Science.gov

Sample records for ni-mo coatings produced

  1. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  2. A Study on Wear Resistance of HVOF-Sprayed Ni-MoS2 Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Jeng, M. C.; Hwang, J. R.; Chang, C. H.

    2015-02-01

    Composite coating techniques are becoming increasingly popular owing to their peculiar performances. In this study, the wear resistance of thermally sprayed Ni-MoS2 composite coatings on an AISI 1020 steel substrate was investigated. Ni-MoS2 composite powder (size: 60-90 μm) containing 25 wt.% of dispersed MoS2 was prepared by electroless plating. Ni-MoS2 composite coatings were then prepared by HVOF thermal spraying. The coatings were characterized by structural, surface morphological, and compositional analyses by means of microhardness tests, SEM/EDS, XRD, and ICP-AES. For the evaluation of their anti-wear properties, the composites were subjected to ball-on-disk dry wear tests based on the ASTM G99 standard at room temperature. Experimental results showed that some of the MoS2 content dispersed in the Ni-based composite coating burnt away during the high-temperature spraying process, thereby reducing the MoS2 concentration in the coating. In the wear test, the weight loss in the Ni-MoS2 composite coating was minimal under a low load (<15 N) but increased rapidly with increasing load (>30 N). The average wear rate of the coatings was found to be ~1/40 times that of a Ni coating, showing that the wear resistance of the composite coatings was significantly improved by MoS2 addition.

  3. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  4. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  5. Ni/Mo2C nanowires and their carbon-coated composites as efficient catalysts for nitroarenes hydrogenation

    NASA Astrophysics Data System (ADS)

    Shu, Yijin; He, Sina; Xie, Lifang; Chan, Hang Cheong; Yu, Xiang; Yang, Lichun; Gao, Qingsheng

    2017-02-01

    The hydrogenation of nitroarenes to value-added aromatic amines requires active and selective catalysts. Due to the good efficiency, economic cost and high earth-abundance, Ni-based nanostructures emerge as the promising catalysts, which are however limited by the poor dispersion and unsatisfied durability. Herein, Mo2C nanowires was introduced as a versatile support towards the highly dispersive Ni owing to the strong metal-support interactions on carbide surface, accomplishing the high activity in the hydrogenation of 3-nitrobenzoic acid, 4-nitrobenzoic acid and nitrobenzene. However, the presence of water that promoted the selective hydrogenation unfortunately deactivated Ni species. An effective carbon coating was further introduced to remarkably enhance the stability, protecting active Ni from corrosive H+ and H2O. This work elucidates a feasible way towards efficient and stable catalysts by the introduction of both carbide supports and carbon coating, shedding some light on the development of high-performance catalysts.

  6. Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Elhachmi Guettaf, Temam; Hachemi Ben, Temam; Said, Benramache

    2015-10-01

    In this work, we study the influences of current density on surface morphology and electrochemical characterization of electrodeposited Ni-Mo. The Ni-Mo composite coatings are deposited on pretreated copper substrates by electrolytic deposition. The Ni-Mo solution is taken from nickel sulfate fluid and ammonium heptamolybdate with 10 g/l. The Ni-Mo composite coatings are deposited at a temperature of 303 K with an applied current density of jdep = 10 A/dm2-30 A/dm2. We find that the corrosion resistance is improved by incorporating Mo particles into Ni matrix in 0.6-M NaCl solution. From the potentiodynamic polarization curve of electrodeposited Ni-Mo it is confirmed that the corrosion resistance decreases with increasing applied current density. The x-ray diffraction (XRD) analyses of Ni-Mo coatings indicate three phases of MoNi4, Mo1.24Ni0.76, and Ni3Mo phases crystallites of nickel and molybdenum. The scanning electronic microscopy (SEM) tests indicate that Ni-Mo coatings present cracks and pores.

  7. Ni-Mo-Co ternary alloy as a replacement for hard chrome

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Anandan, C.; Grips, V. K. William

    2013-11-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel-molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°-600 °C. It was observed that the micro hardness of Ni-Mo-Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co-P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni-Mo-Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni-Mo-Co alloy was better than as-deposited Ni-Mo-Co and Ni-Mo coating.

  8. Influence of H{sub 3}PO{sub 4} additives on interaction between NIMoO{sub 4} and support in Al-Ni-Mo catalysts of hydrogenation

    SciTech Connect

    Sydelkovskaya, V.G.; Surin, S.A.; Nefedov, B.K.

    1995-12-31

    Al-Ni-Mo catalysts produced by mixing of NiMoO{sub 4} and alumina hydrooxide (psevdobemit) were investigated by UV reflectance spectroscopy and combination scattering spectroscopy. The catalysts without H{sub 3}PO{sub 4} additives are characterized by destruction of NiMoO{sub 4} and interaction between Ni, Mo had the support with formation of surface Al-Ni-Mo structures. The study of H{sub 3}PO{sub 4} additives effect on the formation of oxide Ni-Mo phases in the Al-Ni-Mo catalysts has shown, that the introduction of H{sub 3}PO{sub 4} allows to stabilize NiMoO{sub 4} and to prevent its decomposition.

  9. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  10. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting.

    PubMed

    Yu, Zi-You; Duan, Yu; Gao, Min-Rui; Lang, Chao-Chao; Zheng, Ya-Rong; Yu, Shu-Hong

    2017-02-01

    The development of active, stable and low-cost electrocatalysts towards both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for overall water splitting remains a big challenge. Herein, we report a new porous carbon-supported Ni/Mo2C (Ni/Mo2C-PC) composite catalyst derived by thermal treatment of nickel molybdate nanorods coated with polydopamine, which efficiently and robustly catalyses the HER and OER with striking kinetic metrics in alkaline electrolyte. The catalyst affords low onset potentials of -60 mV for the HER and 270 mV for the OER, as well as small overpotentials of 179 mV for the HER and 368 mV for the OER at a current density of 10 mA cm(-2). These results compare favorably to Mo2C-PC, Ni-PC, and most other documented Ni- and Mo-based catalysts. The high activity of Ni/Mo2C-PC is likely due to electron transfer from Ni to Mo2C, leading to a higher Ni valence and a lower Mo valence in the Ni/Mo2C-PC catalyst, as these are HER and OER active species and thus account for the enhanced activity. Remarkably, our home-made alkaline electrolyser, assembled with Ni/Mo2C-PC as a bifunctional catalyst, can enable a water-splitting current density of 10 mA cm(-2) to be achieved at a low cell voltage of 1.66 V.

  11. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.

    PubMed

    Kharaji, Abolfazl Gharibi; Shariati, Ahmad; Ostadi, Mohammad

    2014-09-01

    In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction.

  12. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  13. Microstructures in rapidly solidified Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.; Hemker, K. J.; Glasgow, T. K.

    1986-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at. percent Mo were rapidly solidified by Chill Block Melt Spinning in vacuum and were examined by optical metallography, X-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at. percent. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  14. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    PubMed

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  15. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst.

    PubMed

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-30

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h(-1) over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization.

  16. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst

    PubMed Central

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-01

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h−1 over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization. PMID:28134313

  17. Hydrocracking of Jatropha Oil over non-sulfided PTA-NiMo/ZSM-5 Catalyst

    NASA Astrophysics Data System (ADS)

    Yang, Xiaosong; Liu, Jing; Fan, Kai; Rong, Long

    2017-01-01

    The PTA-NiMo/ZSM-5 catalyst impregnated with phosphotungstic acid (PTA) was designed for the transformation of Jatropha oil into benzene, toluene, and xylenes (BTX) aromatics. The produced catalyst was characterized by N2 adsorption-desorption, powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and the temperature-programmed desorption of ammonia (NH3-TPD). The catalytic performance was evaluated by gas chromatography (GC). The liquid products were 70 wt% of the feed oil, and the majority of the liquid products were BTX. The aromatization activity of the catalyst was improved by the addition of PTA and the hierarchical process. The favorable PTA amount was 20 wt% and the yield of BTX was 59 wt% at 380 °C, 3 MPa, H2/oil (v/v) = 1000 and LHSV = 1 h-1 over the PTA20-NiMo/HZ0.5 catalyst (PTA 20 wt%) without sulfurization.

  18. Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase

    NASA Astrophysics Data System (ADS)

    Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar

    2017-10-01

    In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.

  19. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    PubMed

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  20. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    PubMed Central

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  1. Preparation and electrocatalytic activity of nanocrystalline Ni-Mo-Co alloy electrode for hydrogen evolution.

    PubMed

    Xu, Lijian; Du, Jingjing; Chen, Baizhen

    2013-03-01

    Ni-Mo-Co alloy electrodes were prepared by electrodeposition technique with citric acid as a complexing agent. The influence of the main technical parameters such as the concentration of CoSO4 7H2O, the current density and the bath temperature on the component content in the Ni-Mo-Co alloy electrode were investigated by electron dispersive spectrometer (EDS), the microstructure and surface morphology of Ni-Mo-Co alloy electrodes were characterized by employing X-ray diffractometer (XRD) and scanning electron microscope (SEM), and the electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was investigated by the method of the cathode polarization curves. The results showed that the excellent Ni-Mo-Co alloy electrode with 41.39 wt% Ni, 53.82 wt% Mo and 4.79 wt% Co was obtained when the concentration of CoSO4 x 7H2O was 8 g/L, the current density was 12 A/dm2 and the bath temperature was 25 degrees C. The mircostructure of the Ni-Mo-Co alloy was nanocrystalline and the average grain size was about 25 nm by calculating using Scherrer Equation. The electrocatalytic activity of Ni-Mo-Co alloy electrode for hydrogen evolution was better than that of Ni-Mo alloy electrode.

  2. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  3. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at. pct Mo. Although the microstructures observed by undercooling and melt spinning were similar, the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  4. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  5. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  6. Reactivity and Morphology of Ni, Mo, and Ni-Mo Oxide Clusters Supported on MCM-48 Toward Thiophene Hydrodesulphurization

    NASA Astrophysics Data System (ADS)

    Bartholomew, Catherine; Chakradhar, Ashish; Burghaus, Uwe; Wu, Chia-Ming; Peng, Rui; Mishra, Srujan; Koodali, Ranjit T.

    2014-07-01

    In this paper, the morphology, chemical composition and reactivity of MCM-48 powders impregnated with Ni, Mo or both toward hydrodesulphurization (HDS) of thiophene were characterized. The reactivity of the catalyst was quantitatively compared with a standard industrial catalyst (from HaldorTopsoe, Denmark) and a novel WS2 nanotube-based catalysts (from R. Tenne, Israel). Morphology and chemical composition were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and EDX elemental maps. Reactivity was determined in a gas-chromatograph based mini flow reactor using thiophene as a probe molecule. The sulfided MCM-48 supported Mo catalyst showed the largest HDS activity with turnover frequencies (TOF) about half as large as for the commercial system under the test conditions used here. Presulfiding did increase activity of all MCM-48 catalysts.

  7. Self-Assembly of Hierarchical Ni-Mo-Polydopamine Microflowers and their Conversion to a Ni-Mo2 C/C Composite for Water Splitting.

    PubMed

    Sun, Lianshan; Wang, Chunli; Sun, Qujiang; Cheng, Yong; Wang, Limin

    2017-02-13

    With the aim of finding efficient non-noble metal catalysts for water splitting, hierarchical Ni-Mo-polydopamine microflowers (Ni-Mo2 C/C MF) were synthesized through a facile aqueous-phase reaction at room temperature. NiMoO4 nanowires were utilized as both Ni and Mo source; they can complex with dopamine to form a hierarchical structure and affect the scale of the final product. The energy dispersive spectroscopy (EDS) measurement of Ni-Mo2 C/C microflowers (MF) shows a high content of Mo2 C and Ni (>90 wt %). For the hydrogen evolution reaction (HER), the Ni-Mo2 C/C MF displays a low overpotential of 99 mV at a current density of -10 mA cm(-2) and a small Tafel slope of 73 mV dec(-1) in 1.0 m KOH. By comparison with Mo2 C/C microspheres (MS), the nanosized Ni-doped particles offer more active sites and enhance the kinetic performance. This facile synthesis strategy is also suitable for preparing other metal-Mo2 C/C composites that can be used in the fields of catalysis and energy conversion.

  8. Activity and structure of hydrotreating Ni, Mo, and Ni-Mo sulfide catalysts supported on {gamma}-Al{sub 2}O{sub 3}--USY zeolite

    SciTech Connect

    Li, D.; Nishijima, A.; Morris, D.E.; Guthrie, G.D.

    1999-11-15

    The catalytic hydrocracking (HC) of diphenylmethane (DPM) and hydrodesulfurization (HDS) of dibenzothiophene (DBT) over Ni, Mo, and Ni-Mo sulfide catalysts supported on a mixed ultrastable Y (USY) zeolite and gamma-Al{sub 2}O{sub 3} were studied. The catalysts were characterized using NH{sub 3} temperature-programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), UV-Vis-NIR diffuse reflectance spectroscopy (DRS), high-resolution transmission electron microscopy (HRTEM), and chemical composition analysis. Because addition of zeolite to a conventional alumina support improves acidity, Ni, Mo, and Ni-Mo catalysts supported on the combined supports had much higher HC activity. Ni was found to be uniformly distributed throughout the catalysts; however, Mo preferentially entered the structure of {gamma}-Al{sub 2}O{sub 3} or was accommodated as oxide aggregates on {gamma}-Al{sub 2}O{sub 3}, rather than associating with zeolite. Ni and Mo catalysts supported on {gamma}-Al{sub 2}O{sub 3}-USY zeolite were good HDS catalysts and showed a shallow maximum in catalytic activity at a NiO and MoO{sub 3} content of 5 mol%. The higher activity at this content occurred because Ni or Mo species had higher surface concentrations, higher dispersion, and were more easily sulfided. Ni-Mo catalysts supported on {gamma}-Al{sub 2}O{sub 3}-USY zeolite had high HDS activity, which showed a prominent maximum at a NiO/(NiO + MoO{sub 3}) ratio of about 0.4, because at this ratio the surface species of Ni and Mo were well dispersed and more easily sulfided to form a Ni-Mo-S phase responsible for the high HDS activity. The Ni-Mo catalysts supported on gamma-Al{sub 2}O{sub 3}-USY zeolite have slightly higher HDS activity than {gamma}-Al{sub 2}O{sub 3}-USY zeolite have slightly higher HDS activity than {gamma}-Al{sub 2}O{sub 3}-supported Ni-Mo catalysts.

  9. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    NASA Astrophysics Data System (ADS)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  10. Surface nanostructure and improved microhardness of 40CrNiMo7 steel induced by high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Hao, Shengzhi

    2017-07-01

    In this paper, surface modification of 40CrNiMo7 steel was investigated with high current pulsed electron beam (HCPEB) treatment. The scanning electron microscope (SEM), electron back-scattered diffraction (EBSD), electron probe micro analysis (EPMA), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results show that a composite microstructure of mainly refined austenite and a little martensite was produced in the surface modified layer of depth ∼7 μm. The average size of small cells on modified surface was decreased to ∼120 nm after 25 HCPEB pulses. XRD analysis indicates a preferred orientation of austenite (2 2 0) crystal plane, and TEM results show the broken and dissolved cementite in the surface modified layer. After HCPEB treatment, all the samples exhibited a remarkable improvement in surface microhardness measurement, up to ∼1000 HK for 15 HCPEB pulses, as tripled of the initial 40CrNiMo7 steel.

  11. Electron microscopy investigation of the microstructure of unsupported Ni-Mo-W sulfide

    SciTech Connect

    Zhang, B.S.; Yi, Y.J.; Zhang, W.; Liang, C.H.; Su, D.S.

    2011-07-15

    An exploration was made on structure and active sites of the unsupported Ni-Mo-W sulfide hydrodesulphurization catalyst prepared by a thiosalt decomposition method. More insights into the nanocomposite structure were provided by introducing the concept of average curvature of Mo(W)S{sub 2} and establishing a new structure model. The defects of cross and mixed stacks, steps along c-axis, expansion of (002) interplanar spacing and mixing structure of Mo(W)/Ni sulfides were investigated using advanced electron microscopy. All these defects in Mo(W) sulfides are closely correlated with increasing active sites of unsupported Ni-Mo-W sulfide catalyst. - Graphical Abstract: From the top schematic of unsupported Ni-Mo-W sulfide, the MoS{sub 2}, WS{sub 2}, or Mo{sub x}W{sub 1-x}S{sub 2} are surrounded by the dispersed Ni sulfide, which make the formation of nanocomposite phases possible. For the bottom colorized high-resolution transmission electron microscopy image with 3D rotation, the variation in sample thickness leads to a varying representation of the contrast of the Ni-Mo-W sulfide sheet, ... Research Highlights: {yields} Rich microstructural features of unsupported Ni-Mo-W sulfide catalyst were revealed. {yields} Curvature of HDS catalyst was firstly proposed, also illustrative for other catalysts. {yields} Insights into the nano-composite were gained from its new structure model.

  12. Kinetic tendencies of thermal transformations in nanosized Ni-MoO3 systems

    NASA Astrophysics Data System (ADS)

    Surovoi, E. P.; Bin, S. V.

    2017-02-01

    The transformations in nanosized Ni-MoO3 systems were studied by optical spectroscopy, microscopy, and gravimetry depending on the thickness of the Ni ( d = 1-40 nm) and MoO3 ( d = 3-50 nm) films, temperature (473-773 K), and thermal treatment time. The contact potential difference was measured for Ni and MoO3 films; photovoltage, for Ni-MoO3 systems. An energy band diagram of the Ni-MoO3 systems was constructed. A model of the thermal transformation of MoO3 films in Ni-MoO3 systems was suggested, which involves a redistribution of equilibrium charge carriers at the contact, formation of a [(Va)++e] center during the preparation of the MoO3 film, the transformation of this center into an [e(Va)++e] center during the formation of Ni-MoO3 systems, and the thermal transition of an electron to the level of the [(Va)++e] center to form an [e(Va)++e] center.

  13. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  14. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    PubMed

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  15. Structural and catalytic properties of zeolite EMT containing NiMo sulfide

    SciTech Connect

    Becue, T.; Manoli, J.M.; Potvin, C.; Leglise, J.; Cornet, D.

    1998-10-01

    This work examines bifunctional catalysts made of an acidic EMT zeolite into which Ni and Mo ions were introduced, and then sulfided. Their structure and catalytic properties were compared to those of analogous NiMo/HY. Ni and Mo were loaded onto the HEMT by wet treatment, and the solids were characterized in the calcined and sulfided state by means of XRD, porosimetry, and TEM coupled with EDX analysis. When the oxidic NiMo/EMT was sulfided, the zeolite crystals fractured in a few planar directions, and the fissures appeared to be filled with MoS{sub 2} particles promoted with Ni. This is very different to the HY zeolite in which the sulfide slabs were scattered into the mesopores. With both supports, however, about half of the NiMo is present outside the zeolite as incompletely sulfided particles. The catalytic properties of the sulfided NiMo/EMT were examined by measuring the conversion of an n-heptane and benzene mixture in a flow reactor under 8 MPa hydrogen pressure. With the EMT as well as with the HY support, the rate of benzene hydrogenation varied in accordance with the amount of internal Mo. The intrinsic activity of the internal Mo matched that of a commercial NiMo/Al{sub 2}O{sub 3}. The NiMo/zeolites exhibited high activity for the conversion of heptane, but the cracked products exceeded by far the heptane isomers. Differences in selectivity between EMT and HY catalysts are interpreted on the basis of the balance between acidic and hydrogenation functions.

  16. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, Jong Hee

    1998-01-01

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound

  17. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  18. Properties of multilayer coatings produced by coaxial laser cladding

    NASA Astrophysics Data System (ADS)

    Petrovskiy, V. N.; Bykovskiy, D. P.; Dzhumaev, P. S.; Polskiy, V. I.; Prokopova, N. M.; Chirikov, S. N.

    2016-09-01

    This article contains results of the study of multilayer coatings produced by laser cladding on the substrate steel 34HMA using iron based powder PR-10R6M5 as the filler material. The coatings were produced with consistent application of the tracks with fixed overlapping. The dependencies between the characteristics of tracks and the technological mode of deposition were revealed. Properties of coatings were determined for various overlapping of tracks and directions of the cladding layers.

  19. Study of NiMoS mixed phase from catalyst precursors in residue slurry-bed hydrocracking

    NASA Astrophysics Data System (ADS)

    Du, Juntao; Deng, Wenan; Li, Chuan; Zhang, Zailong; Sun, Qiang; Cao, Xiangpeng; Yang, Tengfei

    2017-03-01

    The evolution and role of NiMoS structures from catalyst precursors on residue hydrocracking was investigated. NiMoS mixed phase played important roles in unsupported catalyst and heavy oil development, such as synergy effect and coke inhibiting. The oil-soluble molybdenum naphthenate and nickel naphthenate were chosen as catalyst precursors. The mixtures of the precursor were compared to those of other monometallic oil-soluble precursor in an effort to evaluate the evolution and role of NiMoS phase in the slurry bed hydrocracking of heavy oil. The presence of NiMoS phase were characterized by X-ray diffraction (XRD), TEM and XPS. The series of tests in the slurry-phase reactor was to confirm the synergy effect of NiMoS mixed phase.

  20. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  1. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  2. Enhancement of the Hydrogen Evolution Reaction from Ni-MoS2 Hybrid Nanoclusters

    PubMed Central

    2016-01-01

    This report focuses on a novel strategy for the preparation of transition metal–MoS2 hybrid nanoclusters based on a one-step, dual-target magnetron sputtering, and gas condensation process demonstrated for Ni-MoS2. Aberration-corrected STEM images coupled with EDX analysis confirms the presence of Ni and MoS2 in the hybrid nanoclusters (average diameter = 5.0 nm, Mo:S ratio = 1:1.8 ± 0.1). The Ni-MoS2 nanoclusters display a 100 mV shift in the hydrogen evolution reaction (HER) onset potential and an almost 3-fold increase in exchange current density compared with the undoped MoS2 nanoclusters, the latter effect in agreement with reported DFT calculations. This activity is only reached after air exposure of the Ni-MoS2 hybrid nanoclusters, suggested by XPS measurements to originate from a Ni dopant atoms oxidation state conversion from metallic to 2+ characteristic of the NiO species active to the HER. Anodic stripping voltammetry (ASV) experiments on the Ni-MoS2 hybrid nanoclusters confirm the presence of Ni-doped edge sites and reveal distinctive electrochemical features associated with both doped Mo-edge and doped S-edge sites which correlate with both their thermodynamic stability and relative abundance. PMID:27818842

  3. Structural, Optical, and Magnetic Properties of NiMoO4 Nanorods Prepared by Microwave Sintering

    PubMed Central

    de Moura, Ana P.; de Oliveira, Larissa H.; Rosa, Ieda L. V.; Xavier, Camila S.; Lisboa-Filho, Paulo N.; Li, Máximo S.; La Porta, Felipe A.; Longo, Elson; Varela, José A.

    2015-01-01

    We report on the structural, optical, and magnetic properties of α,β-NiMoO4 nanorods synthesized by annealing the NiMoO4:nH2O precursor at 600°C for 10 minutes in a domestic microwave. The crystalline structure properties of α,β-NiMoO4 were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman (FT-Raman) spectroscopies. The particle morphologies and size distributions were identified by field emission microscopy (FE-SEM). Experimental data were obtained by magnetization measurements for different applied magnetic fields. Optical properties were analyzed by ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements. Our results revealed that the oxygen atoms occupy different positions and are very disturbed in the lattice and exhibit a particular characteristic related to differences in the length of the chemical bonds (Ni-O and Mo-O) of the cluster structure or defect densities in the crystalline α,β-NiMoO4 nanorods, which are the key to a deeper understanding of the exploitable physical and chemical properties in this study. PMID:25802887

  4. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward; Kramer, Martin Stephen; Neiser, Richard A.

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  5. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte

    PubMed Central

    Miao, Jianwei; Xiao, Fang-Xing; Yang, Hong Bin; Khoo, Si Yun; Chen, Jiazang; Fan, Zhanxi; Hsu, Ying-Ya; Chen, Hao Ming; Zhang, Hua; Liu, Bin

    2015-01-01

    A unique functional electrode made of hierarchal Ni-Mo-S nanosheets with abundant exposed edges anchored on conductive and flexible carbon fiber cloth, referred to as Ni-Mo-S/C, has been developed through a facile biomolecule-assisted hydrothermal method. The incorporation of Ni atoms in Mo-S plays a crucial role in tuning its intrinsic catalytic property by creating substantial defect sites as well as modifying the morphology of Ni-Mo-S network at atomic scale, resulting in an impressive enhancement in the catalytic activity. The Ni-Mo-S/C electrode exhibits a large cathodic current and a low onset potential for hydrogen evolution reaction in neutral electrolyte (pH ~7), for example, current density of 10 mA/cm2 at a very small overpotential of 200 mV. Furthermore, the Ni-Mo-S/C electrode has excellent electrocatalytic stability over an extended period, much better than those of MoS2/C and Pt plate electrodes. Scanning and transmission electron microscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy were used to understand the formation process and electrocatalytic properties of Ni-Mo-S/C. The intuitive comparison test was designed to reveal the superior gas-evolving profile of Ni-Mo-S/C over that of MoS2/C, and a laboratory-scale hydrogen generator was further assembled to demonstrate its potential application in practical appliances. PMID:26601227

  6. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  7. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    SciTech Connect

    Park, J.H.

    1994-12-31

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. This invention has applications to breeding blankets for fusion reactors as well as to alkali metal thermal to electric converters.

  8. Barrierless Cu-Ni-Mo Interconnect Films with High Thermal Stability Against Silicide Formation

    NASA Astrophysics Data System (ADS)

    Li, X. N.; Liu, L. J.; Zhang, X. Y.; Chu, J. P.; Wang, Q.; Dong, C.

    2012-12-01

    Cu-Ni-Mo alloys were investigated to increase thermal stability against silicide formation. The alloy compositions were chosen such that an insoluble element (Mo) solute was dissolved into Cu via a third element Ni which is soluble in both Cu and Ni. Thin-film Cu-Ni-Mo alloys were prepared by magnetron sputtering. The films with Mo/Ni ratio of 1/12 exhibited low electrical resistivities in combination with high thermal stabilities against silicide formation, in support of a tentative "cluster-plus-glue-atom" model for stable solid solutions. In particular, a (Mo1/13Ni12/13)0.3Cu99.7 sample reached a minimum resistivity of 2.6 μΩ cm after 400°C/1 h annealing and remained highly conductive with resistivities below 3 μΩ cm even after 400°C/40 h annealing. These alloys are promising candidates for future interconnect materials.

  9. Magnetic field effects on the electrodeposition of CoNiMo alloys

    NASA Astrophysics Data System (ADS)

    Aaboubi, Omar; Msellak, Khalid

    2017-02-01

    In this work we have examined the influence of applying homogeneous magnetic field (MF) up to 1.2T, on Cobalt- Nickel-Molybdenum (CoNiMo) alloys electrodeposition from citric bath. The surface morphology, chemical composition and the crystallographic texture has been investigated by X-ray diffraction (XRD), X-ray composition mapping and scanning electron microscopy (SEM) images. The mass transport behaviour during the electrodeposition process has been examined through the polarization curves and electrochemical impedance methods. As expected, under MF control an enhancement in the mass transport rate was observed leading to grains refinement and homogeneous distribution of the Co, Mo and Ni atoms in the obtained CoNiMo films. These findings highlight the synergistic combination of Ni, Co and Mo by promoting the MHD convection due to the Lorentz force acting during the Ni(II) and Co(II) ions reduction.

  10. SIMS U-Pb zircon ages and Ni-Mo-PGE geochemistry of the lower Cambrian Niutitang Formation in South China: Constraints on Ni-Mo-PGE mineralization and stratigraphic correlations

    NASA Astrophysics Data System (ADS)

    Lan, Zhongwu; Li, Xian-Hua; Chu, Xuelei; Tang, Guoqiang; Yang, Saihong; Yang, Hongwei; Liu, Hai; Jiang, Tao; Wang, Teng

    2017-04-01

    In comparison with previous studies on the Ni-Mo-PGE ore deposits within the deep water Lower Cambrian black shales of the Niutitang Formation around Hunan and Guizhou provinces, this study focused on the shallow water Ni-Mo-PGE enriched layer of the Niutitang Formation around Hubei Province by means of an integrated geochronological, PGE, REE and trace element geochemical study. The results suggest the Ni-Mo-PGE enriched layer has a dominant seawater origin, whereas the Ni-Mo-PGE ore deposits have mixed seawater, hydrothermal and terrigenous origins. Trace metals precipitated from ambient seawater under anoxic-suboxic settings at exceedingly slow sedimentation rates with episodic injections of fresh oxidized seawater. Organic matter played an important role in sourcing, transporting and precipitating trace metals. However, decay of organic material by means of sulfate reducing reactions and/or fluid reworking overprinted primary relationships with trace metal contents. However, the positive linear relationships are clearly shown between organic carbon and trace metal contents. New SIMS U-Pb ages constrained the depositional age of the Ni-Mo-PGE enriched layer to be 532-527 Ma, which argues against previous assumption that the anoxic event recorded in the Ni-Mo-PGE took place at the Ediacaran-Cambrian boundary. Furthermore, new radiometric ages suggest the Shuijingtuo/Niutitang Formation could be correlated with Shiyantou Formation, Dahai and upper Zhongyicun members, whereas Yanjiahe Formation correlated with Daibu and lower Zhongyicun members in Yunnan Province, respectively.

  11. The synergistic participation of the support in sulfided Ni-Mo/C hydrodesulfurization catalysts

    SciTech Connect

    Laine, J.; Severino, F.; Labady, M.; Gallardo, J. )

    1992-11-01

    Carbon-supported Ni-Mo hydrodesulfurization (HDS) catalysts were studied and compared with previously reported results obtained from alumina supports. In contrast to the latter, the nonimpregnated carbon itself behaved as an HDS catalyst. It is suggested that the carbon support functions synergistically in a sulfided state in conjunction with Mo and Ni, so that both Mo and carbon act as sulfur sinks promoting the exposure of active Ni centers. 18 refs., 3 figs., 1 tab.

  12. One-dimensional topological defect observed in Ni-Mo amorphous films

    NASA Astrophysics Data System (ADS)

    Shang, C. H.; Liu, B. X.; Li, H. D.

    1991-10-01

    When as-vitrified Ni-Mo films are irradiated to a critical dose by 200-keV xenon ions at room temperature, many fine enclosed curves with widths in the range 2-15 nm are observed in an amorphous matrix by transmission electron microscopy. The enclosed curves are attributed to one-dimensional topological defects in amorphous solids. Rich microstructures pertinent to the line defect are described in detail, and elucidated in terms of the elastic theory of continuum media.

  13. Hydroxyapatite coatings on Ti produced by hot isostatic pressing.

    PubMed

    Herø, H; Wie, H; Jørgensen, R B; Ruyter, I E

    1994-03-01

    Plasma spraying is a technique currently used in the production of HA-coated titanium implants. These coatings have been shown to be porous; they dissolve and have a weak bond to the substrate. The long-term interface strength has been questioned in particular. The aim of the present work was to produce HA coatings without the shortcomings of those produced by plasma spraying. Hot isostatic pressing (HIP) at 850 degrees C and 1000 bar with no holding time was applied for this purpose. Initially, the HA powder was mixed with water and air sprayed on the Ti substrate. The Ti specimens were then cold-pressed, enclosed by a protective Pt foil, and encapsulated in an evacuated glass ampulla. Subsequent to HIP, the glass and the Pt foil were removed. These coatings were denser than those produced by plasma spraying. The bonding was measured to be > 62 MPa, which is considered to be satisfactory. The structure of the coating was checked by X-ray diffraction and IR spectroscopy, and was found to correspond to that of HA. Some cracks were observed in the coating running predominantly vertical to the surface. Whether these are acceptable has to be verified by in vivo experiments.

  14. Fabrication of Low Adsorption Energy Ni-Mo Cluster Cocatalyst in Metal-Organic Frameworks for Visible Photocatalytic Hydrogen Evolution.

    PubMed

    Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan

    2016-05-04

    An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER.

  15. Novel alkyd-type coating resins produced using cationic polymerization

    SciTech Connect

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  16. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts

    NASA Astrophysics Data System (ADS)

    Lai, Weikun; Chen, Zhou; Zhu, Jianping; Yang, Lefu; Zheng, Jinbao; Yi, Xiaodong; Fang, Weiping

    2016-02-01

    Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6-12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni-Mo-S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower-like nanostructure could be useful as promising catalysts for deep desulfurization of fuel oils.Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6-12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni-Mo-S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower

  17. A model to describe the surface gradient-nanograin formation and property of friction stir processed laser Co-Cr-Ni-Mo alloy

    NASA Astrophysics Data System (ADS)

    Li, Ruidi; Yuan, Tiechui; Qiu, Zili

    2014-07-01

    A gradient-nanograin surface layer of Co-base alloy was prepared by friction stir processing (FSP) of laser-clad coating in this work. However, it is lack of a quantitatively function relationship between grain refinement and FSP conditions. Based on this, an analytic model is derived for the correlations between carbide size, hardness and rotary speed, layer depth during in-situ FSP of laser-clad Co-Cr-Ni-Mo alloy. The model is based on the principle of typical plastic flow in friction welding and dynamic recrystallization. The FSP experiment for modification of laser-clad Co-based alloy was conducted and its gradient nanograin and hardness were characterized. It shows that the model is consistent with experimental results.

  18. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  19. Method of applying coatings to substrates and the novel coatings produced thereby

    DOEpatents

    Hendricks, C.D.

    1987-09-15

    A method for applying novel coatings to substrates is provided. The ends of a multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hitherto unavailable compositions, are provided. 2 figs.

  20. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    SciTech Connect

    Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen; Gianchandani, Yogesh

    2012-12-01

    Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

  1. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    NASA Astrophysics Data System (ADS)

    Liang, Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen, Long; Gianchandani, Yogesh; Kosel, Jurgen

    2012-12-01

    MetglasTM 2826MB foils of 25-30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ˜3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am-1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

  2. NiMoO4 nanofibres designed by electrospining technique for glucose electrocatalytic oxidation.

    PubMed

    Liao, Sheng-Hui; Lu, Shi-Yu; Bao, Shu-Juan; Yu, Ya-Nan; Wang, Min-Qiang

    2016-01-28

    Electrochemical oxidation of glucose is the guarantee to realize nonenzymatic sensing of glucose, but greatly hindered by the slow kinetics of its oxidation process. Herein, various nanomaterials were designed as catalysts to accelerate glucose oxidation reaction. However, how to effectively build an excellent platform for promoting the glucose oxidation is still a great challenge. In our work, 1D CaMoO4 and NiMoO4 nanofibres with same morphologies and sub-microstructures were fabricated by electrospinning technique in the first time, and explored to modify the detection electrodes of nonenzymatic glucose sensors. The electrochemical results indicated that the NiMoO4 based sensor exhibited a good catalytic activity toward glucose including the low response potential (0.5 V), high sensitivity(193.8 μA mM(-1) cm(-2)) with a linear response region of 0.01-8 mM, low detection limit (4.6 μM) and fast response time (2 s), all of which are superior to the corresponding values of CaMoO4 nanofibres and even higher than those of most reported NiO and Co3O4 catalysts, which is due to the NiMoO4 nanofibres are not only advantageous to electron transfer, but can mediated the electrocatalytic reaction of glucose. This work should provide a new pathway for the design of advanced glucose catalysts for nonenzymatic sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  4. 3D porous NiMoO4 nanoflakes arrays for advanced supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Adhikary, Munesh Chandra; Priyadarsini, M. H.; Rath, Sanjit Kumar; Das, Chapal Kumar

    2017-09-01

    In recent years, supercapacitors have been considered as one of the auspicious energy storage devices. In this work, two different kinds of mixed metal oxide NiMoO4 nanoflakes arrays were directly grown on 3D Ni foam. The electrode exhibited high specific capacitance of 2004 F/g at the current density of 2 A/g in 6 M KOH electrolyte. Additionally, it also exhibited low equivalent series resistance of 0.62 Ω and excellent cycling stability (80% capacitance retention after 1000 cycles). With these extraordinary electrochemical properties, the electrode material can be considered as potential candidate for supercapacitor applications.

  5. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  6. Effect of melt spinning on grain size and texture in Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1988-01-01

    Chill-block melt-spun ribbons of Ni-Mo alloys with Mo contents of 8 to 41.8 wt pct have been examined for microstructure and texture dependence on processing conditions. Linear features observed in grains solidified with a planar liquid-solid interface at the quench side of the ribbons have been identified to be due to the twins on the (111)gamma plane formed during solidification. Grain size variation with the wheel surface speed and the alloy composition has been studied. The crystallographic texture on the quench side and the free surface side of the ribbons has been investigated.

  7. Effect of melt spinning on grain size and texture in Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1988-01-01

    Chill-block melt-spun ribbons of Ni-Mo alloys with Mo contents of 8 to 41.8 wt pct have been examined for microstructure and texture dependence on processing conditions. Linear features observed in grains solidified with a planar liquid-solid interface at the quench side of the ribbons have been identified to be due to the twins on the (111)gamma plane formed during solidification. Grain size variation with the wheel surface speed and the alloy composition has been studied. The crystallographic texture on the quench side and the free surface side of the ribbons has been investigated.

  8. Observation of self-avoiding fractals in Fe-Cu and Ni-Mo thin films

    NASA Astrophysics Data System (ADS)

    Liu, B. X.; Shang, C. H.; Li, H. D.

    1991-09-01

    We report experimental evidence for two sorts of self-avoiding fractals, i.e., open magnetic chains and closed defect loops formed in Fe-Cu and Ni-Mo systems, respectively. The open chains, featured with local lattice coherence and magnetic interaction, can be viewed as a direct proof of the model of self-avoiding walks, while the closed loops are characterized by the self-avoiding reaction and variable connectivity, and can be mapped to one-dimensional self-avoiding manifolds. Their microstructures, scaling properties, and some theoretical discussions are also presented in detail for a better understanding of our observations.

  9. Synthesis, surface structure and optical properties of double perovskite Sr2NiMoO6 nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Wan, Yingpeng; Xie, Hongde; Huang, Yanlin; Yang, Li; Qin, Lin; Seo, Hyo Jin

    2016-12-01

    Double perovskite Sr2NiMoO6 nanoparticles were synthesized via the chemical sol-gel route. The phase formation was investigated through X-ray polycrystalline diffraction (XRD) and Rietveld refinements. The perovskite crystallized in worm-like nano-grains with the diameter of 20-50 nm. The optical properties were measured by the optical absorption spectra. The nanoparticles present an indirect allowed transition with a narrow band gap of 2.1 eV. Sr2NiMoO6 nanoparticles have obvious photocatalytic ability on the degradation of Rhodamine B (RhB) solutions under the irradiation of visible light. The transport behaviors of the excitons were investigated from the photoluminescence spectra and the corresponding decay lifetimes. Sr2NiMoO6 nanoparticles present several advantages for photocatalysis such as the appropriate band energy positions, the quenched luminescence, and the coexistence of multivalent ions in the lattices.

  10. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  11. Optimum Ni composition in sulfided Ni-Mo hydrodesulfurization catalysts: Effect of the support

    SciTech Connect

    Laine, J.; Severino, F.; Labady, M. )

    1994-05-01

    A synergistic effect of the support in Ni-Mo hydrodesulfurization (HDS) catalysts has been recently proposed, suggesting that in the case of a carbon support, this functions in conjunction with molybdenum sulfide to promote the exposure of nickel active centers. This effect is a possible explanation for the higher HDS activity of carbon-supported catalysts with respect to conventional catalysts reported earlier; however, there are insufficient clues as to which carbon characteristics are involved in the activity promotion. Taking into account that a variety of different supports have been studied for HDS catalysts in the past, e.g., alumina, silica, titania, zeolites, and carbon, it is interesting to investigate how the intrinsic activity can be affected by the differences in the nature of the support, especially whether the presence of a particular active phase or structure could be promoted by choosing an appropriate support. In this communication, the authors present evidence suggesting that two different active Ni-Mo sulfide structures can exist in HDS catalysts, the presence of either one being possibly determined by the nature of the support employed. In addition, the study focusses on the possible properties of carbon supports that may be responsible for the higher activity referred to above. 10 refs., 3 figs., 1 tab.

  12. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  13. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGES

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  14. Evolution of oxide scale on a Ni-Mo-Cr alloy at 900 deg. C

    SciTech Connect

    Ul-Hamid, A. . E-mail: anwar@kfupm.edu.sa; Mohammed, A.I.; Al-Jaroudi, S.S.; Tawancy, H.M.; Abbas, N.M.

    2007-01-15

    The cyclic oxidation behavior of a Ni-Mo-Cr alloy was studied in air at 900 deg. C for exposure periods of up to 1000 h. The morphology, microstructure and composition of the oxide scale was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Oxidation kinetics was determined by weight gain measurements. The results show that steady state oxidation was achieved within 1 h of exposure. During transient oxidation, the alloy grain boundaries intersecting the alloy surface became depleted in Ni and enriched in Mo and Cr. The scale initially formed at the surface was NiO which grew outwardly. However, a protective Cr{sub 2}O{sub 3} layer developed, rapidly retarding the rate of oxidation. Formation of NiMoO{sub 4} was also observed. The presence of Mo in the alloy facilitated the formation of a Cr{sub 2}O{sub 3} layer at an early stage of oxidation. The alloy exhibited considerable oxide spalling during prolonged exposure.

  15. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  16. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  17. Effect of nickel content on the neutron irradiation embrittlement of Ni-Mo-Cr steels

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Hoon; Kasada, R.; Kimura, A.; Lee, Bong-Sang; Suh, Dong-Woo; Lee, Hu-Chul

    2013-11-01

    The influence of nickel on the neutron irradiation embrittlement of Ni-Mo-Cr reactor pressure vessel (RPV) steels was investigated using alloys containing nickel in the range of 0.9-3.5 wt%. In all investigated alloys, the neutron irradiation with two dose conditions of 4.5 × 1019 neutron/cm2 at 290 °C and 9.0 × 1019 neutron/cm2 at 290 °C, respectively, increased the hardness and ductile-to-brittle transition temperature (DBTT). However, the increases of the hardness and DBTT resulting from the neutron irradiation were primarily affected by the irradiation dose that is closely related to the generation of irradiation defects, but not by the nickel content. In addition, a linear relationship between the changes in the hardness and DBTT subjected to the irradiation was confirmed. These results demonstrate that increasing the nickel content up to 3.5 wt% does not have a harmful effect on the irradiation embrittlement of Ni-Mo-Cr reactor pressure vessel (RPV) steels.

  18. Novel alkyd-type coating resins produced using cationic polymerization

    DOE PAGES

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; ...

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showedmore » that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.« less

  19. Hydroxyapatite Coatings Produced by Surface-Induced Mineralizaiton

    SciTech Connect

    Campbell, Allison A.; Deatherage, Brooke L.; Li, Xiaohong S.; Nelson, Bradley J.; Bottoni, Craig R.; Dejong, E. Schuyler

    2002-01-03

    The surface-induced mineralization (SIM) process is based on the observation that, in nature, organisms use biopolymers to produce ceramic composites such as teeth, bones, and shells. The SIM process involves modification of a surface to introduce surface functionalization followed by immersion in aqueous supersaturated calcium phosphate solutions. This room temperature process has advantages over conventional methods of calcium phosphate deposition in that uniform coatings are produced onto complex-shaped and/or microporous samples. Additionally, because it is a room temperature process, biological agents can be incorporated.

  20. Mechanical properties of Cr-Cu coatings produced by electroplating

    NASA Astrophysics Data System (ADS)

    Riyadi, Tri Widodo Besar; Sarjito, Masyrukan, Riswan, Ricky Ary

    2017-06-01

    Hard chromium coatings has long been considered as the most used electrodeposited coating in several industrial applications such as in petrochemistry, oil and gas industries. When hard coatings used in fastener components, the sliding contact during fastening operation produces high tensile stresses on the surface which can generate microcracks. For component used in high oxidation and corrosion environment, deep cracks cannot be tolerated. In this work, a laminated structure of Cr-Cu coating was prepared using electroplating on carbon steel substrates. Two baths of chrome and copper electrolyte solutions were prepared to deposit Cr as the first layer and Cu as the second layer. The effect of current voltages on the thickness, hardness and specific wear rate of the Cu layer was investigated. The results show that an increase of the current voltages increased the thickness and hardness of the Cu layer, but reduced the specific wear rate. This study showed that the use of Cu can be a potential candidate as a laminated structure Cr-Cu for chromium plating.

  1. Enhanced performance of NiMoO4 nanoparticles and quantum dots and reduced nanohole graphene oxide hybrid for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Meng, Yang; Tongxiang, Liang

    2017-10-01

    NiMoO4 nanoparticles and quantum dots were uniformly distributed on the surface of reduced nanohole graphene oxide (rNHGO). NiMoO4@rNHGO exhibited a higher specific capacitance and better cycling stability than NiMoO4@reduced graphene oxide (rGO), which were attributed to the large surface area and high electrical conductivity. NiMoO4 nanoparticles and quantum dots (QDs) had high surface to volume ratio, which would not result in change in volume during the electro-chemical operation and induced better supercapacitor performance. Moreover, synergistic effect between NiMoO4 and the rNHGO also improved undoubtedly high specific capacitance and cycle stability.

  2. Superaerophobic Ultrathin Ni-Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction.

    PubMed

    Zhang, Qian; Li, Pengsong; Zhou, Daojin; Chang, Zheng; Kuang, Yun; Sun, Xiaoming

    2017-09-11

    Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni-Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni-Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as-synthesized Ni-Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm(-2) , along with a Tafel slope of 45 mV decade(-1) , demonstrating a comparable intrinsic activity to state-of-art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode "superaerophobic," thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low-cost, earth-abundant non-noble metal based ultrathin 2D nanostructures for electrocatalytic issues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Cellular microstructure of chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient. Microsegregation across cells and its variation with distance from the quench surface and alloy composition have been examined and compared with theoretical predictions.

  4. Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.

    2011-05-01

    The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.

  5. Study on bending fretting fatigue damage in 17CrNiMo6 steel

    NASA Astrophysics Data System (ADS)

    Peng, J. F.; Jin, X.; Xu, Z. B.; Cai, Z. B.; Zhang, X. Y.; Zhu, M. H.

    2017-07-01

    Bending fretting fatigue behavior of 17CrNiMo6 alloy structural steel at room temperature was investigated under different bending and contact loads; and the S-N curve also was built up. The results showed that the S-N curve had a “C” shape. The bending fretting fatigue life was mainly dependent on the bending fatigue stress and fretting displacement. The limit of the specimens and the fretting fatigue life were dramatically decreased by fretting actions. The bending fretting fatigue damage changed under varied bending fatigue stress levels. When the wear first occurred, there is a lower bending fatigue stress; and with a higher bending fatigue load, microcracks were generated. However, some serious wear and surface delamination were observed under the highest fatigue load.

  6. Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, X. C.; Dou, D.; Zheng, Z. Y.; Li, J. C.

    2016-06-01

    FeAlCrNiMo x high-entropy alloys were prepared. The effect of Mo content on the microstructure and the properties of the alloys were investigated. When the Mo content was 0.1, the alloys were composed of single BCC solid solution; when Mo content reaches 0.25, the alloys were composed of BCC solid solution and ordered B2 solid solution. When Mo content is more than 0.75, some σ phases emerged. The volume fraction of the second phase increases with the increasing Mo content, and the crystal grains became coarsening. The yield strength, fracture strength, and hardness increase with the increasing Mo content and reach 2252, 2612 MPa, and 1006 Hv, respectively. The magnetic transformation undergoes from the ferromagnetism to paramagnetism with the increasing Mo content. The saturation intensity and remnant magnetism are decreased with the increasing Mo content.

  7. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO{sub 4}.nH{sub 2}O

    SciTech Connect

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-15

    The synthesis and crystal structure of NiMoO{sub 4}.nH{sub 2}O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) A, b=6.8900(2) A, c=9.2486(2) A, {alpha}=76.681(2){sup o}, {beta}=83.960(2){sup o}, {gamma}=74.218(2){sup o}. Its ideal chemical composition was NiMoO{sub 4}.3/4H{sub 2}O rather than NiMoO{sub 4}.1H{sub 2}O. Under hydrothermal conditions the hydrate turned directly into {alpha}-NiMoO{sub 4} above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature. - Graphical abstract: NiMoO{sub 4}.nH{sub 2}O crystallized in the triclinic system with space group P-1, and its ideal chemical composition was NiMoO{sub 4}.3/4H{sub 2}O rather than NiMoO{sub 4}.1H{sub 2}O.

  8. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    NASA Astrophysics Data System (ADS)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  9. Microstructure and phase transformations in laser clad CrxSy/Ni coating on H13 steel

    NASA Astrophysics Data System (ADS)

    Lei, Yiwen; Sun, Ronglu; Tang, Ying; Niu, Wei

    2015-03-01

    Laser cladding was carried out onto H13 steel with preplaced NiCrBSi+Ni/MoS2 powders using CO2 laser under the optimized experimental parameters of laser power 2 kW, scanning velocity 6 mm/s and laser beam diameter 3 mm. An X-ray diffractometer and scanning electron microscope with energy dispersive spectroscopy were applied to analyze the microstructure and phase compositions of the coating. Thermodynamic calculation was performed with Thermo-Calc software on the basis of a commercially available Ni-based Alloys' database. The experimental results show that MoS2 decomposed and S reacted with Cr to form nonstoichiometric CrxSy during the laser cladding process. The coating consists of spherical CrxSy particles, primary γ-Ni dendrite, interdendritic eutectic (γ-Ni+NiMo) and precipitated NiMo. The precipitated NiMo was fine and uniformly distributed in primary γ-Ni dendrite. The calculated results and experimental data indicate that the solidification process in the coating during laser cladding process was liquid→liquid+CrxSy→ liquid+CrxSy+γ-Ni→liquid+CrxSy+γ-Ni+ eutectic (γ-Ni+NiMo). A solid state phase transformation (fine and uniformly distributed NiMo precipitated from γ-Ni) occurred after the solidification process. The calculations agree well with the experimental data and it is helpful to understand the phase transformation and microstructure evolution in the coating.

  10. Hydrotreatment of petroleum vaccum residue with NiMo supported on carbon black of hollow nano-particles

    SciTech Connect

    Yamashita, N.; Sakanishi, K.; Mochida, I.

    1996-10-01

    Hydrogenation with NiMo catalyst on the carbon black of hollow sphere was very active to decrease asphaltene(hexane insoluble:HI) from 10% to 1% in the VR under the conditions of 340{degrees}C, 4h, and 10 MPa of H2. Non-protonated-aromatic carbons of remaining HI were converted to protonated carbons with increase of naphthenic carbons observed by {sup 13}C-NMR. Metallic compounds principally contained in HI were also converted to be hexane soluble(HS). It revealed that some of the metal containing compounds trapped in the asphaltene micelle are liberated from the micelle through the catalytic hydrogenation under mild conditions. The present catalyst was found much more active for the hydrogenative conversion of asphaltene and metallic compounds as well as the demetallation than the conventional demetallation catalysts, suggesting that NiMo/KB catalyst is highly dispersed to interact more intimately with asphaltene molecules.

  11. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  12. Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels

    NASA Astrophysics Data System (ADS)

    Im, Young-Roc; Lee, Byeong-Joo; Oh, Yong Jun; Hong, Jun Hwa; Lee, Hu-Chul

    2004-01-01

    The effects of the microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels were examined. A four-point bend test and double-notched bend specimens were used to measure the cleavage fracture strength of the alloys and identify the cleavage initiating micro-cracks, respectively. The cleavage fracture strength and DBTT of Mn-Ni-Mo bainitic steels were strongly affected by the alloy carbon content. The decrease in the alloy carbon content resulted in a decrease in the inter-lath cementite-crowded layers and higher cleavage fracture strength. Micro-cracks that formed across the inter-lath cementite-crowded layers were observed to initiate cleavage fracture. The width of these inter-lath cementite-crowded layers was accepted as a cleavage initiating micro-crack size in the micro-mechanical modeling of the cleavage fracture, and the measured cleavage strength values of the bainitic Mn-Ni-Mo steels were well represented by the modified Griffith relationship.

  13. Coercive force reduction effect in FeCoV and FeNi films due to ultrathin FeNiMo layer

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Nouchi, N.; Morimoto, F.; Otani, A.

    2003-01-01

    The mechanism of the drastic coercive force reduction effect in essentially semi-hard FeCoV and FeNi films due to ultrathin FeNiMo layer has been examined. It is noted experimentally that a kind of a coupling of magnetic moments existing between ultrathin FeNiMo layer with anisotropic magnetization and semi-hard magnetic layer with anisotropic magnetization contributes to this drastic coercive force reducing effect.

  14. Understanding the role of Co3O4 on stability between active hierarchies and scaffolds: An insight into NiMoO4 composites for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanyuan; Zhang, Peng; Fu, Wenbin; Ma, Xiangwen; Zhou, Jinyuan; Zhang, Xiaojuan; Li, Jian; Xie, Erqing; Pan, Xiaojun

    2017-09-01

    It is often reported that pseudocapacitive electrodes' mechanical stability seriously limited their cycling performances in supercapacitors due to their quick fall off the electrode matrix during frequent fast charge/discharge process. In this work, we have demonstrated the mechanical enhancement in hierarchical NiMoO4 nanosheet arrays (NSAs) on free-standing substrates after introducing Co3O4 hierarchies. Under sonication vibration environment, the mechanical stability of Co3O4@NiMoO4 NSAs was enhanced by ∼70% compared to that of the pure NiMoO4 ones. Moreover, the Co3O4@NiMoO4 NSAs can display a high specific capacitance of 1476 F g-1 at the current density of 1 A g-1, and an excellent rate capability (keeping 81% at 20 A g-1). And after 2000 cycles, high capacitance retention of 96% was achieved for the Co3O4@NiMoO4 core/shell NSAs, while only 70% for the pure NiMoO4 ones.

  15. Deposition and characterization of pyrocarbon coatings produced by use of CO/sub 2/ dilution

    SciTech Connect

    Stinton, D.P.; Lackey, W.J.

    1981-10-01

    A Biso-coated fuel particle for the High-Temperature Gas-Cooled Reactor (HTGR) consists of a 500 ..mu..m ThO/sub 2/ kernel, an 85-..mu..m layer of low-density carbon, and a 75-..mu..m layer of high-density pyrocarbon. Coatings produced from mixtures of 50% propylene, 25% CO/sub 2/, and 25% Ar were found to be more gastight than were coatings produced from mixtures of propylene and argon, helium, or H/sub 2/. Higher concentrations of CO/sub 2/ in the gas mixture caused severe oxidation of graphite components within the coating furnace. The permeability of coatings deposited by use of CO/sub 2/ dilution was found to depend on the deposition temperature. Low deposition temperatures produced more gastight coatings. It was determined that CO/sub 2/ had little or no effect on coating anisotropy. 6 figures.

  16. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

    NASA Astrophysics Data System (ADS)

    Song, Jie; Field, Robert; Konitzer, Doug; Kaufman, Michael

    2017-05-01

    In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ'-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ' precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ' precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

  17. Development of Grain Boundary Precipitate-Free Zones in a Ni-Mo-Cr-W Alloy

    NASA Astrophysics Data System (ADS)

    Song, Jie; Field, Robert; Konitzer, Doug; Kaufman, Michael

    2017-02-01

    In this study, the morphology and development of precipitate-free zones (PFZs) near grain boundaries (GBs) in low coefficient of thermal expansion (CTE) Ni-Mo-Cr-W alloys (based on Haynes 244) have been investigated as a function of thermal history and composition using electron microscopy techniques. It is shown that the formation of wide, continuous PFZs adjacent to GBs can be largely attributed to a vacancy depletion mechanism. It is proposed that variations in the vacancy distributions that develop after solution heat treatment (SHT) and subsequent quenching and aging greatly influence the development of the γ'-Ni2(Mo,Cr) precipitates during the aging process and result in the development of PFZs of varying sizes. The relatively large (5 to 10 μm) PFZs are distinct from the smaller, more common PFZs that result from solute depletion due to GB precipitation that are typically observed after prolonged aging. During the course of this investigation, heat treatment parameters, such as aging time, SHT temperature, cooling rate after SHT, and heating rate to the aging temperature—all of which change vacancy concentration and distribution adjacent to GBs—were investigated and observed to have significant influence on both the size and morphology of the observed PFZs. In contrast to results from other Ni-based alloys studied previously, PFZ development in the current alloys was observed across a broad range of aging temperatures. This appears to be due to the high misfit strain energy of the γ' precipitates, resulting in a nucleation process that is sensitive to vacancy concentration. It is also shown that a slightly modified alloy with higher Mo concentrations develops smaller, more typical PFZs; this is presumably due to an increased driving force for γ' precipitation which overshadows the influence of misfit strain energy, thereby decreasing the sensitivity of precipitation on vacancy concentration.

  18. Intergranular fracture stress and phosphorus grain boundary segregation of a Mn-Ni-Mo steel

    SciTech Connect

    Naudin, C.; Frund, J.M.; Pineau, A.

    1999-04-09

    Nuclear Reactor Pressure Vessel (RPV) steel A508 class 3 which is a low alloyed steel is not usually sensitive to reversible temper embrittlement when properly heat treated. However heterogeneous zones may be present in particular near the inner side of the vessel. These zones result from the segregation of the alloying elements (C, Mn, Ni, Mo) and impurities (S, P) taking place during solidification of the material. They are called segregated zones (or ghost lines). They can reach 2 mm thick along the radius and 30 mm long through the circumferential direction. Their susceptibility to reversible temper embrittlement is mainly due to grain boundary phosphorus segregation triggering brittle intergranular fracture when the material is tested at low temperature. In this material like in other steels the influence of some other alloying elements (Mo, Mn...) is clearly significant and should also be taken into account. But phosphorus effect has proved to be predominant. The aim of the present study is therefore to find out a quantitative relationship between grain boundary phosphorus segregation and critical intergranular fracture stress. A synthetic steel with a chemical composition representative of an average segregated zone was prepared for the present study. A number of heat treatments were applied to reach different embrittlement conditions. Then brittle fracture properties were obtained by performing cryogenic fracture tests on notched tensile specimens while the corresponding grain boundary phosphorus levels were measured by Auger electron spectroscopy. Systematic fractographic observations were carried out. Moreover an attempt to determine the influence of temperature on the critical intergranular fracture stress was made.

  19. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  20. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  1. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  2. Room temperature diamond-like carbon coatings produced by low energy ion implantation

    NASA Astrophysics Data System (ADS)

    Markwitz, A.; Mohr, B.; Leveneur, J.

    2014-07-01

    Nanometre-smooth diamond-like carbon coatings (DLC) were produced at room temperature with ion implantation using 6 kV C3Hy+ ion beams. Ion beam analysis measurements showed that the coatings contain no heavy Z impurities at the level of 100 ppm, have a homogeneous stoichiometry in depth and a hydrogen concentration of typically 25 at.%. High resolution TEM analysis showed high quality and atomically flat amorphous coatings on wafer silicon. Combined TEM and RBS analysis gave a coating density of 3.25 g cm-3. Raman spectroscopy was performed to probe for sp2/sp3 bonds in the coatings. The results indicate that low energy ion implantation with 6 kV produces hydrogenated amorphous carbon coatings with a sp3 content of about 20%. Results highlight the opportunity of developing room temperature DLC coatings with ion beam technology for industrial applications.

  3. Interface behavior study of WC92-Co8 coating produced by electrospark deposition

    NASA Astrophysics Data System (ADS)

    Ruijun, Wang; Yiyu, Qian; Jun, Liu

    2005-02-01

    WC92-Co8 coating produced by electrospark deposition effectively improves the surface performance of the substrate. The behavior of the interface between the WC92-Co8 coating and the substrate is studied in this paper. The high-melting-point WC92-Co8 was deposited onto the surface of Ti alloy, and the coating was usually more than 50 μm thick. The surface of the coating is mainly composed of TiC and W 2C besides a small amount of W, and its micro hardness reaches HV1129. The coating dramatically improves the performance of the substrate.

  4. Low content of Pt supported on Ni-MoCx/carbon black as a highly durable and active electrocatalyst for methanol oxidation, oxygen reduction and hydrogen evolution reactions in acidic condition

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui

    2017-08-01

    Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.

  5. Artificially modulated hard coatings produced with a vacuum arc evaporator

    NASA Astrophysics Data System (ADS)

    Tsygankov, P. A.; Parada Becerra, F. F.; Dugar-Zhabon, V. D.; Plata, A.; V-Niño, E. D.

    2016-02-01

    The experimental set for artificially modulated structures production through an advanced vacuum arc evaporator with a magnetically-driven cathode spots on the cathode surface is described. The main features of vacuum arc as a vapor source with time-modulated compositions are discussed. The characteristics of the obtained multilayer coatings with artificially modulated Ti/TiB structures are presented.

  6. Self-consistent (DFT + U) study of electronic, structural and magnetic properties in A2NiMoO6 (A = Ba, Sr) compounds

    NASA Astrophysics Data System (ADS)

    Aharbil, Y.; Labrim, H.; Benmokhtar, S.; Ait Haddouch, M.; Bahmad, L.; Laanab, L.

    2016-08-01

    This work aims to study the double perovskites A2NiMoO6 (A = Ba, Sr) by using the first principle calculation, within the framework of the self-consistent Hubbard correction. The value of this correction, for Ni and Mo depends strongly on the type of the studied compounds. Such values are determinate as 7.35 eV for Ni and 5.42 eV for Mo in the compound Ba2NiMoO6, whereas in the case of Sr2NiMoO6 the calculated values are 8.71 eV and 5.48 eV for Ni and Mo compound respectively. Based on the densities of state calculation we show that both the compounds are semiconductors with gap energies of 2.20 eV and 2.10 eV for Ba2NiMoO6 for Sr2NiMoO6, respectively. The total energies comparison shows clearly that the ground state is G-type anti-ferromagnetic order in agreement with experimental results, the magnetic interactions are due to the super-exchange mechanism acting in long range via hybridization throw Ni-O-Mo-O-Ni path.

  7. Producing Durable Continuously Reinforced Concrete Pavement using Glass-ceramic Coated Reinforcing Steel

    DTIC Science & Technology

    2010-02-01

    BUILDING STRONG® Producing Durable Continuously Reinforced Concrete Pavement using Glass- ceramic Coated Reinforcing Steel Principal Investigator... ceramic Coated Reinforcing Steel 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...Vitreous- Ceramic Coating  Ease of Application to Reinforcement Steel  Bond Strength and Corrosion-Resistance  Field Demonstration Program  Testing in

  8. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    PubMed

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed.

  9. Apparatus for producing oxidation protection coatings for polymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J. (Inventor); Sovey, J. S. (Inventor); Banks, A. (Inventor)

    1986-01-01

    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer materials moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

  10. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  11. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm‑2 at 2 mA cm‑2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm‑2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  12. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-08-12

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

  13. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  14. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites.

    PubMed

    Sankaranarayanan, T M; Banu, M; Pandurangan, A; Sivasanker, S

    2011-11-01

    Mixtures of sunflower oil and a straight run gas oil in the diesel fuel range were hydroprocessed over sulfided NiO(3%)-MoO3(12%)-γ-Al2O3 incorporating 0, 15 or 30 wt.% zeolite beta (BEA). The studies were carried out at 320-350 °C; 30-60 bars, and weight hourly space velocities (WHSV), 1-4 h(-1). Catalyst containing 30% BEA achieved nearly 100 % conversion of the vegetable oil into hydrocarbons at 330 °C, 60 bars and a WHSV of 2 h(-1) compared to 95.5% by the Ni-Mo-γ-alumina catalyst without BEA. Hydroprocessing with blends containing oleic acid revealed that the catalysts were able to transform the acid into hydrocarbons. An analysis of the ratios of the n-C18 and n-C17 paraffins formed from the vegetable oil at different process conditions revealed that the catalyst containing 15% BEA was most active for hydrodeoxygenation. The gas oil-hydrodesulfurization activity of the Ni-Mo-Al2O3 was enhanced by the addition of BEA by more than 10%.

  15. Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo-(PGE-Au) ores of southern China

    USGS Publications Warehouse

    Murowchick, J.B.; Coveney, R.M.; Grauch, R.I.; Eldridge, C.S.; Shelton, K.L.

    1994-01-01

    Cyclic variations of ??34S values over a range of at least 48??? in pyrite nodules from stratabound Ni-Mo-PGE(Au) ores of southern China are attributed to biogenic reduction of seawater sulfate in an anoxic, phosphogenic, and metallogenic basin. Cyclic introduction and mixing of normal seawater into typically stagnant basin waters led to extreme variations in ??34S values of aqueous sulfide species present at different times. Intermittent venting of metal-laden hydrothermal fluids into such a bacteriogenic sulfide-rich environment resulted in precipitation of metal sulfides as pseudomorphous replacements of organic debris and as sulfide sediments that record large ??34SCDT variations from -26 to +22???. Apatite and silica dominated the replacement of the organic debris when metals were not being introduced into the basin. The combination of abundant organic debris, localized topographic basins for accumulation of the debris, bacterial production of sulfide species, and introduction of metal-bearing hydrothermal fluids provided the environment necessary to form these unusually rich Ni-Mo ores. ?? 1994.

  16. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    SciTech Connect

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  17. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  18. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  19. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  20. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  1. New type of ferromagnetic insulator: Double perovskite La2NiMO6 (M=Mn, Tc, Re, Ti, Zr, and Hf)

    NASA Astrophysics Data System (ADS)

    Fuh, H. R.; Liu, Y. P.; Xiao, Z. R.; Wang, Y. K.

    2014-05-01

    Electronic structures of transition metal pnictides double perovskite La2NiMO6 (M=Mn, Tc, Re, Ti, Zr, and Hf) were shown as ferromagnetic (FM) insulators based on density functional calculation results. The FM state observed in La2NiMO6 (M=Mn, Tc, and Re) was most likely a mixture of high spin (HS) and low spin (LS) states; the electrons were transferred from the filled LS Ni eg states to the half-filled HS Mn (Tc). On the other hand, the FM state in La2NiMO6 (M=Ti, Zr, and Hf) was caused by the electron transfer from the half-filled LS Ti (Zr and Hf) eg orbital of HS Ni to the empty eg orbital of LS Ti (Zr and Hf). The FM insulating state of La2NiMO6 (M=Mn. Tc, Ti, Zr, and Hf) remained the same, whereas it changed from metal to insulator for La2NiReO6 based on the generalized gradient approximation+U calculation.

  2. Reaction of H{sub 2} and H{sub 2}S with CoMoO{sub 4} and NiMoO{sub 4}: TPR, XANES, time-resolved XRD, and molecular-orbital studies

    SciTech Connect

    Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L.

    1999-02-04

    The combination of two metals in an oxide matrix can produce materials with novel physical and chemical properties. The reactivity of a series of cobalt and nickel molybdates ({alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}, and AmoO{sub 4}{center_dot}nH{sub 2}O; A = Co or Ni) toward H{sub 2} and H{sub 2}S was examined using temperature programmed reduction (TPR), synchrotron-based X-ray powder diffraction (XRD), and X-ray absorption near-edge-spectroscopy (XANES). In general, the cobalt and nickel molybdates are more reactive toward H{sub 2} and easier to reduce than pure molybdenum oxides: MoO{sub 2} < MoO{sub 3} < CoMoO{sub 4} < NiMoO{sub 4}. The interaction of H{sub 2} with surfaces of {alpha}-NiMoO{sub 4}, {alpha}-CoMoO{sub 4}, and {alpha}-MoO{sub 3} was investigated using ab initio SCF calculations and cluster models. The mixed-metal oxides are easier to reduce due to the combination of two factors. First, it is easier to adsorb and dissociate H{sub 2} on Ni or Co sites than on Mo sites of an oxide. And second, as a result of differences in the strength of the metal-oxygen bonds, it is easier to remove oxygen as water from the nickel and cobalt molybdates than from MoO{sub 3} or MoO{sub 2}. The extra reactivity that the Co and Ni atoms provide also makes the rate of sulfidation of the cobalt and nickel molybdates faster than that of pure molybdenum oxides. For the adsorption of H{sub 2}S, HS, and S on {alpha}-NiMoO{sub 4} and {alpha}-MoO{sub 3} clusters, the results of ab initio SCF calculations show bigger bonding energies on the Ni sites than on the Mo sites. In these systems, the oxidation state of the Ni atoms is substantially lower (i.e., larger electron density) than that of the Mo atoms, favoring the formation of Ni {r_arrow} SH and Ni {r_arrow} S dative bonds. Results of time-resolved XRD and XANES indicate that the reduced AMoO{sub 4} compounds can be regenerated by reaction with O{sub 2} at high temperatures (350--450 C). A similar procedure (S{sub a} + O

  3. Gradient microstructure and microhardness in a nitrided 18CrNiMo7-6 gear steel

    NASA Astrophysics Data System (ADS)

    Yang, R.; Wu, G. L.; Zhang, X.; Fu, W. T.; Huang, X.

    2017-07-01

    A commercial gear steel (18CrNiMo7-6) containing a tempered martensite structure was nitrided using a pressurized gas nitriding process under a pressure of 5 atm at 530 °C for 5 hours. The mechanical properties and microstructure of the nitrided sample were characterized by Vickers hardness measurements, X-ray diffraction, and backscatter electron imaging in a scanning electron microscope. A micro-hardness gradient was identified over a distance of 500 μm with hardness values of 900 HV at the top surface and 300 HV in the core. This micro-hardness gradient corresponds to a gradient in the microstructure that changes from a nitride compound layer at the top surface (∼ 20 μm thick) to a diffusion zone with a decreasing nitrogen concentration and precipitate density with distance from the surface, finally reaching the core matrix layer with a recovered martensite structure.

  4. Phase composition of Al-Ni-Mo catalysts for hydrotreatment prepared by one-step impregnation using different procedures

    SciTech Connect

    Gazimzyanov, N.R.; Mikhailov, V.I.; Volod`ko, V.V.

    1995-09-01

    X-ray diffraction, Raman and diffuse-reflectance (DR) spectroscopy, coupled with selective extraction of Mo and Ni, are applied to investigate the phase composition of Al-Ni-Mo catalysts prepared both by a conventional one-step impregnation with ammonia and phosphoric acid, and by a new method based on the use of nickel heteropolymolybdate. By comparing the data obtained by Raman and DR spectroscopy with the data on water extraction, it is shown that the phase removed on washing can be ascribed to heteropolymolybdates. Formation of these compounds is found to be favored by the use of the solution containing H{sub 3}PO{sub 4} to impregnate the catalyst with Mo and Ni.

  5. Strong third-order nonlinear response and optical limiting of α-NiMoO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Amlan; Ratha, Satyajit; Yadav, Rajesh Kumar; Mondal, Anirban; Rout, Chandra Sekhar; Adarsh, K. V.

    2017-07-01

    In this manuscript, we demonstrate the strong resonant two photon absorption coefficient ≈71 ± 5 cm/GW at 532 nm in α-NiMoO4 nanoparticles prepared by a facile hydrothermal method. Strikingly, we have obtained the optical limiting onset threshold fluence (FON) of 36 mJ/cm2 for the linear transmittance of 0.64 with an excellent two photon absorption cross section (38 × 10-45 cm4 s), which suggests that they can be utilized as passive optical limiters. To explain the observed effects, we present a two-level rate equation model and numerically simulated the Z-scan peak shape, which is in good agreement with the experimental data. Further, we also show the normalized population density of the carriers in excited and ground states.

  6. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  7. Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria.

    PubMed

    Zhao, Z H; Sakagami, Y; Osaka, T

    1998-05-01

    The ability of various electroplated coatings (cobalt, zinc, copper, and cobalt-containing alloys of nickel, zinc, chromium, etc.) to inhibit the growth of pathogenic bacteria (Gram-positive bacteria Enterococcus faecalis and methicillin-resistant Staphylococcus aureus and Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae) was determined by a drop-method antibacterial experiment. The amounts of H2O2 produced and metal ions dissolved from the surfaces of various electroplated coatings were measured and it was found that the inhibitory ability of coatings corresponded to the amounts of H2O2 produced. The more significant the inhibition of the coating to bacterial growth, the greater the amount of H2O2 production. In addition, the bacterial survival rates on the surfaces of coatings were almost zero when H2O2 was produced in amounts greater than 10(-6) mmol/cm2. However, the dominant concentrations of metal ions dissolved from coatings were outside of the bacterial lethal range.

  8. Novel Alkyd-Type Coating Resins Produced Using Cationic Polymerization [PowerPoint

    SciTech Connect

    Chisholm, Bret; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2014-04-07

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(vinyl ether)s provide several advantages. These advantages include miler, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimmers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerable as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  9. A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material.

    PubMed

    Parra, Carolina; Dorta, Fernando; Jimenez, Edra; Henríquez, Ricardo; Ramírez, Cristian; Rojas, Rodrigo; Villalobos, Patricio

    2015-11-16

    Biofouling, the colonization of artificial and natural surfaces by unwanted microorganisms, has an important economic impact on a wide range of industries. Low cost antifouling strategies are typically based on biocides which exhibit a negative environmental impact, affecting surrounding organisms related and not related to biofouling. Considering that the critical processes resulting in biofouling occur in the nanoscale/microscale dimensions, in this work we present a bionanotechnological approach to reduce adhesion of biofilm-producing bacteria Halomonas spp. CAM2 by introducing single layer graphene coatings. The use of this nanomaterial has been poorly explored for antifouling application. Our study revealed that graphene coatings modify material surface energy and electrostatic interaction between material and bacteria. Such nanoscale surface modification determine an important reduction over resulting bacterial adhesion and reduces the expression levels of genes related to adhesion when bacteria are in contact with graphene-coated material. Our results demonstrate that graphene coatings reduce considerably adhesion and expression levels of adhesion genes of biofilm-producing bacteria Halomonas spp. CAM2. Hydrophobic-hydrophilic interaction and repulsive electrostatic force dominate the interactions between Halomonas spp. CAM2 and material surface in saline media, impacting the final adhesion process. In addition no bactericide effect of graphene coatings was observed. The effect over biofilm formation is localized right at coated surface, in contrast to other antifouling techniques currently used, such as biocides.

  10. Methylsilane derived silicon carbide particle coatings produced by fluid-bed chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Miller, James Henry

    This report describes the research effort that was undertaken to develop and understand processing techniques for the deposition of both low and high density SiC coatings from a non-halide precursor, in support of the Generation IV Gas-Cooled Fast Reactor (GFR) fuel development program. The research was conducted in two phases. In the first phase, the feasibility of producing both porous SiC coatings and dense SiC coatings on surrogate fuel particles by fluidized bed chemical vapor deposition (FBCVD) using gas mixtures of methylsilane and argon was demonstrated. In the second phase, a combined experimental and modeling effort was carried out in order to gain an understanding of the deposition mechanisms that result in either porous or dense SiC coatings, depending on the coating conditions. For this second phase effort, a simplified (compared to the fluid bed) single-substrate chemical vapor deposition (CVD) system was employed. Based on the experimental and modeling results, the deposition of SiC from methylsilane is controlled by the extent of gas-phase reaction, and is therefore highly sensitive to temperature. The results show that all SiC coatings are due to the surface adsorption of species that result from gas-phase reactions. The model terms these gas-borne species embryos, and while the model does not include a prediction of coating morphology, a comparison of the model and experimental results indicates that the morphology of the coatings is controlled by the nucleation and growth of the embryos. The coating that results from small embryos (embryos with only two Si-C pairs) appears relatively dense and continuous, while the coating that results from larger embryos becomes less continuous and more nodular as embryo size increases. At some point in the growth of embryos they cease to behave as molecular species and instead behave as particles that grow by either agglomeration or by incorporation of molecular species on their surface. As these particles

  11. Subcritical crack growth behavior of 10NiMo8.5 steel and type A 508 Cl.3a steel in air and high temperature water

    SciTech Connect

    Matocha, K.; Wozniak, J.; Jahns, J.; Siegl, J.; Nedbal, I.

    1995-12-31

    Comparison of fatigue crack growth behaviors of the two low alloy pressure vessel steels (10NiMo8,5 and A 508 Cl 3a) in different environments (air, high temperature water) has been made. No differences were found in fatigue crack growth behavior in air and high temperature water between the two steels investigated. A reasonable agreement between anodic dissolution/film rupture model and experimental data obtained at 295 C was noted. It has been confirmed also by microfractographic observations of the striation spacings. To be able to predict environmentally enhanced fatigue crack growth in a quantitative manner over the whole temperature range understanding of the operative mechanisms must be achieved. Some ideas concerning the above mentioned mechanisms are presented to explain the fractographic evidence and the crack growth behavior of low alloy pressure vessel steel of type 10NiMo8.5 tested as well in water at temperatures of 100 C and 200 C.

  12. A new approach to produce calcium-phosphate coatings on titanium

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Zaits, A. V.; Kuimova, M. V.

    2017-01-01

    In the study, hydroxyapatite-gelatin composite powders were synthesized from simulated body fluid (SBF) with gelatin content ranging from 1 to 3 wt. %. It was established that all the samples were single-phase and represented hydroxyapatite. The surface and morphological characteristics of the produced hydroxyapatite-gelatin (HAG) based coatings were studied. Uniform deposition of the composite on the titanium substrate surface (VT1-0) was found to occur on etched titanium samples. It is shown that exposure of titanium substrates with hydroxyapatite-gelatin (HAG) based coating to powerful ion beam can stimulate further growth of crystals and regeneration of the surface.

  13. Hydroprocessing of organo-oxygen compounds in coal liquids catalyzed by sulfided Ni-Mo/. gamma. -Al/sub 2/O/sub 3/

    SciTech Connect

    Li, C.L.; Katti, S.S.; Gates, B.C.; Petrakis, L.

    1984-01-01

    Coal liquids and shale oil contain high concentrations of organo-oxygen compounds. The reactivities of the organo-oxygen compounds on these coal-liquid fractions are summarized. The results were obtained with a high-pressure flow microreactor; some were determined with a batch reactor. The catalyst was presulfided Ni-Mo/..gamma..-Al/sub 2/O/sub 3/. 3 figures, 1 table.

  14. Properties of pure and sulfided NiMoO{sub 4} and CoMoO{sub 4} catalysts: TPR, XANES and time-resolved XRD studies

    SciTech Connect

    Chaturvedi, S.; Rodriguez, J.A.; Hanson, J.C.; Albornoz, A.; Brito, J.L.

    1998-12-31

    X-ray absorption near-edge spectroscopy (XANES) was used to characterize the structural and electronic properties of a series of cobalt- and nickel-molybdate catalysts (AMoO{sub 4}.nH{sub 2}O, {alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}; A=Co or Ni). The results of XANES indicate that the Co and Ni atoms are in octahedral sites in all these compounds, while the coordination of Mo varies from octahedral in the {alpha}-phases to tetrahedral in the {beta}-phases and hydrate. Time-resolved x-ray diffraction shows a direct transformation of the hydrates into the {beta}-AMoO{sub 4} compounds (following a kinetics of first order) at temperatures between 200 and 350{degrees}C. This is facilitated by the similarities that the AMoO{sub 4}.nH{sub 2}O and H{sub 2} at temperatures between 400 and 600{degrees}C, forming gaseous water oxides in which the oxidation state of Co and Ni remains +2 while that of Mo is reduced to +5 or +4. After exposing {alpha}-NiMoO{sub 4} and {beta}-NiMoO{sub 4} to H{sub 2}S, both metals get sulfided and a NiMoS{sub x} phase is formed. For the {beta} phase of NiMoO{sub 4} the sulfidation of Mo is more extensive than for the {alpha} phase, making the former a better precursor for catalysts of hydrodesulfurization reactions.

  15. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4.

    PubMed

    Busnardo, Roberto Giovanini; Busnardo, Natália Giovanini; Salvato, Gustavo Nascimento; Afonso, Júlio Carlos

    2007-01-10

    This work describes a route for processing spent commercial hydrorefining (HDR) catalysts (CoMo and NiMo/Al2O3), containing support additives, for recovering active phase and support components. Samples were used as catalysts in diesel hydrotreaters. They had neither been submitted to mechanical stresses nor overheating while under operation. The route is based on fusion of samples with KHSO4. Four experimental parameters were optimized: reaction time, sample/flux mass ratio, temperature, and sample physical characteristics (ground/non-ground). After fusion, the solid was dissolved in water (90-100 degrees C); the insoluble matter presented low crystallization. Several phases were identified: silicates, spinel-like compounds and aluminosilicates. Cobalt, nickel, molybdenum and aluminum were recovered by conventional precipitation techniques or selective solvent-extraction procedures, with at least 85 wt.% yield. Final liquid colorless effluents are obtained as neutral solutions of alkali sulfates or chlorides and a water insoluble solid after fusion, which can be either sent to industrial dumps or co-processed. Fusion with KHSO4 was shown to be applicable to the catalysts of the present study, and the optimized experimental parameters are much less drastic than the conventional pyrometallurgical routes proposed in the literature.

  16. Pitting and stress cracking of 12Cr-Ni-Mo martensitic stainless steels in chloride and sulfide environments

    SciTech Connect

    Yoshino, Y.; Ikegaya, A.

    1985-02-01

    Laboratory melted 12Cr-Ni-Mo steels were tested in chloride/sulfide solutions at 60/sup 0/C and at room temperature to evaluate their resistance to pitting and stress cracking in connection with environmental and metallurgical factors. H/sub 2/S had adverse effects on pitting resistance. Stress cracking at 60/sup 0/C associated with the formation of pits. In a sulfide solution at room temperature, cracking occurs by hydrogen embrittlement and in chlorideatsulfide solutions, by active path corrosion. These steels were tempered at 600/sup 0/C for the single temper treatment and 700/sup 0/C followed by 600/sup 0/C for double tempering. The double temper treatment intensified pitting and stress cracking at 60/sup 0/C while improving stress cracking resistance at room temperature, as reported elsewhere. Fracture was mixed mode in the single temper condition and transgranular quasi-cleavage with double tempering regardless of solution temperature. The metallurgical changes associated with the temper treatments were studied and discussed.

  17. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  18. Structural and electrical characterizations of cerium (Ce3+)-doped double perovskite system Sr2NiMoO6- δ

    NASA Astrophysics Data System (ADS)

    Kumar, Pravin; Singh, Nitish Kumar; Sinha, A. S. K.; Singh, Prabhakar

    2016-09-01

    The double perovskite system Sr2- x Ce x NiMoO6- δ (SCNM) with 0.01 ≤ x ≤ 0.05 was synthesized by the citrate-nitrate auto-combustion synthesis route. Thermal studies were carried out by simultaneous differential scanning calorimetry and thermal gravimetry. Phase constitution was analyzed by powder X-ray diffraction (XRD). Rietveld refinement showed that the major phase exists in tetragonal form with space group I4/m. Microstructural investigations revealed the formation of uniform grains. The electrical conductivity studied by impedance spectroscopy in the temperature range 300-600 °C was found to follow a thermally activated process. The sample with x = 0.01 showed the highest conductivity with lowest activation energy. The electrical conductivity of the system was discussed in terms of identified impurity phases and charge density [{{{Mo}}_{{{{Mo}}^{6 +}}}^{5 +} {}^' ]. The variation of electrical conductivity with composition was explained on the basis of X-ray photoelectron spectroscopy and XRD studies.

  19. Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels

    NASA Astrophysics Data System (ADS)

    Im, Young-Roc; Jun Oh, Yong; Lee, Byeong-Joo; Hwa Hong, Jun; Lee, Hu-Chul

    2001-08-01

    The effects of carbide precipitation on the strength and Charpy impact properties of tempered bainitic Mn-Ni-Mo steels have been investigated. An attempt has also been made to modify the microstructure of the steels in order to improve the Charpy properties, by controlling the alloy composition being guided by thermodynamic calculations of phase equilibria. Coarse rod type or agglomerated spherical type cementite particles in inter-lath region were considered to be mostly detrimental to Charpy impact properties. By reducing the precipitation of cementite through decreasing carbon content and/or by substituting it into fine M 2C carbides through increasing the molybdenum content, DBTT could be lowered significantly. Further decrease of DBTT could be achieved by substituting part of manganese content by nickel. Yield strength of tested alloys could be maintained at the level of a reference 0.2 wt% carbon alloy in spite of the significant reduction in carbon content, mainly by the increase in the precipitation of fine M 2C type carbides with increased molybdenum content.

  20. Self-Propagating High-Temperature Synthesis in the Ti-C-Ni-Mo System on Application of Powerful Ultrasound

    NASA Astrophysics Data System (ADS)

    Kulak, M. M.; Khina, B. B.

    2014-03-01

    An experimental setup has been developed and a study has been made of the self-propagating high-temperature synthesis in a Ti-C-Ni-Mo system under the conditions of action of ultrasonic vibrations. The influence of the amplitude of ultrasonic vibrations on the combustion rate and temperature and on the phase composition and structure of the derived composite material based on titanium carbide with a metal binder has been determined. The heat-transfer coefficient on the surface of a sample for vibrations at ultrasound frequency has been evaluated. Consideration has been given to possible mechanisms of influence of ultrasonic vibrations on the process of self-propagating high-temperature synthesis. It has been shown that the reduction in the synthesis temperature is due to the cooling of the sample because of the forced convection of the surrounding gas, whereas the change in the structure of the synthesized material is related to the change in the conditions of high-temperature heterogeneous interaction in the wave of self-propagating high-temperature synthesis.

  1. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  2. Bioactivity and hemocompatibility study of amorphous hydrogenated carbon coatings produced by pulsed magnetron discharge.

    PubMed

    Lopez-Santos, C; Colaux, J L; Laloy, J; Fransolet, M; Mullier, F; Michiels, C; Dogné, J-M; Lucas, S

    2013-06-01

    Literature contains very few data about the potential biomedical application of amorphous hydrogenated carbon (a-C:H) thin films deposited by reactive pulsed magnetron discharge even so it is one of the most scalable plasma deposition technique. In this article, we show that such a C2H2 pulsed magnetron plasma produces high quality coating with good hemocompatibility and bioactive response: no effect on hemolysis and hemostasis were observed, and proliferation of various cell types such as endothelial, fibroblast, and osteoblast-like cells was not affected when the deposition conditions were varied. Cell growth on a-C:H coatings is proposed to take place by a two-step process: the initial cell contact is affected by the smooth topography of the a-C:H coatings, whereas the polymeric-like structure, together with a moderate hydrophilicity and a high hydrogen content, directs the posterior cell spreading while preserving the hemocompatible behavior.

  3. X-ray photoelectron spectroscopy study on the surface structure of NiMo catalysts for hydrodesulfurization of 4,6-dimethyl-ibenzothiophene

    SciTech Connect

    Isoda, T.; Nagao, S.; Ma, X.

    1995-12-31

    Deep desulfurization of diesel fuel has attracted current interest in the petroleum refining technology. Sufficient desulfurization of 4-methyldibenzotbiophene and 4,6-dimethyldibenzothiophene (4,6-DMDBT) are key for such a deep desulfurization where the steric hinderance of the substrate and by-product H{sub 2}S gas from other easy desulfurized sulfur compounds, such as benzothiophene and dibenzothiophene (DBT) retardation is major obstacle to achieve the sufficient desulfurization. H{sub 2}S has been reported to inhibit only direct removal of sulfur in DBT, where no inhibition was found at its hydrogenation stage. However the authors found that the catalytic activity of NiMo catalyst was markedly reduced by H{sub 2}S not only in the desulfurization of 4,6-DMDBT but also hydrogenation of naphthalene, suggesting that both active sites on NiMo catalyst were deactivated by H{sub 2}S. In the present study, a series of NiMo/Al{sub 2}O{sub 2} catalysts were examined in the desulfurization of 4,6-DMDBT in H{sub 2} or H{sub 2}/H{sub 2}S, varying contents of Ni. The surface species of Ni and Mo were also studied by XPS to find the origin of the catalytic activity or deactivity which are influenced by the atmospheres.

  4. Effect of 2,6-Bis-(1-hydroxy-1,1-diphenyl-methyl) Pyridine as Organic Additive in Sulfide NiMoP/γ-Al₂O₃ Catalyst for Hydrodesulfurization of Straight-Run Gas Oil.

    PubMed

    Santolalla-Vargas, Carlos Eduardo; Santes, Victor; Meneses-Domínguez, Erick; Escamilla, Vicente; Hernández-Gordillo, Agileo; Gómez, Elizabeth; Sánchez-Minero, Felipe; Escobar, José; Díaz, Leonardo; Goiz, Oscar

    2017-08-15

    The effect of 2,6-bis-(1-hydroxy-1,1-diphenyl-methyl) pyridine (BDPHP) in the preparation of NiMoP/γ-Al₂O₃ catalysts have been investigated in the hydrodesulfurization (HDS) of straight-run gas oil. The γ-Al₂O₃ support was modified by surface impregnation of a solution of BDPHP to afford BDPHP/Ni molar ratios (0.5 and 1.0) in the final composition. The highest activity for NiMoP materials was found when the molar ratio of BDPHP/Ni was of 0.5. X-ray diffraction (XRD) results revealed that NiMoP (0.5) showed better dispersion of MoO₃ than the NiMoP (1.0). Fourier transform infrared spectroscopy (FT-IR) results indicated that the organic additive interacts with the γ-Al₂O₃ surface and therefore discards the presence of Mo or Ni complexes. Raman spectroscopy suggested a high Raman ratio for the NiMoP (0.5) sample. The increment of the Mo=O species is related to a major availability of Mo species in the formation of MoS₂. The temperature programmed reduction (TPR) results showed that the NiMoP (0.5) displayed moderate metal-support interaction. Likewise, X-ray photoelectron spectroscopy (XPS) exhibited higher sulfurization degree for NiMoP (0.5) compared with NiMoP (1.0). The increment of the MoO₃ dispersion, the moderate metal-support interaction, the increase of sulfurization degree and the increment of Mo=O species provoked by the BDPHP incorporation resulted in a higher gas oil HDS activity.

  5. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding

    PubMed Central

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-01-01

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage. PMID:28773934

  6. TiC Reinforcement Composite Coating Produced Using Graphite of the Cast Iron by Laser Cladding.

    PubMed

    Liu, Yanhui; Qu, Weicheng; Su, Yu

    2016-09-30

    In this study, a TiC-reinforced composite coating was produced to improve the wear resistance of a pearlite matrix grey iron using a pre-placed Ti powder by laser cladding. Results of scanning electron microscopy (SEM), X-ray diffractometer (XRD), and energy dispersive X-ray spectroscopy (EDS) confirmed that the coating was composed of TiC particles and two kinds of α-Fe phase. The fine TiC particles were only a few microns in size and uniformly distributed on the matrix phase in the composite coating. The microstructure characteristic of the composite coating resulted in the microhardness rising to about 1000 HV0.3 (China GB/T 4342-1991) and the wear resistance significantly increased relative to the substrate. In addition, the fine and homogeneous solidification microstructure without graphite phase in the transition zone led to a good metallurgical bonding and transition between the coating and the substrate. It was of great significance for the cast iron to modify the surface and repair surface defects or surface damage.

  7. Hydrodésazotation de la pyridine sous pression atmosphérique catalysée par des oxynitrures de Ni, Mo, et des oxynitrures mixtes MoNi, MoPNi, AlNi et AlPNi

    NASA Astrophysics Data System (ADS)

    Elkamel, K.; Elidrissi, M.; Yacoubi, A.; Nadiri, A.; Abouarnadasse, S.

    1998-11-01

    Hydrodenitrogenation of pyridine has been realised, under atmospheric pressure, in the presence of oxynitride catalysts of molybdenum, nickel and their solid solutions as well as on mixed catalysts MoNi, MoPNi, AlNi and AlPNi. In all cases, the main reaction products are n-pentane and N-pentylpiperidine, at any conversion. Kinetic results suggest that the conversion of pyridine, on nickel oxynitride, proceeds through successive steps with hydrogenation as rate-limiting. Molybdenum oxynitride and Mo-Ni-N solid solutions tested in the temperature range 500 circC-450 circC, showed a good structural and catalytic stability, but a low catalytic activity. On the other hand, nickel oxynitride catalyst yielded higher activity at much lower temperatures (190 circC-250 circC). X-rays analysis indicates that the used catalyst was entirely reduced to metallic nickel, which is the active phase. Under the same experimental conditions, mixed catalysts are relatively less active but more selective than nickel oxynitride into n-pentane formation. La réaction d'hydrodésazotation de la pyridine a été réalisée, sous pression atmosphérique, en présence de catalyseurs oxynitrures de molybdène, de nickel et leurs solutions solides ainsi que sur les catalyseurs mixtes MoNi, MoPNi, AlNi et AlPNi. Dans tous les cas, les principaux produits de réaction observés sont le n-pentane et la N- pentylpipéridine, quel que soit le taux de conversion. Les résultats cinétiques obtenus en régime intégral, en présence de l'oxynitrure de nickel, suggèrent un schéma réactionnel successif où l'hydrogénation de la pyridine serait l'étape limitante. L'oxynitrure de molybdène et les solutions solides Mo-Ni-N, testés à des températures supérieures ou égales à 500 circC, ont montré une bonne stabilité catalytique et structurale mais une faible activité catalytique. En revanche, l'oxynitrure de nickel présente une activité catalytique plus importante à des températures de r

  8. Review on materials & methods to produce controlled release coated urea fertilizer.

    PubMed

    Azeem, Babar; KuShaari, KuZilati; Man, Zakaria B; Basit, Abdul; Thanh, Trinh H

    2014-05-10

    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Method of Producing a Film Coating by Matrix Assisted Pulsed Laser Deposition

    DTIC Science & Technology

    1997-05-28

    N.C. 78,117 PATENT APPLICATION Inventor’s Name: R. Andrew McGill and Douglas B. Chrisey 1 in a technique called spin coating . These techniques have...several disadvantages. It is difficult with 2 the spin coating or spray coating methods to control the coating thickness precisely, or to ensure 3... Spin coating potentially provides a more uniform 5 coating surface than does spray coating, but nevertheless this method has the disadvantage that 6

  10. Coatings with Thermally Switchable Surface Energy Produced From Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Davis, Raleigh; Register, Richard

    2015-03-01

    Polymer-based coatings are employed across a wide array of sectors. One application of such coatings is to impart a prescribed surface energy, i . e . hydrophilic or hydrophobic character. The present work explores an approach to create surfaces with thermally switchable wetting behavior by employing coatings based on block copolymers which possess both hydrophilic and hydrophobic segments. The amphiphilic block copolymers were synthesized by coupling allyl-ended poly(ethylene oxide) (PEO) and hydride-ended poly(dimethylsiloxane) (PDMS) oligomers via a Pt catalyst. One PEO-PDMS diblock possessed an order-disorder-transition-temperature (TODT) of 64°C as characterized by small angle x-ray scattering. Above the TODT the polymer is a disordered melt, but below this temperature it self-assembles into alternating lamellae with a repeat spacing of 7.7 nm. When cooled through the TODT in vacuum or dry air, the PDMS-enriched domains wet the film's surface, producing a hydrophobic surface with a contact angle (CA) ~ 90° as measured from CA goniometry. However, when cooled under water or in humid air, a PEO-rich hydrophilic surface is produced, yielding CAs ranging from 20-40°. The coatings can then be reversibly switched between the two states by reheating above the TODT, exposing to the appropriate environment, and re-cooling, ideally ``locking in'' the structure until the next processing cycle. The TODT, and thus the switching temperature, can be continuously tuned by blending with PEO-PDMS diblocks of different molecular weights.

  11. Influence of Handling Parameters on Coating Characteristics in Order to Produce Near-Net-Shape Wear Resistant Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Krebs, B.

    2012-06-01

    The present study investigates the influence of spray torch handling parameters such as the spray angle, spray distance, track pitch, and gun velocity on the deposition rate and the microstructure of atmospheric plasma sprayed WC-12Co coatings as well as twin wire arc sprayed WSC-Fe coatings. Similarities as well as fundamental differences in the sensitivity of the two spray processes, regarding changes in handling parameters are discussed, using results of light microscopic analyses. Both coating systems show distinct changes of the deposition rate when varying the handling parameters. An empirical model could be determined to describe the coating deposition. This model enables an optimization of path planning processes by reducing the number of optimization loops. However, the coatings show visible changes in the microstructure, which have to be taken into consideration in order to guarantee the production of high quality coatings.

  12. NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Xu, Jie; Zheng, Yayun; Zhang, Yingjiu; Hu, Xing; Xu, Tingting

    2017-06-01

    Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because of its novel heterostructure, the capacitive performance has been enhanced. A specific capacitance up to 2006 F g-1 was obtained at a current density of 5 mA cm-2, which was far higher than that of pristine NiCo2S4 nanotube arrays (about 1264 F g-1). More importantly, NiCo2S4@NiMoO4/NF and active carbon (AC) were congregated as positive electrode and negative electrode in an asymmetric supercapacitor. As-fabricated NiCo2S4@NiMoO4/NF//AC device has a good cyclic behavior with 78% capacitance retention over 2000 cycles, and exhibits a high energy density of 21.4 Wh kg-1 and power density of 58 W kg-1 at 2 mA cm-2. As displayed, the NiCo2S4@NiMoO4/NF core-shell herterostructure holds great promise for supercapacitors in energy storage.

  13. Effect of shot peening on the residual stress and mechanical behaviour of low-temperature and high-temperature annealed martensitic gear steel 18CrNiMo7-6

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zhang, X.; Mallipeddi, D.; Angelou, N.; Toftegaard, H. L.; Li, Y.; Ahlström, J.; Lorentzen, L.; Wu, G.; Huang, X.

    2017-07-01

    A martensitic gear steel (18CrNiMo7-6) was annealed at 180 °C for 2h and at ∼ 750 °C for 1h to design two different starting microstructures for shot peening. One maintains the original as-transformed martensite while the other contains irregular-shaped sorbite together with ferrite. These two materials were shot peened using two different peening conditions. The softer sorbite + ferrite microstructure was shot peened using 0.6 mm conditioned cut steel shots at an average speed of 25 m/s in a conventional shot peening machine, while the harder tempered martensite steel was shot peened using 1.5 mm steel shots at a speed of 50 m/s in an in-house developed shot peening machine. The shot speeds in the conventional shot peening machine were measured using an in-house lidar set-up. The microstructure of each sample was characterized by optical and scanning electron microscopy, and the mechanical properties examined by microhardness and tensile testing. The residual stresses were measured using an Xstress 3000 G2R diffractometer equipped with a Cr Kα x-ray source. The correspondence between the residual stress profile and the gradient structure produced by shot peening, and the relationship between the microstructure and strength, are analyzed and discussed.

  14. Co-blasting of titanium surfaces with an abrasive and hydroxyapatite to produce bioactive coatings: substrate and coating characterisation.

    PubMed

    Dunne, Conor F; Twomey, Barry; O'Neill, Liam; Stanton, Kenneth T

    2014-01-01

    The aim of this work is to assess the influence of two blast media on the deposition of hydroxyapatite onto a titanium substrate using a novel ambient temperature coating technique named CoBlast. CoBlast was developed to address the problems with high temperature coating techniques. The blasting media used in this study were Al2O3 and a sintered apatite powder. The prepared and coated surfaces were compared to plasma sprayed hydroxyapatite on the same substrates using the same hydroxyapatite feedstock powder. X-ray diffraction analysis revealed the coating crystallinity was the same as the original hydroxyapatite feedstock powder for the CoBlast samples while evidence of amorphous hydroxyapatite phases and β-TCP was observed in the plasma sprayed samples. The blast media type significantly influences the adhesive strength of the coating, surface roughness of both the substrate and coating and the microstructure of the substrate. The coating adhesion increased for the CoBlasted samples from 50 MPa to 60 MPa for sintered apatite powder and alumina, respectively, while plasma spray samples were significantly lower (5 MPa) when tested using a modified pull-test. In conclusion, the choice of blast medium is shown to be a key parameter in the CoBlast process. This study indicates that sintered apatite powder is the most suitable candidate for use as a blast medium in the coating of medical devices.

  15. Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.

    PubMed

    Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang

    2017-09-20

    Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm(2) in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.

  16. A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy

    PubMed Central

    Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358

  17. A comparative study on improved Arrhenius-type and artificial neural network models to predict high-temperature flow behaviors in 20MnNiMo alloy.

    PubMed

    Quan, Guo-zheng; Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173 ∼ 1473 K and strain rate range of 0.01 ∼ 10 s(-1). Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of -39.99% ∼ 35.05% and -3.77% ∼ 16.74%. As for the former, only 16.3% of the test data set possesses η-values within ± 1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model.

  18. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    SciTech Connect

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  19. Synthesis, characterization, and catalytic activity of sulfided silico-alumino-titanate (Si-Al-Ti) mixed oxides xerogels supported Ni-Mo catalyst

    SciTech Connect

    Al-Adwani, H.A.; Thammachote, N.; Anthony, R.G.; Gardner, T.J.

    1998-07-25

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136--367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 36--47 {angstrom}. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition, the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ri catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  20. Microstructural Modification of Laser-Deposited High-Entropy CrFeCoNiMoWC Alloy by Friction Stir Processing: Nanograin Formation and Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Ruidi; Wang, Minbo; Yuan, Tiechui; Song, Bo; Shi, Yusheng

    2017-02-01

    Nanostructured CrFeCoNiMoWC high-entropy alloy layer was developed through laser-melting deposition and severe plastic deformation (SPD). The laser-deposited CrFeCoNiMoWC alloy consists of dendritic and subeutectic with a continuous network structure. After SPD, the laser-deposited microstructure with grain size 3 to 4 μm was transformed into nanostructure with grain size 5 to 100 nm and the continuous networks were crushed into dispersed nanoparticles. The new phases of WC and Co3W were presented in the plastic zone after SPD due to the worn debris of the SPD tool. More interestingly, amorphous phase was found in the plastic zone, owing to the high temperature, high hydrostatic pressure, and large shear stress. The refined microstructure resulted in the enhancement of microhardness and electrochemical corrosion property. Many nanotwins were detected in the plastic zone; thus, strengthening mechanisms were reasonably inferred as twinning strengthening, work hardening, dispersion strengthening, refinement strengthening, and dislocation strengthening. The Lomer-Cottrell lock, full dislocation interacting with a partial dislocation at the twinning boundary, and high density of dislocation at the twinning boundary, stacking fault, and grain boundary were observed, which account for the property enhancement of the nanocrystalline.

  1. Development of a wear-resistant flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system for deposit welding of mining equipment parts

    NASA Astrophysics Data System (ADS)

    Osetkovsky, I. V.; Kozyrev, N. A.; Kryukov, R. E.; Usoltsev, A. A.; Gusev, A. I.

    2017-09-01

    The effect of introduction of cobalt in the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system operating under abrasive and abrasive-shock loads is studied. In the laboratory conditions samples of flux cored wires were made, deposition was performed, the effect of cobalt on the hardness and the degree of wear was evaluated, metallographic studies were carried out. The influence of cobalt introduced into the charge of the flux cored wire of Fe-C-Si-Mn-Cr-Ni-Mo-V system on the structure, nature of nonmetallic inclusions, hardness and wear resistance of the weld metal was studied. In the laboratory conditions samples flux cored wire were made using appropriate powdered materials. As a carbon-fluorine-containing material dust from gas cleaning units of aluminum production was used. In the course of the study the chemical composition of the weld metal was determined, metallographic analysis was performed, mechanical properties were determined. As a result of the metallographic analysis the size of the former austenite grain, martensite dispersion in the structure of the weld metal, the level of contamination with its nonmetallic inclusions were established.

  2. Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu

    Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The

  3. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  4. Stress and deformation of ceramic rolls to produce high quality zinc coated steel sheet

    NASA Astrophysics Data System (ADS)

    Sakai, Hiromasa; Noda, Nao-Aki; Sano, Yoshikazu; Takase, Yasushi; Zhang, Guowei

    2017-05-01

    Several ceramic rolls can be used efficiently to produce high quality zinc coated steel sheet used for automobiles. Those ceramics rolls may provide a longer life and reduce the cost for the maintenance because of its large heat resistance and large wear resistance. One example may be seen in sink rolls used in molten zinc bath to manufacture zinc coated steel sheet. Since the rolls are subjected to large thermal stress and mechanical loading, care should be taken for the risk of fracture due to the ceramic brittleness. Moreover, since the sleeve and shafts can be connected only by using small shrink fitting ratio, another failure risk should be considered for the separation of those components [25, 26]. In this paper, therefore, the mechanical and thermal stress and separation condition will be investigated considering the separation of the connected portion. Here, by using the finite volume method the heat transfer coefficient is discussed and by using the finite element method the thermal stress is considered.

  5. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  6. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  7. Discussion of ``Interfacial layer in coatings produced in molten Zn-Al eutectoid alloy containing Si''

    NASA Astrophysics Data System (ADS)

    Tang, N.-Y.; Liu, Y. H.

    2005-09-01

    Studies of the interfacial layer in coatings produced in a molten Zn-22.3 pct Al-0.4 pct Si alloy revealed a double layer with an Fe2Al8Si sublayer on the top and an Fe2Al5 sublayer on the bottom. This suggests that a diffusion path is established during the hot-dipping stage, starting from the liquid phase and passing through the phase fields of the ternary inhibition compound of Fe2Al8Si and all binary Fe-Al intermetallic compounds available in the Al-Fe system. Thermodynamic calculations of the free energies of the relevant phases have confirmed the feasibility of such a diffusion path.

  8. Relative Importance of Various Sources of Defect-Producing Hydrogen Introduced into Steel During Application of Vitreous Coatings

    NASA Technical Reports Server (NTRS)

    Moore, Dwight G; Mason, Mary A; Harrison, William N

    1953-01-01

    When porcelain enamels or vitreous-type ceramic coatings are applied to ferrous metals, there is believed to be an evolution of hydrogen gas both during and after the firing operation. At elevated temperatures rapid evolution may result in blistering while if hydrogen becomes trapped in the steel during the rapid cooling following the firing operation gas pressures may be generated at the coating-metal interface and flakes of the coating literally blown off the metal. To determine experimentally the relative importance of the principal sources of the hydrogen causing the defects, a procedure was devised in which heavy hydrogen (deuterium) was substituted in turn for regular hydrogen in each of five possible hydrogen-producing operations in the coating process. The findings of the study were as follows: (1) the principal source of the defect-producing hydrogen was the dissolved water present in the enamel frit that was incorporated into the coating. (2) the acid pickling, the milling water, the chemically combined water in the clay, and the quenching water were all minor sources of defect-producing hydrogen under the test conditions used. Confirming experiments showed that fishscaling could be eliminated by using a water-free coating.

  9. Tribological and Corrosion Properties of Nickel/TiC Bilayered Coatings Produced by Electroless Deposition and PACVD

    NASA Astrophysics Data System (ADS)

    Shanaghi, Ali; Chu, Paul K.

    2016-11-01

    Ni/TiC bilayered coatings are deposited on hot-working steel (H11) by plasma-assisted chemical vapor deposition and electroless technique. The TiC layer is deposited at 490 °C using a gas mixture of TiCl4, CH4, H2, and Ar, and a dense nanostructured TiC coating with minimum excessive carbon phases and low chlorine concentration is produced. The effects of the Ni intermediate layer on the microstructure, tribology, and corrosion behavior of the nanostructured TiC coating are investigated. The friction coefficient of the Ni/TiC bilayered coating (Ni thickness = 4 µm) at 500 cycles is much smaller than that of the coating without the Ni intermediate layer. The smallest friction coefficient is about 0.2, and the hardness values of the Ni/TiC bilayered samples with three different Ni layer thicknesses of 2, 4, and 6 µm are 2534, 3070, and 2008 Hv, respectively. The wear mechanism of the Ni/TiC bilayered coatings is abrasive induced by plastic deformation and fatigue during the sliding process. The smaller groove width on the 4-µm electroless nickel-Ni3P/TiC bilayered coating correlates with the larger H/ E ratio and the 4-µm nickel/TiC bilayered sample shows the better wear resistance. The polarization resistance of the 6-µm electroless nickel-Ni3P/TiC coating in 0.05 M NaCl and 0.5 M H2SO4 increases by about 8 and 15 times, respectively. The Ni intermediate layer increases the toughness of the coating and adhesion between the hard coating and steel substrate thereby enhancing the tribological properties and corrosion resistance.

  10. miR-488 determines coat pigmentation by down-regulating the pigment-producing gene pro-opiomelanocortin.

    PubMed

    Wang, H; Ma, S; Xue, L; Li, Y; Wang, J; He, X; Zhu, Z; Dong, C

    2016-10-31

    Coat color is a key economic trait in wool- and fur-producing animals. Coat color is controlled by complex mechanisms. Pro-opiomelanocortin (POMC) is a gene involved in pigment formation. Previous studies suggested that miR-488 might target the POMC mRNA. This study aimed to determine whether miR-488 could affect coat color by regulating POMC and to explore the regulatory roles of miR-488 on coat color in mammals. A dual fluorescence report vector containing the 3'-UTR of POMC was built to determine whether miR-488 could post-transcriptionally regulate POMC expression. Then, a eukaryotic vector expressing miR-488 was built and transfected into mouse keratinocytes to confirm the regulatory mechanism in vitro. Compared with gray mice, the expression of POMC mRNA was 3.36-fold higher in black mice and 1.29-fold higher in brown mice. The results showed that miR-488 could control mice coat color by combining with the 3'-UTR seed sequence of POMC mRNA to achieve the degradation of POMC mRNA, therefore playing a role in POMC expression. This study revealed the roles of miR-488 in animal coat color and enriches our knowledge about the determination of coat color in mammals.

  11. Structure and properties of Ti-C-B coatings produced by non-vacuum electron beam cladding

    NASA Astrophysics Data System (ADS)

    Lenivtseva, O. G.; Belousova, N. S.; Lozhkina, E. A.; Zimoglyadova, T. A.; Samoylenko, V. V.; Chuchkova, L. V.

    2016-11-01

    Cp-Ti/TiB+TiC wear-resistance coatings produced by non-vacuum electron beam cladding of boron carbide and titanium powders are studied in the paper. The X-ray phase analysis of the composite coatings microstructure showed that titanium carbide and boride reinforcing particles are evolved during the process. The obtained data are in good agreement with results of optical and electron microscopy. Undissolved particles of the initial boron carbide powder are detected in the coatings. The microhardness test as well as wear resistance test of materials under conditions of loose abrasive particles are conducted. It is established that the precipitation of reinforcing particles improves the tribological properties of the composite coatings.

  12. A mineralogical application of micro-PIXE technique: The Ni-Mo-PGE polymetallic layer of black shales in Zunyi region, South China

    NASA Astrophysics Data System (ADS)

    Li, X.; Han, T.; Zhu, X.; Li, Y.; Zheng, Y.; Shen, H.

    2013-08-01

    The Ni-Mo-PGE polymetallic layers, from Southern China (Huangjiawan mine, Zunyi region, northern part of the Guizhou Province), were analyzed by micro-PIXE. These samples are known to be enriched with acidic elements and basic elements. Some of them, like Ag, Au, Pt, Pd, Se and Mo, are of large economic value. The distributions of Fe, Mo, Ni, As, Se and Pd in black shales samples are studied. The correlation among those elements has also been investigated. Trace element data from minerals, the noble metals' mode of occurrence and correlation with other elements are all significant in mineralogy. Such information can help in understanding the genesis of the deposit and also aid the exploration strategy.

  13. Estimation of Vickers hardness uncertainty for a heterogeneous welded joint (S235JR+AR and X2CrNiMo17-12-2)

    NASA Astrophysics Data System (ADS)

    Dijmărescu, M. C.; Dijmărescu, M. R.

    2017-08-01

    When talking about tests that include measurements, the uncertainty of measurement is an essential element because it is important to know the limits within the obtained results may be assumed to lie and the influence the measurement technological system elements have on these results. The research presented in this paper focuses on the estimation of the Vickers hardness uncertainty of measurement for the heterogeneous welded joint between S235JR+AR and X2CrNiMo17-12-2 materials in order to establish the results relevance and the quality assessment of this joint. The paper contents are structured in three main parts. In the first part, the initial data necessary for the experiment is presented in terms of the welded joint and technological means characterisation. The second part presents the physical experiment development and its results and in the third part the uncertainty of the measurements is calculated and a results discussion is undertaken.

  14. NiCo2S4@NiMoO4 Core-Shell Heterostructure Nanotube Arrays Grown on Ni Foam as a Binder-Free Electrode Displayed High Electrochemical Performance with High Capacity.

    PubMed

    Zhang, Yan; Xu, Jie; Zheng, Yayun; Zhang, Yingjiu; Hu, Xing; Xu, Tingting

    2017-12-01

    Core-shell-structured system has been proved as one of the best architecture for clean energy products owing to its inherited superiorities from both the core and the shell part, which can provide better conductivity and high surface area. Herein, a hierarchical core-shell NiCo2S4@NiMoO4 heterostructure nanotube array on Ni foam (NF) (NiCo2S4@NiMoO4/NF) has been successfully fabricated. Because of its novel heterostructure, the capacitive performance has been enhanced. A specific capacitance up to 2006 F g(-1) was obtained at a current density of 5 mA cm(-2), which was far higher than that of pristine NiCo2S4 nanotube arrays (about 1264 F g(-1)). More importantly, NiCo2S4@NiMoO4/NF and active carbon (AC) were congregated as positive electrode and negative electrode in an asymmetric supercapacitor. As-fabricated NiCo2S4@NiMoO4/NF//AC device has a good cyclic behavior with 78% capacitance retention over 2000 cycles, and exhibits a high energy density of 21.4 Wh kg(-1) and power density of 58 W kg(-1) at 2 mA cm(-2). As displayed, the NiCo2S4@NiMoO4/NF core-shell herterostructure holds great promise for supercapacitors in energy storage.

  15. Development and Characterization of Nanostructured Cermet Coatings Produced by Co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Farrokhzad, Mohammad Ali

    Nanostructured cermet (ceramic-metallic) coatings are a group of materials that combine properties possessed by ceramics, such as oxidation resistance and high hardness, and the properties of metals such as strength and ductility. These coatings consist of nano-sized metal-oxide particles (i.e. Al2 O3) dispersed into a corrosion resistant metal matrix such as nickel. Cermet coatings have been used in many industrial applications such as cutting tools and jet engines where high temperature and erosion resistance performance are required. However, despite the promising properties, the lack of experimental data and theories on high temperature oxidation and mechanical properties of cermet coatings have restricted their full potential to be used in technologies for oil sand production such as In-Situ Combustion (ISC). In this study, the structure of cermet coatings was investigated to identify the characteristics that give rise to oxidation performance and wear resistance properties of cermet coatings. The experimental oxidation results on the single-component oxide cermet coatings showed that when Al2O3 and TiO2 were combined in the electrolyte, the new combination can improve oxidation performance (less mass gain) as compared to a pure Ni coating. Based on the oxidation and micro-hardness results, a new group of nanostructured cermet coatings (double-component oxides) was developed and investigated using long term oxidation tests, thermo-gravimetric analysis in mixed gas, thermal cycling, micro-hardness and abrasive wear tests. The mechanical analysis of the newly developed coatings showed improved resistance against wear and thermal cycling compared to single-component oxide cermet and pure Ni coatings. Furthermore, some new theoretical analysis were also put forward that aims at a new explanation of high temperature oxidation for cermet coatings.

  16. Investigation of coatings of austenitic steels produced by supersonic laser deposition

    NASA Astrophysics Data System (ADS)

    Gorunov, A. I.; Gilmutdinov, A. Kh.

    2017-02-01

    The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.

  17. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles

    PubMed Central

    2014-01-01

    We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636

  18. The erosion performance of particle reinforced metal matrix composite coatings produced by co-deposition cold gas dynamic spraying

    NASA Astrophysics Data System (ADS)

    Peat, Tom; Galloway, Alexander; Toumpis, Athanasios; McNutt, Philip; Iqbal, Naveed

    2017-02-01

    This work reports on the erosion performance of three particle reinforced metal matrix composite coatings, co-deposited with an aluminium binder via cold-gas dynamic spraying. The deposition of ceramic particles is difficult to achieve with typical cold spray techniques due to the absence of particle deformation. This issue has been overcome in the present study by simultaneously spraying the reinforcing particles with a ductile metallic binder which has led to an increased level of ceramic/cermet particles deposited on the substrate with thick (>400 μm) coatings produced. The aim of this investigation was to evaluate the erosion performance of the co-deposited coatings within a slurry environment. The study also incorporated standard metallographic characterisation techniques to evaluate the distribution of reinforcing particles within the aluminium matrix. All coatings exhibited poorer erosion performance than the uncoated material, both in terms of volume loss and mass loss. The Al2O3 reinforced coating sustained the greatest amount of damage following exposure to the slurry and recorded the greatest volume loss (approx. 2.8 mm3) out of all of the examined coatings. Despite the poor erosion performance, the WC-CoCr reinforced coating demonstrated a considerable hardness increase over the as-received AA5083 (approx. 400%) and also exhibited the smallest free space length between adjacent particles. The findings of this study reveal that the removal of the AA5083 matrix by the impinging silicon carbide particles acts as the primary wear mechanism leading to the degradation of the coating. Analysis of the wear scar has demonstrated that the damage to the soft matrix alloy takes the form of ploughing and scoring which subsequently exposes carbide/oxide particles to the impinging slurry.

  19. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  20. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  1. Preparation and characterization of Ni-TiO2 nanocomposite coatings produced by electrodeposition technique

    NASA Astrophysics Data System (ADS)

    Birlik, Isil; Ak Azem, N. Funda; Toparli, Mustafa; Celik, Erdal; Koc Delice, Tulay; Yıldırım, Sıdıka; Bardakçıoğlu, Onur; Dikici, Tuncay

    2016-10-01

    In this paper Ni-TiO2 nanocomposite coatings with different sizes of TiO2 nanoparticles were successfully prepared by electrodeposition process from a nickel electrolyte in which the TiO2 nanoparticles were suspended. The influence of relevant deposition parameters on the nanocomposite coating characteristics was discussed. X-ray diffractometer (XRD) has been applied in order to investigate the phase structure of the nanocomposite coatings. The surface morphology of nanocomposite coatings was characterized by a scanning electron microscopy equipped with an energy dispersive spectroscopy (SEM/EDS). The electrodeposited nanocomposite coatings obtained at different deposition parameters were evaluated for their mechanical and corrosive properties. Obtained results show that the size of TiO2 nanoparticles and applied current density during deposition process has a direct effect on mechanical and corrosive properties of nanocomposite coatings. Increasing current density and smaller nanoparticle size has affirmative effect on mechanical properties whereas corrosion resistance of nanocomposite coatings deposited at 3 A.dm-2 current density are higher than the coatings prepared at higher current density values.

  2. Friction and wear of self-lubricating TiN-MoS{sub 2} coatings produced by chemical vapor deposition

    SciTech Connect

    Blau, P.J.; Yust, C.S.; Bae, Y.W.; Besmann, T.M.; Lee, W.Y.

    1994-12-31

    The purpose of the work reported here was to develop special chemical vapor deposition (CVD) methods to produce self-lubricating ceramic coatings in which the lubricating and structural phases were co-deposited on Ti-6Al-4V alloy substrates. These novel composite coatings are based on a system containing titanium nitride and molybdenum disulfide. The method for producing these coatings and their sliding behavior against silicon nitride counterfaces, in the temperature range 20--700 C in air, are described. The initial sliding friction coefficients for the composite coatings at room temperature were 0.07--0.30, but longer-term transitions to higher friction occurred, and specimen-to-specimen test variations suggested that further developments of the deposition process are required to assure repeatable friction and wear results. Friction and wear tests at 300 and 700 C produced encouraging results, but tests run at an intermediate temperate of 400 C exhibited friction coefficients of 1.0 or more. Oxidation and a change in the nature of the debris layers formed during sliding are believed to be responsible for this behavior.

  3. Method of producing an oxide dispersion strengthened coating and micro-channels

    DOEpatents

    Kang, Bruce S; Chyu, Minking K; Alvin, Mary Anne; Gleeson, Brian M

    2013-12-17

    The disclosure provides a method for the production of composite particles utilizing a mechano chemical bonding process following by high energy ball milling on a powder mixture comprised of coating particles, first host particles, and second host particles. The composite particles formed have a grain size of less than one micron with grains generally characterized by a uniformly dispersed coating material and a mix of first material and second material intermetallics. The method disclosed is particularly useful for the fabrication of oxide dispersion strengthened coatings, for example using a powder mixture comprised of Y.sub.2O.sub.3, Cr, Ni, and Al. This particular powder mixture may be subjected to the MCB process for a period generally less than one hour following by high energy ball milling for a period as short as 2 hours. After application by cold spraying, the composite particles may be heat treated to generate an oxide-dispersion strengthened coating.

  4. Electro-spark deposition: A technique for producing wear resistant coatings

    SciTech Connect

    Sheldon, G.L. ); Johnson, R.N. )

    1984-12-01

    Electro-spark deposition (ESD) is a coating process using short duration, high current electrical pulses to deposit an electrode material on a metallic substrate. A principal attribute of the process is its ability to apply metallurgically bonded coatings with such a low total heat input that the bulk substrate material remains at or near ambient temperatures. A review of the process is briefly given, then current research using WC-TiC and Cr{sub 3}C{sub 2} electrodes to deposit coatings on Type 316 stainless steel and other substrates is presented. The ESD carbide coatings were found to be exceptionally hard, wear-resistant and spalling-resistant in high-stress rubbing tests. Several applications for nuclear reactor components are described. 17 refs., 18 figs., 1 tab.

  5. Investigation of Ni-Cr-Si-Fe-B coatings produced by the electron beam cladding technique

    NASA Astrophysics Data System (ADS)

    Zimogliadova, T. A.; Drobyaz, E. A.; Golkovskii, M. G.; Bataev, V. A.; Durakov, V. G.; Cherkasova, N. Yu

    2016-11-01

    This paper presents the results of structural investigations and results of tribological and microhardness tests of the coating obtained by electron beam cladding of a Ni-Cr-Si-Fe-B self-fluxing alloy on low-carbon steel. After electron beam treatment high-quality dense layer with a thickness of 1.2-1.8 mm was obtained. The structure of the coating consisted of dendrite crystals based on y-Ni-solid solution and eutectic with complex composition. Microhardness of the coating achieves 370 HV. Wear-resistance of the coating obtained by electron-beam cladding technique was 1.6-fold higher than that of low-carbon carburized steel.

  6. Microstructure and Properties of in Situ Synthesized ZrC-ZrB2/Fe Composite Coating Produced by Gtaw

    NASA Astrophysics Data System (ADS)

    Wang, Zhenting; Chen, Lili; Zhang, Xianyou

    A metal matrix composite coating reinforced by ZrC-ZrB2 particulates has been successfully fabricated utilizing the in situ reaction of Zr, B4C and Fe pre-placed mixed powders by gas tungsten arc welding (GTAW) cladding process. Various volume fraction of ZrC-ZrB2 particulates composite coatings were produced through cladding different weight ratios of Zr+B4C (30%, 50%, 70%) to improve the wear resistance of AISI1020 steel substrate. The Microstructure of the coating was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrum (EDS), meantime microhardness and wear resistance at room temperature of the composite coating were examined by means of Microhardness Tester and Wear Tester, respectively. The results show that the main phases of the composite coating obtained by GTAW are ZrC, ZrB2 and α-Fe, ZrC exhibits hexahedron and petal shapes, ZrC-ZrB2 compound presents acicular and clubbed forms. With the increase of content of Zr+B4C, the maximum volume fraction of ZrC-ZrB2 particulates can reach 16.5%, microhardness is up to 1300HV, and wear resistance is about twenty times higher than that of AISI1020 steel substrate.

  7. Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering

    SciTech Connect

    Melninkaitis, Andrius; Tolenis, Tomas; Mazule, Lina; Mirauskas, Julius; Sirutkaitis, Valdas; Mangote, Benoit; Fu Xinghai; Zerrad, Myriam; Gallais, Laurent; Commandre, Mireille; Kicas, Simonas; Drazdys, Ramutis

    2011-03-20

    ZrO{sub 2}-SiO{sub 2} and Nb{sub 2}O{sub 5}-SiO{sub 2} mixture coatings as well as those of pure zirconia (ZrO{sub 2}), niobia (Nb{sub 2}O{sub 5}), and silica (SiO{sub 2}) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO{sub 2}. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.

  8. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors

    PubMed Central

    Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao

    2017-01-01

    In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g−1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg−1 at 700 W kg−1), high power density (12000 W kg−1 at 26.7 Wh kg−1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g−1). PMID:28106170

  9. Assembly of flexible CoMoO4@NiMoO4·xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Leipeng; Liu, Xusong; Zhang, Xiang; Tian, Yanlong; Liu, Xiaoxu; Zhao, Jiupeng; Li, Yao

    2017-01-01

    In this work, CoMoO4@NiMoO4·xH2O core-shell heterostructure electrode is directly grown on carbon fabric (CF) via a feasible hydrothermal procedure with CoMoO4 nanowires (NWs) as the core and NiMoO4 nanosheets (NSs) as the shell. This core-shell heterostructure could provide fast ion and electron transfer, a large number of active sites, and good strain accommodation. As a result, the CoMoO4@NiMoO4·xH2O electrode yields high-capacitance performance with a high specific capacitance of 1582 F g‑1, good cycling stability with the capacitance retention of 97.1% after 3000 cycles and good rate capability. The electrode also shows excellent mechanical flexibility. Also, a flexible Fe2O3 nanorods/CF electrode with enhanced electrochemical performance was prepared. A solid-state asymmetric supercapacitor device is successfully fabricated by using flexible CoMoO4@NiMoO4·xH2O as the positive electrode and Fe2O3 as the negative electrode. The asymmetric supercapacitor with a maximum voltage of 1.6 V demonstrates high specific energy (41.8 Wh kg‑1 at 700 W kg‑1), high power density (12000 W kg‑1 at 26.7 Wh kg‑1), and excellent cycle ability with the capacitance retention of 89.3% after 5000 cycles (at the current density of 3A g‑1).

  10. Surface modification of 30CrNiMo8 low-alloy steel by active screen setup and conventional plasma nitriding methods

    NASA Astrophysics Data System (ADS)

    Ahangarani, Sh.; Sabour, A. R.; Mahboubi, F.

    2007-12-01

    In this paper, we report on a comparative study of active screen plasma nitriding (ASPN) and conventional dc plasma nitriding (CPN) behavior of 30CrNiMo8 low-alloy steel that has been examined under various process conditions. The process variables included active screen setup parameters (screen and iron plate top lids placed on the screen setup with 8 mm of hole size), treatment temperature (550 and 580 °C), gas mixture (75/25 and 25/75 of N 2/H 2) and treatment time (5 and 10 h) in 500 Pa pressure. The structure and phases composition of the diffusion zone and compound layer were studied by X-ray diffraction (XRD), microhardness tests, light optical microscopy and scanning electron microscopy (SEM). It was observed that treated sample surfaces in both CPN and ASPN methods consist of γ' and ɛ phases, and while the nitriding time and/or temperature increases, the intensity of ɛ phase in the compound layer will increase for ASPN and decrease for CPN method. Results show that the amount of nitrogen transferred from holes of screen toward the sample surface via sputtering and re-condensation mechanism can be affected due to the hardness and thickness of the layer.

  11. Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Yong; Jiang, Li; Tang, Zhongyi; Lu, Yiping; Li, Tingju

    2015-11-01

    The bulk AlCrFeNiMo0.2 high-entropy alloy was successfully prepared by vacuum medium frequency induction melting. The effects of electromagnetic field on microstructure and properties were investigated. The alloy possessed a mixed structure of B2 and BCC, and the phase types were not changed by the electromagnetic field treatment. The microstructure exhibited typical lamellar eutectic cell and rod eutectic cell structures. These eutectic cell structures were constituted by the AlNi-type intermetallic compound and the FeCr-type solid solution. With the increase of electromagnetic field intensity, the hardness increases, while the compressive fracture strength and fracture strain of the alloy first increases and then decreases. The alloy with 15 mT electromagnetic field has the largest fracture strength 2282.3 MPa, yield strength 1160.5 MPa, and fracture strain 0.29. The alloy shows typical ferromagnetic behavior, and the homogenized lamellar eutectic cell microstructure significantly decreased the specific saturation magnetizations.

  12. Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M.; Murowchick, J.B.; Hulbert, L.J.

    1994-01-01

    Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.

  13. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  14. Inhibiting effect of sulfur and oxygen compounds on carbazole hydrogenitrogenation on NiMo/Al sub 2 O sub 3 catalysts and relation to gas-phase acidity

    SciTech Connect

    Nagai, M.; Ogino, T. )

    1987-04-01

    The inhibiting effect of various sulfur and oxygen compounds on carbazole hydrodenitrogenation on NiMo/Al{sub 2}O{sub 3} catalysts has been studied. The reactions were carried out with a flow microreactor at 260-360{degree}C and 10.1 MPa total pressure. A major denitrogenated product was bicyclohexyl, and a hydrogenated compound was tetrahydrocarbazole, accompanied by small amounts of perhydrocarbazole and hexahydrocarbazole. Sulfidation of the reduced catalyst increased the activity of the catalyst at all temperatures. At 360{degree}C, the presence of the sulfur and oxygen compounds depressed the denitrogenation of perhydrocarbazole to bicyclohexyl on the reduced and sulfided catalyst which was a rate-determining step. At lower temperatures, all the additives affected the hydrogenation of carbazole to tetrahydrocarbazole which was not in equilibrium and resulted in a decrease of denitrogenation. The denitrogenation of perhydrocarbazole was assumed to follow the Langmuir-type equation, allowing for competitive adsorption of perhydrocarbazole and additives on the denitrogenated sites. The relationship between the inhibiting effect of the additives and their gas-phase acidity was also discussed.

  15. [Studies on the tolerance of the organism to X 5 CrNiMo 18.10 steel (Königsee). III. Electron microscopic studies on the tissues surrounding X 5 CrNiMo 18.10 steel implants in the animal experiment].

    PubMed

    Höhndorf, H; Hoheisel, G

    1977-08-01

    The surrounding tissue of X 5 CrNiMo 18.10-steel implantates in guinea-pigs was analyzed by electron microscopy. Corroding products of the implantates were marked by sulfide-silver-reaction. Metallic alien material was only proven in the cells of connective tissue covering the implantates. Immediately around the implantates one can not prove products of corroding, evidently depending on their minimal size and amount. In the cells of the intermediate and the vascular zone, however, single or accumulated particles in vesicular or vacuolary organellae, resp. without membraneous cover can be demonstrated. The findings are described and discussed with regard to damages which might arise by means of alloy parts and lysosomal structures.

  16. Durability of Solar Reflective Materials with an Alumina Hard Coat Produced by Ion-Beam-Assisted Deposition: Preprint

    SciTech Connect

    Kennedy, C. E.; Smilgys, R. V.

    2002-10-01

    A promising low-cost reflector material for solar concentrating power (CSP) generation is a silvered substrate protected by an alumina coating several microns thick. The alumina hard coat is deposited under high vacuum by ion-beam-assisted-deposition (IBAD). Samples of this material have been produced both by batch and continuous roll-coating processes. The substrate materials investigated were polyethylene terephthalate (PET), PET laminated to stainless-steel foil, and chrome-plated carbon steel strip. The advantage of steel strip compared to PET is that it withstands a higher process temperature and lowers the final product installation costs. In this paper, we compare the durability of batch and roll-coated reflective materials with an alumina deposition rate as high as 10 nm/s. In general, the durability of the samples is found to be excellent. Comparisons between accelerated and outdoor exposure testing results indicate that these front-surface mirrors are more susceptible to weather conditions not simulated by accelerated tests (i.e., rain, sleet, snow, etc.) than other types of solar reflectors. For long-term durability, edge protection will be necessary, and durability could be improved by the addition of an adhesion-promoting layer between the silver and alumina.

  17. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Ouattara, B.; Sabato, S. F.; Lacroix, M.

    2002-03-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant ( p⩽0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant ( p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.

  18. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria.

    PubMed

    de Barros, João M S; Lechner, Tabea; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D

    2015-09-30

    We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.

  19. Some preliminary evaluations of black coating on aluminium AA2219 alloy produced by plasma electrolytic oxidation (PEO) process for space applications

    NASA Astrophysics Data System (ADS)

    Shrestha, S.; Merstallinger, A.; Sickert, D.; Dunn, B. D.

    2003-09-01

    This paper describes the results of a study of a black coating produced on aluminium AA2219 alloy using a process that involves creation of a hard ceramic oxide layer on the surface of the alloy by plasma electrolytic oxidation (PEO) known as the 'KERONITE®' process. Coating microstructure has been examined and the coating characteristics such as porosity, hardness, adhesion and phase composition were measured. The thermo-optical properties such as solar absorptance 'as' and normal infrared emittance 'en-IR' of the coating were measured in the 'as-prepared' condition and after environmental exposures to humidity, thermal cycling and UV-radiation in vacuum and to thermal shock. Comparison was made with alternative coatings produced using standard black anodising processes. The study also looked at the cold welding and friction behaviours of the coated alloy in vacuum and in an ambient laboratory environment. Standard spacecraft materials tests were conducted on the coated disc against an AISI 52100 steel ball and also against a coated pin using a pin-on-disc apparatus. Parameters such as friction coefficient and wear depth were measured and the cold welding behaviours were investigated. Test results were compared with the data generated for NiCr plated and anodised coatings. Corrosion performance was assessed using a salt spray exposure test and using an accelerated electrochemical test method. In addition, the study looked at the effect of post coating sealing with a sol-gel solution.

  20. Adhesion of slime producing Staphylococcus epidermidis strains to PVC and diamond-like carbon/silver/fluorinated coatings.

    PubMed

    Katsikogianni, M; Spiliopoulou, I; Dowling, D P; Missirlis, Y F

    2006-08-01

    Staphylococcus epidermidis has emerged as a pathogen associated with infections of implanted medical devices. Bacterial adhesion is a crucial step in infection on biomaterial surfaces. To quantitatively determine the relationship between poly (vinyl chloride) (PVC) surface properties and bacterial adhesion, we have compared attachment of slime-producing S. epidermidis strains on PVC and various coatings under flow conditions. Bacterial adhesion and colonization was quantified by counting the viable organisms on the adherent surface as well as by scanning electron microscopy, epifluorescence microscopy and atomic force microscopy. Fluorination of the PVC surface encourages S. epidermidis adhesion whereas; diamond-like carbon (DLC) and especially silver (Ag) coatings seem to inhibit its adhesion. In most materials, the number of adherent bacteria decreased with the increase of shear rate. These results indicate that bacterial adhesion is influenced by the chemical properties of the polymeric surfaces, the surface roughness and the associated flow conditions.

  1. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    NASA Astrophysics Data System (ADS)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  2. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  3. A study of Ni-5wt. pct Al coatings produced from different feedstock powder

    SciTech Connect

    Svantesson, J.; Wigren, J. )

    1992-03-01

    Ten different Ni-5 wt pct Al powders, three clad, one sintered, three water atomized, and three gas atomized, have been evaluated and plasma sprayed. The study focuses on how the manufacturing method, chemical composition, and particle size distribution of the powders affect the quality of the coating. Properties such as microstructure and mechanical behavior, as well as oxidation and corrosion resistance, are discussed. In conclusion, recommendations concerning the selection of powders for different applications are presented. 10 refs.

  4. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements

    NASA Astrophysics Data System (ADS)

    Bahlawane, N.; Struckmeier, U.; Kasper, T. S.; Oßwald, P.

    2007-01-01

    Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl3 as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetylwidth="0.3em"/>acetone)3 allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl3-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques.

  5. Carbon coated nickel nanoparticles produced in high-frequency arc plasma at ambient pressure

    NASA Astrophysics Data System (ADS)

    Vnukova, Natalia; Dudnik, Alexander; Komogortsev, Sergey; Velikanov, Dmitry; Nemtsev, Ivan; Volochaev, Michael; Osipova, Irina; Churilov, Grigory

    2017-10-01

    The nickel particles with the mean size about 10-20 nm coated with carbon were extracted by the treatment of the carbon condensate with nitric and hydrochloric acids. The initial carbon condensate containing nickel nanoparticles with a graphite conversion was synthesized in the high-frequency carbon-helium arc plasma at ambient pressure with the nickel nanoparticles as a catalyst. The nickel content in the nanoparticles was 84.6 wt%. Magnetic properties of the nanoparticles are characterized by the high hysteresis and thermal stability. The sample of compacted nanoparticles is characterized by electrical resistance much higher than it in of compacted initial condensate.

  6. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  7. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  8. An in vitro study of mucoadhesion and biocompatibility of polymer coated liposomes on HT29-MTX mucus-producing cells.

    PubMed

    Adamczak, Małgorzata I; Hagesaether, Ellen; Smistad, Gro; Hiorth, Marianne

    2016-02-10

    Drug delivery to the oral cavity poses a significant challenge due to the short residence time of the formulations at the site of action. From this point of view, nanoparticulate drug delivery systems with ability to adhere to the oral mucosa are advantageous as they could increase the effectiveness of the therapy. Positively, negatively and neutrally charged liposomes were coated with four different types of polymers: alginate, low-ester pectin, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose. The mucoadhesion was studied using a novel in vitro method allowing the liposomes to interact with a mucus-producing confluent HT29-MTX cell-line without applying any external force. MTT viability and paracellular permeability tests were conducted on the same cell-line. The alginate-coated liposomes achieved a high specific (genuine) mucin interaction, with a low potential of cell-irritation. The positively charged uncoated liposomes achieved the highest initial mucoadhesion, but also displayed a higher probability of cell-irritation. The chitosan-coated liposomes displayed the highest potential for long lasting mucoadhesion, but with the drawback of a higher general adhesion (tack) and a higher potential for irritating the cells.

  9. Soft-x-ray imaging from an ultrashort-pulse laser-produced plasma using a multilayer coated optic

    NASA Astrophysics Data System (ADS)

    Norby, J. R.; van Woerkom, L. D.

    1996-02-01

    Measurements are presented of soft-x-ray images from a plasma produced by a high-intensity ultrashort-pulse laser. For the intensity range of 1015-1016 W / cm2 the soft-x-ray source appears to follow the spatial profile of the driving laser. A curved multilayer coated optic is used to collect 13.5-nm light and form a magnified image of the plasma. Knife-edge scans have been performed in the image plane and show a geometrically limited spot size of 280 mu m.

  10. Substrate having high absorptance and emitance black electroless nicel coating and a process for producing the same

    SciTech Connect

    Greeson, R.; Geikas, G. I.

    1985-04-16

    A substrate having high absorptance and emittance is produced by roughening the surface of the substrate, immersing the substrate in a first electroless plating bath having a low phosphorus to nickel concentration, then immersing the substrate in a second electroless plating bath having a phosphorus to nickel concentration higher than that of said first electroless plating bath. Thereafter, the resulting electroless nickel-phosphorus alloy coated substrate is immersed in an aqueous acidic etchant bath containing sulfuric acid, nitric acid and divalent nickel to develop a highly blackened surface on said substrate.

  11. Single Layer Broadband Anti-Reflective Coatings for Plastic Substrates Produced by Full Wafer and Roll-to-Roll Step-and-Flash Nano-Imprint Lithography.

    PubMed

    Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal

    2013-08-27

    Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs-i.e., the lack of suitable coating materials and a process for large area, high volume applications-can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%.

  12. Single Layer Broadband Anti-Reflective Coatings for Plastic Substrates Produced by Full Wafer and Roll-to-Roll Step-and-Flash Nano-Imprint Lithography

    PubMed Central

    Burghoorn, Marieke; Roosen-Melsen, Dorrit; de Riet, Joris; Sabik, Sami; Vroon, Zeger; Yakimets, Iryna; Buskens, Pascal

    2013-01-01

    Anti-reflective coatings (ARCs) are used to lower the reflection of light on the surface of a substrate. Here, we demonstrate that the two main drawbacks of moth eye-structured ARCs—i.e., the lack of suitable coating materials and a process for large area, high volume applications—can be largely eliminated, paving the way for cost-efficient and large-scale production of durable moth eye-structured ARCs on polymer substrates. We prepared moth eye coatings on polymethylmethacrylate (PMMA) and polycarbonate using wafer-by-wafer step-and-flash nano-imprint lithography (NIL). The reduction in reflection in the visible field achieved with these coatings was 3.5% and 4.0%, respectively. The adhesion of the coating to both substrates was good. The moth eye coating on PMMA demonstrated good performance in three prototypical accelerated ageing tests. The pencil hardness of the moth eye coatings on both substrates was <4B, which is less than required for most applications and needs further optimization. Additionally, we developed a roll-to-roll UV NIL pilot scale process and produced moth eye coatings on polyethylene terephthalate (PET) at line speeds up to two meters per minute. The resulting coatings showed a good replication of the moth eye structures and, consequently, a lowering in reflection of the coated PET of 3.0%. PMID:28788301

  13. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  14. Immunodiagnosis of Prune dwarf virus using antiserum produced to its recombinant coat protein.

    PubMed

    Abou-Jawdah, Yusuf; Sobh, Hana; Cordahi, Nada; Kawtharani, Hadia; Nemer, George; Maxwell, Douglas P; Nakhla, Mark K

    2004-10-01

    Certification represents the first line of defense against fruit tree viruses. For certification or surveys dealing with large number of samples, ELISA is still considered the technique of choice and requires a continuous supply of good quality antibodies. Prune dwarf virus (PDV) is among the major viruses affecting stone fruits; it belongs to the genus Ilarvirus named so for its isometric labile particles. Recombinant DNA technology was investigated for production of PDV antiserum to avoid labile virus purification and virus maintenance problems. The PDV coat protein gene (CP) was cloned into a protein expression bacterial plasmid vector which allowed a good level of expression of up to 2mg native protein/L culture. The recombinant PDV CP was injected into rabbits and the crude antiserum was successfully used in indirect ELISA at dilutions of up to 1:5000 to detect PDV in infected leaf samples. Similar results were obtained in dot blot immunoassays (DBIA). The antibodies were used in double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and results were comparable to a reference commercial kit. The crude antiserum was efficiently used for coating ELISA plates, thereby reducing test costs.

  15. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary.

  16. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  17. Whole blood treated with riboflavin and ultraviolet light: quality assessment of all blood components produced by the buffy coat method.

    PubMed

    Schubert, Peter; Culibrk, Brankica; Karwal, Simrath; Serrano, Katherine; Levin, Elena; Bu, Daniel; Bhakta, Varsha; Sheffield, William P; Goodrich, Raymond P; Devine, Dana V

    2015-04-01

    Pathogen inactivation (PI) technologies are currently licensed for use with platelet (PLT) and plasma components. Treatment of whole blood (WB) would be of benefit to the blood banking community by saving time and costs compared to individual component treatment. However, no paired, pool-and-split study directly assessing the impact of WB PI on the subsequently produced components has yet been reported. In a "pool-and-split" study, WB either was treated with riboflavin and ultraviolet (UV) light or was kept untreated as control. The buffy coat (BC) method produced plasma, PLT, and red blood cell (RBC) components. PLT units arising from the untreated WB study arm were treated with riboflavin and UV light on day of production and compared to PLT concentrates (PCs) produced from the treated WB units. A panel of common in vitro variables for the three types of components was used to monitor quality throughout their respective storage periods. PCs derived from the WB PI treatment were of significantly better quality than treated PLT components for most variables. RBCs produced from the WB treatment deteriorated earlier during storage than untreated units. Plasma components showed a 3% to 44% loss in activity for several clotting factors. Treatment of WB with riboflavin and UV before production of components by the BC method shows a negative impact on all three blood components. PLT units produced from PI-treated WB exhibited less damage compared to PLT component treatment. © 2014 AABB.

  18. Development of self-lubricating coatings via cold spray process: Feedstock formulation and deformation modeling

    NASA Astrophysics Data System (ADS)

    Aggarwal, Gaurav

    -substrate interface have been observed for a wide range of impact velocities (200 to 1000 m/s). The results are evaluated to predict particle size, lubricant content, and finally the critical velocities for composite particles during the cold spray process. For the first time, the cold spray process is used to deposit Ni-MoS 2 and Ni-hBN self-lubricating coatings. The modeling results are matched with the experimental results to provide guidelines for composite coatings via cold spray processing.

  19. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells.

    PubMed

    Roda, Julie M; Parihar, Robin; Magro, Cynthia; Nuovo, Gerard J; Tridandapani, Susheela; Carson, William E

    2006-01-01

    In the current report, we have examined the ability of natural killer (NK) cells to produce T cell-recruiting chemokines following dual stimulation with interleukin (IL)-2 or IL-12 and human breast cancer cells coated with an antitumor antibody (trastuzumab). NK cells stimulated in this manner secreted an array of T cell-recruiting chemotactic factors, including IL-8, macrophage-derived chemokine, macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and regulated on activation, normal T-cell expressed and secreted (RANTES), whereas stimulation of NK cells with either agent alone had minimal effect. Furthermore, these factors were functional for T-cell chemotaxis as culture supernatants derived from costimulated NK cells induced migration of both naïve and activated T cells in an in vitro chemotaxis assay. T-cell migration was significantly reduced when neutralizing antibodies to IL-8, MIP-1alpha, or RANTES were added to culture supernatants before their use in the chemotaxis assay. In addition, coadministration of trastuzumab-coated tumor cells and IL-12 to mice led to enhanced serum MIP-1alpha. As a clinical correlate, we examined the chemokine content of serum samples from breast cancer patients enrolled on a phase I trial of trastuzumab and IL-12, and found elevated levels of IL-8, RANTES, IFN-gamma inducible protein 10, monokine induced by IFN-gamma, and MIP-1alpha, specifically in those patients that experienced a clinical benefit. Sera from these patients exhibited the ability to direct T-cell migration in a chemotaxis assay, and neutralization of chemokines abrogated this effect. These data are the first to show chemokine production by NK cells, specifically in response to stimulation with antibody-coated tumor cells, and suggest a potential role for NK cell-derived chemokines in patients receiving therapeutic monoclonal antibodies.

  20. Increasing heat stress relief produced by coupled coat wetting and forced ventilation.

    PubMed

    Berman, A

    2008-12-01

    Coupling repeated wetting of the coat and forced ventilation is most efficient in removing heat stress in more humid climates. The procedure was initiated approximately 24 yr ago and is widely used, but the impact of air velocity on the efficiency of heat stress relief has not been examined. This study examined the feasibility of using surface temperature for real-time estimation of heat stress relief. It was carried out in midsummer in Israel on 6 mature lactating Holsteins. A 15 x 15 cm area on the right side of the body was thoroughly wetted. Hair surface and skin temperature on the wetted area and adjacent dry area were measured at 1-min intervals for 15 min while air movement was less than 0.1 m/s, and the sequence was repeated with air velocities of 0.5 to 3 m/s perpendicular to the body surface. Because the cooled surface was small, the response to cooling was local. In 3 animals, the whole left side of the body also was wetted and exposed to forced ventilation (1.5 m/s) to combine local cooling with larger body surface cooling. The air temperature was 29.5 +/- 0.05 degrees C, and the relative humidity was 56.7 +/- 0.2%. Rectal temperature and respiratory frequency indicated minor heat stress. Mean wet hair surface temperature (Thw) and wet skin temperature were 2.1 and 1.5 degrees C lower than the respective dry hair surface temperature (Thd) and dry skin temperature. At an air velocity of 0.5 m/s, Thw was practically identical to that in still air and to Thd. At greater air velocities, Thw decreased immediately after wetting, and minimal values were reached within 1 min, were maintained for 6 to 7 min after wetting, and reached 95% of the mean Thd value by 8 and 11 min after wetting at 1 and 2 m/s, respectively. Wetting the coat had the potential to reduce Thd temperature by 10 to 11 degrees C. The relatively small difference between Thd and Thw probably is due to heat flow from the body. The latter was estimated by comparing enthalpies at Thd, at Thw, and

  1. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    NASA Astrophysics Data System (ADS)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  2. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOEpatents

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  3. A human-mouse hybridoma producing monoclonal antibody against human sperm coating antigen.

    PubMed Central

    Kyurkchiev, S D; Shigeta, M; Koyama, K; Isojima, S

    1986-01-01

    Since anti-sperm antibodies were first discovered in the sera of women, the relationship of these antibodies to sterility has been studied by many investigators. In order to determine the antigens of spermatozoa responsible for raising antibodies to spermatozoa in humans, many studies have been carried out by purifying human spermatozoa cell membrane and seminal plasma components. Since it was found that the purification was difficult by physiochemical procedures, the immunoaffinity chromatography bound monoclonal antibody (Mab) to spermatozoa antigens was attempted for this purpose. The establishment of hybridomas producing Mabs to human seminal plasma and human spermatozoa was reported by Shigeta et al. (1980), Isojima, Koyoma & Fujiwara (1982), Lee et al. (1982) and Isahakia & Alexander (1984). The ordinary approaches to obtain the Mabs consisted of xenogenic immunization with human semen and cell fusion of immunized spleen cells with mouse myeloma cells. However, the antigenic epitopes of human spermatozoa, which induced antibody production, are xenogenic for the mouse, and therefore there is a possibility that there is a difference in recognized antigenic epitopes in humans as isotypic and in mice as xenogenic. In order to study these antigenic epitopes, which correspond to antibodies against spermatozoa in women, the establishment of human-mouse hybridomas, which produced anti-semen antibodies as produced in sterile women, became essential. In these studies, we used recently developed cell fusion techniques to fuse immunized human peripheral lymphocytes with mouse myeloma cells. PMID:3456978

  4. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles.

    PubMed

    Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria

    2016-12-29

    Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces.

  5. On the Use of the Electrospinning Coating Technique to Produce Antimicrobial Polyhydroxyalkanoate Materials Containing In Situ-Stabilized Silver Nanoparticles

    PubMed Central

    Castro-Mayorga, Jinneth Lorena; Fabra, Maria Jose; Cabedo, Luis; Lagaron, Jose Maria

    2016-01-01

    Electro-hydrodynamic processing, comprising electrospraying and electrospinning techniques, has emerged as a versatile technology to produce nanostructured fiber-based and particle-based materials. In this work, an antimicrobial active multilayer system comprising a commercial polyhydroxyalkanoate substrate (PHA) and an electrospun PHA coating containing in situ-stabilized silver nanoparticles (AgNPs) was successfully developed and characterized in terms of morphology, thermal, mechanical, and barrier properties. The obtained materials reduced the bacterial population of Salmonella enterica below the detection limits at very low silver loading of 0.002 ± 0.0005 wt %. As a result, this study provides an innovative route to generate fully renewable and biodegradable materials that could prevent microbial outbreaks in food packages and food contact surfaces. PMID:28336838

  6. Kinetics for simultaneous HDS, HDN and hydrogenation model reactions. Comparison between Ni-Mo/Al sub 2 O sub 3 and Co-Mo/Al sub 2 O sub 3 catalysts

    SciTech Connect

    Zeuthen, P.H.; Stoltze, P.; Bartholdy, J. )

    1987-04-01

    A kinetic analysis of simultaneous hydrodesulfurization (HDS) of dibenzothiophene (DBT), hydrodenitrogenation (HDN) of indole (IN) and hydrogenation (HYD) of naphthalene (NAP) has been carried out. These compounds represent the major functional groups in heavy petroleum feeds. The goal of these experiments is to study the commercial catalysts with more complex feedstocks. A specific purpose is to determine the competitive inhibition effects of the various reactants. Kinetic data were generated over standard NiMo/Al{sub 2}O{sub 3} and CoMo/Al{sub 2}O{sub 3} catalysts at temperatures of 260 to 350{degree}C. The partial pressures of hydrogen and the other reactants were varied individually. From the data, a kinetic model is developed based on the competitive chemisorption of reactants, intermediates and products on identical surface sites. The kinetic model developed accounts for the appearance of the products and rate of disappearance of DBT, NAP and IN. It is found that sulfur, nitrogen, aromatics and aliphatic-containing compounds adsorb at very different strength. On the basis of these results, it is shown that CoMo/Al{sub 2}O{sub 3} catalyst is more sensitive to adsorbates than the NiMo/Al{sub 2}O{sub 3} catalyst.

  7. Thermal stability of silicon nitride coatings produced by ion assisted deposition

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Kahn, A. D. F.; Donovan, E. P.; Carosella, C. A.

    1989-03-01

    Amorphous Si-N alloy films containing from about 20 to 60 at.% N were deposited by combined e-beam evaporation of Si and ion bombardment of N. A Kaufman-type ion gun produced the 500-eV nitrogen ion beam. Films up to 1-μm thick were deposited on single-crystals of silicon and sapphire in a vacuum of about 2 × 10 -4 Torr. The as-deposited films were characterized by Rutherford backscattering spectroscopy for composition, visible and near-infrared spectrophotometry to measure index of refraction and absorption bands from Si-N bond vibrations, and X-ray diffraction for crystal structure. Subsequently, samples were annealed in a thermogravimetric analyzer at temperatures up to 1350°C to ascertain their thermal stability against crystallization, oxidation, and reaction with the substrate. Postanneal examination by Rutherford backscattering, spectrophotometry. X-ray diffraction, and optical and scanning electron microscopy provided detailed information on the thermally induced changes in the films. Crystallization of Si occurred in N-poor samples, while αSi 3N 4 crystallized in N-rich samples after 1200°C anneals. Blisters sometimes also appeared following 1200°C anneals of N-rich samples. For anneals up to 1200°C, no reactions with sapphire or Si substrates were observed and minimal oxidation was found.

  8. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry.

  9. Anticorrosion Performance of Electrochemically Produced Zn-1% Mn-Doped TiO2 Nanoparticle Composite Coatings

    NASA Astrophysics Data System (ADS)

    Punith Kumar, M. K.; Venkatesha, T. V.; Pavithra, M. K.; Nithyananda Shetty, A.

    2015-05-01

    The Zn-TiO2 composite coatings were electrodeposited on mild steel using sulfate plating bath dispersed with 1% Mn-doped TiO2 nanoparticles. The agglomeration state and charge on the particles in plating condition were analyzed by zeta potential and particle size distribution measurements. The change in microstructure and morphology in composite coatings was analyzed by x-ray diffraction, energy-dispersive x-ray diffraction, and Scanning electron microscopic analyses. The corrosion behavior of the coatings was tested by electrochemical methods such as Tafel polarization and Electrochemical Impedance study. The increased charge transfer resistance with reduced corrosion rate was observed for composite coatings compared to pure zinc coating. The morphology and corrosion behavior of the composite coatings are correlated with pure zinc coating properties.

  10. Titanium Aluminides Based Composite Coatings with Fine Carbide DispersoidsProduced by Reactive Spraying of Ti/Al Powders Containing Carbon

    NASA Astrophysics Data System (ADS)

    Murakami, Kenji; Ishikawa, Hiroshi; Nakajima, Hideo

    Elemental aluminum powders and elemental titanium powders were ball-milled to fabricate Ti/Al composite powders with different titanium to aluminum ratio using several kinds of organic solvents as a process controlling agent. The organic solvent was decomposed during milling and the carbon was incorporated in the composite powder. The carbon content of the composite powder depended on the kind of the organic solvent. The composite powders were low pressure plasma sprayed onto a steel substrate to produce coatings. The coatings deposited on a water cooled substrate were predominantly composed of a metastable Ti3Al phase that was supersaturated with carbon. Heat treatment of the coatings led to the decomposition of the Ti3Al phase to a TiAl phase and fine Ti2AlC. When the thermal spraying was carried out on a preheated substrate, the main constituent of the coatings was a stable TiAl phase and Ti2AlC was detected by X-ray diffraction. The as-sprayed coating possessed a high hardness. Fine Ti2AlC particles appeared after heat treatment of these coatings. The volume percentage of the Ti2AlC ranged from 4.9% to 15.3% depending on the coating composition.

  11. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets.

    PubMed

    Schmitz, Tobias; Warmuth, Franziska; Werner, Ewald; Hertl, Cornelia; Groll, Jürgen; Gbureck, Uwe; Moseke, Claus

    2014-11-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag(+) ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters.

  12. Production of spectrally narrow soft-x-ray radiation through the use of broadband laser-produced plasma sources and multilayer-coated reflecting optics.

    PubMed

    Eligon, A M; Gruber, N; Silfvast, W T

    1995-08-01

    We describe a special filter design that produces spectrally narrow soft-x-ray radiation by using a broadband laser-produced plasma source and multilayer-coated reflecting optics. Calculations for the design were carried out at several laser-produced plasma-source temperatures and various multilayermirror combinations with and without a soft-x-ray filter. We determined that the best arrangement for a laser-produced plasma source consists of two multilayer mirrors and one soft-x-ray filter for each temperature investigated.

  13. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-10-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  14. Stabilization of the high-temperature phases in ceramic coatings on zirconium alloy produced by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Apelfeld, A. V.; Betsofen, S. Y.; Borisov, A. M.; Vladimirov, B. V.; Savushkina, S. V.; Knyazev, E. V.

    2016-09-01

    The composition and structure of ceramic coatings obtained on Zr-1%Nb alloy by plasma electrolytic oxidation (PEO) in aqueous electrolyte comprising 2 g/L KOH, 6 g/L NaAlO2 and 2 g/L Na2SiO3 with addition of yttria nanopowder, have been studied. The PEO coatings of thickness ∼⃒20 μm were studied using scanning electron microscopy, X-ray microanalysis and X-ray phase analysis. Additives in the electrolyte of yttria nanopowder allowed stabilizing the high-temperature tetragonal and cubic zirconia in the coating.

  15. High-temperature thermo-mechanical behavior of functionally graded materials produced by plasma sprayed coating: Experimental and modeling results

    NASA Astrophysics Data System (ADS)

    Choi, Kang Hyun; Kim, Hyun-Su; Park, Chang Hyun; Kim, Gon-Ho; Baik, Kyoung Ho; Lee, Sung Ho; Kim, Taehyung; Kim, Hyoung Seop

    2016-09-01

    Thermal barrier coatings are widely used in aerospace industries to protect exterior surfaces from harsh environments. In this study, functionally graded materials (FGMs) were investigated with the aim to optimize their high temperature resistance and strength characteristics. NiCrAlY bond coats were deposited on Inconel-617 superalloy substrate specimens by the low vacuum plasma spraying technique. Functionally graded Ni-yttria-stabilized zirconia (YSZ) coatings with gradually varying amounts of YSZ (20%-100%) were fabricated from composite powders by vacuum plasma spraying. Heat shield performance tests were conducted using a high- temperature plasma torch. The temperature distributions were measured using thermocouples at the interfaces of the FGM layers during the tests. A model for predicting the temperature at the bond coating-substrate interface was established. The temperature distributions simulated using the finite element method agreed well with the experimental results.

  16. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  17. Effect of the Processing Parameters on the Integrity of Calcium Phosphate Coatings Produced by Rf-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Toque, Jay Arre; Hamdi, M.; Ide-Ektessabi, A.; Sopyan, Iis

    Calcium phosphate (CaP) compounds like hydroxyapatite and tricalcium phosphates are considered to be very important biomaterials. This study used RF-magnetron sputtering (RF-MS) to deposit CaP onto 316L SS. Due to the complex nature of the effect of different sputtering parameters on the quality and integrity of the coatings, there is a need to further investigate those parameters collectively. An L9(34) orthogonal array was employed to design the experiment that was used to investigate four important coating parameters which include RF-power, argon gas flow rate, deposition time and post-heat treatment conditions. The coating composition and structure were evaluated using XRD, EDX and FTIR. The mechanical property was measured in terms of the adhesion strength using a microscratch testing machine. The response graph of the results revealed that the interfacial strength of CaP was mainly influenced by the deposition power, while the coating thickness was predominantly affected by the argon gas flow rate. High adhesion strength was achieved when the coatings have at least 2 μm thickness and deposited at a working pressure of 12 m Torr. ANOVA on the control factors helped rank the parameters accordingly in order of importance. Based on the response of the control factors, it was found that optimum adhesion strength could be achieved by depositing the coatings using the following parameters: 10 sccm of argon gas flow rate; 150 W of RF power; and 16 h of deposition.

  18. Structure of the local environment of titanium atoms in multicomponent nitride coatings produced by plasma-ion techniques

    NASA Astrophysics Data System (ADS)

    Krysina, O. V.; Timchenko, N. A.; Koval, N. N.; Zubavichus, Ya V.

    2016-01-01

    An experiment was performed to examine the X-ray Absorption Near-Edge Structure (XANES) and the Extended X-ray Absorption Fine Structure (EXAFS) near the K-edge of titanium in nanocrystalline titanium nitride coatings containing additives of copper, silicon, and aluminum. Using the observation data, the structure parameters of the local environment of titanium atoms have been estimated for the coatings. According to crystallographic data, the Ti-N distance in the bulk phase of titanium nitride is 2.12 Å and the Ti-Ti distance is 3.0 Å. Nearly these values have been obtained for the respective parameters of the coatings. The presence of copper as an additive in a TiN coating increases the Ti-N distance inappreciably compared to that estimated for titanium nitride, whereas addition of silicon decreases the bond distance. It has been revealed that the copper and silicon atoms in Ti-Cu-N and Ti-Si-N coatings do not enter into the crystallographic phase of titanium nitride and do not form bonds with titanium and nitrogen, whereas the aluminum atoms in Ti-Al-N coatings form intermetallic phases with titanium and nitride phases.

  19. Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials

    NASA Astrophysics Data System (ADS)

    Bérubé, G.; Yandouzi, M.; Zúñiga, A.; Ajdelsztajn, L.; Villafuerte, J.; Jodoin, B.

    2012-03-01

    In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.

  20. Coating urchinlike gold nanoparticles with polypyrrole thin shells to produce photothermal agents with high stability and photothermal transduction efficiency.

    PubMed

    Li, Jing; Han, Jishu; Xu, Tianshu; Guo, Changrun; Bu, Xinyuan; Zhang, Hao; Wang, Liping; Sun, Hongchen; Yang, Bai

    2013-06-11

    Photothermal therapy using inorganic nanoparticles (NPs) is a promising technique for the selective treatment of tumor cells because of their capability to convert the absorbed radiation into heat energy. Although anisotropic gold (Au) NPs present an excellent photothermal effect, the poor structural stability during storage and/or upon laser irradiation still limits their practical application as efficient photothermal agents. With the aim of improving the stability, in this work we adopted biocompatible polypyrrole (PPy) as the shell material for coating urchinlike Au NPs. The experimental results indicate that a several nanometer PPy shell is enough to maintain the structural stability of NPs. In comparison to the bare NPs, PPy-coated NPs exhibit improved structural stability toward storage, heat, pH, and laser irradiation. In addition, the thin shell of PPy also enhances the photothermal transduction efficiency (η) of PPy-coated Au NPs, resulting from the absorption of PPy in the red and near-infrared (NIR) regions. For example, the PPy-coated Au NPs with an Au core diameter of 120 nm and a PPy shell of 6.0 nm exhibit an η of 24.0% at 808 nm, which is much higher than that of bare Au NPs (η = 11.0%). As a primary attempt at photothermal therapy, the PPy-coated Au NPs with a 6.0 nm PPy shell exhibit an 80% death rate of Hela cells under 808 nm NIR laser irradiation.

  1. Effect of Nano-crystalline Ceramic Coats Produced by Plasma Electrolytic Oxidation on Corrosion Behavior of AA5083 Aluminum Alloy

    SciTech Connect

    Thayananth, T.; Muthupandi, V.; Rao, S. R. Koteswara

    2010-10-04

    High specific strength offered by aluminum and magnesium alloys makes them desirable in modern transportation industries. Often the restrictions imposed on the usage of these alloys are due to their poor tribological and corrosion properties. However, their corrosion properties can be further enhanced by synthesizing ceramic coating on the substrate through Plasma Electrolytic Oxidation (PEO) process. In this study, nano-crystalline alumina coatings were formed on the surface of AA5083 aluminum alloy test coupons using PEO process in aqueous alkali-silicate electrolyte with and without addition of sodium aluminate. X-ray diffraction (XRD) studies showed that the crystallite size varied between 38 and 46 nm and {alpha}- and {gamma}- alumina were the dominant phases present in the coatings. Corrosion studies by potentiodynamic polarization tests in 3.5% NaCl revealed that the electrolyte composition has an influence on the corrosion resistance of nano-crystalline oxide layer formed.

  2. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components

    NASA Astrophysics Data System (ADS)

    Pant, B. K.; Arya, Vivek; Mann, B. S.

    2010-09-01

    This article deals with surface modification of twin wire arc sprayed (TWAS) and plasma ion nitro-carburized X10CrNiMoV1222 steel using high power diode laser (HPDL) to overcome water droplet erosion occurring in low pressure steam turbine (LPST) bypass valves and LPST moving blades used in high rating conventional, critical, and super critical thermal power plants. The materials commonly used for high rating steam turbines blading are X10CrNiMoV1222 steel and Ti6Al4V titanium alloy. The HPDL surface treatment on TWAS coated X10CrNiMoV1222 steel as well as on plasma ion nitro-carburized steel has improved water droplet resistance manifolds. This may be due to combination of increased hardness and toughness as well as the formation of fine grained structure due to rapid heating and cooling rates associated with the laser surface treatment. The water droplet erosion test results along with their damage mechanism are reported in this article.

  3. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution.

  4. Coating Nanoparticles with Plant-Produced Transferrin-Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells.

    PubMed

    Reuter, Lauri J; Shahbazi, Mohammad-Ali; Mäkilä, Ermei M; Salonen, Jarno J; Saberianfar, Reza; Menassa, Rima; Santos, Hélder A; Joensuu, Jussi J; Ritala, Anneli

    2017-06-21

    The encapsulation of drugs to nanoparticles may offer a solution for targeted delivery. Here, we set out to engineer a self-assembling targeting ligand by combining the functional properties of human transferrin and fungal hydrophobins in a single fusion protein. We showed that human transferrin can be expressed in Nicotiana benthamiana plants as a fusion with Trichoderma reesei hydrophobins HFBI, HFBII, or HFBIV. Transferrin-HFBIV was further expressed in tobacco BY-2 suspension cells. Both partners of the fusion protein retained their functionality; the hydrophobin moiety enabled migration to a surfactant phase in an aqueous two-phase system, and the transferrin moiety was able to reversibly bind iron. Coating porous silicon nanoparticles with the fusion protein resulted in uptake of the nanoparticles in human cancer cells. This study provides a proof-of-concept for the functionalization of hydrophobin coatings with transferrin as a targeting ligand.

  5. Nanocomposited coatings produced by laser-assisted process to prevent silicone hydogels from protein fouling and bacterial contamination

    NASA Astrophysics Data System (ADS)

    Huang, Guobang; Chen, Yi; Zhang, Jin

    2016-01-01

    Zinc oxide (ZnO) nanoparticles incorporating with polyethylene glycol (PEG) were deposited together on the surface of silicone hydrogel through matrix-assisted pulsed laser evaporation (MAPLE). In this process, frozen nanocomposites (ZnO-PEG) in isopropanol were irradiated under a pulsed Nd:YAG laser at 532 nm for 1 h. Our results indicate that the MAPLE process is able to maintain the chemical backbone of polymer and prevent the nanocomposite coating from contamination. The ZnO-PEG nanocomposited coating reduces over 50% protein absorption on silicone hydrogel. The cytotoxicity study shows that the ZnO-PEG nanocomposites deposited on silicone hydrogels do not impose the toxic effect on mouse NIH/3T3 cells. In addition, MAPLE-deposited ZnO-PEG nanocomposites can inhibit the bacterial growth significantly.

  6. Recognition of lunar glass droplets produced directly from endogenous liquids - The evidence from S-ZN coatings

    NASA Technical Reports Server (NTRS)

    Butler, P., Jr.

    1978-01-01

    Concentrated deposits of ultramafic droplets of green glass at Apollo 15 and orange and black glass at Apollo 17 are generally accepted as having volcanic, and so endogenous, origins. Since these droplets have S + Zn surface coatings with characteristics that fit a volcanic origin, the presence of similar coatings on dispersed droplets are taken as a good criterion of their volcanic origin. This criterion in concert with other criteria (homogeneity, absence of shocked relicts) that distinguish between volcanic and impact origins, has led to identification of a new ultramafic endogenous liquid that was erupted at Apollo 15. The brown glass droplets representing this liquid have a higher TiO2 content and are more mafic than any of the Apollo 15 basalts.

  7. Recognition of lunar glass droplets produced directly from endogenous liquids - The evidence from S-ZN coatings

    NASA Technical Reports Server (NTRS)

    Butler, P., Jr.

    1978-01-01

    Concentrated deposits of ultramafic droplets of green glass at Apollo 15 and orange and black glass at Apollo 17 are generally accepted as having volcanic, and so endogenous, origins. Since these droplets have S + Zn surface coatings with characteristics that fit a volcanic origin, the presence of similar coatings on dispersed droplets are taken as a good criterion of their volcanic origin. This criterion in concert with other criteria (homogeneity, absence of shocked relicts) that distinguish between volcanic and impact origins, has led to identification of a new ultramafic endogenous liquid that was erupted at Apollo 15. The brown glass droplets representing this liquid have a higher TiO2 content and are more mafic than any of the Apollo 15 basalts.

  8. Scale-Up of SLIP Process: Producing Nanoengineered Coatings at High Volumes to Meet Multi-Directorate Needs

    SciTech Connect

    O'Brien, K C; Sanders, D M; Moffitt, K C; Marquez, R; Spadaccini, C

    2005-10-27

    There are a variety of applications that require the use of nanoengineered surfaces for separation applications. Surfaces are commonly functionalized in order to facilitate the purification of gases and liquids. Functionalization often requires the application of a polymer to the surface. The most common means is to dissolve the polymer in a solvent and then either cast or spray it onto the surface. This traditional approach causes two severe limitations: (1) the polymer must be soluble; (2) the solvent must be removed from the final coating. The first limitation often eliminates many potential candidate polymers. The second limitation is influential on the transport and separation properties of the coating. Low levels of residual solvents can significantly degrade the ability of the coating to perform the separation process. These two issues can be overcome through the use of ''Solvent-Less vapor deposition followed by In-situ Polymerization'' (SLIP). The SLIP process was originally developed for the fabrication of Inertial Confinement Fusion (ICF) targets. This application required the deposition of films of 100 to 200 microns in thickness onto a spherical substrate. The process consists of two evaporation chambers each containing a quantity of monomer. The precursors, monomers, are vaporized and flow though a mixing nozzle and eventually are deposited on a substrate surface. They react at the surface and form a nanoengineered polymer film. The SLIP process has been utilized to develop composite membranes for gas and liquid separation applications. Polyimide films that range in thickness from 50 to 400 nm were deposited onto a range of substrates. The SLIP process has been shown to be robust and current plans are in place to scale-up the process. This scale-up would enable the coating of flat sheets and fibers. This paper will outline the roadmap to constructing a pilot scale SLIP system in order to meet multiple programmatic needs.

  9. Iron and Fe-Ni alloy coatings containing ɛ-Fe produced by non-stationary deposition method

    NASA Astrophysics Data System (ADS)

    Smirnova, Natalya; Zhikhareva, Irina; Schmidt, Vadim; Vorobyev, Oleg

    2016-09-01

    A novel material, an electrolytic coating of iron and Fe-Ni alloy containing ɛ-Fe hexagonal close-packed phase (HCP) was obtained using the method of high-frequency alternating current at atmospheric pressure. This transition occurs according to the orientational mechanism by removing weak extreme iron atoms in the crystal lattice of α-Fe due to anodic dissolution and action of the electromagnetic waves loosening the valence bonds.

  10. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  11. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil.

    PubMed

    Fazili, Afsaneh; Gholami, Soghra; Minaie Zangi, Bagher; Seyedjafari, Ehsan; Gholami, Mahdi

    2016-01-01

    This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm(-1) for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms.

  12. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil

    PubMed Central

    Fazili, Afsaneh; Gholami, Soghra; Minaie Zangi, Bagher; Seyedjafari, Ehsan; Gholami, Mahdi

    2016-01-01

    Objective This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. Materials and Methods In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. Results Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm-1 for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. Conclusion The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms

  13. The Bioactivity and Photocatalytic Properties of Titania Nanotube Coatings Produced with the Use of the Low-Potential Anodization of Ti6Al4V Alloy Surface

    PubMed Central

    Radtke, Aleksandra; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Szubka, Magdalena; Talik, Ewa; Pleth Nielsen, Lars; Piszczek, Piotr

    2017-01-01

    Titania nanotube (TNT) coatings were produced using low-potential anodic oxidation of Ti6Al4V substrates in the potential range 3–20 V. They were analysed by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The wettability was estimated by measuring the contact angle when applying water droplets. The bioactivity of the TNT coatings was established on the basis of the biointegration assay (L929 murine fibroblasts adhesion and proliferation) and antibacterial tests against Staphylococcus aureus (ATCC 29213). The photocatalytic efficiency of the TNT films was studied by the degradation of methylene blue under UV irradiation. Among the studied coatings, the TiO2 nanotubes obtained with the use of 5 V potential (TNT5) were found to be the most appropriate for medical applications. The TNT5 sample possessed antibiofilm properties without enriching it by additional antimicrobial agent. Furthermore, it was characterized by optimal biocompatibility, performing better than pure Ti6Al4V alloy. Moreover, the same sample was the most photocatalytically active and exhibited the potential for the sterilization of implants with the use of UV light and for other environmental applications. PMID:28933732

  14. Imaging of laser-produced plasmas at wavelengths of 130 A and 34 A using a microscope with multilayer-coated mirrors

    NASA Astrophysics Data System (ADS)

    Seely, John F.; Holland, G. E.; Giasson, J. V.

    1994-02-01

    Laser-produced plasmas were imaged using a microscope consisting of spherical primary and secondary mirrors that were coated with 40 Mo/Si periods and had peak reflectance of 60% at a wavelength of 130 angstroms. Niobium, gold, and aluminum targets were irradiated by up to 24 beams of the Omega laser at the Laboratory for Laser Energetics at the University of Rochester. Magnified images were recorded on Kodak 101 film, and the resolution was limited by the 10 micrometers emulsion grain size. A variety of plasma emission features were recorded with 5 micrometers (0.6 arcsec) resolution in the object plane.

  15. Hydroxyapatite coatings.

    PubMed

    Lacefield, W R

    1988-01-01

    Four coating techniques were evaluated to determine which is most suitable for producing a dense, highly adherent coating onto metallic and ceramic implant materials. Two of the selected coating methods have serious limitations for use in this particular application, and did not meet the specified criteria for satisfactory coating as defined in the initial stages of the study. For example, the dip coating-sintering technique was judged to be unsatisfactory because of the adverse effect of the high-temperature sintering cycle on the mechanical properties of the metallic substrate materials. These materials could not be used in load-bearing applications because of the excessive grain growth and loss of the wrought structure of both the commercially pure Ti and Ti-6Al-4V substrates, and the loss of ductility in the cast Co-Cr-Mo alloy. Another area of concern was that bond strength between the HA coating and the substrate was not high enough to insure that interfacial failure would not occur during the lifetime of the implant. The immersion-coating technique, in which the metal substrate is immersed into the molten ceramic, was shown in a previous study to be the best method of coating a bioreactive glass onto a Co-Cr-Mo implant. Heating HA above its melting temperature, however, caused undesired compositional and structural changes, and upon solidification very limited adherence between the modified ceramic and substrate material occurred under the conditions of this study. The HIP technique, in which the Ti powder substrate and the HA powder coating are sintered together in a high-pressure autoclave, shows great promise for the fabrication of high-quality composite implants. Initial studies have indicated that high-density Ti substrates with a small grain size that are well bonded to a dense HA coating can be produced under optimum conditions. Sintering and densification additives, such as SiO2 powder, do not appear to be necessary. The main drawback to this

  16. Metal-coated second-order fibre Bragg gratings produced by infrared femtosecond radiation for dual temperature and strain sensing

    NASA Astrophysics Data System (ADS)

    Chah, K.; Kinet, D.; Caucheteur, C.

    2016-05-01

    We report highly localized second-order fibre Bragg gratings at 1585 nm inscribed by point-by-point focused infrared femtosecond pulses. A thin gold coating deposited on the fibre outer surface at the grating location allows shielding the cladding mode resonances from the outer medium, so that they remain present in the transmitted amplitude spectrum. The Bragg resonance of the second-order grating is surrounded by high-order cladding mode resonances of the first-order grating. These cladding modes exhibit the same temperature sensitivity as the Bragg resonance (10.6 pm/°C) but high differential strain sensitivity (-0.55 pm/μepsilon versus 1.20 pm/μepsilon for the Bragg mode). Therefore, the conditioning of the matrix inversion as demodulation method is fully satisfied, yielding a new design of fibre sensor able to discriminate between temperature and strain, with an unprecedented sensitivity.

  17. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration.

    PubMed

    Marques, Isabella da Silva Vieira; da Cruz, Nilson Cristino; Landers, Richard; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo

    2015-12-07

    The objectives of the present study were to produce bioactive coatings in solutions containing Ca, P, and Si by plasma electrolytic oxidation (PEO) on commercially pure titanium, to investigate the influence of different electrolytes concentration and treatment duration on the produced anodic films and to evaluate biocompatibility properties. The anodic films were characterized using scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy, and x-ray diffraction and x-ray photoelectron spectroscopies. The surface energy and roughness were also evaluated. PEO process parameters influenced the crystalline structure formation and surface topography of the anodic films. Higher Ca content produced larger porous (volcanolike appearance) and thicker oxide layers when compared to the lower content. Treatment duration did not produce any topography difference. The treatment modified the surface chemistry, producing an enriched oxide layer with bioactive elements in the form of phosphate compounds, which may be responsible for mimicking bone surface. In addition, a rough surface with increased surface energy was generated. Optimal spreading and proliferation of human mesenchymal stem cells was achieved by PEO treatment, demonstrating excellent biocompatibility of the surface. The main finding is that the biofunctionalization with higher Ca/P on Ti-surface can improve surface features, potentially considered as a candidate for dental implants.

  18. Plasma mediated collagen-I-coating of metal implant materials to improve biocompatibility.

    PubMed

    Hauser, Joerg; Koeller, Manfred; Bensch, Sebastian; Halfmann, Helmut; Awakowicz, Peter; Steinau, Hans-Ulrich; Esenwein, Stefan

    2010-07-01

    This study describes the collagen-I coating of titanium and steel implants via cold low-pressure gas plasma treatment. To analyze the coatings in terms of biocompatibility osteoblast-like osteosarcoma cells and human leukocytes were cultivated on the metal surfaces. Two different implant materials were assessed (Ti6Al4V, X2CrNiMo18) and four different surface properties were evaluated: (a) plasma pretreated and collagen-I coated implant materials; (b) collagen-I dip-coated without plasma pretreatment; (c) plasma treated but not collagen-I coated; (d) standard implant materials served as control. The different coating characteristics were analyzed by scanning electron microscopy (SEM). For adhesion and viability tests calcein-AM staining of the cells and Alamar blue assays were performed. The quantitative analysis was conducted by computer assisted microfluorophotography and spectrometer measurements. SEM analysis revealed that stable collagen-I coatings could not be achieved on the dip-coated steel and titanium alloys. Only due to pretreatment with low-pressure gas plasma a robust deposition of collagen I on the surface could be achieved. The cell viability and cell attachment rate on the plasma pretreated, collagen coated surfaces was significantly (p < 0.017) increased compared to the non coated surfaces. Gas plasma treatment is a feasible method for the deposition of proteins on metal implant materials resulting in an improved biocompatibility in vitro. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  19. The Effects of Thermal Annealing on ZnO Thin Films Produced by Spin-Coating Method on Quartz Substrates

    NASA Astrophysics Data System (ADS)

    Ertek, Özlem; Okur, İbrahim

    2015-07-01

    In this work, zinc oxide (ZnO) thin films on quartz substrates were fabricated using the spin-coating method. Thermal annealings from to have been performed in increments and for two annealing durations (0.5 h and 8 h). X-ray diffraction (XRD) spectra, scanning electron microscopy micrographs, and UV-Vis absorption spectra of all the samples have been elucidated from mechanical and optical points of view. It has been observed that for all annealing temperatures, the crystal phase has been obtained. After annealings, a new crystal phase related to (willemite) has also been appeared in XRD spectra. This phase remained stable up to annealing together with the ZnO crystal phase. It has been found that the nano/micro rod diameters of the ZnO crystals reach to a maximum at the annealing for both annealing durations. For annealings, ZnO nanorods appeared to be split into two homogeneous nanorods of length of and of width of (350 nm) which was not the case for all other annealing temperatures. After annealings, ZnO nano/micro rods started to disappear and formed homogeneous ZnO thin films.

  20. Soft-agar-coated filter method for early detection of viable and thermostable direct hemolysin (TDH)- or TDH-related hemolysin-producing Vibrio parahaemolyticus in seafood.

    PubMed

    Hayashi, Sachiko; Okura, Masatoshi; Osawa, Ro

    2006-07-01

    A novel method for detecting viable and thermostable direct hemolysin (TDH)-producing or TDH-related hemolysin (TRH)-producing Vibrio parahaemolyticus in seafood was developed. The method involved (i) enrichment culture, selective for viable, motile cells penetrating a soft-agar-coated filter paper, and (ii) a multiplex PCR assay targeting both the TDH gene (tdh) and TRH gene (trh) following DNase pretreatment on the test culture to eradicate any incidental DNAs that might have been released from dead cells of tdh- or trh-positive (tdh+ trh+) strains and penetrated the agar-coated filter. A set of preliminary laboratory tests performed on 190 ml of enrichment culture that had been inoculated simultaneously with ca. 100 viable cells of a strain of tdh+ trh+ V. parahaemolyticus and dense populations of a viable strain of tdh- and trh-negative V. parahaemolyticus or Vibrio alginolyticus indicated that the method detected the presence of viable tdh+ trh+ strains. Another set of preliminary tests on 190 ml of enrichment culture that had been initially inoculated with a large number of dead cells of the tdh+ trh+ strain together with dense populations of the tdh- and trh-negative strains confirmed that the method did not yield any false-positive results. Subsequent quasi-field tests using various seafood samples (ca. 20 g), each of which was experimentally contaminated with either or both hemolysin-producing strains at an initial density of ca. 5 to 10 viable cells per gram, demonstrated that contamination could be detected within 2 working days.

  1. Wipes Coated with a Singlet-Oxygen-Producing Photosensitizer Are Effective against Human Influenza Virus but Not against Norovirus

    PubMed Central

    Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria

    2014-01-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses, increasing a potential public health risk. The virucidal properties of wipes with a singlet-oxygen-generating immobilized photosensitizer (IPS) coating were compared to those of similar but uncoated wipes (non-IPS) and of commonly used viscose wipes. Wipes were spiked with hNoV GI.4 and GII.4, murine norovirus 1 (MNV-1), human adenovirus type 5 (hAdV-5), and influenza virus H1N1 to study viral persistence. We also determined residual and transferred virus proportions on steel carriers after successively wiping a contaminated and an uncontaminated steel carrier. On IPS wipes only, influenza viruses were promptly inactivated with a 5-log10 reduction. D values of infectious MNV-1 and hAdV-5 were 8.7 and 7.0 h on IPS wipes, 11.6 and 9.3 h on non-IPS wipes, and 10.2 and 8.2 h on viscose wipes, respectively. Independently of the type of wipe, dry cleaning removed, or drastically reduced, initial spot contamination of hNoV on surfaces. All wipes transferred hNoV to an uncontaminated carrier; however, the risk of continued transmission by reuse of wipes after 6 and 24 h was limited for all viruses. We conclude that cleaning wet spots with dry wipes efficiently reduced spot contamination on surfaces but that cross-contamination with noroviruses by wiping may result in an increased public health risk at high initial virus loads. For influenza virus, IPS wipes present an efficient one-step procedure for cleaning and disinfecting contaminated surfaces. PMID:24814795

  2. Effect of adhesive properties of buffy coat on the quality of blood components produced with Top & Top and Top & Bottom bags

    PubMed Central

    Cerelli, Eugenio; Nocera, Martina; Di Bartolomeo, Erminia; Panzani, Paola; Baricchi, Roberto

    2015-01-01

    Background The Transfusion Medicine Unit of Reggio Emilia currently collects whole blood using conventional quadruple Fresenius Top & Top bags. In this study, new Fresenius Top & Bottom bags were assessed and compared to the routine method with regards to product quality and operational requirements. Material and methods Twenty-one whole blood units were collected with both the new and the traditional bags, and then separated. Quality control data were evaluated and compared in order to estimate yield and quality of final blood components obtained with the two systems. We collected other bags, not included in the ordinary quality control programme, for comparison of platelet concentrates produced by pools of buffy coat. Results Compared to the traditional system, the whole blood units processed with Top & Bottom bags yielded larger plasma volumes (+5.7%) and a similar amount of concentrated red blood cells, but with a much lower contamination of lymphocytes (−61.5%) and platelets (−86.6%). Consequently, the pooled platelets contained less plasma (−26.3%) and were significantly richer in platelets (+17.9%). Discussion This study investigated the effect of centrifugation on the adhesiveness of the buffy coat to the bag used for whole blood collection. We analysed the mechanism by which this undesirable phenomenon affects the quality of packed red blood cells in two types of bags. We also documented the incomparability of measurements on platelet concentrates performed with different principles of cell counting: this vexing problem has important implications for biomedical research and for the establishment of universal product standards. Our results support the conclusion that the Top & Bottom bags produce components of higher quality than our usual system, while having equal operational efficiency. Use of the new bags could result in an important quality improvement in blood components manufacturing. PMID:25545866

  3. Effect of adhesive properties of buffy coat on the quality of blood components produced with Top & Top and Top & Bottom bags.

    PubMed

    Cerelli, Eugenio; Nocera, Martina; Di Bartolomeo, Erminia; Panzani, Paola; Baricchi, Roberto

    2015-04-01

    The Transfusion Medicine Unit of Reggio Emilia currently collects whole blood using conventional quadruple Fresenius Top & Top bags. In this study, new Fresenius Top & Bottom bags were assessed and compared to the routine method with regards to product quality and operational requirements. Twenty-one whole blood units were collected with both the new and the traditional bags, and then separated. Quality control data were evaluated and compared in order to estimate yield and quality of final blood components obtained with the two systems. We collected other bags, not included in the ordinary quality control programme, for comparison of platelet concentrates produced by pools of buffy coat. Compared to the traditional system, the whole blood units processed with Top & Bottom bags yielded larger plasma volumes (+5.7%) and a similar amount of concentrated red blood cells, but with a much lower contamination of lymphocytes (-61.5%) and platelets (-86.6%). Consequently, the pooled platelets contained less plasma (-26.3%) and were significantly richer in platelets (+17.9%). This study investigated the effect of centrifugation on the adhesiveness of the buffy coat to the bag used for whole blood collection. We analysed the mechanism by which this undesirable phenomenon affects the quality of packed red blood cells in two types of bags. We also documented the incomparability of measurements on platelet concentrates performed with different principles of cell counting: this vexing problem has important implications for biomedical research and for the establishment of universal product standards. Our results support the conclusion that the Top & Bottom bags produce components of higher quality than our usual system, while having equal operational efficiency. Use of the new bags could result in an important quality improvement in blood components manufacturing.

  4. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  5. Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes

    NASA Astrophysics Data System (ADS)

    Shabani, Ali; Toroghinejad, Mohammad Reza

    2015-12-01

    In the present study, Cu-1.8 wt.% NiC (nickel coating) composite was produced by the combination of two methods, including accumulative roll bonding (ARB) and electroplating processes. Electroplating process was done on copper strips in order to produce a nickel-particle-reinforced composite. Microstructure, texture, and the mechanical properties of the produced composite were evaluated during various cycles of ARB using optical and scanning electron microscopes, x-ray diffraction, microhardness, and tensile tests. In addition, the results were compared with Cu-Cu and also Cu-NiS (nickel sheet) samples. It was found that nickel layers were fractured from the first cycle of the process, and nickel fragments were distributed in the copper matrix as the number of cycles was increased. Variation of orientation density of α-, β-, and τ-fibers for the produced composite was examined in different cycles. Microhardness for different elements in different cycles of Cu-NiC was also evaluated. Also, the investigation of the mechanical properties showed that by proceeding the ARB process, the tensile strength of the produced Cu-NiC and Cu-Cu samples was increased. However, improvement in the mechanical properties of composite samples was more noticeable due to the reinforcing effect of nickel particles. The elongation of composite samples showed a decrease in the primary cycles, unlike Cu-Cu ones; however, it was then increased. Finally, by using scanning electron microscopy, the fracture surfaces of Cu-NiC composite were studied to disclose the fracture mechanism of the samples.

  6. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  7. Corrosion resistance and biological activity of TiO2 implant coatings produced in oxygen-rich environments.

    PubMed

    Zhang, Rui; Wan, Yi; Ai, Xing; Liu, Zhanqiang; Zhang, Dong

    2017-01-01

    The physical and chemical properties of bio-titanium alloy implant surfaces play an important role in their corrosion resistance and biological activity. New turning and turning-rolling processes are presented, employing an oxygen-rich environment in order to obtain titanium dioxide layers that can both protect implants from corrosion and also promote cell adhesion. The surface topographies, surface roughnesses and chemical compositions of the sample surfaces were obtained using scanning electron microscopy, a white light interferometer, and the Auger electron spectroscopy, respectively. The corrosion resistance of the samples in a simulated body fluid was determined using electrochemical testing. Biological activity on the samples was also analyzed, using a vitro cell culture system. The results show that compared with titanium oxide layers formed using a turning process in air, the thickness of the titanium oxide layers formed using turning and turning-rolling processes in an oxygen-rich environment increased by 4.6 and 7.3 times, respectively. Using an oxygen-rich atmosphere in the rolling process greatly improves the corrosion resistance of the resulting samples in a simulated body fluid. On samples produced using the turning-rolling process, cells spread quickly and exhibited the best adhesion characteristics.

  8. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  9. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  10. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment.

    PubMed

    Moritz, Niko; Areva, Sami; Wolke, Joop; Peltola, Timo

    2005-07-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of CO2 laser processing, the bioactivity of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study was to compare the heat treated TiO2 coatings with the laser-treated TiO2 coatings in terms of amorphous-crystalline-phase development. The coatings were characterized with thin-film X-ray diffraction (TF-XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The TiO2 coatings heat treated at 500 degrees C known to be bioactive in SBF (simulated body fluid) consisted mainly of anatase with some rutile-phase, suggesting a predominant effect of anatase on reactivity of coatings. However, the coatings preheat-treated at 500 degrees C with further laser treatment exhibited enhanced bioactivity while consisting mainly of rutile. These findings indicated a key role of both rutile and anatase for the reactivity of the coatings. Without preheat treatment, by laser treatment alone, the amorphous titania coatings developed into mixed anatase/rutile containing coatings. This structural organization and the increase in crystal size are thus considered to be the reasons for their bioactivity. The SBF results indicate the possibility to control bioactivity by altering laser power used through the anatase/rutile crystallinity enhancement.

  11. Antimicrobial activity of biogenically produced spherical Se-nanomaterials embedded in organic material against Pseudomonas aeruginosa and Staphylococcus aureus strains on hydroxyapatite-coated surfaces.

    PubMed

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lemire, Joseph A; Demeter, Marc; Vallini, Giovanni; Turner, Raymond J; Lampis, Silvia

    2017-07-01

    In an effort to prevent the formation of pathogenic biofilms on hydroxyapatite (HA)-based clinical devices and surfaces, we present a study evaluating the antimicrobial efficacy of Spherical biogenic Se-Nanostructures Embedded in Organic material (Bio Se-NEMO-S) produced by Bacillus mycoides SelTE01 in comparison with two different chemical selenium nanoparticle (SeNP) classes. These nanomaterials have been studied as potential antimicrobials for eradication of established HA-grown biofilms, for preventing biofilm formation on HA-coated surfaces and for inhibition of planktonic cell growth of Pseudomonas aeruginosa NCTC 12934 and Staphylococcus aureus ATCC 25923. Bio Se-NEMO resulted more efficacious than those chemically produced in all tested scenarios. Bio Se-NEMO produced by B. mycoides SelTE01 after 6 or 24 h of Na2 SeO3 exposure show the same effective antibiofilm activity towards both P. aeruginosa and S. aureus strains at 0.078 mg ml(-1) (Bio Se-NEMO6 ) and 0.3125 mg ml(-1) (Bio Se-NEMO24 ). Meanwhile, chemically synthesized SeNPs at the highest tested concentration (2.5 mg ml(-1) ) have moderate antimicrobial activity. The confocal laser scanning micrographs demonstrate that the majority of the P. aeruginosa and S. aureus cells exposed to biogenic SeNPs within the biofilm are killed or eradicated. Bio Se-NEMO therefore displayed good antimicrobial activity towards HA-grown biofilms and planktonic cells, becoming possible candidates as new antimicrobials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    NASA Astrophysics Data System (ADS)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  13. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    NASA Astrophysics Data System (ADS)

    Rose, Lars; Kesler, Olivera; Tang, Zhaolin; Burgess, Alan

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 °C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated.

  14. Laser Surface Treatment of Hydro and Thermal Power Plant Components and Their Coatings: A Review and Recent Findings

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2015-11-01

    High-power diode laser (HPDL) surface modification of hydro and thermal power plant components is of the utmost importance to minimize their damages occurring due to cavitation erosion, water droplet erosion, and particle erosion (CE, WDE, and PE). Special emphasis is given on the HPDL surface treatment of martensitic and precipitate-hardened stainless steels, Ti6Al4V alloy, plasma ion nitro-carburized layers, high pressure high velocity oxy-fuel and twin-wire arc sprayed coatings. WDE test results of all these materials and coatings in `untreated' and `HPDL- treated at 1550 °C' conditions, up to 8.55 million cycles, are already available. Their WDE testing was further continued up to 10.43 million cycles. The X20Cr13 and X10CrNiMoV1222, the most common martensitic stainless steels used in hydro and thermal power plants, were HPDL surface treated at higher temperature (1650 °C) and their WDE test results were also obtained up to 10.43 million cycles. It is observed that the increased HPDL surface temperature from 1550 to 1650 °C has resulted in significant improvement in their WDE resistances because of increased martensitic (ά) phase at higher temperature. After conducting long-range WDE tests, the correlation of CE, WDE, and PE resistances of these materials and protective coatings with their mechanical properties such as fracture toughness and microhardness product, ultimate resilience, modified resilience, and ultimate modified resilience has been reviewed and discussed. One of the edges of a 500 MW low pressure steam turbine moving blade (X10CrNiMoV1222 stainless steel) was HPDL surface treated at 1550 °C and its radii of curvatures and deflections were measured. These were compared with the data available earlier from a flat rectangular sample of similar composition and identical HPDL surface temperature.

  15. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  16. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate EHD sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the steel balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as the lubricant and 1 percent of 1,1,2-trichloroethane TCE) as an additive with a high affinity for steel but a low affinity for TiN. TiN is chemically inert, but its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN-coated balls were higher. Nevertheless, no scuffng was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN-coated balls and with the steel balls when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichroism of these bands were related to shear rates and inlet conditions of the EHD contact.

  17. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOEpatents

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  18. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate elastohydrodynamic (EHD) sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as lubricant and 1 percent of 1,1,2-trichloroethane (TCE) as a surface-probing additive. TiN is chemically inert and its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN coated balls were higher. Nevertheless, no scuffing was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN coated balls and always when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichrosim of these bands were related to shear rates and inlet conditions of the EHD contact.

  19. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate EHD sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the steel balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as the lubricant and 1 percent of 1,1,2-trichloroethane TCE) as an additive with a high affinity for steel but a low affinity for TiN. TiN is chemically inert, but its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN-coated balls were higher. Nevertheless, no scuffng was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN-coated balls and with the steel balls when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichroism of these bands were related to shear rates and inlet conditions of the EHD contact.

  20. Effect of bioadhesive polymers, sodium salicylate, polyoxyethylene-9-lauryl ether, and method of preparation on the relative hypoglycemia produced by insulin enteric-coated capsules in diabetic beagle dogs.

    PubMed

    Hosny, E A; al-Shora, H I; Elmazar, M M A

    2002-05-01

    The hypoglycemic effect of oral insulin capsules coated with pH-dependent Eudragit S100 and containing various absorption promoters was studied in hyperglycemic beagle dogs. The absorption enhancers used were bioadhesive polymers, sodium salicylate, and non-ionic surfactants. A comparative study of the bioadhesive polymers, polycarbophil (PC), hydroxypropyl methylcellulose (HPMC), and carbopol 934 in insulin-coated capsules revealed no significant difference between the insulin capsules containing these polymers, giving relative hypoglycemia (RH) values ranging from 4.3 +/- 2.3% to 6.5 +/- 5.1%. It was also found that the method of preparation of the mixture of the bioadhesive polymer with insulin either by physical mixing or freeze-drying did not affect the RH values obtained. Sodium salicylate, when used in insulin enteric-coated capsules (50 mg) mixed with insulin as a physical mixture, or prepared by wet granulation using 10% polyvinyl pyrollidone (PVP), or by freeze-drying, produced RH values ranging from 7.3 +/- 2.9% to 9.4 +/- 3.7%. When sodium salicylate (100 mg) was used with insulin in freeze-dried granules an RH value of 10 +/- 2.6% was produced. As the dose of insulin increased from 6 to 9 U/kg, the area under curve (AUC) of the enteric-coated capsules containing 50 mg sodium salicylate increased from 73.2 +/- 27.8% to 121.4 +/- 102.7% reduction, but the RH did not change significantly. Insulin capsules containing polyoxyethylene-9-lauryl ether (POELE) used in its optimum concentration (2%), found in these experiments, produced RH of 9.5 +/- 6.8% when prepared as granules by wetting with a few drops of absolute alcohol in the presence of PC (50 mg). Insulin capsules containing lower (1%) or higher (3%) concentrations of POELE and prepared with PC, 50 mg by wet granulation produced lower RH of about 6%. The enteric-coated oral insulin capsules containing insulin (6 or 9 U/kg) and sodium salicylate (50 mg) as an absorption promoter, together with the

  1. Effect of bio-adhesive polymers, sodium salicylate, polyoxyethylene-9-lauryl ether and method of preparation on the relative hypoglycemia produced by insulin enteric coated capsules in diabetic beagle dogs.

    PubMed

    Hosny, E A; al-Shora, H I; el-mazar, M M A

    2002-01-01

    The hypoglycemic effect of oral insulin capsules coated with pH-dependent Eudragit S100 and containing various absorption promoters was studied in hyperglycemic beagle dogs. The absorption enhancers used were bio-adhesive polymers, sodium salicylate and non-ionic surfactants. A comparative study of the bio-adhesive polymers, polycarbophil (PC), hydroxypropyl methylcellulose (HPMC) and carbopol 934 in insulin coated capsules, revealed no significant difference between the insulin capsules containing these polymers giving a relative hypoglycemia (RH) values ranged from 4.3 +/- 2.3% to 6.5 +/- 5.1%. It was also found that the method of preparation of the mixture of the bio-adhesive polymer with insulin either by physical mixing or freeze-drying did not affect the RH values obtained. Sodium salicylate, when used in insulin enteric coated capsules (50 mg) mixed with insulin as a physical mixture or prepared by wet granulation using 10% polyvinyl pyrollidone (PVP) or by freeze drying, produced RH values ranged from 7.3 +/- 2.9 to 9.4 +/- 3.7%. When sodium salicylate (100 mg) was used with insulin in freeze-dried granules an RH value of 10 +/- 2.6% was produced. As the dose of insulin increased from 6 to 9 U/kg, the AUC of the enteric coated capsules containing 50 mg sodium salicylate increased from 73.2 +/- 27.8 to 121.4 +/- 102.7% reduction but the RH id not significantly change. Insulin capsules containing polyoxyethylene-9-lauryl ether (POELE) used in its optimum concentration (2%), found in these experiments, produced a RH of 9.5 +/- 6.8% when prepared as granules by wetting with few drops of absolute alcohol in presence of PC (50 mg). Insulin capsules containing lower (1%) or higher (3%) concentrations of POELE and prepared with PC, 50 mg by wet granulation produced lower RH of about 6%. The enteric coated oral insulin capsules containing insulin (6 or 9 U/kg) and sodium salicylate (50 mg) as an absorption promoter together with the bioadhesive polymer polycarbophil

  2. Development of a novel carbon-coating strategy for producing core-shell structured carbon coated LiFePO4 for an improved Li-ion battery performance.

    PubMed

    Pratheeksha, Parakandy Muzhikara; Mohan, Erabhoina Hari; Sarada, Bulusu Venkata; Ramakrishna, Mantripragada; Hembram, Kalyan; Srinivas, Pulakhandam Veera Venkata; Daniel, Paul Joseph; Rao, Tata Narasinga; Anandan, Srinivasan

    2016-12-21

    In the present study, LiFePO4 (LFP) has been synthesized using a flame spray pyrolysis unit followed by carbon coating on LFP using a novel strategy of dehydration assisted polymerization process (DAP) in order to improve its electronic conductivity. Characterization studies revealed the presence of a pure LFP structure and the formation of a thin, uniform and graphitic carbon layer with a thickness of 6-8 nm on the surface of the LFP. A carbon coated LFP with 3 wt% of carbon, using a DAP process, delivered a specific capacity of 167 mA h g(-1) at a 0.1C rate, whereas LFP carbon coated by a carbothermal process (CLFP-C) delivered a capacity of 145 mA h g(-1) at 0.1C. Further carbon coated LFP by the DAP exhibited a good rate capability and cyclic stability. The enhanced electrochemical performance of C-LFP by DAP is attributed to the presence of a uniform, thin and ordered graphitic carbon layer with a core-shell structure, which greatly increased the electronic conductivity of LFP and thereby showed an improved electro-chemical performance. Interestingly, the developed carbon coating process has been extended to synthesize a bulk quantity (0.5 kg) of carbon coated LFP under optimized experimental conditions as a part of up-scaling and the resulting material electro-chemical performance has been evaluated and compared with commercial electrode materials. Bulk C-LFP showed a capacity of 131 mA h g(-1) and 87 mA h g(-1) at a rate of 1C and at 10C, respectively, illustrating that the developed DAP process greatly improved the electrochemical performance of LFP in terms of rate capability and cyclic stability, not only during the lab scale synthesis but also during the large scale synthesis. Benchmark studies concluded that the electro-chemical performance of C-LFP by DAP is comparable with that of TODA LFP and better than that of UNTPL LFP. The DAP process developed in the present study can be extended to other electrode materials as well.

  3. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  4. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  5. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  6. CdSe:In-In{sub 2}O{sub 3} coatings with n-type conductivity produced by air annealing of CdSe-In thin films

    SciTech Connect

    Garcia, V.M.; George, P.J.; Nair, M.T.S.; Nair, P.K.

    1996-09-01

    Conversion of chemically deposited intrinsic CdSe thin films to n-type coatings by a postdeposition process is described. A Cd:Se-In thin film consisting of a CdSe thin film {approximately}0.15 {micro}m thick and a thermally evaporated indium film {approximately} 0.02 {micro}m thick was air annealed at 325 C for 1 h. The resulting thin film coating of CdSe:In (0.15 {micro}m)-In{sub 2}O{sub 3} (0.03 {micro}m) exhibits a sheet resistance of 790 {Omega}/{open_square} and an n-type conductivity of {approximately} 400 {Omega}{sup {minus}1} cm{sup {minus}1} for the In{sub 2}O{sub 3} top layer. Etching of the film with 1 M HCl for 6 h removes the superficial In{sub 2}O{sub 3} from the coating, and the underlying CdSe with indium doping shows a sheet resistance of 15 k{Omega}/{open_square} which corresponds to electrical conductivity (n-type) of {approximately}0.4 {Omega}{sup {minus}1} cm{sup {minus}1}. The composition of the film and its variation along the depth are established through analyses of X-ray diffraction pattern and x-ray fluorescence spectra as well as the photocurrent response of the annealed films recorded before and after chemical etching.

  7. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-10-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  8. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    NASA Astrophysics Data System (ADS)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  9. Immunodetection of Triticum mosaic virus by DAS- and DAC-ELISA using antibodies produced against coat protein expressed in Escherichia coli: potential for high-throughput diagnostic methods.

    PubMed

    Tatineni, Satyanarayana; Sarath, Gautam; Seifers, Dallas; French, Roy

    2013-04-01

    Triticum mosaic virus (TriMV), an economically important virus infecting wheat in the Great Plains region of the USA, is the type species of the Poacevirus genus in the family Potyviridae. Sensitive and high-throughput serology-based detection methods are crucial for the management of TriMV and germplasm screening in wheat breeding programs. In this study, TriMV coat protein (CP) was expressed in Escherichia coli, and polyclonal antibodies were generated against purified soluble native form recombinant CP (rCP) in rabbits. Specificity and sensitivity of resulting antibodies were tested in Western immuno-blot and enzyme-linked immunosorbent assays (ELISA). In direct antigen coating (DAC)-ELISA, antibodies reacted specifically, beyond 1:20,000 dilution with TriMV in crude sap, but not with healthy extracts, and antiserum at a 1:10,000 dilution detected TriMV in crude sap up to 1:4860 dilution. Notably, rabbit anti-TriMV IgG and anti-TriMV IgG-alkaline phosphatase conjugate reacted positively with native virions in crude sap in a double antibody sandwich-ELISA, suggesting that these antibodies can be used as coating antibodies which is crucial for any 'sandwich' type of assays. Finally, the recombinant antibodies reacted positively in ELISA with representative TriMV isolates collected from fields, suggesting that antibodies generated against rCP can be used for sensitive, large-scale, and broad-spectrum detection of TriMV.

  10. Lead-Free Sn-Ce-O Composite Coating on Cu Produced by Pulse Electrodeposition from an Aqueous Acidic Sulfate Electrolyte

    NASA Astrophysics Data System (ADS)

    Sharma, Ashutosh; Das, Karabi; Das, Siddhartha

    2017-06-01

    Pulse-electrodeposited Sn-Ce-O composite solder coatings were synthesized on a Cu substrate from an aqueous acidic solution containing stannous sulfate (SnSO4·3H2O), sulfuric acid (H2SO4), and Triton X-100 as an additive. The codeposition was achieved by adding nano-cerium oxide powder in varying concentrations from 5 g/L to 20 g/L into the electrolytic bath. Microstructural characterization was carried out using x-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD analysis showed that the deposits consist mainly of tetragonal β (Sn) with reduced cerium oxide species. The composite coatings thus obtained exhibit a smaller grain size, possess higher microhardness, and a lower melting point than the monolithic Sn coating. The electrical resistivity of the developed composites increases, however, but lies within the permissible limits for current lead-free solder applications. Also, an optimum balance of properties in terms of microhardness, adhesion, melting point and resistivity can be obtained with 0.9 wt.% cerium oxide in the Sn matrix, which enables potential applications in solder joints and packaging.

  11. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  12. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  13. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  14. Impact-Resistant Ceramic Coating

    NASA Technical Reports Server (NTRS)

    Wheeler, W. H.; Creedon, J. F.; Izu, Y. D.

    1986-01-01

    Refractory fibers more than double strength of coating. Impact strengths of ceramic coatings increase with increasing whisker content. Silicon carbide whiskers clearly produce largest increase, and improvement grows even more with high-temperature sintering. Coating also improves thermal and mechanical properties of electromagnetic components, mirrors, furnace linings, and ceramic parts of advanced internal-combustion engines.

  15. Selective coating for solar collectors

    SciTech Connect

    Schardein, D.J.

    1983-03-15

    A selective solar coating for solar collectors is disclosed. The coating is characterized by its high absorptance and low emittance. The coating comprises an organic compound or substance having a high molecular weight and a high carbon content, such as a petroleum, vegetable or animal oil, fat or wax, which is pyrolyzed to produce a carbon black pigmented varnish.

  16. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  17. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gül, H.; Kılıç, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H.

    2012-03-01

    In the present work, a nickel sulfate bath containing SiC submicron particles between 100 and 1000 nm was used as the plating electrolyte. The aim of this work is to obtain Ni-SiC metal matrix composites (MMCs) reinforced with submicron particles on steel surfaces with high hardness and wear resistance for using in anti-wear applications such as dies, tools and working parts for automobiles and vehicles. The influence of the SiC content in the electrolyte on particle distribution, microhardness and wear resistance of nano-composite coatings was studied. During the electroplating process, the proper stirring speed was also determined for sub-micron SiC deposition with Ni matrix. The Ni films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The depositions were controlled to obtain a specific thickness (between 50 and 200 μm) and volume fraction of the particles in the matrix (between 0.02 and 0.10). The hardness of the coatings was measured to be 280-571 HV depending on the particle volume in the Ni matrix. The tribological behaviors of the electrodeposited SiC nanocomposite coatings sliding against an M50 steel ball (Ø 10 mm) were examined on a tribometer. All the friction and wear tests were performed without lubrication at room temperature and in the ambient air (with a relative humidity of 55-65%). The results showed that the wear resistance of the nanocomposites was approximately 2-2.2 times more than those of unreinforced Ni.

  18. Effect of Heat Treatment on the Structural Properties of TiO2 Films Produced by Sol-Gel Spin Coating Technique

    NASA Astrophysics Data System (ADS)

    Nebi, M.; Peker, D.

    2016-10-01

    Due to have superior properties as fotocatalyst and have wide band gap, TiO2 thin films often investigated by researchers and used by technological applications widely. In this study TiO2 films were deposited on glass substrate by Sol-Gel Spin Coating Technic. TiO2 films were deposited at different number of layer and then annealed at 400o C, 500o C, and 600o C in air. Effect of anneal temperature to structural properties were investigated by XRD analysis. It was observed by the light of XRD results that the structural properties of films had changed by anneal temperature.

  19. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2).

  20. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Xue, Qi; Li, Songxia

    2013-09-01

    Titanium carbide/titanium carbonitride/titanium nitride (TiC/Ti(CN)/TiN) multilayer coatings are prepared on the surface of three high-strength steels (35CrMo, 42CrMo, and 40CrNiMo) by chemical vapor deposition method. The fracture morphology, elemental distribution, phase composition, micro-hardness, and adhesion of the multilayer film are analyzed. The hydrogen sulfide stress corrosion resistance of the coating is evaluated by the National Association of Corrosion Engineers saturated hydrogen sulfide solution immersion test. A test simulating the environment of the natural gas wells with high temperature and pressure in Luojiazhai in Sichuan is also performed. The results show that the multilayer coatings have dense structures, ∼11 μm thickness, 24.5 ± 2.0 GPa nano-hardness, and ∼70 N adhesion. The corrosion sample also shows no brittle failure induced by stress corrosion after treatment with the coating. Gravimetric analysis shows that the deposition of TiC/Ti(CN)/TiN multilayer coatings results in a corrosion rate reduction of at least 50 times compared with the high-strength steel substrate. A preliminary analysis on this phenomenon is conducted.

  1. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  2. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  3. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  4. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-03-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant (ɛ r = 3334), low loss (tan δ = 3.54), capacitance (C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  5. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    PubMed

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aerocoat 7 Replacement Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Kennedy Space Center has used Aerocoat 7 (AR-7) to protect stainless-steel flex hoses at Launch Complex (LC-39) and hydraulic lines of the Mobile Launcher Platform (MLP) because it provides excellent corrosion protection in low-temperature applications. The Sovereign Company produced AR-7 exclusively for NASA but discontinued production because the coating released high levels of volatile organic compounds (VOCs) and had a significant environmental impact. The purpose of this project was to select and evaluate potential replacement coatings for AR-7 that would be more environmentally sound. The physical and mechanical properties of commercially available coatings were investigated through the Internet. The ideal coating would be fluid enough to penetrate the outer mesh of a stainless-steel flex hose and coat the inner hose, and flexible enough to withstand the movement of the hose, as well as the expansion and contraction of its metal caused by changes in temperature.

  7. Coated microneedles for transdermal delivery

    PubMed Central

    Gill, Harvinder S.; Prausnitz, Mark R.

    2007-01-01

    Coated microneedles have been shown to deliver proteins and DNA into the skin in a minimally invasive manner. However, detailed studies examining coating methods and their breadth of applicability are lacking. This study’s goal was to develop a simple, versatile and controlled microneedle coating process to make uniform coatings on microneedles and establish the breadth of molecules and particles that can be coated onto microneedles. First, microneedles were fabricated from stainless steel sheets as single microneedles or arrays of microneedles. Next, a novel micron-scale dip-coating process and a GRAS coating formulation were designed to reliably produce uniform coatings on both individual and arrays of microneedles. This process was used to coat compounds including calcein, vitamin B, bovine serum albumin and plasmid DNA. Modified vaccinia virus and microparticles of 1 to 20 μm diameter were also coated. Coatings could be localized just to the needle shafts and formulated to dissolve within 20 s in porcine cadaver skin. Histological examination validated that microneedle coatings were delivered into the skin and did not wipe off during insertion. In conclusion, this study presents a simple, versatile, and controllable method to coat microneedles with proteins, DNA, viruses and microparticles for rapid delivery into the skin. PMID:17169459

  8. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  9. Process to minimize cracking of pyrolytic carbon coatings

    DOEpatents

    Lackey, Jr., Walter J.; Sease, John D.

    1978-01-01

    Carbon-coated microspheroids useful as fuels in nuclear reactors are produced with a low percentage of cracked coatings and are imparted increased strength and mechanical stability characteristics by annealing immediately after the carbon coating processes.

  10. Electrodeposition of nickel composite coatings

    NASA Astrophysics Data System (ADS)

    Borkar, Tushar

    Pulse electrodeposition (PC) and pulse reverse electrodeposition (PRC) bring a new era in improving the surface properties of metals. These processes are associated with many advantages, such as reduction in porosity, low level of inclusions, and higher deposition rates compared to direct current (DC) electrodeposition process. There is much more flexibility in varying three basic parameters which are, pulse current density, on time, and off time in pulse electrodeposition resulting in unique composition and microstructure of coating being deposited. In this work, nickel matrix composite coatings were synthesized by co-depositing nano particles (Al2O3, SiC, and ZrO2) from Watts bath. To get detailed insight into effect of processing parameters on the microstructure, mechanical, and tribological properties of the composite coatings, the coatings were also fabricated using DC, PC, and PRC techniques. Also, the effect of bath loading on the level of reinforcement in the coating was investigated for Ni-Al2O 3 composite coatings. Furthermore an attempt was made to produce Ni-CNT coatings by pulse electrodeposition method. Pure nickel coatings were also prepared for comparison. Composite coatings deposited using PC and PRC techniques exhibited significant improvement in microhardness and wear resistance. The presence of nanoparticles in the composite coating seems to prohibit the columnar growth of the nickel grains resulting in random/weak texture and smaller thickness of the composite coatings. Ni-Al2O3 composite coatings show maximum hardness and wear resistance compared to Ni-SiC and Ni-ZrO 2 composite coatings. As Al2O3 content in electroplating bath increases, Microhardness and wear resistance of composite coatings increases but thickness of the coatings decreases due to nanoparticles obstructing grain growth. The Ni-CNT composite coatings exhibited significantly improved microhardness compared to pure nickel coatings.

  11. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  12. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  13. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  14. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    NASA Astrophysics Data System (ADS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  15. Methods for Coating Particulate Material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  16. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  17. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  18. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  19. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  20. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  1. Formulation and production of intumescent coating systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J.; Schwartz, H. R.

    1973-01-01

    Methods for manufacturing and producing fire protective intumescent coatings are described. The coatings consist of three reactive parts mixed together at the time of use. The chemical composition of the reactive parts is discussed. The characteristics of the coatings which are obtained by three types of processing are analyzed. Qualification tests of the materials to determine acceptability are reported.

  2. Thermal NDE method for thermal spray coatings

    SciTech Connect

    Green, D.R.; Schmeller, M.D.; Sulit, R.A.

    1982-01-01

    This paper describes a feasibility demonstration of a thermal scanning NDE system for thermal spray coatings. Non-bonds were detected between several types of coatings and their substrates. Aluminum anti-skid coatings having very rough surfaces were included. A technique for producing known non-bond areas for calibrating and demonstrating NDE methods was developed.

  3. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  4. Vacuum Plasma Sprayed Metallic Coatings

    NASA Astrophysics Data System (ADS)

    Shankar, S.; Koenig, D. E.; Dardi, L. E.

    1981-10-01

    Recognizing the fundamental cost advantage, technical capabilities, and compositional flexibility of reduced pressure (vacuum) plasma spraying compared to other overlay coating methods, an advanced, second generation, closed chamber deposition process called VPX (a Howmet trademark) was developed. An automated experimental facility for coating gas turbine engine components was also constructed. This paper describes several important features of the process and equipment. It shows that the use of optimized spray parameters combined with an appropriate schedule of relative orientations between the gun and work-piece can be used to produce dense and highly reproducible coatings of either uniform or controlled thickness distributions. The chemical composition, microstructure, and interfacial characteristics of typical MCrAlY coatings are reported. Some effects of operating procedures and MCrAlY chemical composition on coating density are noted. The results of mechanical property and burner rig tests of coated material are also described.

  5. Microstructure development in particulate ceramic coatings

    SciTech Connect

    Kim, Y.J.; Wara, N.M.; Francis, L.F.; Velamakanni, B.V.

    1994-12-31

    Microstructure development in particulate coatings is influenced by the particle-particle interactions and additional mechanisms, such as reaction and phase separation, which are driven by compositional changes in a coating during deposition and drying. The effect of agglomeration rate on microstructure uniformity and pore content is demonstrated using coatings produced from aqueous alumina dispersions. The addition of cellulose acetate and acetone to the alumina dispersion leads to phase separation and a coating with large cylindrical pores. The formation of particles by reactions during deposition is also discussed. The pore content of particulate titania coatings prepared in this way can be varied from 30 to 60% by changing the coating conditions.

  6. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  7. Direct Laser Synthesis of Functional Coatings

    SciTech Connect

    P. Schaaf; Michelle D. Shinn; E. Carpene; J. Kaspar

    2005-06-01

    The direct laser synthesis of functional coatings employs the irradiation of materials with short intensive laser pulses in a reactive atmosphere. The material is heated and plasma is ignited in the reactive atmosphere. This leads to an intensive interaction of the material with the reactive species and a coating is directly formed on the materials surface. By that functional coatings can be easily produced a fast way on steel, aluminium, and silicon by irradiation in nitrogen, methane, or even hydrogen. The influence of the processing parameters to the properties of the functional coatings will be presented for titanium nitride coating produced on titanium with the free electron laser.

  8. Efficient Utilization of Nickel Laterite to Produce Master Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Cui, Zhixiang; Zhao, Baojun

    2016-12-01

    To lower the smelting temperature associated with the carbothermic reduction processing of laterite, the optimization of slag and alloy systems was investigated to enable the reduction of laterite ore in the molten state at 1723 K. The master Fe-Ni-Mo alloy was successfully produced at a lower temperature (1723 K). The liquidus of the slag decreased with the addition of oxide flux (Fe2O3 and CaO) and that of the ferronickel alloy decreased with the addition of Mo/MoO3. More effective metal-slag separation was achieved at 1723 K, which reduces the smelting temperature by 100 K compared with the current electric furnace process. A small addition of Mo/MoO3 not only decreased the melting point of ferronickel alloys but also served as a collector to aggregate the ferronickel sponges allowing them to grow larger. The FeO concentration in the slag and the nickel grade of the alloy decreased with increasing graphite reductant addition.

  9. Regulatory Aspects of Coatings

    USDA-ARS?s Scientific Manuscript database

    This chapter gives a history of the development and uses of edible coating regulations, detailed chapters on coating caracteristics, determination of coating properties, methods for making coatings, and discription of coating film formers (polysaccharieds, lipids, resins, proteins). The chapter also...

  10. Report on coating from Teer

    SciTech Connect

    Florando, J

    2006-11-09

    A trial coating run has been performed at Teer Coating LTD to assess the use of a barrel coating system as a viable option to coat multilayer spheres. Hollow glass spheres (3M K15) ranging in diameter from 70-120 microns were cleaned in a process using a 0.1 M HCl solution. Comparative photos before and after the cleaning process are shown in figure 1. Approximately, 2 liters of cleaned spheres were sent to Teer for the trial coating in their barrel coater. A picture of barrel coating system is shown in figure 2. The coating process was one layer of titanium followed by one layer of aluminum. The target thickness for each layer is 500 nm, however, no rate runs were performed to calibrate the parameters. Each layer was sputtered for 10 hours, for a total of 20 hours. After the coating process, the coated spheres were sent back to LLNL for SEM analysis. In order to quickly examine the coating in cross-section, the spheres were broken with a spatula. Photos of the broken spheres are shown in Fig 3. One sphere was chosen to look at the uniformity around the sphere. As can be seen in Figure 4, there is fairly good uniformity around the sphere. You can also distinguish between the Ti (lighter) and Al layers, however it appears the Al is quite a bit thicker. This result is not too surprising because in general Al deposits faster than Ti. Figure 4 also shows the surface morphology of the top Al layer. Although it is still quite rough, it appears to be smoother than the Teer coating with just Al on glass. Based on this analysis, we believe that the barrel coating system can produce uniform coatings and is the correct deposition configuration to coat large quantities of microspheres. However, given the variation in thickness and surface roughness of the current coatings, the process needs further development in order to produce the high quality multilayers required. Other variables including optimum material combinations, layer pair thickness, optimum surface preparation

  11. Versatile Coating

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A radome at Logan Airport and a large parabolic antenna at the Wang Building in Massachusetts are protected from weather, corrosion and ultraviolet radiation by a coating, specially designed for antennas and radomes, known as CRC Weathertite 6000. The CRC 6000 line that emerged from Boyd Coatings Research Co., Inc. is a solid dispersion of fluorocarbon polymer and polyurethane that yields a tough, durable film with superior ultraviolet resistance and the ability to repel water and ice over a long term. Additionally, it provides resistance to corrosion, abrasion, chemical attacks and impacts. Material can be used on a variety of substrates, such as fiberglass, wood, plastic and concrete in addition to steel and aluminum. In addition Boyd Coatings sees CRC 6000 applicability as an anti-icing system coated on the leading edge of aircraft wings.

  12. Protective Coating

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Inorganic Coatings, Inc.'s K-Zinc 531 protective coating is water-based non-toxic, non-flammable and has no organic emissions. High ratio silicate formula bonds to steel, and in 30 minutes, creates a very hard ceramic finish with superior adhesion and abrasion resistance. Improved technology allows application over a minimal commercial sandblast, fast drying in high humidity conditions and compatibility with both solvent and water-based topcoats. Coating is easy to apply and provides long term protection with a single application. Zinc rich coating with water-based potassium silicate binder offers cost advantages in materials, labor hours per application, and fewer applications over a given time span.

  13. USE OF ELECTRICALLY CONDUCTING COATINGS OF COPPER SELENIDE AND COATINGS COMPOSED OF Cu3PSx FOR PREPARING ELECTROLUMINESCENT CAPACITORS,

    DTIC Science & Technology

    polymer ribbons are discussed. Copper selenide coatings are produced by vacuum deposition of Cu2Se . Heating the object afterwards at 70-80C for 30-60...the coating. Transmission characteristics of this coating are similar to those of the Cu2Se coating. A detailed explanation is given of the methods

  14. Top-Coating Silicon Onto Ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Nelson, L. D.; Zook, J. D.

    1985-01-01

    Polycrystalline silicon for solar cells produced at low cost. Molten silicon poured from quartz trough onto moving carbon-coated ceramic substrate. Doctor blade spreads liquid silicon evenly over substrate. Molten material solidifies to form sheet of polycrystalline silicon having photovoltaic conversion efficiency greater than 10 percent. Method produces 100-um-thick silicon coatings at speed 0.15 centimeter per second.

  15. Top-Coating Silicon Onto Ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Nelson, L. D.; Zook, J. D.

    1985-01-01

    Polycrystalline silicon for solar cells produced at low cost. Molten silicon poured from quartz trough onto moving carbon-coated ceramic substrate. Doctor blade spreads liquid silicon evenly over substrate. Molten material solidifies to form sheet of polycrystalline silicon having photovoltaic conversion efficiency greater than 10 percent. Method produces 100-um-thick silicon coatings at speed 0.15 centimeter per second.

  16. Thermal Spraying Coatings Assisted by Laser Treatment

    NASA Astrophysics Data System (ADS)

    Fenineche, N. E.; Cherigui, M.

    2008-09-01

    Coatings produced by air plasma spraying (APS) are widely used to protect components against abrasive wear and corrosion. However, APS coatings contain porosities and the properties of these coatings may thereby be reduced. To improve these properties, various methods could be proposed, including post-laser irradiation [1-4]. Firstly, PROTAL process (thermal spraying assisted by laser) has been developed as a palliative technique to degreasing and grit-blasting prior to thermal spraying. Secondly, thermal spray coatings are densified and remelted using Laser treatment. In this study, a review of microstructure coatings prepared by laser-assisted air plasma spraying will be presented. Mechanical and magnetic properties will be evaluated in relation to changes in the coating microstructure and the properties of such coatings will be compared with those of as-sprayed APS coatings.

  17. Thermal Spraying Coatings Assisted by Laser Treatment

    SciTech Connect

    Fenineche, N. E.; Cherigui, M.

    2008-09-23

    Coatings produced by air plasma spraying (APS) are widely used to protect components against abrasive wear and corrosion. However, APS coatings contain porosities and the properties of these coatings may thereby be reduced. To improve these properties, various methods could be proposed, including post-laser irradiation [1-4]. Firstly, PROTAL process (thermal spraying assisted by laser) has been developed as a palliative technique to degreasing and grit-blasting prior to thermal spraying. Secondly, thermal spray coatings are densified and remelted using Laser treatment. In this study, a review of microstructure coatings prepared by laser-assisted air plasma spraying will be presented. Mechanical and magnetic properties will be evaluated in relation to changes in the coating microstructure and the properties of such coatings will be compared with those of as-sprayed APS coatings.

  18. Transparent nanocrystalline diamond coatings and devices

    DOEpatents

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  19. Producing superhydrophobic roof tiles.

    PubMed

    Carrascosa, Luis A M; Facio, Dario S; Mosquera, Maria J

    2016-03-04

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a 'green' product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  20. Producing superhydrophobic roof tiles

    NASA Astrophysics Data System (ADS)

    Carrascosa, Luis A. M.; Facio, Dario S.; Mosquera, Maria J.

    2016-03-01

    Superhydrophobic materials can find promising applications in the field of building. However, their application has been very limited because the synthesis routes involve tedious processes, preventing large-scale application. A second drawback is related to their short-term life under outdoor conditions. A simple and low-cost synthesis route for producing superhydrophobic surfaces on building materials is developed and their effectiveness and their durability on clay roof tiles are evaluated. Specifically, an organic-inorganic hybrid gel containing silica nanoparticles is produced. The nanoparticles create a densely packed coating on the roof tile surface in which air is trapped. This roughness produces a Cassie-Baxter regime, promoting superhydrophobicity. A surfactant, n-octylamine, was also added to the starting sol to catalyze the sol-gel process and to coarsen the pore structure of the gel network, preventing cracking. The application of ultrasound obviates the need to use volatile organic compounds in the synthesis, thereby making a ‘green’ product. It was also demonstrated that a co-condensation process effective between the organic and inorganic species is crucial to obtain durable and effective coatings. After an aging test, high hydrophobicity was maintained and water absorption was completely prevented for the roof tile samples under study. However, a transition from a Cassie-Baxter to a Wenzel state regime was observed as a consequence of the increase in the distance between the roughness pitches produced by the aging of the coating.

  1. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  2. Nanocomposite multilayer optically variable coatings

    NASA Astrophysics Data System (ADS)

    Lu, Junxia; Lai, Zhenquan; Wei, Jiandong; Zhang, Huilin; Deng, Zhongsheng; Zhang, Qinyuan; Wang, Jue

    2000-11-01

    The optically variable coatings can prevent counterfeiting of value documents. The cost of these coatings deposited by physical technology is very high. The sol-gel technology has the feature of a relatively lower cost and can be used to produce thin films with low refractive. We studied the optically variable coatings by the nano-composite technology (i.e., compound method of sol-gel technology and physical technology). The degree of color shift of some film structures with the viewing angle, including PET (substrate)/Cr/SiO2/Al and PET(sub.)/Cr/resin/Al etc., was calculated according to the color perception of human eyes. And the coatings produced were measured with the spectrometer.

  3. The development of a nanostructured, graded multilayer Cr-CrxNy-Cr1-xAlxN coating produced by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) for use in aluminum pressure die casting dies.

    PubMed

    Lin, Jianliang; Mishra, Brajendra; Myers, Sterling; Ried, Peter; Moore, John J

    2009-06-01

    The main objective of this research is to design an optimized 'coating system' that extends die life by minimizing premature die failure. The concept of the multilayer coating system with desired combinations of different kinds of single-layer coatings was introduced. A pulsed closed field unbalanced magnetron sputtering (P-CFUBMS) deposition system has been used to deposit Cr-CrxNy-Cr1-xAlxN compositionally graded multilayer coating structures. In this study, three power law scenarios have been adopted to vary the aluminum concentration in the graded Cr1-xAlxN layer: (i) p = 1, the aluminum concentration was increased linearly in the Cr1-xAlxN layer. (ii) p = 0.2, the Cr1-xAlxN layer is an aluminum-rich graded layer, and (iii) p = 2, the Cr1-xAlxN layer is a chromium-rich graded layer. It was found that all the graded coatings exhibit lower residual stress and higher adhesion strength than the homogeneous Cr1-xAlxN (x = 0.585) film. However, different power law grading architectures have significant influence on the hardness and wear resistance of the films. When p = 2 and p = 1, the graded films exhibited relatively low hardness values (24 and 26 GPa respectively) and high COF (0.55 to 0.60). When p = 0.2 the graded film exhibited both high hardness (34 GPa) and good wear resistance (COF = 0.45) due to the structural consistency in the graded zone. The paper discusses the correlation between the pulsing parameters and coating architecture with the resulting nanostructure and tribological properties of this Cr-CrxNy-Cr1-xAlxN coating system.

  4. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  5. Protective Coatings

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  6. Nanostructured Coatings

    NASA Astrophysics Data System (ADS)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  7. On the catalytic activity of NiMoFe composite surface coatings for the hydrogen cathodes in the industrial electrochemical production of hydrogen

    NASA Astrophysics Data System (ADS)

    Arul Raj, I.

    Nickel-based composite surface coatings were assessed for their utility as catalytic hydrogen evolving cathodes in alkaline water electrolysers, chlor-alkali cells, chlorate cells, etc. Transition-metal-based hydrogen cathodes from metals, namely Ni, Mo, Cu, Fe, W, Co and Cr, obtained as thin electrolytic surface coatings on mild steel substrates were investigated in this laboratory. NiMoFe electrolytic ternary surface coatings had exhibited acceptable catalytic activity for the cathodic hydrogen evolution reaction (h.e.r.). The reduction in the hydrogen overpotential value (ν H2) that could be practically realised by replacing the mild steel cathodes which are in use by convention, with the present NiMoFe coated cathodes, amounts to 0.3 V minimum at typical industrial operation conditions, namely 300 mA cm -2 and 353 K. A critical assessment of the catalytic application of NiMoFe composite for the h.e.r. had been carried out. The results of the range of examined conditions such as the ease of preparation of the NiMoFe surface coatings through electrolytic codeposition technique, the microstructural features of the coatings, the X-ray diffraction data, the influence of chloride on the polarisation characteristics, the effect of synthetic seawater treatment, the susceptibility to thermochemical reactions with oxygen and the welting agent in the PTFE binder at temperatures above 623 K and the effect of simulated application of asbestos separator on the catalytic activity of NiMoFe composite are presented. It is proposed that this new catalytic material does meet out the stability requirements. A laboratory size unit electrolytic cell assembled with catalytic electrodes working at 1.8 V, 300 mA cm -2 in 6M KOH is described. A discussion on the possible energy saving by employing the proposed NiMoFe catalyst for cathodes in the industrial production of hydrogen is also included.

  8. Gold Coating

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Epner Technology Inc. responded to a need from Goddard Space Flight Center for the ultimate in electroplated reflectivity needed for the Mars Global Surveyor Mars Orbiter Laser Altimeter (MOLA). Made of beryllium, the MOLA mirror was coated by Epner Technology Laser Gold process, specially improved for the project. Improved Laser Gold- coated reflectors have found use in an epitaxial reactor built for a large semiconductor manufacturer as well as the waveguide in Braun-Thermoscan tympanic thermometer and lasing cavities in various surgical instruments.

  9. Thermal Conductivity of Hard Anodized Coatings on Aluminum

    DTIC Science & Technology

    1987-11-01

    aqueous sulfuric Thermal Conductivities of several commercial anodic coatings. acid and oxalic acid solutions, using triple deionized water. The aluminum...coatings needed to protect expensive thermal propulsion systems. ... 1.5 Oxalic acid can be used in aqueous solution as an alternative to sulfuric acid...at least as hard and abrasion resistant as those coatings produced in sulfuric acid,W Anodic coatings produced in oxalic acid are known to be less

  10. Synthesis, corrosion and wear of anodic oxide coatings on Ti-6Al-4V.

    PubMed

    Narayanan, R; Mukherjee, Partho; Seshadri, S K

    2007-05-01

    Electrodeposited anodic oxide coatings were produced on Ti-6Al-4V substrates using aqueous electrolytes containing dissolved calcium and phosphorus. Different coatings were produced by varying the time periods. The coatings were characterised by XRD technique and TEM. The coatings were exposed to Simulated Body Fluid (SBF). Electrochemical polarisation and ac impedance studies too were performed on the coatings in SBF. Pins were coated and run against wooden disc in pin-on-disc type of wear tests. Coatings produced from long time electrolysis showed very good resistance to the attack of SBF and less wear compared to those produced from short time exposure.

  11. Methods and apparatus for coating particulate material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2012-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  12. Improved aluminum coatings for the ultraviolet

    SciTech Connect

    Edwards, D.F.; LaDelfe, P.; Ochoa, E.

    1981-01-01

    Highly reflective aluminum coatings or aluminum coatings with dielectric overcoats are frequently used in the ultraviolet. The reflectance values published by Hass and his group are generally accepted for this uv region. We have produced evaporated aluminum coatings for a wide range of deposition conditions and none of our coatings exhibit the Hass reflectance characteristics. The reflectance of our coatings appear to be independent of the evaporation pressure and deposition time or rate. Our coatings do not have the characteristic decrease in reflectance with decreasing wavelength. Our main attention has been focused on the origin of a reflectance dip for each of our coatings near 300 nm. This dip has apparently not been reported before and does not appear to be due to adsorbed layers on the film or due to trapped impurities within the film.

  13. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements.

    PubMed

    Spende, Anne; Sobel, Nicolas; Lukas, Manuela; Zierold, Robert; Riedl, Jesse C; Gura, Leonard; Schubert, Ina; Moreno, Josep M Montero; Nielsch, Kornelius; Stühn, Bernd; Hess, Christian; Trautmann, Christina; Toimil-Molares, Maria E

    2015-08-21

    Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 μm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.

  14. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements

    NASA Astrophysics Data System (ADS)

    Spende, Anne; Sobel, Nicolas; Lukas, Manuela; Zierold, Robert; Riedl, Jesse C.; Gura, Leonard; Schubert, Ina; Montero Moreno, Josep M.; Nielsch, Kornelius; Stühn, Bernd; Hess, Christian; Trautmann, Christina; Toimil-Molares, Maria E.

    2015-08-01

    Low-temperature atomic layer deposition (ALD) of TiO2, SiO2, and Al2O3 was applied to modify the surface and to tailor the diameter of nanochannels in etched ion-track polycarbonate membranes. The homogeneity, conformity, and composition of the coating inside the nanochannels are investigated for different channel diameters (18-55 nm) and film thicknesses (5-22 nm). Small angle x-ray scattering before and after ALD demonstrates conformal coating along the full channel length. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy provide evidence of nearly stoichiometric composition of the different coatings. By wet-chemical methods, the ALD-deposited film is released from the supporting polymer templates providing 30 μm long self-supporting nanotubes with walls as thin as 5 nm. Electrolytic ion-conductivity measurements provide proof-of-concept that combining ALD coating with ion-track nanotechnology offers promising perspectives for single-pore applications by controlled shrinking of an oversized pore to a preferred smaller diameter and fine-tuning of the chemical and physical nature of the inner channel surface.

  15. Laser cladding of bioactive glass coatings.

    PubMed

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Confectionery coating with an electrohydrodynamic (EHD) system.

    PubMed

    Marthina, Kumala; Barringer, Sheryl A

    2012-01-01

    In the confectionery coating industry, hard butters are frequently used as cocoa butter replacers. An electrohydrodynamic (EHD) system, which forms fine droplets with a relatively narrow size distribution, may be beneficial in confectionery coating to produce more even coverage. The objective of this study was to determine the effect of lecithin content and fat type on electrical resistivity and apparent viscosity, and the effect of these variables under EHD (25kV) and non-EHD coating on droplet size, width of coating area, thickness, and minimum flow rate to produce complete coverage. Total of 3 different types of fat were used: cocoa butter, cocoa butter equivalent, and lauric butter. As lecithin content increased, resistivity and apparent viscosity decreased, except all samples showed a local apparent viscosity minimum at 0.5% lecithin. EHD coating was more efficient than non-EHD as a smaller droplet size and thinner coating was formed. Due to repulsive forces between the like-charges on the droplets during EHD, it spread over wider areas which lead to a higher minimum flow rate to get complete coverage. Under EHD, increasing resistivity significantly increased the droplet size, but only at the highest resistivities. There was no correlation between resistivity and droplet size or width of coating under non-EHD. The width of coating under EHD decreased significantly as resistivity increased. Thickness and minimum flow rate to produce complete coverage, significantly correlated to resistivity, for EHD coating, and to apparent viscosity, for 2 of the 3 fat types during both EHD and non-EHD. Electrohydrodynamic (EHD) spraying offers great potential improvement to the food industry especially in the confectionery area. From the quality point of view, EHD offers greater and more complete coverage than non-EHD coating. From the economic point of view, lower cost can be achieved for coated food because during EHD, smaller droplet size and thinner coating is produced.

  17. Liquid-Solid Self-Lubricated Coatings

    NASA Astrophysics Data System (ADS)

    Armada, S.; Schmid, R.; Equey, S.; Fagoaga, I.; Espallargas, N.

    2013-02-01

    Self-lubricated coatings have been a major topic of interest in thermal spray in the last decades. Self-lubricated coatings obtained by thermal spray are exclusively based on solid lubricants (PTFE, h-BN, graphite, MoS2, etc.) embedded in the matrix. Production of thermal spray coatings containing liquid lubricants has not yet been achieved because of the complexity of keeping a liquid in a solid matrix during the spraying process. In the present article, the first liquid-solid self-lubricating thermal spray coatings are presented. The coatings are produced by inserting lubricant-filled capsules inside a polymeric matrix. The goal of the coating is to release lubricant to the system when needed. The first produced coatings consisted solely of capsules for confirming the feasibility of the process. For obtaining such a coating, the liquid-filled capsules were injected in the thermal spray flame without any other feedstock material. Once the concept and the idea were proven, a polymer was co-sprayed together with the capsules to obtain a coating containing the lubricant-filled capsules distributed in the solid polymeric matrix. The coatings and the self-lubricated properties have been investigated by means of optical microscopy, Scanning Electron Microscopy, and tribological tests.

  18. Kinetic regulation of coated vesicle secretion

    PubMed Central

    Foret, Lionel; Sens, Pierre

    2008-01-01

    The secretion of vesicles for intracellular transport often relies on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the endoplasmic reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behavior, also triggered by factors, such as the presence of cargo and variation of the membrane mechanical tension, allows for efficient regulation of vesicle secretion. We propose a model, supported by different experimental observations, in which vesiculation of secretory membranes is impaired by the energy-consuming desorption of coat proteins, until the presence of cargo or other factors triggers a dynamical switch into a vesicle producing state. PMID:18824695

  19. COATING METHOD

    DOEpatents

    Townsend, R.G.

    1959-08-25

    A method is described for protectively coating beryllium metal by etching the metal in an acid bath, immersing the etched beryllium in a solution of sodium zincate for a brief period of time, immersing the beryllium in concentrated nitric acid, immersing the beryhlium in a second solution of sodium zincate, electroplating a thin layer of copper over the beryllium, and finally electroplating a layer of chromium over the copper layer.

  20. Coating a Sphere With Evaporated Metal

    NASA Technical Reports Server (NTRS)

    Strayer, D. M.; Jackson, H. W.; Gatewood, J. R.

    1986-01-01

    In vacuum coating apparatus, metal evaporated onto sphere from small source located some distance away. Sphere held in path of metal vapor while rotated about axis that rocks back and forth. One tilting motion particularly easy to produce is sinusoidal rocking with frequency much lower than rotational frequency. Apparatus developed for coating single-crystal sapphire spheres with niobium.

  1. Thermal removal of asbestos pipeline coating

    SciTech Connect

    Stevens, W.H.

    1997-03-01

    A heat (thermal) technique, not previously used in the US for removing external pipe coating was used to remove asbestos-wrapped coating from 17 miles of 24-inch-diameter pipe. The process was conducted in compliance with all asbestos and air quality regulations, and produced asbestos-free pipe at timely and cost-effective rates.

  2. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    DOEpatents

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  3. Thermal radiative properties: Coatings.

    NASA Technical Reports Server (NTRS)

    Touloukian, Y. S.; Dewitt, D. P.; Hernicz, R. S.

    1972-01-01

    This volume consists, for the most part, of a presentation of numerical data compiled over the years in a most comprehensive manner on coatings for all applications, in particular, thermal control. After a moderately detailed discussion of the theoretical nature of the thermal radiative properties of coatings, together with an overview of predictive procedures and recognized experimental techniques, extensive numerical data on the thermal radiative properties of pigmented, contact, and conversion coatings are presented. These data cover metallic and nonmetallic pigmented coatings, enamels, metallic and nonmetallic contact coatings, antireflection coatings, resin coatings, metallic black coatings, and anodized and oxidized conversion coatings.

  4. Bond-coating in plasma-sprayed calcium-phosphate coatings.

    PubMed

    Oktar, F N; Yetmez, M; Agathopoulos, S; Lopez Goerne, T M; Goller, G; Peker, I; Ipeker, I; Ferreira, J M F

    2006-11-01

    The influence of bond-coating on the mechanical properties of plasma-spray coatings of hydroxyatite on Ti was investigated. Plasma-spray powder was produced from human teeth enamel and dentine. Before processing the main apatite coating, a very thin layer of Al2O3/TiO2 was applied on super clean and roughened, by Al2O3 blasting, Ti surface as bond-coating. The experimental results showed that bond-coating caused significant increase of the mechanical properties of the coating layer: In the case of the enamel powder from 6.66 MPa of the simple coating to 9.71 MPa for the bond-coating and in the case of the dentine powder from 6.27 MPa to 7.84 MPa, respectively. Both tooth derived powders feature high thermal stability likely due to their relatively high content of fluorine. Therefore, F-rich apatites, such those investigated in this study, emerge themselves as superior candidate materials for calcium phosphate coatings of producing medical devices. The methods of apatite powder production and shaping optimization of powder particles are both key factors of a successful coating. The methods used in this study can be adopted as handy, inexpensive and reliable ways to produce high quality of powders for plasma spray purposes.

  5. Space station protective coating development

    NASA Technical Reports Server (NTRS)

    Pippin, H. G.; Hill, S. G.

    1989-01-01

    A generic list of Space Station surfaces and candidate material types is provided. Environmental exposures and performance requirements for the different Space Station surfaces are listed. Coating materials and the processing required to produce a viable system, and appropriate environmental simulation test facilities are being developed. Mass loss data from the original version of the atomic oxygen test chamber and the improved facility; additional environmental exposures performed on candidate materials; and materials properties measurements on candidate coatings to determine the effects of the exposures are discussed. Methodologies of production, and coating materials, used to produce the large scale demonstration articles are described. The electronic data base developed for the contract is also described. The test chamber to be used for exposure of materials to atomic oxygen was built.

  6. Method for forming hermetic coatings for optical fibers

    DOEpatents

    Michalske, Terry A.; Rye, Robert R.; Smith, William L.

    1993-01-01

    A method for forming hermetic coatings on optical fibers by hot filament assisted chemical vapor deposition advantageously produces a desirable coating while maintaining the pristine strength of the pristine fiber. The hermetic coatings may be formed from a variety of substances, such as, for example, boron nitride and carbon.

  7. Thermal nondestructive examination method for thermal-spray coatings

    SciTech Connect

    Green, D.R.; Schmeller, M.D.; Sulit, R.A.

    1983-05-01

    This paper describes a feasibility demonstration of a thermal scanning NDE (nondestructive examination) system for thermal-spray coatings. Non-bonds were detected between several types of coatings and their substrates. Aluminum anti-skid coatings having very rough surfaces were included. A technique for producing known non-bond areas for calibrating and demonstrating NDE methods was developed.

  8. The Application of Heat and Corrosion Resistant Phosphate Coatings Under Steam Pressure

    DTIC Science & Technology

    1974-03-01

    acids. Evaluations were made of the coating weight, amount of iron etched from the surface, loss of coating weight due to thermal exposure, and... tartrate enrichments produced coatings with thermal resistance to 4501F and corrosion resistance for 500 hours in the salt-spray tests. Coatings...Coated Panels after Salt- 20 Spray Exposure Processed in a Bath Enriched with Manganese Tartrate under Steam Pressure 4 Manganese Phosphate Coated Panels

  9. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  10. Optimization of solar-selective paint coatings

    NASA Astrophysics Data System (ADS)

    McChesney, M. A.; Zimmer, P. B.; Lin, R. J. H.

    1982-06-01

    The objective was the development of low-cost, high-performance, solar-selective paint coatings for solar flat-plate collector (FPC) use and passive thermal wall application. Thickness-sensitive selective paint coating development was intended to demonstrate large scale producibility. Thickness-insensitive selective paint (TISP) coating development was intended to develop and optimize the coating for passive solar systems and FPC applications. Low-cost, high-performance TSSP coatings and processes were developed to demonstrate large-scale producibility and meet all program goals. Dip, spray, roll, laminating and gravure processes were investigated and used to produce final samples. High-speed gravure coating was selected as the most promising process for solar foil fabrication. Development and optimization of TISP coatings was not completely successful. A variation in reflective metal pigment was suspected of being the primary problem, although other variables may have contributed. Consistent repeating of optical properties of these coatings achieved on the previous program was not achieved.

  11. Superconducting articles of manufacture and method of producing same

    DOEpatents

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1980-01-01

    Bulk coatings of Nb.sub.3 Ge with high superconducting transition temperatures bonded to metallic substrates and a chemical vapor deposition method for producing such coatings on metallic substrates are disclosed. In accordance with the method, a Nb.sub.3 Ge coating having a transition temperature in excess of 21.5 K may be tightly bonded to a copper substrate.

  12. Corrosion resistant coating

    DOEpatents

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  13. Corrosion resistant coating

    DOEpatents

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1997-08-19

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  14. Analysis of retrieved hydroxyapatite-coated hip prostheses

    NASA Astrophysics Data System (ADS)

    Gross, K. A.; Walsh, W.; Swarts, E.

    2004-06-01

    Hydroxyapatite (HAp) coatings are used extensively on orthopaedic devices to improve the adhesion of bone to the prosthesis. This approach increases the integrity and longevity of the implanted prosthesis. Four HAp-coated hip components recovered from patients during revision surgery were investigated for bone attachment and coating modification after storage in ethanol or formaldehyde. Orthopedic components displayed preferable bone attachment on microtextured areas and little bone on smoother areas. The coating microstructure differed between three coatings that remained on the prosthesis surface, ranging from completely crystalline coatings made by vacuum plasma spraying to less crystalline coatings manufactured by air plasma spraying. Coating failure for the lower crystallinity coatings was observed by a crack at the interface that was possibly caused by the dissolution of an amorphous phase. While higher crystallinity coatings degraded by coating delamination, the lower crystallinity coating produced loose particulate on the outer coating surface. Coating morphology as observed by scanning electron microscopy (SEM) displayed lamellae fracture, chemical dissolution, osteoclastic resorption, and precipitation in agreement with previously identified in-vitro events. The coating longevity appeared to be extended in those areas subject to lower levels of stress and more bone coverage.

  15. Graphene based anticorrosive coatings for Cr(VI) replacement.

    PubMed

    Aneja, Karanveer S; Bohm, Sivasambu; Khanna, A S; Bohm, H L Mallika

    2015-11-14

    Corrosion has been a perennial issue of concern for the steel industry. Chromate conversion coatings are well known pre-treatment coatings for steel but due to environmental concerns and legislations, their use has been restricted. The industrial community, pegged by these legislations, has been long demanding an economically viable and eco-friendly pre-treatment coating alternative, without having to compromise on the durability and corrosion performance of the overall coating system. The present study focuses on evaluation of graphene as an anticorrosive alternative to Cr(VI) based coatings. Graphene, produced by a high shear liquid exfoliation route, upon functionalisation, provides a conductive and nearly impermeable barrier coating. On electrochemical and coating performance evaluation of this coating system, a dramatic improvement in corrosion resistance is observed. The study confirms the environment friendly corrosion protection of steel using functionalised graphene coating.

  16. Graphene based anticorrosive coatings for Cr(vi) replacement

    NASA Astrophysics Data System (ADS)

    Aneja, Karanveer. S.; Bohm, Sivasambu; Khanna, A. S.; Bohm, H. L. Mallika

    2015-10-01

    Corrosion has been a perennial issue of concern for the steel industry. Chromate conversion coatings are well known pre-treatment coatings for steel but due to environmental concerns and legislations, their use has been restricted. The industrial community, pegged by these legislations, has been long demanding an economically viable and eco-friendly pre-treatment coating alternative, without having to compromise on the durability and corrosion performance of the overall coating system. The present study focuses on evaluation of graphene as an anticorrosive alternative to Cr(vi) based coatings. Graphene, produced by a high shear liquid exfoliation route, upon functionalisation, provides a conductive and nearly impermeable barrier coating. On electrochemical and coating performance evaluation of this coating system, a dramatic improvement in corrosion resistance is observed. The study confirms the environment friendly corrosion protection of steel using functionalised graphene coating.

  17. Nanosilica-Chitosan Composite Coating on Cotton Fabrics

    NASA Astrophysics Data System (ADS)

    Maharani, Dina Kartika; Kartini, Indriana; Aprilita, Nurul Hidayat

    2010-10-01

    Nanosilica-chitosan composite coating on cotton fabrics has been prepared by sol-gel method. The sol-gel procedure allows coating of material on nanometer scale, which several commonly used coating procedure cannot achieve. In addition, sol-gel coating technique can be applied to system without disruption of their structure functionaly. The coating were produced via hidrolysis and condensation of TEOS and GPTMS and then mixed with chitosan. The composite coating on cotton fabrics were characterized with X-Ray Diffraction and Scanning Electron microscopy (SEM) method. The result showed that the coating not changed or disrupted the cotton stucture. The coating result in a clear transparent thin layer on cotton surface. The nanocomposite coating has new applications in daily used materials, especially those with low heat resistance, such as textiles and plastics, and as an environmentally friendly water-repellent substitute for fluorine compounds.

  18. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  19. The Chemistry of Coatings.

    ERIC Educational Resources Information Center

    Griffith, James R.

    1981-01-01

    The properties of natural and synthetic polymeric "coatings" are reviewed, including examples and uses of such coatings as cellulose nitrate lacquers (for automobile paints), polyethylene, and others. (JN)

  20. Carbon Coating Of Copper By Arc-Discharge Pyrolysis

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Jopek, Stanley

    1988-01-01

    Adherent, abrasion-resistant coat deposited with existing equipment. Carbon formed and deposited as coating on copper substrate by pyrolysis of hydrocarbon oil in electrical-arc discharges. Technique for producing carbon deposits on copper accomplished with electrical-discharge-machining equipment used for cutting metals. Applications for new coating technique include the following: solar-energy-collecting devices, coating of metals other than copper with carbon, and carburization of metal surfaces.

  1. Corrosion-resistant coating development

    SciTech Connect

    Stinton, D.P.; Kupp, D.M.; Martin, R.L.

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  2. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  3. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  4. Electrocurtain coating process for coating solar mirrors

    SciTech Connect

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  5. Non-chromate talc conversion coatings for aluminum

    SciTech Connect

    Buchheit, R.G.; Drewien, C.A.; Finch, J.L.; Stoner, G.E.

    1994-01-01

    A method was developed for applying an inorganic conversion coating on that is procedurally similar to chromate conversion coating methods; this method, however does not use or involve hazardous/toxic chemicals. The coating forms by precipitation involving Al{sup 3+} Li{sup +}, OH{sup {minus}}, CO{sub 3}{sup 2}{minus}, and possibly other anions. This polycrystalline coating is continuous, conformal and persistent in aggressive environments. Coating thicknesses range from several tenths to ten micrometers. Although the outer portions of the coating are porous, the pores do not penetrate to the substrate interface. These coatings do not match the levels of performance offered by commercially available chromate conversion coatings, but are capable of meeting many of the corrosion resistance, electrical resistivity, and paint adhesion requirements established in MIL-C-5541E ``Chemical Conversion Coatings on Aluminum and Aluminum Alloys.`` In this paper, methods for producing the talc coating on aluminum alloys 1100 and 6061-T6 are described and compared to traditional chromate conversion coating methods. Resulting coating structure and composition are described. Performance data for the talc coatings in MIL-C-5541E required tests are presented along with data commercial chromate-based coatings.

  6. Multi-layer coatings

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze'ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  7. Multi-layered ruthenium-containing bond coats for thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Tryon, Brian S.

    Advances in thermal barrier coating (TBC) technology for Ni-base superalloys have shown that B2 Pt-modified NiAl-based bond coatings outperform conventional NiAl bond coat layers for high temperature TBC multilayer systems. This thesis addresses the potential improvement in the high temperature capability of a 132 Ru-modified aluminide bond coat layer due to improved high temperature properties of RuAl over NiAl. The objectives of this research have been to define a processing path for fabrication of a multi-layered Ru-modified aluminide bond coating and to investigate its performance within a TBC system. Microstructural development and the oxidation behavior of Ru-modified and Ru/Pt-modified bond coatings have been studied in detail. Two types of Ru-modified bond coatings have been fabricated: one by means of high temperature, low activity chemical vapor deposition (CVD) processing, and one via high temperature, high activity pack-aluminization. The location of the RuAl-rich layer has been shown to be process dependent with a low activity Ru-containing bond coating producing an exterior B2 NiAl layer with an interior B2 RuAl layer and a high activity Ru-containing bond coat producing the reverse arrangement of B2 layers. While all bond coating systems studied offer some oxidation protection by forming alpha-Al2O3, the low activity Ru/Pt-modified bond coatings exhibited a higher resistance to oxidation-induced failure compared to Ru-modified bond coatings. Through 1000 cyclic oxidation exposures, the Ru/Pt-modified coatings with an initial Ru deposition of 3mum are comparable to conventional Pt-modified aluminide coatings. The Ru-Al-Ni ternary system is the basis for Ru-modifed aluminide coating systems. An experimental assessment of the Ru-Al-Ni phase diagram at 1000°C and 1100°C has been produced via a series of diffusion couple experiments. A continuous solid-solution has been shown to exist between the RuAl and NiAl phases in the ternary system at the

  8. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  9. Thermal conductivity of zirconia thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor description (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard power or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increase upon being exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicates that if these coatings reach a temperature above

  10. Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon- targeted delivery

    USDA-ARS?s Scientific Manuscript database

    This study investigated the surface properties of the semi-synthetic enteric coating materials for potential colon- targeted bioactive delivery. The enteric coating materials were produced by combining nanoscale resistant starch, pectin, and carboxymethylcellulose. The surface properties of the co...

  11. Design and testing of AR coatings for MEGARA optics

    NASA Astrophysics Data System (ADS)

    Ortiz, R.; Carrasco, E.; Páez, G.; Pompa, O.; Sanchez-Blanco, E.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.

    2016-08-01

    We present the antireflection coatings of the optical elements of MEGARA, the new integral field and multi-object spectrograph for the Gran Telescopio Canarias. We describe the methodology for optimizing the solutions. We also present the results of the final deposited coatings. The main optics require broadband coatings in the range from 370 nm to 980 nm for different materials with a mean R<1.3% at specific angles of incidence in each surface. For each material a specific arrangement of thicknesses of the same eight layers were produced and tested. For the spectrograph pupil elements four layer coatings were designed and produced R<0.3%. The design of main optics and pupil elements coatings have been shared between INAOE and CIO. The coating depositions have been performed at CIO in the Integrity 39 Denton Vacuum Deposition System. The main optics final coatings fulfill MEGARA requirements.

  12. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    PubMed

    Leeuwenburgh, S; Layrolle, P; Barrère, F; de Bruijn, J; Schoonman, J; van Blitterswijk, C A; de Groot, K

    2001-08-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesium, and carbonate. The ACP-coated disks then were processed further by incubation in calcium phosphate solutions to produce either crystalline carbonated apatite (CA) or octacalcium phosphate (OCP). The resorption behavior of these three biomimetic coatings was studied using osteoclast-enriched mouse bone-marrow cell cultures for 7 days. Cell-mediated degradation was observed for both carbonated apatite and octacalcium phosphate coatings. Numerous resorption lacunae characteristic of osteoclastic resorption were found on carbonated apatite after cell culture. The results showed that carbonated apatite coatings are resorbed by osteoclasts in a manner consistent with normal osteoclastic resorption. Osteoclasts also degraded the octacalcium phosphate coatings but not by classical pit formation.

  13. A novel electrostatic dry powder coating process for pharmaceutical dosage forms: immediate release coatings for tablets.

    PubMed

    Qiao, Mingxi; Zhang, Liqiang; Ma, Yingliang; Zhu, Jesse; Chow, Kwok

    2010-10-01

    An electrostatic dry powder coating process for pharmaceutical solid dosage forms was developed for the first time by electrostatic dry powder coating in a pan coater system. Two immediate release coating compositions with Opadry® AMB and Eudragit® EPO were successfully applied using this process. A liquid plasticizer was sprayed onto the surface of the tablet cores to increase the conductivity of tablet cores to enhance particle deposition, electrical resistivity reduced from greater than 1×10(13)Ωm to less than 1×10(9)Ωm, and to lower the glass transition temperature (T(g)) of the coating polymer for film forming in the pan coater. The application of liquid plasticizer was followed by spraying charged coating particles using an electrostatic charging gun to enhance the uniform deposition on tablet surface. The coating particles were coalesced into a thin film by curing at an acceptable processing temperature as formation was confirmed by SEM micrographs. The results also show that the optimized dry powder coating process produces tablets with smooth surface, good coating uniformity and release profile that are comparable to that of the tablet cores. The data also suggest that this novel electrostatic dry powder coating technique is an alternative to aqueous- or solvent-based coating process for pharmaceutical products. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  14. Mechanical behavior of segmented oxide protected coatings

    SciTech Connect

    Patten, J.W.; Prater, J.T.; Hays, D.D.; Moss, R.W.

    1980-04-01

    Mechanically and thermally induced fractures were examined in sputtered coatings consisting of a NiCrAlY underlayer, either a thin or a thick transition layer graded from NiCrAlY to ZrO/sub 2/, and an outer ZrO/sub 2/ layer. A pronounced columnar (fibrous) microstructure was obtained, although the columnar boundaries in the ZrO/sub 2/ layers and in the thick transition layers were much more open than in the NiCrAlY, effectively producing a more segmented structure. Fractures in the coatings with thick transition layers always followed the columnar boundaries and did not affect coating adherence. Fractures in the coatings with thin transition layers were similar except that fractures in the transition layer and parallel to the layer plane were observed in addition to the columnar fractures and would be expected to result in loss of coating adherence.

  15. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    NASA Astrophysics Data System (ADS)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  16. Flow coating apparatus and method of coating

    DOEpatents

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  17. Tribological Behavior of Aluminum Slurry Coating on 300M Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohu; Zhang, Pingze; Wei, Dongbo; Zhao, Hongyuan; Wei, Xiangfei; Ding, Feng

    2017-07-01

    Al slurry coatings, an alternative of Cd coating to protect against corrosion in the aerospace industry, are currently being explored to satisfy the stringent technology and safety requirements for aeronautical applications. The results of salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, electrical conductivity, galvanic corrosion, embrittlement, and fatigue indicate that Al slurry coatings can be used as an alternative of Cd coatings. However, the tribological property of Al slurry coatings has still not been investigated. Two types of aluminum slurry coatings on 300M steel were produced using the innovative technological process and characterized by scanning electron microscope, nanoindentation tests, and adhesion tests. The H/E and H 3/E 2 ratios of the two-layer Al slurry-coated sample were almost four times higher than the Cd-Ti plating-coated sample. The dry wear test results show that the friction coefficient of the two-layer Al slurry coating independently from the load was lower than the Cd-Ti plating. The width of the wear track of the two-layer Al slurry coating was significantly narrower, only 62% of the Cd-Ti plating wear scar. Compared to the Cd-Ti plating, an excellent wear resistance of the two-layer Al slurry coating can be attributed to its high resistance to plastic deformation and good load-bearing capacity. The results indicate that the two-layer Al slurry coating is an excellent alternative to Cd coatings in the aerospace industry.

  18. Tribological Behavior of Aluminum Slurry Coating on 300M Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohu; Zhang, Pingze; Wei, Dongbo; Zhao, Hongyuan; Wei, Xiangfei; Ding, Feng

    2017-08-01

    Al slurry coatings, an alternative of Cd coating to protect against corrosion in the aerospace industry, are currently being explored to satisfy the stringent technology and safety requirements for aeronautical applications. The results of salt fog corrosion exposure, fluid corrosion exposure (immersion), humidity resistance, electrical conductivity, galvanic corrosion, embrittlement, and fatigue indicate that Al slurry coatings can be used as an alternative of Cd coatings. However, the tribological property of Al slurry coatings has still not been investigated. Two types of aluminum slurry coatings on 300M steel were produced using the innovative technological process and characterized by scanning electron microscope, nanoindentation tests, and adhesion tests. The H/ E and H 3/ E 2 ratios of the two-layer Al slurry-coated sample were almost four times higher than the Cd-Ti plating-coated sample. The dry wear test results show that the friction coefficient of the two-layer Al slurry coating independently from the load was lower than the Cd-Ti plating. The width of the wear track of the two-layer Al slurry coating was significantly narrower, only 62% of the Cd-Ti plating wear scar. Compared to the Cd-Ti plating, an excellent wear resistance of the two-layer Al slurry coating can be attributed to its high resistance to plastic deformation and good load-bearing capacity. The results indicate that the two-layer Al slurry coating is an excellent alternative to Cd coatings in the aerospace industry.

  19. Apparatus for coating powders

    DOEpatents

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2000-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  20. Colorimetry in optical coating

    NASA Astrophysics Data System (ADS)

    Oleari, Claudio

    2005-09-01

    Generally, the colour of the non-luminous objects in nature is due to absorption, diffusion and refraction of light. The colour of the optical coatings, as that of some kind of bird feathers, soap bubbles, butterfly wings, some insects, etc. is due to interference and therefore is named interference colour. This kind of colour belongs to the gonio-apparent or special-effect colours. Generally, industrial colorimetry does not deal with interference colour and the usual colorimetric instruments are inadequate to measure it. Only recently, with the new mica-pigment coatings, colorimetry is considering the measurement of the interference colour and new multiangle spectrophotometers are produced. This work is a general introduction to the ground of colorimetry and, at the end, deals with interference colours. A short overview is given of the Physiological Optics and of the Colorimetric Standards of the "Commission International de l'Eclairage" (CIE): particularly, Psychophysical Colorimetry, Psychometrical Colorimetry and Measurement Geometries are summarised. The colorimetry of gonio-apparent colours is considered. For a complete and detailed optical characterisation of interference colour the measurement of bidirectional transmittance and reflectance is needed. Particularly, basic elements for the colorimetric analysis of the interface between isotropic non-absorbing media and for thin monolayers are given.

  1. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    NASA Astrophysics Data System (ADS)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  2. Microstructural investigation of phases and pinning properties in MBa2Cu3O7-x (M = Y and/or Gd) coated conductors produced by scale-up facilitie

    NASA Astrophysics Data System (ADS)

    Jin, Hye-Jin; Moon, Han-Kyoul; Yoon, Seokhyun; Jo, William; Kim, Kunsu; Kim, Miyoung; Ko, Rock-Kil; Jo, Young-Sik; Ha, Dong-Woo

    2016-03-01

    To expedite the commercialization of coated conductors, a robust stacking architecture of the wires must be developed and the performance of the critical currents improved. More importantly, the manufacturability, or large-scale delivery, and the capability of sustaining production at a high rate must be considered. The products of three companies, American Superconductor, Superpower Inc., and SuNAM Co., Ltd, were selected because these companies have announced commercial-grade production lines and delivered a significant amounts of wires to the open market that meet the standards demanded by power devices. X-ray diffraction patterns were used to verify the structural properties and the phase formation in the wires, and transmission electron microscopy with energy dispersive spectroscopy was used to investigate the microstructure and composition of the conductors. In addition, Raman scattering spectroscopy was used for the analysis of the phase formation and for the elucidation of secondary phases in the superconducting layers. The field dependence of the critical current was also studied to compare the transport characteristics under relatively low and medium magnetic field at 77 K and 60 K. Pinning forces were obtained from the field dependence of transport properties and pinning characteristics were investigated. The theoretical and experimental analyses were combined together using the Dew-Hughes formula to extract the scaling exponents and estimate the irreversibility lines of the fields. The results showed that the three conductors possess pinning mechanisms that originate from core pinning with a surface pinning geometry. It is remarkable that the wires discussed in this paper exhibit very similar pinning characteristics even though they have different characteristics in terms of chemical composition, microstructure, stacking architectures, and distribution of parasitic phases.

  3. Chromate-free corrosion resistant conversion coatings for aluminum

    SciTech Connect

    Buchheit, R.G. ); Stoner, G.E. . Dept. of Materials Science and Engineering)

    1993-01-01

    We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.

  4. Chromate-free corrosion resistant conversion coatings for aluminum

    SciTech Connect

    Buchheit, R.G.; Stoner, G.E.

    1993-03-01

    We have developed a method for generating chromate-free corrosion resistant coatings on aluminum alloys using a process procedurally similar to standard chromate conversion. These coatings provide good corrosion resistance on 6061-T6 and 1100 A1 under salt spray testing conditions. The resistance of the new coating is comparable to that of chromate conversion coatings in four point probe tests, but higher when a mercury probe technique is used. Initial tests of paint adhesion, and under paint corrosion resistance are promising. Primary advantage of this new process is that no hazardous chemicals are used or produced during the coating operation.

  5. Predictive Failure of Cylindrical Coatings Using Weibull Analysis

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2002-01-01

    Rotating, coated wiping rollers used in a high-speed printing application failed primarily from fatigue. Two coating materials were evaluated: a hard, cross-linked, plasticized polyvinyl chloride (PVC) and a softer, plasticized PVC. A total of 447 tests was conducted with these coatings in a production facility. The data were evaluated using Weibull analysis. The softer coating produced more than twice the life of the harder cross-linked coating and reduced the wiper replacement rate by two-thirds, resulting in minimum production interruption.

  6. Novel nanostructured hydroxyapatite coating for dental and orthopedic implants

    NASA Astrophysics Data System (ADS)

    Liu, Huinan; Jiang, Wenping; Malshe, Ajay

    2009-09-01

    A novel hybrid coating process, combining NanoSpray® (built on electrostatic spray coating) technology with microwave sintering process, was developed for synthesizing hydroxyapatite- (HA-) based nanostructured coating with favorable properties for dental and orthopedic implants. Specifically, HA nanoparticles were deposited on commercially pure titanium substrates using NanoSpray technique to produce the HA coating, which was then sintered in a microwave furnace under controlled conditions. The study showed that the use of NanoSpray followed by microwave sintering results in nanoscale HA coating for dental/orthopedic application.

  7. Hierarchical Micro-Nano Coatings by Painting

    NASA Astrophysics Data System (ADS)

    Kirveslahti, Anna; Korhonen, Tuulia; Suvanto, Mika; Pakkanen, Tapani A.

    2016-03-01

    In this paper, the wettability properties of coatings with hierarchical surface structures and low surface energy were studied. Hierarchically structured coatings were produced by using hydrophobic fumed silica nanoparticles and polytetrafluoroethylene (PTFE) microparticles as additives in polyester (PES) and polyvinyldifluoride (PVDF). These particles created hierarchical micro-nano structures on the paint surfaces and lowered or supported the already low surface energy of the paint. Two standard application techniques for paint application were employed and the presented coatings are suitable for mass production and use in large surface areas. By regulating the particle concentrations, it was possible to modify wettability properties gradually. Highly hydrophobic surfaces were achieved with the highest contact angle of 165∘. Dynamic contact angle measurements were carried out for a set of selected samples and low hysteresis was obtained. Produced coatings possessed long lasting durability in the air and in underwater conditions.

  8. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.

    1991-01-01

    Using a continuous powder coating process, more than 1500 meters of T 300/LaRC-TPI prepreg were produced. Two different types of heating sections in the coating line, namely electrical resistance and convection heating, were utilized. These prepregs were used to fabricate unidirectional composites. During composite fabrication the cure time of the consolidation was varied, and composites samples were produced with and without vacuum. Under these specimens, the effects of the different heating sections and of the variation of the consolidation parameters on mechanical properties and void content were investigated. The void fractions of the various composites were determined from density measurements, and the mechanical properties were measured by tensile testing, short beam shear testing and dynamic mechanical analysis.

  9. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  10. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  11. Project Produce

    ERIC Educational Resources Information Center

    Wolfinger, Donna M.

    2005-01-01

    The grocery store produce section used to be a familiar but rather dull place. There were bananas next to the oranges next to the limes. Broccoli was next to corn and lettuce. Apples and pears, radishes and onions, eggplants and zucchinis all lay in their appropriate bins. Those days are over. Now, broccoli may be next to bok choy, potatoes beside…

  12. Antifouling properties of zinc oxide nanorod coatings.

    PubMed

    Al-Fori, Marwan; Dobretsov, Sergey; Myint, Myo Tay Zar; Dutta, Joydeep

    2014-01-01

    In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.

  13. Nanosilica coating for bonding improvements to zirconia

    PubMed Central

    Chen, Chen; Chen, Gang; Xie, Haifeng; Dai, Wenyong; Zhang, Feimin

    2013-01-01

    Resin bonding to zirconia cannot be established from standard methods that are currently utilized in conventional silica-based dental ceramics. The solution–gelatin (sol–gel) process is a well developed silica-coating technique used to modify the surface of nonsilica-based ceramics. Here, we use this technique to improve resin bonding to zirconia, which we compared to zirconia surfaces treated with alumina sandblasting and tribochemical silica coating. We used the shear bond strength test to examine the effect of the various coatings on the short-term resin bonding of zirconia. Furthermore, we employed field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy, and Fourier transform infrared spectroscopy to characterize the zirconia surfaces. Water–mist spraying was used to evaluate the durability of the coatings. To evaluate the biological safety of the experimental sol–gel silica coating, we conducted an in vitro Salmonella typhimurium reverse mutation assay (Ames mutagenicity test), cytotoxicity tests, and in vivo oral mucous membrane irritation tests. When compared to the conventional tribochemical silica coating, the experimental sol–gel silica coating provided the same shear bond strength, higher silicon contents, and better durability. Moreover, we observed no apparent mutagenicity, cytotoxicity, or irritation in this study. Therefore, the sol–gel technique represents a promising method for producing silica coatings on zirconia. PMID:24179333

  14. Degradation mechanisms in thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Shinde, S. L.; Olson, D. A.; Dejonghe, L. C.; Miller, R. A.

    1986-01-01

    The degradation mechanism in thermal barrier coating systems subjected to prolonged heating in air as well as to thermal cycling was studied. Bond coat oxidation was found to be the most important reason for degradation. The oxidation produced NiO as well as Al?O? in one set of samples, but the variation in initial coating structure made it difficult to resolve systematic differences between isothermally heated and thermally cycled samples. However, the contribution to degradation from changes in substrate composition seemed less in the cycled sample.

  15. Method of applying coatings to substrates

    DOEpatents

    Hendricks, Charles D.

    1991-01-01

    A method for applying novel coatings to substrates is provided. The ends of multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hithereto unavailable compositions, are provided.

  16. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect

    French, R. J.

    2013-09-01

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  17. Method for depositing an oxide coating

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1982-01-01

    A metal oxide coating is plated onto a metal substrate at the cathode from an acid solution which contains an oxidizing agent. The process is particularly useful for producing solar panels. Conventional plating at the cathode avoids the presence of oxidizing agents. Coatings made in accordance with the invention are stable both at high temperatures and while under the influence of high photon flux in the visible range.

  18. Sonochemical formation of intermetallic coatings

    SciTech Connect

    Sweet, J.D.; Casadonte, D.J. Jr.

    1994-11-01

    An energy-dispersive X-ray (EDX) study of the agglomerates produced during the sonication of a series of mixed-metal powders in decane indicates that metal particles are both fused by the action of ultrasound and develop coatings which are intermetallic in nature. The principal mechanism of these effects is believed to be interparticle collision caused by the rapid movement of particles of less than 50 {mu}m diameter which are propelled by shockwaves generated at cavitation sites. By examination of mixed-metal systems including Ni/Co, Al/Ni, Al/Co, Ni/Mg, and Cu/Mo with substantially different tribological characteristics, it has been determined that the coatings are generated by both adhesive wear and direct impact. The fusion of Cu and Mo is particularly intriguing, as these two metals are immiscible below 1000{degrees}C. This indicates the enormous impact temperatures produced in sonically induced collisions. The mechanisms of intermetallic coatings produced via ultrasound are discussed. 26 refs., 4 figs.

  19. Improved Polyimide Intumescent Coating

    NASA Technical Reports Server (NTRS)

    Salyer, I. O.; Fox, L. B.

    1984-01-01

    New polyimide intumescent coating uses titanium dioxide and glass microballons as nucleating agents to improve foaming characteristics of commercially-available polyimide precursor resin. Used for coating interior surfaces in commercial aircraft.

  20. Experiments with ceramic coatings

    NASA Technical Reports Server (NTRS)

    Lynn, E. K.; Rollins, C. T.

    1968-01-01

    Report describes the procedures and techniques used in the application of a ceramic coating and the evaluation of test parts through observation of the cracks that occur in this coating due to loading.

  1. Corrosion inhibiting organic coatings

    SciTech Connect

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  2. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S. (Inventor)

    1984-01-01

    A high temperature oxidation resistant, thermal barrier coating system is disclosed for a nickel cobalt, or iron base alloy substrate. An inner metal bond coating contacts the substrate, and a thermal barrier coating covers the bond coating. NiCrAlR, FeCrAlR, and CoCrAlR alloys are satisfactory as bond coating compositions where R=Y or Yb. These alloys contain, by weight, 24.9-36.7% chromium, 5.4-18.5% aluminum, and 0.05 to 1.55% yttrium or 0.05 to 0.53% ytterbium. The coatings containing ytterbium are preferred over those containing yttrium. An outer thermal barrier coating of partial stabilized zirconium oxide (zirconia) which is between 6% and 8%, by weight, of yttrium oxide (yttria) covers the bond coating. Partial stabilization provides a material with superior durability. Partially stabilized zirconia consists of mixtures of cubic, tetragonal, and monoclinic phases.

  3. A Novel Type of Environmentally Friendly Slurry Coatings

    NASA Astrophysics Data System (ADS)

    Montero, Xabier; Galetz, Mathias C.; Schütze, Michael

    2015-01-01

    A variety of commercial slurries are available to aluminize the surfaces of nickel-based superalloys; however, they have three main disadvantages. First, the phosphates and chromates or halides used as binders or to activate the diffusion species are environmentally harmful and toxic; second, the slurry coatings can only produce high-aluminum-activity coatings which form precipitate-rich coatings that are detrimental to adherence. Finally, these coatings are limited to the incorporation of aluminum and silicon, whereas the co-deposition of other elements such as chromium or cobalt has not been achieved so far. In this work, the limitations of slurry coatings have been overcome by carefully designing the powder composition and controlling the process to produce co-deposition coatings with chromium, cobalt, or nickel by using nontoxic water-based slurries. This also opens an effective way to control Al activity and to produce low-activity aluminized coatings for the first time when using the slurry technique. These results expand the application range of slurry coatings so they can also be applied under ambient atmosphere, making it possible to fully coat aero engine pieces or large-scale industrial components, providing all properties that are usually only achieved by using more complex and expensive methods such as chemical vapor deposition. Furthermore, these new coatings offer unique advantages that can be very favorable especially as a repairing technique.

  4. Tribological performance of hybrid filtered arc-magnetron coatings - Part I: Coating deposition process and basic coating properties characterization

    SciTech Connect

    Gorokhovsky, Vladimir; Bowman, C.; Gannon, Paul E.; VanVorous, D.; Voevodin, A. A.; Rutkowski, A.; Muratore, C.; Smith, Richard J.; Kayani, Asghar N.; Gelles, David S.; Shutthanandan, V.; Trusov, B. G.

    2006-12-04

    Aircraft propulsion applications require low-friction and wear resistant surfaces that operate under high contact loads in severe environments. Recent research on supertough and low friction nanocomposite coatings produced with hybrid plasma deposition processes was demonstrated to have a high potential for such demanding applications. However, industrially scalable hybrid plasma technologies are needed for their commercial realization. The Large area Filtered Arc Deposition (LAFAD) process provides atomically smooth coatings at high deposition rates over large surface areas. The LAFAD technology allows functionally graded, multilayer, super-lattice and nanocomposite architectures of multi-elemental coatings via electro-magnetic mixing of two plasma flows composed of different metal ion vapors. Further advancement can be realized through a combinatorial process using a hybrid filtered arc-magnetron deposition system. In the present study, multilayer and nanostructured TiCrCN/TiCr +TiBC composite cermet coatings were deposited by the hybrid filtered arc-magnetron process. Filtered plasma streams from arc evaporated Ti and Cr targets, and two unbalanced magnetron sputtered B4C targets, were directed to the substrates in the presence of reactive gases. A multiphase nanocomposite coating architecture was designed to provide the optimal combination of corrosion and wear resistance of advanced steels (Pyrowear 675) used in aerospace bearing and gear applications. Coatings were characterized using SEM/EDS, XPS and RBS for morphology and chemistry, XRD and TEM for structural analyses, wafer curvature and nanoindentation for stress and mechanical properties, and Rockwell and scratch indentions for adhesion. Coating properties were evaluated for a variety of coating architectures. Thermodynamic modeling was used for estimation of phase composition of the top TiBC coating segment. Correlations between coating chemistry, structure and mechanical properties are discussed.

  5. METHOD FOR TESTING COATINGS

    DOEpatents

    Johns, I.B.; Newton, A.S.

    1958-09-01

    A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.

  6. Coating Galvanized Steel

    DTIC Science & Technology

    1989-06-01

    phenolic drying oil products with a zinc dust-zinc oxide pigmentation. Roebuck et al. (Ref 3), state "For instance, coatings subject to saponification ...coating. All three types of TT-P-641 are subject to saponification , since they con- tain drying oils. The General Services Administration (GSA) sells con...penetration " Chemical degradation of coatings, particularly saponification of alkyd coatings in an alkaline environment " Differences in expansion and

  7. Characterization of RSI coating

    NASA Technical Reports Server (NTRS)

    Miller, A. D.; Garofalini, S. H.; Smiser, L. W.; Mueller, J. I.

    1973-01-01

    X-ray diffraction analyses on mullite, silica, and ceramic mullite fiber coating materials to investigate the effects of thermal cycling, show that ceramic mullite fiber coating porosity is little affected by cycling to 1250 C and that material pores are mostly smaller than 15 nm. Some mullite coatings experience a slight increase in crystobalite with somewhat increased porosity. Silica coatings show a marked tendency to precipitate cristobalite with increased porosity and dimensional instability.

  8. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Metallurgical coatings and thin films; Proceedings of the International Conference, 18th, San Diego, CA, Apr. 22-26, 1991. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Mcguire, Gary E. (Editor); Mcintyre, Dale C. (Editor); Hofmann, Siegfried (Editor)

    1991-01-01

    A conference on metallurgical coatings and thin films produced papers in the areas of coatings for use at high temperatures; hard coatings and deposition technologies; diamonds and related materials; tribological coatings/surface modifications; thin films for microelectronics and high temperature superconductors; optical coatings, film characterization, magneto-optics, and guided waves; and methods for characterizing films and modified surfaces.

  10. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide.

    PubMed

    Lim, Dong-Kwon; Barhoumi, Aoune; Wylie, Ryan G; Reznor, Gally; Langer, Robert S; Kohane, Daniel S

    2013-09-11

    We report plasmonic gold nanoshells and nanorods coated with reduced graphene oxide that produce an enhanced photothermal effect when stimulated by near-infrared (NIR) light. Electrostatic interactions between nanosized graphene oxide and gold nanoparticles followed by in situ chemical reduction generated reduced graphene oxide-coated nanoparticles; the coating was demonstrated using Raman and HR-TEM. Reduced graphene oxide-coated gold nanoparticles showed enhanced photothermal effect compared to noncoated or nonreduced graphene oxide-coated gold nanoparticles. Reduced graphene oxide-coated gold nanoparticles killed cells more rapidly than did noncoated or nonreduced graphene oxide-coated gold nanoparticles.

  11. Commercial Fastener Coatings Doerken

    DTIC Science & Technology

    2010-06-01

    Phosphating* *partly recommended Dip Spinning Dipping Spraying Spin coating Conveyor oven box oven Inductive drying Pretreatment Coating Preheating...Curing Cooling Application Techniques - Dip Spin Coating Gurtbnd Cross BarTranspo" Band beiCifteiE Vo12one Vent llated Pre .Zone Cros~ Bar T ransrt

  12. Spin coating of electrolytes

    DOEpatents

    Stetter, Joseph R.; Maclay, G. Jordan

    1989-01-01

    Methods for spin coating electrolytic materials onto substrates are disclosed. More particularly, methods for depositing solid coatings of ion-conducting material onto planar substrates and onto electrodes are disclosed. These spin coating methods are employed to fabricate electrochemical sensors for use in measuring, detecting and quantifying gases and liquids.

  13. Ceramic with zircon coating

    NASA Technical Reports Server (NTRS)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  14. PIT Coating Requirements Analysis

    SciTech Connect

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  15. Nanocrystalline coatings properties forecasting

    NASA Astrophysics Data System (ADS)

    Eremin, E. N.; Yurov, V. M.; Guchenko, S. A.; Laurynas, V. Ch

    2017-06-01

    The paper considers various properties of nanocrystalline coatings. The methods of determining the surface tension of the deposited coating on the basis of the size dependence of their physical properties. It is shown that predict the mechanical properties of the coatings, their melting point, heat resistance, wear resistance, corrosion resistance, etc. It can be based on a theoretical evaluation of the surface tension.

  16. Nanostructured Carbon Coatings

    DTIC Science & Technology

    2000-01-01

    coatings having a low- friction coefficient for a variety of applications, from heavy-load bearings to nanocoatings for MEMS; protective coating for...tribological coatings having a low-friction coefficient for a variety of applications, from heavy- load bearings to nanocoatings for MEMS. Carbon

  17. Optimizing High-Z Coatings for Inertial Fusion Energy Shells

    SciTech Connect

    Stephens, Elizabeth H.; Nikroo, Abbas; Goodin, Daniel T.; Petzoldt, Ronald W.

    2003-05-15

    Inertial fusion energy (IFE) reactors require shells with a high-Z coating that is both permeable, for timely filling with deuterium-tritium, and reflective, for survival in the chamber. Previously, gold was deposited on shells while they were agitated to obtain uniform, reproducible coatings. However, these coatings were rather impermeable, resulting in unacceptably long fill times. We report here on an initial study on Pd coatings on shells in the same manner. We have found that these palladium-coated shells are substantially more permeable than gold. Pd coatings on shells remained stable on exposure to deuterium. Pd coatings had lower reflectivity compared to gold that leads to a lower working temperature, and efficiency, of the proposed fusion reactor. Seeking to combine the permeability of Pd coatings and high reflectivity of gold, AuPd-alloy coatings were produced using a cosputtering technique. These alloys demonstrated higher permeability than Au and higher reflectivity than Pd. However, these coatings were still less reflective than the gold coatings. To improve the permeability of gold's coatings, permeation experiments were performed at higher temperatures. With the parameters of composition, thickness, and temperature, we have the ability to comply with a large target design window.

  18. Synthesis of Superhydrophobic Nanocomposite Coatings Using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Iacovetta, Daniel John

    The focus of the current research is to produce a metal matrix composite material that possesses a superhydrophobic surface using electrodeposition. The objective is to create a multifunctional coating that is able to provide high strength as well as high water repellency using nanocrystalline nickel and polytetrafluoroethylene (PTFE) particles. The co-deposition process was first studied. It was determined that the amount of PTFE co-deposited is highly dependent on the concentration of PTFE particles in the electroplating bath. The wetting angle of the surface greatly increased when the PTFE content increases. Next the electroplating procedure of pure nickel is altered to produce a nanocrystalline material, resulting in a large increase in the hardness of the nickel coatings. The two techniques are combined to produce a nanocrystalline Nickel-PTFE composite. Under optimum conditions, the composite coating displayed a highly water repellent surface and improved mechanical properties.

  19. Whey protein coating efficiency on surfactant-modified hydrophobic surfaces.

    PubMed

    Lin, Shih-Yu D; Krochta, John M

    2005-06-15

    Whey protein oxygen-barrier coatings on peanuts are not effective, due to incomplete peanut-surface coverage, as well as some cracking and flaking of the coating. Addition of sorbitan laurate (Span 20) in the whey protein coating solution up to the critical micelle concentration (cmc) of 0.05% (w/w) significantly improved coating coverage to 88% of the peanut surface. Increasing the Span 20 concentration in the coating solution to 3 times the cmc (0.15% w/w) produced a substantial increase in peanut surface energy (>70 dyn/cm), indicating adsorption of the surfactant to the peanut surface. With this level of Span 20, the whey protein coating coverage on peanuts increased to 95%. These results suggest that a concentration of surfactant above the cmc in the coating solution is required for formation of self-assembled structures of surfactant molecules on peanut surfaces, which significantly increases the hydrophilicity, and thus coatability, of peanut surfaces.

  20. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid, spray on elastomeric polyurethanes are selected and investigated as best candidates for aircraft external protective coatings. Flight tests are conducted to measure drag effects of these coatings compared to paints and a bare metal surface. The durability of two elastometric polyurethanes are assessed in airline flight service evaluations. Laboratory tests are performed to determine corrosion protection properties, compatibility with aircraft thermal anti-icing systems, the effect of coating thickness on erosion durability, and the erosion characteristics of composite leading edges-bare and coated. A cost and benefits assessment is made to determine the economic value of various coating configurations to the airlines.

  1. Antibacterial polymer coatings.

    SciTech Connect

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  2. Thermal barrier coating system

    NASA Technical Reports Server (NTRS)

    Stecura, S.; Leibert, C. H. (Inventor)

    1977-01-01

    A coating system which contains a bond coating and a thermal barrier coating is applied to metal surfaces such as turbine blades and provides both low thermal conductivity and improved adherence when exposed to high temperature gases or liquids. The bond coating contains NiCrAlY and the thermal barrier coating contains a reflective oxide. The reflective oxides ZrO2-Y2O3 and ZrO2-MgO have demonstrated significant utility in high temperature turbine applications.

  3. Lubricant Coating Process

    NASA Technical Reports Server (NTRS)

    1989-01-01

    "Peen Plating," a NASA developed process for applying molybdenum disulfide, is the key element of Techniblast Co.'s SURFGUARD process for applying high strength solid lubricants. The process requires two machines -- one for cleaning and one for coating. The cleaning step allows the coating to be bonded directly to the substrate to provide a better "anchor." The coating machine applies a half a micron thick coating. Then, a blast gun, using various pressures to vary peening intensities for different applications, fires high velocity "media" -- peening hammers -- ranging from plastic pellets to steel shot. Techniblast was assisted by Rural Enterprises, Inc. Coating service can be performed at either Techniblast's or a customer's facility.

  4. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  5. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  6. ALD Produced B{sub 2}O{sub 3}, Al{sub 2}O{sub 3} and TiO{sub 2} Coatings on Gd{sub 2}O{sub 3} Burnable Poison Nanoparticles and Carbonaceous TRISO Coating Layers

    SciTech Connect

    Weimer, Alan

    2012-11-26

    This project will demonstrate the feasibility of using atomic layer deposition (ALD) to apply ultrathin neutron-absorbing, corrosion-resistant layers consisting of ceramics, metals, or combinations thereof, on particles for enhanced nuclear fuel pellets. Current pellet coating technology utilizes chemical vapor deposition (CVD) in a fluidized bed reactor to deposit thick, porous layers of C (or PyC) and SiC. These graphitic/carbide materials degrade over time owing to fission product bombardment, active oxidation, thermal management issues, and long-term irradiation effects. ALD can be used to deposit potential ceramic barrier materials of interest, including ZrO{sub 2}, Y{sub 2}O{sub 3}:ZrO{sub 2} (YSZ), Al{sub 2}O{sub 3}, and TiO{sub 2}, or neutron-absorbing materials, namely B (in BN or B{sub 2}O{sub 3}) and Gd (in Gd{sub 2}O{sub 3}). This project consists of a two-pronged approach to integrate ALD into the next-generation nuclear plant (NGNP) fuel pellet manufacturing process:

  7. Vacuum plasma spray coating

    NASA Technical Reports Server (NTRS)

    Holmes, Richard R.; Mckechnie, Timothy N.

    1989-01-01

    Currently, protective plasma spray coatings are applied to space shuttle main engine turbine blades of high-performance nickel alloys by an air plasma spray process. Originally, a ceramic coating of yttria-stabilized zirconia (ZrO2.12Y2O3) was applied for thermal protection, but was removed because of severe spalling. In vacuum plasma spray coating, plasma coatings of nickel-chromium-aluminum-yttrium (NiCrAlY) are applied in a reduced atmosphere of argon/helium. These enhanced coatings showed no spalling after 40 MSFC burner rig thermal shock cycles between 927 C (1700 F) and -253 C (-423 F), while current coatings spalled during 5 to 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2.8Y2O3 to the turbine blades of first-stage high-pressure fuel turbopumps utilizing the enhanced NiCrAlY bond-coating process. NiCrAlY bond coating is applied first, with ZrO2.8Y2O3 added sequentially in increasing amounts until a thermal barrier coating is obtained. The enchanced thermal barrier coating has successfully passed 40 burner rig thermal shock cycles.

  8. Bacillus subtilis Spore Coat

    PubMed Central

    Driks, Adam

    1999-01-01

    In response to starvation, bacilli and clostridia undergo a specialized program of development that results in the production of a highly resistant dormant cell type known as the spore. A proteinacious shell, called the coat, encases the spore and plays a major role in spore survival. The coat is composed of over 25 polypeptide species, organized into several morphologically distinct layers. The mechanisms that guide coat assembly have been largely unknown until recently. We now know that proper formation of the coat relies on the genetic program that guides the synthesis of spore components during development as well as on morphogenetic proteins dedicated to coat assembly. Over 20 structural and morphogenetic genes have been cloned. In this review, we consider the contributions of the known coat and morphogenetic proteins to coat function and assembly. We present a model that describes how morphogenetic proteins direct coat assembly to the specific subcellular site of the nascent spore surface and how they establish the coat layers. We also discuss the importance of posttranslational processing of coat proteins in coat morphogenesis. Finally, we review some of the major outstanding questions in the field. PMID:10066829

  9. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  10. Strain isolated ceramic coatings

    NASA Technical Reports Server (NTRS)

    Tolokan, R. P.; Brady, J. B.; Jarrabet, G. P.

    1985-01-01

    Plasma sprayed ceramic coatings are used in gas turbine engines to improve component temperature capability and cooling air efficiency. A compliant metal fiber strain isolator between a plasma sprayed ceramic coating and a metal substrate improves ceramic durability while allowing thicker coatings for better insulation. Development of strain isolated coatings has concentrated on design and fabrication of coatings and coating evaluation via thermal shock testing. In thermal shock testing, five types of failure are possible: buckling failure im compression on heat up, bimetal type failure, isothermal expansion mismatch failure, mudflat cracking during cool down, and long term fatigue. A primary failure mode for thermally cycled coatings is designated bimetal type failure. Bimetal failure is tensile failure in the ceramic near the ceramic-metal interface. One of the significant benefits of the strain isolator is an insulating layer protecting the metal substrate from heat deformation and thereby preventing bimetal type failure.

  11. Ceramic coat furnace tubes for improved operations

    SciTech Connect

    Hellander, J.C.

    1997-01-01

    Ceramic materials and products have many uses in industry, government and the home, from abrasive and corrosion-resistant surfaces to preformed shapes. Thin-film ceramic coatings for metal process tubing with the dual characteristics of high emissivity and thermal conductivity were developed, successfully field tested and are being used to improve the energy efficiency and production capabilities of natural gas and oil-fired production units and steam-generating boilers in the chemical and petrochemical industries. The concept for developing the ceramic coating system was to formulate a coating system that would produce, upon application, a thermally conductive thin-film coating surface that would prevent oxidation and scale formation. The result of applying a coating system is increased heat transfer of the ceramic-coated process tubing that either increases the energy efficiency or throughput, depending on the process unit`s requirements. As reviewed here in the chemical and petrochemical plant applications, the ceramic coating system`s development has been successful.

  12. Osteoinductive composite coatings for flexible intramedullary nails.

    PubMed

    Bolbasov, E N; Popkov, A V; Popkov, D A; Gorbach, E N; Khlusov, I A; Golovkin, A S; Sinev, A; Bouznik, V M; Tverdokhlebov, S I; Anissimov, Y G

    2017-06-01

    This work presents composite coatings based on a copolymer of vinylidene fluoride with tetrafluoroethylene (VDF-TeFE) and hydroxyapatite (HA) for flexible intramedullary nails (FIN). The effect of the proportion of VDF-TeFE (100-25% wt.) on physicochemical and biological properties of the composite coatings was investigated. It was shown that a decrease of VDF-TeFE in the coating hinders its crystallization in β and γ forms which have piezoelectric properties. The decrease also reduces an adhesive strength to 9.9±2.4MPa and a relative elongation to 5.9±1.2%, but results in increased osteogenesis. It was demonstrated that the composite coatings with 35% VDF-TeFE has the required combination of physicochemical properties and osteogenic activity. Comparative studies of composite coatings (35% VDF-TeFE) and calcium phosphate coatings produced using micro-arc oxidation, demonstrated comparable results for strength of bonding of these FINs with trabecular bones (~530MPa). It was hypothesized that the high osteoinductive properties of the composite coatings are due to their piezoelectric properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fire Retardant Coatings for Military Equipment - A Review,

    DTIC Science & Technology

    1988-02-01

    number of borates and the ammonium salts of sulphuric, phosphoric and hydrochloric acid were effective as fire retardant compounds. The first reference...produced by coatings containing chlorine derivatives are of far more concern than the flammability of the coatings themselves. The acid products are...Inorganic Coatings which form Glass-like Melts Paints made with alkali silicates or borax form glass-like melts luring a fire which form a barrier between

  14. Electrospark Deposited Coating Technology for Naval Applications (Briefing Charts)

    DTIC Science & Technology

    2002-09-01

    Electrospark Deposited Coating Technology for Naval Applications Denise A. Aylor Naval Surface Warfare Center Carderock Division Marine Corrosion...number. 1. REPORT DATE SEP 2002 2. REPORT TYPE 3. DATES COVERED 00-00-2002 to 00-00-2002 4. TITLE AND SUBTITLE Electrospark Deposited Coating...ANSI Std Z39-18 Objective • Produce good quality coatings using electrospark deposition (ESD) Approach • Identify Navy components for repair

  15. A Novel Nonelectrolytic Process for Chromium and Nickel Coating

    DTIC Science & Technology

    2015-06-01

    ABSTRACT (maximum 200 words) The use of hexavalent chromium in metal coating operations, as per electrolytic processing, is subject to increasingly...was that a version of the Reduction Expansion Synthesis (RES) process, previously used to produce submicron metal particles, could be developed to...create metal coating. This study involved the production of coatings by a variety of RES-like protocols, based on mixing metal nitrates, urea, and

  16. Continuous coating of silicon-on-ceramic

    NASA Technical Reports Server (NTRS)

    Heaps, J. D.; Schuldt, S. B.; Grung, B. L.; Zook, J. D.; Butter, C. D.

    1980-01-01

    Growth of sheet silicon on low-cost substrates has been demonstrated by the silicon coating with inverted meniscus (SCIM) technique. A mullite-based ceramic substrate is coated with carbon and then passed over a trough of molten silicon with a raised meniscus. Solidification occurs at the trailing edge of the downstream meniscus, producing a silicon-on-ceramic (SOC) layer. Meniscus shape and stability are controlled by varying the level of molten silicon in a reservoir connected to the trough. The thermal conditions for growth and the crystallographic texture of the SOC layers are similar to those produced by dip-coating, the original technique of meniscus-controlled growth. The thermal conditions for growth have been analyzed in some detail. The analysis correctly predicts the velocity-thickness relationship and the liquid-solid interface shape for dip-coating, and appears to be equally applicable to SCIM-coating. Solar cells made from dip-coated SOC material have demonstrated efficiencies of 10% on 4-sq cm cells and 9.9% on 10-sq cm cells.

  17. Microstructure of Kinetic Spray Coatings: A Review

    NASA Astrophysics Data System (ADS)

    Lee, Changhee; Kim, Jaeick

    2015-04-01

    Kinetic spray process has been applied to various industrial fields such as automotive, aviation, and defense industries due to its availability to produce high-performing coating layer. However, since the properties of kinetic-sprayed coating layer are significantly affected by the microstructures of deposit, the microstructures of the deposit should be controlled to acquire advanced coating layer and, accordingly, deep understanding of microstructural evolution must be achieved before controlling the microstructure of the coating layer. This paper gives an overview of contents related to the microstructure of kinetic-sprayed deposition. The most powerful influencing factors in microstructural evolution of kinetic-sprayed coating layer are instant generation of thermal energy and high-strain, high-strain-rate plastic deformation at the moment of particle impact. A high-density coating layer with low porosity can be produced, although some micro-cracks are occasionally induced at the interparticle boundary or at the inner region of the particles. Also, a microstructure which is distinct from the inner particle region is created in the vicinity of the particle-particle or particle-substrate interface region. However, almost no crystal phase transformation or chemical reaction is induced since the deposited particles are not heated directly by a thermal energy source.

  18. Coatings and films made of silk proteins.

    PubMed

    Borkner, Christian B; Elsner, Martina B; Scheibel, Thomas

    2014-09-24

    Silks are a class of proteinaceous materials produced by arthropods for various purposes. Spider dragline silk is known for its outstanding mechanical properties, and it shows high biocompatibility, good biodegradability, and a lack of immunogenicity and allergenicity. The silk produced by the mulberry silkworm B. mori has been used as a textile fiber and in medical devices for a long time. Here, recent progress in the processing of different silk materials into highly tailored isotropic and anisotropic coatings for biomedical applications such as tissue engineering, cell adhesion, and implant coatings as well as for optics and biosensors is reviewed.

  19. Assembly of responsive-shape coated nanoparticles at water surfaces

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Grest, Gary S.

    2014-04-01

    Nanoparticle (NP) assembly and aggregation can be controlled using a variety of organic coatings that bind to the nanoparticle surface and alter its affinity for solvent and other particles. We show that surprisingly simple short chain polymer coatings can be effectively used to selectively control the aggregation of very small nanoparticles by taking advantage of the environment-responsive shape produced by the coating's spontaneous asymmetry on high-curvature nanoparticles. Using extremely long molecular dynamics simulations of alkanethiol coated Au nanoparticles, we show that varying the terminal groups of a nanoparticle coating dramatically alters the coating shape at the water liquid-vapor interface, producing very different assembly morphologies. NPs with CH3-terminated coatings assemble into short linear groupings with a highly aligned structure at early time and then form more disordered clusters as these linear groupings further assemble. NPs with COOH-terminated coatings assemble into dimers and disordered clumps with no preferred alignment at short time and longer disordered chains of particles at longer times. We also find that the responsive shape of the coating continues to adapt to local environment during assembly. The orientations of chains within NP coatings are significantly different when the NPs are arranged in aggregates than when they are isolated.

  20. Process for Coating Substrates with Catalytic Materials

    NASA Technical Reports Server (NTRS)

    Klelin, Ric J. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor)

    2004-01-01

    A process for forming catalysts by coating substrates with two or more catalytic components, which comprises the following sequence of steps. First, the substrate is infused with an adequate amount of solution having a starting material comprising a catalytic component precursor, wherein the thermal decomposition product of the catalytic component precursor is a catalytic component. Second, the excess of the solution is removed from the substrate. thereby leaving a coating of the catalytic component precursor on the surface of the substrate. Third, the coating of the catalytic component precursor is converted to the catalytic component by thermal decomposition. Finally, the coated substance is etched to increase the surface area. The list three steps are then repeated for at least a second catalytic component. This process is ideally suited for application in producing efficient low temperature oxidation catalysts.

  1. Coatings Extend Life of Engines and Infrastructure

    NASA Technical Reports Server (NTRS)

    2010-01-01

    MesoCoat Inc., of Euclid, Ohio, collaborated with Glenn Research Center to provide thermal barrier coating (TBC) technology, developed by Glenn researcher Dongming Zhu, to enhance the lifespan and performance of engines in U.S. Air Force legacy aircraft. The TBC reduces thermal stresses on engine parts, increasing component life by 50 percent. MesoCoat is also producing metal cladding technology that may soon provide similar life-lengthening benefits for the Nation's infrastructure. Through a Space Act Agreement with Glenn, the company employs the Center's high-density infrared arc lamp system to bond its cladding materials for demonstration prototypes; the coating technology can prevent corrosion on metal beams, pipes, and rebar for up to 100 years.

  2. Paper-Thin Coating Offers Maximum Protection

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Wessex Incorporated has recently taken a technology that was originally developed for NASA as a protective coating for ceramic materials used in heatshields for space vehicles, and modified it for use in applications such as building materials, machinery, and transportation. The technology, developed at NASA Ames Research Center as a protective coating for flexible ceramic composites (PCC), is environmentally safe, water-based, and contains no solvents. Many other flame-retardant materials contain petroleum-based components, which can produce toxic smoke under flame. Wessex versions of PCC can be used to shield ceramics, wood, plasterboard, steel, plastics, fiberglass, and other materials from catastrophic fires. They are extraordinarily tough and exhibit excellent resistance to thermal shock, vibration, abrasion, and mechanical damage. One thin layer of coating provides necessary protection and allows for flexibility while avoiding excessive weight disadvantages. The coating essentially reduces the likelihood of the underlying material becoming so hot that it combusts and thus inhibits the "flashover" phenomenon from occurring.

  3. "m=1" coatings for neutron guides

    NASA Astrophysics Data System (ADS)

    Cooper-Jensen, C. P.; Vorobiev, A.; Klinkby, E.; Kapaklis, V.; Wilkens, H.; Rats, D.; Hjörvarsson, B.; Kirstein, O.; Bentley, P. M.

    2014-07-01

    A substantial fraction of the price for a supermirror neutron guide system is the shielding, which is needed because of the gamma radiation produced as a result of neutron absorption in the supermirror layers. Traditional coatings have been made of nickel-titanium heterostructures, but Ni and Ti also have a fairly high absorption cross section for cold and thermal neutrons. We examine a number of alternatives to Ni as part of a study to reduce the gamma radiation from neutron guides. Materials such as diamond and Be have higher neutron scattering density than Ni, smaller absorption cross section, and when a neutron is absorbed they emit gamma photons with lower energies. We present reflectivity data comparing Ni with Be and preliminary results from diamond coatings showing there use as neutron guide coatings. Calculations show that Be and diamond coatings emit two orders of magnitude fewer gamma photons compared to Ni, mainly because of the lower absorption cross section.

  4. High efficiency turbine blade coatings

    SciTech Connect

    Youchison, Dennis L.; Gallis, Michail A.

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  5. Interfacial bond strength of electrophoretically deposited hydroxyapatite coatings on metals.

    PubMed

    Wei, M; Ruys, A J; Swain, M V; Kim, S H; Milthorpe, B K; Sorrell, C C

    1999-07-01

    Hydroxyapatite (HAp) coatings were deposited onto substrates of metal biomaterials (Ti, Ti6Al4V, and 316L stainless steel) by electrophoretic deposition (EPD). Only ultra-high surface area HAp powder, prepared by the metathesis method 10Ca(NO3)2 + 6(NH4)2HPO4 + 8NH4OH), could produce dense coatings when sintered at 875-1000degreesC. Single EPD coatings cracked during sintering owing to the 15-18% sintering shrinkage, but the HAp did not decompose. The use of dual coatings (coat, sinter, coat, sinter) resolved the cracking problem. Scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) inspection revealed that the second coating filled in the "valleys" in the cracks of the first coating. The interfacial shear strength of the dual coatings was found, by ASTM F1044-87, to be approximately 12 MPa on a titanium substrate and approximately 22 MPa on 316L stainless steel, comparing quite favorably with the 34 MPa benchmark (the shear strength of bovine cortical bone was found to be 34 MPa). Stainless steel gave the better result since -316L (20.5 microm mK(-1)) > alpha-HAp (approximately 14 microm mK(-1)), resulting in residual compressive stresses in the coating, whereas alpha-titanium (approximately 10.3 microm mK(-1)) < alpha-HAp, resulting in residual tensile stresses in the coating.

  6. Substitute conversion coatings on aluminum for waste minimization

    SciTech Connect

    Buchheit, R.G.; Bode, M.D.; Stoner, G.E.

    1991-09-01

    Chromate conversion coatings such as Parker Company`s Alodine coatings are widely used to increase the corrosion resistance of aluminum and aluminum alloys. The primary disadvantage of chromate-based processes is that they use and produce as waste hexavalent chromium (Cr{sup 6+}). We have discovered that the corrosion resistance of Al can be increased by forming an inorganic barrier coating using chemicals that pose a relatively small environmental hazard. These new coatings are formed using a process that is procedurally identical to the basic chromate conversion process. We have prepared new and conventional coatings on 1100 (99.0 Al minimum), 2024-T3 (Al-Cu-Mg) and 7075-T6 (Al-Zn-Mg) commercial sheet stock for accelerated electrochemical testing and coating conductivity testing. Results show that the new coatings offer increased corrosion resistance compared to uncoated Al, but do not yet match the performance of the chromate conversion coatings. The conductivity of these new films on 1100 Al is comparable to that of Alodine coatings; however, the new coatings are more resistive than Alodine coatings on 2024-T3 and 7075-T6.

  7. Tailored coatings for hardfacing

    SciTech Connect

    Dustoor, M.R.; Moskowitz, L.N.

    1984-01-01

    An update on Conforma Clad coatings, first presented at the 1982 National Powder Metallurgy Conference in Montreal, Canada, is presented. The major advantage is the ability to offer selective-area coatings in a wide range of thicknesses and material choices while retaining dimensional and edge control of the coating. Complex geometries can be coated with a high materials utilization and with coating properties tailored to the end application. Porosity and bond strength values can match or exceed those seen with the best commercially available thermal sprayed coatings. The ability of the process to balance abrasion resistance and toughness requirements for a specific wear mode, is illustrated by microstructural control of the size, shape and density of carbide particles contained in the coatings. Dry sand abrasive test data are provided on Conforma Clad coatings and competitive processes. Ongoing developments of non-furnace fusion techniques, such as laser cladding, are presented and the microstructures compared with those obtained with conventional coating processes. Commercial applications for these coatings are highlighted with some typical examples.

  8. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Greer, Frank (Inventor); Jones, Todd J. (Inventor); Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  9. Enhancing thermal barrier coatings performance through reinforcement of ceramic topcoat

    NASA Astrophysics Data System (ADS)

    Bogdanovich, V. I.; Giorbelidze, M. G.

    2016-11-01

    This paper studies structure of thermal barrier coatings applied to hot gas path components in gas turbine engines and produced in a number of ways, and its impact on performance. Methods of structural reinforcement for ceramic topcoat in thermal barrier coatings are considered.

  10. Fogging technique used to coat magnesium with plastic

    NASA Technical Reports Server (NTRS)

    Mroz, T. S.

    1967-01-01

    Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.

  11. Coating method enables low-temperature brazing of stainless steel

    NASA Technical Reports Server (NTRS)

    Seaman, F. D.

    1965-01-01

    Gold coated stainless steel tubes containing insulated electrical conductors are brazed at a low temperature to a copper coated stainless steel sealing block with a gold-copper eutectic. This produces an effective seal without using flux or damaging the electrical conductors.

  12. Cellulose nanofibers use in coated paper

    NASA Astrophysics Data System (ADS)

    Richmond, Finley

    Cellulose Nanofibers (CNF) are materials that can be obtained by the mechanical breakdown of natural fibers. CNF have the potential to be produced at low cost in a paper mill and may provide novel properties to paper, paper coatings, paints, or other products. However, suspensions have a complex rheology even at low solid contents. To be able to coat, pump, or mix CNF at moderate solids, it is critical to understand the rheology of these suspensions and how they flow in process equipment; current papers only report the rheology up to 6% solids. Few publications are available that describe the coating of CNF onto paper or the use of CNF as an additive into a paper coating. The rheology of CNF suspensions and coatings that contain CNF were characterized with parallel-disk geometry in a controlled stress rheometer. The steady shear viscosity, the complex viscosity, the storage modulus, and the yield stress were determined for the range of solids or concentrations (2.5-10.5%). CNF were coated onto paper with a laboratory rod coater, a size press and a high speed cylindrical laboratory coater (CLC). For each case, the coat weights were measures and the properties of the papers were characterized. CNF water base suspension was found to be a shear thinning with a power law index of around 0.1. Oscillatory tests showed a linear viscoelastic region at low strains and significant storage and loss moduli even at low solids. The Cox Merz rule does not hold for CNF suspensions or coating formulations that contain CNF with complex viscosities that are about 100 times larger than the steady shear viscosities. Paper coating formulations that contain CNF were found to have viscosities and storage and loss moduli that are over ten times larger than coatings that contain starch at similar solids. CNF suspensions were coated on papers with low amount transferred on paper either at high solids or high nip loadings. The amount transferred appears to be controlled by an interaction of

  13. Pericellular coat of chick embryo chondrocytes: structural role of hyaluronate

    PubMed Central

    1984-01-01

    Chondrocytes produce large pericellular coats in vitro that can be visualized by the exclusion of particles, e.g., fixed erythrocytes, and that are removed by treatment with Streptomyces hyaluronidase, which is specific for hyaluronate. In this study, we examined the kinetics of formation of these coats and the relationship of hyaluronate and proteoglycan to coat structure. Chondrocytes were isolated from chick tibia cartilage by collagenase-trypsin digestion and were characterized by their morphology and by their synthesis of both type II collagen and high molecular weight proteoglycans. The degree of spreading of the chondrocytes and the size of the coats were quantitated at various times subsequent to seeding by tracing phase-contrast photomicrographs of the cultures. After seeding, the chondrocytes attached themselves to the tissue culture dish and exhibited coats within 4 h. The coats reached a maximum size after 3-4 d and subsequently decreased over the next 2-3 d. Subcultured chondrocytes produced a large coat only if passaged before 4 d. Both primary and first passage cells, with or without coats, produced type II collagen but not type I collagen as determined by enzyme-linked immunosorbent assay. Treatment with Streptomyces hyaluronidase (1.0 mU/ml, 15 min), which completely removed the coat, released 58% of the chondroitin sulfate but only 9% of the proteins associated with the cell surface. The proteins released by hyaluronidase were not digestible by bacterial collagenase. Monensin and cycloheximide (0.01-10 microM, 48 h) caused a dose-dependent decrease in coat size that was linearly correlated to synthesis of cell surface hyaluronate (r = 0.98) but not chondroitin sulfate (r = 0.2). We conclude that the coat surrounding chondrocytes is dependent on hyaluronate for its structure and that hyaluronate retains a large proportion of the proteoglycan in the coat. PMID:6501414

  14. Electrospark deposition coatings

    NASA Astrophysics Data System (ADS)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  15. Coated 4340 Steel

    DTIC Science & Technology

    2013-08-26

    plasma vapor NAWCADPAX/TR-2013/252 2 deposition (reference 9), chemical vapor deposition, hot dip galvanizing, anodizing, composite coatings ...electroplating on 4340 steel. Assess the impact of substitute primer and sacrificial coating on corrosion fatigue and SCC, in particular leading ...alternative coatings qualified to MIL-PRE-23377 Class N and an electroplated zinc -nickel alloy passivated with a trivalent chromium solution which is

  16. Electrospark deposition coatings

    SciTech Connect

    Sheely, W.F.

    1986-11-19

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life. (DLC)

  17. Optical coating in space

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1983-01-01

    A technological appraisal of the steps required to approach the goal of in-situ optical coating, cleaning and re-coating the optical elements of a remote telescope in space is reported. Emphasis is placed on the high ultraviolet throughput that a telescope using bare aluminum mirrors would offer. A preliminary design is suggested for an Orbital Coating Laboratory to answer basic technical questions.

  18. Advanced Multifunctional Coating

    DTIC Science & Technology

    2011-08-17

    and UV durability of then current chrome free TT-P-2756 SPTC • Leverage APC technology into SPTC • Coating uses same fluoropolyurethane technology...as APC currently used on C-17 • Leverage recent advances in chrome free corrosion inhibitor technology • State of the art chrome free corrosion...coat exposed metal Aluminum Base Metal Original Finish System Aged APC Topcoat Conversion Coat Chromic Acid Anodize Aluminum Cladding Original Primer

  19. Aircraft surface coatings

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A series of studies in which films and liquid spray-on materials were evaluated in the laboratory for transport aircraft external surface coatings are summarized. Elastomeric polyurethanes were found to best meet requirements. Two commercially available products, CAAPCO B-274 and Chemglaze M313, were subjected to further laboratory testing, airline service evaluations, and drag-measurement flight tests. It was found that these coatings were compatible with the severe operating environment of airlines and that coatings reduced airplane drag. An economic analysis indicated significant dollar benefits to airlines from application of the coatings.

  20. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  1. Oxide coating development

    SciTech Connect

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  2. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, D.J. Jr.; Herman, H.; Burchell, T.D.

    1994-07-26

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1,600 C which transforms the coating to silicon carbide. 3 figs.

  3. Method of fabricating silicon carbide coatings on graphite surfaces

    DOEpatents

    Varacalle, Jr., Dominic J.; Herman, Herbert; Burchell, Timothy D.

    1994-01-01

    The vacuum plasma spray process produces well-bonded, dense, stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries to provide for the excellent wear, corrosion resistance, and high temperature behavior of the fabricated coatings. In this application, silicon metal is deposited on graphite. This invention discloses the optimum processing parameters for as-sprayed coating qualities. The method also discloses the effect of thermal cycling on silicon samples in an inert helium atmosphere at about 1600.degree.C. which transforms the coating to silicon carbide.

  4. Corrosion Embrittlement of Duralumin IV : The Use of Protective Coatings

    NASA Technical Reports Server (NTRS)

    Rawdon, Henry S

    1928-01-01

    Although the corrosion resistance of sheet duralumin can be greatly improved by suitable heat treatment, protection of the surface is still necessary if long life under varied service conditions is to be insured. The coatings used for this purpose may be grouped into three classes: the varnish type of coating, the oxide type produced by a chemical treatment of the surface, and metallic coatings, of which aluminum appears to be the most promising. Since the necessary weather exposure tests are not complete, some of the conclusions regarding the value of various surface coatings are necessarily tentative.

  5. Coating crystalline nuclear waste forms to improve inertness

    SciTech Connect

    Stinton, D.P.; Angelini, P.; Caputo, A.J.; Lackey, W.J.

    1981-01-01

    Crystalline waste forms of high simulated waste loading were successfully coated with layers of pyrolytic carbon and silicon carbide. Sol-gel technology was used to produce microspheres that contained simulated waste. A separate process for cesium immobilization was developed, which loads 5 wt % Cs onto zeolite particles for subsequent coating. The chemical vapor deposition process was developed for depositing thin layers of carbon and silicon carbide onto particles in a fluidized-bed coater. Pyrolytic carbon-coated particles were extremely inert in numerous leach tests. Aqueous leach test results of coated waste forms were below detection limits of such sensitive analytical techniques as atomic absorption and inductively coupled plasma atomic emission.

  6. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    NASA Astrophysics Data System (ADS)

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-01

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  7. Boron nitride nanosheets as oxygen-atom corrosion protective coatings

    SciTech Connect

    Yi, Min; Shen, Zhigang; Zhao, Xiaohu; Liang, Shuaishuai; Liu, Lei

    2014-04-07

    The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

  8. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-12-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres. The preliminary data on the properties of a Au-Cu binary alloy system by SEM and STEM analysis is presented.

  9. Final Project Report G-Plus Windshield Coatings

    SciTech Connect

    Matson, Dean W.; Koram, Kwaku

    2002-08-01

    Samples of Sungate windshield material provided by PPG were analyzed to ascertain failure mechanisms observed at the interface between a copper busbar and the electrically conductive coating in use. Samples of “failed” windshield material were characterized using optical and electron microscopy, as well as surface analysis methods. These were compared to corresponding samples of “good” coatings. The primary failure mechanism of the coated windshield appears to be related to electrical discharges that originate where air-filled gaps are present between the copper busbar and the conductive coating. Gaps are produced by irregularities or wrinkles in the copper busbar that may result from the installation process.

  10. Self-assembled nanolaminate coatings (SV)

    SciTech Connect

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV

  11. Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)

    NASA Technical Reports Server (NTRS)

    Ormiston, T. J.

    1974-01-01

    A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.

  12. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  13. Electrospinning Yarn Formation and Coating

    NASA Astrophysics Data System (ADS)

    Sahbaee Bagherzadeh, Arash

    Electrospinning is a process by which nano polymer fibers can be produced using an electrostatically driven jet of polymer solution. Electrospinning seems to be a relatively simple process for producing nanofibers since it utilizes a few readily available components. On closer examination it is however clearly evident that successful electrospinning involves an understanding of the complex interaction of electrostatic fields, properties of polymer solutions and component design and system geometry. Using grounded plate as a collector causes the uniform electric field in all directions, so the electrostatic forces acting on the fiber have no preferential direction in the plane of the collector, results in a random deposition of the electrospun fibers leading to an isotropic web. For achieving their unique abilities to be useful in devices needs to deposit them in specific location and orientation. In this project a unique needle electrospinning process is described in which nanofibers are continuously fabricated, uniaxially oriented, and twisted to form of a yarn. It is shown that perfectly aligned nanofiber assemblies can be generated by manipulating the electric field. Twist insertion is accomplished by using two stepper motors and associated software. ANSYS/Emag.3-D is used to model the path of the electric field between the needle and the collector and the electrostatic forces acting on a charged nanofiber. The apparatus described, appears to offer advantages over other techniques. Nanofibers need not only be used as webs or yarn in order to attain the performance enhancement of high tech applications, but it is possible to introduce the benefit of nanofiber to regular yarn and other materials, by coating with nanofibers An addition advantage of the present setup is that it is possible to produce continuous fiber hybrid yarn coated with aligned nanofibers along the core yarn axis. With this method it is not only possible to coat regular yarn with aligned

  14. Coatings for fresh fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Coatings (waxes) are applied to apples, citrus, stone fruits, avocados, tomatoes and cucumbers prior to marketing in order to reduce water loss and shrinkage, create a modified atmosphere inside the produce, slow down senescence and ageing, impart shine, and allow for better quality and marketing pr...

  15. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  16. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  17. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  18. Survey of coatings for solar collectors

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E.

    1975-01-01

    Optimum solar selective properties of black chrome require some tailoring of current and time for plating solution being used. Black zinc is produced from high zinc electroplate by subsequent conversion with chromate dip. Measurements have also been made of reflectance of previously known solar selective coatings of black copper and electroplated black nickel.

  19. Coatings for minimally processed fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...

  20. Fact Sheet - Final Amendments to Air Toxics Rule for Miscellaneous Coating Manufacturing

    EPA Pesticide Factsheets

    Fact sheet answering questions concerning National Emission Standards for Hazardous Air Pollutants for Miscellaneous Coating Manufacturing which includes facilities that produce inks, paints and adhesives.