Science.gov

Sample records for ni shape memory

  1. Martensite transformation and shape memory effect on NiTi-Zr high temperature shape memory alloys

    SciTech Connect

    Pu, Z.; Tseng, H.; Wu, K.

    1995-10-17

    NiTi-Zr high temperature alloys possess relatively poor shape memory properties and ductility in comparison with NiTi-Hf and NiTi-Pd alloys. During martensite transformation of the newly-developed NiTi-Zr high temperature shape memory alloys (SMAs) the temperature increases along with Zr content when the Zr content is more than 10 at%. As the Zr content increases, the fully reversible strain of the alloys decreases. However, complete strain recovery behavior is exhibited by all the alloys studied in this paper, even those with a Zr content of 20 at%. Stability of the NiTi-Zr alloys during thermal cycling was also tested and results indicate that the NiTi-Zr alloys have poor stability against thermal cycling. The reasons for the deterioration of the shape memory effect and stability have yet to be determined.

  2. Shape memory effect of laser welded NiTi plates

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Fernandes, F. M. Braz; Schell, N.; Miranda, R. M.

    2015-07-01

    Laser welding is a suitable joining technique for shape memory alloys (SMAs). This paper reports the existence of shape memory effect (SME) on laser welded NiTi joints, subjected to bending tests, and correlates this effect with the microstructural analysis performed with X-ray diffraction (XRD). All welded samples were able to recover their initial shape after bending to 180°, which is a remarkable result for industrial applications of NiTi involving laser welding.

  3. Shape memory effect of the Ni-Ti-Hf high temperature shape memory alloy

    SciTech Connect

    Wu, K.H.; Pu, Z.; Tseng, H.K.; Biancaniello, F.S.

    1995-11-17

    The one-way shape memory effect of the newly-developed TiNi-Hf high temperature shape memory alloys has been investigated. The results of the study show that TiNi-Hf high temperature alloys possess a relatively high shape memory effect. All the alloys, even those with an Hf content as high as 30at%, exhibit complete strain recovery behavior. However, as the Hf content increases, the fully reversible strain of the alloys decreases. The increase of the second phase as the Hf content increases is the primary reason for the deterioration of the shape memory effect and ductility. The shape memory properties also deteriorate as the deformation temperature increases.

  4. Ni-Mn-Ga shape memory nanoactuation

    SciTech Connect

    Kohl, M. Schmitt, M.; Krevet, B.; Backen, A.; Schultz, L.; Fähler, S.

    2014-01-27

    To probe finite size effects in ferromagnetic shape memory nanoactuators, double-beam structures with minimum dimensions down to 100 nm are designed, fabricated, and characterized in-situ in a scanning electron microscope with respect to their coupled thermo-elastic and electro-thermal properties. Electrical resistance and mechanical beam bending tests demonstrate a reversible thermal shape memory effect down to 100 nm. Electro-thermal actuation involves large temperature gradients along the nanobeam in the order of 100 K/μm. We discuss the influence of surface and twin boundary energies and explain why free-standing nanoactuators behave differently compared to constrained geometries like films and nanocrystalline shape memory alloys.

  5. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  6. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  7. Structural transformations in NiTi shape memory alloy nanowires

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Gall, Ken; Zhu, Ting; Yavari, Arash; DesRoches, Reginald

    2014-05-01

    Martensitic phase transformation in bulk Nickle-Titanium (NiTi)—the most widely used shape memory alloy—has been extensively studied in the past. However, the structures and properties of nanostructured NiTi remain poorly understood. Here, we perform molecular dynamics simulations to study structural transformations in NiTi nanowires. We find that the tendency to reduce the surface energy in NiTi nanowires can lead to a new phase transformation mechanism from the austenitic B2 to the martensitic B19 phase. We further show that the NiTi nanowires exhibit the pseudoelastic effects during thermo-mechanical cycling of loading and unloading via the B2 and B19 transformations. Our simulations also reveal the unique formation of compound twins, which are expected to dominate the patterning of the nanostructured NiTi alloys at high loads. This work provides the novel mechanistic insights into the martensitic phase transformations in nanostructured shape memory alloy systems.

  8. Adaptive damping in shape memory TiNi during cavitation

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    Recent studies by this author and others has demonstrated that cavitation-erosion of NiTi coatings or bulk NiTi is exceptiona. Studies were undertaken to ascertain whether this property is a consequence of either the general intermetallic properties of NiTi or by an adaptive stress-dissipation mechanism of the cavitation-generated shock wave by a microstructural mechanism related to the shape memory effect. In cavitation, an oscillating pressure field causes the formation and implosion of air bubbles. As a surface easily nucleates bubbles, the subsequent implosion of the bubbles generates stresses approaching several MPa, which are large enough to ablate material, ansd are also high enough to generate stress-induced Martensite or Austenite, depending on whether the applied stress is tensile or compressive. The implication is that the stress wave may be partially accommodated by the stress-induced transformation, which can dissipate the energy as heat on retransformation to the materials unstressed phase. Calculations concerning the variation of the cavitation-induced stresses and temperature distribution with depth into the TiNi coupled with the associated problems of heat transfer will be presented. It will be shown that an adaptive mechanism is plausible.

  9. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  10. Ferromagnetic shape memory in the NiMnGa system

    SciTech Connect

    Tickle, R.; James, R.D.; Shield, T.; Wuttig, M.; Kokorin, V.V.

    1999-09-01

    Strain versus field measurements for a ferromagnetic shape memory alloy in the NiMnGa system demonstrate the largest magnetostrictive strains to date of nearly 1.3%. These strains are achieved in the martensitic state through field-induced variant rearrangement. An experimental apparatus is described that provides biaxial magnetic fields and uniaxial compressive prestress with temperature control while recording microstructural changes with optical microscopy. The magnetostrictive response is found to be sensitive to the initial state induced by stress-biasing the martensitic variant structure, and exhibits rate effects related to twin boundary mobility. Experiments performed with constant stress demonstrate work output capacity. Experimental results are interpreted by using a theory based on minimization of a micromagnetic energy functional that includes applied field, stress, and demagnetization energies. It is found that the theory provides a good qualitative description of material behavior, but significantly overpredicts the amount of strain produced. Issues concerning the martensitic magnetic anisotropy and variant nucleation are discussed with regard to this discrepancy.

  11. Effects of aging on the characteristics of TiNiPd shape memory alloy thin films

    SciTech Connect

    Zhang Congchun

    2008-07-15

    TiNiPd thin films have been deposited on glass substrate using R.F. magnetron sputtering. Effects of annealing and aging on the microstructure, phase transformation behaviors and shape memory effects of these thin films have been studied by X-ray diffractometry, differential scanning calorimeter, tensile tests and internal friction characteristics. The TiNiPd thin films annealed at 750 deg. C exhibit uniform martensite/austenite transformations and shape memory effect. Aging at 450 deg. C for 1 h improved the uniformity of transformations and shape memory effect. Long time aging decreased transformation temperatures and increased the brittleness of TiNiPd thin films.

  12. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  13. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  14. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  15. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  16. Electrochemical and corrosion behaviors of sputtered TiNi shape memory films

    NASA Astrophysics Data System (ADS)

    Li, K.; Huang, X.; Zhao, Z. S.; Li, Y.; Fu, Y. Q.

    2016-03-01

    Electrochemical and corrosion behaviors of TiNi-based shape memory thin films were explored using electrochemical impedance spectroscopy (EIS) and polarization methods in phosphate buffered saline solutions at 37 °C. Compared with those of electro-polished and passivated bulk NiTi shape memory alloys, the break-down potentials of the sputter-deposited amorphous TiNi films were much higher. After crystallization, the break-down potentials of the TiNi films were comparable with that of the bulk NiTi shape memory alloy. Additionally, variation of composition of the TiNi films showed little influence on their corrosion behavior. The EIS data were fitted using a parallel resistance-capacitance circuit associated with passive oxide layer on the tested samples. The thickness of the oxide layer for the TiNi thin films was found much thinner than that of bulk NiTi shape memory alloy. During electrochemical testing, the oxide thickness of the bulk alloy reached its maximum at a voltage of 0.6-0.8 V, whereas those of TiNi films were increased continuously up to a voltage of 1.2 V.

  17. A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, M. Imran; Kim, Hee Young; Miyazaki, Shuichi

    2015-06-01

    High temperature shape memory alloys (HTSMAs) are important smart materials and possess a significant potential to improve many engineering systems. Many TiNi-based high temperature ternary alloy systems have been reported in literature including TiNiPd, TiNiPt, TiNiZr, TiNiAu, TiNiHf, etc. Some quaternary additions of certain elements in the above systems have been successful to further improve many important shape memory and mechanical properties. The success criteria for an HTSMA become strict in terms of its cyclic stability, maximum recoverable strain, creep resistance, and corrosion resistance at high temperatures. TiNiPdCu alloy system has been recently proposed as a promising HTSMA. Unique nanoscaled precipitates formed in TiNiPdCu-based HTSMAs are found to be stable at temperatures above 773 K, while keeping the benefits of ease of fabrication. It is expected that this alloy system possesses significant potential especially for the high temperature shape memory applications. Till now many research reports have been published on this alloy system. In the present work, a comprehensive review of the TiNiPdCu system is presented in terms of thermomechanical behavior, nanoscale precipitation mechanism, microstructural features, high temperature shape memory and mechanical properties, and the important parameters to control the high temperature performance of these alloys.

  18. Magnetic field-controlled two-way shape memory in CoNiGa single crystals

    NASA Astrophysics Data System (ADS)

    Li, Y. X.; Liu, H. Y.; Meng, F. B.; Yan, L. Q.; Liu, G. D.; Dai, X. F.; Zhang, M.; Liu, Z. H.; Chen, J. L.; Wu, G. H.

    2004-05-01

    A two-way magnetic field controlled shape memory effect has been observed in single crystals of CoNiGa with martensitic transformation temperature ranging from 205 to 341 K. Two-way shape memory with -2.3% strain has been obtained in free samples. By applying a bias field of up to 2 T, the shape memory strain can be continuously controlled from negative 2.3% to positive 2.2% giving it a total strain of 4.5%. The magnetic properties of CoNiGa show that it is a good shape memory material working at relatively high temperature of up to 450 K, and has a lower magnetic anisotropy than NiMnGa.

  19. Functionally grading the shape memory response in NiTi films: Laser irradiation

    SciTech Connect

    Birnbaum, A. J.; Satoh, G.; Yao, Y. L.

    2009-08-15

    A new process and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film structures. This technique is shown to effectively control the martensitic phase transformation temperature and exhibits control over aspects of the mechanical and shape memory responses as well. Specifically, the martensitic phase transformation temperature decreases with incident laser energy density. Concomitant modifications are observed in both the mechanical and shape memory responses in laser processed films. Analysis and characterization are performed via temperature controlled optical microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation.

  20. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film.

  1. Microstructure and solidification behavior of Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gharghouri, Michael A.; Hyatt, Calvin V.

    2004-07-01

    In order to understand the solidification behavior of Ni-Mn-Ga alloys, ingots with different compositions were prepared by arc melting. Two series of compositions were investigated: Ni100-2xMnxGax (15<=x <=30) and Ni50Mn50-yGay (0<=y<=50). The microstructures obtained were observed and the compositions of the phases occurring in the ingots were identified by energy dispersive spectroscopy in the scanning electron microscope. Based on these observations, three solidification paths were identified: direct solidification of γ-Ni from the liquid, direct solidification of β-NiMnGa from the liquid, and solidification of β-NiMnGa phase via a peritectic reaction. It was found that the γ-Ni liquidus surface covers a large area of the ternary phase diagram. The γ-Ni liquidus boundary is located between Ni50Mn25Ga25 and Ni45Mn27.5Ga27.5 in the equal Mn and Ga alloy series, and between Ni50Mn5Ga45 and Ni50Mn10Ga40 in the 50 at.% Ni alloy series. The alloys with compositions close to the stoichiometric Ni2MnGa composition that show the magnetic shape memory effect are all covered by the γ-Ni liquidus surface. The β-NiMnGa liquidus surface covers the remaining alloy compositions.

  2. Single-crystal growth of NiMnGa magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jingmin; Jiang, Chengbao

    2008-02-01

    The crystal growth of NiMnGa magnetic shape memory alloys was investigated by the optical zone melting method. Slightly macroscopic convex and planar solid-liquid interfaces were achieved by controlling the molten zone morphologies. Single crystals were successfully prepared in three typical series of NiMnGa magnetic shape memory alloys, including stoichiometric Ni 50Mn 25Ga 25, Ni-rich NiMnGa and Mn-rich NiMnGa alloys. Studies on the solute partition during crystal growth revealed the enrichment of Mn and deficiency of both Ni and Ga in front of the solid-liquid interface for both stoichiometric and Mn-rich NiMnGa alloys, while a slight enrichment of Ni for Ni-rich NiMnGa alloys. An initial transient stage was determined to be about 20 mm, and a uniform composition distribution existed along the axis of the crystals in the stable growth parts, which matches well with the proposed mathematic model.

  3. Corrosion Behavior of Ti-55Ni-1.2Co High Stiffness Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Norwich, Dennis W.; Ehrlinspiel, Michael

    2014-07-01

    The corrosion behavior of high stiffness nominal Ti-55Ni-1.2Co (wt.%) shape memory alloys (SMAs) was systematically investigated in the present study including straight wires, wire-formed stents, and laser-cut stents. It was found that the corrosion behavior of Ti-55Ni-1.2Co alloys is comparable with those of binary NiTiNol counterparts, which is attributed to the small alloying amount of cobalt. Additionally, the corrosion resistance of high stiffness Ti-55Ni-1.2Co SMAs is independent of the stent-forming method. To explore the galvanic corrosion susceptibility between Ti-55Ni-1.2Co and binary NiTiNol alloys, a NiTiNol sleeve was laser welded to the Ti-55Ni-1.2Co stent. Interestingly, there is no galvanic corrosion observed in this NiTiCo-NiTiNol component, even after immersion of the component in phosphate-buffered saline solution at 37 °C for three months. This study will shed some light on the industrial applications of high stiffness Ti-55Ni-1.2Co shape memory alloys.

  4. A Low Hysteresis NiTiFe Shape Memory Alloy Based Thermal Conduction Switch

    SciTech Connect

    Lemanski, J. L.; Krishnan, V. B.; Manjeri, R. Mahadevan; Vaidyanathan, R.; Notardonato, W. U.

    2006-03-31

    Shape memory alloys possess the ability to return to a preset shape by undergoing a solid state phase transformation at a particular temperature. This work reports on the development and testing of a low temperature thermal conduction switch that incorporates a NiTiFe shape memory element for actuation. The switch was developed to provide a variable conductive pathway between liquid methane and liquid oxygen dewars in order to passively regulate the temperature of methane. The shape memory element in the switch undergoes a rhombohedral or R-phase transformation that is associated with a small hysteresis (typically 1-2 deg. C) and offers the advantage of precision control over a set temperature range. For the NiTiFe alloy used, its thermomechanical processing, subsequent characterization using dilatometry, differential scanning calorimetry and implementation in the conduction switch configuration are addressed.

  5. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  6. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  7. A Study of Thermo-mechanically Processed High Stiffness NiTiCo Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Manjeri, R. M.; Norwich, D.; Sczerzenie, F.; Huang, X.; Long, M.; Ehrlinspiel, M.

    2016-03-01

    This work investigates a vacuum induction melted-vacuum arc re-melted (VIM-VAR) and thermo-mechanically processed ternary NiTiCo shape memory alloy. The NiTiCo ingot was hot processed to 6.35-mm-diameter coiled wire. The coiled wire was subsequently cold drawn to a final wire diameter of 0.53 mm, with interpass anneals. The wires were shape set at 450 °C for 3.5 min. After electropolishing, the wires were subjected to microstructural, thermal, and mechanical characterization studies. Microstructural analysis was performed by transmission electron microscope (TEM), thermal analyses by differential scanning calorimeter (DSC), and bend-free recovery and mechanical testing by uniaxial tensile testing. TEM did not reveal Ni-rich precipitates—either at the grain boundary or in the grain interior. Energy dispersive x-ray spectroscopy showed a uniform distribution of Ni, Ti, and Co in the sample. The DSC results on the shape set wire showed a single-step transformation between the austenite and the R-phase, in the forward and reverse directions. Cyclic tensile tests of the shape set wire, processed under optimum conditions, showed minimum residual strain and a stable upper plateau stress. Further, the fatigue behavior of NiTi and NiTiCo alloys was studied by rotating beam testing. The results showed that the fatigue properties of NiTiCo, under zero mean strain, are equivalent to that of binary NiTi in the high-cycle and medium-cycle regimes, taking into account the higher stiffness of NiTiCo. The above analyses helped in establishing the processing-structure-property correlation in a VIM-VAR-melted NiTiCo shape memory alloy.

  8. Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Karaca, H. E.; Turabi, A. S.; Basaran, B.; Pathak, A. K.; Dubenko, I.; Ali, N.; Chumlyakov, Y. I.; Li, P.

    2013-10-01

    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect.

  9. Shape-memory properties in Ni-Ti sputter-deposited film

    NASA Technical Reports Server (NTRS)

    Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.

    1990-01-01

    A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.

  10. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  11. Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    The oxidation behavior of the Ni-30Pt-50Ti high temperature shape memory alloy is compared to that of conventional NiTi nitinol SMAs. The oxidation rates were 1/4 those of NiTi under identical conditions. Ni-Ti-X SMAs are dominated by TiO2 scales, but, in some cases, the activation energy diverges for unexplained reasons. Typically, islands of metallic Ni or Pt(Ni) particles are embedded in lower scale layers due to rapid selective growth of TiO2 and low oxygen potential within the scale. The blocking effect of Pt-rich particles and lower diffusivity of Pt-rich depletion zones are proposed to account for the reduction in oxidation rates.

  12. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  13. Quasi-static modeling of NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2004-07-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated on the basis of NiTi SMA constitutive models such as the Brinson model, because of the similarities that exist in the behavior of both materials. NiMnGa shows a magnetically induced shape memory effect as well as a pseudoelastic behavior. Quasi-static tests at constant applied magnetic field and stress were conducted to identify the model parameters. The material parameters include free strain, Young's modulus, critical threshold fields and stress-influence coefficients. The Young's moduli of the material in its field preferred and stress preferred states were determined to be 450 MPa and 820 MPa respectively. Critical threshold fields as a function of stress were determined from constant stress testing. These test data were used to assemble a critical stress-temperature profile that is useful in predicting the various states of the material for a wide range of magnetic or mechanical loading conditions. Although the constant applied field and constant stress data have yet to be fully correlated, the model parameters identified from the experiments were used to implement an initial version of the quasi-static model. The model shows good correlation with test data and captures both the magnetic shape memory effect and pseudoelasticity. This introductory model provides a sound basis for further refinements of a quasi-static NiMnGa model.

  14. Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu Al Ni alloys

    NASA Astrophysics Data System (ADS)

    Sampath, V.

    2005-10-01

    Though Ni-Ti shape memory alloys are used extensively in a variety of engineering and medical applications because of their attractive shape memory characteristics, they still suffer from certain drawbacks, such as low transformation temperatures, difficulty in production and processing and high cost of raw materials. Copper-based alloys have, therefore, come as an alternative to Ni-Ti shape memory alloys. They are easier to produce and process and are also less expensive. They are used where Ni-Ti alloys cannot be used. But Cu-Al-Ni shape memory alloys also pose problems since they are brittle and possess lower shape recovery strains and stresses. With a view to increasing the shape memory characteristics and ductility of Cu-Al-Ni shape memory alloys, they were subjected to grain refinement and thermomechanical processing. The present study establishes that grain-refining additions result in considerable reduction in the grain size of the alloys. In addition, grain refinement and alloying cause an increase in the transformation temperatures. The results are analysed in the light of the explanations/theories put forth in recent papers related to Cu-Al-Ni shape memory alloys, and an attempt has been made to compare the results.

  15. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  16. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface. PMID:24928669

  17. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  18. Magnetic and calorimetric investigations of ferromagnetic shape memory alloy Ni54Fe19Ga27

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Kaul, Rakesh; Majumdar, S.; Roy, S. B.

    2007-06-01

    We report results of magnetization and differential scanning calorimetry measurements in the ferromagnetic shape memory alloy Ni54Fe19Ga27. This alloy undergoes an austenite-martensite phase transition in its ferromagnetic state. The nature of the ferromagnetic state, both in the austenite and the martensite phase, is studied in detail. The ferromagnetic state in the martensite phase is found to have higher anisotropy energy as compared with the austenite phase. The estimated anisotropy constant is comparable to that of a well-studied ferromagnetic shape memory alloy system NiMnGa. Further, the present study highlights various interesting features accompanying the martensitic transition (MT). These features suggest the possibility of either a premartensitic transition and/or an inter-MT in this system.

  19. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa

    PubMed Central

    Pataky, Garrett J.; Ertekin, Elif; Sehitoglu, Huseyin

    2015-01-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress–strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1] PMID:26380838

  20. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa.

    PubMed

    Pataky, Garrett J; Ertekin, Elif; Sehitoglu, Huseyin

    2015-12-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress-strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1].

  1. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping.

    PubMed

    Krishna, B Vamsi; Bose, Susmita; Bandyopadhyay, Amit

    2009-05-01

    Porous NiTi alloy samples were fabricated with 12-36% porosity from equiatomic NiTi alloy powder using laser engineered net shaping (LENS). The effects of processing parameters on density and properties of laser-processed NiTi alloy samples were investigated. It was found that the density increased rapidly with increasing the specific energy input up to 50 J/mm(3). Further increase in the energy input had small effect on density. High cooling rates associated with LENS processing resulted in higher amount of cubic B2 phase, and increased the reverse transformation temperatures of porous NiTi samples due to thermally induced stresses and defects. Transformation temperatures were found to be independent of pore volume, though higher pore volume in the samples decreased the maximum recoverable strain from 6% to 4%. Porous NiTi alloy samples with 12-36% porosity exhibited low Young's modulus between 2 and 18 GPa as well as high compressive strength and recoverable strain. Because of high open pore volume between 36% and 62% of total volume fraction porosity, these porous NiTi alloy samples can potentially accelerate the healing process and improve biological fixation when implanted in vivo. Thus porous NiTi is a promising biomaterial for hard tissue replacements.

  2. Quasi-static modeling of NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2005-05-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young"s modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young"s moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model"s results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  3. A quasi-static model for NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2007-02-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The simplified, linear, quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young's modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young's moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model's results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  4. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  5. Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Zhen-duo, Cui; Xian-jin, Yang; Jie, Shi

    2008-11-01

    TiO 2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO 2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.

  6. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2010-01-01

    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  7. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  8. Preparing TiNiNb shape memory alloy powders by hydriding-dehydriding process

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Cui, Lishan; Jiang, Xiaohua; Guo, Fangmin; Liu, Yinong; Hao, Shijie

    2016-07-01

    High-quality TiNiNb shape memory alloy (SMA) powders were prepared by hydrogenation of cold-worked TiNiNb SMA wire composed of amorphous and nancrystalline microstructure, by mechanical pulverization and vacuum dehydrogenation. It is revealed that abundant structural defects introduced by cold-work greatly promoted hydrogen diffusion, which significantly decreased hydriding temperature and shortened hydriding time. After hydrogenation, the hydrogenated sample composed of TiNiH and NbH with high brittleness can be easily ground into ultra-fine powers. The TiNiNb powers obtained by following vacuum dehydrogenation exhibit almost the same reversible phase transformation behavior as that of the original TiNiNb SMA before cold-work. Moreover, a TiNiNb part was obtained by hot-pressure sintering the hydrogenated powders, where sintering and dehydrogenation are carried out in one single step. The sintered TiNiNb part shows most the same reversible phase transformation behaviors as that of the original TiNiNb SMA and there is no visible additional brittle phase appearance.

  9. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  10. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.

    PubMed

    Chu, C L; Hu, T; Wu, S L; Dong, Y S; Yin, L H; Pu, Y P; Lin, P H; Chung, C Y; Yeung, K W K; Chu, Paul K

    2007-09-01

    Fenton's oxidation is traditionally used to remove inorganic and organic pollutants from water in waster water treatment. It is an advanced oxidation process in which H2O2 is catalytically decomposed by ferrous irons into hydroxyl radicals (*OH) which have a higher oxidation potential (2.8V) than H2O2. In the work reported here, we for the first time use Fenton's oxidation to modify the surface of biomedical NiTi shape memory alloy (SMA). The influences of Fenton's oxidation on the surface microstructure, blood compatibility, leaching of harmful Ni ions and corrosion resistance in simulated body fluids is assessed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, electrochemical tests, hemolysis analysis and the blood platelet adhesion test. The mechanical stability of the surface titania film produced by Fenton's oxidation as well as their effects on the shape memory behavior of the SMA are studied by bending tests. Our results show that Fenton's oxidation produces a novel nanostructured titania gel film with a graded structure on the NiTi substrate without an intermediate Ni-rich layer that is typical of high-temperature oxidation. Moreover, there is a clear Ni-free zone near the top surface of the titania film. The surface structural changes introduced by Fenton's oxidation improve the electrochemical corrosion resistance and mitigate Ni release. The latter effects are comparable to those observed after oxygen plasma immersion ion implantation reported previously and better than those of high-temperature oxidation. Aging in boiling water improves the crystallinity of the titania film and further reduces Ni leaching. Blood platelet adhesion is remarkably reduced after Fenton's oxidation, suggesting that the treated SMA has improved thrombo resistance. Enhancement of blood compatibility is believed to stem from the improved hemolysis resistance, the surface wettability and the

  11. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  12. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  13. Aging effects in a Cu-12Al-5Ni-2Mn-1Ti shape memory alloy

    SciTech Connect

    Wei, Z.G.; Peng, H.Y.; Yang, D.Z.; Zou, W.H.

    1997-04-01

    The isothermal aging effects in an as-quenched Cu-11.88Al-5.06Ni-1.65Mn-0.96Ti (wt pct) shape memory alloy at temperatures in the range 250 C to 400 C were investigated. The changes in the state of atomic order and microstructural evolutions were traced by means of in situ X-ray diffraction and electrical resistivity measurements, as well as transmission electron microscopy (TEM) and optical observations. The kinetics of the aging process, i.e., the temperature and time dependence of the properties including hardness, resistivity, martensitic transformation temperatures, and shape memory capacity were characterized, and at least three temperature-dependent aging stages were distinguished: (1) D0{sub 3} or L2{sub 1} atomic reordering, which causes the martensic transformation temperatures to shift upward and leads the M18R martensite to tend to be a N18R type structure; (2) formation of solute-depleted bainite which results in a drastic depression in martensitic transformation temperatures and loss of the shape memory capacity, accompanied by the atomic disordering in both the remaining parent phase and bainite; and (3) precipitation of the equilibrium {alpha} and {gamma}{sub 2} phases and destruction of the shape memory capacity.

  14. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    SciTech Connect

    Sethi, Brahmananda Sarma, S. Srinivasan, A. Santra, S. B.

    2014-04-24

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co{sub 45}Ni{sub 25}Ga{sub 30} alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 °C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of ±18 kOe equipped with a high temperature oven. We have determined the critical temperature T{sub C} (∼375.5 K) and the critical exponents viz; β=0.40, γ=1.68 and δ=5.2. Asymptotic critical exponents β, γ, and δ obey Widom scaling relation, γ+β=βδ, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region.

  15. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (˜5-15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  16. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (∼5–15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  17. Fatigue properties of NiTi shape-memory alloy thin plates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Saito, Makoto

    2013-04-01

    The mechanical and fatigue characteristics of superelastic NiTi thin plates in the large strain area were obtained by tensile and pulsating 4-point bending tests to establish the design guidelines for the ferromagnetic shape memory alloy (FSMA) composite actuator and its fatigue life. The stress-strain curves of NiTi thin plates were found to be strain rate dependent. The finite element analysis (FEA) result using the stress-strain curve measured by tensile test is in good agreement with the experimental results of the 4-point bending tests. The relationship between the maximum bending strain and the number of cycles to failure in pulsating 4-point bending fatigue tests was obtained as well as an analysis of the fatigue fracture surfaces of NiTi thin plates.

  18. Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys.

    SciTech Connect

    Cong, D. Y.; Wang, S.; Wang, Y. D.; Ren, Y.; Zuo, L.; Esling, C.; X-Ray Science Division; Northeastern Univ.; Univ. of Metz

    2008-01-01

    The effect of Co addition on crystal structure, martensitic transformation, Curie temperature and compressive properties of Ni{sub 53-x}Mn{sub 25}Ga{sub 22}Co{sub x} alloys with the Co content up to 14 at% was investigated. An abrupt decrease of martensitic transformation temperature was observed when the Co content exceeded 6 at.%, which can be attributed to the atomic disorder resulting from the Co addition. Substitution of Co for Ni proved efficient in increasing the Curie temperature. Compression experiments showed that the substitution of 4 at.% Co for Ni did not change the fracture strain, but lead to the increase in the compressive strength and the decrease in the yield stress. This study may offer experimental data for developing high performance ferromagnetic shape memory alloys.

  19. Adjusting the crystal structure of NiMnGa shape memory ferromagnets

    NASA Astrophysics Data System (ADS)

    Gaitzsch, U.; Roth, S.; Rellinghaus, B.; Schultz, L.

    2006-10-01

    The compound Ni2MnGa is known to exhibit large magnetic field induced strain (MFIS) due to magnetically switching the shape memory effect within a large composition range. Samples of Ni50Mn30Ga20 were prepared by induction melting of the elements under argon. Annealing at and below the ordering temperature ( 740C, B2'- L21-type) followed by water quenching was found to have an influence on the martensite structure, which was analyzed using XRD. For powder samples, the structure was found to be tetragonal or orthorhombic with some monoclinic distortion of the unit cell, indicating seven-layered (7M) type of martensite (Ni50Mn30Ga20). The structures could be selected by appropriate thermal treatment.

  20. Photofabrication of the third dimension of NiTi shape memory alloy microactuators

    NASA Astrophysics Data System (ADS)

    Allen, David M.; Leong, Tony; Lim, Siang H.; Kohl, Manfred

    1997-09-01

    This paper describes experimental results of using various microlithography techniques to fabricate a range of microactuator devices from NiTi shape memory alloys. The range of products includes: planar double-beams form rolled foils etched form both sides; tapered double-beams; planar double beams from sputter-deposited films etched rom one side; a tubular test piece. Such photofabrication in not easily achieved and problems discussed in this paper include: achieving acceptable edge profiles through the thickness of the materials while maintaining high etch factors; tapering foil microactuators by means of chemical micro milling; coating NiTi tubes with electrophoretic photoresist; imaging a curved surface with a small radius of curvature; control of etching parameters for a constant rate of etch; the influence of NiTi oxide coatings on etching and; technical comparisons with other potential manufacturing processes.

  1. Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-09-01

    In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.

  2. Wear Properties of Porous NiTi Orthopedic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Shuilin; Liu, Xiangmei; Yeung, K. W. K.; Xu, Z. S.; Chung, C. Y.; Chu, Paul K.

    2012-12-01

    Porous NiTi shape memory alloy (SMA) scaffolds have great potential to be used as orthopedic implants because of their porous structure and superior physical properties. Its metallic nature provides it with better mechanical properties and Young's modulus close to that of natural bones. Besides allowing tissue ingrowth and transfer of nutrients, porous SMA possesses unique pseudoelastic properties compatible to natural hard tissues like bones and tendons, thus expediting in vivo osseointegration. However, the nickel release from debris and the metal surface may cause osteocytic osteolysis at the interface between the artificial implants and bone tissues. Subsequent mobilization may finally lead to implant failure. In this study, the wear properties of porous NiTi with different porosities processed at different treatment temperatures are determined. The results of the study show that the porosity, phase transformation temperature, and annealing temperature are major factors influencing the wear characteristics of porous NiTi SMA.

  3. Magnetic ordering in magnetic shape memory alloy Ni-Mn-In-Co

    NASA Astrophysics Data System (ADS)

    Ollefs, K.; Schöppner, Ch.; Titov, I.; Meckenstock, R.; Wilhelm, F.; Rogalev, A.; Liu, J.; Gutfleisch, O.; Farle, M.; Wende, H.; Acet, M.

    2015-12-01

    Structural and magnetic properties across the martensite-austenite phase transitions in the shape memory alloy Ni-Mn-In-Co are studied using complementary experimental techniques: ferromagnetic resonance, macroscopic magnetization measurements, and x-ray magnetic circular dichroism in the temperature range from 5 to 450 K. Ferromagnetic resonance experiments show coexisting antiferromagnetic and ferromagnetic correlations for the martensite phase and ferromagnetic and paramagnetic correlations in the austenite phase. Magnetization measurements reveal spin-glass-like behavior for T <30 K and Ni and Co K -edge x-ray magnetic circular dichroism measurements confirm an assignment of a ferromagnetic resonance line purely to Ni (and Co) for a wide temperature range from 125 to 225 K. Hence a combined analysis of ferromagnetic resonance and x-ray magnetic circular dichroism allows us to attribute particular magnetic resonance signals to individual elemental species in the alloy.

  4. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  5. A comparison of methods for the training of NiTi two-way shape memory alloy

    NASA Astrophysics Data System (ADS)

    Luo, H. Y.; Abel, E. W.

    2007-12-01

    The creation of an effective two-way shape memory alloy (TWSMA) requires appropriate heat treatment and optimal training considerations. In particular, the training method used plays a key role. This work investigates different training methods for producing NiTi TWSMA wires with the hot shape of an arc and the cold shape of a straight line. These methods are shape memory cycling, constrained cycling of deformed martensite, pseudoelastic cycling and combined shape memory and pseudoelastic cycling. In order to give a meaningful evaluation of their performance that is relevant to training TWSMA for practical applications, these training methods are assessed in terms of maximum two-way strain, changes in the original hot shape together with the transformation temperatures after the training process, and the effective production of the cold shape. It was found that only the combined shape memory and pseudoelastic cycling provides an effective training method for creating NiTi TWSMA with a non-uniaxial two-way shape change. The undesirable side effects of training are that the NiTi TWSMA wire loses partial memory of the original hot shape and its transformation temperatures shift to lower values. There also exists an optimal number of training cycles, and possibly an optimal training load for obtaining the best cold shape memory and the greatest two-way recoverable strain. These findings give future directions to advance the training technology for TWSMA.

  6. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications.

    PubMed

    Guiza-Arguello, Viviana R; Monroe, James A; Karaman, Ibrahim; Hahn, Mariah S

    2016-07-01

    Recently, magnetic shape memory alloys (MSMAs) have emerged as an interesting extension to conventional shape memory alloys (SMAs) due to their capacity to undergo reversible deformation in response to an externally applied magnetic field. Meta-magnetic SMAs (M-MSMAs) are a class of MSMAs that are able to transform magnetic energy to mechanical work by harnessing a magnetic-field induced phase transformation, and thus have the capacity to impose up to 10 times greater stress than conventional MSMAs. As such, M-MSMAs may hold substantial promise in biomedical applications requiring extracorporeal device activation. In the present study, the cytotoxicity and ion release from an Ni50 Mn36 Sn14 atomic percent composition M-MSMA were evaluated using NIH/3T3 fibroblasts. Initial studies showed that the viability of cells exposed to NiMnSn ion leachants was 60 to 67% of tissue culture polystyrene (TCP) controls over 10 to 14 days of culture. This represents a significant improvement in cytocompatibility relative to NiMnGa alloys, one of the most extensively studied MSMA systems, which have been reported to induce 80% cell death in only 48 h. Furthermore, NiMnSn M-MSMA associated cell viability was increased to 80% of TCP controls following layer-by-layer alloy coating with poly(allylamine hydrochloride)/poly(acrylic acid) [PAH/PAA]. Ion release measures revealed that the PAH/PAA coatings decreased total Sn and Mn ion release by 50% and 25%, respectively, and optical microscopy evaluation indicated that the coatings reduced NiMnSn surface oxidation. To our knowledge, this study presents the first cytotoxicity evaluation of NiMnSn M-MSMAs and lays the groundwork for their further biological evaluation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 853-863, 2016. PMID:25953682

  7. Positron Annihilation Spectroscopy Study of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Merida, David; Garcia, Jose Angel; Apiñaniz, Estibaliz; Plazaola, Fernando; Sanchez-Alarcos, Vicente; Pérez-Landazábal, Jose Ignacio; Recarte, Vicente

    We have studied the role that vacancy type defects play in the martensitic transformation of Ni-Mn-Ga ferromagnetic shape memory alloys by means of positron lifetime spectroscopy. The measurements presented in this work have been performed in five ternary alloys. Three of them transform to modulated and two to non-modulated martensitic phases. With these five samples we cover a large range in composition. Positron experiments have been performed at room temperature after subsequent isochronal annealing at different temperatures and up to a maximum temperature of 600°C. Results show a large variation of the average positron lifetime value with the isochronal annealing temperature in non-modulated samples. However, the response in the modulated samples is quite different. The results are discussed in term of different type of positron trapping defects and their evolution with the annealing temperature. The present work shows a correlation between vacancy concentration and martensitic transformation temperature of ferromagnetic shape memory alloys.

  8. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life

    SciTech Connect

    Tobushi, Hisaaki; Nakahara, Takafumi; Shimeno, Yoshirou; Hashimoto, Takahiro

    2000-04-01

    The low-cycle fatigue of a TiNi shape memory alloy was investigated by the rotating-bending fatigue tests in air, in water and in silicone oil. (1) The influence of corrosion fatigue in water does not appear in the region of low-cycle fatigue. (2) The temperature rise measured through an infrared thermograph during the fatigue test in air is four times as large as that measured through a thermocouple. (3) The fatigue life at an elevated temperature in air coincides with the fatigue life at the same elevated temperature in water. (4) The shape memory processing temperature does not affect the fatigue life. (5) The fatigue equation is proposed to describe the fatigue life depending on strain amplitude, temperature and frequency. The fatigue life is estimated well by the proposed equation.

  9. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  10. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  11. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation. PMID:26706563

  12. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation.

  13. Shape Memory Effect in Cast Versus Deformation-Processed NiTiNb Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, Reginald F.; Lanba, Asheesh; Ozbulut, Osman E.; Tittmann, Bernhard R.

    2015-06-01

    The shape memory effect (SME) response of a deformation-processed NiTiNb shape memory alloy is benchmarked against the response of a cast alloy. The insoluble Nb element ternary addition is known to widen the hysteresis with respect to the binary NiTi alloy. Cast microstructures naturally consist of a cellular arrangement of characteristic eutectic microconstituents surrounding primary matrix regions. Deformation processing typically aligns the microconstituents such that the microstructure resembles discontinuous fiber-reinforced composites. Processed alloys are typically characterized for heat-to-recover applications and thus deformed at constant temperature and subsequently heated for SME recovery, and the critical stress levels are expected to facilitate plastic deformation of the microconstituents. The current work employs thermal cycling under constant bias stresses below those critical levels. This comparative study of cast versus deformation-processed NiTiNb alloys contrasts the strain-temperature responses in terms of forward Δ T F = M s - M f and reverse Δ T R = A f - A s temperature intervals, the thermal hysteresis, and the recovery ratio. The results underscore that the deformation-processed microstructure inherently promotes irreversibility and differential forward and reverse transformation pathways.

  14. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    NASA Astrophysics Data System (ADS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.

    2015-12-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.

  15. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGES

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  16. Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys

    SciTech Connect

    Stipcich, M.; Manosa, L.; Planes, A.; Morin, M.; Zarestky, Jerel L; Lograsso, Tom; Stassis, C.

    2004-01-01

    We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structural transitions.

  17. Development of NiMnGa-based ferromagnetic shape memory alloy by rapid solidification route

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Kumar, Arvind; Ghosh, M.; Mitra, A.

    The ferromagnetic shape memory alloy with nominal composition of Ni 52.5Mn 24.5Ga 23(at%) was developed by the melt-spinning technique. The as-spun ribbon showed dominant L2 1 austenitic (cubic) structure with splitting of primary peak in the X-ray diffractogram indicating existence of a martensitic feature. The quenched-in martensitic plates were revealed from Transmission electron microscopy (TEM). Increase of magnetisation at low-temperature rise indicates martensite to austenite transformation and its reverse with a drop in magnetisation during cooling cycle. The martensite to austenite transformation can be made spontaneous at higher magnetic field.

  18. Mobile Interfacial Microstructures in Single Crystals of Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Seiner, Hanuš

    2015-06-01

    This paper summarizes the main properties of the microstructures formed during reverse (austenite → martensite) transitions in single crystals of the Cu-Al-Ni shape memory alloy, and discusses the relation between these properties and the mechanical stabilization effect. It is shown that all experimentally observed interfacial microstructures ( X- and λ-interfaces and their non-classical equivalents) are not local minimizers of the quasi-static energy, and their formation is probably governed by requirements on mobility and dissipation. This conclusion is supported by finite elements models, and acoustic emission measurements.

  19. Precipitation Effects on the Martensitic Transformation in a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Lohan, Nicoleta-Monica; Pricop, Bogdan; Mihalache, Elena; Mocanu, Mihai; Bujoreanu, Leandru-Gheorghe

    2016-04-01

    This paper describes the effects of precipitation of α-phase on a Cu-Al-Ni shape memory alloy (SMA) with chemical composition bordering on β region. By differential scanning calorimetry, a series of reproducible heat flow fluctuations was determined on heating a hot-rolled martensitic Cu-Al-Ni SMA, which was associated with the precipitation of α-phase. Two heat treatments were given to the SMA so as to "freeze" its states before and after the thermal range for precipitation, respectively. The corresponding microstructures of the two heat-treated states were observed by optical and scanning electron microscopy and were compared with the initial martensitic state. Energy dispersive spectroscopy experiments were carried out to determine the chemical compositions of the different phases formed in heat-treated specimens. The initial as well as the heat-treated specimens with a lamellar shape were further comparatively investigated by dynamic mechanical analysis and two-way shape memory effect (TWSME) tests comprising heating-cooling cycles under a bending load. Temperature scans were applied to the three types of specimens (initial and heat-treated states), so as to bring out the effects of heat treatment. The storage modulus increased, corresponding to the reversion of thermoelastic martensite and disappeared with the formation of precipitates. These features are finally discussed in association with TWSME under bending.

  20. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  1. Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite

    NASA Astrophysics Data System (ADS)

    Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei

    2015-05-01

    A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.

  2. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  3. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  4. Magnetic-field-induced strain in Ni2MnGa shape-memory alloy (abstract)

    NASA Astrophysics Data System (ADS)

    Ullakko, K.; Huang, J. K.; Kanter, C.; Kokorin, V. V.; O'Handley, R. C.

    1997-04-01

    Rare-earth/transition-metal alloys can exhibit magnetostrictive strains of order 0.17% in modest fields. Larger strains are of interest for many actuator applications. Certain alloys that undergo martensitic transformations exhibit a shape-memory effect that can yield strains up to 20% upon heating the deformed martensitic phase and they can show superelasticity upon application of a small stress. These methods of activation can be a disadvantage for many applications; magnetic activation of a shape-memory effect is desired. Several magnetic shape-memory alloys exist, among them intermetallics based on Ni2MnGa, which are the subject of this work. These materials experience a 6.6% c-axis contraction on cooling through the martensitic transition temperature, which is near 273 K; this strain is accommodated by formation of an ensemble of strained twin crystals separated by twin boundaries. Strains of several percent could be produced magnetically if the twin boundaries could be moved under application of a magnetic field. We report observations of strains of nearly 0.2% induced along [001] in unstressed crystals of Ni2MnGa with magnetic fields of 8 kOe applied at 265 K (Fig. 1). (This strain is an order of magnitude larger than the magnetostrictive strain we measure in the parent Heusler phase at 283 K.) Our data suggest that these giant strains are associated with the superelastic motion of twin boundaries in the martensitic phase, which is stable below about 274 K; the strength of the measured anisotropy energy density, MSHa/2 is comparable to the elastic energy density, eσ/2, needed for superelastic twin boundary motion.1 The strains we observe are equivalent to those achieved in terfenol-D and represent only a small fraction of the strain available if the twin variants of the martensitic phase can be oriented prior to application of a field.

  5. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  6. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Liu, Yong; Zhao, Xinqing

    2012-09-01

    NiTi shape memory alloy was modified by Hf ion implantation to improve its wear resistance and surface integrity against deformation. The Auger electron spectroscopy and x-ray photoelectron spectroscopy results indicated that the oxide thickness of NiTi alloy was increased by the formation of TiO₂/HfO₂ nanofilm on the surface. The nano-hardness measured by nano-indentation was decreased even at the depth larger than the maximum reach of the implanted Hf ion. The lower coefficient of friction with much longer fretting time indicated the remarkable improvement of wear resistance of Hf implanted NiTi, especially for the sample with a moderate incident dose. The formation of TiO₂/HfO₂ nanofilm with larger thickness and decrease of the nano-hardness played important roles in the improvement of wear resistance. Moreover, Hf implanted NiTi exhibited larger pseudoelastic recovery strain and retained better surface integrity even after being strained to 10% as demonstrated by in situ scanning electron microscope observation.

  7. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films. PMID:24481534

  8. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Wu, Guosong; Yeung, Kelvin W K; Zheng, Dong; Chung, C Y; Xu, Z S; Chu, Paul K

    2013-09-01

    The abraded debris might cause osteocytic osteolysis on the interface between implants and bone tissues, thus inducing the subsequent mobilization of implants gradually and finally resulting in the failure of bone implants, which imposes restrictions on the applications of porous NiTi shape memory alloys (SMAs) scaffolds for bone tissue engineering. In this work, the effects of the annealing temperature, applied load, and porosity on the tribological behavior and wear resistance of three-dimensional porous NiTi SMA are investigated systematically. The porous structure and phase transformation during the exothermic process affect the tribological properties and wear mechanism significantly. In general, a larger porosity leads to better tribological resistance but sometimes, SMAs with small porosity possess better wear resistance than ones with higher porosity during the initial sliding stage. It can be ascribed to the better superelasticity of the former at the test temperature. The porous NiTi phase during the exothermic reaction also plays an important role in the wear resistance. Generally, porous NiTi has smaller friction coefficients under high loads due to stress-induced superelasticity. The wear mechanism is discussed based on plastic deformation and microcrack propagation.

  9. Lowering the power consumption of Ni-Ti shape memory alloy

    NASA Astrophysics Data System (ADS)

    Villanueva, Alex; Gupta, Shashaak; Priya, Shashank

    2012-04-01

    Shape memory alloy (SMA) wires are capable of providing contractile strain mimicking the functionality of muscle fibers. They are promising for the development of biomimetic robots due to their high power density and desired form factor. However, they suffer from significantly high power consumption. The focus of this paper was to address this drawback associated with SMAs. Two different parameters were investigated in this study: i) lowering of the martensite to austentite phase transition temperatures and ii) the reduction of the thermal hysteresis. For an equiatomic Ni-Ti alloy, replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For Ni- Ti alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 °C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, +/-1, +/-2, +/-3, +/-4, +/-5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The alloy composition and synthesis method presented in this preliminary work shows the possibility of achieving low power consuming, high performance SMAs.

  10. Mechanical behavior and phase stability of NiAl-based shape memory alloys

    SciTech Connect

    George, E.P.; Liu, C.T.; Horton, J.A.; Kunsmann, H.; King, T.; Kao, M.

    1993-12-31

    NiAl-based shape memory alloys (SMAs) can be made ductile by alloying with 100--300 wppm B and 14--20 at.% Fe. The addition of Fe has the undesirable effect that it lowers the temperature (A{sub p}) of the martensite {yields} austenite phase transformation. Fortunately, however, A can be raised by lowering the ``equivalent`` amount of Al in the alloy. In this way a high A{sub p} temperature of {approximately}190 C has been obtained without sacrificing ductility. Furthermore, a recoverable strain of 0.7% has been obtained in a Ni-Al-Fe alloy with A{sub p} temperature of {approximately}140 C. Iron additions do not suppress the aging-induced embrittlement that occurs in NiAl alloys at 300--500 C as a result of Ni{sub 5}Al{sub 3} precipitation. Manganese additions (up to 10 at.%) have the effect of lowering A{sub p}, degrading hot workability, and decreasing room-temperature ductility.

  11. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films.

  12. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material.

  13. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material. PMID:25746282

  14. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    DOE PAGES

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  15. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  16. Shape-Memory Transformations of NiTi: Minimum-Energy Pathways between Austenite, Martensites, and Kinetically Limited Intermediate States

    NASA Astrophysics Data System (ADS)

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-01

    NiTi is the most used shape-memory alloy; nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudged elastic band method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between a body-centered orthorhombic (bco) ground state and a newly identified stable austenite ("glassy" B 2 -like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R phase), and between martensite variants (bco orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B 2 . These high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  17. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  18. New system for manipulation of nanoobjects based on composite Ti2NiCu/Pt nanotweezers with shape memory effect

    NASA Astrophysics Data System (ADS)

    Zhikharev, A. M.; Irzhak, A. V.; Beresin, M. Y.; Lega, P. V.; Koledov, V. V.; Kasyanov, N. N.; Martynov, G. S.

    2016-08-01

    We report the new system for manipulation of nanoobjects based on composite Ti2NiCu/Pt nanotweezers with shape memory effect. The design consists of the bimetallic Ti2NiCu/Pt shape memory nanotweezers placed on a tip of electrochemically etched tungsten needle. The semiconductor diode placed on the tip of the needle plays both role of resistive element of the heater and temperature sensor for feedback control loop closing. The device is compatible with existing positioning systems like OmniProbe®, Kleindiek®, etc. and may find numerous practical applications in various tasks of nanotechnology connected with 3D manipulation.

  19. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  20. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  1. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-01

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  2. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    SciTech Connect

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-07

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  3. NiTiCu Shape Memory Alloy Characterization Through Microhardness Tests

    NASA Astrophysics Data System (ADS)

    Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2014-07-01

    NiTiCu alloys are one of the most investigated shape memory alloys (SMAs) because of their better performance as SMA actuators in a variety of industrial and engineering applications. However, NiTiCu alloys are strongly influenced by thermomechanical cycling (TMC), which causes degradation depending on the stress and strain level applied. Since heat treatment (HT) and TMC are essential for NiTiCu alloys, understanding how hardness evolves at different levels of TMC and different HT temperatures is a useful tool for characterizing the material. The aim of this paper is to investigate the relationship between hardness and different HT temperatures and different TMCs. All the microhardness tests were done below martensite finish temperature (Mf) because the apparent material hardness measured below Mf fairly reflects the relative strengthening of SMAs without involving martensitic transformation artifacts. Resistivity and break tensile tests were carried out as a first step in order to understand the effect of different HT temperatures. Microstructure was also examined to provide a basis for a mechanistic understanding of the effect of different HT temperatures. Next, the degradation of mechanical properties (functional fatigue) at different levels of TMC was evaluated to assess their relationship to the evolution of hardness. Finally, an attempt was made to establish a link between the increase in hardness and different HT temperatures with different levels of TMC.

  4. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  5. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-07-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  6. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGES

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  7. Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-04-01

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  8. Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio

    2014-04-01

    In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.

  9. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-06-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  10. Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy

    SciTech Connect

    Veis, M. Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O.

    2014-05-07

    Magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323 K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4 eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significant spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.

  11. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens.

  12. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Merida, D.; García, J. A.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.

    2014-06-01

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.

  13. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    SciTech Connect

    Merida, D.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.

    2014-06-09

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.

  14. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens. PMID:26172646

  15. Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets

    SciTech Connect

    Sanjabi, S.; Cao, Y.Z.; Sadrnezhaad, S.K.; Barber, Z.H.

    2005-09-15

    The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni{sub 100-x}Ti{sub x} thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and uniformity), in situ x-ray diffraction (to identify the phase structures), and differential scanning calorimetry (to indicate the transformation and crystallization temperatures). To explore the possibility of depositing ternary shape memory NiTi-based thin films with a high temperature transformation >100 deg. C, a Hf target was added to the NiTi deposition system. Annealing was carried out in a high vacuum furnace slightly above the films' crystallization temperatures (500 and 550 deg. C for NiTi and NiTiHf films, respectively). Differential scanning calorimetry (DSC) results of free-standing films illustrated the dependence of transformation temperatures on film composition: Ap and Mp (referring to the austenitic and martensitic peaks in the DSC curve) were above room temperature in near equiatomic NiTi and Ti-rich films, but below it in Ni-rich films. In NiTiHf films, the transformation temperatures were a function of Hf content, reaching as high as 414 deg. C (Ap) at a Hf content of 24.4 at. %. Atomic force microscopy revealed nanostructure surface morphology of both NiTi and NiTiHf films. Detailed characterization showed that the film properties were comparable with those of NiTi and NiTiHf bulk alloys.

  16. Effect of CO2 laser welding on the shape-memory and corrosion characteristics of TiNi alloys

    NASA Astrophysics Data System (ADS)

    Hsu, Y. T.; Wang, Y. R.; Wu, S. K.; Chen, C.

    2001-03-01

    A CO2 laser has been employed to join binary Ti50Ni50 and Ti49.5Ni50.5 shape-memory alloys (SMAs), with an emphasis on the shape-memory and corrosion characteristics. Experimental results showed that a slightly lowered martensite start ( M S) temperature and no deterioration in shape-memory character of both alloys were found after laser welding. The welded Ti50Ni50, with an increased amount of B2 phase in the weld metal (WM), had higher strength and considerably lower elongation than the base metal (BM). Potentiodynamic tests revealed the satisfactory performance of laser-welded Ti50Ni50 in 1.5 M H2SO4 and 1.5 M HNO3 solutions. However, the WM exhibited a significantly higher corrosion rate and a less stable passivity than the BM in artificial saliva. On the other hand, the pseudoelastic behavior of the laser weld was investigated only for the Ti49.5Ni50.5 alloy, to facilitate tension cycling at room temperature. The cyclic deformation of Ti49.5Ni50.5 indicated that the stress required to form stress-induced martensite ( σ m) and the permanent residual strain ( ɛ p) were higher after welding at a given number of cycles ( N), which were certainly related to the more inhomogeneous nature of the WM.

  17. Comparative internal friction and modulus evolutions in Ni-Ti and Ni-Ti-Cu shape memory alloys

    NASA Astrophysics Data System (ADS)

    Goubaa, K.; Masse, M.; Bouquet, G.

    1992-08-01

    Internal friction and modulus measurements are performed for the purpose of a comparative study between the structural evolutions occurring, under the effect of the temperature, in two kinds of shape memory alloys: Ni-Ti and Ni-Ti-Cu. Modulus evolutions giving information about the changes in the relative percentages of martensitic and B2 high temperature phases, are useful for the determination of “start” and “finish” transformation temperatures. Internal friction measurements, specially sensitive to structural changes occurring on atomic scale, allow the detection of atomic reorganizations preceding or following the transformation: the R-phase occurrence, on cooling or on heating, the reorientation of martensitic variants on heating. The comparison between the internal friction background levels of each alloy reveals the effect of structural instabilities, specific of Ni-Ti-Cu alloys, and which can be associated with the Cu content. Des mesures de frottement intérieur et de module ont été utilisées en vue de comparer les évolutions structurales intervenant, en fonction de la température, dans deux familles d'alliages à mémoire de forme: Ni-Ti et Ni-Ti-Cu. Les variations de module, sensibles aux proportions relatives des phases martensitique et B2 de haute température, s'avèrent très adaptées à la détermination précise des températures de début et de fin de transformation. Le frottement intérieur, quant à lui, donne des renseignements sur des réorganisations se produisant, à l'échelle atomique, avant ou après la transformation martensitique: apparition de la phase-R, réorientation de variantes de martensite, par exemple,. La comparaison des niveaux du fond de frottement intérieur, relatifs à chaque alliage, montre des différences qui peuvent être associées à des instabilités structurales spécifiques de la présence de cuivre dans les allianges Ni-Ti-Cu.

  18. Gradation of Nanostructures in Cold-Rolled and Annealed Ti-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S.; Brailovski, V.; Dubinskiy, S.; Inaekyan, K.; Kreitcberg, A.

    2016-03-01

    Nanostructures formed in Ti-50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3-1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5-1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2-1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti-Ni alloys and of their effect on the transformation and mechanical behaviors.

  19. Fiber laser drilling of Ni46Mn27Ga27 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-11-01

    The interest in ferromagnetic shape memory alloys (SMAs), such as NiMnGa, is increasing, thanks to the functional properties of these smart and functional materials. One of the most evident properties of these systems is their brittleness, which makes attractive the study of unconventional manufacturing processes, such as laser machining. In this work the interaction of laser beam, once focalized on the surface of Ni46Mn27Ga27 [at%] alloy, has been studied. The experiments were performed with a single laser pulse, using a 1 kW continuous wave fiber laser. The morphology of the laser machined surfaces was evaluated using scanning electron microscopy, coupled with energetic dispersion spectroscopy for the measurement of the chemical composition. The results showed that the high quality of the laser beam, coupled with great irradiances available, allow for blind or through holes to be machined on 1.8 mm plates with a single pulse in the order of a few ms. Holes were produced with size in the range of 200-300 μm; despite the long pulse duration, low amount of melted material is produced around the hole periphery. No significant variation of the chemical composition has been detected on the entrance surfaces while the exit ones have been characterized by the loss of Ga content, due to its melting point being significantly lower with respect to the other alloying elements.

  20. Thermal Stabilization of NiTiCuV Shape Memory Alloys: Observations During Elastocaloric Training

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Schütze, Andreas; Eggeler, Gunther; Seelecke, Stefan

    2015-06-01

    The paper presents novel findings observed during the training process of superelastic, elastocalorically optimized Ni-Ti-based shape memory alloys (SMA). NiTiCuV alloys exhibit large latent heats and a small mechanical hysteresis, which may potentially lead to the development of efficient solid-state-based cooling processes. The paper starts with a brief introduction to the underlying principles of elastocaloric cooling, illustrating the effect by means of a typical thermodynamic cycle. It proceeds with the description of a custom-built testing platform that allows observation of temperature profiles and heat transfer between SMA and heat source/sink during high-loading-rate tensile tests. Similar to other SMA applications, a training process is necessary in order to guarantee stable performance. This well-known mechanical stabilization affects the stress-strain hysteresis and the cycle-dependent evolution of differential scanning calorimetry results. In addition, it can be shown here that the training is also accompanied by a cycle-dependent evolution of temperature profiles on the surface of an SMA ribbon. The applied training leads to local temperature peaks with intensity, number, and distribution of the temperature fronts showing a cycle dependency. The homogeneity of the elastocaloric effect has a significant influence on the efficiency of elastocaloric cooling process and is a key aspect of the specific material characterization.

  1. Influence of compressive load conditions and thickness on the two-way shape memory behavior in tube-shaped NiTi alloy

    NASA Astrophysics Data System (ADS)

    Yoo, Young Ik; Shin, Dong Kil; Lee, Chang Ho; Lee, Jung Ju

    2012-10-01

    The two-way shape memory behavior of Ni55Ti45 was investigated to develop a tube-shaped NiTi actuator which could generate a large amount of force. The two-way shape memory effect (TWSME) was induced by thermal cycling under various amounts of constant compressive stress. Six specimens with the same outer diameter and different thickness were used to apply the TWSME to an actuator. A fast saturation tendency of the recovery strain was shown through training at each level of constant stress, after which the two-way shape memory strain was quantitatively measured during thermal cycling for each level of applied stress. From the results, the maximum two-way strain value was obtained after training at a constant level of stress and then decreased thereafter. In addition, the two-way strain was found to depend on the thickness of the tube-shaped specimen. All specimens could be divided into two groups depending on the rate of increase in the two-way strain. After two-way strain was obtained, the two-way recovery stress was measured to verify the performance of the sample as an actuator. The results showed that the two-way recovery stress behavior was similar to the two-way strain; if the optimal thickness of the specimen and the stress applied for training are used for the development of the TWSME, tube-shaped NiTi using the TWSME can replace one-way shape memory alloys.

  2. Magnetic properties of single crystals of Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Farrell, Shannon P.; Dunlap, Richard A.; Cheng, Leon M.; Ham-Su, Rosaura; Gharghouri, Michael A.; Hyatt, Calvin V.

    2004-07-01

    The magnetic shape memory (MSM) effect occurs in some ferromagnetic martensitic alloys at temperatures below the martensite finish temperature and involves the re-orientation of martensite variants by twin boundary motion, in response to an applied stress and/or magnetic field. The driving force for twin boundary motion is the magnetic anisotropy. In this study, magnetization measurements as a function of magnetic field were made on several oriented single crystals of Ni-Mn-Ga alloys using a vibrating sample magnetometer. The magnetization versus magnetic field curves were characteristic of magnetically soft materials with magnetic anisotropy consistent with literature estimates for the different martensite structures observed in Ni-Mn-Ga alloys. Differences in the slope of the curves were due to the martensite structure, the relative proportion of martensite variants present, and their respective easy and hard axis orientations. Thermo-magneto-mechanical training was applied in an attempt to transform multi-variant specimens to single variant martensite. Training of the orthorhombic 7M martensites was sufficient to produce a near single variant of martensite, while the tetragonal 5M martensite responded well to training and produced a single-variant state. The strength of the uniaxial magnetic anisotropy constant for single-variant tetragonal 5M martensite, Ni52.9Mn27.3Ga19.8, was calculated to be Ku=1.8 x 105 J/m3, consistent with literature values. To obtain single-variant martensites, heat-treatment of the specimens prior to thermo-magneto-mechanical training is necessary.

  3. Effects of microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape memory alloys.

    PubMed

    Kim, Jeoung Han; Park, Chan Hee; Kim, Seong Woong; Hong, Jae Keun; Oh, Chang-Seok; Jeon, Yeong Min; Kim, Kyong Min; Yeom, Jong Taek

    2014-12-01

    Ingots of Ni-Ti-Hf shape memory alloys were prepared by vacuum arc re-melting. Isothermal hot compression tests were conducted at temperatures ranging from 700 to 1000 degrees C and at strain rates from 10(-2) s(-1) to 1.0 s(-1). A decrease in the Ni content below 50.2 at.% significantly deteriorated the hot workability due to the formation of a brittle second phase. Also, the low Ni content alloy showed poor workability when the temperature exceeded 900 degrees C. Additional compression tests were conducted under various conditions to clarify the effects of the chemical composition, solidification anisotropy, and the strain rate.

  4. Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa Najah; Abu Bakar, Tuty Asma; Hamzah, Esah; Ibrahim, Mustafa Khaleel; Bahador, Abollah

    2015-08-01

    In the current study, a new type of Cu-based shape memory alloys with the function of shape memory effect was successfully produced with the introduction of high-purity Co precipitates between the phases of Cu-Al-Ni shape memory alloy. The microstructure, transformation characteristics, and mechanical properties were systematically investigated by means of differential scanning calorimetry, field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The typical microstructures show that a new phase was formed, known as the γ 2 phase, and the volume friction and the size of this phase were gradually increased with the increasing Co content. According to the results of the XRD and EDS, it was confirmed that the γ 2 phase represents a compound of Al75Co22Ni3. However, the presence of γ 2 phase in the modified alloys was found to result in an increase of the transformation temperatures in comparison with the unmodified alloy. Nevertheless, it was found that with 1 wt pct of Co addition, a maximum ductility of 7 pct was achieved, corresponding to an increase in the strain recovery by the shape memory effect to 95 pct with respect to the unmodified alloy of 50 pct.

  5. The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys

    SciTech Connect

    Aydogdu, A.; Aydogdu, Y.; Adiguzel, O.

    1997-05-01

    The martensitic transformation and the associated mechanical shape reversibility in copper-based shape memory alloys is strongly influenced by quenching and ageing treatments. Ageing of martensite in as-quenched Cu-Al-Ni alloys can result in loss of memory behavior. Structural studies have been carried out to measure the changes in the degree of order that develop during martensitic ageing of two Cu-Al-Ni alloys. Stabilization is directly related to disordering in martensitic state and the spacing differences ({Delta}d) between selected pairs of diffraction planes reflect the degree of ordering in martensite. The changes in degree of order are shown to be similar in as-quenched and post-quenched {beta}-phase annealed alloys, thereby leading to the conclusion that loss of memory in as-quenched alloys is not solely attributable to any extra changes in degree of order brought about by excess vacancies during martensitic ageing.

  6. Effect of Cold Rolling on Phase Transformation Temperatures of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pattabi, Manjunatha; Murari, M. S.

    2015-02-01

    The effect of cold rolling and heat treatment on the phase transformation behavior of NiTi shape memory alloy (SMA) heat treated at 660 °C has been investigated. Four sets of samples were cold rolled after heat treatment. The austenite-to-martensite and martensite-to-austenite transformation temperatures for samples without any cold rolling are determined through differential scanning calorimetry (DSC). The austenitic start temperature gets shifted to the higher temperature side with increase in the percentage of the cold rolling up to 12.5%. Austenitic finish temperature could not be detected in cold-rolled samples. Martensitic start temperature increases slightly with increased cold rolling while martensitc finish temperature slightly decreases. Beyond 12.5% cold work, the shape memory effect (SME) is completely lost. The evolution of austenitic phase in SMA subjected to cold rolling was studied through powder x-ray diffraction (XRD) at different temperatures in the range 25 to 160 °C at intervals of 10 °C, during heating and cooling. The XRD results agree with those of DSC. Two sets of cold-rolled samples were again heat treated to 300 and 500 °C and the transformation behavior was studied using DSC. Heat treatment at 300 °C brings back the SME, but with the presence of an intermediate R-Phase due to the additional dislocations present. Even with a heat treatment at 500 °C, the effect of cold work is not completely removed and a single-step transformation is not observed. Another set of samples subjected to cold work were heat treated at 660 °C and the transformation is studied. The effect of cold work even up to 25% is completely removed with this heat treatment as indicated by DSC. The complete regaining of the SME is further confirmed by electrical resistivity measurements also.

  7. Design and thermo-mechanical analysis of a new NiTi shape memory alloy fixing clip.

    PubMed

    Nespoli, Adelaide; Dallolio, Villiam; Stortiero, Francesco; Besseghini, Stefano; Passaretti, Francesca; Villa, Elena

    2014-04-01

    In this work, a new NiTi shape memory alloy (SMA) bone fixator is proposed. Thanks to the shape memory effect, this device does not need any external tool for the fixation, as the anchorage is obtained only by the self-accommodation of the clip during the parent transformation. Calorimetry and thermo-mechanical tests were used to evaluate the phase transformation temperatures and to estimate the forces generated both during the fixing surgical procedure and after the surgical operation. An application on animal anatomical sample was also performed; an appropriate mechanical tightness as well as a good handiness has been found.

  8. Effect of composition on the magnetic and elastic properties shape-memory Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Malla, Aayush; Dapino, Marcelo J.; Lograsso, Thomas A.; Schlagel, Deborah

    2003-08-01

    The growing interest in ferromagnetic shape-memory Ni-Mn-Ga for implementation in actuator applications originates from the fact that this class of materials exhibits large strains when driven by a magnetic field. Large bidirectional strains up to a theoretical 6% are produced in these materials by twin boundary motion as martensite variants rotate to align respectively parallel or perpendicular to applied magnetic fields or stresses. These strains represent a significant improvement over piezoelectric and magnetostrictive materials. In this paper, we report on experimental measurements conducted on Ni-Mn-Ga cylindrical rods subjected to uniaxial stresses and uniaxial magnetic fields which were applied collinearly along the magnetic easy axis direction of the rods. To this end, a test apparatus was developed which consists of a water-cooled solenoid actuator and a loading fixture. Despite the lack of a readily recognizable mechanism for reversible deformations, bidirectional strains as large as 4300 ppm (0.43%) were observed, or three times the saturation magnetostriction of Terfenol-D. This paper presents room-temperature data including magnetization hysteresis, strain versus field and peak strain versus stress curves collected over a range of stresses between 0-65 MPa. From the latter set of curves, blocking force values are estimated as those for which the strain is 1% of the maximum (zero-load) strain. The results illustrate the sensitivity of material behavior with respect to composition at different driving conditions and offer insight on the choice of material compositions at which maximum actuation performance is achieved.

  9. Prediction of precipitate evolution and martensite transformation in Ti-Ni-Cu shape memory alloys by computational thermodynamics

    NASA Astrophysics Data System (ADS)

    Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.

    2016-04-01

    Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.

  10. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  11. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2015-09-01

    The compressive response of martensitic NiTi shape memory alloys (SMAs) under high strain rate (1200 s-1) was investigated on a modified Kolsky (Split Hopkinson) compression bar. The single-loading momentum trapping system ensures precise deformation control (1.4, 1.8, 3.0, 4.8, and 9.6 % strain) and single loading during dynamic compression. With increasing strain, the phase transformation peaks shift toward lower temperatures, while the intensities of these peaks decrease and eventually disappear completely at strains above 7 %, where the onset of plastic deformation of reoriented martensite occurs. All transformation peaks are recoverable after deformation simply by annealing at 873 K (600 °C) for 30 min, except those peaks corresponding to strains above 7 % (e.g., 9.6 %) which return upon annealing, but at a lower temperature. XRD results showed the variation of the strongest diffraction peak from (1bar{1}1) to (111) crystal plane before and after high strain rate compression.

  12. Temperature dependence of the giant magnetostrain in a NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Jiang, Chengbao; Wang, Jingmin; Xu, Huibin

    2005-06-01

    The temperature dependence of the magnetostrain was investigated in the Ni50Mn27.5Ga22.5 magnetic shape memory alloy with a five-layer martensitic (5M) structure in the temperature range from 110Kto300K. A temperature threshold at 166K was found for the magnetostrain. A giant magnetostrain of 6.3% was achieved above the temperature, while no magnetostrain was monitored below the temperature. No intermartensitic transformation was detected around the temperature threshold. The lattice parameter a slightly increases, c largely decreases, and the tetragonality (a/c-1) drastically increases with decreasing the temperature. The increase of the tetragonality is thought to be related to the temperature threshold of the magnetostrain by inducing a change of the electronic structure, twin structure, or the type of the variant with the same 5M martensitic structure below the temperature threshold. The interpretation is reasonably understood by the fact that only few samples with the same 5M martensitic structure exhibit a giant magnetostrain.

  13. Structural and dynamical fluctuations in off-stoichiometric NiMnGa shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Barabash, O. M.; Karapetrova, E. A.; Manley, M. E.

    2014-06-01

    Measurements and modeling of the 3D diffuse scattering from off-stoichiometric NiMnGa shape memory alloys reveal evidence of structural and dynamical precursors to the phase transition. A model of the diffuse scattering in the high temperature cubic L21 phase indicates that at temperatures tens of degrees higher than transition temperature, Tc, the lattice exhibits tetragonally distorted local regions that are clear precursors to the phase transition. The model also accounts for lattice deformation caused by precursor nanoregions of the martensite phase and thermal scattering from phonons and agrees well with the observed diffuse scattering maps in reciprocal space. A distinctive feature of the diffuse scattering is that it is highly anisotropic: Around (H0H) reflections, the diffuse scattering is strongly compressed along the [H0H] and enhanced along the [-H0H] direction. Additionally, localized intensity maxima associated with phasons are observed at temperatures 30-50 K above Tc. They clearly demonstrate that each phason corresponds to an individual point in reciprocal space, which is consistent with dynamical phase fluctuations of a well-formed charge density wave resulting from Peierls instability.

  14. Atomic and magnetic order in the shape memory alloy Mn2NiGa.

    PubMed

    Brown, P J; Kanomata, T; Neumann, K; Neumann, K U; Ouladdiaf, B; Sheikh, A; Ziebeck, K R A

    2010-12-22

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory alloy Mn(2)NiGa have confirmed that it is ferromagnetic with a Curie temperature above 500 K. The compound undergoes a broad structural phase transformation ΔT ∼ 90 K with a mean transition temperature T(M) ∼ 270 K. The high temperature parent phase is cubic (a = 5.937 Å) and has a modified L 2(1) structure. At 500 K the ordered magnetic moment essentially all on the 4a site is 1.35 μ(B)/Mn. The low temperature martensite has space group I4/mmm and is related to the cubic phase through a Bain transformation a(tet) = (a(cub) + b(cub))/2, b(tet) = (a(cub) - b(cub)) and c(tet) = c(cub) in which the change in cell volume is < 2.6%. In this structure at 5 K the ordered moment of ≈2.3 μ(B) is again found to be confined to the sites with full Mn occupation and is aligned parallel to c. Neutron diffraction patterns obtained at 5 K suggested the presence of a weak incommensurate antiferromagnetic phase characterized by either a ((1/3)0(1/3)) or (00(1/3)) propagation vector.

  15. Composition-structure-function diagrams of Ti-Ni-Au thin film shape memory alloys.

    PubMed

    Buenconsejo, Pio John S; Ludwig, Alfred

    2014-12-01

    Ti-Ni-Au thin film materials libraries were prepared from multilayer precursors by combinatorial sputtering. The materials libraries were annealed at 500, 600, and 700 °C for 1 h and then characterized by high-throughput methods to investigate the relations between composition, structure and functional properties. The identified relations were visualized in functional phase diagrams. The goal is to identify composition regions that are suitable as high temperature shape memory alloys. Phase transforming compositions were identified by electrical resistance measured during thermal cycles in the range of -20 and 250 °C. Three phase transformation paths were confirmed: (1) B2-R, (2) B2-R-B19', and (3) B2-B19. For the materials library annealed at 500 °C only the B2-R transformation was observed. For the materials libraries annealed at 600 and 700 °C, all transformation paths were observed. High transformation temperatures (M(s) ≈ 100 °C) were only obtained by annealing at 600 or 700 °C, and with compositions of Ti ≈ 50 at. % and Au > 20 at. %. This is the composition range that undergoes B2-B19 transformation. The phase transformation behaviors were explained according to the compositional and annealing temperature dependence of phase/structure formation, as revealed by X-ray diffraction analysis of the materials libraries.

  16. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  17. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  18. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    SciTech Connect

    Çakir, Asli; Aktürk, Selçuk; Righi, Lara

    2013-11-14

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.

  19. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  20. Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Yang, Mao; Oliveira, João Pedro; Song, Di; Peng, Bei

    2016-08-01

    Welding and joining of NiTi shape memory alloys is essential for their integration into an increasing variety of applications. Almost all manufacturers and a significant number of researchers focus their investigation on welding NiTi, which can present both pseudoelasticity (PE) and shape memory effect. Integration of these materials would provide increased flexibility in terms of smart design, in particular for multi-functional systems. The current work investigates the mechanical, physical and phase transformation properties of similar (base materials (BMs) with the same composition) and dissimilar (BMs with different compositions) NiTi welded shape memory wires. The similar and dissimilar welded joints were successfully achieved by laser welding, which can reach up to 88.4% and 67.5% of the wire BM ductility. The joint break force of the similar and dissimilar joints were of 77.2% and 71.4% of the wire BM, respectively. Moreover, laser welding was found to effectively preserve the PE on the similar welded structures. The residual plastic strain variation of the dissimilar welded specimens at different temperatures during the cycling test may be helpful for design of multi-functional or flexible monolithic structures.

  1. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-04-01

    NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  2. The martensitic transformation and magnetic properties in Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Xuan, H. C.; Zhang, Y. Q.; Li, H.; Han, P. D.; Wang, D. H.; Du, Y. W.

    2015-05-01

    The martensitic transformation (MT) and magnetic properties have been investigated in a series of Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys. The substitution of Fe for Ni reduces the MT temperature of Ni-Fe-Mn-Al alloys effectively, and the magnetization of the austenite was significantly enhanced in these high-doped alloys. The Fe introduction converts antiferromagnetic austenite to ferrimagnetic state, and therefore, the unique MT occurs between ferrimagnetic and antiferromagnetic state in these alloys. The MT temperatures decreased by about 15 K under the magnetic field of 30 kOe for x = 8 alloy. The positive value of magnetic entropy change was determined to 3.35 J/kg K around the MT in the field change of 30 kOe for x = 6 alloy. These results suggest that Ni50- x Fe x Mn32Al18 alloys would be the promising candidates for magnetic multifunctional materials.

  3. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy.

    PubMed

    Xu, J L; Zhong, Z C; Yu, D Z; Liu, F; Luo, J M

    2012-12-01

    In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P < 0.05).

  4. Shape-memory NiTi foams produced by replication of NaCl space-holders.

    PubMed

    Bansiddhi, A; Dunand, D C

    2008-11-01

    NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.

  5. Role of carbon in improving the shape memory effect of Fe-Mn-Si-Cr-Ni alloys by thermo-mechanical treatments

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Song, Fan; Wang, Shanling; Zhang, Chengyan; Wen, Yuhua

    2015-05-01

    To clarify the role of carbon in improving the shape memory effect of Fe-Mn-Si-based shape memory alloys by thermomechanical treatments, we investigated the effect of optimum thermomechanical treatments on shape memory effect and microstructures of Fe-14Mn-5Si-8Cr-4Ni and Fe-14Mn-5Si-8Cr-4Ni-0.12C alloys. The Cr23C6 particles in optimum thermomechanical-treated Fe-14Mn-5S-8Cr-4Ni-0.12C more effectively prevented collisions between stress-induced ɛ martensite bands than the residual α‧ martensite in optimum thermomechanical-treated Fe-14Mn-5Si-8Cr-4Ni. This result is attributed to the thinner width of stress-induced ɛ martensite bands in optimum thermomechanical-treated Fe-14Mn-5S-8Cr-4Ni-0.12C compared to optimum thermomechanical-treated Fe-14Mn-5Si-8Cr-4Ni. In addition, the Cr23C6 particles formed at more sites and provided more obstacles as compared with the residual α‧ martensite. Accordingly, the recovery strain of Fe-14Mn-5Si-8Cr-4Ni-0.12C was higher than that of Fe-14Mn-5Si-8Cr-4Ni. It is concluded that carbon addition is beneficial to further improving the shape memory effect of Fe-Mn-Si-based shape memory alloys by thermomechanical treatments.

  6. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  7. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Vojtěch, D.; Voděrová, M.; Fojt, J.; Novák, P.; Kubásek, T.

    2010-12-01

    NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO 2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.

  8. Shape memory effect associated with a deformation at a temperature just below A[sub S] in a Fe-Mn-Cr-Si-Ni shape memory alloy

    SciTech Connect

    Federzoni, L.; Guenin, G. )

    1994-07-01

    The shape memory effect of Fe-Mn based shape memory alloys is due to the formation of stress-induced [var epsilon]-martensite by deformation and to its reversion by heating over A[sub f], which permit it to recover a part of the original shape. The shape memory effect is directly associated with the [gamma][yields][var epsilon] transformation. For this reason, the authors have established the best conditions to induce the [var epsilon]-martensite inside an austenitic matrix: the deformation must take place at a temperature close to the M[sub s]. It has been established that a deformation made at a higher temperature degrades the shape memory effect. The purpose of this paper is to evaluate the shape memory effect in the case of a deformation applied at a relatively high temperature (just below A[sub s]) on samples containing a high volume fraction of [var epsilon]-martensite before the deformation. It is shown that an other mechanism of shape memory effect occurs in these conditions and allows to reach an interesting shape memory effect ([approximately]2%).

  9. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect

    Sahli, M. L.; Necib, B.

    2011-05-04

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  10. Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys

    NASA Astrophysics Data System (ADS)

    Dağdelen, Fethi; Malkoç, Türkan; Kök, Mediha; Ercan, Ercan

    2016-06-01

    In this study, two-phase Co-Ni-Al shape memory alloys that have drawn attention recently due to their technological applications were investigated. Co-Ni-Al and Co-Ni-Al-Cr alloys were produced by melting method in an arc-melter furnace and physical properties between alloys were compared. At the end of experimental measurements it was observed that chromium addition did not change the crystal structure of the Co-Ni-Al alloy, but decreased the martensitic transformation temperature, the most significant property of shape memory alloys. Moreover, there was no significant change in the microstructure of the Co-Ni-Al alloy with chromium addition, and the presence of the two phases determined by X-ray analysis was also determined by optical microscopy. There was no significant change in micro hardness values of the alloys, while important changes in the magnetic properties were determined. It was observed that the Curie temperature decreased by approximately 500 {}^{circ}C with chromium addition and a considerable decrease in the magnetic saturation value was also determined.

  11. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    DOE PAGES

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  12. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    SciTech Connect

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  13. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy

    SciTech Connect

    Cai, Mingdong; Langford, Stephen C.; Wu, Maggie J.; Huang, W. M.; Xiong, Gang; Droubay, Timothy C.; Joly, Alan G.; Beck, Kenneth; Hess, Wayne P.; Dickinson, J. T.

    2007-01-01

    The thermally-induced martensitic phase transformation in a polycrystalline NiTiCu thin film shape memory alloy was probed by photoelectron emission microscopy (PEEM). In situ PEEM images reveal distinct changes in microstructure and photoemission intensity at the phase transition temperatures. In particular, images of the low temperature, martensite phase are brighter than that of the high temperature, austenite phase, due to the relatively lower work function of the martensite. Ultra-violet photoelectron spectroscopy shows that the effective work function changes by about 0.16 eV during thermal cycling. In situ PEEM images also show that the network of trenches observed on the room temperature film disappear suddenly during heating and reappear suddenly during subsequent cooling. These trenches are also characterized by atomic force microscopy at selected temperatures. We describe implications of these observations with respect to the spatial distribution of phases during thermal cycling in this thin film shape memory alloy.

  14. Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing.

    PubMed

    Cong, D Y; Saha, G; Barnett, M R

    2014-12-01

    This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

  15. Effect of platinum substitution on the structural and magnetic properties of Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.

    2016-04-01

    Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .

  16. Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys

    SciTech Connect

    Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora; Richardson, James W; Sharma, Kapil

    2009-01-01

    The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.

  17. Energy harvesting using martensite variant reorientation mechanism in a NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Karaman, I.; Basaran, B.; Karaca, H. E.; Karsilayan, A. I.; Chumlyakov, Y. I.

    2007-04-01

    Magnetic shape memory alloys demonstrate significant potential for harvesting waste mechanical energy utilizing the Villari effect. In this study, a few milliwatts of power output are achieved taking advantage of martensite variant reorientation mechanism in Ni51.1Mn24Ga24.9 single crystals under slowly fluctuating loads (10Hz) without optimization in the power conversion unit. Effects of applied strain range, bias magnetic field, and loading frequency on the voltage output are revealed. Anticipated power outputs under moderate frequencies are predicted showing that the power outputs higher than 1W are feasible.

  18. Magnetic transitions and structure of a NiMnGa ferromagnetic shape memory alloy prepared by melt spinning technique

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Ghosh, M.; Kumar, Arvind; Mitra, A.

    A ferromagnetic shape memory alloy with nomial composition Ni 52.5Mn 24.5Ga 23 (at%) was developed by a melt spinning technique. The as-spun ribbon showed dominant L2 1 austenitic (cubic) structure with a splitting of the primary peak in the X-ray diffractogram indicating the existence of a martensitic feature. The quenched-in martensitic plates were revealed in transmission electron microscopy. An increase of magnetization at low temperature indicated a martensite to austenite transformation and its reverse with a drop in magnetization during the cooling cycle. Higher magnetic fields propel martensite-austenite transformation spontaneously.

  19. The effect of doped elements on the martensitic transformation in Ni Mn Ga magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Guo, Shihai; Zhang, Yanghuan; Quan, Baiyun; Li, Jianliang; Qi, Yan; Wang, Xinlin

    2005-10-01

    Ni-Mn-Ga alloy is a new actuator material due to the fact that its shape memory effect can be controlled by magnetic field in addition to the conventional controls by temperature and stress. However, the alloy shows relatively low martensitic transformation and Curie temperatures. In this paper, we report the results of adding small amounts of Fe, Co and Tb to NiMnGa alloys. The effect of small additions of these doped elements on the martensitic transformation temperature is remarkable, but the Heusler structure of the alloys remains unchanged. For Ni50Mn27Ga23-xFex (x = 0,1,2) with partial replacement of Ga by Fe, the martensitic transformation temperatures increase with increase of the Fe content, and so does the Curie temperature. This phenomenon of increasing both the martensitic transformation temperatures and the Curie temperature was found for the first time. For Ni47Mn31X1Ga21 (X = Fe,Co), Fe and Co substitution for Mn, Fe increases the martensitic transformation temperature but decreases the Curie temperature, while Co has the opposite effect. For Ni48Mn33Ga18Tb1, the addition of the rare earth element Tb decreases the martensitic transformation temperature and the Curie temperature remarkably. Therefore, the transformation temperatures of the alloys can be improved by these doping methods.

  20. Remarkable Improvement of Shape-Memory Effect in a Co-31Ni-3Si Alloy by Ausforming

    NASA Astrophysics Data System (ADS)

    Sun, Jiangwei; Wang, Shanling; Yan, Zhiwei; Peng, Huabei; Wen, Yuhua

    2015-04-01

    In order to improve the shape-memory effect (SME) in Co-Ni alloys, the influence of ausforming temperature on the SME, microstructures, and mechanical behavior in a Co-31Ni-3Si alloy was studied. The results show that the ausforming at 1073 K (800 °C) could remarkably improve the SME in Co-31Ni-3Si alloy. A large recovery strain of 2.3 pct was obtained after bent by 3.7 pct at 77 K (-196 °C). The increase of yield strength and the decrease of the critical stress for the stress-induced gamma to epsilon martensitc transformation are responsible for the remarkable improvement of SME. The results indirectly showed that the SME in Co-Ni alloys results from the stress-induced gamma to epsilon martensitic transformation, and their low yield strength account for their poor SME. It can be expected that the strengthening of matrix by other methods, such as solution, dispersion, and grain refinement hardening, will improve the SME of Co-Ni alloys.

  1. Shape Memory Effect and Superelasticity in [001] Single Crystals of FeNiCoAlNb(B) Alloys

    NASA Astrophysics Data System (ADS)

    Kuts, O. A.; Panchenko, M. Yu; Kireeva, I. V.; Chumlyakov, Yu I.

    2015-10-01

    In given paper presents data research of influence of boron on the functional properties - the shape memory effect and superelasticity in the [001] single crystals FeNiCoAlNb(B) alloys aged at 973 K for 5 hours. On the [001] single crystals FeNiCoAlNbB at aging at T = 973 K for 5 hour, it is shown, that boron leads to decrease the start Ms temperature of γ-α' martensitic transformation on cooling, to the development of γ-α' stress induced martensitic transformation at higher stress at one test temperature and to increase of thermal ΔT and stress Δσ hysteresis is compared to [001] crystals without boron.

  2. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  3. Magnetic anisotropy in Ni-Fe-Ga-Co ferromagnetic shape memory alloys in the single-variant state.

    PubMed

    Morito, H; Fujita, A; Oikawa, K; Fukamichi, K; Kainuma, R; Kanomata, T; Ishida, K

    2009-02-18

    The effects of the addition of Co on the magnetic anisotropy in Ni(55-x)Fe(18)Ga(27)Co(x) (x = 1-6) single-variant ferromagnetic shape memory alloys have been investigated. By the addition of Co from 1 to 6 at.%, the Curie temperature T(C) is increased from 318 to 405 K, keeping the martensitic transformation temperatures above room temperature. As a result, the value of the uniaxial magnetic anisotropy constant |K(u)| at 300 K increases with increasing x of the Co concentration and the martensite phase of Ni(49)Fe(18)Ga(27)Co(6) exhibits a relatively high value of |K(u)| = 1.15 × 10(5) J m(-3) at 300 K. With increasing Co concentration, on the other hand, the c axis changes from the magnetic easy axis to the hard axis at 4.2 K, that is, the sign of K(u) is reversed from positive to negative between 2 and 3 at.% Co. Furthermore, K(u) in Ni(53)Fe(18)Ga(27)Co(2) is positive below 100 K and negative above 100 K up to T(C), reducing the magnetic anisotropy around 200 K. From the present results, it is evident that the magnetic anisotropy of Ni(55-x)Fe(18)Ga(27)Co(x) (x = 1-6) single-variant ferromagnetic shape memory alloys is very sensitive to Co concentration and also temperature.

  4. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    SciTech Connect

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  5. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  6. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  7. Influence of Test Procedures on the Thermomechanical Properties of a 55NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-01-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA s are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cu cm (290 in!lbf/cu in). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  8. Shape memory polymers

    SciTech Connect

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  9. Stress-Induced Martensite in Front of Crack Tips in NiTi Shape Memory Alloys: Modeling Versus Experiments

    NASA Astrophysics Data System (ADS)

    Maletta, C.; Young, M. L.

    2011-07-01

    NiTi-based shape memory alloys (SMAs) exhibit an unusual stress distribution at the crack tip as compared to common engineering materials, due to a stress-induced martensitic transformation resulting from highly localized stresses. Understanding the fracture mechanics of NiTi-based SMAs is critical to many of their applications. Here, we develop an analytical model, which predicts the boundaries of the transformation region in the crack tip vicinity of NiTi-based SMAs. The proposed model is based on a recent analytical approach which uses modified linear elastic fracture mechanics concepts to predict the crack tip stress distribution and transformation region in SMAs but, unfortunately, it applies only to the plane stress condition. To overcome this limitation, the proposed model accounts for stress triaxiality, which plays an important role in restricting crack tip plastic deformations in common ductile metals as well as the stress-induced martensite in NiTi SMAs. The effects of triaxial stress at the crack tip are taken into account by including a new parameter, the transformation constraint factor, which is based on the plastic constraint factor of elasto-plastic materials. The predictions of the model are compared with synchrotron x-ray micro-diffraction observations and satisfactory agreement is observed between the two results. Finally, the evolution of crack tip transformation boundaries during fracture tests of miniature compact tension specimens is predicted and the effects of applied load and crack length are discussed.

  10. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  11. Processing and characterization of Ni-Al-Fe-B shape-memory alloy wires produced by rapid solidification

    SciTech Connect

    Easton, D.S.; Liu, C.T.; Horton, J.A.; George, E.P.; Campbell, J.J.

    1993-12-31

    This work describes net-shape ductile wires of Ni-Al-Fe doped with boron produced directly from the melt by in-rotating-liquid (IRL) melt spinning, thus avoiding the difficult and costly problem of fabricating bulk castings. This method produces wires of 0.1 to 0.5 mm dia and lengths to 2 m. X-ray diffraction scans showed that the as-spun wires consist of B2, Ll{sub 2}, and bct martensite phases and that the B2 phase further transforms to bct martensite upon cold working. Shape-memory behavior showed an Ap temperature of {approximately} 180C as measured by bend recovery tests and by tensile cycling tests. Effects on the wires of IRL processing parameters are discussed.

  12. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGES

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  13. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  14. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni24.3Ti49.7Pd26 high temperature shape memory alloy

    DOE PAGES

    Benafan, O.; Garg, A.; Noebe, R. D.; Bigelow, G. S.; Padula, S. A.; Gaydosh, D. J.; Vaidyanathan, R.; Clausen, B.; Vogel, S. C.

    2015-04-20

    We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni24.3Ti49.7Pd26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed to insufficient strengthening ofmore » the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation temperatures.« less

  15. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  16. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field

    SciTech Connect

    Wang, Y. D.; Ren Yang; Huang, E. W.; Nie, Z. H.; Wang, G.; Liu, Y. D.; Deng, J. N.; Zuo, L.; Choo, H.; Liaw, P. K.; Brown, D. E.

    2007-03-05

    The magnetoelasticity and magnetoplasticity behaviors of a Ni-Co-Mn-In ferromagnetic shape memory alloy (FSMA) induced by the reverse phase transformation interplayed under multiple (temperature, magnetic, and stress) fields were captured directly by high-energy synchrotron x-ray diffraction technique. The experiments showed the direct experimental evidence of that a stress ({approx}50 MPa) applied to this material made a complete recovery of the original orientations of the martensite variants, showing a full shape memory effect. This finding offers the in-depth understanding the fundamental properties and applications of the Ni-Co-Mn-In FSMA with the magnetic-field-induced reverse transformation.

  17. Direct evidence on magnetic-field-induced phase transition in a NiCoMnIn ferromagnetic shape memory alloy under a stress field.

    SciTech Connect

    Wang, Y. D.; Ren, Y.; Huang, E. W.; Nie, Z. H.; Wang, G.; Liu, Y. D.; Deng, J. N.; Zuo, L.; Choo, H.; Liaw, P .K.; Brown, D. E.; Univ. of Tennessee; Northeastern Univ.; Northern Illinois Univ.

    2007-01-01

    The magnetoelasticity and magnetoplasticity behaviors of a Ni-Co-Mn-In ferromagnetic shape memory alloy (FSMA) induced by the reverse phase transformation interplayed under multiple (temperature, magnetic, and stress) fields were captured directly by high-energy synchrotron x-ray diffraction technique. The experiments showed the direct experimental evidence of that a stress ({approx}50 MPa) applied to this material made a complete recovery of the original orientations of the martensite variants, showing a full shape memory effect. This finding offers the in-depth understanding the fundamental properties and applications of the Ni-Co-Mn-In FSMA with the magnetic-field-induced reverse transformation.

  18. Selective leaching and surface properties of Ti50Ni50-xCux (x = 0-20 at.%) shape memory alloys for biomedical applications

    NASA Astrophysics Data System (ADS)

    Chang, Shih-Hang; Chiu, Wei-Chen

    2015-01-01

    This study investigated the selective leaching and surface characteristics of Ti50Ni50 and Ti50Ni50-xCux (x = 5, 10, and 20) shape memory alloys (SMAs) by employing inductively coupled plasma mass spectrometry, electrochemical tests, and X-ray photoelectron spectroscopy. The experimental results revealed that Ti50Ni50-xCux SMAs exhibited corrosion-resistance properties that were more favorable than those of Ti50Ni50 SMAs, whereas the concentrations of the Ni and Cu ions selectively leached from Ti50Ni50-xCux SMAs were considerably higher than those of Ni and Cu ions selectively leached from Ti50Ni50 SMAs. Ti50Ni50-xCux SMAs exhibited higher selective leaching rates of Ni and Cu ions than those of Ti50Ni50 SMAs, because the NiO and Cu2O oxides that formed on the surface caused a deterioration of the uniformity and protection of the passive TiO2 films. Although Ti50Ni50-xCux SMAs exhibited unique properties that are superior to those of TiNi binary SMAs in particular biomedical applications, appropriate surface modifications are necessary to avoid the risk of toxicity caused by the released Ni and Cu ions.

  19. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  20. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y. He, Z. B.; Li, L. F.; Wang, Y. D.; Nie, Z. H.; Wang, Z. L.; Ren, Y.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  1. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  2. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    DOE PAGES

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drasticallymore » increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

  3. Effects of Quenching Media on Phase Transformation Characteristics and Hardness of Cu-Al-Ni-Co Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Farahany, S.; Bakhsheshi-Rad, H. R.

    2015-04-01

    This paper presents the investigation on the effects of various thermal treatments and quenching media on the phase transformation behaviour of Cu-Al-Ni-Co shape memory alloys (SMAs). The transformation temperatures were determined using a differential scanning calorimeter. The variation of cooling rates had a consequential effect on the phase transformation characteristics of the Cu-Al-Ni-Co SMAs. Nevertheless, the transformation temperature peaks were varied in terms of location as well as heat flow. The results indicated that there was an improvement in transformation temperatures whenever ice water was used as quenching medium. It was also observed that the forward transformation temperatures were higher than the reverse transformation. It was verified that the required heat for the transformation of martensite into austenite was more than the transformation of austenite into martensite. Moreover, thermodynamic parameters, such as enthalpy and entropy, tended to decrease and increase as a result of the changes in the cooling rates of each medium. To clarify the variations of the structures and properties of Cu-Al-Ni-Co SMA quenched samples, x-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, and Vickers hardness were used.

  4. Testing and modeling of NiMnGa ferromagnetic shape memory alloy for static and dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Sirohi, Jayant; Chopra, Inderjit

    2006-03-01

    The response of NiMnGa ferromagnetic shape memory alloy to static and dynamic magnetic fields was studied. Tests involving excitation of the samples up to 10 Hz for constant stress and constant strain conditions were conducted. Based on these results, performance parameters were measured and discussed including power density, total power output and electromechanical efficiency. The effects of strain rate and material damping were also measured. It was shown that both power density and total power output were strong functions of applied stress. A maximum volumetric power density of 31 MW/m 3 was measured. Once the NiMnGa behavior was characterized, an analytical model based on four experimentally measured parameters was formulated to predict the induced strain in response to a dynamic magnetic field. Comparison of the analytical model to experimental data showed good correlation for applied stresses below 0.6 MPa and above 1.33 MPa. Although requiring further refinement, the model's results are encouraging, indicating that it could be developed into a useful analytical tool for predicting NiMnGa actuator behavior.

  5. Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.

    2014-11-01

    Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.

  6. Successive occurrence of ferromagnetic and shape memory properties during crystallization of NiMnGa freestanding films

    NASA Astrophysics Data System (ADS)

    Rumpf, H.; Craciunescu, C. M.; Modrow, H.; Olimov, Kh.; Quandt, E.; Wuttig, M.

    2006-07-01

    Ni 50Mn 30Ga 20 films of 13 μm thickness were fabricated by DC magnetron sputtering on unheated glass substrates. The As-deposited films are partially crystalline and crystallize during rapid annealing. The successive appearance of ferromagnetic and shape memory properties was observed as the annealing temperature was increased. Ferromagnetic properties evolved after annealing at 400 °C for 0.5 h, while thermal annealing of at least 600 °C for 0.5 h led to polycrystalline films that transformed reversibly and martensitically as shown by structural analysis and differential scanning calorimetry and confirmed by mechanical spectroscopy data. Magnetic measurements also revealed the influence of the post deposition annealing on the ferromagnetic hysteresis. Transition temperatures and reaction enthalpies of the martensitic phase transformation were strongly influenced by the temperature of the rapid annealing process. X-ray absorption fine-structure (XAFS) spectroscopy proved these changes to be related to the change in the chemical order. It is proposed that the annealing data reflect the evolution of the crystalline state. Ferromagnetic order is established already in nano-grained samples whereas the shape memory effect is only observed above a critical grain size.

  7. Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Noebe, Ronald D.; Padula, Santo A., II; Lerch, Bradley A.; Bigelow, Glen S.; Gaydosh, Darrell J.; Garg, Anita; An, Ke; Vaidyanathan, Raj

    2013-01-01

    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation.

  8. Structure-Property Relationship of Cu-Al-Ni-Fe Shape Memory Alloys in Different Quenching Media

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Farahany, S.

    2014-01-01

    This paper presents the effects of heat treatments using various quenching media on the phase transformation parameters and microstructure parameters. The effects of different quenching methods, step-quenched and up-quenched, in various media were evaluated by using differential scanning calorimetry, field emission electron microscopy, energy-dispersive spectrometry, atomic force microscopy, x-ray diffraction, and Vicker's hardness. The variations of the structure and properties of Cu-Al-Ni-Fe shape memory alloys were linked to the variations of morphology, type, and stabilization of the obtained phase. From the DSC results, the use of ice water as a quenching medium produced the highest transformation temperatures, while a brine solution-quenching medium resulted in the highest change of the entropy and enthalpy. Additionally, it was found that the best grain refinement was observed through the use of an oil-quenching medium, due to its high cooling rate.

  9. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  10. Phase transformation evolution in NiTi shape memory alloy under cyclic nanoindentation loadings at dissimilar rates.

    PubMed

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-12-13

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy.

  11. Effect of aging on the phase transformation and mechanical behavior of Ti{sub 36}Ni{sub 49}Hf{sub 15} high temperature shape memory alloy

    SciTech Connect

    Meng, X.L.; Zheng, Y.F.; Wang, Z.; Zhao, L.C.

    2000-01-31

    The TiNiHf alloys are newly developed as high temperature shape memory alloys with the high transformation temperatures and with lower cost in comparison with TiNiX (X = Pd, Pt) alloys. Until now, no results about the effects of aging at high temperature (above 953K) in the TiNiHf alloys are reported. The purpose of the present work is to investigate the microstructure, transformation temperature, mechanical properties and shape memory effects (SMEs) for Ti{sub 36}Ni{sub 49}Hf{sub 15} alloy aged at 973K for different hours by transmission electron microscopy (TEM), X-ray diffraction (XRD) techniques, electrical resistance-temperature measurement, bending and tensile tests.

  12. X-ray Diffraction Investigations of Shape Memory NiTi Wire

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Podder, Tarun K.; Dicker, Adam P.; Yu, Yan; Hutapea, Parsaoran

    2015-08-01

    Outstanding properties of nitinol, known as shape memory and superelasticity, make them suitable alternatives in several biomedical, aerospace, and civil applications. For instance, nitinol wires have been used as the actuator components in many innovative medical devices aiming to make surgical tasks less invasive and more efficient. In most of these applications, it is desired to have a consistent strain response of nitinol wires; therefore, it is necessary to investigate the internal phase transformations from microstructural point of view. In this study, the effect of influencing factors such as biased stress during thermal cycle, the maximum temperature wires experienced during heating part of thermal cycle, and also wire diameters on the amount of unrecovered strain occurred between the first and the second thermal cycles has been investigated. The generation of different phase compositions in the same thermomechanical condition for different wire diameters has been discussed using x-ray diffraction (XRD) method. The location and intensity of characteristic peaks were studied prior and after the loading cycles. It was observed that nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70-80 °C in a thermal cycle, whereas no unrecovered strain was found in wires with larger diameter. The observation was supported by the XRD patterns where the formation of R-phase instead of martensite was shown in wire diameters of less than 0.19 mm after cooling back to room temperature.

  13. Shape Memory Effect and Superelasticity in [001] Single Crystals of Fe-Ni-Co-Al-Nb(B) Ferromagnetic Alloy

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Panchenko, M. Yu.; Karaka, É.; Maier, H. J.

    2015-11-01

    Shape memory effect (SME) and superelasticity (SE) during thermoelastic martensitic transformation (MT) from the FCC high-temperature γ-phase to the BCT α'-martensite are investigated in Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Nb (Nb) and Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Nb - 0.05% B (NbB) (at.%) single crystals oriented for tension along the [001] direction after aging at 973 K for 10 h. Non-equiaxial (NiAl) β-phase particles with thickness d and length l equal to 60-80 and 340-500 nm, respectively, and volume fraction f ≥ 3-5% are precipitated in Nb crystals during aging simultaneously with the (FeNiCo)3(AlNb) γ´-phase with sizes d = 12.5-16.5 nm. It is shown that precipitation of the β-phase with f ≤ 3-5% in the crystal volume does not reduce the crystal plasticity, and SME of 4.2% and SE up to 6.5% under loading are observed during thermoelastic γ-α' MT in single crystals in a wide range of temperatures from 77 to 293 K. The β-phase is not detected in NbB crystals during aging. It is established that boron in NbB crystals slows down the aging processes: the γ'-phase particles have sizes 6.5-8 nm. The SME of 4.2% and SE up to 4.0% are observed in NbB crystals at temperatures from 77 to 243 K.

  14. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    SciTech Connect

    Seward, K P

    1999-06-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30{mu}{epsilon} and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300 {micro}m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90 {micro}m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape

  15. TECHNICAL NOTE: Active control for stress intensity of crack-tips under mixed mode by shape memory TiNi fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Shimamoto, A.; Zhao, H.; Azakami, T.

    2007-06-01

    The paper presented the effectiveness of a shape memory alloy hybrid composite. It was designed to actively suppress stress intensity in the vicinity of a crack-tip. A shape memory alloy (SMA) TiNi fiber reinforced epoxy composite was fabricated based on the proposed design concept and its material and mechanical properties were investigated by photoelastic examinations. The stress intensity factors, KI and KII, at a crack-tip decreased temperatures greater than Af under mixed mode. The phenomenon was caused by the recovery force of the TiNi fiber. The relationship of the stress intensity factors with the prestrain in the SMA fiber as well as with the ambient temperature in an isothermal furnace was clarified. On this basis, the active control for stress intensity by a shape memory composite was discussed.

  16. Improvement of the functional properties of nanostructured Ti-Ni shape memory alloys by means of thermomechanical processing

    NASA Astrophysics Data System (ADS)

    Kreitcberg, Alena

    Severe plastic deformation (SPD) is commonly used for nanostructure formation in Ti-Ni shape memory alloys (SMAs), but it increases the risk of damage during processing and, consequently, negatively affects functional fatigue resistance of these materials. The principal objective of this project is, therefore, to study the interrelations between the processing conditions, damageability during processing, microstructure and the functional properties of Ti-Ni SMAs with the aim of improving long-term functional performances of these materials by optimizing their processing conditions. First, microstructure and fatigue properties of Ti-Ni SMAs were studied after thermomechanical treatment (TMT) with different combinations of severe cold and warm rolling (CR and WR), as well as intermediate and post-deformation annealing (IA and PDA) technological steps. It was shown that either when WR and IA were introduced into the TMT schedule, or CR intensity was decreased, the fatigue life was improved as a consequence of less processing-induced damage and higher density of the favorable B2-austenite texture. This improvement was reached, however, at a price of a lower multi-cycle functional stability of these materials, the latter being a direct consequence of the microstructure coarsening after higher-temperature lower-intensity processing. At the end of this study, however, it was not possible to distinguish between contributions to the functional performances of Ti-Ni SMAs from different processing-related features: a) grain/subgrain size; b) texture; and c) level of rolling-induced defects. To be capable of separating contributions to the functional properties of Ti-Ni alloys from grain/subgrain size and from texture, the theoretical crystallographic resource of recovery strain after different TMTs and, therefore, different textures, were calculated and compared with the experiment. The comparative analysis showed that the structural factors (grain/subgrain size) strongly

  17. Influence of roll and solution treatment processing on shape memory effect of Fe-14Mn-5Si-9Cr-5Ni alloy

    SciTech Connect

    Li, C.L.; Jin, Z.H.

    1998-10-01

    The shape memory effect was studied in an Fe-14Mn-5Si-9Cr-5Ni alloy rerolled at 1123 K after hot rolling at 1423 K, followed by solution treatment at different temperatures. It was found that the alloy exhibits a maximum degree of shape recovery in a bending test and a complete recovery tensile strain of 2.2% in samples that were solution heated at 973 K for 600 s and then quenched in water. The rerolled processing at 1123 K after hot rolling at 1423 K and the microstructure under solution treatment state are important for obtaining a good shape memory effect in the alloy.

  18. Wafer-level integration of NiTi shape memory alloy on silicon using Au-Si eutectic bonding

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Bushra, Sobia; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2013-01-01

    This paper reports on the wafer level integration of NiTi shape memory alloy (SMA) sheets with silicon substrates through Au-Si eutectic bonding. Different bond parameters, such as Au layer thicknesses and substrate surface treatments were evaluated. The amount of gold in the bond interface is the most important parameter to achieve a high bond yield; the amount can be determined by the barrier layers between the Au and Si or by the amount of Au deposition. Deposition of a gold layer of more than 1 μm thickness before bonding gives the most promising results. Through patterning of the SMA sheet and by limiting bonding to small areas, stresses created by the thermal mismatch between Si and NiTi are reduced. With a gold layer of 1 μm thickness and bond areas between 200 × 200 and 800 × 800 μm2 a high bond strength and a yield above 90% is demonstrated.

  19. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    DOE PAGES

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore,more » good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  20. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    SciTech Connect

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-07

    Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  1. Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion

    PubMed Central

    Su, Jia-can; Liu, Xin-wei; Yu, Bao-qing; Li, Zhuo-dong

    2009-01-01

    From August 1990 to December 2007, 156 patients with humeral shaft nonunion were treated with our patented Ni-Ti shape memory alloy swan-like memory pressure connector (SMC). The SMC device cooled with ice before implantation was warmed to 40–50°C after implantation to produce balanced axial and compression forces to stabilise the fracture three-dimensionally. This combined with autologous bone grafting achieved bone tissue regeneration in the fracture and promoted smooth recovery of joint function, with a nonunion healing rate of 98.7% after a single SMC implantation. Failure of nonunion healing occurred in only two cases but was successfully managed by a further operation. Complications were not found in any of these patients apart from four with pre-existing radial nerve injuries. These results demonstrate the effectiveness of the SMC device for the management of humeral shaft nonunion. The device provides continuous compression of the fracture with minimal trauma to the local blood supply. PMID:19198838

  2. Radiopaque Shape Memory Alloys: NiTi-Er with Stable Superelasticity

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Carr, Shane; Butler, James; Gandhi, Abbasi A.; O'Donoghue, Lisa; McNamara, Karrina; Carlson, James M.; Lavelle, Shay; Tiernan, Peter; Biffi, Carlo A.; Bassani, Paola; Tofail, Syed A. M.

    2016-06-01

    Binary NiTi alloy is one of the most important biomaterials currently used in minimally invasive procedures and indwelling devices. The poor visibility of intermetallic NiTi under X-ray could be an unsatisfactory feature especially for developing low-dimensional implantable devices for the body. It is a matter of fact that the alloying of a third radiopaque element, such as noble or heavy metals, in NiTi can significantly enhance the alloy's radiopacity. Recently, it was demonstrated that the addition of a rare earth element such as Erbium has led to an equivalent radiopacity at a much lower cost than the equivalent addition of noble metals. This work reviews the main physical aspects related to the radiopacity of NiTi alloys and compares the radiopacity of NiTi-Er compositions with other NiTi-based alloys containing Pd, Pt, W and Cr. Furthermore, a NiTi-6Er alloy is produced by spark plasma sintering, and successfully processed by conventional hot and cold working procedures to a continuous wire showing stable superelastic behaviour (up to 4 % in strain), suitable for developing biomedical devices.

  3. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn,Fe,Co) from first-principles calculations

    SciTech Connect

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni{sub 2}XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni{sub 2}MnGa have been calculated. The formation energies of the cubic phase of Ni{sub 2}XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni{sub 2}MnGa to Ni{sub 2}CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below E{sub F}. There are two bond types existing in Ni{sub 2}XGa: one is between neighboring Ni atoms in Ni{sub 2}MnGa; the other is between Ni and X atoms in Ni{sub 2}FeGa and Ni{sub 2}CoGa alloys.

  4. Martensitic transformation in Cu-doped NiMnGa magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Li, Pan-Pan; Wang, Jing-Min; Jiang, Cheng-Bao

    2011-02-01

    This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-xCuxMn31Ga19 (x=2-10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.

  5. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  6. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  7. Constitutive model for the dynamic response of a NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan

    2016-07-01

    In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.

  8. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-07-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  9. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    DOE PAGES

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; Liu, Weilong; Yang, Hong; Jiang, Xiaohua; Ren, Yang; Cui, Lishan

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less

  10. Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Kermanpur, A.; Saatchi, A.; Sadrnezhaad, S. K.; Soleymani, A. P.

    2015-09-01

    The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion potential, lower corrosion current density, higher breakdown potential and wider passive region than the base metal. The weld metal was therefore more resistant to corrosion than the base metal.

  11. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    SciTech Connect

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; Liu, Weilong; Yang, Hong; Jiang, Xiaohua; Ren, Yang; Cui, Lishan

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, which means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.

  12. Ni-Mn-Ga Single Crystal Exhibiting Multiple Magnetic Shape Memory Effects

    NASA Astrophysics Data System (ADS)

    Heczko, Oleg; Veřtát, Petr; Vronka, Marek; Kopecky, Vít; Perevertov, Oleksiy

    2016-09-01

    Both magnetically induced phase transformation and magnetically induced reorientation (MIR) effects were observed in one Ni50Mn28Ga22 single crystal sample by direct measurement of the magnetic field-induced strain. We investigated various twinning microstructures ranged from single twin interface to fine twinning and crossing twins to evaluate what controls the apparent twinning stress crucial for MIR. The main challenges for the applications of these effects are outlined.

  13. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%. PMID:25942923

  14. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%.

  15. Micro-processing of NiMnGa shape memory alloy by using a nanosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2016-04-01

    The interest on Ferromagnetic Shape Memory Alloys (FSMAs), such as NiMnGa, is growing up, thanks to their functional properties to be employed in a new class of micro-devices. The most evident critical issue, limiting the use of these systems in the production of industrial devices, is the brittleness of the bulk material; its workability by using convectional processing methods is very limited. Thus, alternative processing methods, including laser processing, are encouraged for the manufacture of FSMAs based new devices. In this work, the effect of the nanosecond laser microprocessing on Ni45Mn33Ga22 [at%] has been studied. Linear grooves were realized by a nanosecond 30 W fiber laser; the machined surfaces were analyzed with scanning electron microscopy, coupled with energetic dispersion spectroscopy for the composition analysis. The morphology of the grooves was affected by the laser scanning velocity and the number of laser pulses while the measured material removal rate appeared to be influenced mainly by the number of laser pulses. Compositional modification, associated to the loss of Ga content, was detected only for the lower scanning velocity, because of the high fluence. On the contrary, by increasing the velocity up to 1000 mm/s no Ga loss can be seen, making possible the laser processing of this functional alloy without its chemical modification. The use of short pulses allowed also to reduce the amount of recast material and the compositional change with respect to long pulses. Finally, the calorimetric analysis indicated that laser nanosecond microprocessing could affect the functional properties of this alloy: a larger decrease of the characteristic temperatures of the martensitic transformation was observed in correspondence of the low scanning velocity.

  16. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  17. Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy

    SciTech Connect

    Perez-Landazabal, J. I.; Recarte, V.; Sanchez-Alarcos, V.; Agosta, D. S.; Leisure, R. G.

    2006-06-01

    The high mobility of austenite-martensite interfaces is a characteristic of a thermoelastic martensitic transformation. Internal friction and elastic constants are very suitable probes to analyze this mobility. In this work, resonant ultrasound spectroscopy, differential scanning calorimetry, and neutron powder diffraction have been employed to analyze the role of defects in a first-order transformation. An anomalous behavior associated with the martensitic transformation in a Cu-Al-Ni shape-memory alloy has been observed; the internal friction peak measured during cooling completely disappears on heating. The elastic constants also show different behavior on heating and cooling. The different mobility of defects in the two phases, and the simultaneous occurrence of both the defect recovery processes and the martensitic transformation in the same temperature range, are the origin of the observed behavior. These effects show an exceptional influence of defects on thermoelastic equilibrium during a first-order structural transition. The proposed mechanism is general and may apply to other transitions than the one reported in this paper.

  18. Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bucsek, Ashley N.; Hudish, Grant A.; Bigelow, Glen S.; Noebe, Ronald D.; Stebner, Aaron P.

    2016-03-01

    A general procedure to optimize shape memory alloys (SMAs) for specific engineering performance metrics is outlined and demonstrated through a study of ternary, NiTiX high-temperature SMAs, where X = Pd, Hf, Zr. Transformation strains are calculated using the crystallographic theory of martensite and compared to the cofactor conditions, both requiring only lattice parameters as inputs. Measurements of transformation temperatures and hysteresis provide additional comparisons between microstructural-based and transformation properties. The relationships between microstructural-based properties and engineering performance metrics are then thoroughly explored. Use of this procedure demonstrates that SMAs can be tuned for specific applications using relatively simple, fast, and inexpensive measurements and theoretical calculations. The results also indicate an overall trade-off between compatibility and strains, suggesting that alloys may be optimized for either minimal hysteresis or large transformation strains and work output. However, further analysis of the effects of aging shows that better combinations of uncompromised properties are possible through solid solution strengthening.

  19. Shape-memory polymers.

    PubMed

    Lendlein, Andreas; Kelch, Steffen

    2002-06-17

    Material scientists predict a prominent role in the future for self-repairing and intelligent materials. Throughout the last few years, this concept has found growing interest as a result of the rise of a new class of polymers. These so-called shape-memory polymers by far surpass well-known metallic shape-memory alloys in their shape-memory properties. As a consequence of the relatively easy manufacture and programming of shape-memory polymers, these materials represent a cheap and efficient alternative to well-established shape-memory alloys. In shape-memory polymers, the consequences of an intended or accidental deformation caused by an external force can be ironed out by heating the material above a defined transition temperature. This effect can be achieved because of the given flexibility of the polymer chains. When the importance of polymeric materials in our daily life is taken into consideration, we find a very broad, additional spectrum of possible applications for intelligent polymers that covers an area from minimally invasive surgery, through high-performance textiles, up to self-repairing plastic components in every kind of transportation vehicles.

  20. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  1. Strain rate response of a Ni-Ti shape memory alloy after hydrogen charging

    NASA Astrophysics Data System (ADS)

    Gamaoun, Fehmi; Hassine, Tarak; Bouraoui, Tarak

    2014-01-01

    In this work, we investigate the susceptibility of Ni-Ti superelastic wires to the strain rates during tensile testing after hydrogen charging. Cathodic hydrogen charging is performed at a current density of 10 A/m² during 2-12 h in 0.9% NaCl solution and aged for 24 h at room temperature. Specimens underwent one cycle of loading-unloading reaching a stress value of 700 MPa. During loading, strain rates from 10-6 to 5 × 10-2 s-1 have been achieved. After 8 h of hydrogen charging, an embrittlement has been detected in the tensile strain rate range of 10-6 to 10-4 s-1. In contrast, no embrittlement has been detected for strain rates of 10-3 s-1 and higher. However, after 12 h of hydrogen charging and 24 h of annealing at room temperature, the embrittlement occurs in the beginning of the austenite-martensite transformation for all the studied strain rate values. These results show that for a range of critical amounts of diffused hydrogen, the embrittlement of the Ni-Ti superelastic alloy strongly depends on the strain rate during the tensile test. Moreover, it has been shown that this embrittlement occurs for low values of strain rates rather than the higher ones. This behaviour is attributed to the interaction between the diffused hydrogen and growth of the martensitic domain.

  2. Microstructural Evolution and Magnetic Properties of Aged CoNiGaAl Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    El-Bagoury, N.; Rashad, M. M.

    2016-05-01

    A study on the influence of aging heat treatment conditions at 823 K for 3 h, 24 h, and 120 h, on microstructure, martensitic transformation, and magnetic and mechanical properties of Co50Ni23Ga27- X Al X alloys ( X = 0 and 1 at.%) was performed by using x-ray diffraction (XRD) analysis, optical microscopy (OM), energy-dispersive spectrometer (EDS), differential scanning calorimeter (DSC), and vibrating sample magnetometer (VSM). The results show that the microstructure of both aged alloys consists of martensite and fcc second γ phase in addition to ordered cubic gamma prime ( γ') phase precipitates in martensite. The martensitic transformation temperature peak ( M p) elevates with prolonging aging time and decreasing valence electron concentration ( e v/ a). Saturation magnetization ( M s) decreases, whereas both remanence magnetization ( M r) and coercivity ( H c) increase with aging time. Meanwhile, the aging time enhances the hardness property ( H v) of the investigated alloys.

  3. Glass forming ability and thermodynamic properties of Ti(Zr,Hf)NiCu shape memory alloys

    NASA Astrophysics Data System (ADS)

    Pasko, A.; Kolomytsev, V.; Babanly, M.; Sezonenko, A.; Ochin, P.; Portier, R.; Vermaut, Ph.

    2003-10-01

    Rapidly solidified amorphous and crystalline-amorphous ribbons have been produced from a number of quatemary Ti{50+z-x}(Zr,Hf){ x}Ni{50- z-y}Cu{ y} alloys where z =(-5, 0, 5). Structural states were checked by XRD, crystallization behaviour of amorphous phase and martensitic transformations in crystalline material were studied by DSC. The glass transition and crystallization temperatures have been measured at different heating rates, and the crystallization activation energy for each composition and heat event bas been calculated. Isothermal crystallization gives an alternative method of determining the activation energy according to the Arrhenius equation. Contradictory requirements for the conditions of martensitic transformation and good glass forming ability is discussed.

  4. Self-recovery of worn surface of TiNi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Tang, Guanghai; Zhang, Dongya; Zhang, Junfeng; Lin, Ping; Dong, Guangneng

    2014-12-01

    In this study, the thermally induced deformation recovery of TiNi alloy worn surface under dry sliding condition was examined. Surface deformations were simulated under various normal loads and sliding frequencies by a ball-on-disk tribometer system at room temperature. Surface profiles of wear scars were obtained before and after heating in air at 80 °C for 10 min, and the experimental results showed that partial recovery of the worn surface was observed. The partial deformation recovery is relative to recovery of the martensitic transformation-induced slip-dislocations and thermally-induced martensite reorientation variants to austenite. The recovery ratio, which is defined as the deformation recovery in the depth direction, was influenced by normal loads and reciprocating frequencies. As the normal load increased from 2 N to 6 N, the deformation recovery ratio of TiNi alloy decreased from 21.4% to 6.4%. With further increasing to 8 N, the recovery ratio was declined to 4.8%. These observations were explained and discussed with respect to the corresponding wear mechanisms and contact stress distribution during sliding wear tests. For different frequencies, the deformation recovery ratio tended to decrease as the reciprocating frequency increased. In addition, the deformation recovery of worn surface was also simulated by indentation in conjunction with a mechanical polishing process. The results showed that spherical protrusion morphology was observed, and its height (18 μm) was around 50% of the depth of initial indent. It confirmed that the deformation recovery existed under wear conditions, and opened up potential engineering applications of textures.

  5. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  6. Microstructure and Properties of Deformation Processed Polycrystalline Ni47Ti44Nb9 Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Yin, XiangQian; Mi, Xujun; Li, Yanfeng; Gao, Baodong

    2012-12-01

    The objective of this work was to investigate the relationships between process and microstructure and property in polycrystalline Ni47Ti44Nb9 alloy. Three processes: (1) hot-forged, (2) cold-drawn, and (3) cold-rolled were investigated. The microstructure was tested by means of optical microscope, x-ray diffraction, and electron backscatter diffraction, and then crystalline orientation distribution functions and inverse pole figures were measured. The results indicated that hot-forging eliminated dendritic microstructure and fined the eutectic structure. It also induced a <113> fiber texture, which paralleled to the axial direction. The cold drawing and cold-rolling had a further effect in grain refinement. And the cold-drawn specimens contained a strong <111> fiber texture paralleling to the deformation direction, while the cold-rolled tubes formed <111> crystalline directions paralleling the axial direction and <110> crystalline directions of crystalline arranged along the circumferential direction. The notably distinctive recoverability of different processed materials was observed and discussed.

  7. Effects of the substitution of gallium with boron on the physical and mechanical properties of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Aydogdu, Yildirim; Turabi, Ali Sadi; Kok, Mediha; Aydogdu, Ayse; Tobe, Hirobumi; Karaca, Haluk Ersin

    2014-12-01

    The effects of the substitution of gallium with boron on the physical, mechanical and magnetic shape memory properties of Ni51Mn28.5Ga20.5- xBx (at.%) ( x = 0, 1, 2, 3) polycrystalline alloys are investigated. It has been found that transformation temperatures are decreasing while hardness is increasing with boron addition. B-doping of NiMnGa alloys results in the formation of a second phase that increases its ductility and strength in compression. Moreover, saturation magnetization of austenite is decreasing, while Curie temperature of austenite is increasing with B-doping.

  8. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  9. Precipitation Behavior of Thermo-Mechanically Treated Ti50Ni20Au20Cu10 High-Temperature Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kayani, Saif Haider; Imran Khan, M.; Khalid, Fazal Ahmad; Kim, Hee Young; Miyazaki, Shuichi

    2016-03-01

    In the present work, precipitation behavior of TiNiAuCu-based high-temperature shape-memory alloys is studied. Two alloys with compositions Ti50Ni30Au20 and Ti50Ni20Au20Cu10 were prepared. After 30 % cold rolling, both alloys were then annealed at different temperatures. Formation of Cu-rich TiAuCu and Ti-rich Ti3Au precipitates was observed in Ti50Ni20Au20Cu10 alloy when annealed at different temperatures after cold deformation. It was noticed that prior cold deformation has significant effect on the precipitation behavior. A similar kind of precipitation behavior has been previously reported in TiNiPdCu alloys. Both TiAuCu and Ti3Au type precipitates were found to be deficient in Ni content which causes an increase in Ni content of the matrix and a small decrease in transformation temperatures of the Ti50Ni20Au20Cu10 alloy.

  10. Effects of deformation on microstructure and mechanical properties of a Cu-Al-Ni shape memory alloy

    SciTech Connect

    Sari, U. Kirindi, T.

    2008-07-15

    In Cu-11.92 wt.%Al-3.78 wt.%Ni shape memory alloy, the influence of deformation and thermal treatments on the microstructure and mechanical properties under the compression test were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). Experiments show that the mechanical properties of the alloy can be enhanced by convenient heat treatments. The alloy exhibits good mechanical properties with high ultimate compression strength and ductility after annealing at high temperature. However, it exhibits brittle fracture and dramatic strain hardening, with linear stress-strain behavior after annealing at low temperature. The changes in the mechanical properties have been linked to the evolution of the degree of order, occurrence of precipitation, and variation of the grain size. From microstructural observations, it is seen that the {beta}{sub 1}' (18R) and {gamma}{sub 1}' (2H) martensite phases coexist at different fractions in the undeformed and deformed states. Deformation induces the changes between the {beta}{sub 1}' and {gamma}{sub 1}' martensites and deformation-induced martensites form at preferred orientations as mechanical twins. The {beta}{sub 1}' martensite variants are twin-related with respect to the (1-bar 2-bar 8){sub 18R} mirror plane and a new orientation relationship for these twin variants is derived as (1-bar 2-bar 8){sub A}-parallel (1-bar 2-bar 8){sub C}: [4-bar 61] {sub A}-parallel [4-bar 61]{sub C}. Additionally, an increase in the amount of deformation causes martensite reorientation, de-twinning, and dislocation generation; also, the martensite plates are seen to have rearranged in the same orientation to be parallel with each other.

  11. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  12. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  13. Microstructural Response During Isothermal and Isobaric Loading of a Precipitation-Strengthened Ni-29.7Ti-20Hf High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Padula, S. A.; Vaidyanathan, R.

    2012-12-01

    A stable Ni-rich Ni-29.7Ti-20Hf (at. pct) shape memory alloy, with relatively high transformation temperatures, was shown to exhibit promising properties at lower raw material cost when compared to typical NiTi-X (X = Pt, Pd, Au) high-temperature shape memory alloys (HTSMAs). The excellent dimensional stability and high work output for this alloy were attributed to a coherent, nanometer size precipitate phase observed using transmission electron microscopy. To establish an understanding of the role of these precipitates on the microstructure and ensuing stability of the NiTiHf alloy, a detailed study of the micromechanical and microstructural behaviors was performed. In-situ neutron diffraction at stress and temperature was used to obtain quantitative information on phase-specific internal strain, texture, and phase volume fractions during both isothermal and isobaric testing of the alloy. During isothermal testing, the alloy exhibited low isothermal strains due to limited detwinning, consistent with direct measurements of the bulk texture through neutron diffraction. This limited detwinning was attributed to the pinning of twin and variant boundaries by the dispersion of fine precipitates. During isobaric thermal cycling at 400 MPa, the high work output and near-perfect dimensional stability was attributed to the presence of the precipitates that act as homogeneous sources for the nucleation of martensite throughout the material, while providing resistance to irrecoverable processes such as plastic deformation.

  14. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  15. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  16. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  17. Superparamagnetic and superspin glass behaviors in the martensitic state of Ni43.5Co6.5Mn39Sn11 magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Cong, D. Y.; Roth, S.; Liu, J.; Luo, Q.; Pötschke, M.; Hürrich, C.; Schultz, L.

    2010-03-01

    The magnetic state of the low-temperature martensite in a Ni43.5Co6.5Mn39Sn11 magnetic shape memory alloy (MSMA) is disclosed. At temperatures (T) above a critical temperature Tf, the magnetization versus field [M(H )] curves display a sigmoid shape, show no magnetic hysteresis, and can be well fitted according to the Langevin model, confirming that the martensite shows superparamagnetic behavior at T >Tf. On the other hand, the observation of a memory effect during the stop-and-wait protocol and the analysis of dynamic magnetic properties probed by ac susceptibility measurements unequivocally corroborate the superspin glass behavior of interacting magnetic clusters at T

  18. Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Shiva, S.; Palani, I. A.; Mishra, S. K.; Paul, C. P.; Kukreja, L. M.

    2015-06-01

    Among the various shaped memory alloys (SMA), nitinol (Ni-Ti alloy) finds applications in automotive, aerospace, biomedical and robotics. The conventional route of fabrication of SMA has several limitations, like formation of stable secondary phases, fabrication of simple geometries, etc. This paper reports a novel method of fabricating SMA using a laser based additive manufacturing technique. Three different compositions of Ni and Ti powders (Ni-45% Ti-55%; Ni-50% Ti-50%; Ni-55% Ti45%) were pre-mixed using ball-milling and laser based additive manufacturing system was employed to fabricate circular rings. The material properties of fabricated rings were evaluated using Scanning Electron Microscopy (SEM), Differential scanning calorimeter (DSC), X-ray diffraction (XRD) system and micro-hardness test. All the characterized results showed that SMA could be manufactured using the laser based additive manufacturing process. The properties of laser additive manufactured SMA (Ni-50% Ti-50%) were found to be close to that of conventionally processed SMA.

  19. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release. PMID:25064465

  20. Effect of surface modification by nitrogen ion implantation on the electrochemical and cellular behaviors of super-elastic NiTi shape memory alloy.

    PubMed

    Maleki-Ghaleh, H; Khalil-Allafi, J; Sadeghpour-Motlagh, M; Shakeri, M S; Masoudfar, S; Farrokhi, A; Beygi Khosrowshahi, Y; Nadernezhad, A; Siadati, M H; Javidi, M; Shakiba, M; Aghaie, E

    2014-12-01

    The aim of this investigation was to enhance the biological behavior of NiTi shape memory alloy while preserving its super-elastic behavior in order to facilitate its compatibility for application in human body. The surfaces of NiTi samples were bombarded by three different nitrogen doses. Small-angle X-ray diffraction was employed for evaluating the generated phases on the bombarded surfaces. The electrochemical behaviors of the bare and surface-modified NiTi samples were studied in simulated body fluid (SBF) using electrochemical impedance and potentio-dynamic polarization tests. Ni ion release during a 2-month period of service in the SBF environment was evaluated using atomic absorption spectrometry. The cellular behavior of nitrogen-modified samples was studied using fibroblast cells. Furthermore, the effect of surface modification on super-elasticity was investigated by tensile test. The results showed the improvement of both corrosion and biological behaviors of the modified NiTi samples. However, no significant change in the super-elasticity was observed. Samples modified at 1.4E18 ion cm(-2) showed the highest corrosion resistance and the lowest Ni ion release.

  1. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  2. Inverse magnetocaloric effect in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys

    SciTech Connect

    Singh, Sanjay Barman, S. R.; Esakki Muthu, S.; Arumugam, S.; Senyshyn, A.; Rajput, P.; Suard, E.

    2014-02-03

    Inverse magnetocaloric effect is demonstrated in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys. The entropy change at the martensite transition is larger in Mn{sub 1.75}Ni{sub 1.25}Ga, and it increases linearly with magnetic field in both the specimens. Existence of inverse magnetocaloric effect is consistent with the observation that magnetization in the martensite phase is smaller than the austenite phase. Although the Mn content is smaller in Mn{sub 1.75}Ni{sub 1.25}Ga, from neutron diffraction, we show that the origin of inverse magnetocaloric effect is the antiferromagnetic interaction between the Mn atoms occupying inequivalent sites.

  3. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  4. Influence of Heat Transfer on Determination of Transient Temperatures for Ni53.6Mn27.1Ga19.3 Shape Memory Alloy from Dilatometric Data

    NASA Astrophysics Data System (ADS)

    Rudajevova, A.; Šroub, J.; Lang, V.

    2009-06-01

    The martensitic phase transformation in a Ni53.6Mn27.1Ga19.3 shape memory alloy is an athermal phase transformation that starts practically, immediately after reaching a certain transient temperature. The final temperature is given at each point of the sample by two processes: heat conduction and phase transformation. Both processes take place in tandem. The thermal expansion and calculation of the temperature fields in a dilatometer are used to determine the transient temperatures and to study the transient temperature ranges.

  5. Energy-dispersive neutron imaging and diffraction of magnetically driven twins in a Ni2MnGa single crystal magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton

    2016-09-01

    Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.

  6. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys: geometry and body location dependency.

    PubMed

    Toker, S M; Canadinc, D; Maier, H J; Birer, O

    2014-03-01

    A systematic set of ex-situ experiments were carried out on Nickel-Titanium (NiTi) shape memory alloy (SMA) in order to identify the dependence of its biocompatibility on sample geometry and body location. NiTi samples with three different geometries were immersed into three different fluids simulating different body parts. The changes observed in alloy surface and chemical content of fluids upon immersion experiments designed for four different time periods were analyzed in terms of ion release, oxide layer formation, and chemical composition of the surface layer. The results indicate that both sample geometry and immersion fluid significantly affect the alloy biocompatibility, as evidenced by the passive oxide layer formation on the alloy surface and ion release from the samples. Upon a 30 day immersion period, all three types of NiTi samples exhibited lower ion release than the critical value for clinic applications. However; a significant amount of ion release was detected in the case of gastric fluid, warranting a thorough investigation prior to utility of NiTi in gastrointestinal treatments involving long-time contact with tissue. Furthermore, certain geometries appear to be safer than the others for each fluid, providing a new set of guidelines to follow while designing implants making use of NiTi SMAs to be employed in treatments targeting specific body parts.

  7. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  8. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation

    NASA Astrophysics Data System (ADS)

    Shelyakov, A. V.; Sitnikov, N. N.; Sheyfer, D. V.; Borodako, K. A.; Menushenkov, A. P.; Fominski, V. Yu

    2015-11-01

    The effect of pulsed laser radiation (λ = 248 nm, τ = 20 ns) on structural properties and shape memory behavior of the rapidly quenched Ti50Ni25Cu25 alloy ribbon was studied. The radiation energy density was varied from 2 to 20 mJ mm-2. The samples were characterized by means of scanning electron microscopy, x-ray diffraction, microhardness measurements and shape memory bending tests. It was ascertained that the action of the laser radiation leads to the formation of a structural composite material due to amorphization or martensite modification in the surface layer of the ribbon. Two methods are proposed which allow one to generate the pronounced two-way shape memory effect (TWSME) in a local area of the ribbon by using only a single pulse of the laser radiation. With increasing energy density of laser treatment, the magnitude of the reversible angular displacement with realization of the TWSME increases. The developed techniques can be used for the creation of various micromechanical devices.

  9. Drastic change in density of states upon martensitic phase transition for metamagnetic shape memory alloy Ni2Mn1+xIn1-x

    NASA Astrophysics Data System (ADS)

    Zhu, Siyuan; Ye, Mao; Shirai, Kaito; Taniguchi, Masaki; Ueda, Shigenori; Miura, Yoshio; Shirai, Masafumi; Yamauchi Umetsu, Rie; Kainuma, Ryosuke; Kanomata, Takeshi; Kimura, Akio

    2015-09-01

    We have unravelled the electronic structure of a class of metamagnetic shape memory alloy Ni2Mn1+xIn1-x by combining bulk-sensitive hard x-ray photoelectron spectroscopy and first-principles density-functional calculations. A sharp drop in the Ni 3d {{e}\\text{g}} density of states forming a pseudogap in the martensitic phase transition (MPT) for x   =   0.36 has been observed near the Fermi level. As a feature of MPT, hysteretic behaviour of this drop has been confirmed in both cooling and warming. This pseudogap is responsible for the giant negative magnetoresistance. The experimental result is well reproduced by the first principle calculation. We have also clarified theoretically that the MPT is linked to a competition of ferromagnetic and anti-ferromagnetic coupling between ordinary and anti-site Mn atoms.

  10. Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic NiTi shape memory alloy micro-tubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-07-01

    In this work, the low-cycle fatigue failure of super-elastic NiTi shape memory alloy micro-tubes with a wall thickness of 150 μm is investigated by uniaxial stress-controlled cyclic tests at human body temperature 310 K. The effects of mean stress, peak stress, and stress amplitude on the uniaxial whole-life transformation ratchetting and fatigue failure of the NiTi alloy are observed. It is concluded that the fatigue life depends significantly on the stress levels, and the extent of martensite transformation and its reverse play an important role in determining the fatigue life. High peak stress or complete martensite transformation shortens the fatigue life.

  11. Constant-Strain Thermal Cycling of a Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Halsmer, T. J.; Padula, S. A.; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.

    2016-06-01

    The effect of various pre-straining routines on the recovery stresses of a Ni-rich Ni50.3Ti29.7Hf20 high-temperature shape memory alloy was investigated in tension and compression. The recovery stresses, obtained by means of constant-strain thermal cycling, were evaluated after isothermal (up to ±2 % applied strain at room temperature) or after isobaric thermal cycling at stress levels between ±100 and 400 MPa. The material exhibited high force generation capability with recovery stresses of nearly 1.5 GPa on the first cycle under particular pre-strain conditions. The recovery stresses are shown to decay during subsequent cycles using an upper cycle temperature of 300 °C with a saturated stress level nearing 1.1 GPa in compression.

  12. Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α'-Thermoelastic Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.

    2013-12-01

    Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.

  13. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  14. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni-Mn-Ga alloys: Experiment and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Uba, S.; Bonda, A.; Uba, L.; Bekenov, L. V.; Antonov, V. N.; Ernst, A.

    2016-08-01

    In this joint experimental and ab initio study, we focused on the influence of the chemical composition and martensite phase transition on the electronic, magnetic, optical, and magneto-optical properties of the ferromagnetic shape-memory Ni-Mn-Ga alloys. The polar magneto-optical Kerr effect (MOKE) spectra for the polycrystalline sample of the Ni-Mn-Ga alloy of Ni60Mn13Ga27 composition were measured by means of the polarization modulation method over the photon energy range 0.8 ≤h ν ≤5.8 eV in magnetic field up to 1.5 T. The optical properties (refractive index n and extinction coefficient k ) were measured directly by spectroscopic ellipsometry using the rotating analyzer method. To complement experiments, extensive first-principles calculations were made with two different first-principles approaches combining the advantages of a multiple scattering Green function method and a spin-polarized fully relativistic linear-muffin-tin-orbital method. The electronic, magnetic, and MO properties of Ni-Mn-Ga Heusler alloys were investigated for the cubic austenitic and modulated 7M-like incommensurate martensitic phases in the stoichiometric and off-stoichiometric compositions. The optical and MOKE properties of Ni-Mn-Ga systems are very sensitive to the deviation from the stoichiometry. It was shown that the ab initio calculations reproduce well experimental spectra and allow us to explain the microscopic origin of the Ni2MnGa optical and magneto-optical response in terms of interband transitions. The band-by-band decomposition of the Ni2MnGa MOKE spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified.

  15. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  16. Mechanical Behaviour of Umbrella-Shaped, Ni-Ti Memory Alloy Femoral Head Support Device during Implant Operation: A Finite Element Analysis Study

    PubMed Central

    Yi, Wei; Tian, Qing; Dai, Zhipeng; Liu, Xiaohu

    2014-01-01

    A new instrument used for treating femoral head osteonecrosis was recently proposed: the umbrella-shaped, Ni-Ti memory femoral head support device. The device has an efficacy rate of 82.35%. Traditional radiographic study provides limited information about the mechanical behaviour of the support device during an implant operation. Thus, this study proposes a finite element analysis method, which includes a 3-step formal head model construction scheme and a unique material assignment strategy for evaluating mechanical behaviour during an implant operation. Four different scenarios with different constraints, initial positions and bone qualities are analyzed using the simulation method. The max radium of the implanted device was consistent with observation data, which confirms the accuracy of the proposed method. To ensure that the device does not unexpectedly open and puncture the femoral head, the constraint on the impact device should be strong. The initial position of sleeve should be in the middle to reduce the damage to the decompression channel. The operation may fail because of poor bone quality caused by severe osteoporosis. The proposed finite element analysis method has proven to be an accurate tool for studying the mechanical behaviour of umbrella-shaped, Ni-Ti memory alloy femoral head support device during an implant operation. The 3-step construct scheme can be implemented with any kind of bone structure meshed with multiple element types. PMID:24960038

  17. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy.

    PubMed

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques. PMID:27138030

  18. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    PubMed Central

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques. PMID:27138030

  19. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy.

    PubMed

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-05-03

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques.

  20. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-05-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques.

  1. Characterization of Ni19.5Ti50.5Pd25Pt5 High-Temperature Shape Memory Alloy Springs and their Potential Application in Aeronautics

    NASA Technical Reports Server (NTRS)

    Stebner, Aaron; Padula, Santo A.; Noebe, Ronald D.

    2008-01-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni19.5Ti50.5Pd25Pt5. Recent work has shown that this material is capable of being used in operating environments of up to 250 C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni19.5Ti50.5Pd25Pt5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  2. Characterization of Ni 19.5Ti 50.5Pd 25Pt 5 high-temperature shape memory alloy springs and their potential applications in aeronautics

    NASA Astrophysics Data System (ADS)

    Stebner, Aaron; Padula, Santo A., II; Noebe, Ronald D.; Quinn, D. Dane

    2008-03-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni 19.5Ti 50.5Pd 25Pt 5. Recent work has shown that this material is capable of being used in operating environments of up to 250°C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni 19.5Ti 50.5Pd 25Pt 5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  3. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  4. Effect of Stress, Heating Rate, and Degree of Transformation on the Functional Fatigue of Ni-Ti Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, Giovanni; Dragoni, Eugenio

    2015-07-01

    Shape memory alloys, particularly in the form of thin wires, are becoming increasingly attractive in the industrial field for the construction of compact actuators with high-power density. The structural and functional fatigue behavior of shape memory alloys undergoing thermomechanical cycling has been investigated only partially in the technical literature. In particular, the effects of operating parameters like the degree of martensite-austenite transformation and the heating rate on the fatigue life of the alloy have received very little attention so far. This paper explores the effect of these two parameters on the fatigue response of commercial SMA wires exposed to two linear stress-strain profiles during cycling. The results show the beneficial effects of partial transformation on the structural and functional life of the wires, with negligible loss of performance in terms of useful stroke. Though less markedly, the heating rate also has an effect on the structural and functional response, with the sine waveform supply performing better than the square profile.

  5. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    SciTech Connect

    Xiao, H. B.; Yang, C. P. Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-05-28

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T{sub M}). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  6. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    SciTech Connect

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  7. Effects of magnetic field on the shape memory behavior of single and polycrystalline magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Turabi, Ali Sadi

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  8. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  9. A lightweight shape-memory magnesium alloy.

    PubMed

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries. PMID:27463668

  10. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  11. Shape memory thermal conduction switch

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  12. Shape memory alloy consortium (SMAC)

    NASA Astrophysics Data System (ADS)

    Jacot, A. Dean

    1999-07-01

    The application of smart structures to helicopter rotors has received widespread study in recent years. This is one of the major thrusts of the Shape Memory Alloy Consortium (SMAC) program. SMAC includes 3 companies and 4 Universities in a cost sharing consortium funded under DARPA Smart Materials and Structures program. This paper describes the objective of the SMAC effort, and its relationship to a previous DARPA smart structure rotorcraft program from which it originated. The SMAC program includes NiTinol fatigue/characterization studies, SMA actuator development, and ferromagnetic SMA material development. The paper summarizes the SMAC effort, and includes background and details on Boeing's development of a SMA torsional actuator for rotorcraft applications. SMA actuation is used to retwist the rotorcraft blade in flight, and result in a significant payload increase for either helicopters or tiltrotors. This paper is also augmented by several other papers in this conference with specific results from other SMAC consortium members.

  13. Electromotive force generation using the dynamic response of Ni0Mn28.5Ga21.5 magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Bruno, N.; Ciocanel, C.; Feigenbaum, H.

    2011-04-01

    Magnetic Shape Memory Alloys (MSMAs) are materials that respond to a change in either compressive stress or magnetic field, and can be used for applications such as actuation, sensing, and power harvesting. MSMA prismatic specimens are usually loaded magneto-mechanically by a compressive stress applied along the longest side of the specimen and by a magnetic field applied normal to the direction of the compressive stress. Karaman et al. proved the viability of using MSMAs, specifically NiMnGa single crystals, for energy harvesting applications using up to 5 Hz of cyclic stress. The group proposed a simple mathematical model to predict electrical voltage output generated by the material during the shape recovery process. The voltage output predicted by the model matched well with experimental results recorded at low frequencies1. The magnetization reversal responsible for the voltage output has been approximated by Karaman et al. does not use the constitutive relations for the magneto-mechanical behavior of the material, such as that proposed by Kiefer and Lagoudas2,3. This work presents simulated and experimental results describing the electromotive force (EMF) producing capabilities of a NiMnGa magnetic shape memory alloy (MSMA) at frequencies of up to 10 Hz. Unlike previous work, the current paper uses the constitutive model developed by Kiefer and Lagoudas2-4 and the corresponding magnetization relations to theoretically predict the voltage output of the material. COMSOL Multiphysics 3.5a and Simulink were used to generate the simulated results for different constant bias magnetic fields and frequencies of excitation, partial reorientation strains and stress amplitudes. Simulated results are compared to experimental data and the reasons for data match/mismatch are discussed.

  14. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  15. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  16. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-07-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni-xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  17. Functional Fatigue and Tension-Compression Asymmetry in [001]-Oriented Co49Ni21Ga30 High-Temperature Shape Memory Alloy Single Crystals

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Niendorf, T.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Eggeler, G.; Maier, H. J.

    2015-03-01

    Conventional shape memory alloys cannot be employed for applications in the elevated temperature regime due to rapid functional degradation. Co-Ni-Ga has shown the potential to be used up to temperatures of about 400 °C due to a fully reversible superelastic stress-strain response. However, available results only highlight the superelastic response for single cycle tests. So far, no data addressing cyclic loading and functional fatigue are available. In order to close this gap, the current study reports on the cyclic degradation behavior and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 single crystals at elevated temperatures. The cyclic stress-strain response of the material under displacement controlled superelastic loading conditions was found to be dictated by the number of active martensite variants and different resulting stabilization effects. Co-Ni-Ga shows a large superelastic temperature window of about 400 °C under tension and compression, but a linear Clausius-Clapeyron relationship could only be observed up to a temperature of 200 °C. In the present experiments, the samples were subjected to 1000 cycles at different temperatures. Degradation mechanisms were characterized by neutron diffraction and transmission electron microscopy. The results in this study confirm the potential of these alloys for damping applications at elevated temperatures.

  18. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-10-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni- xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  19. Effect of the M(s) transformation temperature on the wear behaviour of NiTi shape memory alloys for articular prosthesis.

    PubMed

    Peña, J; Solano, E; Mendoza, A; Casals, J; Planell, J A; Gil, F J

    2005-01-01

    The main objective of this work has been the characterisation and correlation of the wear behaviour of the NiTi shape memory alloys in their different phases. The weight losses for the different alloys in function of the present phase, and of the M(s) transformation temperature are studied. Adhesive wear tests, Pin-on-Disk, according to the ASTM-G99 standard have been carried out. The thermoelastic martensitic transformations that cause the super-elastic effect, the reorientation and coalescence of martensitic plates and the damping effect promotes a high ability to accommodate large deformations without generating permanent damages that causes the wear. The resulting plastic deformation may be accumulated during wear process without generating fracture. The results show that the wear resistance is mainly dependent of the M(s) transformation temperature for both alloys. For the NiTi alloys also the Ni atomic percentage and the hardness of the alloys are important parameters in the wear behavior.

  20. Effect of Thermal Cycling on Martensitic Transformation Characteristics of (Ni47Ti44)100-xNbx Shape Memory Alloys

    SciTech Connect

    He, X. M.; Yan, D. S.; Rong, L. J.; Li, Y. Y.

    2006-03-31

    (Ni47Ti44)100-xNbx (x=3, 9, 15, 20, 30at.%) shape memory alloys are prepared and their transformation temperatures and transformation latent heats under conditions of various thermal cycling times are systematically investigated by differential scanning calorimeter (DSC). It is found that the martensitic transformation behavior in the experimented alloys are strong influenced by the Nb-content and thermal cycling times. The results showed that the transformation temperatures of experimented alloys decreased with increase of the cycling number, and the lower the Nb-content in the (Ni47Ti44)100-xNbx alloy, the more the Ms temperature decreased. With increasing of the thermal cycling times, the martensitic transformation latent heats ( {delta} H B2{yields}B19' ) and the reverse transformation latent heats ({delta} H B19'{yields}B2) of (Ni47Ti44)100-xNbx alloys all linearly decrease, but the decrease amplitude is not high.

  1. Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Maier, H. J.; Niendorf, T.

    2016-03-01

    Conventional shape memory alloys (SMAs), such as binary Ni-Ti, are typically limited to service temperatures below 100 °C. Recent studies on Co-Ni-Ga high-temperature SMAs revealed the potential that these alloys can be used up to temperatures of about 400 °C. Analysis of the cyclic functional properties showed that degradation in these alloys is mainly triggered by intensive dislocation motion. However, data on the cyclic stress-strain response and the mechanisms leading to functional degradation of Co-Ni-Ga above 300 °C were missing in open literature. Current results reveal that above 300 °C diffusion-controlled mechanisms, e.g., precipitation of secondary phases and changes in the chemical degree of order, seem to dictate cyclic instability. Detailed neutron and transmission electron microscopy analyses following superelastic cycling in a temperature range of 200-400 °C were employed to characterize the changes in degradation behavior above 300 °C.

  2. Deployment shock attenuation of a solar array tape hinge by means of the Martensite detwinning of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Ho; Jeong, Ju-Won; Kim, Young-Jin; Lee, Jung-Ju

    2016-03-01

    This paper presents a new tape hinge for attenuating the deployment shock of a satellite solar array. This hinge uses the Martensite detwinning of Shape Memory Alloy (SMA). To attenuate the deployment shock, a NiTi SMA strip is assembled between two curved steel strips. The attenuation performance of the hinge is analyzed using a SMA detwinning constitutive equation. A prototype of the hinge is manufactured and its characteristics are measured in a bending test and in a deployment test. Finally, the deployment performance of the prototype hinge is investigated on a satellite model. It is shown that the new SMA damped tape hinge can effectively minimize the deployment shock and dynamic perturbation while also maintaining suitable deployment performance.

  3. Two internal-friction peaks related to thermoelastic martensitic transformations in CuAlNiMnTi shape-memory alloy

    SciTech Connect

    Gong, C.L.; Han, F.S.; Li, Z.; Wang, M.P.

    2004-09-01

    A partial phase transition method was used in internal friction measurements to study the motion of phase interface in martensitic transition of CuAlNiMnTi polycrystalline shape memory alloy. It is found that the IF peak arisen from the reversible martensitic transition is in fact composed of two independent IF peaks that relate to different motion modes of the interface. The low-temperature peak corresponds to the minimum of relative dynamic modulus and is attributed to an elastic modulus softening effect caused by the viscous motion of the phase interface. The high-temperature peak corresponds to the inflection point of the relative dynamic modulus and the volume change produced by the normal motion of the phase interface is responsible for the peak.

  4. Effect of Ti addition on the mechanical properties and the magnetocaloric effect of Ni-Mn-In metamagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Urdiaín, A.

    2015-11-01

    The effect of small amounts of Ti on the microstructure, mechanical properties and the magnetocaloric effect of a Ni-Mn-In metamagnetic shape memory alloy has been investigated. A strong grain refinement is observed as a consequence of the Ti addition, which in turn does not affect the crystallographic structure. Linked to the grain size reduction, mechanical properties such as microhardness and yield strength considerably increase with the increasing Ti content, following a Hall-Petch relation. Likewise, the MT temperature diminishes with the decreasing grain size, in spite of the increasing e/a. On the other hand, both the Curie temperature and the saturation magnetization of the martensite decrease as a result of the Ti addition. The lowering of the MT temperature brought by the grain refinement and the decrease of the saturation magnetization of the martensite that occurs as a consequence of the Ti addition result in a considerable enhancement of the magnetocaloric effect.

  5. Effect of shock-wave loading on mechanical and thermomechanical characteristics of shape-memory alloys 45Ti-45Ni-10Nb and 43Ti-46Ni-8Nb-3Zr

    NASA Astrophysics Data System (ADS)

    Popov, N. N.; Lar'kin, V. F.; Ogorodnikov, V. A.; Presnyakov, D. V.; Lar'kina, Yu. A.; Aushev, A. A.; Sysoyeva, T. I.; Suvorova, E. B.; Kostyleva, A. A.

    2016-09-01

    This work was performed to study the behavior of 45Ti-45Ni-10Nb and 43Ti-46Ni-8Nb-3Zr (at %) shape-memory alloys (SMAs) under the effect of severe dynamic deformation to use the obtained results to develop technologies based on SMAs. Cast alloys were used for the tests. The elemental and phase compositions of the alloys in the initial state, as well as the phase composition, kinetics, and temperatures of phase transformations after heat treatment (annealing in a vacuum at 850°C for 4 h, furnace cooling) have been determined. The mechanical and thermomechanical characteristics of these alloys before and after shock-wave loading have been determined.

  6. Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hirsinger, L.; Lexcellent, C.

    2003-10-01

    In this paper, a predictive model of field-induced strain in Ferromagnetic Shape Memory Alloy (FSMA) is proposed. This phenomenological scalar magneto-mechanical model is built in the frame of thermodynamic of irreversible process. The strain mechanism corresponds to the reorientation process of twinned martensite platelets at constant temperature. In this model, physical microstructure parameters are chosen as variables: volume fraction z of one martensite variant and ratio α of magnetic domain width. Pure mechanical behaviour of FSMA is supposed to be decomposed in reversible (or anhysteretic) part and irreversible one. From dissipation, a yield function written in terms of energy, has been introduced to determine when reorientation of twinned martensite platelets (via internal variable z) could occur. Pure magnetic behaviour is supposed to be non-liner reversible. The coupling between magnetism and mechanics is introduced in the expression of magnetisation via microstructure parameters z and a. The good prediction capability of the proposed model is shown by an identification made on experiments performed by O'Handley & Murray: simulations of strain induced by pure mechanical loading or by applied magnetic field under constant compressive stress, are presented and compared with these experiments. These first results are very promising.

  7. Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, G.; Dragoni, E.

    2014-07-01

    The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (thermomechanical fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under thermomechanical fatigue are scarce in the technical literature, and even the few data that are available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by antagonist SMA elements, their stress states are far from being constant in operation. The mismatch between actual working conditions and laboratory settings leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality by completing an experimental campaign involving four fatigue test conditions, which cover most of the typical situations occurring in practice: constant stress, constant-strain, constant stress with limited maximum strain, and linear stress-strain variation with limited maximum strain. The results from the first three test settings, recovered from the previously published works, are critically reviewed and compared with the outcome of the newly performed tests under the fourth arrangement (linear stress-strain variation). General design recommendations emerging from the experimental data are put forward for engineering use.

  8. Effects of the regimes of heat treatment and of the magnitude and temperature of the inducing deformation on the characteristics of the shape-memory effect in the 43Ti-46Ni-9Nb-2Zr alloy

    NASA Astrophysics Data System (ADS)

    Popov, N. N.; Sysoeva, T. I.; Shchedrina, E. V.; Presnyakov, D. V.; Grishin, E. N.

    2015-06-01

    The influence of the types and regimes of heat treatment, as well as of the temperature and magnitude of the shape-memory-inducing deformation on the structural changes, martensitic transformations, parameters of the crystal lattice and substructure, and the mechanical and thermomechanical characteristics have been studied in the new shape-memory alloy of composition 43Ti-46Ni-9Nb-2Zr (at %). The conditions of the appearance and realization of the shape-memory effect have been determined. The relationship between the structural features and the values of the thermomechanical characteristics of the alloy has been revealed. The regimes of the heat treatment and of the deformation that induces the shape-memory effect, which provide in this alloy the obtaining of high thermomechanical characteristics, have been determined.

  9. Effects of hafnium, heat treatment and cycling under an applied stress on the transformations of cold worked NiTi-based shape memory alloys

    SciTech Connect

    Zhang, C.; Zee, R.H.; Thoma, P.E.; Boehm, J.J.

    1998-12-31

    The effect of thermal cycling under a constant tensile load on the transformation temperatures (TTs) of NiTi-based shape memory alloys (SMAs) is investigated. Three SMAs are examined in this study: a near equiatomic binary Ni{sub 49}Ti{sub 51} alloy and two ternary Ni{sub 49}Ti{sub 51{minus}x}Hf{sub x} alloys with 1 at% and 3 at% Hf. The SMAs are in the form of wires with 40% cold work (reduction in area) and heat treated between 300 C and 600 C. These SMA wires are thermally cycled between their martensite (M) and austenite (A) phases for 100 cycles under an axial tensile stress of 206.8 MPa (30K{sub is}) in air. Results show that the effect of thermal cycling on the M and A TTs depends on heat treatment (HT) temperature and composition in a complex manner. For example, the M TT, of the binary NiTi SMA heat treated between 300 C and 450 C, increases during thermal cycling. However, with HT temperatures between 500 C and 600 C, the M TT decreases slightly during thermal cycling for HT temperatures up to 500 C, and the M TT decreases during thermal cycling when heat treated at 600 C. These results are due to changes in internal stress and structure, such as dislocation density and arrangement, which are affected by HT temperature and thermal cycling. The influence of Hf content on the changes in the M and A TTs during thermal cycling is also shown.

  10. Thermomechanical behavior and microstructural evolution of a Ni(Pd)-rich Ni24.3Ti49.7Pd26 high temperature shape memory alloy

    SciTech Connect

    Benafan, O.; Garg, A.; Noebe, R. D.; Bigelow, G. S.; Padula, S. A.; Gaydosh, D. J.; Vaidyanathan, R.; Clausen, B.; Vogel, S. C.

    2015-04-20

    We investigated the effect of thermomechanical cycling on a slightly Ni(Pd)-rich Ni24.3Ti49.7Pd26 (near stochiometric Ni–Ti basis with Pd replacing Ni) high temperature shape memory alloy. Furthermore, aged tensile specimens (400 °C/24 h/furnace cooled) were subjected to constant-stress thermal cycling in conjunction with microstructural assessment via in situ neutron diffraction and transmission electron microscopy (TEM), before and after testing. It was shown that in spite of the slightly Ni(Pd)-rich composition and heat treatment used to precipitation harden the alloy, the material exhibited dimensional instabilities with residual strain accumulation reaching 1.5% over 10 thermomechanical cycles. This was attributed to insufficient strengthening of the material (insufficient volume fraction of precipitate phase) to prevent plasticity from occurring concomitant with the martensitic transformation. In situ neutron diffraction revealed the presence of retained martensite while cycling under 300 MPa stress, which was also confirmed by transmission electron microscopy of post-cycled samples. Neutron diffraction analysis of the post-thermally-cycled samples under no-load revealed residual lattice strains in the martensite and austenite phases, remnant texture in the martensite phase, and peak broadening of the austenite phase. The texture we developed in the martensite phase was composed mainly of those martensitic tensile variants observed during thermomechanical cycling. Presence of a high density of dislocations, deformation twins, and retained martensite was revealed in the austenite state via in-situ TEM in the post-cycled material, providing an explanation for the observed peak broadening in the neutron diffraction spectra. Despite the dimensional instabilities, this alloy exhibited a biased transformation strain on the order of 3% and a two-way shape memory effect (TWSME) strain of ~2%, at relatively high actuation

  11. Shape memory in nanostructured metallic alloys

    NASA Astrophysics Data System (ADS)

    Guda Vishnu, Karthik

    Materials with nanoscale dimensions show mechanical and structural properties different to those at the macro scale and engineering their nanostructure opens up potential avenues for designing materials tailored for a specific application. This work is focused on shape memory materials, an important class of active materials with wide variety of applications in medical, aerospace and automobile industries, due to their two important properties of super-elasticity and shape memory. These unique properties originate from a solid-solid transformation called martensite transformation and the main objectives of this research are to i) study the atomic mechanisms of the martensite transformation, ii) study the effect of nano-structure on shape memory behavior and iii) computationally explore avenues through which their performance is optimized. A combination of density functional theory (DFT) and molecular dynamics (MD) simulations is used to achieve this. This approach gives an atomic level description and the effects of size, surfaces and interfaces are explicitly described. Detailed analysis of the atomic mechanisms of the martensite transformation in NiTi using DFT revealed a new phase transformation (B19'-B19'') that sheds light on why the theoretically predicted ground state (BCO) is not observed experimentally and that the experimentally observed martensite phase (B19') can be stabilized by internal stresses. This finding is very important as the theoretically predicted ground state does not allow for shape memory in nanoscale NiTi samples. The size effects caused by the presence of free surfaces and the role of nanostructure in martensite transformation have been investigated in thin NiTi slabs. Surface energies of B2 phase (austenite), B19 (orthorhombic), B19' (martensite) and the body centered orthorhombic phase (BCO) are calculated using DFT. (110)B2 surfaces with in-plane atomic displacements stabilize the austenite phase with respect to B19' and BCO, thus

  12. Shape memory metals. Final report

    SciTech Connect

    Dworak, T.D.

    1993-09-01

    The ability to define a manufacturing process to form, heat-treat, and join parts made of nickel-titanium and/or copper-zinc-aluminum shape memory alloys was investigated. The specific emphasis was to define a process that would produce shape memory alloy parts in the configuration of helical coils emulating the appearance of compression springs. In addition, the mechanical strength of the finished parts along with the development of a electrical lead attachment method using shape memory alloy wire was investigated.

  13. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    NASA Astrophysics Data System (ADS)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  14. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth. PMID:23744099

  15. Phase Transition and Texture Evolution in the Ni-Mn-Ga Ferromagnetic Shape-Memory Alloys Studied by a Neutron Diffraction Technique

    NASA Astrophysics Data System (ADS)

    Nie, Z. H.; Wang, Y. D.; Wang, G. Y.; Richardson, J. W.; Wang, G.; Liu, Y. D.; Liaw, P. K.; Zuo, L.

    2008-12-01

    The phase transition and influence of the applied stress on the texture evolution in the as-cast Ni-Mn-Ga ferromagnetic shape-memory alloys were studied by the time-of-flight (TOF) neutron diffraction technique. The neutron diffraction experiments were performed on the General Purpose Powder Diffractometer (Argonne National Laboratory). Inverse pole figures were determined from the neutron data for characterizing the orientation distributions and variant selections of polycrystalline Ni-Mn-Ga alloys subjected to different uniaxial compression deformations. Texture analyses reveal that the initial texture for the parent phase in the as-cast specimen was composed of {left\\{ {{text{001}}} right\\}}{left< {{text{100}}} rightrangle } , {left\\{ {{text{001}}} right\\}}{left< {{text{110}}} rightrangle } , {left\\{ {{text{011}}} right\\}}{left< {{text{100}}} rightrangle } , and {left\\{ {{text{011}}} right\\}}{left< {{text{110}}} rightrangle } , which was weakened after the compression deformation. Moreover, a strong preferred selection of martensitic-twin variants ( {left\\{ {{text{110}}} right\\}}{left< {{text{001}}} rightrangle } and {left\\{ {{text{100}}} right\\}}{left< {{text{001}}} rightrangle } ) was observed in the transformed martensite after a compression stress applied on the parent phase along the cyclindrical axis of the specimens. The preferred selection of variants can be well explained by considering the grain/variant-orientation-dependent Bain-distortion energy.

  16. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers

    NASA Astrophysics Data System (ADS)

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S.; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-06-01

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ~3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ~3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  17. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  18. The Influence of Hydrogen on Shape Memory Effect and Superelasticity in [001]-Oriented FeNiCoAlTi Single Crystals

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Platonova, Yu. N.

    2016-04-01

    Using [001]-oriented single crystals of an iron-based alloy (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti at.%), which were aged at 973 K for 7 h, the influence of hydrogen on the axial-stress temperature response σ0.1(T), the values of shape-memory effect (SME) and superelasticity (SE) is investigated during thermoelastic γ-α'-martensitic transformation (MT) (γ-FCC - face centered lattice, α'-BCT - body centered tetragonal lattice) under tensile conditions. It is found that saturation of [001]-oriented single crystals of the Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti alloy with hydrogen within 2 h at T = 300 K and current density j = 50 mA/cm2 results in lower starting temperature, Ms, of a forward MT during cooling and Md temperature, increased strength properties of the high-temperature phase at Md temperature and wider temperature range of SE observation compared to hydrogen-free crystals. It is shown that hydrogen affects but only slightly the SME and SE values, the temperature and stress hysteresis under the above saturation mode. In [001]-oriented crystals aged at 973 K for 7 h, which are saturated with hydrogen and hydrogen-free, the SME and SE values are found to be equal to 7.8-8 and 6.5-6.9%, respectively.

  19. Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys

    SciTech Connect

    Seguí, C.

    2014-03-21

    Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic behavior for a range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic transformation between any magnetic state of austenite and martensite. This work presents a detailed analysis of the effect of atomic order on Ni-Co-Mn-Ga alloys through the evolution of structural and magnetic transitions after quench from high temperatures and during post-quest ageing. It is found that the way in which the atomic order affects the martensitic transformation temperatures and entropy depends on the magnetic order of austenite and martensite. The results can be explained assuming that improvement of atomic order decreases the free energy of the structural phases according to their magnetic order. However, it is assumed in this work that changes in the slope—that is, the entropy—of the Gibbs free energy curves are also decisive to the stability of the two-phase system. The experimental transformation entropy values have been compared with a phenomenological model, based on a Bragg–Williams approximation, accounting for the magnetic contribution. The excellent agreement obtained corroborates the magnetic origin of changes in transformation entropy brought about by atomic ordering.

  20. THE EFFECT OF REPEATED COMPRESSIVE DYNAMIC LOADING ON THE STRESS-INDUCED MARTENSITIC TRANSFORMATION IN NiTi SHAPE MEMORY ALLOYS

    SciTech Connect

    D. MILLER; W. THISSELL; ET AL

    2000-08-01

    It has been shown that quasi-static, cyclic, isothermal mechanical loading influences the mechanical response of the stress-induced martensitic transformation in fully annealed NiTi Shape Memory Alloys (SMAs). As the cycle number increases, hardening of the stress-strain response during the martensitic phase transformation is seen along with a decrease in the threshold stress for initiation of stress-induced martensite. Also, the amount of plastic strain and detwinned martensitic strain decreases as the cycle number increases. However, NiTi SMAs have not been experimentally explored under high compressive strain rates. This research explores the cyclic near-adiabatic stress-induced martensitic loading using a Split Hopkinskin Pressure Bar (SHPB). The results of the dynamic loading tests are presented with emphasis on the loading rate, stress-strain response, specimen temperature and post-test microstructural evaluation. The results from the high strain rate tests show similarities with the quasi-static results in the hardening of the stress-strain response and shifting of the threshold stress for initiation of stress-induced martensite.

  1. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure. PMID:23556847

  2. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  3. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  4. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  5. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf; Karaca, Haluk E.; Noebe, Ronald D.; Jawahir, I. S.

    2015-06-01

    Poor machinability with conventional machining processes is a major shortcoming that limits the manufacture of NiTi components. To better understand the effects of phase state on the machining performance of NiTi alloys, cutting temperature, tool-wear behavior, cutting force components, tool-chip contact length, chip thickness, and machined surface quality data were generated from a NiTi alloy using precooled cryogenic, dry, minimum quantity lubrication (MQL), and preheated machining conditions. Findings reveal that machining NiTi in the martensite phase, which was achieved through precooled cryogenic machining, profoundly improved the machining performance by reducing cutting force components, notch wear, and surface roughness. Machining in the austenite state, achieved through preheating, did not provide any benefit over dry and MQL machining, and these processes were, in general, inferior to cryogenic machining in terms of machining performance, particularly at higher cutting speeds.

  6. On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.

    2015-01-01

    Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress

  7. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  8. Fretting behavior of NiTi shape memory alloy against long bone in the imitated human physiological solution

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Xu, Y. T.; Xia, T. D.; Da, G. Z.

    2007-07-01

    The environment of orthopaedic implants sometimes induces vibrations at the contact of the modular prostheses components. In this paper the fretting behavior of NiTi SMAs against human bones in the imitated human physiological solution was studied at various displacement amplitudes and Ph value. Surface micrograph after fretting was observed by MEF3 microscope. Appearance of fretting scar was measured by 2206 roughness tester. The result shows that the friction coefficient between the bone and NiTi SMAs pairs declined due to the lubrication effect of Hank's solution, and which increased when Ph value of fluid was not 7.2 due to the corrosion. So the friction coefficient at acid and alkali Hank's solution is higher than those at the neutral solution and ambient air condition. Generally speaking, the friction coefficient between the bone and NiTi SMAs tend to be stable with the increasing amplitude at all test conditions. It is because that the surface was oxidized to restrain the forming of wear debris and the further development of fretting scars. Although the length and width of the wear scars in simulation body fluid are smaller than that at ambient air condition, the surface of NiTi SMAs damaged is characterized by deep scratches with debris particles within the contact area. Fretting regime of NiTi/bones pairs exhibits the mixed regime at ambient air condition and the slip regime in the Hank's solution.

  9. Magnetic and magnetocaloric properties of ferromagnetic shape memory alloy Mn50Ni40In10-xSbx

    NASA Astrophysics Data System (ADS)

    Liu, Hongyan; Liu, Zhuhong; Li, Getian; Ma, Xingqiao

    2016-10-01

    Magnetic properties of Mn50Ni40In10-xSbx alloys and thermal history effect on the magnetization behavior and magnetic entropy change of Mn50Ni40In9Sb1 have been systematically studied. It indicates that the martensitic transformation temperature gradually increases with the increase of Sb content. Meanwhile, the overall magnetization of austenite decreases and that of martensite increases. The magnetization behavior, the critical magnetic field for martensite-to-austenite transformation and the magnetic entropy are very sensitive to the thermal history effect. The maximum magnetic entropy change is up to 27.1 J kg-1 K-1 in Mn50Ni40In9Sb1 alloy under a magnetic field of 30 kOe with continuous heating method.

  10. Effect of Isothermal Aging on the Physical Properties of Mn53Ni23Ga22 Ferromagnetic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Dong, G. F.; Gao, Z. Y.

    2016-09-01

    The effect of isothermal aging on the physical properties of Mn53Ni25Ga22 alloy has been systematically investigated. The results showed that the (Mn,Ni)4Ga-type precipitates are observed in all isothermal aged samples. However, second phases tended to align into grains and had two preferred orientations. The martensitic transformation temperatures decreased remarkably with the increase of aging time, while structure of the alloy gradually changed from five-layer tetragonal martensite to austenite. Additionally, we found that the appropriate aging-treated alloys can significantly enhance the saturation magnetization of Mn53Ni25Ga22 alloy. However, the Curie temperatures decreased remarkably with increased aging time due to the variation of the composition of the alloy.

  11. Phenomenological modeling of ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kiefer, Bjorn; Lagoudas, Dimitris C.

    2004-07-01

    A thermodynamically consistent phenomenological model is presented which captures the ferromagnetic shape memory effect, i. e. the large macroscopically observable shape change of magnetic shape memory materials under the application of external magnetic fields. In its most general form the model includes the influence of the microstructure for both the volume fraction of different martensitic variants and magnetic domains on the described macroscopic constitutive behavior. A phase diagram based approach is taken to postulate functions governing the onset and termination of the reorientation process. A numerical example is given for an experiment on a NiMnGa single crystal specimen reported in the literature, for which the model is reduced to a two-dimensional case of an assumed magnetic domain structure.

  12. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    NASA Astrophysics Data System (ADS)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  13. A first principles study of iron doping in Ni2CoGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Tavana, A.; Mikaeilzadeh, L.

    2015-11-01

    First principles calculations have been performed for the Ni2Co1-xFexGa Heusler compound in order to investigate the nature of structural instability and the effect of iron doping in enhancing the magneto-structural properties. Calculations show that the origin of structural instability is based on the Jahn-Teller mechanism. Based on the obtained results, the structural instability decreases by iron doping, nevertheless, it is expected that the structural phase transition temperature be always higher than the room temperature. Also, the results show that iron doping enhances the Curie temperature by enhancing the exchange interactions in these compounds. These suggest that the iron doping improves the overall magneto-mechanical properties of the Ni2CoGa Heusler compound.

  14. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  15. Specific features of the electronic properties of Ti50Ni50- x Cu x alloys with the shape memory effect

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Korolev, A. V.; Kuranova, N. N.; Pushin, V. G.

    2016-06-01

    The magnetic susceptibility, electrical resistivity, and thermoelectric power of Ti50Ni50‒ x Cu x alloys with copper concentrations x ⩽ 25 at % have been measured in the temperature range of 2-500 K. The change in the electronic band structure near the Fermi level upon thermoelastic martensitic transformations, such as B2 ↔ B19', B2 ↔ B19 ↔ B19', and B2 ↔ B19, has been considered.

  16. Isothermal oxidation study on NiMnGa ferromagnetic shape memory alloy at 600-1000 °C

    NASA Astrophysics Data System (ADS)

    Kök, Mediha; Pirge, Gürsev; Aydoğdu, Yıldırım

    2013-03-01

    Oxidation behavior of NiMnGa alloy has been investigated under isothermal temperature by thermo gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy equipped with an energy dispersive X-ray (SEM-EDX) spectroscope systems. The Ni-28.5Mn-20.5Ga alloy (composition in atomic percent) was exposed to oxygen atmosphere isothermally, i.e., between 600 °C and 1000 °C, for 1 h. A gravimetric method was used to determine the oxidation kinetics; weight gain per unit area as a function of time. It was determined that the oxidation constant increases significantly with isothermal temperature. Activation energy of the oxidation was found to be 152 kJ/mol. X-ray diffraction patterns of the heat-treated samples contain oxide peaks, mainly belonging to Mn3O4. X-ray analyses demonstrate that the amount of the oxide increases with isothermal temperature while that of martensite phase decreases. The scanning electron microscopy equipped with an energy dispersive X-ray (SEM-EDX) spectroscope analysis also gives the same result. According to magnetic measurements, the saturation of NiMnGa alloys decreases with rising isothermal oxidation temperature.

  17. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  18. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  19. Effect of Nano CeO2 Addition on the Microstructure and Properties of a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Jain, Ashish Kumar; Hussain, Shahadat; Sampath, V.; Dasgupta, Rupa

    2016-08-01

    This article deals with the effect of adding nano CeO2 to act as a grain pinner/refiner to a known Cu-Al-Ni shape memory alloy. Elements were taken in a predefined ratio to prepare 300 g alloy per batch and melted in an induction furnace. Casting was followed by homogenization at 1173 K (900 °C) and rolling to make sheets of 0.5-mm thickness. Further, samples were characterized for microstructure using optical and electron microscope, hardness, and different phase studies by X-ray and transformation temperatures by differential scanning calorimetry. X-ray peak broadenings and changes were investigated to estimate the crystallite size, lattice strain, and phase changes due to different processing steps. A nearly uniform distribution of CeO2 and better martensitic structure were observed with increasing CeO2. The addition of CeO2 also shows a visible effect on the transformation temperature and phase formation.

  20. Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu-Al-Ni shape memory alloy

    SciTech Connect

    Sanchez-Arevalo, F.M.; Aldama-Reyna, W.; Lara-Rodriguez, A.G.; Garcia-Fernandez, T.; Pulos, G.; Trivi, M.; Villagran-Muniz, M.

    2010-05-15

    Continuous and pulsed electromagnetic radiation was used to detect the self-accommodation mechanism on a polycrystalline Cu-13.83 wt.%Al-2.34 wt.%Ni shape memory alloy. Rectangular samples of this alloy were mechanically polished to observe the austenite and martensite phases. The samples were cooled in liquid nitrogen prior to the experiments to obtain the martensite phase. Using a dynamic speckle technique with a continuous wave laser we obtained the time history of the speckle pattern image and monitored the surface changes caused by the self-accommodation mechanism during the inverse (martensitic to austenitic) transformation. Using a photoacoustic technique based on a pulsed laser source it was also possible to detect the self-accommodation phenomena in a bulk sample. For comparison purposes, we used differential scanning calorimetry (DSC) to detect the critical temperatures of transformation and use these as reference to evaluate the performance of the optical and photoacoustical techniques. In all cases, the same range of temperature was obtained during the inverse transformation. From these results, we conclude that time history speckle pattern (THSP) and pulsed photoacoustic are complementary techniques; they are non-destructive and useful to detect surface and bulk martensitic transformation induced by a temperature change.

  1. Simulations of Self-Expanding Braided Stent Using Macroscopic Model of NiTi Shape Memory Alloys Covering R-Phase

    NASA Astrophysics Data System (ADS)

    Frost, M.; Sedlák, P.; Kruisová, A.; Landa, M.

    2014-07-01

    Self-expanding stents or stentgrafts made from Nitinol superelastic alloy are widely used for a less invasive treatment of disease-induced localized flow constriction in the cardiovascular system. The therapy is based on insertion of a stent into a blood vessel to maintain the inner diameter of the vessel; it provides highly effective results at minimal cost and with reduced hospital stays. However, since stent is an external mechanical healing tool implemented into human body for quite a long time, information on the mechanical performance of it is of fundamental importance with respect to patient's safety and comfort. Advantageously, computational structural analysis can provide valuable information on the response of the product in an environment where in vivo experimentation is extremely expensive or impossible. With this motivation, a numerical model of a particular braided self-expanding stent was developed. As a reasonable approximation substantially reducing computational demands, the stent was considered to be composed of a set of helical springs with specific constrains reflecting geometry of the structure. An advanced constitutive model for NiTi-based shape memory alloys including R-phase transition was employed in analysis. Comparison to measurements shows a very good match between the numerical solution and experimental results. Relation between diameter of the stent and uniform radial pressure on its surface is estimated. Information about internal phase and stress state of the material during compression loading provided by the model is used to estimate fatigue properties of the stent during cyclic loading.

  2. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  3. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  4. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  5. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2015-05-26

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  6. Large internal stress-assisted twin-boundary motion in Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Nie, Z. H.; Cong, D. Y.; Liu, D. M.; Ren, Y.; Pötschke, M.; Roth, S.; Wang, Y. D.

    2011-10-01

    The twin boundary motion driven by thermo-magnetic coupling was in-situ studied in a NiMnGa single crystal using high-energy x-ray diffraction technique. An unstable martensite with an internal stress of ˜8 MPa was obtained through a thermo-magnetic training. The triple martensite variants assisted by internal stress are distinct from the self-accommodated martensite twin variants with a stress-free state, and a single martensite-variant can be actuated only by a magnetic field of ˜0.34 T, equivalent to an actuator stress of about 1.3 MPa. The generation of so large internal stress among variants is attributed to the altered martensite nucleation sites triggered by external fields during thermo-magnetic training.

  7. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  8. Understanding the Shape-Memory Alloys Used in Orthodontics

    PubMed Central

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  9. Final Technical Report: Nanostructured Shape Memory ALloys

    SciTech Connect

    Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko

    2005-07-28

    With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

  10. FOREWORD: Shape Memory and Related Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Yong

    2005-10-01

    The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory

  11. Shape memory alloy/shape memory polymer tools

    DOEpatents

    Seward, Kirk P.; Krulevitch, Peter A.

    2005-03-29

    Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.

  12. Shape-Memory Polymer Composites

    NASA Astrophysics Data System (ADS)

    Madbouly, Samy A.; Lendlein, Andreas

    The development of shape-memory polymer composites (SMPCs) enables high recovery stress levels as well as novel functions such as electrical conductivity, magnetism, and biofunctionality. In this review chapter the substantial enhancement in mechanical properties of shape-memory polymers (SMPs) by incorporating small amounts of stiff fillers will be highlighted exemplarily for clay and polyhedral oligomeric silsesquioxanes (POSS). Three different functions resulting from adding functional fillers to SMP-matrices will be introduced and discussed: magnetic SMPCs with different types of magnetic nanoparticles, conductive SMPCs based on carbon nanotubes (CNTs), carbon black (CB), short carbon fiber (SCF), and biofunctional SMPCs containing hydroxyapatite (HA). Indirect induction of the shape-memory effect (SME) was realized for magnetic and conductive SMPCs either by exposure to an alternating magnetic field or by application of electrical current. Major challenges in design and fundamental understanding of polymer composites are the complexity of the composite structure, and the relationship between structural parameters and properties/functions, which is essential for tailoring SMPCs for specific applications. Therefore the novel functions and enhanced properties of SMPCs will be described considering the micro-/nanostructural parameters, such as dimension, shape, distribution, volume fraction, and alignment of fillers as well as interfacial interaction between the polymer matrix and dispersed fillers. Finally, an outlook is given describing the future challenges of this exciting research field as well as potential applications including automotive, aerospace, sensors, and biomedical applications.

  13. Achieving giant magnetically induced reorientation of martensitic variants in magnetic shape-memory Ni-Mn-Ga Films by microstructure engineering.

    PubMed

    Ranzieri, Paolo; Campanini, Marco; Fabbrici, Simone; Nasi, Lucia; Casoli, Francesca; Cabassi, Riccardo; Buffagni, Elisa; Grillo, Vincenzo; Magén, Cesar; Celegato, Federica; Barrera, Gabriele; Tiberto, Paola; Albertini, Franca

    2015-08-26

    Giant magnetically induced twin variant reorientation, comparable in intensity with bulk single crystals, is obtained in epitaxial magnetic shape-memory thin films. It is found to be tunable in intensity and spatial response by the fine control of microstructural patterns at the nanoscopic and microscopic scales. A thorough experimental study (including electron holography) allows a multiscale comprehension of the phenomenon.

  14. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  15. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  16. Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff

    2006-01-01

    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.

  17. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    PubMed Central

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  18. The corrosion resistance of composite arch wire laser-welded by NiTi shape memory alloy and stainless steel wires with Cu interlayer in artificial saliva with protein.

    PubMed

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect.

  19. Solvent-driven temperature memory and multiple shape memory effects.

    PubMed

    Xiao, Rui; Guo, Jingkai; Safranski, David L; Nguyen, Thao D

    2015-05-28

    Thermally-activated temperature memory and multiple shape memory effects have been observed in amorphous polymers with a broad glass transition. In this work, we demonstrate that the same shape recovery behaviors can also be achieved through solvent absorption. We investigate the recovery behaviors of programmed Nafion membranes in various solvents and compare the solvent-driven and temperature-driven shape recovery response. The results show that the programming temperature and solvent type have a corresponding strong influence on the shape recovery behavior. Specifically, lower programming temperatures induce faster initial recovery rates and larger recovery, which is known as the temperature memory effect. The temperature memory effect can be used to achieve multi-staged and multiple shape recovery of specimens programmed at different temperatures. Different solvents can also induce different shape recovery, analogous to the temperature memory effect, and can also provide a mechanism for multi-staged and multiple shape memory recovery.

  20. Thermomechanical Modeling of Shape Memory Alloys and Applications

    NASA Astrophysics Data System (ADS)

    Lexcellent, C.; Leclercq, S.

    The aim of the present paper is a general macroscopic description of the thermomechanical behavior of shape memory alloys (SMA). We use for framework the thermodynamics of irreversible processes. This model is efficient for describing the behavior of "smart" structures as a bronchial, a tentacle element and an prosthesis hybrid structure made of Ti Ni SMA wires embedded in a resin epoxy matrix.

  1. Shape memory alloys: New materials for future engineering

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.

    1988-01-01

    Shape memory is a new material property. An alloy which experiences relative severe plastic deformation resumes its original shape again after heating by 10 to 100 C. Besides simple shape memory, in similar alloys there is the second effect where the change in shape is caused exclusively by little temperature change. In pseudo-elasticity, the alloy exhibits a rubber-like behavior, i.e., large, reversible deformation at little change in tension. Beta Cu and beta NiTi alloys have been used in practice. The probability is that soon alloys based on Fe will become available. Recently increasing applications for this alloy were found in various areas of technology, even medical technology. A review with 24 references is given, including properties, production, applications and fundamental principles of the shape memory effect.

  2. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of the variant selection rule

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Nishiura, T.; Kawano, H.; Inamura, T.

    2012-06-01

    The self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a ? B19‧ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111}B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed.

  3. Fullerene embedded shape memory nanolens array.

    PubMed

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-Ho; Brenner, Howard; Song, Young Seok

    2013-01-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability. PMID:24253423

  4. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    SciTech Connect

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature of 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs

  5. Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators

    NASA Astrophysics Data System (ADS)

    AbuZaiter, Alaa; Faris Hikmat, Omer; Nafea, Marwan; Ali, Mohamed Sultan Mohamed

    2016-10-01

    This paper reports a new shape-memory-alloy (SMA) micro-positioning stage. The device has been monolithically micro-machined with a single fabrication step. The design comprises a moving stage that is manipulated by six SMA planar springs actuators to generate movements with three degrees of freedom. The overall design is square in shape and has dimensions of 12 mm × 12 mm × 0.25 mm. Localized thermomechanical training for shape setting of SMA planar springs was performed using electrical current induced heating at restrained condition to individually train each of the six actuators to memorize a predetermined shape. For actuation, each SMA actuator is individually driven using Joule heating induced by an electrical current. The current flow is controlled by an external pulse-width modulation signal. The thermal response and heat distribution were simulated and experimentally verified using infrared imaging. The micro-positioning results indicated maximum stage movements of 1.2 and 1.6 mm along the x- and y-directions, respectively. Rotational movements were also demonstrated with a total range of 20°. The developed micro-positioning device has been successfully used to move a small object for microscopic scanning applications.

  6. Novel tribological systems using shape memory alloys and thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  7. In-Situ High-Energy X-Ray Diffuse-Scattering Study of the Phase Transition in a Ni2MnGa Ferromagnetic Shape-Memory Crystal

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wang, Yan-Dong; Ren, Yang; Liu, Yandong; Liaw, Peter K.

    2008-12-01

    The full information on the changes in many crystallographic aspects, including the structural and microstructural characterizations, during the phase transformation is essential for understanding the phase transition and “memory” behavior in the ferromagnetic shape-memory alloys. In the present article, the defects-related microstructural features connected to the premartensitic and martensitic transition of a Ni2MnGa single crystal under a uniaxial pressure of 50 MPa applied along the [110] crystallographic direction were studied by the in-situ high-energy X-ray diffuse-scattering experiments. The analysis of the characteristics of diffuse-scattering patterns around different sharp Bragg spots suggests that the influences of some defect clusters on the pressure-induced phase-transition sequences of Ni2MnGa are significant. Our experiments show that an intermediate phase is produced during the premartensitic transition in the Ni2MnGa single crystal, which is favorable for the nucleation of a martensitic phase. The compression stress along the [110] direction of the Heusler phase can promote the premartensitic and martensitic transition of the Ni2MnGa single crystal.

  8. Volume magnetic domain mirroring in magnetic shape memory crystals

    NASA Astrophysics Data System (ADS)

    Lai, Yiu-Wai; Schäfer, Rudolf; Schultz, Ludwig; McCord, Jeffrey

    2010-01-01

    From the magnetic domain patterns at adjacent crystal surfaces of NiMnGa shape memory crystals the internal domain configurations across a hidden twin-boundary are derived. The results proof the existence of domains extending from the sample surfaces into the nonvisible sample volume. Moreover, the structural twin boundary inside the material acts as a mirror for the basic domains. The analysis validates the relevance of surface magnetic response analysis for the understanding of the magnetoelastic behavior of magnetic shape memory alloys and is essential for the interpretation of magnetic domain images obtained from other surface-restricted observation techniques.

  9. A shape-memory alloy for high-temperature applications

    SciTech Connect

    Duerig, T.W.; Albrecht, J.; Gessinger, G.H.

    1982-12-01

    An alloy based on the Cu-Al-Ni ternary system has been developed at the research center of Brown, Boveri and Co., Baden, Switzerland, which provides a fully reversible (two-way) shape memory effect at significantly higher temperatures than those afforded by commercial memory alloys such as NiTi and Cu-Zn-Al. The higher temperature capability of this alloy could open new fields for the application of the shape memory effect, particularly in thermal switching and protection devices. After suitable deformation and processing, a shape change is observed while heating the alloy through the temperature interval from 175 to 190/sup 0/C. This shape change can be completely reversed during subsequent cooling from 155 to 125/sup 0/C. The magnitude of the reversible strain produced by this alloy is 1.5%; somewhat higher strains can be achieved if lower memory temperatures can be accepted, and conversely, better high temperature capabilities can be achieved by accepting smaller reversible strains. The memory effects in this alloy have been found to be unaffected by short overheatings to temperatures as high as 300/sup 0/C.

  10. Optically transparent high temperature shape memory polymers.

    PubMed

    Xiao, Xinli; Qiu, Xueying; Kong, Deyan; Zhang, Wenbo; Liu, Yanju; Leng, Jinsong

    2016-03-21

    Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs. The transparent polyimide showed excellent thermomechanical properties and shape memory performances, and retained high optical transparency after many shape memory cycles. PMID:26686222

  11. High-Speed Behavior of Some Shape Memory Alloys

    SciTech Connect

    Bragov, Anatoly M.; Lomunov, Andrey K.; Sergeichev, Ivan V.

    2006-07-28

    The results of dynamic tests of shape memory alloys Ti-Ni and Cu-Al-Ni are given. Compressive tests of Ti-Ni alloy were carried out at temperatures 293-573K. Considerable influence of temperature on module of elasticity prior to the dislocation plastic flow and dislocation yield limit has been mentioned in temperature interval of reverse martensitic transformation. For Cu-Al-Ni alloy a strain rate influence on phase yield limit, module of elasticity prior to the phase unelastic flow, module of elasticity prior to the dislocation plastic flow was negligible. The method of determination of duration of reverse martensitic transformation has been realized by the example of Cu-Al-Ni alloy.

  12. Shape Memory Composite Hybrid Hinge

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  13. Shape coexistence in and near 68Ni

    NASA Astrophysics Data System (ADS)

    Suchyta, Scott

    2015-10-01

    The nuclei in the vicinity of 68Ni have been the subject of considerable experimental and theoretical work focused on studying the evolution of nuclear structure. Situated at the Z = 28 proton shell closure and the fragile N = 40 subshell closure, 68Ni is an important nucleus to understand as a progression is made from stable to increasingly exotic nuclei. The nature and decay of the first excited state in 68Ni has been thoroughly investigated in recent years. The first excited state has a spin and parity of 0+, can be described by the excitation of neutrons across the N = 40 gap, and has been interpreted as a moderately oblate-deformed state that coexists with the spherical ground state. A second low-energy excited 0+ state is also known to exist in 68Ni. Based on comparisons with theoretical calculations, the second excited 0+ state has been proposed to be strongly prolate deformed and based primarily on the excitation of protons across the Z = 28 gap, leading to the inference that three different 0+ states with three distinct shapes coexist below 3 MeV in 68Ni. Additional studies suggest that shape coexistence is not unique to 68Ni in this neutron-rich region near Z = 28. For instance, in the neighboring even-even isotope 70Ni, theory predicts that a prolate-deformed minimum in the potential energy surface occurs at even lower energy than in 68Ni, and experimental evidence is consistent with the theoretical prediction. The results of recent experiments studying shape coexistence in the region, particularly investigations of 68,70Ni, will be presented and theoretical interpretations will be discussed.

  14. Post polymerization cure shape memory polymers

    SciTech Connect

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  15. Microstructural observation of elastic domains in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Craciunescu, Corneliu M.; Mitelea, Ion; Sgavardea, Gheorghe

    2012-08-01

    The microstructure of ferromagnetic shape memory alloys belonging to the Co-Ni-Ga and Ni-Mn-Ga system is analyzed in the martensitic state and during the martensitic phase transition, in order to explore the influence of the composition on the occurrence of the shape memory properties. The compositional range of the Co-Ni-Ga alloys investigated is associated with a two-phase microstructure, where the matrix shows the martensitic structure and a transformation into austenite on heating. The microstructure in the Co-Ni-Ga system shows a phase transition between the B2 austenite and L10 martensite, but the γ (disordered fcc A1) and the ordered γ' (fcc L12) can also be present - depending on the composition, and state, and influence the phase transition in as-cast, quenched and aged alloys. The exploration of the microstructural aspects reveals typical elastic domains that form in the martensitic phase, but also precipitates that can influence the overall martensitic transformation, thus hindering the total output. Compared to the NiMnGa system, the CoNiGa shows significantly less brittleness when deformed in the martensitic state.

  16. Medical applications of shape memory polymers

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.

    2005-01-01

    Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.

  17. Resistively heated shape memory polymer device

    DOEpatents

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  18. Development of shape memory polyurethane fiber with complete shape recoverability

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Hu, Jinlian; Yeung, Lap-Yan; Liu, Yan; Ji, Fenglong; Yeung, Kwok-wing

    2006-10-01

    To illustrate the shape memory properties of shape memory polyurethane (SMPU) fiber and the difference of thermal/mechanical properties between SMPU fiber and other various man-made fibers, series of shape memory polyurethane having various hard segment content were synthesized with the pre-polymerization method and spun with the wet spinning process. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and mechanical testing were conducted to study the particular thermal/mechanical properties of shape memory polyurethane fiber in comparison with other man-made fibers such as nylon6, polyester, Lycra and XLA. In addition, in the preparation of shape memory polyurethane fiber, the effect of thermal setting temperature was systematically investigated by mechanical properties testing, DMA and cyclic tensile testing, suggesting that the thermal setting temperature has a huge influence on the mechanical properties and shape memory property due to the elimination of internal stress. Thermal setting with a higher temperature will give rise to a lower tensile modulus and tenacity and a higher elongation ratio at break. Through employing the optimal thermal setting treatment, the complete heating responsive recovery in SMPU fiber can be achieved because of the counteracting effect of the irreversible strain and thermal shrinkage.

  19. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  20. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  1. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  2. Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad

    2006-01-01

    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.

  3. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  4. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  5. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  6. Reversible surface morphology in shape-memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Huang, W. M.; Fu, Y. Q.; Chollet, F.; Hu, Y. Y.; Cai, M.

    2009-02-01

    Reversible surface morphology can be used for significantly changing many surface properties such as roughness, friction, reflection, surface tension, etc. However, it is not easy to realize atop metals at micron scale around ambient temperature. In this paper, we demonstrate that TiNi and TiNi based (e.g., TiNiCu) shape-memory thin films, which are sputter-deposited atop a silicon wafer, may have different types of thermally-induced reversible surface morphologies. Apart from the well-known surface relief phenomenon, irregular surface trenches may appear in the fully crystallized thin films, but disappear upon heating. On the other hand, in partially crystallized thin films, the crystalline structures (islands) appear in chrysanthemum-shape at high temperature; while at room temperature, the surface morphology within the islands changes to standard martensite striations. Both phenomena are fully repeatable upon thermal cycling. The mechanisms behind these phenomena are investigated.

  7. Recent Developments in High-Temperature Shape Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Motemani, Y.; Buenconsejo, P. J. S.; Ludwig, A.

    2015-11-01

    High-temperature shape memory alloy (HTSMA) thin films are candidates for development of microactuators with operating temperatures exceeding 100 °C. This article reviews recent advances and developments in the field of HTSMA thin films during the past decade, with focus on the systems Ti-Ni-X (X = Hf, Zr, Pd, Pt and Au), Ti-Ta, and Au-Cu-Al. These actuator films offer a wide range of transformation temperatures, thermal hysteresis, and recoverable strains suitable for high-temperature applications. Promising alloy compositions in the systems Ti-Ni-Hf, Ti-Ni-Pd, Ti-Ni-Au, and Au-Cu-Al are highlighted for further upscaling and development. The remaining challenges as well as prospects for development of HTSMA thin films are also discussed.

  8. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  9. Simultaneous probing of phase transformations in Ni-Ti thin film shape memory alloy by synchrotron radiation-based X-ray diffraction and electrical resistivity

    SciTech Connect

    Braz Fernandes, F.M.; Silva, R.J.C.

    2013-02-15

    Nickel–Titanium (Ni–Ti) thin film shape memory alloys (SMAs) have been widely projected as novel materials which can be utilized in microdevices. Characterization of their physical properties and its correlation with phase transformations has been a challenging issue. In the present study, X-ray beam diffraction has been utilized to obtain the structural information at different temperatures while cooling. Simultaneously, electrical resistivity (ER) was measured in the phase transformation temperature range. The variation of ER and integral area of the individual diffraction peaks of the different phases as a function of temperature have been compared. A mismatch between the conventional interpretation of ER variation and the results of the XRD data has been clearly identified. - Highlights: ► Phase transformation characterization of Ni–Ti thin film SMA has been carried out. ► Simultaneous monitoring of the XRD and ER with temperature is performed. ► The variation of ER and integral area of the diffraction peaks have been compared. ► A shift of the transformation temperatures obtained by two techniques is discussed.

  10. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  11. High-transition-temperature shape memory alloy film

    NASA Astrophysics Data System (ADS)

    Johnson, A. David; Martynov, Valery V.; Shahoian, Erik J.

    1995-05-01

    Using conventional magnetron sputtering deposition processes three different types of shape memory alloys (FeNi based, CuAl based and TiNi based) were examined as potential candidates for the production of high temperature SMA thin film. CuAlNi and TiNiHf SMA were successfully deposited on silicon wafers and thin films of 4 - 20 micrometers were produced. After annealing at approximately equals 500 degree(s)C both CuAlNi and TiNiHf films exhibited reversible high temperature martensitic transition. For CuAlNi thin films, annealing itself was found to be inadequate for obtaining transformation intervals corresponding to that of the target. To deal with the problem it is expected that additional quenching after solid solution heat treatment will be necessary. Of the three alloys examined, the most promising candidate for high temperature thin film microactuators is TiNiHf. It was found that by changing the Hf content in the target, the transformation start temperature of thin films can be easily adjusted in a temperature range from 100 degree(s)C to 200 degree(s)C.

  12. Shape-memory materials and phenomena - Fundamental aspects and applications; Proceedings of the Symposium, Boston, MA, Dec. 3-5, 1991

    SciTech Connect

    Liu, C.T.; Kunsmann, H.; Otsuka, K.; Wuttig, M.

    1992-01-01

    The present volume on fundamental aspects and applications of shape-memory materials and phenomena discusses martensitic transformation and phase stability, shape memory effects, and materials processing, alloy design, and industrial applications. Attention is given to surface energy and microstructure, the interior of the pseudoelastic hysteresis, deformation of shape-memory materials, and transformation-induced ductility in polycrystalline nickel aluminide. Topics addressed include diffuse yield drop and snap action in an Ni-Ti alloy, the effect of cyclic transformation on the shape memory characteristic in an Fe-Mn-Si-Cr-Ni alloy, the theory of premartensitic effects in alloys with omega-transformation, and electric transport properties of an NiTi shape memory alloy under applied stress. Also discussed are Fe-Mn-Si based shape memory alloys, the fabrication of a Cu-Al-Ni-Mn shape memory alloy, mass production of thermomarkers, and cycling times of thin-film NiTi on Si.

  13. Lowering the crystallization temperature of thin-film shape memory effect TiNi by cold-working for smart materials fabrication

    SciTech Connect

    Madsen, J.S.; Jardine, A.P. . Dept. of Materials Science and Engineering)

    1994-05-01

    Cold-working has been demonstrated to lower the crystallization temperature for amorphous, free-standing TiNi by approximately 100 C, making it potentially integratable with certain polymeric materials. If cold-working initiates lower temperature nucleation by increasing lattice defects, then lower annealing temperatures may be successful in producing thin-film TiNi on reactive low-temperature substrates.

  14. Memory Formation Shaped by Astroglia

    PubMed Central

    Zorec, Robert; Horvat, Anemari; Vardjan, Nina; Verkhratsky, Alexei

    2015-01-01

    Astrocytes, the most heterogeneous glial cells in the central nervous system (CNS), execute a multitude of homeostatic functions and contribute to memory formation. Consolidation of synaptic and systemic memory is a prolonged process and hours are required to form long-term memory. In the past, neurons or their parts have been considered to be the exclusive cellular sites of these processes, however, it has now become evident that astrocytes provide an important and essential contribution to memory formation. Astrocytes participate in the morphological remodeling associated with synaptic plasticity, an energy-demanding process that requires mobilization of glycogen, which, in the CNS, is almost exclusively stored in astrocytes. Synaptic remodeling also involves bidirectional astroglial-neuronal communication supported by astroglial receptors and release of gliosignaling molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as Ca2+, for phasic, and cyclic adenosine monophosphate (cAMP), for tonic signal coordination with neuronal processes. The detection of signals by astrocytes and the release of gliosignaling molecules, in particular by vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of magnitude longer than that present in stimulus–secretion coupling in neurons. These particular arrangements position astrocytes as integrators ideally tuned to support time-dependent memory formation. PMID:26635551

  15. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  16. Shape memory system with integrated actuation using embedded particles

    SciTech Connect

    Buckley, Patrick R; Maitland, Duncan J

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  17. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  18. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.

  19. Surface nanomechanical behavior of ZrN and ZrCN films deposited on NiTi shape memory alloy by magnetron sputtering.

    PubMed

    Chu, C L; Ji, H L; Guo, C; Sheng, X B; Dong, Y S; Lin, P H; Hu, T; Chu, P K

    2011-12-01

    Surface nanomechanical behavior under nanoindentation of ZrN and ZrCN film on NiTi substrate was studied. The surface hardness and modulus of the films increase initially with larger nanoindentation depths and then reach their maximum values. Afterwards, they diminish gradually and finally reaching plateau values which are the composite modulus and composite hardness derived from the ZrN/ZrCN film and NiTi substrate. They are higher than those of electropolished NiTi SMA due to the properties of ZrN and ZrCN. In comparison, the surface nanomechanical properties of electropolished NiTi exhibit a different change with depths. PMID:22409080

  20. Effect of Temperature on the Deformation Behavior of B2 Austenite in a Polycrystalline Ni49.9Ti50.1 (at.Percent) Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Benafan, O.; Noebe, R. D.; Padula, S. A., II; Clausen, B.; Vogel, S.; Vaidyanathan, R.

    2013-01-01

    Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes.

  1. Structural and magnetic investigations in the vicinity of first-order transformations in Ni-Mn-Ga-Co ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Satish Kumar, A.; Ramudu, M.; Seshubai, V.

    2012-12-01

    Among the series of alloys derived from Ni50Mn29Ga21 on selective substitution of Co for Ni and Mn, two alloys Ni49.8Mn27.2Ga21.2Co1.8 and Ni46.9Mn28.8Ga21Co3.3 referred to as CoMn-1.8 and CoNi-3.3, respectively, are found to exhibit an additional first-order transformation below their martensitic transformation temperatures. Systematic studies on temperature and field dependence of magnetic properties of these alloys are carried out, through the transformations, to understand their origin. An examination of these results in conjunction with those from structural investigations reveals that the transformation in the CoMn-1.8 alloy is an intermartensitic transformation and has a structural origin, while that in the CoNi-3.3 alloy is not of the structural origin and is attributed to local spin inversion of Co moments, which is of the magnetic origin.

  2. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf

  3. Fabrication of magnetic shape memory alloy/polymer composites

    NASA Astrophysics Data System (ADS)

    Ham-Su, R.; Healey, J. P.; Underhill, R. S.; Farrell, S. P.; Cheng, L. M.; Hyatt, C. V.; Rogge, R.; Gharghouri, M. A.

    2005-05-01

    NiMnGa-based magnetic shape memory (MSM) alloys have attained magnetic-field-induced strains up to approximately 10%, making them very attractive for a variety of applications. However, for applications that require the use of an alternating magnetic field, eddy current losses can be significant. Also, NiMnGa-based MSM alloys' fracture toughness is relatively low. Using these materials in the form of particles embedded in a polymer matrix composite could mitigate these limitations. Since the MSM effect is anisotropic, the crystallographic texture of the particles in the composites is of great interest. In this work, a procedure for fabricating NiMnGa-based MSMA/elastomer composites is described. Processing routes for optimizing the crystallographic texture in the composites are considered.

  4. Development of multifunctional shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Naguib, Hani E.

    2015-05-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials which are able to respond to external stimulus such as temperature and deformation by changing their shape, and return to their original shape upon reversal or removal of the external stimulus. Although SMP materials have been studied extensively and have been used in a wide range of applications such as medicine, aerospace, and robotics, only few studies have looked at the potential of designing multifunctional SMP foams and blends. In this study, we investigate the feasibility of a design of SMP foam materials and blends. The actuator construct will contain a core SMP epoxy and blend of polylactic acid and polyurethane. The effects of the processing parameters of shape memory polymer (SMP) foams on the shape memory effect (SME) were investigated. The solid state foaming technique was employed to obtain the desired foamed cellular structure. One particular point of interest is to understand how the processing parameters affect the SMP and its glass transition temperature (Tg). By correctly tailoring these parameters it is possible to modify the SMP to have an improved shape memory effect SME.

  5. Shape-memory surfaces for cell mechanobiology

    NASA Astrophysics Data System (ADS)

    Ebara, Mitsuhiro

    2015-02-01

    Shape-memory polymers (SMPs) are a new class of smart materials, which have the capability to change from a temporary shape ‘A’ to a memorized permanent shape ‘B’ upon application of an external stimulus. In recent years, SMPs have attracted much attention from basic and fundamental research to industrial and practical applications due to the cheap and efficient alternative to well-known metallic shape-memory alloys. Since the shape-memory effect in SMPs is not related to a specific material property of single polymers, the control of nanoarchitecture of polymer networks is particularly important for the smart functions of SMPs. Such nanoarchitectonic approaches have enabled us to further create shape-memory surfaces (SMSs) with tunable surface topography at nano scale. The present review aims to bring together the exciting design of SMSs and the ever-expanding range of their uses as tools to control cell functions. The goal for these endeavors is to mimic the surrounding mechanical cues of extracellular environments which have been considered as critical parameters in cell fate determination. The untapped potential of SMSs makes them one of the most exciting interfaces of materials science and cell mechanobiology.

  6. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrei; Kirianov, Eugene; Zlenko, Albina; Quetz, Abdiel; Aryal, Anil; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad; Al-Aqtash, Nabil; Sabirianov, Renat

    2016-05-01

    The effect of substrates on the magnetic and transport properties of Ni2Mn1.5In0.5 ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni2Mn1.5In0.5 films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni2Mn1.5In0.5 film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  7. Effect of Ti addition on the structural, mechanical and damping properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Nitin; Kaur, Davinder

    2012-12-01

    Titanium (Ti) co-sputtered Ni50.4Mn34.7Sn14.9 films deposited by magnetron sputtering onto Si(1 0 0) substrates at 823 K were investigated. X-ray diffraction profiles revealed the formation of highly (2 2 0)-oriented Ni-Mn-Sn-Ti austenite phase with significant decrease in grain size with increasing Ti power. Hardness (H), elastic modulus (Er), damping (tan δ), figure of merit (FOM) and coefficient of restitution (e) of the films were evaluated using nanoindentation tests. A significant improvement in the hardness (10.5 GPa) and toughness H^3/E_r^2 (0.040) was observed in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite film as compared with pure Ni50.4Mn34.7Sn14.9films. An impact model, which incorporates material behaviour, is presented that predicts the experimentally observed material quantities, including energy dissipation metrics such as the coefficient of restitution e with high accuracy. The highest damping factor (tan δ = 0.061), high FOM (0.79) with low coefficient of restitution (e = 0.28) quantifies excellent energy dissipation capacity in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite. Temperature dependence of magnetization (M-T) curves showed an increase in martensitic transformation temperatures with increasing Ti content. The Ni-Mn-Sn-Ti composite films exhibit ferromagnetic behaviour at room temperature.

  8. Large magnetic entropy changes in the Ni45.4Mn41.5In13.1 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Han, Z. D.; Wang, D. H.; Zhang, C. L.; Tang, S. L.; Gu, B. X.; Du, Y. W.

    2006-10-01

    The inverse magnetocaloric effect associated with the martensitic transition in the Ni45.4Mn41.5In13.1 Heusler alloy is reported. A large positive magnetic entropy change of 8J/kgK under a low magnetic field of 10kOe is found near the martensitic transition temperature. This change originates from the first-order transition from a low-temperature weak-magnetic martensitic phase to a high-temperature ferromagnetic austenitic phase. The large low-field magnetic entropy change indicates a great potential of Ni-Mn-In alloys as working materials for magnetic refrigeration in a wide temperature range.

  9. Shape memory and pseudoelasticity in metal nanowires.

    PubMed

    Park, Harold S; Gall, Ken; Zimmerman, Jonathan A

    2005-12-16

    Structural reorientations in metallic fcc nanowires are controlled by a combination of size, thermal energy, and the type of defects formed during inelastic deformation. By utilizing atomistic simulations, we show that certain fcc nanowires can exhibit both shape memory and pseudoelastic behavior. We also show that the formation of defect-free twins, a process related to the material stacking fault energy, nanometer size scale, and surface stresses is the mechanism that controls the ability of fcc nanowires of different materials to show a reversible transition between two crystal orientations during loading and thus shape memory and pseudoelasticity. PMID:16384469

  10. Smart polymer fibers with shape memory effect

    NASA Astrophysics Data System (ADS)

    Ji, Feng Long; Zhu, Yong; Lian Hu, Jin; Liu, Yan; Yeung, Lap-Yan; Dou Ye, Guang

    2006-12-01

    In this study, a series of smart polymer fibers with a shape memory effect were developed. Firstly, a set of shape memory polyurethanes with varying hard-segment content were synthesized. Then, the solutions of the shape memory polyurethanes were spun into fibers through wet spinning. The thin films of the polyurethanes were considered to represent the nature of the polyurethanes. Differential scanning calorimetry tests were performed on both the thin films and the fibers to compare their thermal properties. Wide angle x-ray diffraction and small angle x-ray scattering techniques were applied to investigate the structure of the thin films and the fibers, and the structure change taking place in the spinning process was therefore revealed. The spinning process resulted in the polyurethane molecules being partially oriented in the direction of the fiber axis. The molecular orientation prompted the aggregation of the hard segments and the formation of hard-segment microdomains. The mechanical properties of the fibers were examined through tensile tests. The shape memory effect of the thin films and the fibers was investigated through a series of thermomechanical cyclic tensile tests. It was found that the fibers showed less shape fixity but more shape recovery compared with the thin films. Further investigations revealed that the recovery stress of the fibers was higher than that of the thin films. The smart fibers may exert the recovery force of shape memory polymers to an extreme extent in the direction of the fiber axis and therefore provide a possibility for producing high-performance actuators.

  11. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  12. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    PubMed

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices. PMID:19581892

  13. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  14. Well-defined star-shaped donor-acceptor conjugated molecules for organic resistive memory devices.

    PubMed

    Wu, Hung-Chin; Zhang, Jicheng; Bo, Zhishan; Chen, Wen-Chang

    2015-09-28

    Solution processable star-shaped donor-acceptor (D-A) conjugated molecules (TPA-T-NI and TPA-3T-NI) with an electron-donating triphenylamine (TPA) core, three thienylene or terthienylene spacers, and three 1.8-naphthalimide (NI) electron-withdrawing end-groups are explored for the first time as charge storage materials for resistor-type memory devices owing to the efficient electric charge transfer and trapping.

  15. Well-defined star-shaped donor-acceptor conjugated molecules for organic resistive memory devices.

    PubMed

    Wu, Hung-Chin; Zhang, Jicheng; Bo, Zhishan; Chen, Wen-Chang

    2015-09-28

    Solution processable star-shaped donor-acceptor (D-A) conjugated molecules (TPA-T-NI and TPA-3T-NI) with an electron-donating triphenylamine (TPA) core, three thienylene or terthienylene spacers, and three 1.8-naphthalimide (NI) electron-withdrawing end-groups are explored for the first time as charge storage materials for resistor-type memory devices owing to the efficient electric charge transfer and trapping. PMID:26255879

  16. Shape Memory Polymer Therapeutic Devices for Stroke

    SciTech Connect

    Wilson, T S; Small IV, W; Benett, W J; Bearinger, J P; Maitland, D J

    2005-10-11

    Shape memory polymers (SMPs) are attracting a great deal of interest in the scientific community for their use in applications ranging from light weight structures in space to micro-actuators in MEMS devices. These relatively new materials can be formed into a primary shape, reformed into a stable secondary shape, and then controllably actuated to recover their primary shape. The first part of this presentation will be a brief review of the types of polymeric structures which give rise to shape memory behavior in the context of new shape memory polymers with highly regular network structures recently developed at LLNL for biomedical devices. These new urethane SMPs have improved optical and physical properties relative to commercial SMPs, including improved clarity, high actuation force, and sharper actuation transition. In the second part of the presentation we discuss the development of SMP based devices for mechanically removing neurovascular occlusions which result in ischemic stroke. These devices are delivered to the site of the occlusion in compressed form, are pushed through the occlusion, actuated (usually optically) to take on an expanded conformation, and then used to dislodge and grip the thrombus while it is withdrawn through the catheter.

  17. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Markov, A. B. Ozur, G. E. Yakovlev, E. V.; Rotshtein, V. P.; Gudimova, E. Yu.

    2015-10-27

    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  18. Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2014-09-01

    The objectives of this study were to investigate the effect of laser-induced surface features on the morphology, attachment and viability of mesenchymal stem cells (MSCs) at different periods of time, and to evaluate the biocompatibility of different zones: laser-melted zone (MZ), heat-affected zone (HAZ) and base metal (BM) in laser-treated NiTi alloy. The surface morphology and composition were studied by scanning electron microscope (SEM) and X-ray photoemission spectroscopy (XPS), respectively. The cell morphology was examined by SEM while the cell counting and viability measurements were done by hemocytometer and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The results indicated that the laser-induced surface features, such as surface roughening, presence of anisotropic dendritic pattern and complete surface Ni oxidation were beneficial to improve the biocompatibility of NiTi as evidenced by the highest cell attachment (4 days of culture) and viability (7 days of culture) found in the MZ. The biocompatibility of the MZ was the best, followed by the BM with the HAZ being the worst. The defective and porous oxide layer as well as the coarse grained structure might attribute to the inferior cell attachment (4 days of culture) and viability (7 days of culture) on the HAZ compared with the BM which has similar surface morphology.

  19. Shape-Memory Probe Grasps Small Objects

    NASA Technical Reports Server (NTRS)

    Angulo, Earl D.

    1992-01-01

    Shape-memory device removes foreign objects from ear canal, nose, or throat with little risk of damage to tissue. Thin, flexible wire inserted into cavity. Once positioned, it is made to bend into hook, tweezer, or other "remembered" grasping configuration by heating above critical temperature.

  20. Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    NASA Technical Reports Server (NTRS)

    Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.

    2008-01-01

    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.

  1. Infrared Brazing of Ti50Ni50 Shape Memory Alloy and 316L Stainless Steel with Two Sliver-Based Fillers

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Kae; Chen, Chia-Pin; Wu, Shyi-Kaan

    2015-06-01

    Dissimilar infrared brazing Ti50Ni50 and AISI 316L stainless steel using two silver-based fillers, Cusil-ABA and Ticusil, was evaluated. The shear strength of the Ticusil brazed joint is higher than that of the Cusil-ABA brazed one due to the formation of better fillet. The maximum shear strength of 237 MPa is obtained for the Ticusil joint brazed at 1223 K (950 °C) for 60 seconds. The presence of interfacial Ti-Fe-(Cu) layer is detrimental to the shear strength of all joints.

  2. Cyclic behaviors of amorphous shape memory polymers.

    PubMed

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time. PMID:26924339

  3. Cyclic behaviors of amorphous shape memory polymers.

    PubMed

    Yu, Kai; Li, Hao; McClung, Amber J W; Tandon, Gyaneshwar P; Baur, Jeffery W; Qi, H Jerry

    2016-04-01

    Cyclic loading conditions are commonly encountered in the applications of shape memory polymers (SMPs), where the cyclic characteristics of the materials determine their performance during the service life, such as deformation resistance, shape recovery speed and shape recovery ratio. Recent studies indicate that in addition to the physical damage or some other irreversible softening effects, the viscoelastic nature could also be another possible reason for the degraded cyclic behavior of SMPs. In this paper, we explore in detail the influence of the viscoelastic properties on the cyclic tension and shape memory (SM) behavior of an epoxy based amorphous thermosetting polymer. Cyclic experiments were conducted first, which show that although the epoxy material does not have any visible damage or irreversible softening effect during deformation, it still exhibits obvious degradation in the cyclic tension and SM behaviors. A linear multi-branched model is utilized to assist in the prediction and understanding of the mechanical responses of amorphous SMPs. Parametric studies based on the applied model suggest that the shape memory performance can be improved by adjusting programming and recovery conditions, such as lowering the loading rate, increasing the programming temperature, and reducing the holding time.

  4. Damping capacity in shape memory alloy honeycomb structures

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.

    2010-04-01

    SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.

  5. Applications of the directional solidification in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Liu, J.; Hu, Q. D.; Liu, Q. H.; Karaman, I.; Li, J. G.

    2016-03-01

    A zone melting liquid metal cooling (ZMLMC) method of directional solidification was applied to prepare highly-oriented Ni52Fe17Ga27Co4 magnetic shape memory alloys. At high temperature gradient and low growth velocity, the well-developed preferred orientation for coarse columnar crystals was obtained. Such a structure leads to a large complete pseudoelastic recovery of 5% at 348 K. Moreover, the pseudoelastic behaviours and the kinetics of the martensitic transformation (MT) are significantly affected by the intersection angle between the loading direction and the grain boundaries.

  6. Ferromagnetic shape memory alloys for positioning with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Feuchtwanger, Jorge; Asua, Estibalitz; García-Arribas, Alfredo; Etxebarria, Victor; Barandiaran, Jose M.

    2009-08-01

    Ferromagnetic shape memory alloys are promising active elements for actuators. Our work centered on achieving and maintaining an intermediate fixed deformation so that they can be used as precision positioning actuators. For this purpose, a custom actuator was built using a single crystal of NiMnGa. The results show that these alloys can be controlled within less than 5 nm for both precision and accuracy, a result comparable to piezoelectric ceramics. Interestingly, the defect structure plays a fundamental role in achieving such performance. The stochastically distributed defects determine a progressive diminution of the magnetic field strength required to achieve the control.

  7. Shape memory starch-clay bionanocomposites.

    PubMed

    Coativy, Gildas; Gautier, Nicolas; Pontoire, Bruno; Buléon, Alain; Lourdin, Denis; Leroy, Eric

    2015-02-13

    1-10% starch/clay bionanocomposites with shape memory properties were obtained by melt processing. X-ray diffraction (XRD) and TEM evidenced the presence of a major fraction of clay tactoids, consisting of 4-5 stacked crystalline layers, with a thickness of 6.8 nm. A significant orientation of the nanoparticles induced by extrusion was also observed. Tensile tests performed above the glass transition of the materials showed that the presence of clay nanoparticles leads to higher elastic modulus and maximum stress, without significant loss in elongation at break which typically reached 100%. Samples submitted to a 50% elongation and cooled below the glass transition showed shape memory behavior. Like unreinforced starch, the bionanocomposites showed complete shape recovery in unconstrained conditions. In mechanically constrained conditions, the maximum recovered stress was significantly improved for the bionanocomposites compared to unreinforced starch, opening promising perspectives for the design of sensors and actuators. PMID:25458305

  8. Application of shape memory polyurethane in orthodontic.

    PubMed

    Jung, Yong Chae; Cho, Jae Whan

    2010-10-01

    A shape memory polymer wire for orthodontic application was prepared by melt-spinning of polyurethane block copolymer (PU) which was synthesized in a two-step process from a reaction of 4,4'-methylene bis(phenylisocyanate), poly(ε-caprolactone)diol (PCL), and 1,4-butanediol. An orthodontic test using the PU wire was carried out in an orthodontic model with a metal bracket. High shape recovery force of 70 gf for PU wire at 40 wt% hard segment content could be preserved for even 1 month after a shape recovery force test at a constant temperature of 50°C. The shape recovery force decreased exponentially during the initial 2 h, but reached an equilibrium shape recovery force of 50 gf after about 20 days. It was found that this shape recovery force was sufficient to correct misaligned teeth in the orthodontic test. The shape memory PU wire possesses strong potential as a novel orthodontic appliance with esthetically appealing appearance.

  9. Thermomechanical behavior of shape memory elastomeric composites

    NASA Astrophysics Data System (ADS)

    Ge, Qi; Luo, Xiaofan; Rodriguez, Erika D.; Zhang, Xiao; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry

    2012-01-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape in response to environmental stimuli such as heat, electricity, or irradiation. Most thermally activated SMPs use the macromolecular chain mobility change around the glass transition temperature ( Tg) to achieve the shape memory (SM) effects. During this process, the stiffness of the material typically changes by three orders of magnitude. Recently, a composite materials approach was developed to achieve thermally activated shape memory effect where the material exhibits elastomeric response in both the temporary and the recovered configurations. These shape memory elastomeric composites (SMECs) consist of an elastomeric matrix reinforced by a semicrystalline polymer fiber network. The matrix provides background rubber elasticity while the fiber network can transform between solid crystals and melt phases over the operative temperature range. As such it serves as a reversible "switching phase" that enables shape fixing and recovery. Shape memory elastomeric composites provide a new paradigm for the development of a wide array of active polymer composites that utilize the melt-crystal transition to achieve the shape memory effect. This potentially allows for material systems with much simpler chemistries than most shape memory polymers and thus can facilitate more rapid material development and insertion. It is therefore important to understand the thermomechanical behavior and to develop corresponding material models. In this paper, a 3D finite-deformation constitutive modeling framework was developed to describe the thermomechanical behavior of SMEC. The model is phenomenological, although inspired by micromechanical considerations of load transfer between the matrix and fiber phases of a composite system. It treats the matrix as an elastomer and the fibers as a complex solid that itself is an aggregate of melt and crystal phases that evolve from one to the other during a

  10. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  11. Latent heat contribution to the direct magnetocaloric effect in Ni-Mn-Ga shape memory alloys with coupled martensitic and magnetic transformations

    NASA Astrophysics Data System (ADS)

    Caballero-Flores, R.; Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J. I.; Gómez-Polo, C.

    2016-05-01

    We report the direct magnetocaloric response of materials that present a second-order phase transition in the temperature range where a first-order structural transition also occurs. In particular, the influence of the latent heat on the field-induced adiabatic temperature change has been analyzed in a Ni-Mn-Ga alloy with coupled martensitic and magnetic transformations. It is found that discrepancies around 20% arise depending on whether the latent heat is taken into account or not. From the observed results, a general expression for the indirect determination of the adiabatic temperature change, that takes into account the contributions of both the martensitic and magnetic transformations, is proposed and experimentally confirmed. The observed key role of the latent heat allows us to understand why materials with first-order transformations do not present adiabatic temperature changes as higher as those which would correspond to materials undergoing second-order transformations with similar isothermal entropy change.

  12. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O.

    2016-05-01

    The complexity of Ni-Mn-Ga single crystal originates from the interplay between ferromagnetic domain structure and ferroelastic twinned microstructure. Magnetic domain structure in the vicinity of single twin boundary was studied using magneto-optical indicator film and magnetic force microscopy technique. The single twin boundary of Type I was formed mechanically and an initial magnetization state in both variants were restored by local application of magnetic field (≈40 kA/m). The differently oriented variants exhibited either stripe or labyrinth magnetic domain pattern in agreement with the uniaxial magnetocrystalline anisotropy of the martensite. The twin boundary was then moved by compressive or tensile stress. The passage of the boundary resulted in the formation of granular or rake domains, respectively. Additionally, the specific magnetic domains pattern projected by twin boundary gradually vanished during twin boundary motion.

  13. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  14. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications

    PubMed Central

    Pan, Qiang; Cho, Chongdu

    2007-01-01

    Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its unique characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. This study presents a shape memory alloy based micro-damper, which exploits the pseudoelasticity of NiTi wires for energy dissipation. The mechanical model and functional principle of the micro-damper are explained in detail. Moreover, the mechanical behavior of NiTi wires subjected to various temperatures, strain rates and strain amplitudes is observed. Resulting from those experimental results, the damping properties of the micro-damper involving secant stiffness, energy dissipation and loss factor are analyzed. The result indicates the proposed NiTi based micro-damper exhibits good energy dissipation ability, compared with conventional materials damper.

  15. Smart wing shape memory alloy actuator design and performance

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter; Flanagan, John S.; Martin, Christopher A.; Carpenter, Bernie F.

    1997-05-01

    Shape Memory Effect TiNi torque tubes were fabricated, tested and installed to supply 2500 in.lbs and 500 in.lbs of torque for inboard and outboard sections, respectively, of the DARPA smart wing wind tunnel model. Structural connections to the tubes were designed so that the entire assembly would fit within the interior of the wing, whose maximum dimensions of depth ranged from 1.125' to 0.375', depending on the position along the wing span. The torque tubes themselves were made by the gun drilling a TiNi ingot and ElectroSpark Discharge Machining to the required dimensions, which were calculated from a simple model described in a previous paper. The torque tubes were placed into the wing and twist deflections were measured. Deflections on the wing were measured at 1.3 degree(s), which provided a significant increase (approximately 8%) in the wing rolling moment.

  16. Electromagnetic heating of a shape memory alloy translator

    NASA Astrophysics Data System (ADS)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  17. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  18. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Okunishi, E.; Nishiura, T.; Kawano, H.; Inamura, T.; S., Ii; Hara, T.

    2012-06-01

    Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a ? B19‧ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a ? B19‧ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the ⟨011⟩B19‧ type II and/or ? B19‧ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the ? B19‧ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis.

  19. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Nishiura, T.; Kawano, H.; Hosoda, H.; Nishida, M.

    2012-06-01

    Competition between the invariant plane (IP) condition at the habit plane, the twin orientation relation (OR) and the kinematic compatibility (KC) at the junction plane (JP) of self-accommodated B19‧ martensite in Ti-Ni was investigated via the geometrically nonlinear theory to understand the habit plane variant (HPV) clusters presented in Parts I and II of this work. As the IP condition cannot be satisfied simultaneously with KC, an additional rotation Q is necessary to form compatible JPs for all HPV pairs. The rotation J necessary to form the exact twin OR between the major correspondence variants (CVs) in each HPV was also examined. The observed HPV cluster was not the cluster with the smallest Q but the one satisfying Q = J with a { ? 1}B19‧ type I twin at JP. Both Q and J are crucial to understanding the various HPV clusters in realistic transformations. Finally, a scheme for the ideal HPV cluster composed of six HPVs is also proposed.

  20. Polyalkene-based shape-memory polymers

    NASA Astrophysics Data System (ADS)

    Alonso, J.; Cuevas, J. M.; Dios, J. R.; Vilas, J. L.; León, L. M.

    2007-07-01

    A series of polymers showing shape memory properties were developed based on polyalkenes derived from cyclooctene and related structures. These polymeric systems were synthesized via ring-opening metathesis polymerization (ROMP) using a well-defined ruthenium catalyst (Grubbs' type) by varying reaction conditions and proportions. Control over molecular weight was achieved by the inclusion of a chain transfer agent (CTA) and its influence on the behaviour of the obtained materials was evaluated. In order to provide them with shape memory behaviour the compounds were subjected to suitable chemical-thermal treatments and its characterization was accomplished by means of several techniques: differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), etc. Thus polymers developed herein could become a different alternative to the most studied and commercially available polyurethane based systems.

  1. Shape memory effect in Cu nanowires.

    PubMed

    Liang, Wuwei; Zhou, Min; Ke, Fujiu

    2005-10-01

    A rubber-like pseudoelastic behavior is discovered in single-crystalline face-centered-cubic (FCC) Cu nanowires in atomistic simulations. Nonexistent in bulk Cu, this phenomenon is associated primarily with a reversible crystallographic lattice reorientation driven by the high surface-stress-induced internal stresses due to high surface-to-volume ratios at the nanoscale level. The temperature-dependence of this behavior leads to a shape memory effect (SME). Under tensile loading and unloading, the nanowires exhibit recoverable strains up to over 50%, well beyond the typical recoverable strains of 5-8% for most bulk shape memory alloys (SMAs). This behavior is well-defined for wires between 1.76 and 3.39 nm in size over the temperature range of 100-900 K.

  2. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  3. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J.; Small, IV, Ward; Hartman, Jonathan

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  4. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  5. Relationship among grain size, annealing twins and shape memory effect in Fe–Mn–Si based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe–Mn–Si based shape memory alloys, the Fe–21.63Mn–5.60Si–9.32Cr–5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm–253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ε martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ε martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  6. Relationship among grain size, annealing twins and shape memory effect in Fe-Mn-Si based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe-Mn-Si based shape memory alloys, the Fe-21.63Mn-5.60Si-9.32Cr-5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm-253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ɛ martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ɛ martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  7. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  8. Shape memory rubber bands & supramolecular ionic copolymers

    NASA Astrophysics Data System (ADS)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional

  9. Shape memory polymers for active cell culture.

    PubMed

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  10. Shape recovery of shape memory alloy fiber embedded resin matrix smart composite after crack repair.

    PubMed

    Hamada, Kenichi; Kawano, Fumiaki; Asaoka, Kenzo

    2003-06-01

    Ni-Ti shape memory alloy fiber embedded resin matrix composites were produced for evaluation of "smart denture", a newly developing denture with the function to close its own crack. Their bending strength and shape recovery after instant crack repair was estimated. The embedded fibers did not decrease the bending strength of the composite after repair. The crack closure of the composites was performed well simply by heating at 80 degrees C. Nevertheless, they showed apparent deflection after crack repair. The following two phenomena were supposed to be the main cause of it: the polymerization shrinkage of matrix resin with heating, and the coefficient of the thermal expansion mismatch between the fiber and the matrix. The embedded fibers could close the crack of the matrix with enough high accuracy for specimen repair, but they turned out to change the specimen shape after repair.

  11. Triple shape memory effect of star-shaped polyurethane.

    PubMed

    Yang, Xifeng; Wang, Lin; Wang, Wenxi; Chen, Hongmei; Yang, Guang; Zhou, Shaobing

    2014-05-14

    In this study, we synthesized one type of star-shaped polyurethane (SPU) with star-shaped poly(ε-caprolactone) (SPCL) containing different arm numbers as soft segment and 4,4'-diphenyl methane diisocyanate (MDI) as well as chain extender 1,4-butylene glycol (BDO) as hard segment. Proton nuclear magnetic resonance (1H-NMR) confirmed the chemical structure of the material. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) results indicated that both the melting temperature (Tm) and transition temperature (Ttrans) of SPU decreased with the hard segment composition increase. X-ray diffraction (XRD) results demonstrated that the increase of the crystallinity of SPU following the raised arm numbers endowed a high shape fixity of six-arm star-shaped polyurethane (6S-PU) and a wide melting temperature range, which resulted in an excellent triple-shape memory effect of 6S-PU. The in vitro cytotoxicity assay evaluated with osteoblasts through Alamar blue assay demonstrates that this copolymer possessed good cytocompatibility. This material can be potentially used as a new smart material in the field of biomaterials.

  12. Release mechanism utilizing shape memory polymer material

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    2000-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  13. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  14. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  15. Strategies for Self-Repairing Shape Memory Alloy Actuators

    NASA Astrophysics Data System (ADS)

    Langbein, Sven; Czechowicz, Alexander Jaroslaw; Meier, Horst

    2011-07-01

    Shape memory alloys (SMAs) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape by the means of thermal activation, they are suitable as actuators for microsystems and, within certain limitations, macroscopic systems. A commonly used shape memory actuator type is an alloy of nickel and titanium (NiTi), which starts to transform its inner phase from martensitic to austenitic structure at a certain austenite start temperature. Retransformation starts at martensitic start temperature after running a hysteresis cycle. Most SMA-systems use straight wire actuators because of their simple integration, the occurring cost reduction and the resulting miniaturization. Unfortunately, SMA-actuators are only seldom used by constructors and system developers. This is due to occurring functional fatigue effects which depend on boundary conditions like system loads, strains, and number of cycles. The actuating stroke does not reduce essentially during the first thousand cycles. Striking is the elongation of the wire while maintaining the stroke during cycling (walking). In order to create a system which adjusts and repairs itself, different concepts to solve this problem are presented. They vary from smart control methods to constructive solutions with calibration systems. The systems are analyzed due to their effective, life cycle, and system costs showing outstanding advantages in comparison to commonly used SMA actuators.

  16. Shape memory alloy film for deployment and control of membrane apertures

    NASA Astrophysics Data System (ADS)

    Hill, Lisa R.; Carman, Greg; Lee, Dong-Gun; Patrick, Brian

    2004-02-01

    Nickel Titanium (NiTi) film shape memory alloy (SMA) is integrated with space-qualified polymer and mesh materials for potential use as deployment mechanisms and actuation of flexible space apertures. SMA thin film is successfully applied to Astromesh metal mesh, Kapton, Upilex, and CP-1 polymer films. Sputter deposition of NiTi onto the substrate is used to validate the material system process and demonstrate the NiTi deployment capability. Although successful, the relatively high processing temperatures required to crystallize NiTi onto the substrates requires care. A second approach is demonstrated that deposits NiTi onto a silicon substrate, followed by coating the NiTi with the desired polymer, e.g. CP-1. Micro-electro-mechanical (MEMS) processing steps are then used to remove the silicon substrate beneath the NiTi, thus freeing up the composite membrane (i.e. NiTi + CP-1). Using MEMS fabrication techniques, a hot-shaped small dome shape structure is shaped into the NiTi before deposition of the CP-1 polymer. Activation of the integrated SMA/CP-1 produces deformation of this composite structure without damage. The test articles demonstrate the feasibility to both grossly deploy and locally actuate space-qualified polymer materials.

  17. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  18. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-03-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{g}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  19. Fastening apparatus having shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    McKinnis, Darin N.

    1992-11-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  20. Biopolymers: shape memory in spider draglines.

    PubMed

    Emile, Olivier; Le Floch, Albert; Vollrath, Fritz

    2006-03-30

    The ductility and strength of spider draglines means that they outperform the best synthetic fibres, but surprisingly little is known about the torsional properties of this remarkable filament. Unlike a mountain climber swinging from a rope, a spider suspended from its silk thread hardly ever twists. Here we show that a spider dragline has a torsional shape 'memory' in that it can reversibly and totally recover its initial form without any external stimulus; its observed relaxation dynamics indicate that these biological molecules have successively different torsional constants. PMID:16572162

  1. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  2. Fastening apparatus having shape memory alloy actuator

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  3. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Friske, Warren H.; Schwartzbart, Harry

    1982-10-08

    Rockwell International's Energy Systems Group, under contract to Brookhaven National Laboratory, has completed a 2-year program to develop a novel temperature-actuated seal concept for geothermal applications. This seal concept uses the unique properties of a shape memory alloy (Nitinol) to perform the sealing function. The several advantages of the concept are discussed in the paper. Demonstration tests of both face and shaft seals have shown that leaktight seals are feasible. Supporting materials studies have included corrosion tests in geothermal fluids, elevated temperature tensile tests, experimental electroplating and metallographic evaluations of microstructures.

  4. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Not Available

    1985-09-15

    A shape memory radial seal was fabricated with a ''U'' cross section. Upon heating the seal recovered its original ''V'' shape and produced a high pressure seal. The sealing pressure which can be developed is approximately 41 MPa (60,000 psi), well in excess of the pressure which can be produced in conventional elastomeric seals. The low modulus martensite can conform readily to the sealing surface, and upon recovery produce a seal capable of high pressure fluid or gas confinement. The corrosion resistance of nickel-titanium in a broad range of aggressive fluids has been well established and, as such, there is little doubt that, had time permitted, a geothermal pump of flange fluid tried would have been successful.

  5. Lignin-Based Triple Shape Memory Polymers.

    PubMed

    Sivasankarapillai, Gopakumar; Li, Hui; McDonald, Armando G

    2015-09-14

    Lignin-based triple shape memory polymers comprised of both permanent covalent cross-links and physical cross-links have been synthesized. A mixing phase with poly(ester-amine) and poly(ester-amide) network having two distinct glass transitions was hot mixed with more structurally homogenized methanol soluble lignin fraction by one-pot, two-step method. Triple shape properties arise from the combined effect of the glass transition of polyester copolymers and lignin and the dissociation of self-complementary hydrogen bonding and cross-link density. The percentage of recovery in each stage was investigated and it was proved that the first recovery is related with lignin-poly(ester-amine) rich network and the second recovery stage is related with lignin-poly(ester-amide) rich network. The thermal and mechanical properties of the lignin-copolymer networks were also investigated using differential scanning calorimetry and dynamic mechanical analysis.

  6. Multiscale Characterization of Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Gall, Keith

    Shape memory alloys were characterized by a variety of methods to investigate the relationship between microstructural phase transformation, macroscale deformation due to mechanical loading, material geometry, and initial material state. The major portion of the work is application of digital image correlation at several length scales to SMAs under mechanical loading. In addition, the connection between electrical resistance, stress, and strain was studied in NiTi wires. Finally, a new processing method was investigated to develop porous NiTi samples, which can be examined under DIC in future work. The phase transformation temperatures of a Nickel-Titanium based shape memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase transformation temperature is significantly higher for transition from de-twinned martensite to austenite than from twinned martensite or R phase to austenite. To further examine transformation temperatures as a function of initial state a tensile test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on R phase and twinned martensite transformations. Electrical resistance changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between ER and strain during the transformation from de-twinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results. To better understand the nature of the local and global strain fields that accompany phase transformation in shape memory alloys (SMAs), here we use high resolution imaging together with image

  7. Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch.

    PubMed

    Sessini, Valentina; Raquez, Jean-Marie; Lo Re, Giada; Mincheva, Rosica; Kenny, José Maria; Dubois, Philippe; Peponi, Laura

    2016-08-01

    Smart multiresponsive bionanocomposites with both humidity- and thermally activated shape-memory effects, based on blends of ethylene-vinyl acetate (EVA) and thermoplastic starch (TPS) are designed. Thermo- and humidity-mechanical cyclic experiments are performed in order to demonstrate the humidity- as well as thermally activated shape memory properties of the starch-based materials. In particular, the induced-crystallization is used in order to thermally activate the EVA shape memory response. The shape memory results of both blends and their nanocomposites reflect the excellent ability to both humidity- and thermally activated recover of the initial shape with values higher than 80 and 90%, respectively. PMID:27434018

  8. Experimental characterization of shape memory alloy actuator cables

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  9. Magnetoelastic coupling in nickel manganese gallium ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Peng

    NiMnGa alloys have attracted extensive attention because their ferromagnetic characteristic provides an additional degree of freedom to control both the shape memory effect and the multi-stage phase transformations in this Heusler system. Technically, along with the large magnetic-field-induced strains, NiMnGa alloys exhibit giant magnetocaloric effect due to their magnetic entropy changes associated with the coupled magnetostructural transitions. Fundamentally, a sequence of phase transformations, manifesting itself by a rich variety of physical anomalies on cooling to the martensitic transformation (MT) temperature TM, has been established. However, in comparison to the intensive studies of structural transformations, the magnetic properties of NiMnGa premartensite were hardly touched. The purpose of this research is to (i) investigate the temperature dependence of the magnetic driving force of martensitic NiMnGa, which is a critical factor to determine the actuation temperature window of this material; and (ii) understand the magnetoelastic coupling enhanced precursor effects, especially the unique magnetic behavior of NiMnGa premartensite. The singular point detection technique has been applied to determine the magnetic anisotropy constant K1 of a martensitic Ni49.0 Mn23.5Ga27.5 (wt%) crystal. As expected, K 1 increases with decreasing temperatures below TM of 276 K, following a magnetization power law K1(T)/K1(0)=(M s(T)/Ms(0))3. However, the force required to initiate twin boundary motion increases exponentially with decreasing temperature. The combination of both temperature dependences leads to a very restricted temperature window for magnetic actuation using this alloy. The premartensitic transformation has been established by means of neutron powder diffraction and measurements of elastic constants of C44 and C'. The premartensitic phase has been verified by the stiffening of C 44 prior to the MT. The slope change of C' at TC positively confirms that the

  10. Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol).

    PubMed

    Takeshita, F; Takata, H; Ayukawa, Y; Suetsugu, T

    1997-01-01

    The bone reaction to nitinol (Ni-Ti), a metal with shape memory, and other materials inserted transcortically and extending into the medullary canal of rat tibiae was quantitatively assessed using an image processing system. The materials examined were implants, all of the same shape and size, composed of nitinol, pure titanium (Ti), anodic oxidized Ti (AO-Ti), a titanium alloy (Ti-6Al-4V) and pure nickel (Ni). While the other four implant materials were progressively encapsulated with bone tissues, Ni was encapsulated with connective tissues through the 168-day experimental period, and the Ni implants showed no bone contact at any time during the experimental period. Histometric analysis revealed no significant difference among the tissue reactions to Ti, AO-Ti and Ti-6Al-4V, but Ni-Ti implants showed significantly (P < 0.01) lower percentage bone contact and bone contact area than any of the other titanium or titanium alloy materials.

  11. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  12. Various shape memory effects of stimuli-responsive shape memory polymers

    NASA Astrophysics Data System (ADS)

    Meng, Harper; Mohamadian, Habib; Stubblefield, Michael; Jerro, Dwayne; Ibekwe, Samuel; Pang, Su-Seng; Li, Guoqiang

    2013-09-01

    One-step dual-shape memory polymers (SMPs) recover their original (permanent) shape upon small variation of environmental conditions such as temperature, electric field, light, magnetic field, and solvent/chemicals. For advanced applications such as aerospace and medical devices, complicated, multiple-step, spatially controllable, and two-way shape memory effects (SMEs) are required. In the past decade, researchers have devoted great effort to improve the versatility of the SME of SMPs to meet the needs of advanced applications. This paper is intended to review the up-to-date research endeavors on advanced SMEs. The problems facing the various SMPs are discussed. The challenges and opportunities for future research are discussed.

  13. Properties and medical applications of shape memory alloys.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications. PMID:19221641

  14. Characterization Results of a Novel Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Collado, M.; Nava, N.; Herranz, S.; Ramiro, C.; San Juan, J. M.; Patti, S.; Lautier, J.-M.

    2012-07-01

    A novel Shape Memory Alloy (SMA) has been developed as an alternative to currently available alloys. This material, called SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now, mainly NiTi based alloys. SMARQ is a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200oC. A full Characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability for the development of space actuators.

  15. Apparatus for loading shape memory gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2001-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  16. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  17. Memory trace replay: the shaping of memory consolidation by neuromodulation

    PubMed Central

    Atherton, Laura A.; Dupret, David; Mellor, Jack R.

    2015-01-01

    The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed. PMID:26275935

  18. Visual pattern memory without shape recognition.

    PubMed

    Dill, M; Heisenberg, M

    1995-08-29

    Visual pattern memory of Drosophila melanogaster at the torque meter is investigated by a new learning paradigm called novelty choice. In this procedure the fly is first exposed to four identical patterns presented at the wall of the cylinder surrounding it. In the test it has the choice between two pairs of patterns, a new one and one the same as the training pattern. Flies show a lasting preference for the new figure. Figures presented during training are not recognized as familiar in the test, if displayed (i) at a different height, (ii) at a different size, (iii) rotated or (iv) after contrast reversal. No special invariance mechanisms are found. A pixel-by-pixel matching process is sufficient to explain the observed data. Minor transfer effects can be explained if a graded similarity function is assumed. Recognition depends upon the overlap between the stored template and the actual image. The similarity function is best described by the ratio of the area of overlap to the area of the actual image. The similarity function is independent of the geometrical properties of the employed figures. Visual pattern memory at this basic level does not require the analysis of shape. PMID:8668723

  19. A model for ferromagnetic shape memory thin film actuators

    NASA Astrophysics Data System (ADS)

    Lee, Kwok-Lun; Seelecke, Stefan

    2005-05-01

    The last decade has witnessed the discovery of materials combining shape memory behavior with ferromagnetic properties (FSMAs), see James & Wuttig1, James et al.2, Ullakko et al.3. These materials feature the so-called giant magnetostrain effect, which, in contrast to conventional magnetostriction is due motion of martensite twins. This effect has motivated the development of a new class of active materials transducers, which combine intrinsic sensing capabilities with superior actuation speed and improved efficiency when compared to conventional shape memory alloys. Currently, thin film technology is being developed intensively in order to pave the way for applications in micro- and nanotechnology. As an example, Kohl et al., recently proposed a novel actuation mechanism based on NiMnGa thin film technology, which makes use of both the ferromagnetic transition and the martensitic transformation allowing the realization of an almost perfect antagonism in a single component part. The implementation of the mechanism led to the award-winning development of an optical microscanner. Possible applications in nanotechnology arise, e.g., by combination of smart NiMnGa actuators with scanning probe technologies. The key aspect of Kohl's device is the fact that it employs electric heating for actuation, which requires a thermo-magneto-mechanical model for analysis. The research presented in this paper aims at the development of a model that simulates this particular material behavior. It is based on ideas originally developed for conventional shape memory alloy behavior, (Mueller & Achenbach, Achenbach, Seelecke, Seelecke & Mueller) and couples it with a simple expression for the nonlinear temperature- and position-dependent effective magnetic force. This early and strongly simplified version does not account for a full coupling between SMA behavior and ferromagnetism yet, and does not incorporate the hysteretic character of the magnetization phenomena either. It can however

  20. Shape memory thermal lag and superelastic rate sensitivity of SMA cellular structures

    NASA Astrophysics Data System (ADS)

    Watkins, Ryan T.; Shaw, John A.; Grummon, David S.

    2013-04-01

    An experimental characterization is presented of the thermo-mechanical response of honeycombs and corrugations made of a NiTi shape memory alloy (SMA). Of particular interest are the shape memory cycle, the superelastic response, the shape memory thermal lag and the superelastic rate sensitivity. A series of in-plane compression experiments are presented on fabricated honeycombs and their responses are compared to typical monolithic SMAs, such as NiTi wire. Given local material strain limits, NiTi honeycombs exhibit an order of magnitude increase in recoverable deformation, both in the shape memory effect and superelastic effect. This comes at the cost of a reduced load carrying capacity by two orders of magnitude and a reduced (homogenized) compressive stiffness by four orders of magnitude. Due to their sparse structure and enhanced heat transfer characteristics, SMA honeycombs exhibit less superelastic rate sensitivity by two orders of magnitude while having similar thermal lag to SMA wire. The implications of these scaling results are discussed, including possible new regimes of application of SMAs for reusable energy absorption devices and high stroke actuators.

  1. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  2. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  3. Shape memory polymers with high and low temperature resistant properties

    PubMed Central

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to −150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed. PMID:26382318

  4. Shape memory polymers with high and low temperature resistant properties.

    PubMed

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to -150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed.

  5. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  6. Magnetically Controlled Shape Memory Behaviour—Materials and Applications

    NASA Astrophysics Data System (ADS)

    Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.

    2008-06-01

    For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based

  7. New shape memory effects in semicrystalline polymeric networks

    NASA Astrophysics Data System (ADS)

    Chung, Taekwoong

    Shape memory polymers (SMPs) have attracted much research interest as a type of smart material that possesses the capacity to undergo rapid changes of their shape and size under a specific or tailored environment. Herein, we prepared semicrystalline polymers-based networks such as poly (cyclooctene) (PCO), poly (e-caprolactone) (PCL) and poly (ethylene glycol) (PEG) networks in order to explore their shape memory effects and thermomechanical properties as well as the possibilities for their applications. Interestingly, besides so-called one-shape memory effect that can be manipulated and fixed to a temporary shape under specific conditions of temperature and stress, and subsequently relax to the original shape on heating, the semicrystalline polymer networks exhibit a reversible two-way shape memory effect, revealing crystallization-induced elongation on cooling and melting-induced contraction on heating. These thermally induced reversible two-way shape memory effects were systematically explored with respect to the crosslinking density of networks and the applied stress. In order to develop a shape memory network with temperature sensing capability, we incorporated appropriately tailored chromogenic cyano-OPVs into cross-linked PCO via guest-diffusion to create phase-separated blends in which the dye's emission properties are dominated by excimer fluorescence. Heatng to the temperature above melting temperature and cooling below the crystallization temperature of PCO led to reversible optical changes through dissolution or agregation of the dye molecules. These optical changes happened in conjuction with shape changes of PCO networks. For an application of shape memory network in bone tissue engineering, we fabricated novel shape memory nanocomposite scaffolds base on PCL and nano-hydroxyapatite (nano-HAP) using thiol-ene photopolymerization and salt leaching technique. The shape memory property, morphologies and biomineralization of the scaffolds were

  8. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  9. Distinct processes shape flashbulb and event memories.

    PubMed

    Tinti, Carla; Schmidt, Susanna; Testa, Silvia; Levine, Linda J

    2014-05-01

    In the present study, we examined the relation between memory for a consequential and emotional event and memory for the circumstances in which people learned about that event, known as flashbulb memory. We hypothesized that these two types of memory have different determinants and that event memory is not necessarily a direct causal determinant of flashbulb memory. Italian citizens (N = 352) described their memories of Italy's victory in the 2006 Football World Cup Championship after a delay of 18 months. Structural equation modeling showed that flashbulb memory and event memory could be clearly differentiated and were determined by two separate pathways. In the first pathway, importance predicted emotional intensity, which, in turn, predicted the frequency of overt and covert rehearsal. Rehearsal was the only direct determinant of vivid and detailed flashbulb memories. In the second pathway, importance predicted rehearsal by media exposure, which enhanced the accuracy and certainty of event memory. Event memory was also enhanced by prior knowledge. These results have important implications for the debate concerning whether the formation of flashbulb memory and event memory involve different processes and for understanding how flashbulb memory can be simultaneously so vivid and so error-prone.

  10. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  11. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  12. Temperature memory effect in amorphous shape memory polymers.

    PubMed

    Yu, Kai; Qi, H Jerry

    2014-12-21

    Temperature memory effect (TME) refers to the ability of shape memory polymers (SMPs) to memorize the temperature at which pre-deformation was conducted. In the past few years, this TME was experimentally demonstrated by comparing the applied programming temperature (Td) with a characteristic recovery temperature (Tc), which corresponds to either the maximum recovery stress or free recovery speed. In these well-designed experiments, Tc was observed to be close to Td, which is consistent with the intuitive understanding of 'memorization'. However, since the polymer recovery behavior has been proved to be strongly dependent on various programming and recovery conditions, a new question that whether Tc is always equal to Td in any thermo-temporal conditions remains to be addressed. In this paper, we answered this question by examining the free recovery profile of an acrylate based amorphous SMP. The recovery Tc, which is the temperature with the maximum recovery speed, versus the recovery temperature is shown to be strongly dependent on both programming and recovery conditions. Their detailed influence could be explained by using the reduced time. During a thermomechanical working cycle of SMPs, in addition to the Td, any other thermo-temporal conditions, such as the holding time (th), cooling rate, recovery heating rate (q), etc., can affect the observed Tc by changing the reduced programming or recovery time. In this manner, the relationship between Tc and Td is not uniquely determined. Besides, the TME in SMPs can only be achieved within a given temperature range. Both onset and offset of this temperature range are shown to be influenced by the programming history, but are independent of the recovery conditions.

  13. Biomedical Applications of Thermally Activated Shape Memory Polymers

    SciTech Connect

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  14. Biomedical applications of thermally activated shape memory polymers†

    PubMed Central

    Small, Ward; Singhal, Pooja; Wilson, Thomas S.

    2011-01-01

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605

  15. Mechanocaloric effects in shape memory alloys.

    PubMed

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  16. Styrene-based shape memory foam: fabrication and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Zhou, Tianyang; Qin, Chao; Liu, Yanju; Leng, Jinsong

    2016-10-01

    Shape memory polymer foam is a promising kind of structure in the biomedical and aerospace field. Shape memory styrene foam with uniform and controlled open-cell structure was successfully fabricated using a salt particulate leaching method. Shape recovery capability exists for foam programming in both high-temperature compression and low-temperature compression (Shape recovery properties such as shape fixing property and shape recovery ratio were also characterized. In order to provide guidance for the future fabrication of shape memory foam, the theories of Gibson and Ashby as well as differential micromechanics theory were applied to predict Young’s modulus and the mechanical behavior of SMP styrene foams during the compression process.

  17. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  18. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  19. Stability and optimization of P-phase precipitates in nickel-titanium-palladium shape memory alloys

    NASA Astrophysics Data System (ADS)

    Coppa, Anne Catherine

    The motivation for this research is the understanding of phase transformations that lead to an increase in the shape memory effect (SME) transformation temperature in a Ni-Ti-Pd shape memory alloy (SMA). The research addressed three major parts of this transformation---(1) The phase stability of the P-phase precipitate previously discovered with an emphasis on its stoichiometric limits by changing the Ni and Pd content with the Ti11(Ni,Pd)13 ratio; (2) The effects of P-phase precipitation on the martensitic transformation temperature in near-equiatomic Ti(Ni,Pd) alloys; and (3) The effects of dilute additions of Hf (0.1-1 at.%) to the precipitation and shape memory transformation temperature in Ni-Ti-Pd. P-phase stabilization: The compositional limits of the P-phase have been systematically studied by varying the Pd and Ni content in the P-phase's Ti11(Ni+Pd)13 stoichiometry. Each alloy was solutionized at 1050°C followed by water quenching, and aging at 400°C for 100 hours. Four distinct phases were identified---Ti 2Pd3, B2 Ni-Ti, P- and P1-phases dependent on alloy composition---by electron and x-ray diffraction. The latter precipitate phases become more stable with increasing Ni at the expense of Pd content. Atom probe tomography revealed the P-phase composition to be 45.8Ti-29.2Ni-25Pd (at.%) or Ti 11(Ni7Pd6) as compared to the P1-phase 44.7Ti- 45.8Ni-9.4Pd (at.%) or Ti5Ni5Pd. Optimization of P-phase precipitation: The effect of aging time and temperature on precipitation and subsequent martensitic transformation temperatures for a series of Ni-(50.5-49.2)Ti-32Pd (at.%) shape memory alloys has been studied. Structure-property relationships were developed through detailed microstructural characterization involving transmission electron microscopy, diffraction analysis, and atom probe tomography with links to microhardness measurements and transformation temperatures established by differential scanning calorimetry. The Ti-rich alloy contained relatively coarse

  20. Basic Properties of Magnetic Shape-Memory Materials from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Dannenberg, Antje; Siewert, Mario; Herper, Heike C.; Gruner, Markus E.; Comtesse, Denis; Elmers, Hans-Joachim; Kallmayer, Michael

    2012-08-01

    The mutual influence of phase transformations, magnetism, and electronic properties of magnetic-shape memory Heusler materials is a basic issue of electronic structure calculations based on density functional theory. In this article, we show that these calculations can be pursued to finite temperatures, which allows to derive on a first-principles basis the temperature versus composition phase diagram of the pseudo-binary Ni-Mn-(Ga, In, Sn, Sb) system. The free energy calculations show that the phonon contribution stabilizes the body-centered-cubic (bcc)-like austenite structure at elevated temperatures, whereas magnetism favors the low-temperature martensite phase with body-centered-tetragonal (bct) or rather face-centered-tetragonal (fct) structure. The calculations also allow to make predictions of magnetostructural and magnetic field induced properties of other (new) magnetic Heusler alloys not based on NiMn such as Co-Ni-(Ga-Zn) and Fe-Co-Ni-(Ga-Zn) intermetallic compounds.

  1. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  2. Nonhysteretic superelasticity of shape memory alloys at the nanoscale.

    PubMed

    Zhang, Zhen; Ding, Xiangdong; Sun, Jun; Suzuki, Tetsuro; Lookman, Turab; Otsuka, Kazuhiro; Ren, Xiaobing

    2013-10-01

    We perform molecular dynamics simulations to show that shape memory alloy nanoparticles below the critical size not only demonstrate superelasticity but also exhibit features such as absence of hysteresis, continuous nonlinear elastic distortion, and high blocking force. Atomic level investigations show that this nonhysteretic superelasticity results from a continuous transformation from the parent phase to martensite under external stress. This aspect of shape memory alloys is attributed to a surface effect; i.e., the surface locally retards the formation of martensite and then induces a critical-end-point-like behavior when the system is below the critical size. Our work potentially broadens the application of shape memory alloys to the nanoscale. It also suggests a method to achieve nonhysteretic superelasticity in conventional bulk shape memory alloys.

  3. Working memory for braille is shaped by experience.

    PubMed

    Cohen, Henri; Scherzer, Peter; Viau, Robert; Voss, Patrice; Lepore, Franco

    2011-03-01

    Tactile working memory was found to be more developed in completely blind (congenital and acquired) than in semi-sighted subjects, indicating that experience plays a crucial role in shaping working memory. A model of working memory, adapted from the classical model proposed by Baddeley and Hitch1 and Baddeley2 is presented where the connection strengths of a highly cross-modal network are altered through experience.

  4. Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device.

    PubMed

    Müller, Christian W; Pfeifer, Ronny; El-Kashef, Tarek; Hurschler, Christof; Herzog, Dirk; Oszwald, Markus; Haasper, Carl; Krettek, Christian; Gösling, Thomas

    2010-12-01

    Shape memory orthopaedic implants made from nickel-titanium (NiTi) might allow the modulation of fracture healing, changing their cross-sectional shape by employing the shape memory effect. We aimed to show the feasibility and safety of contact-free electromagnetic induction heating of NiTi implants in a rat model. A water-cooled generator-oscillator combination was used. Induction characteristics were determined by measuring the temperature increase of a test sample in correlation to generator power and time. In 53 rats, NiTi implants were introduced into the right hind leg. The animals were transferred to the inductor, and the implant was electromagnetically heated to temperatures between 40 and 60°C. Blood samples were drawn before and 4 h after the procedure. IL-1, IL-4, IL-10, TNF-α, and IFN-γ were measured. Animals were euthanized at 3 weeks. Histological specimens from the hind leg and liver were retrieved and examined for inflammatory changes, necrosis, and corrosion pits. Cytokine measurements and histological specimens showed no significant differences among the groups. We concluded that electromagnetic induction heating of orthopedic NiTi implants is feasible and safe in a rat model. This is the first step in the development of new orthopedic implants in which stiffness or rigidity can be modified after implantation to optimize bone-healing.

  5. Emotions shape memory suppression in trait anxiety.

    PubMed

    Marzi, Tessa; Regina, Antonio; Righi, Stefania

    2014-01-01

    The question that motivated this study was to investigate the relation between trait anxiety, emotions and memory control. To this aim, memory suppression was explored in high and low trait anxiety individuals with the Think/No-think paradigm. After learning associations between neutral words and emotional scenes (negative, positive, and neutral), participants were shown a word and were requested either to think about the associated scene or to block it out from mind. Finally, in a test phase, participants were again shown each word and asked to recall the paired scene. The results show that memory control is influenced by high trait anxiety and emotions. Low trait anxiety individuals showed a memory suppression effect, whereas there was a lack of memory suppression in high trait anxious individuals, especially for emotionally negative scenes. Thus, we suggest that individuals with anxiety may have difficulty exerting cognitive control over memories with a negative valence. These findings provide evidence that memory suppression can be impaired by anxiety thus highlighting the crucial relation between cognitive control, emotions, and individual differences in regulating emotions.

  6. Shape Memory Alloy (SMA)-Based Launch Lock

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  7. Thermomechanical Modeling of Stress Relaxation in Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Zare, Fateme; Kadkhodaei, Mahmoud; Salafian, Iman

    2015-04-01

    When a shape memory alloy (SMA) is subjected to a mechanical load, especially at high strain rates, its temperature varies due to thermomechanical coupling in the response of these materials. Thus, if strain is kept constant during the transformation, temperature change will cause stress to decrease during loading and to increase during unloading. A decrease in stress under constant strain indicates stress relaxation, and an increase in stress indicates stress recovery, i.e., reverse stress relaxation. In this paper, a fully coupled thermomechanical model is developed in a continuum framework to study stress relaxation and stress recovery in SMA wires. Numerical simulations at different ambient temperatures, applied strain rates, wire radii, and relaxation intervals are done to show the abilities of the proposed model in predicting relaxation phenomena in various conditions where strain remains constant during loading or unloading. Relaxation experiments were also performed on NiTi wires, and the numerical and empirical results are shown to be in a good agreement.

  8. Ferromagnetic shape memory flapper for remotely actuated propulsion systems

    NASA Astrophysics Data System (ADS)

    Kanner, Oren Y.; Shilo, Doron; Sheng, Jian; James, Richard D.; Ganor, Yaniv

    2013-08-01

    Generating propulsion with small-scale devices is a major challenge due to both the domination of viscous forces at low Reynolds numbers as well as the small relative stroke length of traditional actuators. Ferromagnetic shape memory materials are good candidates for such devices as they exhibit a unique combination of large strains and fast responses, and can be remotely activated by magnetic fields. This paper presents the design, analysis, and realization of a novel NiMnGa shear actuation method, which is especially suitable for small-scale fluid propulsion. A fluid mechanics analysis shows that the two key parameters for powerful propulsion are the engineering shear strain and twin boundary velocity. Using high-speed photography, we directly measure both parameters under an alternating magnetic field. Reynolds numbers in the inertial flow regime (>700) are evaluated. Measurements of the transient thrust show values up to 40 mN, significantly higher than biological equivalents. This work paves the way for new remotely activated and controlled propulsion for untethered micro-scale robots.

  9. Improvement of needle type applicator made of shape memory alloy.

    PubMed

    Kanazawa, Y; Kato, K; Yabuhara, T; Uzuka, T; Takahashi, H; Fujii, Y

    2008-01-01

    This paper discusses radio frequency (RF) interstitial hyperthermia for brain tumors with a developed needle type applicator made of a shape memory alloy (SMA). The problem with the heating method of interstitial hyperthermia is the small heating area. So, we proposed a new heating method using a needle type electrode made of SMA which consists of nickel (Ni), copper (Cu) and titanium (Ti) for expanding the heating area. Here, we proposed the heating method that the leading end of needle type electrode was divided into four parts and the leading end spreads in four directions with a temperature rise. First, the proposed RF interstitial hyperthermia system with the SMA needle was presented. Second, the results obtained by the experimental heating of the agar phantom by using the developed SMA needle type applicator were presented. Third, comparing experimental results, we discussed the heating properties of the developed system. Finally, from these results, it is confirmed that the developed needle type applicator made of SMA is useful for wide heating by invasive hyperthermia.

  10. Shape Memory Alloy (SMA)-based launch lock

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-04-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing free motion of the shaft, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  11. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  12. Thermomechanical characterization of nickel-titanium-copper shape memory alloy films

    SciTech Connect

    Seward, K P; Ramsey, P B; Krulevitch, P

    2000-10-31

    In an effort to develop a more extensive model for the thermomechanical behavior of shape memory alloy (SMA) films, a novel characterization method has been developed. This automated test has been tailored to characterize films for use in micro-electromechanical system (MEMS) actuators. The shape memory effect in NiTiCu is seen in the solid-state phase transformation from an easily deformable low-temperature state to a 'shape remembering' high-temperature state. The accurate determination of engineering properties for these films necessitates measurements of both stress and strain in microfabricated test structures over the full range of desired deformation. Our various experimental methods (uniaxial tensile tests, bimorph curvature tests and diaphragm bulge tests) provide recoverable stress and strain data and the stress-strain relations for these films. Tests were performed over a range of temperatures by resistive heating or ambient heating. These measurements provide the results necessary for developing active SMA structural film design models.

  13. The morphing properties of a vascular shape memory composite

    NASA Astrophysics Data System (ADS)

    Cortes, P.; Terzak, J.; Kubas, G.; Phillips, D.; Baur, J. W.

    2014-01-01

    This work investigates the fabrication, experimentation, testing, and modeling of shape memory composites consisting of two-way shape memory alloy (SMA) tubes embedded in a shape memory polymer (SMP) matrix. The hybrid system here investigated is thermally activated via internal transport of thermal fluids through the SMA vascular system. The resulting shape memory composite (SMC) combines the high modulus and high specific actuation force of SMAs with the strong shape fixing and variable stiffness of SMPs to create a light-weight composite capable of controllably and rapidly achieving two shape memory states. Specifically, a 25° thermally induced out-of-plane bending state is achieved with a 2% volume fraction of SMA in the composite after 2 min of being activated by an internal thermal fluid. Here, while the thermal structural design of the SMC was not optimized and the thermal cycling was significantly restricted by the low thermal conduction of the SMP, the deflection of the composite was within 20% of the expected value modeled by the thermal-mechanical finite element analysis (FEA) here performed. The close agreement between the experimental performance and the modeled composite response suggests that morphing composites based on SMAs and SMPs are promising structures for adaptive applications.

  14. Photopolymerized Thiol-Ene Systems as Shape Memory Polymers

    PubMed Central

    Nair, Devatha P.; Cramer, Neil B.; Scott, Timothy F.; Bowman, Christopher N.; Shandas, Robin

    2010-01-01

    In this study we introduce the use of thiol-ene photopolymers as shape memory polymer systems. The thiol-ene polymer networks are compared to a commonly utilized acrylic shape memory polymer and shown to have significantly improved properties for two different thiol-ene based polymer formulations. Using thermomechanical and mechanical analysis, we demonstrate that thiol-ene based shape memory polymer systems have comparable thermomechanical properties while also exhibiting a number of advantageous properties due to the thiol-ene polymerization mechanism which results in the formation of a homogenous polymer network with low shrinkage stress and negligible oxygen inhibition. The resulting thiol-ene shape memory polymer systems are tough and flexible as compared to the acrylic counterparts. The polymers evaluated in this study were engineered to have a glass transition temperature between 30 and 40 °C, exhibited free strain recovery of greater than 96% and constrained stress recovery of 100%. The thiol-ene polymers exhibited excellent shape fixity and a rapid and distinct shape memory actuation response. PMID:21072253

  15. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    NASA Astrophysics Data System (ADS)

    Yu, Xiongjun; Zhou, Shaobing; Zheng, Xiaotong; Guo, Tao; Xiao, Yu; Song, Botao

    2009-06-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m-1. The nanocomposite is composed of crosslinked poly(ɛ-caprolactone) (c-PCL) and Fe3O4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe3O4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe3O4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe3O4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  16. Shape memory alloys: a state of art review

    NASA Astrophysics Data System (ADS)

    Naresh, C.; Bose, P. S. C.; Rao, C. S. P.

    2016-09-01

    Shape memory alloys (SMAs) are the special materials that have the ability to return to a predetermined shape when heated. When this alloy is in below transformation temperature it undergoes low yield strength and will deform easily into any new shape which it will retain, if this alloy is heated above its transformation temperature it changes its crystal lattice structure which returns to its real shape. SMAs are remarkably different from other materials are primarily due to shape memory effect (SME) and pseudoelasticity which are related with the specific way the phase transformation occurs, biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. SMA are used in many applications such as aerospace, medical, automobile, tubes, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, actuators, miniature grippers, micro valves, pumps, landing gears, eye glass frames, Material for helicopter blades, sprinklers in fine alarm systems packaging devices for electronic materials, dental materials, etc. This paper focuses on introducing shape memory alloy and their applications in past, present and in future, also revealed the concept and mechanism of shape memory materials for a particular requirement. Properties of SMAs, behaviour and characteristics of SMA, summary of recent advances and new application opportunities are also discussed.

  17. Programming of shape memory natural rubber for near-discrete shape transitions.

    PubMed

    Quitmann, Dominik; Reinders, Frauke M; Heuwers, Benjamin; Katzenberg, Frank; Tiller, Joerg C

    2015-01-28

    Typical shape memory polymers are hot-programmed and show a shape transition over a broad temperature range of 10 K and more. Cold-programmed shape memory natural rubber (SMNR) recovers more than 80% of its original shape within 1 K. The trigger point can be increased upon aging the stretched SMNR over several weeks without losing the narrow trigger range. This process can be accelerated by treatment of the stretched SMNR with nonaffine solvent vapors. Affine solvent vapors of low concentrations afford higher trigger points than that achieved by aging. This way, even higher cross-linked natural rubber can be cold-programmed.

  18. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  19. Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Robertson, Jaimee M.; Mu, Xiaoming; Mather, Patrick T.; Jerry Qi, H.

    2015-12-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape upon activation by an external stimulus. Most SMPs require programming at above their transition temperatures, normally well above the room temperature. In addition, most SMPs are programmed into shapes that are affine to the high temperature deformation. Recently, a cold-programmed anisotropic shape memory elastomeric composite was developed and showed interesting low temperature stretching induced shape memory behavior. There, simple, uniaxial stretching at low temperature transformed the composites into curled temporary shapes upon unloading. The exact geometry of the curled state depended on the microstructure of the composite, and the curled shape showed no affinity to the deformed shape. Heating the sample recovered the sample back to its original shape. This new composite consisted of an elastomeric matrix reinforced by aligned amorphous polymer fibers. By utilizing the plastic-like behavior of the amorphous polymer phase at low temperatures, a temporary shape could be fixed upon unloading since the induced plastic-like strain resists the recovery of the elastomer matrix. After heating to a high temperature, the permanent shape was recovered when the amorphous polymer softened and the elastomer matrix contracted. To set a theoretical foundation for capturing the cold-programmed shape memory effects and the dramatic non-affine shape change of this composite, a 3D anisotropic thermoviscoelastic constitutive model is developed in this paper. In this model, the matrix is modeled as a hyperelastic solid, and the amorphous phase of the fibrous mat is considered as a nonlinear thermoviscoplastic solid, whose viscous flow resistance is sensitive to both temperature and stress. The plastic-deformation like behavior demonstrated in the fiber is treated as nonlinear viscoplasticity with extremely high viscosity or long relaxation time at zero-stress state at low temperature. The

  20. High Cycle-life Shape Memory Polymer at High Temperature

    NASA Astrophysics Data System (ADS)

    Kong, Deyan; Xiao, Xinli

    2016-09-01

    High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g‑1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously.