spectra indicate that the oxidized complex of 1 with 1-methylimidazole at the axial site can be reduced by reaction with superoxide. The Ni(III) complex with 1-methylimidazole at the axial site does not participate in any direct interaction with azide anion (pKa 4.65) added as mimic of superoxide (pKa 4.88). According to

  7. PT AND PT/NI "NEEDLE" ELETROCATALYSTS ON CARBON NANOTUBES WITH HIGH ACTIVITY FOR THE ORR

    SciTech Connect

    Colon-Mercado, H.

    2011-11-10

    Platinum and platinum/nickel alloy electrocatalysts supported on graphitized (gCNT) or nitrogen doped carbon nanotubes (nCNT) are prepared and characterized. Pt deposition onto carbon nanotubes results in Pt 'needle' formations that are 3.5 nm in diameter and {approx}100 nm in length. Subsequent Ni deposition and heat treatment results in PtNi 'needles' with an increased diameter. All Pt and Pt/Ni materials were tested as electrocatalysts for the oxygen reduction reaction (ORR). The Pt and Pt/Ni catalysts showed excellent performance for the ORR, with the heat treated PtNi/gCNT (1.06 mA/cm{sup 2}) and PtNi/nCNT (0.664 mA/cm{sup 2}) showing the highest activity.

  8. Ag@Ni core-shell nanowire network for robust