Sample records for ni-particle-dispersed alkaline niobate

  1. Effect of added dispersants on diamond particles in Ni-diamond composites fabricated with electrodeposition

    NASA Astrophysics Data System (ADS)

    Choi, Yongje; Kim, Donghyun; Son, Kyungsik; Lee, Sanghyuk; Chung, Wonsub

    2015-11-01

    The electrodeposition of Ni-diamond composites was investigated to improve the dispersion and adhesion of the diamond particles, and thus, increase the performance of cutting tools. The additives, so called firstclass brighteners, benzoic sulfimide, benzene sulfonamide, and benzene sulfonic acid were used as dispersants to enhance the dispersivity of diamond particles. The dispersivity was analyzed with Image-Pro software, which was used to asses optical microscopy images, and the number of individual diamond particles and area fraction were calculated. In addition, electrochemical tests were performed, including zeta potential and galvanostatic measurements, and the adhesion strengths was tested by evaluating the wear resistance using ball-on-disk tester. The dispersion and adhesion of the diamond particles were improved when benzoic sulfimide was added to the composite plating bath at a concentration of 0.06 g/L. The number of individual diamond particles was 56 EA/mm2, and the weight loss of alumina ball and specimen was 2.88 mg and 0.80 mg, respectively.

  2. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  3. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  4. Dispersion analysis and measurement of potassium tantalate niobate crystals by broadband optical interferometers.

    PubMed

    Ren, Jian

    2017-01-10

    Electro-optic crystals, such as potassium tantalate niobate [KTa1-xNbxO3(KTN)], are enabling materials for many optical devices. Their utility in broadband applications heavily depends on their dispersion property. To this end, an analysis of dispersion mismatch in broadband optical interferometers is first presented. Then a method utilizing polynomial phase fitting to measure the dispersion property of materials composing the arms of an interferometer is introduced. As a demonstration, an interferometry system based on optical coherence tomography (OCT) was built, where, for the first time, the group velocity dispersion of a KTN crystal around 1310 nm was measured and numerically compensated for OCT imaging. Several advantages over a widely used method in OCT, which is based on metric functions, are discussed. The results show the fitting method can provide a more reliable measurement with reduced computation complexity.

  5. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO 2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO 3 ) 2 and organic template-occluded mesoporous SiO 2 . For comparison, supported Ni catalysts on mesoporous SiO 2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N 2 adsorption, X-ray photoelectron spectroscopy, H 2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO 3 ) 2 with template-occluded mesoporous SiO 2 , strong coordination between Ni 2+ and dodecylamine was identified in the Ni(NO 3 ) 2 -HMS system. Additionally, the results of H 2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO 2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H 2 -reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous Si

  6. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  7. Gold particle formation via photoenhanced deposition on lithium niobate

    NASA Astrophysics Data System (ADS)

    Zaniewski, A. M.; Meeks, V.; Nemanich, R. J.

    2017-05-01

    In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E-8M to 9E-7M) and high (1E-5M to 1E-3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E-8 to 1E-3M).

  8. Tantalo-Niobate from the Apollo-17 Regolith

    NASA Astrophysics Data System (ADS)

    Mokhov, A. V.; Kartashov, P. M.; Rybchuk, A. P.; Gornostaeva, T. A.; Bogatikov, O. A.

    2018-01-01

    Particles of tantalo-niobate of the ferrotantalite-manganotantalite series are discovered for the first time in two lunar regolith fragments delivered by the Apollo-17 mission. Allochtonous and autochtonous mineralization that accompanies tantalo-niobate in the regolith is described. An attempt is made to explain the formation of tantalite in anorthosites of the continental region of the Moon.

  9. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  10. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  11. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  12. Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion.

    PubMed

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong; Bache, Morten

    2014-05-19

    We numerically investigate self-defocusing solitons in a lithium niobate (LN) waveguide designed to have a large refractive index (RI) change. The waveguide evokes strong waveguide dispersion and all-normal dispersion is found in the entire guiding band spanning the near-IR and the beginning of the mid-IR. Meanwhile, a self-defocusing nonlinearity is invoked by the cascaded (phase-mismatched) second-harmonic generation under a quasi-phase-matching pitch. Combining this with the all-normal dispersion, mid-IR solitons can form and the waveguide presents the first all-nonlinear and solitonic device where no linear dispersion (i.e. non-solitonic) regimes exist within the guiding band. Soliton compressions at 2 μm and 3 μm are investigated, with nano-joule single cycle pulse formations and highly coherent octave-spanning supercontinuum generations. With an alternative design on the waveguide dispersion, the soliton spectral tunneling effect is also investigated, with which few-cycle pico-joule pulses at 2 μm are formed by a near-IR pump.

  13. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  14. Highly linear ring modulator from hybrid silicon and lithium niobate.

    PubMed

    Chen, Li; Chen, Jiahong; Nagy, Jonathan; Reano, Ronald M

    2015-05-18

    We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz(2/3) and 87.6 dB Hz(2/3) at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

  15. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  16. Magnetic properties of Ni nanoparticles dispersed in silica prepared by high-energy ball milling

    NASA Astrophysics Data System (ADS)

    González, E. M.; Montero, M. I.; Cebollada, F.; de Julián, C.; Vicent, J. L.; González, J. M.

    1998-04-01

    We analyze the magnetic properties of mechanically ground nanosized Ni particles dispersed in a SiO2 matrix. Our magnetic characterization of the as-milled samples show the occurrence of two blocking processes and that of non-monotonic milling time evolutions of the magnetic-order temperature, the high-field magnetization and the saturation coercivity. The measured coercivities exhibit giant values and a uniaxial-type temperature dependence. Thermal treatment carried out in the as-prepared samples result in a remarkable coercivity reduction and in an increase of the high-field magnetization. We conclude, on the basis of the consideration of a core (pure Ni) and shell (Ni-Si inhomogeneous alloy) particle structure, that the magnetoelastic anisotropy plays the dominant role in determining the magnetic properties of our particles.

  17. The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite.

    PubMed

    Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S

    2017-11-15

    A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L -1 and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L -1 in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L -1 or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  19. Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl After Cryo-milling and Roasting in Nitrogen

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan

    1998-01-01

    In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.

  20. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3.

    PubMed

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-29

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl 2  · 6H 2 O, which is beneficial to improving the de/rehydrogenation performances of MgH 2 . The dehydrogenation onset temperature of MgH 2 -Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH 2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H 2 . Activation energy values of both dehydrogenation (43.4 kJ mol -1 ) and rehydrogenation (37.4 kJ mol -1 ) for MgH 2 -Ni/CMK-3 are greatly enhanced from those of as-milled MgH 2 . Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH 2 by 1.5 kJ mol [Formula: see text] The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  1. Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Zhang, Yao; Chen, Jian; Guo, Xinli; Zhu, Yunfeng; Li, Liquan

    2018-06-01

    Nano-dispersed Ni particles over mesoporous carbon material CMK-3 (Ni/CMK-3) was fabricated by means of impregnation-reduction strategy using precursor NiCl2 · 6H2O, which is beneficial to improving the de/rehydrogenation performances of MgH2. The dehydrogenation onset temperature of MgH2–Ni/CMK-3 is significantly lowered by 170 K from that of pristine MgH2 (around 603 K). Totally 5.9 wt% of hydrogen absorption capacity is liberated within 1 h at a temperature of 423 K under a pressure of 3 MPa. This composite can absorb 3.9 wt% hydrogen even at a temperature of 328 K under 3 MPa H2. Activation energy values of both dehydrogenation (43.4 kJ mol‑1) and rehydrogenation (37.4 kJ mol‑1) for MgH2–Ni/CMK-3 are greatly enhanced from those of as-milled MgH2. Ni/CMK-3 also slightly destabilizes the dehydrogenation of MgH2 by 1.5 kJ mol {{{{H}}}2}-1. The enhanced performances can be attributed to the synergistic effects of both destabilization and activation from nano-dispersed Ni particles.

  2. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium

    NASA Astrophysics Data System (ADS)

    Abdel Rahim, M. A.; Abdel Hameed, R. M.; Khalil, M. W.

    The use of Ni as a catalyst for the electro-oxidation of methanol in alkaline medium was studied by cyclic voltammetry. It was found that only Ni dispersed on graphite shows a catalytic activity towards methanol oxidation but massive Ni does not. Ni was dispersed on graphite by the electro-deposition from acidic NiSO 4 solution using potentiostatic and galvanostatic techniques. The catalytic activity of the C/Ni electrodes towards methanol oxidation was found to vary with the amount of electro-deposited Ni. The dependence of the oxidation current on methanol concentration and scan rate was discussed. It was concluded from the electro-chemical measurements and SEM analysis that methanol oxidation starts as Ni-oxide is formed on the electrode surface.

  3. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni-P/BN(h) composite coatings

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-I.; Hou, Kung-Hsu; Ger, Ming-Der; Wang, Gao-Liang

    2015-12-01

    Ni-P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni-P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni-P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni-P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni-P composites is approximately 10 times higher than Ni-P coating.

  4. Dispersal of sticky particles

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana; Kumar, Sanjeev

    2007-12-01

    In this paper, we show through simulations that when sticky particles are broken continually, particles are dispersed into fine dust only if they are present in a narrow range of volume fractions. The upper limit of this range is 0.20 in the 2D and 0.10 in the 3D space. An increase in the dimensionality of space reduces the upper limit nearly by a factor of two. This scaling holds for dispersal of particles in hyperdimensional space of dimensions up to ten, the maximum dimension studied in this work. The maximum values of volume fractions obtained are significantly lower than those required for close packing and random packing of discs in 2D and spheres in 3D space. These values are also smaller than those required for critical phenomena of cluster percolation. The results obtained are attributed to merger cascades of sticky particles, triggered by breakup events. A simple theory that incorporates this cascade is developed to quantitatively explain the observed scaling of the upper limit with the dimensionality of space. The theory also captures the dynamics of the dispersal process in the corresponding range of particle volume fractions. The theory suggests that cascades of order one and two predominantly decide the upper limit for complete dispersal of particles.

  5. Single-particle dispersion in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Qingqing; Xiao, Zuoli

    2018-04-01

    Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.

  6. The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl

    NASA Technical Reports Server (NTRS)

    Jha, S. C.; Ray, R.

    1990-01-01

    An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.

  7. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  8. In situ assembly of well-dispersed Ni nanoparticles on silica nanotubes and excellent catalytic activity in 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Shenghuan; Gai, Shili; He, Fei; Ding, Shujiang; Li, Lei; Yang, Piaoping

    2014-09-01

    The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni/SNTs makes it easy to recycle for reuse.The easy aggregation nature of ferromagnetic nanoparticles (NPs) prepared by conventional routes usually leads to a large particle size and low loading, which greatly limits their applications to the reduction of 4-nitrophenol (4-NP). Herein, we developed a novel in situ thermal decomposition and reduction strategy to prepare Ni nanoparticles/silica nanotubes (Ni/SNTs), which can markedly prevent the aggregation and growth of Ni NPs, resulting in an ultra-small particle size (about 6 nm), good dispersion and especially high loading of Ni NPs. It was found that Ni/SNTs, which have a high specific surface area (416 m2 g-1), exhibit ultra-high catalytic activity in the 4-NP reduction (complete reduction of 4-NP within only 60 s at room temperature), which is superior to most noble metal (Au, Pt, and Pd) supported catalysts. Ni/SNTs still showed high activity even after re-use for several cycles, suggesting good stability. In particular, the magnetic property of Ni

  9. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-07-07

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  10. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-01-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  11. Reformation of casein particles from alkaline-disrupted casein micelles.

    PubMed

    Huppertz, Thom; Vaia, Betsy; Smiddy, Mary A

    2008-02-01

    In this study, the properties of casein particles reformed from alkaline disrupted casein micelles were studied. For this purpose, micelles were disrupted completely by increasing milk pH to 10.0, and subsequently reformed by decreasing milk pH to 6.6. Reformed casein particles were smaller than native micelles and had a slightly lower zeta-potential. Levels of ionic and serum calcium, as well as rennet coagulation time did not differ between milk containing native micelles or reformed casein particles. Ethanol stability and heat stability, >pH 7.0, were lower for reformed casein particles than native micelles. Differences in heat stability, ethanol stability and zeta-potential can be explained in terms of the influence of increased concentrations of sodium and chloride ions in milk containing reformed casein particles. Hence, these results indicate that, if performed in a controlled manner, casein particles with properties closely similar to those of native micelles can be reformed from alkaline disrupted casein micelles.

  12. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  13. New ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit

    1985-07-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  14. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  15. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  16. Heteromorphic NiCo2S4/Ni3S2/Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution.

    PubMed

    Liu, Hui; Ma, Xiao; Rao, Yuan; Liu, Yang; Liu, Jialiang; Wang, Luyang; Wu, Mingbo

    2018-04-04

    Considerable works have been devoted on developing high-efficiency nonplatinum electrocatalysts for hydrogen evolution reaction (HER). Herein, 3D heteromorphic NiCo 2 S 4 /Ni 3 S 2 nanosheets network has been constructed on Ni foam (denoted as NiCo 2 S 4 /Ni 3 S 2 /NF) serving as a self-standing electrocatalyst through directly thermal sulfurization of a single-source NiCo-layered double hydroxide precursor. The resultant NiCo 2 S 4 /Ni 3 S 2 /NF electrode exhibits outstanding electrocatalytic HER performance with an extremely low onset overpotential of 15 mV and long-term durability in alkaline solution. Such enhanced HER performance can be credited to (1) the massive exposed active sites provided by mixed transition metal chalcogenides (NiCo 2 S 4 and Ni 3 S 2 ), (2) the strong interfacial interaction at NiCo 2 S 4 /Ni 3 S 2 heterojunction interfaces with the strengthened H binding, and (3) the porous highly conductive Ni foam substrate with accelerated electron transfer. This work opens up a new direction to fabricate effective and non-noble-metal electrodes for water splitting and hydrogen generation.

  17. Genotyping by alkaline dehybridization using graphically encoded particles.

    PubMed

    Zhang, Huaibin; DeConinck, Adam J; Slimmer, Scott C; Doyle, Patrick S; Lewis, Jennifer A; Nuzzo, Ralph G

    2011-03-01

    This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  19. Preparation and properties of TiC-Ni cermets using Ni-plated TiC

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-04-01

    TiC powders were coated with Ni by a chemical plating technique and the pressed compacts sintered at 1623K. The density of the sintered bodies was 98-99%. Compared with mechanically-mixed powder, Ni-plated TiC powders gave a more uniform microstructure in which TiC particles were well dispersed in the Ni matrix. The cermets exhibited ductile fracture for TiC-70 vol.% Ni and brittle fracture for TiC-30 vol.% Ni. The flexural strength was improved by the homogeneous dispersion of TiC. The thermal expansion coefficient increased with a decrease in Ni content, following a nearly linear law of mixtures on the basis of volume fractions of pure TiC and Ni.

  20. Study of the preparation of NI-Mn-Zn ferrite using spent NI-MH and alkaline Zn-Mn batteries

    NASA Astrophysics Data System (ADS)

    Xi, Guoxi; Xi, Yuebin; Xu, Huidao; Wang, Lu

    2016-01-01

    Magnetic nanoparticles of Ni-Mn-Zn ferrite have been prepared by a sol-gel method making use of spent Ni-MH and Zn-Mn batteries as source materials. Characterization by X-ray diffraction was carried out to study the particle size. The presence of functional groups was identified by Fourier transform infrared spectroscopy. From studies by thermogravimetry and differential scanning calorimetry, crystallization occurred at temperatures above 560 °C. The magnetic properties of the final products were found to be directly influenced by the average particle size of the product. The Ms values increase and the Hc values decrease as the size of the Ni-Mn-Zn ferrite particles increases.

  1. The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition.

    PubMed

    Weng, Xiaojun; Burke, Robert A; Redwing, Joan M

    2009-02-25

    The structure and chemistry of the catalyst particles that terminate GaN nanowires grown by Ni-assisted metal-organic chemical vapor deposition were investigated using a combination of electron diffraction, high-resolution transmission electron microscopy, and x-ray energy dispersive spectrometry. The crystal symmetry, lattice parameter, and chemical composition obtained reveal that the catalyst particles are Ni(3)Ga with an ordered L 1(2) structure. The results suggest that the catalyst is a solid particle during growth and therefore favor a vapor-solid-solid mechanism for the growth of GaN nanowires under these conditions.

  2. Effect of particle morphology of Ni on the mechanical behavior of AZ91E-Ni coated nano Al2O3 composites

    NASA Astrophysics Data System (ADS)

    Sameer Kumar, D.; Suman, K. N. S.; Poddar, Palash

    2017-06-01

    The properties of any composite always depend on the bonding between the matrix and reinforcement phases. One way of improving the wettability of reinforcement in a matrix is to apply a layer of coating on reinforcing particles. The present study aims at developing Ni coating on nano Al2O3 ceramic particles and dispersing them in AZ91E magnesium matrix material. The electroless plating method has been employed to coat the particles and semi solid stir casting technique was adopted to prepare the composites. Several weight fractions of dispersed phase are considered to analyze the behavior of the fabricated composites. Field emission scanning electron microscopy (FESEM) and x-ray diffraction analysis has been carried out to investigate the distribution of particles and phase characteristics of the proposed material. The physical and mechanical behavior of the material was examined through density measurements, hardness, elastic modulus, ductility and tensile strength calculations. The metal coating on reinforcement aids to promote metal-metal bonding interface reactions which result in improved properties of the composite. Tensile fractography was carried out under FESEM and presented.

  3. Kinetic Release of Alkalinity from Particle-Containing Oil-in-Water Emulsions

    NASA Astrophysics Data System (ADS)

    Muller, K.; Chapra, S. C.; Ramsburg, A.

    2014-12-01

    Oil-in-water emulsions are typically employed during remediation to promote biotic reduction of contaminants. Emulsions, however, hold promise for encapsulated delivery of many types of active ingredients required for successful site remediation or long-term site stewardship. Our research is currently focused on using alkalinity-containing particles held within oil-in-water emulsions to sustain control of subsurface pH. Here we describe results from laboratory experiments and mathematical modeling conducted to quantify the kinetics associated with the emulsion delivery and alkalinity release process. Kinetically stable oil-in-water emulsions containing (~60 nmCaCO3 or ~100 nm MgO particles) were previously developed using soybean oil and Gum Arabic as a stabilizing agent. Batch and column experiments were employed to assess the accessibility and release of the alkalinity from the emulsion. Successive additions of HCl were used in batch systems to produce several pH responses (pH rebounds) that were subsequently modeled to elucidate release mechanisms and rates for varying emulsion compositions and particle types. Initial results suggest that a linear-driving-force model is generally able to capture the release behavior in the batch system when the temporally-constant, lumped mass-transfer coefficient is scaled by the fraction of particle mass remaining within the droplets. This result suggests that the rate limiting step in the release process may be the interphase transfer of reactive species at the oil-water interface. 1-d column experiments were also completed in order to quantify the extent and rate of alkalinity release from emulsion droplets retained in a sandy medium. Alkalinity release from the retained droplets treated a pH 4 influent water for 25-60 pore volumes (the duration depended on particle type and mass loading), and the cessation in treatment corresponded to exhaustion of the particle mass held within the oil. Column experiments were simulated

  4. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  5. Niobate-based octahedral molecular sieves

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  6. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  7. Effects of Initial Particle Distribution on an Energetic Dispersal of Particles

    NASA Astrophysics Data System (ADS)

    Rollin, Bertrand; Ouellet, Frederick; Koneru, Rahul; Garno, Joshua; Durant, Bradford

    2017-11-01

    Accurate predictions of the late time solid particle cloud distribution ensuing an explosive dispersal of particles is an extremely challenging problem for compressible multiphase flow simulations. The source of this difficulty is twofold: (i) The complex sequence of events taking place. Indeed, as the blast wave crosses the surrounding layer of particles, compaction occurs shortly before particles disperse radially at high speed. Then, during the dispersion phase, complex multiphase interactions occurs between particles and detonation products. (ii) Precise characterization of the explosive and particle distribution is virtually impossible. In this numerical experiment, we focus on the sensitivity of late time particle cloud distributions relative to carefully designed initial distributions, assuming the explosive is well described. Using point particle simulations, we study the case of a bed of glass particles surrounding an explosive. Constraining our simulations to relatively low initial volume fractions to prevent reaching of the close packing limit, we seek to describe qualitatively and quantitatively the late time dependency of a solid particle cloud on its distribution before the energy release of an explosive. This work was supported by the U.S. DoE, NNSA, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  8. Refractive index of colloidal dispersions of spheroidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeten, G.H.

    1980-09-01

    The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.

  9. Evaluation of stochastic particle dispersion modeling in turbulent round jets

    DOE PAGES

    Sun, Guangyuan; Hewson, John C.; Lignell, David O.

    2016-11-02

    ODT (one-dimensional turbulence) simulations of particle-carrier gas interactions are performed in the jet flow configuration. Particles with different diameters are injected onto the centerline of a turbulent air jet. The particles are passive and do not impact the fluid phase. Their radial dispersion and axial velocities are obtained as functions of axial position. The time and length scales of the jet are varied through control of the jet exit velocity and nozzle diameter. Dispersion data at long times of flight for the nozzle diameter (7 mm), particle diameters (60 and 90 µm), and Reynolds numbers (10, 000–30, 000) are analyzedmore » to obtain the Lagrangian particle dispersivity. Flow statistics of the ODT particle model are compared to experimental measurements. It is shown that the particle tracking method is capable of yielding Lagrangian prediction of the dispersive transport of particles in a round jet. In this study, three particle-eddy interaction models (Type-I, -C, and -IC) are presented to examine the details of particle dispersion and particle-eddy interaction in jet flow.« less

  10. Electro-oxidation of methanol in alkaline conditions using Pd-Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    NASA Astrophysics Data System (ADS)

    Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.

    2015-12-01

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  11. Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions.

    PubMed

    Isele-Holder, Rolf E; Mitchell, Wayne; Ismail, Ahmed E

    2012-11-07

    For inhomogeneous systems with interfaces, the inclusion of long-range dispersion interactions is necessary to achieve consistency between molecular simulation calculations and experimental results. For accurate and efficient incorporation of these contributions, we have implemented a particle-particle particle-mesh Ewald solver for dispersion (r(-6)) interactions into the LAMMPS molecular dynamics package. We demonstrate that the solver's O(N log N) scaling behavior allows its application to large-scale simulations. We carefully determine a set of parameters for the solver that provides accurate results and efficient computation. We perform a series of simulations with Lennard-Jones particles, SPC/E water, and hexane to show that with our choice of parameters the dependence of physical results on the chosen cutoff radius is removed. Physical results and computation time of these simulations are compared to results obtained using either a plain cutoff or a traditional Ewald sum for dispersion.

  12. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  13. Surface Modification of NiTi Alloy via Cathodic Plasma Electrolytic Deposition and its Effect on Ni Ion Release and Osteoblast Behaviors

    NASA Astrophysics Data System (ADS)

    Yan, Ying; Cai, Kaiyong; Yang, Weihu; Liu, Peng

    2013-07-01

    To reduce Ni ion release and improve biocompatibility of NiTi alloy, the cathodic plasma electrolytic deposition (CPED) technique was used to fabricate ceramic coating onto a NiTi alloy surface. The formation of a coating with a rough and micro-textured surface was confirmed by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. An inductively coupled plasma mass spectrometry test showed that the formed coating significantly reduced the release of Ni ions from the NiTi alloy in simulated body fluid. The influence of CPED treated NiTi substrates on the biological behaviors of osteoblasts, including cell adhesion, cell viability, and osteogenic differentiation function (alkaline phosphatase), was investigated in vitro. Immunofluorescence staining of nuclei revealed that the CPED treated NiTi alloy was favorable for cell growth. Osteoblasts on CPED modified NiTi alloy showed greater cell viability than those for the native NiTi substrate after 4 and 7 days cultures. More importantly, osteoblasts cultured onto a modified NiTi sample displayed significantly higher differentiation levels of alkaline phosphatase. The results suggested that surface functionalization of NiTi alloy with ceramic coating via the CPED technique was beneficial for cell proliferation and differentiation. The approach presented here is useful for NiTi implants to enhance bone osseointegration and reduce Ni ion release in vitro.

  14. Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride

    DOEpatents

    Kravitz, Stanley H.; Hecht, Andrew M.; Sylwester. Alan P.; Bell, Nelson S.

    2008-09-23

    A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

  15. Cathodic Electrodeposition of Ni-Mo on Semiconducting NiFe2 O4 for Photoelectrochemical Hydrogen Evolution in Alkaline Media.

    PubMed

    Wijten, Jochem H J; Jong, Ronald P H; Mul, Guido; Weckhuysen, Bert M

    2018-04-25

    Photocathodes for hydrogen evolution from water were made by electrodeposition of Ni-Mo layers on NiFe 2 O 4 substrates, deposited by spin coating on F:SnO 2 -glass. Analysis confirmed the formation of two separate layers, without significant reduction of NiFe 2 O 4 . Bare NiFe 2 O 4 was found to be unstable under alkaline conditions during (photo)electrochemistry. To improve the stability significantly, the deposition of a bifunctional Ni-Mo layer through a facile electrodeposition process was performed and the composite electrodes showed stable operation for at least 1 h. Moreover, photocurrents up to -2.1 mA cm -2 at -0.3 V vs. RHE were obtained for Ni-Mo/NiFe 2 O 4 under ambient conditions, showing that the new combination functions as both a stabilizing and catalytic layer for the photoelectrochemical evolution of hydrogen. The photoelectrochemical response of these composite electrodes decreased with increasing NiFe 2 O 4 layer thickness. Transient absorption spectroscopy showed that the lifetime of excited states is short and on the ns timescale. An increase in lifetime was observed for NiFe 2 O 4 of large layer thickness, likely explained by decreasing the defect density in the primary layer(s), as a result of repetitive annealing at elevated temperature. The photoelectrochemical and transient absorption spectroscopy results indicated that a short charge carrier lifetime limits the performance of Ni-Mo/NiFe 2 O 4 photocathodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 1300 K compressive properties of several dispersion strengthened NiAl materials

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Gaydosh, D. J.; Kumar, K. S.

    1990-01-01

    To examine the potential of rapid solidification technology (RST) as a means to fabricate dispersion-strengthened aluminides, cylindrical compression samples were machined from the gauge section of their tensile specimens and tested in air at 1300 K. While microscopy indicates that RST can produce fine dispersions of TiB2, TiC and HfC in a NiAl matrix, the mechanical property data reveal that only HfC successfully strengthens the intermetallic matrix. The high stress exponents (above 10) and/or independence of strain rate on stress for NiAl-HfC materials suggest elevated temperature mechanical behavior similar to that found in oxide dispersion-strengthened alloys. Furthermore, an apparent example of departure side pinning has been observed, and as such, it is indicative of a threshold stress for creep.

  17. METHOD OF INCREASING THE DISPERSIBILITY OF SLURRY PARTICLES

    DOEpatents

    McBride, J.P.

    1959-12-15

    A method is described for increasing the dispersibility of metallic oxide particles, particularly thorium oxide, in slurries. Organo-silicon compounds, such as organosilicon halides and silicate esters, are deposited on the surface of the oxide particles. A firing step conducted at temperatures of 600 to 1200 deg C removes the organic groups leaving a surface coating of silica, which provides the desired increase in particle dispersibility.

  18. Polymer-Particle Nanocomposites: Size and Dispersion Effects

    NASA Astrophysics Data System (ADS)

    Moll, Joseph

    Polymer-particle nanocomposites are used in industrial processes to enhance a broad range of material properties (e.g. mechanical, optical, electrical and gas permeability properties). This dissertation will focus on explanation and quantification of mechanical property improvements upon the addition of nanoparticles to polymeric materials. Nanoparticles, as enhancers of mechanical properties, are ubiquitous in synthetic and natural materials (e.g. automobile tires, packaging, bone), however, to date, there is no thorough understanding of the mechanism of their action. In this dissertation, silica (SiO2) nanoparticles, both bare and grafted with polystyrene (PS), are studied in polymeric matrices. Several variables of interest are considered, including particle dispersion state, particle size, length and density of grafted polymer chains, and volume fraction of SiO2. Polymer grafted nanoparticles behave akin to block copolymers, and this is critically leveraged to systematically vary nanoparticle dispersion and examine its role on the mechanical reinforcement in polymer based nanocomposites in the melt state. Rheology unequivocally shows that reinforcement is maximized by the formation of a transient, but long-lived, percolating polymer-particle network with the particles serving as the network junctions. The effects of dispersion and weight fraction of filler on nanocomposite mechanical properties are also studied in a bare particle system. Due to the interest in directional properties for many different materials, different means of inducing directional ordering of particle structures are also studied. Using a combination of electron microscopy and x-ray scattering, it is shown that shearing anisotropic NP assemblies (sheets or strings) causes them to orient, one in front of the other, into macroscopic two-dimensional structures along the flow direction. In contrast, no such flow-induced ordering occurs for well dispersed NPs or spherical NP aggregates! This work

  19. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.

    PubMed

    Mu, Wanjun; Li, Xingliang; Liu, Guoping; Yu, Qianhong; Xie, Xiang; Wei, Hongyuan; Jian, Yuan

    2016-01-14

    Radioactive iodine isotopes are released into the environment by the nuclear industry and medical research institutions using radioactive materials, and have negative effects on organisms living within the ecosystem. Thus, safe disposal of radioactive iodine is necessary and crucial. For this reason, the uptake of iodide ions was investigated in Ag2O nanocrystal grafted sodium niobate nanofibers, which were prepared by forming a well-matched phase coherent interface between them. The resulting composite was applied as an efficient adsorbent for I(-) anions by forming an AgI precipitate, which also remained firmly attached to the substrates. Due to their one-dimensional morphology, the new adsorbents can be easily dispersed in liquids and readily separated after purification. This significantly enhances the adsorption efficiency and reduces the separation costs. The change in structure from the pristine sodium niobate to Ag2O anchored sodium niobate and to the used adsorbent was examined by using various characterization techniques. The effects of Ag(+) concentration, pH, equilibration time, ionic strength and competing ions on the iodide ion removal ability of the composite were studied. The Ag2O nanocrystal grafted sodium niobate adsorbent showed a high adsorption capacity and excellent selectivity for I(-) anions in basic solutions. Our results are useful for the further development of improved adsorbents for removing I(-) anions from basic wastewater.

  20. Sn/MWCNT Nanocomposites Fabricated by Ultrasonic Dispersion of Ni-Coated MWCNTs in Molten Tin

    NASA Astrophysics Data System (ADS)

    Billah, Md Muktadir; Chen, Quanfang

    2018-04-01

    Carbon nanotubes (CNTs) are regarded as a desirable filler to develop advanced composites including advanced solders due to their exceptional mechanical properties. However, some issues remain unsolved for metallic composites owing to "wetting" and nonuniform dispersion of CNTs. In this study, electroless nickel coating onto CNTs was used to overcome these issues. Multiwalled carbon nanotubes (MWCNTs) were used for this study, and Ni-coated MWCNTs were dispersed in molten Sn assisted by sonication and compared with MWCNTs without Ni coating. Adding 3 wt.% Ni-coated MWCNTs, which corresponds to 0.6 wt.% pure CNTs, resulted in an increase in tensile strength by 95% and hardness by 123%. Nickel coating also prevented separation of the CNTs from the molten metal due to buoyancy effects, leading to more uniform dispersion.

  1. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-06-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behavior of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, although large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations. In general, particle ignition is a competition between particle heating (which is influenced by particle morphology, size, number density and the local thermodynamic history) and expansion cooling of the products.

  2. Effect of Particle Morphology on the Reactivity of Explosively Dispersed Titanium Particles

    NASA Astrophysics Data System (ADS)

    Frost, David L.; Cairns, Malcolm; Goroshin, Samuel; Zhang, Fan

    2009-12-01

    The effect of particle morphology on the reaction of titanium (Ti) particles explosively dispersed during the detonation of either cylindrical or spherical charges has been investigated experimentally. The explosive charges consisted of packed beds of Ti particles saturated with nitromethane. The reaction behaviour of irregularly-shaped Ti particles in three size ranges is compared with tests with spherical Ti particles. The particle reaction is strongly dependent on particle morphology, e.g., 95 μm spherical Ti particles failed to ignite (in cylinders up to 49 mm in dia), whereas similarly sized irregular Ti particles readily ignited. For irregular particles, the uniformity of ignition on the particle cloud surface was almost independent of particle size, but depended on charge diameter. As the charge diameter was reduced, ignition in the conically expanding particle cloud occurred only at isolated spots or bands. For spherical charges, whereas large irregular Ti particles ignited promptly and uniformly throughout the particle cloud, the smallest particles dispersed nonuniformly and ignition occurred at isolated locations after a delay. Hence the charge geometry, as well as particle morphology, influences the reaction behaviour of the particles.

  3. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  4. Properties of barium strontium titanate and niobate nanoparticles produced in gas discharge

    NASA Astrophysics Data System (ADS)

    Plyaka, Pavel; Kazaryan, Mishik; Pavlenko, Anatoly

    2018-03-01

    Dust particles produced in the gas-discharge plasma by barium-strontium titanate and niobate targets sputtering have been investigated in the paper. Particles shape, size and chemical composition were identified. It have been established by Raman scattering investigation and X-ray structure analysis that a part of the collected dust particles retained original crystal structure of the sputtering target. For electro-physical investigations two discs were formed by pressuring from produced particles, and electrodes were deposited on disc flat surface. Capacitance and dielectric loss temperature dependences measurement resulted in the frequency range proving the ferroelectric properties of assembled nanoparticles, similar to the sputtered material.

  5. Silicone-containing aqueous polymer dispersions with hybrid particle structure.

    PubMed

    Kozakiewicz, Janusz; Ofat, Izabela; Trzaskowska, Joanna

    2015-09-01

    In this paper the synthesis, characterization and application of silicone-containing aqueous polymer dispersions (APD) with hybrid particle structure are reviewed based on available literature data. Advantages of synthesis of dispersions with hybrid particle structure over blending of individual dispersions are pointed out. Three main processes leading to silicone-containing hybrid APD are identified and described in detail: (1) emulsion polymerization of organic unsaturated monomers in aqueous dispersions of silicone polymers or copolymers, (2) emulsion copolymerization of unsaturated organic monomers with alkoxysilanes or polysiloxanes with unsaturated functionality and (3) emulsion polymerization of alkoxysilanes (in particular with unsaturated functionality) and/or cyclic siloxanes in organic polymer dispersions. The effect of various factors on the properties of such hybrid APD and films as well as on hybrid particles composition and morphology is presented. It is shown that core-shell morphology where silicones constitute either the core or the shell is predominant in hybrid particles. Main applications of silicone-containing hybrid APD and related hybrid particles are reviewed including (1) coatings which show specific surface properties such as enhanced water repellency or antisoiling or antigraffiti properties due to migration of silicone to the surface, and (2) impact modifiers for thermoplastics and thermosets. Other processes in which silicone-containing particles with hybrid structure can be obtained (miniemulsion polymerization, polymerization in non-aqueous media, hybridization of organic polymer and polysiloxane, emulsion polymerization of silicone monomers in silicone polymer dispersions and physical methods) are also discussed. Prospects for further developments in the area of silicone-containing hybrid APD and related hybrid particles are presented. Copyright © 2015. Published by Elsevier B.V.

  6. Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators.

    PubMed

    Sun, Xuan; Liang, Hanxiao; Luo, Rui; Jiang, Wei C; Zhang, Xi-Cheng; Lin, Qiang

    2017-06-12

    Recent advance of lithium niobate microphotonic devices enables the exploration of intriguing nonlinear optical effects. We show complex nonlinear oscillation dynamics in high-Q lithium niobate microresonators that results from unique competition between the thermo-optic nonlinearity and the photorefractive effect, distinctive to other device systems and mechanisms ever reported. The observed phenomena are well described by our theory. This exploration helps understand the nonlinear optical behavior of high-Q lithium niobate microphotonic devices which would be crucial for future application of on-chip nonlinear lithium niobate photonics.

  7. Composite Ni-Co-fly ash coatings on 5083 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.

    2011-03-01

    Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.

  8. Ultrafine and highly disordered Ni 2 Fe 1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Song, Junhua; Zhu, Chengzhou

    Nickel iron hydroxides are the most promising non-noble electrocatalysts for oxygen evolution reaction (OER) in alkaline media. By in situ reduction of metal precursors, compositionally controlled three-dimensional (3D) NixFeyB nanofoams (NFs) are synthesized with high surface area and uniformly distributed bimetallic networks. The resultant ultrafine amorphous Ni2Fe1B NFs exhibit extraordinary electrocatalytic performance toward OER and overall water splitting in alkaline media. At a potential as low as 1.42 V (vs. RHE), Ni2Fe1B NFs can deliver a current density of 10 mA/cm2 and show negligible activity loss after 12 hours’ stability test. Even at large current flux of 100 mA/cm2, anmore » ultralow overpotential of 0.27 V is achieved, which is about 0.18 V more negative than benchmark RuO2. Both ex-situ Mӧssbauer spectroscopy and X-ray Absorption Spectroscopy (XAS) reveal a phase separation and transformation for the Ni2Fe1B catalyst during OER process. The evolution of oxidation state and disordered structure of Ni2Fe1B might be a key to the high catalytic performance for OER.« less

  9. Powder fed sheared dispersal particle generator

    NASA Technical Reports Server (NTRS)

    Morrisette, E. L.; Bushnell, D. M. (Inventor)

    1984-01-01

    A particle generating system is described which is capable of breaking up agglomerations of particles and producing a cloud of uniform, submicron-sized particles at high pressure and high flow rates. This is achieved by utilizing a tubular structure which has injection microslits on is periphery to accept and disperse the desired particle feed. By suppling a carrying fluid at a pressure, of approximately twice the ambient pressure of the velocimeter's settling chamber, the microslits operate at choked flow conditions. The shearing action of this choked flow is sufficient to overcome interparticle bonding forces, thereby breaking up the agglomerates of the particles feed into individual particles.

  10. Flower-like NiCo2S4 Hollow Sub-microspheres with Mesoporous Nanoshells Support Pd Nanoparticles for Enhanced Hydrogen Evolution Reaction Electrocatalysis in Both Acidic and Alkaline Conditions.

    PubMed

    Sheng, Guoqing; Chen, Jiahui; Li, Yunming; Ye, Huangqing; Hu, Zhixiong; Fu, Xian-Zhu; Sun, Rong; Huang, Weixin; Wong, Ching-Ping

    2018-06-14

    Flower-like NiCo2S4 hollow sub-microspheres are synthesized through Cu2O templates to support Pd nanoparticles as high-efficiency catalysts for HER. The diameter and shells size of NiCo2S4 hollow sub-microspheres are about 400 nm and 16 nm, respectively. In addition, the surface of shells is constructed by petal-like nanosheets. About 3 nm Pd particles uniformly incorporate with the flower-like NiCo2S4 hollow sub-microsphere to form NiCo2S4/Pd heterostructure. The NiCo2S4/Pd catalysts exhibit significantly lower overpotential of only 87 mV and 83 mV at 10 mA/cm2 for HER in both acidic and alkaline conditions, respectively, relative to NiCo2S4 (247 mV, 226 mV) and Pd (175 mV, 385mV) catalysts. Besides, the NiCo2S4/Pd catalysts also exhibit excellent stability of HER in these two conditions. The superior HER performance of NiCo2S4/Pd might be resulted from the unique architecture of metal nanoparticles anchored on the bimetallic sulfides flower-like hollow sub-microspheres which could provide high surface area, lots of active sites, strong synergetic effect and stable structure.

  11. Dispersal kernel estimation: A comparison of empirical and modelled particle dispersion in a coastal marine system

    NASA Astrophysics Data System (ADS)

    Hrycik, Janelle M.; Chassé, Joël; Ruddick, Barry R.; Taggart, Christopher T.

    2013-11-01

    Early life-stage dispersal influences recruitment and is of significance in explaining the distribution and connectivity of marine species. Motivations for quantifying dispersal range from biodiversity conservation to the design of marine reserves and the mitigation of species invasions. Here we compare estimates of real particle dispersion in a coastal marine environment with similar estimates provided by hydrodynamic modelling. We do so by using a system of magnetically attractive particles (MAPs) and a magnetic-collector array that provides measures of Lagrangian dispersion based on the time-integration of MAPs dispersing through the array. MAPs released as a point source in a coastal marine location dispersed through the collector array over a 5-7 d period. A virtual release and observed (real-time) environmental conditions were used in a high-resolution three-dimensional hydrodynamic model to estimate the dispersal of virtual particles (VPs). The number of MAPs captured throughout the collector array and the number of VPs that passed through each corresponding model location were enumerated and compared. Although VP dispersal reflected several aspects of the observed MAP dispersal, the comparisons demonstrated model sensitivity to the small-scale (random-walk) particle diffusivity parameter (Kp). The one-dimensional dispersal kernel for the MAPs had an e-folding scale estimate in the range of 5.19-11.44 km, while those from the model simulations were comparable at 1.89-6.52 km, and also demonstrated sensitivity to Kp. Variations among comparisons are related to the value of Kp used in modelling and are postulated to be related to MAP losses from the water column and (or) shear dispersion acting on the MAPs; a process that is constrained in the model. Our demonstration indicates a promising new way of 1) quantitatively and empirically estimating the dispersal kernel in aquatic systems, and 2) quantitatively assessing and (or) improving regional hydrodynamic

  12. Field induced polarization and magnetization behaviour of Gd-doped lead magnesium niobate ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Adityanarayan, E-mail: apandey@rrcat.gov.in, E-mail: padityanarayan5@gmail.com; Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore – 452013; Gupta, Surya Mohan

    2016-05-23

    Both superparaelectric and superparamagnetic behaviour has been observed in rare earth magnetic ion Gd{sup 3+} doped Lead Magnesium Niobate (Gd-PMN). Field induced polarization and magnetization studies reveal hystresis loss free P-E and M-H loop at 300 K and 5 K, respectively. Temperature dependence of inverse susceptibility plot shows deviation at a temperature “t{sub d}” when fitted with the Curie-Weiss law. This deviation has been attributed to transition from paramagnetic to superparamagnetic behaviour as reported in amorphous Pd-Ni-Fe-P alloys.

  13. Easily Dispersible NiFe2O4/RGO Composite for Microwave Absorption Properties in the X-Band

    NASA Astrophysics Data System (ADS)

    Bateer, Buhe; Zhang, Jianjao; Zhang, Hongchen; Zhang, Xiaochen; Wang, Chunyan; Qi, Haiqun

    2018-01-01

    Composites with good dispersion and excellent microwave absorption properties have important applications. Therefore, an easily dispersible NiFe2O4/reduced graphene oxide (RGO) composite has been prepared conveniently through a simple hydrothermal method. Highly crystalline, small size (about 7 nm) monodispersed NiFe2O4 nanoparticles (NPs) are evenly distributed on the surface of RGO. The microwave absorbability revealed that the NiFe2O4/RGO composite exhibits excellent microwave absorption properties in the X-band (8-12 GHz), and the minimum reflection loss of the NiFe2O4/RGO composite is -27.7 dB at 9.2 GHz. The NiFe2O4/RGO composite has good dispersibility in nonpolar solvent, which facilitates the preparation of stable commercial microwave absorbing coatings. It can be a promising candidate for lightweight microwave absorption materials in many application fields.

  14. Microstructure characteristics of Ni/WC composite cladding coatings

    NASA Astrophysics Data System (ADS)

    Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan

    2016-02-01

    A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.

  15. [Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].

    PubMed

    Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping

    2013-09-01

    To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.

  16. Microscale Interface Synthesis of Ni-B Amorphous Nanoparticles from NiSO4 by Sodium Borohydride Reduction in Microreactor

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Peng, Jinhui; Meng, Binfang; Li, Wei; Liu, Bingguo; Luo, Huilong

    2016-09-01

    Amorphous nanoparticles have attracted a large amount of interest due to their superior catalytic activity and unique selectivity. The Ni-B amorphous nanoparticles were synthesized from aqueous reduction of NiSO4 by sodium borohydride in microscale interface at room temperature. The size, morphology, elemental compositions, and the chemical composition on the surface of Ni-B amorphous nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). All the results showed that the synthesized particles are Ni-B amorphous nanoparticles with uniform in size distribution and having good dispersion. The mean particle diameter of Ni-B amorphous nanoparticles was around 9 nm. The present work provides an alternative synthesis route for the Ni-B amorphous nanoparticles.

  17. PARTICLE SCATTERING OFF OF RIGHT-HANDED DISPERSIVE WAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreiner, C.; Kilian, P.; Spanier, F., E-mail: cschreiner@astro.uni-wuerzburg.de

    Resonant scattering of fast particles off low frequency plasma waves is a major process determining transport characteristics of energetic particles in the heliosphere and contributing to their acceleration. Usually, only Alfvén waves are considered for this process, although dispersive waves are also present throughout the heliosphere. We investigate resonant interaction of energetic electrons with dispersive, right-handed waves. For the interaction of particles and a single wave a variable transformation into the rest frame of the wave can be performed. Here, well-established analytic models derived in the framework of magnetostatic quasi-linear theory can be used as a reference to validate simulationmore » results. However, this approach fails as soon as several dispersive waves are involved. Based on analytic solutions modeling the scattering amplitude in the magnetostatic limit, we present an approach to modify these equations for use in the plasma frame. Thereby we aim at a description of particle scattering in the presence of several waves. A particle-in-cell code is employed to study wave–particle scattering on a micro-physically correct level and to test the modified model equations. We investigate the interactions of electrons at different energies (from 1 keV to 1 MeV) and right-handed waves with various amplitudes. Differences between model and simulation arise in the case of high amplitudes or several waves. Analyzing the trajectories of single particles we find no microscopic diffusion in the case of a single plasma wave, although a broadening of the particle distribution can be observed.« less

  18. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts.

    PubMed

    Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M

    2015-12-22

    A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow

  19. Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions.

    PubMed

    Gao, Wei; Gou, Wangyan; Zhou, Xuemei; Ho, Johnny C; Ma, Yuanyuan; Qu, Yongquan

    2018-01-17

    The interface between electrolytes and electrocatalysts would largely determine their corresponding activity and stability. Herein, modulating the surface characteristics of NiMo nanoparticles by various adsorbed amines gives the tunability on their interfacial properties and subsequently improves their catalytic performance for hydrogen evolution reaction (HER) in alkaline solutions. Diamines can significantly improve their HER activity by decreasing the charge-transfer resistance and modulating the electronic structures of interfacial active sites. Importantly, among various amines, ethylenediamine facilitates the HER activity of NiMo with a remarkable decrease of 268 mV in the overpotential to reach 10 mA cm -2 as compared with that of the unmodified NiMo in 1.0 M KOH. This method provides a novel strategy of regulating the interfacial properties to strengthen the catalytic performance of electrocatalysts.

  20. Single-particle dispersion in stably stratified turbulence

    NASA Astrophysics Data System (ADS)

    Sujovolsky, N. E.; Mininni, P. D.; Rast, M. P.

    2018-03-01

    We present models for single-particle dispersion in vertical and horizontal directions of stably stratified flows. The model in the vertical direction is based on the observed Lagrangian spectrum of the vertical velocity, while the model in the horizontal direction is a combination of a continuous-time eddy-constrained random walk process with a contribution to transport from horizontal winds. Transport at times larger than the Lagrangian turnover time is not universal and dependent on these winds. The models yield results in good agreement with direct numerical simulations of stratified turbulence, for which single-particle dispersion differs from the well-studied case of homogeneous and isotropic turbulence.

  1. Numerical prediction on the dispersion of pollutant particles

    NASA Astrophysics Data System (ADS)

    Osman, Kahar; Ali, Zairi; Ubaidullah, S.; Zahid, M. N.

    2012-06-01

    The increasing concern on air pollution has led people around the world to find more efficient ways to control the problem. Air dispersion modeling is proven to be one of the alternatives that provide economical ways to control the growing threat of air pollution. The objective of this research is to develop a practical numerical algorithm to predict the dispersion of pollutant particles around a specific source of emission. The source selected was a rubber wood manufacturing plant. Gaussian-plume model were used as air dispersion model due to its simplicity and generic application. Results of this study show the concentrations of the pollutant particles on ground level reached approximately 90μg/m3, compared with other software. This value surpasses the limit of 50μg/m3 stipulated by the National Ambient Air Quality Standard (NAAQS) and Recommended Malaysian Guidelines (RMG) set by Environment Department of Malaysia. The results also show high concentration of pollutant particles reading during dru seasons as compared to that of rainy seasons. In general, the developed algorithm is proven to be able to predict particles distribution around emitted source with acceptable accuracy.

  2. Dispersion of fine phosphor particles by newly developed beads mill

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  3. Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media.

    PubMed

    Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-An; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X; Xie, Xi

    2018-05-04

    Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.

  4. Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media

    NASA Astrophysics Data System (ADS)

    Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-an; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X.; Xie, Xi

    2018-05-01

    Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.

  5. An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery.

    PubMed

    Burrola, Samantha; Gonzalez-Guerrero, Maria Jose; Avoundjian, Ani; Gomez, Frank A

    2018-05-29

    In this paper, an alkaline Nickel Oxide Hydroxide/Zinc (NiOOH/Zn) battery featuring a cellulose matrix separator between electrodes is presented. The metallic electrodes and the paper separator are inserted in a layer-by-layer (LbL) assembly that provides mechanical stability to the system resulting in a lightweight and easy-to-use device. The battery was optimized for the amount of NiOOH-ink used at the cathode (11.1 mg/cm 2 ) and thickness of the paper membrane separating the electrodes (360 μm). The battery was able to function using a small volume (75 μL) of 1.5 M potassium hydroxide (KOH) producing a maximum voltage, current density and power density of 1.35 ± 0.05 V, 10.62 ± 0.57 mA/cm², and 0.56 ± 0.01 mW/cm², respectively. The system displayed a maximum current of 23.9 mA and a maximum power of 1.26 mW. Moreover, four batteries connected in series were able to power a small flameless candle for approximately 22 minutes. This work has potential in fulfilling the demands for short-term and lightweight power supplies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. The photoelectrocatalytic activity, long term stability and corrosion performance of NiMo deposited titanium oxide nano-tubes for hydrogen production in alkaline medium

    NASA Astrophysics Data System (ADS)

    Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül

    2017-11-01

    In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.

  7. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium

    NASA Astrophysics Data System (ADS)

    Maiyalagan, T.; Scott, Keith

    Carbon nanofibers (CNF) supported Pd-Ni nanoparticles have been prepared by chemical reduction with NaBH 4 as a reducing agent. The Pd-Ni/CNF catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical voltammetry analysis. TEM showed that the Pd-Ni particles were quite uniformly distributed on the surface of the carbon nanofiber with an average particle size of 4.0 nm. The electro-catalytic activity of the Pd-Ni/CNF for oxidation of ethanol was examined by cyclic voltammetry (CV). The onset potential was 200 mV lower and the peak current density four times higher for ethanol oxidation for Pd-Ni/CNF compared to that for Pd/C. The effect of an increase in temperature from 20 to 60 °C had a great effect on increasing the ethanol oxidation activity.

  8. On the Impact of Collisions on Particle Dispersion in a Shear Layer

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Mosley, John

    1999-11-01

    In this numerical study the impact of collisions on the evolution of a dispersed phase in a gaseous shear layer flow is investigated. The disperse phase consists of spherical particles which may experience two modes of collision: In the first, the collision has no effect on the particles themselves and is simply registered for accounting purposes. In the second, the particles coalesce upon impact into a larger spherical particle. The two phase mixture is assumed to be dilute and hence the impact of the disperse phase on the carrier phase is disabled. The unaveraged evolution of the carrier phase is simulated by using the Lagrangian Vortex Element Method while that of the dispersed phase by computing the trajectories of individual particles. Thus the numerical model is totally Lagrangian and grid-free. Numerical results indicate that collisions are maximized at intermediate Stokes numbers and that for a given volume fraction they increase as the particles get smaller. Coalescence of particles tends to reduce the overall number of collisions in the flow and alters their locus, shifting them predominately upstream. It also has a dramatic impact on dispersion increasing it substantially for the cases that experience even moderate number of collisions.

  9. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  10. Applying dispersive changes to Lagrangian particles in groundwater transport models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  11. Electrochemical investigations of Co3Fe-RGO as a bifunctional catalyst for oxygen reduction and evolution reactions in alkaline media

    NASA Astrophysics Data System (ADS)

    Kumar, Surender; Kumar, Divyaratan; Kishore, Brij; Ranganatha, Sudhakar; Munichandraiah, Nookala; Venkataramanan, Natarajan S.

    2017-10-01

    Nanoparticles of Co3Fe alloy is prepared on reduced graphene oxide (RGO) sheets by modified polyol method. Synthesized alloy particles are characterized by various physicochemical techniques. TEM and SEM pictures showed homogeneously dispersed alloy nanoparticles on the RGO sheets. Electrochemistry of alloy nanoparticles is investigated in alkaline medium. The result shows that oxygen evaluation reaction (OER) activity of Co3Fe-RGO is higher than Pt-black particles. RDE studies in alkaline medium shows that oxygen reduction reaction (ORR) follow four electron pathway. It is suggest that Co3Fe-RGO is an efficient non-precious catalyst for oxygen (ORR/OER) reactions in alkaline electrolyte for PEMFC applications.

  12. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  13. Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2010-01-01

    The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction

  14. Particle dispersion in homogeneous turbulence using the one-dimensional turbulence model

    DOE PAGES

    Sun, Guangyuan; Lignell, David O.; Hewson, John C.; ...

    2014-10-09

    Lagrangian particle dispersion is studied using the one-dimensional turbulence (ODT) model in homogeneous decaying turbulence configurations. The ODT model has been widely and successfully applied to a number of reacting and nonreacting flow configurations, but only limited application has been made to multiphase flows. We present a version of the particle implementation and interaction with the stochastic and instantaneous ODT eddy events. The model is characterized by comparison to experimental data of particle dispersion for a range of intrinsic particle time scales and body forces. Particle dispersion, velocity, and integral time scale results are presented. Moreover, the particle implementation introducesmore » a single model parameter β p , and sensitivity to this parameter and behavior of the model are discussed. Good agreement is found with experimental data and the ODT model is able to capture the particle inertial and trajectory crossing effects. Our results serve as a validation case of the multiphase implementations of ODT for extensions to other flow configurations.« less

  15. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  16. ATE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions

    NASA Astrophysics Data System (ADS)

    Wei, Pei-Kuen; Wang, Way-Seen

    1994-02-01

    A new TE-TM mode splitter with an asymmetric Y-junction structure fabricated by diffusing different materials into y-cut lithium niobate is presented. Randomly polarized light launched into a titanium indiffused waveguide is split into TE and TM modes by two different single-polarization waveguides. The ordinary-polarized waveguide is made by nickel indiffusion and the extraordinary-polarized waveguide by magnesium-oxide induced lithium outdiffusion. The measured extinction ratios are greater than 20 dB for both TE and TM modes. The devices operate over a wide wavelength range and have a large fabrication tolerance.

  17. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, J.; Wang, B.; Parra, A.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  18. Oxide dispersion strengthened nickel produced by nonreactive milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1976-01-01

    It is shown that oxide dispersion strengthened alloys can be produced by a postulated nonreactive milling mechanism whereby the dispersoid is trapped at the interface between welding metal powder particles. This interparticle welding is possible because, without a suitable and sufficiently vigorous chemical reaction between the metal powder particles and the milling fluid, no protective, weld-preventing reaction coating is formed on these particles. Using water as the nonreactive milling fluid, Ni - 1.8-vol % thoria and Ni - 1.8-vol % yttria alloys with 1093 C tensile strengths ranging from 122.3 to 141.5 MN/sq m (17,900 to 20,500 psi) were produced by nonreactive milling.

  19. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    NASA Astrophysics Data System (ADS)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  20. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  1. Phonon dispersion and local density of states in NiPd alloy using modified embedded atom method potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Subodh, E-mail: subodhssgk@gmail.com; Chand, Manesh, E-mail: maneshchand@gmail.com; Dabral, Krishna, E-mail: kmkrishna.dabral@gmail.com

    2016-05-06

    A modified embedded atom method (MEAM) potential model up to second neighbours has been used to calculate the phonon dispersions for Ni{sub 0.55}Pd{sub 0.45} alloy in which Pd is introduced as substitutional impurity. Using the force-constants obtained from MEAM potential, the local vibrational density of states in host Ni and substitutional Pd atoms using Green’s function method has been calculated. The calculation of phonon dispersions of NiPd alloy shows a good agreement with the experimental results. Condition of resonance mode has also been investigated and resonance mode in the frequency spectrum of impurity atom at low frequency is observed.

  2. Foaming in chemical surfactant free aqueous dispersions of anatase (titanium dioxide) particles.

    PubMed

    Pugh, R J

    2007-07-17

    Steady-state dynamic aqueous foams were generated from surfactant-free dispersion of aggregated anatase nanoparticles (in the micrometer size range). In order to tune the particle surfaces, to ensure a critical degree of hydrophobicity (so that they disperse in water and generate foam), the particles were subjected to low-temperature plasma treatment in the presence of a vapor-phase silane coupling agents. From ESCA it was shown that hydrophobization only occurred at a small number of surface sites. Foamability (foam generation) experiments were carried out under well-defined conditions at a range of gas flow rates using the Bikermann Foaming Column.1 The volume of the steady-state foams was determined under constant gas flow conditions, but on removing the gas flow, transient foams with short decay times (<5 s) were observed. The foamability of the steady-state foams was found to be dependent on (a) the time of plasma treatment of the particles (surface hydrophobicity), (b) the particle concentration in the suspension, and (c) the state of dispersion of the particles. High foamability was promoted in the neutral pH regions where the charged particles were highly dispersed. In the low and high pH regions where the particles were coagulated, the foamability was considerably reduced. This behavior was explained by the fact that the large coagula were less easily captured by the bubbles and more easily detached from the interface (during the turbulent foaming conditions) than individual dispersed particles.

  3. Anisotropy in pair dispersion of inertial particles in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Pitton, Enrico; Marchioli, Cristian; Lavezzo, Valentina; Soldati, Alfredo; Toschi, Federico

    2012-07-01

    The rate at which two particles separate in turbulent flows is of central importance to predict the inhomogeneities of particle spatial distribution and to characterize mixing. Pair separation is analyzed for the specific case of small, inertial particles in turbulent channel flow to examine the role of mean shear and small-scale turbulent velocity fluctuations. To this aim an Eulerian-Lagrangian approach based on pseudo-spectral direct numerical simulation (DNS) of fully developed gas-solid flow at shear Reynolds number Reτ = 150 is used. Pair separation statistics have been computed for particles with different inertia (and for inertialess tracers) released from different regions of the channel. Results confirm that shear-induced effects predominate when the pair separation distance becomes comparable to the largest scale of the flow. Results also reveal the fundamental role played by particles-turbulence interaction at the small scales in triggering separation during the initial stages of pair dispersion. These findings are discussed examining Lagrangian observables, including the mean square separation, which provide prima facie evidence that pair dispersion in non-homogeneous anisotropic turbulence has a superdiffusive nature and may generate non-Gaussian number density distributions of both particles and tracers. These features appear to persist even when the effects of shear dispersion are filtered out, and exhibit strong dependency on particle inertia. Application of present results is discussed in the context of modelling approaches for particle dispersion in wall-bounded turbulent flows.

  4. Study of multiple hologram recording in lithium niobate

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Callen, W. R.

    1976-01-01

    The results of a number of theoretical and experimental studies relating to multiple hologram recording in lithium niobate are reported. The analysis of holographic gratings stored in lithium niobate has been extended to cover a more realistic range of physical situations. A new successful dynamic (feedback) theory for describing recording, nondestructive reading, erasure, enhancement, and angular sensitivity has been developed. In addition, the possible architectures of mass data storage systems have been studied.

  5. A Novel Inter Core-Cladding Lithium Niobate Thin Film Coated Fiber Modulator/Sensor

    NASA Technical Reports Server (NTRS)

    Jamison, Tracee L.; Komriech, Phillip; Yu, Chung

    2004-01-01

    A fiber modulator/sensor has been fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125 micron fiber. The proposed design of lithium niobate cylinder fibers can enhance the existing methodology for detecting sound waves under water utilizing the acoustooptic properties of lithium niobate. Upon application of a stress or strain, light propagating inside the core, according to the principle of total internal reflection, escapes, into the cladding because of the photoelastic boundary layer of lithium niobate. Test results of the lithium niobate fiber reveal a reduction in the 1550 nm, 4mW source with applied tension. The source power from an ordinary quartz fiber under the same stress condition remained invariant to applied tension.

  6. Discovery of high-gain stimulated polariton scattering near 4  THz from lithium niobate.

    PubMed

    Chiu, Yu-Chung; Wang, Tsong-Dong; Zhao, Gang; Huang, Yen-Chieh

    2017-12-01

    Lithium niobate is the most popular material for terahertz wave generation via stimulated polariton scattering (SPS), previously known to have a gain peak near 2 THz. Here we report the discovery of another phase-matched gain peak near 4 THz in lithium niobate, which greatly extends the useful gain spectrum of lithium niobate. Despite the relatively high 4 THz absorption in lithium niobate, the 4 THz SPS becomes dominant over the 2 THz one in an intensely pumped short lithium niobate crystal due to less diffraction-induced absorption and mode-area mismatch. We also demonstrate a signal-seeded OTPO that generates 1.4 nJ at 4.2 THz from lithium niobate with 17.5 mJ pump energy.

  7. Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions

    DOE PAGES

    Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.; ...

    2016-11-29

    Here, iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reac-tion (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron-nickel nanoparticles were synthesized using a multi-step procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe-Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm 2, the overpotential for monometallic iron and nickel nanoparticles was 421 mV and 476 mV, respectively, while the bimetallic Fe-Nimore » nanoparticles had a greatly reduced overpotential of 256 mV. At 10 mA/cm 2, bimetallic Fe-Ni nanoparticles had an overpotential of 311 mV. Spec-troscopy characterization suggests that the primary phase of nickel in Fe-Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.« less

  8. Mutagenicity of diesel exhaust particles and oil shale particles dispersed in lecithin surfactant.

    PubMed

    Wallace, W E; Keane, M J; Hill, C A; Xu, J; Ong, T M

    1987-01-01

    Diesel exhaust particulate material from exhaust pipe scrapings of two trucks, diluted automobile diesel exhaust particulate material collected on filters, and two oil shale ores were prepared for the Ames mutagenicity assay by dichloromethane (DCM) extraction, by dispersion into 0.85% saline, or by dispersion into dipalmitoyl lecithin (DPL) emulsion in saline. Salmonella typhimurium TA98 was used to detect frameshift mutagens in the samples. Samples of diesel soot gave positive mutagenic responses with both DCM extraction and DPL dispersion, with the DPL dispersion giving higher results in some cases. The results suggest that possible mutagens associated with inhaled particles may be dispersed or solubilized into the phospholipid component of pulmonary surfactant and become active in such a phase.

  9. Fabrication and characterization of nano-Y2O3 and Al2O3 dispersed W-Ni alloys by mechanical alloying and pressureless conventional sintering

    NASA Astrophysics Data System (ADS)

    Talekar, V. R.; Patra, A.; Karak, S. K.

    2018-03-01

    Nano Y2O3 and Al2O3 dispersed W-Ni alloys with nominal composition of W89Ni10 (Y2O3)1 (alloy A), W89Ni10 (Al2O3)1 (alloy B) were mechanically alloyed for 10 h followed by compaction at 0.5 GPa pressure with 5 min of dwell time and conventional sintering at 1400°C with 2 h soaking time in Ar atmosphere with Ar flow rate of 100 ml/min. The microstructure of milled and sintered alloy was investigated using X-ray Diffraction (XRD), Scanning electron Microscopy (SEM), Energy dispersive spectroscopy (EDS) and Elemental mapping. Minimum crystallite size of 31.9 nm and maximum lattice strain, dislocation density of 0.23%, 9.12(1016/m2) respectively was found in alloy A at 10 h of milling. Uneven and coarse particles at 0 h of milling converted to elongated flake shape at 10 h of milling. Bimodal (fine and coarse) particle size distribution is revealed in both the alloys and minimum particle size of 0.69 μm is achieved in 10 h milled alloy A. Evidences of formation of intermetallic phases like Y2WO6, Y6WO12 and Y10W2O21 in sintered alloy A and Al2(WO4)3, NiAl10O16, NiAl2O4 and AlWO4 in sintered alloy B were revealed by XRD pattern and SEM micrograph. Minimum grain size of 1.50 μm was recorded in sintered alloy A. Both faceted and spherical W matrix is evident in both the alloys which suggests occurrence of both solid phase and liquid phase sintering. Maximum % relative sintered density and hardness of 85.29% and 5.13 GPa respectively was found in alloy A. Wear study at 20N force at 25 rpm for 15 min on ball on plate wear tester revealed that minimum wear depth (48.99 μm) and wear track width (272 μm) was found for alloy A as compared to alloy B.

  10. Immunoelectron microscopic double labeling of alkaline phosphatase and penicillinase with colloidal gold in frozen thin sections of Bacillus licheniformis 749/C.

    PubMed Central

    Guan, T; Ghosh, A; Ghosh, B K

    1985-01-01

    The subcellular distribution of alkaline phosphatase and penicillinase was determined by double labeling frozen thin sections of Bacillus licheniformis 749/C with colloidal gold-immunoglobulin G (IgG). Antipenicillinase and anti-alkaline phosphatase antibodies were used to prepare complexes with 5- and 15-nm colloidal gold particles, respectively. The character of the labeling of membrane-bound alkaline phosphatase and penicillinase was different: the immunolabels for alkaline phosphatase (15-nm particles) were bound to a few sites at the inner surface of the plasma membrane, and the gold particles formed clusters of various sizes at the binding sites; the immunolabels for penicillinase (5-nm particles), on the other hand, were bound to the plasma membrane in a dispersed and random fashion. In the cytoplasm, immunolabels for both proteins were distributed randomly, and the character of their binding was similar. The labeling was specific: pretreating the frozen thin sections with different concentrations of anti-alkaline phosphatase or penicillinase blocked the binding of the immunolabel prepared with the same antibody. Binding could be fully blocked by pretreatment with 800 micrograms of either antibody per ml. Images PMID:3876329

  11. Giant piezoelectricity in potassium-sodium niobate lead-free ceramics.

    PubMed

    Wang, Xiaopeng; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Cheng, Xiaojing; Zheng, Ting; Zhang, Binyu; Lou, Xiaojie; Wang, Xiangjian

    2014-02-19

    Environment protection and human health concern is the driving force to eliminate the lead from commercial piezoelectric materials. In 2004, Saito et al. [ Saito et al., Nature , 2004 , 432 , 84 . ] developed an alkali niobate-based perovskite solid solution with a peak piezoelectric constant d33 of 416 pC/N when prepared in the textured polycrystalline form, intriguing the enthusiasm of developing high-performance lead-free piezoceramics. Although much attention has been paid on the alkali niobate-based system in the past ten years, no significant breakthrough in its d33 has yet been attained. Here, we report an alkali niobate-based lead-free piezoceramic with the largest d33 of ∼490 pC/N ever reported so far using conventional solid-state method. In addition, this material system also exhibits excellent integrated performance with d33∼390-490 pC/N and TC∼217-304 °C by optimizing the compositions. This giant d33 of the alkali niobate-based lead-free piezoceramics is ascribed to not only the construction of a new rhombohedral-tetragonal phase boundary but also enhanced dielectric and ferroelectric properties. Our finding may pave the way for "lead-free at last".

  12. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.

    PubMed

    Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna

    2010-08-03

    We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.

  13. Hydrogen production via reforming of biogas over nanostructured Ni/Y catalyst: Effect of ultrasound irradiation and Ni-content on catalyst properties and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharifi, Mahdi; Reactor and Catalysis Research Center; Haghighi, Mohammad, E-mail: haghighi@sut.ac.ir

    2014-12-15

    Highlights: • Synthesis of nanostructured Ni/Y catalyst by sonochemical and impregnation methods. • Enhancement of size distribution and active phase dispersion by employing sonochemical method. • Evaluation of biogas reforming over Ni/Y catalyst with different Ni-loadings. • Preparation of highly active and stable catalyst with low Ni content for biogas reforming. • Getting H{sub 2}/CO very close to equilibrium ratio by employing sonochemical method. - Abstract: The effect of ultrasound irradiation and various Ni-loadings on dispersion of active phase over zeolite Y were evaluated in biogas reforming for hydrogen production. X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray,more » Brunauer–Emmett–Teller, Fourier transform infrared analysis and TEM analysis were employed to observe the characteristics of nanostructured catalysts. The characterizations implied that utilization of ultrasound irradiation enhanced catalyst physicochemical properties including high dispersion of Ni on support, smallest particles size and high catalyst surface area. The reforming reactions were carried out at GHSV = 24 l/g.h, P = 1 atm, CH{sub 4}/CO{sub 2} = 1 and temperature range of 550–850 °C. Activity test displayed that ultrasound irradiated Ni(5 wt.%)/Y had the best performance and the activity remained stable during 600 min. Furthermore, the proposed reaction mechanism showed that there are three major reaction channels in biogas reforming.« less

  14. Mixing by Unstirring: Hyperuniform Dispersion of Interacting Particles upon Chaotic Advection

    NASA Astrophysics Data System (ADS)

    Weijs, Joost H.; Bartolo, Denis

    2017-07-01

    We show how to achieve both fast and hyperuniform dispersions of particles in viscous fluids. To do so, we first extend the concept of critical random organization to chaotic drives. We show how palindromic sequences of chaotic advection cause microscopic particles to effectively interact at long range, thereby inhibiting critical self-organization. Based on this understanding we go around this limitation and design sequences of stirring and unstirring which simultaneously optimize the speed of particle spreading and the homogeneity of the resulting dispersions.

  15. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.

    PubMed

    Liu, Jilei; Wang, Jin; Ku, Zhiliang; Wang, Huanhuan; Chen, Shi; Zhang, Lili; Lin, Jianyi; Shen, Ze Xiang

    2016-01-26

    An electrochemical energy storage system with high energy density, stringent safety, and reliability is highly desirable for next-generation energy storage devices. Here an aqueous rechargeable alkaline CoxNi2-xS2 // TiO2 battery system is designed by integrating two reversible electrode processes associated with OH(-) insertion/extraction in the cathode part and Li ion insertion/extraction in the anode part, respectively. The prototype CoxNi2-xS2 // TiO2 battery is able to deliver high energy/power densities of 83.7 Wh/kg at 609 W/kg (based on the total mass of active materials) and good cycling stabilities (capacity retention 75.2% after 1000 charge/discharge cycles). A maximum volumetric energy density of 21 Wh/l (based on the whole packaged cell) has been achieved, which is comparable to that of a thin-film battery and better than that of typical commercial supercapacitors, benefiting from the unique battery and hierarchical electrode design. This hybrid system would enrich the existing aqueous rechargeable LIB chemistry and be a promising battery technology for large-scale energy storage.

  16. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  17. NiCo2O4 particles with diamond-shaped hexahedron structure for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yanfang; Hou, Xiaojuan; Zhang, Zengxing; Hai, Zhenyin; Xu, Hongyan; Cui, Danfeng; Zhuiykov, Serge; Xue, Chenyang

    2018-04-01

    Nickel cobalt oxide (NiCo2O4) particles with a diamond-shaped hexahedral porous sheet structure are successfully synthesized by a facile hydrothermal method, followed by calcination in one step. NiCo2O4-I and NiCo2O4-II particles are prepared using the same method with different contents of urea (CO(NH2)2) and ammonium fluoride (NH4F). The different morphologies of the NiCo2O4-I and NiCo2O4-II particles illustrate that CO(NH2)2 and NH4F play an important role in crystal growth. To verify the influence of NH4F and CO(NH2)2 on the morphology of the NiCo2O4 particles, the theory of crystal growth morphology is analyzed. The electrochemical measurements show that NiCo2O4 particles exhibit a high specific capacitance. At a current density of 1.0 mA cm-2, the mass specific capacitances of the NiCo2O4-I and NiCo2O4-II electrodes are 690.75 and 1710.9 F g-1, respectively, in a 6 M KOH aqueous electrolyte. The specific capacitances of the NiCo2O4-I and NiCo2O4-II electrodes remain ∼95.95% and ∼70.58% of the initial capacitance values after 5000 cycles, respectively. According to the two-electrode test, the NiCo2O4-II//AC asymmetric electrodes exhibited an ultrahigh energy density of 64.67 Wh kg-1 at the power density of 12 kW kg-1, demonstrating its excellent application potential as an electrode material for supercapacitors.

  18. Controllable synthesis of layered Co-Ni hydroxide hierarchical structures for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuan, Peng; Zhang, Ning; Zhang, Dan; Liu, Tao; Chen, Limiao; Ma, Renzhi; Qiu, Guanzhou; Liu, Xiaohe

    2016-01-01

    A facile solvothermal method is developed for synthesizing layered Co-Ni hydroxide hierarchical structures by using hexamethylenetetramine (HMT) as alkaline reagent. The electrochemical measurements reveal that the specific capacitances of layered bimetallic (Co-Ni) hydroxides are generally superior to those of layered monometallic (Co, Ni) hydroxides. The as-prepared Co0.5Ni0.5 hydroxide hierarchical structures possesses the highest specific capacitance of 1767 F g-1 at a galvanic current density of 1 A g-1 and an outstanding specific capacitance retention of 87% after 1000 cycles. In comparison with the dispersed nanosheets of Co-Ni hydroxide, layered hydroxide hierarchical structures show much superior electrochemical performance. This study provides a promising method to construct hierarchical structures with controllable transition-metal compositions for enhancing the electrochemical performance in hybrid supercapacitors.

  19. Stoichiometric Lithium Niobate (SLN) Based Linearized Electro-Optic (EO) Modulator

    DTIC Science & Technology

    2006-01-01

    AFRL-SN-RS-TR-2006-15 Final Technical Report January 2006 STOICHIOMETRIC LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO...LITHIUM NIOBATE (SLN) BASED LINEARIZED ELECTRO - OPTIC (EO) MODULATOR 6. AUTHOR(S) Dr Stuart Kingsley, Dr Sri Sriram 5. FUNDING NUMBERS C...SUBJECT TERMS electro - optic modulator, linearization, directional coupler, variable coupling, optical waveguide, Mach-Zehnder, photonic link, lithium

  20. Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution.

    PubMed

    Hua, Wei; Liu, Huanyan; Wang, Jian-Gan; Wei, Bingqing

    2017-12-06

    Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O) x ·MoO x nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O) x and amorphous MoO x , as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm -2 , a low Tafel slope of 54 mV dec -1 , and excellent cycling stability.

  1. Self-Supported Ni(P, O)x·MoOx Nanowire Array on Nickel Foam as an Efficient and Durable Electrocatalyst for Alkaline Hydrogen Evolution

    PubMed Central

    Hua, Wei; Liu, Huanyan

    2017-01-01

    Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution reaction (HER) activity in alkaline solution play an important role in the sustainable production of hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages of Ni(P, O)x and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold, the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent cycling stability. PMID:29210991

  2. Verifying the Rechargeability of Li-CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.

    PubMed

    Zhang, Zhang; Wang, Xin-Gai; Zhang, Xu; Xie, Zhaojun; Chen, Ya-Nan; Ma, Lipo; Peng, Zhangquan; Zhou, Zhen

    2018-02-01

    Li-CO 2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO 2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g -1 , as the air cathode for Li-CO 2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g -1 with low overpotentials at the current density of 100 mA g -1 . Particularly, the Ni-NG cathodes allow to observe the appearance/disappearance of agglomerated Li 2 CO 3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO 2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li-CO 2 batteries. Also, first-principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO 2 , which could guide to design more advantageous catalysts for rechargeable Li-CO 2 batteries.

  3. Understanding micro-diffusion bonding from the fabrication of B4C/Ni composites

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Wen-xian; Chen, Hong-sheng; Li, Yu-li

    2018-03-01

    A Ni-B4C macroscopic diffusion welding couple and a Ni-15wt%B4C composite fabricated by spark plasma sintering (SPS) were used to understand the micro-scale diffusion bonding between metals and ceramics. In the Ni-B4C macroscopic diffusion welding couple a perfect diffusion welding joint was achieved. In the Ni-15wt%B4C sample, microstructure analyses demonstrated that loose structures occurred around the B4C particles. Energy dispersive X-ray spectroscopy analyses revealed that during the SPS process, the process of diffusion bonding between Ni and B4C particles can be divided into three stages. By employing a nano-indentation test, the room-temperature fracture toughness of the Ni matrix was found to be higher than that of the interface. The micro-diffusion bonding between Ni and B4C particles is quite different from the Ni-B4C reaction couple.

  4. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-02-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  5. Cinematographic investigations of the explosively driven dispersion and ignition of solid particles

    NASA Astrophysics Data System (ADS)

    Grégoire, Y.; Sturtzer, M.-O.; Khasainov, B. A.; Veyssière, B.

    2014-07-01

    We present results of an experimental study of blast wave propagation and particle dispersion induced by a free-field detonation of spherical charges made of a 125 g C-4 explosive surrounded by inert or reactive particles. Visualization of the flow was performed with a high-frame-rate video camera. Background oriented Schlieren (BOS) methods were adapted to process the images that allowed the detection of the shock waves. BOS analysis also revealed that particles form agglomerates, which may generate precursor perturbations on the recorded pressure signals. While inert glass particles notably delay the shock, the combustion of aluminium particles can accelerate it, especially if they are small atomized or flaked particles. When a mixture of inert glass particles with reactive particles is dispersed, the agglomerates are formed by coalescence of both materials.

  6. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.S.; Park, H.G.; Hoagland, R.G.

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less

  7. Removal of urea from dilute streams using RVC/nano-NiO x -modified electrode.

    PubMed

    Tammam, Reham H; Touny, Ahmed H; Saleh, Mahmoud M

    2018-05-08

    Reticulated vitreous carbon (RVC), a high surface area electrode (40 cm 2 /cm 3 ), has been modified with nickel oxide nanoparticles (nano-NiO x ) and used for electrochemical oxidation of urea from alkaline solution. For the cyclic voltammetry measurements, the used dimensions are 0.8 cm × 0.8 cm × 0.3 cm. The purpose was to offer high specific surface area using a porous open network structure to accelerate the electrochemical conversion. NiO x nanoparticles have been synthesized via an electrochemical route at some experimental conditions. The morphological, structural, and electrochemical properties of the RVC/nano-NiO x are characterized by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cyclic voltammetry (CV), and potentiostatic measurements. The fabricated electrode, RVC/nano-NiO x , demonstrates high electrocatalytic activity towards urea oxidation in an alkaline electrolyte. The onset potential of the RVC/nano-NiO x compared to that of the planar GC/NiO x is shifted to more negative value with higher specific activity. The different loadings of the NiO x have a substantial influence on the conversion of urea which has been evaluated from concentration-time curves. The urea concentration decreases with time to a limit dependent on the loading extent. Maximum conversion is obtained at 0.86 mg of NiO x per cm 3 of the RVC matrix.

  8. Improved physicochemical characteristics of felodipine solid dispersion particles by supercritical anti-solvent precipitation process.

    PubMed

    Won, Dong-Han; Kim, Min-Soo; Lee, Sibeum; Park, Jeong-Sook; Hwang, Sung-Joo

    2005-09-14

    Solid dispersions of felodipine were formulated with HPMC and surfactants by the conventional solvent evaporation (CSE) and supercritical anti-solvent precipitation (SAS) methods. The solid dispersion particles were characterized by particle size, zeta potential, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), solubility and dissolution studies. The effects of the drug/polymer ratio and surfactants on the solubility of felodipine were also studied. The mean particle size of the solid dispersions was 200-250 nm; these had a relatively regular spherical shape with a narrow size distribution. The particle size of the solid dispersions from the CSE method increased at 1 h after dispersed in distilled water. However, the particle sizes of solid dispersions from the SAS process were maintained for 6 h due to the increased solubility of felodipine. The physical state of felodipine changed from crystalline to amorphous during the CSE and SAS processes, confirmed by DSC/XRD data. The equilibrium solubility of the felodipine solid dispersion prepared by the SAS process was 1.5-20 microg/ml, while the maximum solubility was 35-110 microg/ml. Moreover, the solubility of felodipine increased with decreasing drug/polymer ratio or increasing HCO-60 content. The solid dispersions from the SAS process showed a high dissolution rate of over 90% within 2 h. The SAS process system may be used to enhance solubility or to produce oral dosage forms with high dissolution rate.

  9. Orientation Dependence of Functional Properties in Heterophase Single Crystals of the Ti36.5Ni51.0Hf12.5 and Ti48.5Ni51.5 Alloys

    NASA Astrophysics Data System (ADS)

    Panchenko, E. Yu.; Chumlyakov, Yu. I.; Surikov, N. Yu.; Tagiltsev, A. I.; Vetoshkina, N. G.; Osipovich, K. S.; Maier, H.; Sehitoglu, H.

    2016-03-01

    The features of orientation dependence of stress-induced thermoelastic B2-( R)- B19'-martensitic transformations in single crystals of the Ti48.5Ni51.5 and Ni51.0Ti36.5Hf12.5 (at.%) alloys, which contain disperse particles of the Ti3Ni4 and H-phase, respectively, are revealed along with those of their shape-memory effects (SME) and superelasticity (SE). It is experimentally demonstrated that irrespective of the crystal structure of disperse particles measuring more than 100 nm, for their volume fraction f > 16% there is a weaker orientation dependence of the reversible strain in the cases of manifestation of SME and SE. In the orientations of Class I, wherein martensitic detwinning introduces a considerable contribution into transformation strain, the values of SME |ɛ SME | and SE |ɛ SE | decrease by over a factor of two compared to the theoretical lattice strain value |ɛ tr0 | for a B2- B19'-transformation and the experimental values of reversible strain for quenched TiNi crystals. In the orientations of Class 2, wherein detwinning of the martensite is suppressed as is the case in quenched single-phase single crystals, the reversible strain is maintained close to its theoretical value |ɛ tr0 |. Micromechanical models of interaction between the martensite and the disperse particles are proposed, which account for the weaker orientation dependence of |ɛ SME | and |ɛ SE | due to suppression of detwinning of the B19'-martensite crystals by the particles and a transition from a single-variant evolution of the stress-induced martensitic transformations to a multiple-variant evolution of transformations in the cases of increased size of the particles and their larger volume fractions.

  10. The dispersion of fine chitosan particles by beads-milling

    NASA Astrophysics Data System (ADS)

    Rochima, Emma; Utami, Safira; Hamdani, Herman; Azhary, Sundoro Yoga; Praseptiangga, Danar; Joni, I. Made; Panatarani, Camellia

    2018-02-01

    This research aimed to produce fine chitosan particles from a crab shell waste by beads-milling method by two different concentration of PEG as dispersing agent (150 and 300 wt. %). The characterization was performed to obtain the size and size distribution, the characteristics of functional groups and the degree of deacetylation. The results showed that the chitosan fine particles was obtained with a milling time 120 minutes with the best concentration of PEG 400 150 wt. %. The average particle size of the as-prepared suspension is 584 nm after addition of acetic acid solution (1%, v/v). Beads milling process did not change the glucosamine and N-acetylglucosamine content on chitosan structure which is indicated by degree of deacetylation higher than 70%. It was concluded that beads milling process can be applied to prepare chitosan fineparticles by proper adjustment in the milling time, pH and dosage of dispersing agent.

  11. A novel IrNi@PdIr/C core-shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells.

    PubMed

    Qin, Bowen; Yu, Hongmei; Jia, Jia; Jun, Chi; Gao, Xueqiang; Yao, Dewei; Sun, Xinye; Song, Wei; Yi, Baolian; Shao, Zhigang

    2018-03-08

    Herein, a novel non-platinum core-shell catalyst, namely, IrNi@PdIr/C was prepared via a galvanic replacement reaction; it exhibits enhanced hydrogen oxidation activity and excellent stability under alkaline conditions. Electrochemical experiments demonstrated that the mass and specific activities at 50 mV of IrNi@PdIr/C are 2.1 and 2.2 times that of commercial Pt/C in 0.1 M KOH at 298 K, respectively. Moreover, accelerated degradation tests have shown that the electrochemically active surface area (ECSA) of IrNi@PdIr/C reduces by only 5.1%, which is almost 4 times less than that of commercial Pt/C and the mass activity at 50 mV of IrNi@PdIr/C after 2000 potential cycles is still 1.8 times higher than that of aged Pt/C. XRD and XPS analysis suggest that the enhanced HOR activity is attributed to the weakening of the hydrogen binding to the PdIr overlayers induced by the IrNi core. The better stability to potential cycling can be associated with the PdIr shell, which inhibits oxide formation. These results suggest that IrNi@PdIr/C is a promising non-platinum anode catalyst for alkaline anion exchange membrane fuel cells.

  12. Overcoming the Instability of Nanoparticle-Based Catalyst Films in Alkaline Electrolyzers by using Self-Assembling and Self-Healing Films.

    PubMed

    Barwe, Stefan; Masa, Justus; Andronescu, Corina; Mei, Bastian; Schuhmann, Wolfgang; Ventosa, Edgar

    2017-07-10

    Engineering stable electrodes using highly active catalyst nanopowders for electrochemical water splitting remains a challenge. We report an innovative and general approach for attaining highly stable catalyst films with self-healing capability based on the in situ self-assembly of catalyst particles during electrolysis. The catalyst particles are added to the electrolyte forming a suspension that is pumped through the electrolyzer. Particles with negatively charged surfaces stick onto the anode, while particles with positively charged surfaces stick to the cathode. The self-assembled catalyst films have self-healing properties as long as sufficient catalyst particles are present in the electrolyte. The proof-of-concept was demonstrated in a non-zero gap alkaline electrolyzer using NiFe-LDH and Ni x B catalyst nanopowders for anode and cathode, respectively. Steady cell voltages were maintained for at least three weeks during continuous electrolysis at 50-100 mA cm -2 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Decoupling the Role of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Rogers, Chris; Squires, Kyle

    1996-01-01

    Turbulent gas flows laden with small, dense particles are encountered in a wide number of important applications in both industrial settings and aerodynamics applications. Particle interactions with the underlying turbulent flow are exceedingly complex and, consequently, difficult to accurately model. The difficulty arises primarily due to the fact that response of a particle to the local environment is dictated by turbulence properties in the reference frame moving with the particle (particle-Lagrangian). The particle-Lagrangian reference frame is in turn dependent upon the particle relaxation time (time constant) as well as gravitational drift. The combination of inertial and gravitational effects in this frame complicates our ability to accurately predict particle-laden flows since measurements in the particle-Lagrangian reference frame are difficult to obtain. Therefore, in this work we will examine separately the effects of inertia and gravitational drift on particle dispersion through a combination of physical and numerical experiments. In this study, particle-Lagrangian measurements will be obtained in physical experiments using stereo image velocimetry. Gravitational drift will be varied in the variable-g environments of the NASA DC-9 and in the zero-g environment at the drop tower at NASA-Lewis. Direct numerical simulations will be used to corroborate the measurements from the variable-g experiments. We expect that this work will generate new insight into the underlying physics of particle dispersion and will, in turn, lead to more accurate models of particle transport in turbulent flows.

  14. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  15. Lithium niobate ultrasonic transducer design for Enhanced Oil Recovery.

    PubMed

    Wang, Zhenjun; Xu, Yuanming; Gu, Yuting

    2015-11-01

    Due to the strong piezoelectric effect possessed by lithium niobate, a new idea that uses lithium niobate to design high-power ultrasonic transducer for Enhanced Oil Recovery technology is proposed. The purpose of this paper is to lay the foundation for the further research and development of high-power ultrasonic oil production technique. The main contents of this paper are as follows: firstly, structure design technique and application of a new high-power ultrasonic transducer are introduced; secondly, the experiment for reducing the viscosity of super heavy oil by this transducer is done, the optimum ultrasonic parameters for reducing the viscosity of super heavy oil are given. Experimental results show that heavy large molecules in super heavy oil can be cracked into light hydrocarbon substances under strong cavitation effect caused by high-intensity ultrasonic wave. Experiment proves that it is indeed feasible to design high-power ultrasonic transducer for ultrasonic oil production technology using lithium niobate. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Charged particle concepts for fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  17. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  18. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  19. Novel intercore-cladding lithium niobate thin film coated MOEMS fiber sensor/modulator

    NASA Technical Reports Server (NTRS)

    Jamlson, Tracee L.; Konreich, Phillip; Yu, Chung

    2005-01-01

    A MOEMS fiber modulator/sensor is fabricated by depositing a lithium niobate sol-gel thin film between the core and cladding of a fiber preform. The preform is then drawn into 125-micron fibers. Such a MOEMS modulator design is expected to enhance existing lithium niobate undersea acousto-optic sound wave detectors. In our proposed version, the lithium niobate thin film alters the ordinary silica core/cladding boundary conditions such that, when a stress or strain is applied to the fiber, the core light confinement factor changes, leading to modulation of fiber light transmission. Test results of the lithium niobate embedded fiber with a 1550-nm, 4-mW laser source revealed a reduction in light transmission with applied tension. As a comparison, using the same laser source, an ordinary silica core/cladding fiber did not exhibit any reduction in transmitted light when the same strain was applied. Further experimental work and theoretical analysis is ongoing.

  20. Validity Using Pump-Probe Pulses to Determine the Optical Response of Niobate Crystals

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Jia, Weiyi

    1997-01-01

    A variety of niobate crystals have found their places in nonlinear optical applications as well as in laser devices. In recent years much attention has been paid to study the ultrafast optical response in a variety of photorefractive crystals such as KTa(1-x)Nb(x)O3 and KNbO3 crystals, glasses, semiconductors and polymers for applications in optical switching, information processing, optical computing, and all-optical device systems. Third-order optical nonlinearity is the most important property for realization of all-optical switching. Therefore experiments have been performed on the third order susceptibility using a variety of techniques such as the third-order harmonic generation, EFISH and degenerate four-wave mixing(DFWM). The latter has been conducted with a variety of pump wavelengths and with nanosecond, picosecond and femtosecond pulses. Niobate crystals, such as potassium niobate KNbO3, potassium tantalate niobate KTN family (KTa(1-x)Nb(x)O3), strontium barium niobate SBN (Sr(x)Ba(1-x)Nb2O6) and potassium-sodium niobate SBN (KNSBN) are attractive due to their photorefractive properties for application in optical storage and processing. The pulsed probe experiments performed on theses materials have suggested two types of time responses. These responses have been associated with an coherent response due to Chi(sup 3), and a long lived component due to excited state population. Recent study of DFWM on KNbO3 and KTN family reveals that the long lived component of those crystals depends on the crystal orientation. A slowly decaying signal is observable when the grating vector K(sub g) is not perpendicular to the C-axis of those photorefractive crystals', otherwise the optical response signal would be only a narrow coherent peak with FWHM equal to the cross-correlation width of the write beam pulses. Based on this understanding, we study the photodynamical process of a variety of niobate crystals using DFWM in a Kg perpindicular to C geometry with a ps

  1. State-of-the-art of alkaline rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Morioka, Y.; Narukawa, S.; Itou, T.

    Alkaline rechargeable batteries represented by Ni-Cd and Ni-MH batteries are expanding their market, continuously meeting an increasing demand. Approximately 30 years have elapsed since the first sealed Ni-Cd battery was commercialized for consumer use, and the production of these alkaline batteries is still expanding. The high power performance and good cost performance of these batteries are the outstanding features, which are leading to new battery applications. Continuous R&D of many researchers and engineers has improved these features. Since first coming to the market in 1990, Ni-MH batteries have been extending their application as power sources for portable advanced information and communication equipment. Improvements in electrode materials and other components have increased the energy density of current Ni-MH batteries to values of 91 Wh/kg and 340 Wh/l. Recently, novel metallic alloys for hydrogen storage have been proposed to increase their capacity further, and further improvement in the performance of these batteries is expected.

  2. Alkaline fuel cell: carbon nanobeads coated with metal catalyst over porous ceramic for hydrogen electrode

    NASA Astrophysics Data System (ADS)

    Chatterjee, A. K.; Sharon, Maheshwar; Banerjee, Rangan

    The development of a hydrogen electrode using a porous ceramic coated with carbon nanobeads for an alkaline fuel cell (AFC) is reported. This electrode can provide necessary strength and porosity to enable hydrogen to diffuse without allowing electrolyte to percolate inside the electrode. Various catalysts (Pt, Ni, Co and Fe) are electrochemically dispersed over the carbon nanobeads to examine their performance in the alkaline fuel cell. Turpentine oil has been used as a precursor for preparing the carbon nanobeads by a chemical vapour deposition technique. Scanning electron microscopic and transmission electron microscopic images show that the carbon nanobeads have sizes between 500 and 650 nm and are spread uniformly over the entire ceramic substrate. X-ray diffraction (XRD) patterns indicate that the nanobeads are graphitic in nature. Thus, the electrode is highly conductive. The current-voltage characteristics and chronopotentiometry of a half cell (i.e. hydrogen electrode coated with different electrocatalysts) and a full cell (using both hydrogen and oxygen electrodes) with 30% KOH solution are measured. About 93% of the theoretical hydrogen dissociation voltage is obtained with Ni and Pt catalyst. All other metals (Co and Fe) give a lower voltage. Ni-coated carbon nanobeads deposited over a ceramic oxide can be used in place of Raney nickel electrode as their characteristics are similar to those of a platinum electrode.

  3. Triboelectric Nanogenerator Using Lithium Niobate Thin Film

    NASA Astrophysics Data System (ADS)

    Geng, Juan; Zhang, Xinzheng; Kong, Yongfa; Xu, Jingjun

    2017-06-01

    We present a triboelectric nanogenerator (TENG) using a lithium niobate thin film, as one of the triboelectric pairs which was grown on a silicon substrate by laser molecule beam epitaxy (LMBE). The designed TENG has the advantages of simple structure, easy fabrication, small size (1.1*1.0*0.15 cm3). An open-circuit voltage of 136 V and a short-circuit current of 8.40 μA have been achieved. The maximum output power is 307.5μW under the load resistance of 10MΩ. This is the first time to use lithium niobate thin film as one of the friction pair, which may make it possible to expand the application of triboelectric nanogenerator to optical field.

  4. Taylor dispersion of colloidal particles in narrow channels

    NASA Astrophysics Data System (ADS)

    Sané, Jimaan; Padding, Johan T.; Louis, Ard A.

    2015-09-01

    We use a mesoscopic particle-based simulation technique to study the classic convection-diffusion problem of Taylor dispersion for colloidal discs in confined flow. When the disc diameter becomes non-negligible compared to the diameter of the pipe, there are important corrections to the original Taylor picture. For example, the colloids can flow more rapidly than the underlying fluid, and their Taylor dispersion coefficient is decreased. For narrow pipes, there are also further hydrodynamic wall effects. The long-time tails in the velocity autocorrelation functions are altered by the Poiseuille flow.

  5. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy

    PubMed Central

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J.; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-01-01

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5–2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni3Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo2C particles during sintering. The amount of grain boundaries greatly increases the Hall–Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process. PMID:28772747

  6. High magnetization Fe-Co and Fe-Ni submicron and nanosize particles by thermal decomposition and hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Cui, B. Z.; Marinescu, M.; Liu, J. F.

    2014-05-01

    This paper reports morphology, structure, and magnetic properties of air-stable soft magnetic FexCo100-x (x = 65, 50, and 34) and Fe50Ni50 (at. %) submicron and nanosize particles fabricated by template-free thermal decomposition of nitrates of Fe, Co, and Ni and subsequent hydrogen reduction. The particle compositions were tuned by modification of the precursor solution concentrations. The as-synthesized Fe-Co and Fe50Ni50 particles have body centered cubic and face centered cubic poly-nanocrystalline structures, respectively. The Fe-Co and Fe50Ni50 particles have particle sizes in the range of 28-200 nm and 70-480 nm, and average grain sizes of 16-29 nm and 20-24 nm, respectively. The particle and grain sizes were controlled by tuning particle composition, and the temperature and time of hydrogen reduction. Saturation magnetization Ms as high as 207-224 emu/g and intrinsic coercivity Hci of 59-228 Oe were obtained in the Fe-Co particles reduced at 550 °C for 90 min. Of special note, the Ms of 224 emu/g (˜2.3 T) obtained in the Fe65Co35 particles is among the highest values for Fe-Co particles reported so far. Ms of 135-137 emu/g and Hci of 59-111 Oe were obtained in the Fe50Ni50 particles reduced at 500 or 550 °C for 20 min.

  7. Mesoscopic Ni particles and nanowires by pulsed electrodeposition into porous Si

    NASA Astrophysics Data System (ADS)

    Michelakaki, E.; Valalaki, K.; G. Nassiopoulou, A.

    2013-04-01

    We report in this article on the formation of mesoscopic Ni particles and filling of continuous Ni nanowires into porous Si layers of thickness in the range of 0.5-4 μm with anisotropic vertical pores of average diameter in the range of 30-45 nm using pulsed electrodeposition from a Ni salt solution. The effect of pulse duration, number of pulses, and total process time on pore filling was investigated for porous Si with different porosities and porous Si layer thicknesses in the above thickness range. Scanning and transmission electron microscopy were used to characterize the samples. It was found that pore filling starts with Ni nucleation and nanoparticle formation at different points of the pore walls along the whole pore length and continues with nanoparticle coalescence to form continuous Ni nanowires that completely fill the pores. The mechanism involved in pore filling is particle nucleation and diffusion-controlled growth of Ni nanoparticles that coalesce to nanowires. From the beginning of the process, a metal film starts to form on the porous Si surface, and its thickness increases with increasing the process time. However, the presence of this film does not impede further pore filling and nanowire formation into the pores. This supports further the diffusion-controlled growth mechanism. Finally, it was demonstrated that full pore filling and continuous Ni nanowire formation were also achieved under direct current electrodeposition, and the results are quite similar to those obtained with pulsed electrodeposition when the same total deposition time is used in both cases.

  8. Two-Particle Dispersion in Isotropic Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Salazar, Juan P. L. C.; Collins, Lance R.

    2009-01-01

    Two-particle dispersion is of central importance to a wide range of natural and industrial applications. It has been an active area of research since Richardson's (1926) seminal paper. This review emphasizes recent results from experiments, high-end direct numerical simulations, and modern theoretical discussions. Our approach is complementary to Sawford's (2001), whose review focused primarily on stochastic models of pair dispersion. We begin by reviewing the theoretical foundations of relative dispersion, followed by experimental and numerical findings for the dissipation subrange and inertial subrange. We discuss the findings in the context of the relevant theory for each regime. We conclude by providing a critical analysis of our current understanding and by suggesting paths toward further progress that take full advantage of exciting developments in modern experimental methods and peta-scale supercomputing.

  9. El Niño and coral larval dispersal across the eastern Pacific marine barrier

    NASA Astrophysics Data System (ADS)

    Wood, S.; Baums, I. B.; Paris, C. B.; Ridgwell, A.; Kessler, W. S.; Hendy, E. J.

    2016-08-01

    More than 5,000 km separates the frequently disturbed coral reefs of the Eastern Tropical Pacific (ETP) from western sources of population replenishment. It has been hypothesized that El Niño events facilitate eastward dispersal across this East Pacific Barrier (EPB). Here we present a biophysical coral larval dispersal model driven by 14.5 years of high-resolution surface ocean current data including the extreme 1997-1998 El Niño. We find no eastward cross-EPB connections over this period, which implies that ETP coral populations decimated by the 1998 bleaching event can only have recovered from eastern Pacific sources, in congruence with genetic data. Instead, rare connections between eastern and central Pacific reefs are simulated in a westward direction. Significant complexity and variability in the surface flows transporting larvae mean that generalized upper-ocean circulation patterns are poor descriptors of inter-regional connectivity, complicating the assessment of how climate change will impact coral gene flow Pacific wide.

  10. El Niño and coral larval dispersal across the eastern Pacific marine barrier

    PubMed Central

    Wood, S.; Baums, I. B.; Paris, C. B.; Ridgwell, A.; Kessler, W. S.; Hendy, E. J.

    2016-01-01

    More than 5,000 km separates the frequently disturbed coral reefs of the Eastern Tropical Pacific (ETP) from western sources of population replenishment. It has been hypothesized that El Niño events facilitate eastward dispersal across this East Pacific Barrier (EPB). Here we present a biophysical coral larval dispersal model driven by 14.5 years of high-resolution surface ocean current data including the extreme 1997–1998 El Niño. We find no eastward cross-EPB connections over this period, which implies that ETP coral populations decimated by the 1998 bleaching event can only have recovered from eastern Pacific sources, in congruence with genetic data. Instead, rare connections between eastern and central Pacific reefs are simulated in a westward direction. Significant complexity and variability in the surface flows transporting larvae mean that generalized upper-ocean circulation patterns are poor descriptors of inter-regional connectivity, complicating the assessment of how climate change will impact coral gene flow Pacific wide. PMID:27550393

  11. Particle and surfactant interactions effected polar and dispersive components of interfacial energy in nanocolloids

    NASA Astrophysics Data System (ADS)

    Harikrishnan, A. R.; Das, Sarit K.; Agnihotri, Prabhat K.; Dhar, Purbarun

    2017-08-01

    We segregate and report experimentally for the first time the polar and dispersive interfacial energy components of complex nanocolloidal dispersions. In the present study, we introduce a novel inverse protocol for the classical Owens Wendt method to determine the constitutive polar and dispersive elements of surface tension in such multicomponent fluidic systems. The effect of nanoparticles alone and aqueous surfactants alone are studied independently to understand the role of the concentration of the dispersed phase in modulating the constitutive elements of surface energy in fluids. Surfactants are capable of altering the polar component, and the combined particle and surfactant nanodispersions are shown to be effective in modulating the polar and dispersive components of surface tension depending on the relative particle and surfactant concentrations as well as the morphological and electrostatic nature of the dispersed phases. We observe that the combined surfactant and particle colloid exhibits a similar behavior to that of the particle only case; however, the amount of modulation of the polar and dispersive constituents is found to be different from the particle alone case which brings to the forefront the mechanisms through which surfactants modulate interfacial energies in complex fluids. Accordingly, we are able to show that the observations can be merged into a form of quasi-universal trend in the trends of polar and dispersive components in spite of the non-universal character in the wetting behavior of the fluids. We analyze the different factors affecting the polar and dispersive interactions in such complex colloids, and the physics behind such complex interactions has been explained by appealing to the classical dispersion theories by London, Debye, and Keesom as well as by Derjaguin-Landau-Verwey-Overbeek theory. The findings shed light on the nature of wetting behavior of such complex fluids and help in predicting the wettability and the degree of

  12. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts

    PubMed Central

    Lee, Chrono K.; Huang, Haibin; Shen, Zu T.; Lodge, Jennifer K.; Leszyk, John; Ostroff, Gary R.

    2015-01-01

    ABSTRACT A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4+ T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. PMID:26695631

  13. Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy

    NASA Astrophysics Data System (ADS)

    Panagopoulos, C. N.; Georgiou, E. P.

    2009-04-01

    Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.

  14. Explosive particle soil surface dispersion model for detonated military munitions.

    PubMed

    Hathaway, John E; Rishel, Jeremy P; Walsh, Marianne E; Walsh, Michael R; Taylor, Susan

    2015-07-01

    The accumulation of high explosive mass residue from the detonation of military munitions on training ranges is of environmental concern because of its potential to contaminate the soil, surface water, and groundwater. The US Department of Defense wants to quantify, understand, and remediate high explosive mass residue loadings that might be observed on active firing ranges. Previously, efforts using various sampling methods and techniques have resulted in limited success, due in part to the complicated dispersion pattern of the explosive particle residues upon detonation. In our efforts to simulate particle dispersal for high- and low-order explosions on hypothetical firing ranges, we use experimental particle data from detonations of munitions from a 155-mm howitzer, which are common military munitions. The mass loadings resulting from these simulations provide a previously unattained level of detail to quantify the explosive residue source-term for use in soil and water transport models. In addition, the resulting particle placements can be used to test, validate, and optimize particle sampling methods and statistical models as applied to firing ranges. Although the presented results are for a hypothetical 155-mm howitzer firing range, the method can be used for other munition types once the explosive particle characteristics are known.

  15. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  16. The Effect of Milling Time on the Microstructural Characteristics and Strengthening Mechanisms of NiMo-SiC Alloys Prepared via Powder Metallurgy.

    PubMed

    Yang, Chao; Muránsky, Ondrej; Zhu, Hanliang; Thorogood, Gordon J; Avdeev, Maxim; Huang, Hefei; Zhou, Xingtai

    2017-04-06

    A new generation of alloys, which rely on a combination of various strengthening mechanisms, has been developed for application in molten salt nuclear reactors. In the current study, a battery of dispersion and precipitation-strengthened (DPS) NiMo-based alloys containing varying amounts of SiC (0.5-2.5 wt %) were prepared from Ni-Mo-SiC powder mixture via a mechanical alloying (MA) route followed by spark plasma sintering (SPS) and rapid cooling. Neutron Powder Diffraction (NPD), Electron Back Scattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM) were employed in the characterization of the microstructural properties of these in-house prepared NiMo-SiC DPS alloys. The study showed that uniformly-dispersed SiC particles provide dispersion strengthening, the precipitation of nano-scale Ni₃Si particles provides precipitation strengthening, and the solid-solution of Mo in the Ni matrix provides solid-solution strengthening. It was further shown that the milling time has significant effects on the microstructural characteristics of these alloys. Increased milling time seems to limit the grain growth of the NiMo matrix by producing well-dispersed Mo₂C particles during sintering. The amount of grain boundaries greatly increases the Hall-Petch strengthening, resulting in significantly higher strength in the case of 48-h-milled NiMo-SiC DPS alloys compared with the 8-h-milled alloys. However, it was also shown that the total elongation is considerably reduced in the 48-h-milled NiMo-SiC DPS alloy due to high porosity. The porosity is a result of cold welding of the powder mixture during the extended milling process.

  17. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  18. Steering Charge Kinetics of Tin Niobate Photocatalysts: Key Roles of Phase Structure and Electronic Structure

    NASA Astrophysics Data System (ADS)

    Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo

    2018-05-01

    Tin niobate photocatalysts with the phase structures of froodite (SnNb2O6) and pyrochlore (Sn2Nb2O7) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb2O6 to Sn2Nb2O7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn4+ species in Sn2Nb2O7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb2O6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H2 evolution compared with the sample of Sn2Nb2O7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O2 -•, and OH• active species dominate the photodegradation of methyl orange.

  19. Steering Charge Kinetics of Tin Niobate Photocatalysts: Key Roles of Phase Structure and Electronic Structure.

    PubMed

    Huang, Shushu; Wang, Chunyan; Sun, Hao; Wang, Xiaojing; Su, Yiguo

    2018-05-23

    Tin niobate photocatalysts with the phase structures of froodite (SnNb 2 O 6 ) and pyrochlore (Sn 2 Nb 2 O 7 ) were obtained by a facile solvothermal method in order to explore the impact of phase structure and electronic structure on the charge kinetics and photocatalytic performance. By employing tin niobate as a model compound, the effects of phase structure over electronic structure, photocatalytic activity toward methyl orange solution and hydrogen evolution were systematically investigated. It is found that the variation of phase structure from SnNb 2 O 6 to Sn 2 Nb 2 O 7 accompanied with modulation of particle size and band edge potentials that has great consequences on photocatalytic performance. In combination with the electrochemical impedance spectroscopy (EIS), transient photocurrent responses, transient absorption spectroscopy (TAS), and the analysis of the charge-carrier dynamics suggested that variation of electronic structure has great impacts on the charge separation and transfer rate of tin niobate photocatalysts and the subsequent photocatalytic performance. Moreover, the results of the X-ray photoelectron spectroscopy (XPS) indicated that the existent of Sn 4+ species in Sn 2 Nb 2 O 7 could result in a decrease in photocatalytic activity. Photocatalytic test demonstrated that the SnNb 2 O 6 (froodite) catalyst possesses a higher photocatalytic activity toward MO degradation and H 2 evolution compared with the sample of Sn 2 Nb 2 O 7 (pyrochlore). On the basis of spin resonance measurement and trapping experiment, it is expected that photogenerated holes, O 2 -• , and OH • active species dominate the photodegradation of methyl orange.

  20. Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring

    PubMed Central

    Cai, Wenjia; Ye, Lin; Zhang, Li; Ren, Yuanhang; Yue, Bin; Chen, Xueying; He, Heyong

    2014-01-01

    A series of nickel-containing mesoporous silica samples (Ni-SiO2) with different nickel content (3.1%–13.2%) were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO2, with highly dispersed small nickel particles, exhibited excellent catalytic activity and long-term stability. The metallic nickel particle size was significantly affected by the metal anchoring effect between metallic nickel particles and unreduced nickel ions in the silica matrix. A strong anchoring effect was suggested to account for the remaining of small Ni particle size and the improved catalytic performance. PMID:28788570

  1. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Microstructure and Mechanical Properties of Zn-Ni-Al₂O₃ Composite Coatings.

    PubMed

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia; Li, Yan

    2018-05-21

    Zn-Ni-Al₂O₃ composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al₂O₃. The energy-dispersive spectroscopy results show that the Al₂O₃ content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al₂O₃ particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al₂O₃ and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear.

  3. High-temperature Friction and Wear Resistance of Ni-Co-SiC Composite Coatings

    NASA Astrophysics Data System (ADS)

    Guo, Fang; Sun, Wan-chang; Jia, Zong-wei; Liu, Xiao-jia; Dong, Ya-ru

    2018-05-01

    Ni-Co alloy and SiC micro-particles were co-deposited on 45 steel by electrodeposition for high temperature performance. The high temperature tribological characteristics were studied by use of a ball-on-disk method. The micrographs and phase structure of the Ni-Co-SiC composite coatings after high-temperature friction were observed by using a field emission scanning electron microscope(FESEM). The results reveal that the Ni-Co-SiC composite coating presents better wear resistance and lower friction coefficient at high temperature in comparison with that of Ni-Co coating and 45 steel substrate. The embedded SiC particles could strengthen the alloy coating by dispersion strengthening effect and changing the friction mechanism from adhesive wear to abrasive wear.

  4. Ultrastable α phase nickel hydroxide as energy storage materials for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Huang, Haili; Guo, Yinjian; Cheng, Yuanhui

    2018-03-01

    α Phase nickel hydroxide (α-Ni(OH)2) has higher theoretical capacity than that of commercial β phase Ni(OH)2. But the low stability inhibits its wide application in alkaline rechargeable batteries. Here, we propose a totally new idea to stabilize α phase Ni(OH)2 by introducing large organic molecule into the interlayer spacing together with doping multivalent cobalt into the layered Ni(OH)2 host. Ethylene glycol is served as neutral stabilizer in the interlayer spacing. Nickel is substituted by cobalt to increase the electrostatic attraction between layered Ni(OH)2 host and anion ions in the interlayer spacing. Polyethylene glycol (PEG-200) is utilized to design a three-dimensional network structure. This prepared α-Ni(OH)2-20 exhibits specific capacity as high as 334 mAh g-1and good structural stability even after immersing into strong alkaline zincate solution for 20 days. Ni(OH)2 electrode with a specific capacity of 35 mAh cm-2 is fabricated and used as positive electrode in zinc-nickel single flow batteries, which also shows good cycling stability. This result can provide an important guideline for the rational design and preparation of highly active and stable α phase Ni(OH)2 for alkaline secondary battery.

  5. Dispersion Analysis Using Particle Tracking Simulations Through Heterogeneity Based on Outcrop Lidar Imagery

    NASA Astrophysics Data System (ADS)

    Klise, K. A.; Weissmann, G. S.; McKenna, S. A.; Tidwell, V. C.; Frechette, J. D.; Wawrzyniec, T. F.

    2007-12-01

    Solute plumes are believed to disperse in a non-Fickian manner due to small-scale heterogeneity and variable velocities that create preferential pathways. In order to accurately predict dispersion in naturally complex geologic media, the connection between heterogeneity and dispersion must be better understood. Since aquifer properties can not be measured at every location, it is common to simulate small-scale heterogeneity with random field generators based on a two-point covariance (e.g., through use of sequential simulation algorithms). While these random fields can produce preferential flow pathways, it is unknown how well the results simulate solute dispersion through natural heterogeneous media. To evaluate the influence that complex heterogeneity has on dispersion, we utilize high-resolution terrestrial lidar to identify and model lithofacies from outcrop for application in particle tracking solute transport simulations using RWHet. The lidar scan data are used to produce a lab (meter) scale two-dimensional model that captures 2-8 mm scale natural heterogeneity. Numerical simulations utilize various methods to populate the outcrop structure captured by the lidar-based image with reasonable hydraulic conductivity values. The particle tracking simulations result in residence time distributions used to evaluate the nature of dispersion through complex media. Particle tracking simulations through conductivity fields produced from the lidar images are then compared to particle tracking simulations through hydraulic conductivity fields produced from sequential simulation algorithms. Based on this comparison, the study aims to quantify the difference in dispersion when using realistic and simplified representations of aquifer heterogeneity. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Changes in the reflectivity of a lithium niobate crystal decorated with a graphene layer

    NASA Astrophysics Data System (ADS)

    Salas, O.; Garcés, E.; Castillo, F. L.; Magaña, L. F.

    2017-01-01

    Density functional theory and molecular dynamics were used to study the interaction of a graphene layer with the surface of lithium niobate. The simulations were performed at atmospheric pressure and 300K. We found that the graphene layer is physisorbed with an adsorption energy of -0.8205 eV/C-atom. Subsequently, the optical absorption of the graphene-(lithium niobate) system was calculated and compared with that of graphene solo and lithium niobate alone, respectively. The calculations were performed using the Quantum Espresso code with the GGA approximation and Vdw-DF2 (which includes long-range correlation effects as Van der Waals interactions).

  7. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  8. Influence of propylene glycol on aqueous silica dispersions and particle-stabilized emulsions.

    PubMed

    Binks, Bernard P; Fletcher, Paul D I; Thompson, Michael A; Elliott, Russell P

    2013-05-14

    We have studied the influence of adding propylene glycol to both aqueous dispersions of fumed silica nanoparticles and emulsions of paraffin liquid and water stabilized by the same particles. In the absence of oil, aerating mixtures of aqueous propylene glycol and particles yields either stable dispersions, aqueous foams, climbing particle films, or liquid marbles depending on the glycol content and particle hydrophobicity. The presence of glycol in water promotes particles to behave as if they are more hydrophilic. Calculations of their contact angle at the air-aqueous propylene glycol surface are in agreement with these findings. In the presence of oil, particle-stabilized emulsions invert from water-in-oil to oil-in-water upon increasing either the inherent hydrophilicity of the particles or the glycol content in the aqueous phase. Stable multiple emulsions occur around phase inversion in systems of low glycol content, and completely stable, waterless oil-in-propylene glycol emulsions can also be prepared. Accounting for the surface energies at the respective interfaces allows estimation of the contact angle at the oil-polar phase interface; reasonable agreement between measured and calculated phase inversion conditions is found assuming no glycol adsorption on particle surfaces.

  9. Study on micro-hardness of electroless composite plating of Ni-P with SiC Nano-particles

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Zhang, Zhaoguo; Li, Jiamin; Xu, Donghui

    2007-07-01

    In this paper, a Ni-P electroless composite coating containing nano SiC particles was produced. The wearability of the composite coating was studied. Temperature, PH of the plating liquid and the concentration of SiC nanoparticles in the plating liquid were taken as parameters and the experiment with three factors and five levels was designed through the method of quadratic orthogonal rotation combination. SiC nanoparticles were dispersed by ultrasonic. The influence of the testing parameters on the hardness of the coating was studied intensively. The optimal parameters were obtained when the temperature is 86+/-1°C, PH is 6+/-0.5 and the concentration of SiC nanoparticles is 6g/L. The maximal hardness of the coating is over 1700HV after heat treatment.

  10. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle

  11. Anisotropic surface acoustic waves in tungsten/lithium niobate phononic crystals

    NASA Astrophysics Data System (ADS)

    Sun, Jia-Hong; Yu, Yuan-Hai

    2018-02-01

    Phononic crystals (PnC) were known for acoustic band gaps for different acoustic waves. PnCs were already applied in surface acoustic wave (SAW) devices as reflective gratings based on the band gaps. In this paper, another important property of PnCs, the anisotropic propagation, was studied. PnCs made of circular tungsten films on a lithium niobate substrate were analyzed by finite element method. Dispersion curves and equal frequency contours of surface acoustic waves in PnCs of various dimensions were calculated to study the anisotropy. The non-circular equal frequency contours and negative refraction of group velocity were observed. Then PnC was applied as an acoustic lens based on the anisotropic propagation. Trajectory of SAW passing PnC lens was calculated and transmission of SAW was optimized by selecting proper layers of lens and applying tapered PnC. The result showed that PnC lens can suppress diffraction of surface waves effectively and improve the performance of SAW devices.

  12. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    USGS Publications Warehouse

    Iwasaki, Toshiki; Nelson, Jonathan M.; Shimizu, Yasuyuki; Parker, Gary

    2017-01-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  13. Numerical simulation of large-scale bed load particle tracer advection-dispersion in rivers with free bars

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Nelson, Jonathan; Shimizu, Yasuyuki; Parker, Gary

    2017-04-01

    Asymptotic characteristics of the transport of bed load tracer particles in rivers have been described by advection-dispersion equations. Here we perform numerical simulations designed to study the role of free bars, and more specifically single-row alternate bars, on streamwise tracer particle dispersion. In treating the conservation of tracer particle mass, we use two alternative formulations for the Exner equation of sediment mass conservation: the flux-based formulation, in which bed elevation varies with the divergence of the bed load transport rate, and the entrainment-based formulation, in which bed elevation changes with the net deposition rate. Under the condition of no net bed aggradation/degradation, a 1-D flux-based deterministic model that does not describe free bars yields no streamwise dispersion. The entrainment-based 1-D formulation, on the other hand, models stochasticity via the probability density function (PDF) of particle step length, and as a result does show tracer dispersion. When the formulation is generalized to 2-D to include free alternate bars, however, both models yield almost identical asymptotic advection-dispersion characteristics, in which streamwise dispersion is dominated by randomness inherent in free bar morphodynamics. This randomness can result in a heavy-tailed PDF of waiting time. In addition, migrating bars may constrain the travel distance through temporary burial, causing a thin-tailed PDF of travel distance. The superdiffusive character of streamwise particle dispersion predicted by the model is attributable to the interaction of these two effects.

  14. Cross-linked hierarchical arrays of Ni2P nanoflakes prepared via directional phosphorization and their applications for advanced alkaline batteries

    NASA Astrophysics Data System (ADS)

    Mai, Yong-jin; Xia, Xinhui; Jie, Xiao-hua

    2017-11-01

    In this work, we report a facile directional phosphorization method for construction of hierarchical cross-linked Ni2P arrays, which show a multileveled porous architecture. The basic building blocks are numerous nanoflakes with thicknesses of 15-20 nm, which are self-assembled with each other forming the primary porous mushroom-like structure with 1-3 μm. Impressively, the 3D porous channels run through the whole Ni2P arrays. The secondary nanoflakes consist of interconnected nanoparticles of 10-30 nm and lots of nanopores of 10-50 nm. The electrochemical performance of the as-prepared Ni2P arrays is investigated as cathode of alkaline batteries and demonstrated with higher capacities (127 mAhh g-1 at 2.5 A g-1) and better high-rate cycling stability (123 mAhh g-1 2.5 A g-1 after 9000 cycles) than the preformed Ni(OH)2 arrays counterparts (80 mAhh g-1 2.5 A g-1 and 66 mAhh g-1 after 9000 cycles). The enhanced performance is mainly due to the improved surface area & porosity as well as reinforced electrical conductivity.

  15. Atomic scale study of ball milled Ni-Fe{sub 2}O{sub 3} using Mössbauer spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Ravi Kumar; Govindaraj, R., E-mail: govind@igcar.gov.in; Vinod, K.

    Evolution of hyperfine fields at Fe atoms has been studied in a detailed manner in a mixture of Ni and α-Fe{sub 2}O{sub 3} subjected to high energy ball milling using Mossbauer spectroscopy. Mossbauer results indicate the dispersion of α-Fe{sub 2}O{sub 3} particles in Ni matrix in the as ball milled condition. Evolution of α-Fe{sub 2}O{sub 3} due to ball milling, reduction of the valence of associated Fe and possible interaction between the oxide particles with Ni in the matrix due to annealing treatments has been elucidated in the present study.

  16. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-04

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future.

  17. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  18. Decoupling the Role of Particle Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.

    2002-01-01

    Particle dispersion and the influence that particle momentum exchange has on the properties of a turbulent carrier flow in micro-gravity environments challenge present understanding and predictive schemes. The objective of this effort has been to develop and assess high-fidelity simulation tools for predicting particle transport within micro-gravity environments suspended in turbulent flows. The computational technique is based on Direct Numerical Simulation (DNS) of the incompressible Navier-Stokes equations. The particular focus of the present work is on the class of dilute flows in which particle volume fractions and inter-particle collisions are negligible. Particle motion is assumed to be governed by drag with particle relaxation times ranging from the Kolmogorov scale to the Eulerian timescale of the turbulence and particle mass loadings up to one. The velocity field was made statistically stationary by forcing the low wavenumbers of the flow. The calculations were performed using 96(exp 3) collocation points and the Taylor-scale Reynolds number for the stationary flow was 62. The effect of particles on the turbulence was included in the Navier-Stokes equations using the point-force approximation in which 96(exp 3) particles were used in the calculations. DNS results show that particles increasingly dissipate fluid kinetic energy with increased loading, with the reduction in kinetic energy being relatively independent of the particle relaxation time. Viscous dissipation in the fluid decreases with increased loading and is larger for particles with smaller relaxation times. Fluid energy spectra show that there is a non-uniform distortion of the turbulence with a relative increase in small-scale energy. The non-uniform distortion significantly affects the transport of the dissipation rate, with the production and destruction of dissipation exhibiting completely different behaviors. The spectrum of the fluid-particle energy exchange rate shows that the fluid

  19. Rotating drum tests of particle suspensions within a fines dispersion

    NASA Astrophysics Data System (ADS)

    Cabrera, Miguel Angel; Gollin, Devis; Kaitna, Roland; Wu, Wei

    2014-05-01

    Natural flows like mudflows, debris flow, and hyperconcentrated flows are commonly composed by a matrix of particles suspended in a viscous fluid. The nature of the interactions between particles immersed in a fluid is related to its size. While coarse particles (sand, gravel, and boulders) interact with each other or with the surrounding fluid, a dispersion of fine particles interacts with each other through colloidal forces or Brownian motion effects (Coussot and Piau, 1995, and Ancey and Jorrot, 2001). The predominance of one of the previous interactions defines the rheology of the flow. On this sense, experimental insight is required to validate the limits where the rheology of a dispersion of fines is valid. For this purpose, an experimental program in a rotating drum is performed over samples of sand, loess, and kaolin. The solid concentration and angular velocity of the rotating drum are varied. Height and normal loads are measured during flow. High-speed videos are performed to obtain the flow patterns of the mixtures. The experiments provide new laboratory evidence of granular mixture behaviour within an increased viscous fluid phase and its characterization. The results show an apparent threshold in terms of solid concentration, in which the mixtures started to behave as a shear-dependent material.

  20. Numerical simulation of disperse particle flows on a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.

    In both nature and technology, we commonly encounter solid particles being carried within fluid flows, from dust storms to sediment erosion and from food processing to energy generation. The motion of uncountably many particles in highly dynamic flow environments characterizes the tremendous complexity of such phenomena. While methods exist for the full-scale numerical simulation of such systems, current computational capabilities require the simplification of the numerical task with significant approximation using closure models widely recognized as insufficient. There is therefore a fundamental need for the investigation of the underlying physical processes governing these disperse particle flows. In the present work, we develop a new tool based on the Physalis method for the first-principles numerical simulation of thousands of particles (a small fraction of an entire disperse particle flow system) in order to assist in the search for new reduced-order closure models. We discuss numerous enhancements to the efficiency and stability of the Physalis method, which introduces the influence of spherical particles to a fixed-grid incompressible Navier-Stokes flow solver using a local analytic solution to the flow equations. Our first-principles investigation demands the modeling of unresolved length and time scales associated with particle collisions. We introduce a collision model alongside Physalis, incorporating lubrication effects and proposing a new nonlinearly damped Hertzian contact model. By reproducing experimental studies from the literature, we document extensive validation of the methods. We discuss the implementation of our methods for massively parallel computation using a graphics processing unit (GPU). We combine Eulerian grid-based algorithms with Lagrangian particle-based algorithms to achieve computational throughput up to 90 times faster than the legacy implementation of Physalis for a single central processing unit. By avoiding all data

  1. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    NASA Astrophysics Data System (ADS)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  2. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  3. Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge.

    PubMed

    Uma Rani, R; Kaliappan, S; Adish Kumar, S; Rajesh Banu, J

    2012-12-01

    An investigation into the influence of combined alkaline and disperser pretreatment on sludge disintegration was studied. The effects of four variables, alkalines (NaOH, KOH, Ca(OH)(2)), treatment time (15-180 min), pH (8-11) and rpm (4000-24,000) were investigated. The effect of sludge pretreatment was evaluated by COD solubilization, suspended solids reduction and biogas production. The best performances, in terms of COD solubilization, SS reduction and biogas production, were the ones that occurred for specific energy input of 4544 kJ kg(-1) TS for NaOH at pH10, were found to be 24%, 23.3% and 76%, higher than the control, respectively. Not only the increase in biogas production was investigated, excluding protein hydrolysis was also performed successfully by this combined pretreatment even at low specific energy input. Thus, this chemo-mechanical is an effective method for enhancement of biodegradability and it laid the basis to produce higher biogas quantities, to improve clean energy generation from WAS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Particle dispersing system and method for testing semiconductor manufacturing equipment

    DOEpatents

    Chandrachood, Madhavi; Ghanayem, Steve G.; Cantwell, Nancy; Rader, Daniel J.; Geller, Anthony S.

    1998-01-01

    The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

  5. A new perspective of particle adsorption: Dispersed oil and granular materials interactions in simulated coastal environment.

    PubMed

    Meng, Long; Bao, Mutai; Sun, Peiyan

    2017-09-15

    This study, adsorption behaviors of dispersed oil in seawaters by granular materials were explored in simulation environment. We quantitatively demonstrated the dispersed oil adsorbed by granular materials were both dissolved petroleum hydrocarbons (DPHs) and oil droplets. Furthermore, DPHs were accounted for 42.5%, 63.4%, and 85.2% (35.5% was emulsion adsorption) in the adsorption of dispersed oil by coastal rocks, sediments, and bacterial strain particles respectively. Effects of controlling parameters, such as temperature, particle size and concentration on adsorption of petroleum hydrocarbons were described in detail. Most strikingly, adsorption concentration was followed a decreasing order of bacterial strain (0.5-2μm)>sediments (0.005-0.625mm)>coastal rocks (0.2-1cm). With particle concentration or temperature increased, adsorption concentration increased for coastal rocks particle but decreased for sediments particle. Besides, particle adsorption rate of petroleum hydrocarbons (n-alkanes and PAHs) was different among granular materials during 60 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff

    2003-12-05

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of

  7. Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion.

    PubMed

    Fazal, Irfan; Yilmaz, Omer; Nuccio, Scott; Zhang, Bo; Willner, Alan E; Langrock, Carsten; Fejer, Martin M

    2007-08-20

    10 Gb/s non-return-to-zero (NRZ) on-off keyed (OOK) optical data packets are synchronized and time-multiplexed using a 26-ns tunable all-optical delay line. The delay element is based on wavelength conversion in periodically poled lithium niobate (PPLN) waveguides, inter-channel chromatic dispersion in dispersion compensating fiber (DCF) and intra-channel dispersion compensation with a chirped fiber Bragg grating (FBG). Delay reconfiguration time is measured to be less than 300 ps.

  8. Formation of Onion-Like NiCo2 S4 Particles via Sequential Ion-Exchange for Hybrid Supercapacitors.

    PubMed

    Guan, Bu Yuan; Yu, Le; Wang, Xiao; Song, Shuyan; Lou, Xiong Wen David

    2017-02-01

    Onion-like NiCo 2 S 4 particles with unique hollow structured shells are synthesized by a sequential ion-exchange strategy. With the structural and compositional advantages, these unique onion-like NiCo 2 S 4 particles exhibit enhanced electrochemical performance as an electrode material for hybrid supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Approximation of a radial diffusion model with a multiple-rate model for hetero-disperse particle mixtures

    PubMed Central

    Ju, Daeyoung; Young, Thomas M.; Ginn, Timothy R.

    2012-01-01

    An innovative method is proposed for approximation of the set of radial diffusion equations governing mass exchange between aqueous bulk phase and intra-particle phase for a hetero-disperse mixture of particles such as occur in suspension in surface water, in riverine/estuarine sediment beds, in soils and in aquifer materials. For this purpose the temporal variation of concentration at several uniformly distributed points within a normalized representative particle with spherical, cylindrical or planar shape is fitted with a 2-domain linear reversible mass exchange model. The approximation method is then superposed in order to generalize the model to a hetero-disperse mixture of particles. The method can reduce the computational effort needed in solving the intra-particle mass exchange of a hetero-disperse mixture of particles significantly and also the error due to the approximation is shown to be relatively small. The method is applied to describe desorption batch experiment of 1,2-Dichlorobenzene from four different soils with known particle size distributions and it could produce good agreement with experimental data. PMID:18304692

  10. Efficient generation of far-infrared radiation in the vicinity of polariton resonance of lithium niobate.

    PubMed

    Lin, Xiaomu; Wang, Lei; Ding, Yujie J

    2012-09-01

    We efficiently generated far-infrared radiation at the wavelengths centered at 20.8 μm in the vicinity of one of the polariton resonances of lithium niobate. Such an efficient nonlinear conversion is made possible by exploiting phase matching for difference-frequency generation in lithium niobate. The highest peak power reached 233 W.

  11. Highly dispersed Pt-Ni nanoparticles on nitrogen-doped carbon nanotubes for application in direct methanol fuel cells.

    PubMed

    Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng

    2010-06-01

    Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.

  12. CFD modeling of particle dispersion and deposition coupled with particle dynamical models in a ventilated room

    NASA Astrophysics Data System (ADS)

    Xu, Guangping; Wang, Jiasong

    2017-10-01

    Two dynamical models, the traditional method of moments coupled model (MCM) and Taylor-series expansion method of moments coupled model (TECM) for particle dispersion distribution and gravitation deposition are developed in three-dimensional ventilated environments. The turbulent airflow field is modeled with the renormalization group (RNG) k-ε turbulence model. The particle number concentration distribution in a ventilated room is obtained by solving the population balance equation coupled with the airflow field. The coupled dynamical models are validated using experimental data. A good agreement between the numerical and experimental results can be achieved. Both models have a similar characteristic for the spatial distribution of particle concentration. Relative to the MCM model, the TECM model presents a more close result to the experimental data. The vortex structure existed in the air flow makes a relative large concentration difference at the center region and results in a spatial non-uniformity of concentration field. With larger inlet velocity, the mixing level of particles in the room is more uniform. In general, the new dynamical models coupled with computational fluid dynamics (CFD) in the current study provide a reasonable and accurate method for the temporal and spatial evolution of particles effected by the deposition and dispersion behaviors. In addition, two ventilation modes with different inlet velocities are proceeded to study the effect on the particle evolution. The results show that with the ceiling ventilation mode (CVM), the particles can be better mixed and the concentration level is also higher. On the contrast, with the side ceiling ventilation mode (SVM), the particle concentration has an obvious stratified distribution with a relative lower level and it makes a much better environment condition to the human exposure.

  13. Modeling particle dispersion and deposition in indoor environments

    NASA Astrophysics Data System (ADS)

    Gao, N. P.; Niu, J. L.

    Particle dispersion and deposition in man-made enclosed environments are closely related to the well-being of occupants. The present study developed a three-dimensional drift-flux model for particle movements in turbulent indoor airflows, and combined it into Eulerian approaches. To account for the process of particle deposition at solid boundaries, a semi-empirical deposition model was adopted in which the size-dependent deposition characteristics were well resolved. After validation against the experimental data in a scaled isothermal chamber and in a full-scale non-isothermal environmental chamber, the drift-flux model was used to investigate the deposition rates and human exposures to particles from two different sources with three typical ventilation systems: mixing ventilation (MV), displacement ventilation (DV), and under-floor air distribution (UFAD). For particles originating from the supply air, a V-shaped curve of the deposition velocity variation as a function of particle size was observed. The minimum deposition appeared at 0.1- 0.5μm. For supermicron particles, the ventilation type and air exchange rate had an ignorable effect on the deposition rate. The movements of submicron particles were like tracer gases while the gravitational settling effect should be taken into account for particles larger than 2.5μm. The temporal increment of human exposure to a step-up particle release in the supply air was determined, among many factors, by the distance between the occupant and air outlet. The larger the particle size, the lower the human exposure. For particles released from an internal heat source, the concentration stratification of small particles (diameter <10μm) in the vertical direction appeared with DV and UFAD, and it was found the advantageous principle for gaseous pollutants that a relatively less-polluted occupied zone existed in DV and UFAD was also applicable to small particles.

  14. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    PubMed

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  15. Electroless nickel - phosphorus coating on crab shell particles and its characterization

    NASA Astrophysics Data System (ADS)

    Arulvel, S.; Elayaperumal, A.; Jagatheeshwaran, M. S.

    2017-04-01

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations.

  16. Lithium niobate explosion monitor

    DOEpatents

    Bundy, Charles H.; Graham, Robert A.; Kuehn, Stephen F.; Precit, Richard R.; Rogers, Michael S.

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  17. Lithium niobate explosion monitor

    DOEpatents

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  18. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  19. Probability density function shape sensitivity in the statistical modeling of turbulent particle dispersion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.

  20. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  1. Nano polypeptide particles reinforced polymer composite fibers.

    PubMed

    Li, Jiashen; Li, Yi; Zhang, Jing; Li, Gang; Liu, Xuan; Li, Zhi; Liu, Xuqing; Han, Yanxia; Zhao, Zheng

    2015-02-25

    Because of the intensified competition of land resources for growing food and natural textile fibers, there is an urgent need to reuse and recycle the consumed/wasted natural fibers as regenerated green materials. Although polypeptide was extracted from wool by alkaline hydrolysis, the size of the polypeptide fragments could be reduced to nanoscale. The wool polypeptide particles were fragile and could be crushed down to nano size again and dispersed evenly among polymer matrix under melt extrusion condition. The nano polypeptide particles could reinforce antiultraviolet capability, moisture regain, and mechanical properties of the polymer-polypeptide composite fibers.

  2. Microstructure and Mechanical Properties of Zn-Ni-Al2O3 Composite Coatings

    PubMed Central

    Bai, Yang; Wang, Zhenhua; Li, Xiangbo; Huang, Guosheng; Li, Caixia

    2018-01-01

    Zn-Ni-Al2O3 composite coatings with different Ni contents were fabricated by low-pressure cold spray (LPCS) technology. The effects of the Ni content on the microstructural and mechanical properties of the coatings were investigated. According to X-ray diffraction patterns, the composite coatings were primarily composed of metallic-phase Zn and Ni and ceramic-phase Al2O3. The energy-dispersive spectroscopy results show that the Al2O3 content of the composite coatings gradually decreased with increasing of Ni content. The cross-sectional morphology revealed thick, dense coatings with a wave-like stacking structure. The process of depositing Zn and Ni particles and Al2O3 particles by the LPCS method was examined, and the deposition mechanism was demonstrated to be mechanical interlocking. The bond strength, micro hardness and friction coefficient of the coatings did not obviously change when the Ni content varied. The presence of Al2O3 and Ni increased the wear resistance of the composite coatings, which was higher than that of pure Zn coatings, and the wear mechanism was abrasive and adhesive wear. PMID:29883391

  3. III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Lee, Kyoung-Keun; Madison, Shannon M.; Henderson, Walter; Ralph, Stephen E.; Doolittle, W. Alan

    2005-10-01

    Integration of III-nitride electrical devices on the ferroelectric material lithium niobate (LiNbO3) has been demonstrated. As a ferroelectric material, lithium niobate has a polarization which may provide excellent control of the polarity of III-nitrides. However, while high temperature, 1000°C, thermal treatments produce atomically smooth surfaces, improving adhesion of GaN epitaxial layers on lithium niobate, repolarization of the substrate in local domains occurs. These effects result in multi domains of mixed polarization in LiNbO3, producing inversion domains in subsequent GaN epilayers. However, it is found that AlN buffer layers suppress inversion domains of III-nitrides. Therefore, two-dimensional electron gases in AlGaN /GaN heterojunction structures are obtained. Herein, the demonstration of the monolithic integration of high power devices with ferroelectric materials presents possibilities to control LiNbO3 modulators on compact optoelectronic/electronic chips.

  4. Decoupling the Roles of Inertia and Gravity on Particle Dispersion

    NASA Technical Reports Server (NTRS)

    Groszmann, D. E.; Thompson, J. H.; Coppen, S. W.; Rogers, C. B.

    1999-01-01

    Inertial and gravitational forces determine a particle's motion in a turbulent flow field. Gravity plays the dominant role in this motion by pulling the particles through adjacent regions of fluid turbulence. To better understand and model how a particle's inertia effects its displacement, one must examine the dispersion in a turbulent flow in the absence of gravity. In this paper, we present the particle experiments planned for NASA's KC-135 Reduced-Gravity Aircraft, which generates microgravity conditions for about 20 seconds. We also predict the particle behavior using simulation and ground-based experiments. We will release particles with Stokes numbers of 0.1, 1, and 10 into an enclosed tank of near-isotropic, stationary, and homogenous turbulence. These particle Stoke numbers cover a broad range of flow regimes of interest. Two opposed grids oscillating back and forth generate the turbulent field in the tank with a range of turbulence scales that covers about three orders of magnitude and with turbulence intensities of about ten times the mean velocity. The motion of the particles will be tracked using a stereo image velocimetry technique.

  5. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting.

    PubMed

    Fominykh, Ksenia; Chernev, Petko; Zaharieva, Ivelina; Sicklinger, Johannes; Stefanic, Goran; Döblinger, Markus; Müller, Alexander; Pokharel, Aneil; Böcklein, Sebastian; Scheu, Christina; Bein, Thomas; Fattakhova-Rohlfing, Dina

    2015-05-26

    Efficient electrochemical water splitting to hydrogen and oxygen is considered a promising technology to overcome our dependency on fossil fuels. Searching for novel catalytic materials for electrochemical oxygen generation is essential for improving the total efficiency of water splitting processes. We report the synthesis, structural characterization, and electrochemical performance in the oxygen evolution reaction of Fe-doped NiO nanocrystals. The facile solvothermal synthesis in tert-butanol leads to the formation of ultrasmall crystalline and highly dispersible FexNi1-xO nanoparticles with dopant concentrations of up to 20%. The increase in Fe content is accompanied by a decrease in particle size, resulting in nonagglomerated nanocrystals of 1.5-3.8 nm in size. The Fe content and composition of the nanoparticles are determined by X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy measurements, while Mössbauer and extended X-ray absorption fine structure analyses reveal a substitutional incorporation of Fe(III) into the NiO rock salt structure. The excellent dispersibility of the nanoparticles in ethanol allows for the preparation of homogeneous ca. 8 nm thin films with a smooth surface on various substrates. The turnover frequencies (TOF) of these films could be precisely calculated using a quartz crystal microbalance. Fe0.1Ni0.9O was found to have the highest electrocatalytic water oxidation activity in basic media with a TOF of 1.9 s(-1) at the overpotential of 300 mV. The current density of 10 mA cm(-2) is reached at an overpotential of 297 mV with a Tafel slope of 37 mV dec(-1). The extremely high catalytic activity, facile preparation, and low cost of the single crystalline FexNi1-xO nanoparticles make them very promising catalysts for the oxygen evolution reaction.

  6. Assembly of potassium niobate nanosheets/silver oxide composite films with good SERS performance towards crystal violet detection

    NASA Astrophysics Data System (ADS)

    Zhu, Kun; Hong, Zhen; Kang, Shi-Zhao; Qin, Lixia; Li, Guodong; Li, Xiangqing

    2018-04-01

    The orderly potassium niobate nanosheets/silver oxide (Ag2O) composite films with uniform morphology were achieved by layer-by-layer self-assembly combined with ultraviolet light irradiation. The composition, structure and morphology of the potassium niobate nanosheets/Ag2O composite films were studied by XPS, XRD and SEM. Furthermore, the films were used as a SERS probe to detect crystal violet molecules. The results showed that the potassium niobate nanosheets/Ag2O composite films were an active substrate for fast and sensitive detection of crystal violet with low concentration. The limit of detection by the films can reach 1 × 10-6 mol L-1. Both electromagnetic enhancement and chemical enhancement contributed to the enhanced SERS in the (potassium niobate nanosheets/Ag2O)4 films. Moreover, it was found that the films were relatively stable under light irradiation or heat treatment in a certain range.

  7. Effect of Cooling Rates on γ → α Transformation and Metastable States in Fe-Cu Alloys with Addition of Ni

    NASA Astrophysics Data System (ADS)

    Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.

    2018-07-01

    α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.

  8. Ultrasonic soldering of Cu alloy using Ni-foam/Sn composite interlayer.

    PubMed

    Xiao, Yong; Wang, Qiwei; Wang, Ling; Zeng, Xian; Li, Mingyu; Wang, Ziqi; Zhang, Xingyi; Zhu, Xiaomeng

    2018-07-01

    In this study, Cu alloy joints were fabricated with a Ni-foam reinforced Sn-based composite solder with the assistance of ultrasonic vibration. Effects of ultrasonic soldering time on the microstructure and mechanical properties of Cu/Ni-Sn/Cu joints were investigated. Results showed that exceptional metallurgic bonding could be acquired with the assistance of ultrasonic vibration using a self-developed Ni-foam/Sn composite solder. For joint soldered for 5 s, a (Cu,Ni) 6 Sn 5 intermetallic compound (IMC) layer was formed on the Cu substrate surface, Ni skeletons distributed randomly in the soldering seam and a serrated (Ni,Cu) 3 Sn 4 IMC layer was formed on the Ni skeleton surface. Increasing the soldering time to 20 s, the (Ni,Cu) 3 Sn 4 IMC layer grew significantly and exhibited a loose porous structure on the Ni skeleton surface. Further increase the soldering time to 30 s, Ni skeletons were largely dissolved in the Sn base solder, and micro-sized (Ni,Cu) 3 Sn 4 particles were formed and dispersed homogeneously in the soldering seam. The formation of (Ni,Cu) 3 Sn 4 particles was mainly ascribed to acoustic cavitations induced erosion and grain refining effects. The joint soldered for 30 s exhibited the highest shear strength of 64.9 ± 3.3 MPa, and the shearing failure mainly occurred at the soldering seam/Cu substrate interface. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Optical waveguides in lithium niobate: Recent developments and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In allmore » cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.« less

  10. Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy

    NASA Astrophysics Data System (ADS)

    Cavaliere, P.; Silvello, A.

    2017-04-01

    Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.

  11. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction

    NASA Astrophysics Data System (ADS)

    Yang, Hong Bin; Hung, Sung-Fu; Liu, Song; Yuan, Kaidi; Miao, Shu; Zhang, Liping; Huang, Xiang; Wang, Hsin-Yi; Cai, Weizheng; Chen, Rong; Gao, Jiajian; Yang, Xiaofeng; Chen, Wei; Huang, Yanqiang; Chen, Hao Ming; Li, Chang Ming; Zhang, Tao; Liu, Bin

    2018-02-01

    Electrochemical reduction of CO2 to chemical fuel offers a promising strategy for managing the global carbon balance, but presents challenges for chemistry due to the lack of effective electrocatalyst. Here we report atomically dispersed nickel on nitrogenated graphene as an efficient and durable electrocatalyst for CO2 reduction. Based on operando X-ray absorption and photoelectron spectroscopy measurements, the monovalent Ni(i) atomic center with a d9 electronic configuration was identified as the catalytically active site. The single-Ni-atom catalyst exhibits high intrinsic CO2 reduction activity, reaching a specific current of 350 A gcatalyst-1 and turnover frequency of 14,800 h-1 at a mild overpotential of 0.61 V for CO conversion with 97% Faradaic efficiency. The catalyst maintained 98% of its initial activity after 100 h of continuous reaction at CO formation current densities as high as 22 mA cm-2.

  12. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    PubMed Central

    Wang, Hao; Zhao, Hua; Hu, Guangwei; Li, Siren; Su, Hang; Zhang, Jingwen

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studied when monolayer graphene was tuned by down polarization direction ferroelectric domain with different polarization levels. The length of the ferroelectric domain was optimized to be 90 nm for a wavelength of 5.0 μm with signal extinction per unit 14.7 dB/μm, modulation depth 474.1 dB/μm and figure of merit 32.5. This work may promote the study of highly efficient modulators and other ultra-compact nonvolatile electronic and photonic devices in which two-dimensional materials and ferroelectric materials are combined. PMID:26657622

  13. A new statistical model for subgrid dispersion in large eddy simulations of particle-laden flows

    NASA Astrophysics Data System (ADS)

    Muela, Jordi; Lehmkuhl, Oriol; Pérez-Segarra, Carles David; Oliva, Asensi

    2016-09-01

    Dispersed multiphase turbulent flows are present in many industrial and commercial applications like internal combustion engines, turbofans, dispersion of contaminants, steam turbines, etc. Therefore, there is a clear interest in the development of models and numerical tools capable of performing detailed and reliable simulations about these kind of flows. Large Eddy Simulations offer good accuracy and reliable results together with reasonable computational requirements, making it a really interesting method to develop numerical tools for particle-laden turbulent flows. Nonetheless, in multiphase dispersed flows additional difficulties arises in LES, since the effect of the unresolved scales of the continuous phase over the dispersed phase is lost due to the filtering procedure. In order to solve this issue a model able to reconstruct the subgrid velocity seen by the particles is required. In this work a new model for the reconstruction of the subgrid scale effects over the dispersed phase is presented and assessed. This innovative methodology is based in the reconstruction of statistics via Probability Density Functions (PDFs).

  14. Slow plastic deformation of extruded NiAl-10TiB2 particulate composites at 1200 and 1300 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Kumar, S.; Mannan, S. K.; Viswanadham, R. K.

    1990-01-01

    A dispersion of 1-micron TiB2 particles in the B2 crystal structure NiAl intermetallic can effectively increase its elevated temperature strength, in association with increasing deformation resistance with TiB2 volume fraction. Attention is presently given to alternative densification methods, which may increase the initial as-fabricated dislocation density and lead to enhanced elevated-temperature strength. The 'XD' extrusion method was used to produce NiAl with 10 vol pct TiB2. Although apparent extrusion defects were occasionally found, neither grain-boundary cracking nor particle-matrix separation occurred.

  15. A stochastic model of particle dispersion in turbulent reacting gaseous environments

    NASA Astrophysics Data System (ADS)

    Sun, Guangyuan; Lignell, David; Hewson, John

    2012-11-01

    We are performing fundamental studies of dispersive transport and time-temperature histories of Lagrangian particles in turbulent reacting flows. The particle-flow statistics including the full particle temperature PDF are of interest. A challenge in modeling particle motions is the accurate prediction of fine-scale aerosol-fluid interactions. A computationally affordable stochastic modeling approach, one-dimensional turbulence (ODT), is a proven method that captures the full range of length and time scales, and provides detailed statistics of fine-scale turbulent-particle mixing and transport. Limited results of particle transport in ODT have been reported in non-reacting flow. Here, we extend ODT to particle transport in reacting flow. The results of particle transport in three flow configurations are presented: channel flow, homogeneous isotropic turbulence, and jet flames. We investigate the functional dependence of the statistics of particle-flow interactions including (1) parametric study with varying temperatures, Reynolds numbers, and particle Stokes numbers; (2) particle temperature histories and PDFs; (3) time scale and the sensitivity of initial and boundary conditions. Flow statistics are compared to both experimental measurements and DNS data.

  16. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    NASA Astrophysics Data System (ADS)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.; Loukya, B.; Singh, Dheeraj Kumar; Datta, Ranjan; Peter, Sebastian C.

    2016-12-01

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP) using NaBH4 as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process.

  17. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil; St Clair, Jeffrey G.; Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force ismore » well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.« less

  18. Transport and dispersion of fluorescent tracer particles for the dune-bed condition, Atrisco Feeder Canal near Bernalillo, New Mexico

    USGS Publications Warehouse

    Rathbun, R.E.; Kennedy, Vance C.

    1978-01-01

    A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)

  19. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

    PubMed Central

    Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  20. Microstructural evolution and magnetic properties of ultrafine solute-atom particles formed in a Cu75-Ni20-Fe5 alloy on isothermal annealing

    NASA Astrophysics Data System (ADS)

    Kim, Jun-Seop; Takeda, Mahoto; Bae, Dong-Sik

    2016-12-01

    Microstructural features strongly affect magnetism in nano-granular magnetic materials. In the present work we have investigated the relationship between the magnetic properties and the self-organized microstructure formed in a Cu75-Ni20-Fe5 alloy comprising ferromagnetic elements and copper atoms. High resolution transmission electron microscopy (HRTEM) observations showed that on isothermal annealing at 873 K, nano-scale solute (Fe,Ni)-rich clusters initially formed with a random distribution in the Cu-rich matrix. Superconducting quantum interference device (SQUID) measurements revealed that these ultrafine solute clusters exhibited super-spinglass and superparamagnetic states. On further isothermal annealing the precipitates evolved to cubic or rectangular ferromagnetic particles and aligned along the <100> directions of the copper-rich matrix. Electron energy-band calculations based on the first-principle Korringa-Kohn-Rostocker (KKR) method were also implemented to investigate both the electronic structure and the magnetic properties of the alloy. Inputting compositions obtained experimentally by scanning transmission electron microscopy-electron dispersive X-ray spectroscopy (STEM-EDS) analysis, the KKR calculation confirmed that ferromagnetic precipitates (of moment 1.07μB per atom) formed after annealing for 2 × 104 min. Magneto-thermogravimetric (MTG) analysis determined with high sensitivity the Curie temperatures and magnetic susceptibility above room temperature of samples containing nano-scale ferromagnetic particles.

  1. Study of particle rearrangement, compression behavior and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil

    PubMed Central

    Mallick, Subrata; Kumar Pradhan, Saroj; Chandran, Muronia; Acharya, Manoj; Digdarsini, Tanmayee; Mohapatra, Rajaram

    2011-01-01

    Particle rearrangements, compaction under pressure and in vitro dissolution have been evaluated after melt dispersion of ibuprofen, Avicel and Aerosil. The Cooper–Eaton and Kuno equations were utilized for the determination of particle rearrangement and compression behavior from tap density and compact data. Particle rearrangement could be divided into two stages as primary and secondary rearrangement. Transitional tapping between the stages was found to be 20–25 taps in ibuprofen crystalline powder, which was increased up to 45 taps with all formulated powders. Compaction in the rearrangement stages was increased in all the formulations with respect to pure ibuprofen. Significantly increased compaction of ibuprofen under pressure can be achieved using Avicel by melt dispersion technique, which could be beneficial in ibuprofen tablet manufacturing by direct compression. SEM, FTIR and DSC have been utilized for physicochemical characterization of the melt dispersion powder materials. Dissolution of ibuprofen from compacted tablet of physical mixture and melt dispersion particles has also been improved greatly in the following order: Ibc

  2. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Dispersions of attractive semiflexible fiberlike colloidal particles from bacterial cellulose microfibrils.

    PubMed

    Kuijk, Anke; Koppert, Remco; Versluis, Peter; van Dalen, Gerard; Remijn, Caroline; Hazekamp, Johan; Nijsse, Jaap; Velikov, Krassimir P

    2013-11-26

    We prepared dispersions from bacterial cellulose microfibrils (CMF) of a commercial Nata de Coco source. We used an ultra-high-energy mechanical deagglomeration process that is able to disperse the CMFs from the pellicle in which they are organized in an irregular network. Because of the strong attractions between the CMFs, the dispersion remained highly heterogeneous, consisting of fiber bundles, flocs, and voids spanning tens to hundreds of micrometers depending on concentration. The size of these flocs increased with CMF concentration, the size of the bundles stayed constant, and the size of the voids decreased. The observed percolation threshold in MFC dispersions is lower than the theoretical prediction, which is accounted for by the attractive interactions in the system. Because bacterial cellulose is chemically very pure, it can be used to study the interaction of attractive and highly shape-anisotropic, semiflexible fiberlike colloidal particles.

  4. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coatingmore » process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.« less

  5. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles.

    PubMed

    Chen, Jie; Ormes, James D; Higgins, John D; Taylor, Lynne S

    2015-02-02

    Amorphous solid dispersions are frequently prepared by spray drying. It is important that the resultant spray dried particles do not crystallize during formulation, storage, and upon administration. The goal of the current study was to evaluate the impact of surfactants on the crystallization of celecoxib amorphous solid dispersions (ASD), suspended in aqueous media. Solid dispersions of celecoxib with hydroxypropylmethylcellulose acetate succinate were manufactured by spray drying, and aqueous suspensions were prepared by adding the particles to acidified media containing various surfactants. Nucleation induction times were evaluated for celecoxib in the presence and absence of surfactants. The impact of the surfactants on drug and polymer leaching from the solid dispersion particles was also evaluated. Sodium dodecyl sulfate and Polysorbate 80 were found to promote crystallization from the ASD suspensions, while other surfactants including sodium taurocholate and Triton X100 were found to inhibit crystallization. The promotion or inhibition of crystallization was found to be related to the impact of the surfactant on the nucleation behavior of celecoxib, as well as the tendency to promote leaching of the drug from the ASD particle into the suspending medium. It was concluded that surfactant choice is critical to avoid failure of amorphous solid dispersions through crystallization of the drug.

  6. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  7. Thermal stability of a slab waveguide implemented by α particles implantation in potassium lithium tantalate niobate

    NASA Astrophysics Data System (ADS)

    Gumennik, Alexander; Agranat, Aharon J.; Shachar, Igal; Hass, Michael

    2005-12-01

    A slab waveguide was fabricated in a potassium lithium tantalate niobate crystal by the implantation of He2+ ions at 2.26 MeV. The waveguide profile and loss were evaluated by measuring the dark mode TE spectrum using the prism coupling method at λ=1.3μm. The implantation generated amorphous cladding layer 5μm below the surface of the crystal with a refractive index lower by 3.9% then that of the substrate. The propagation loss of the waveguided modes was found to be 0.1-0.2dB/cm. Thermal stability of the waveguide was obtained by isothermal annealing at 351 and 446 °C. Following the annealing the waveguide index profile remained unchanged when subjected to annealing at 150 °C for one week.

  8. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subbarao, Udumula; Marakatti, Vijaykumar S.; Amshumali, Mungalimane K.

    Facile and efficient ball milling and polyol methods were employed for the synthesis of nickel selenide (NiSe) nanoparticle. The particle size of the NiSe nanoparticle has been controlled mechanically by varying the ball size in the milling process. The role of the surfactants in the formation of various morphologies was studied. The compounds were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy (EDS). The efficiency of the NiSe nanoparticle as a catalyst was tested for the reduction of para-nitroaniline (PNA) to para-phenyldiamine (PPD) and para-nitrophenol (PNP) to para-aminophenol (PAP)more » using NaBH{sub 4} as the reducing agent. Particle size, morphology and the presence of surfactant played a crucial role in the reduction process. - Graphical abstract: NiSe nanoparticles in different size and morphology were synthesized using facile ball milling and polyol methods. Particle size, morphology and the presence of surfactant in these materials played a crucial role in the hydrogenation of PNA and PNP. - Highlights: • NiSe nanoparticles synthesized using ball milling and solution phase methods. • NiSe nanoparticle is an efficient catalyst for the reduction of PNA and PNP. • NiSe is found to be better than the best reported noble metal catalysts.« less

  9. When NiO@Ni Meets WS2 Nanosheet Array: A Highly Efficient and Ultrastable Electrocatalyst for Overall Water Splitting.

    PubMed

    Wang, Dewen; Li, Qun; Han, Ce; Xing, Zhicai; Yang, Xiurong

    2018-01-24

    The development of low-cost, high-efficiency, and stable bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for large-scale water splitting. Here, we develop a new strategy for the first design and synthesis of a NiO@Ni decorated WS 2 nanosheet array on carbon cloth (NiO@Ni/WS 2 /CC) composite. This composite serves as a unique three-dimensional (3D) synergistic electrocatalyst that not only combines the intrinsic properties of individual NiO@Ni and WS 2 , but also exhibits significantly improved HER and OER activities when compared to that of pure NiO@Ni and WS 2 . This electrocatalyst possesses Pt-like activity for HER and exhibits better OER performance than that for commercial RuO 2 , as well as demonstrating superior long-term durability in alkaline media. Furthermore, it enables an alkaline electrolyzer with a current density of 10 mA cm -2 at a cell voltage as 1.42 V, which is the lowest one among all reported values to date. The excellent performance is mainly attributed to the unique 3D configuration and multicomponent synergies among NiO, Ni, and WS 2 . Our findings provide a new idea to design advanced bifunctional catalysts for water splitting.

  10. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-04-03

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  11. Nickel hydroxide positive electrode for alkaline rechargeable battery

    DOEpatents

    Young, Kwo; Wang, Lixin; Mays, William; Reichman, Benjamin; Chao-Ian, Hu; Wong, Diana; Nei, Jean

    2018-02-20

    Certain nickel hydroxide active cathode materials for use in alkaline rechargeable batteries are capable of transferring >1.3 electrons per Ni atom under reversible electrochemical conditions. The specific capacity of the nickel hydroxide active materials is for example .gtoreq.325 mAh/g. The cathode active materials exhibit an additional discharge plateau near 0.8 V vs. a metal hydride (MH) anode. Ni in an oxidation state of less than 2, such as Ni.sup.1+, is able to participate in electrochemical reactions when using the present cathode active materials. It is possible that up to 2.3 electrons, up to 2.5 electrons or more may be transferred per Ni atom under electrochemical conditions.

  12. Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1992-01-01

    Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

  13. Fabrication and characterization of environmental-friendly Ni1-xRxTiO3 nanopigments with high NIR reflectance

    NASA Astrophysics Data System (ADS)

    Tong, Yu-Ping; Chen, Zheng; Wang, Hui-Xian; Zhang, Xu-Fang; Ma, Jun-Tao; Chen, Xi

    2015-04-01

    A series of novel high dispersed environmental-friendly nanopigments based on NiTiO3 doped with rare earth ion such as Y, La, Eu, Sm have been developed. The products were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), commission internationale de l'Eclairage (CIE) 1976 L*α*b* color scales and UV-Vis-near-infrared radiation (NIR) reflectance spectroscopy. The substitution of R3+ for Ni2+ in NiTiO3 can improve the yellowness of pigments, especially for Eu3+ substitution. The sample with the substitution of Eu3+ for Ni2+ processes the highest NIR reflectance and enhances the NIR reflectance to 89.0%. SEM results revealed that the obtained pigments were composed of well-dispersed spherical-like particles with the range of 40-60 nm. EDS results indicated that the distribution of Ni, Ti, R, O element was considerably uniform with no chemical segregation phenomenon.

  14. Investigation of the Profile Control Mechanisms of Dispersed Particle Gel

    PubMed Central

    Zhao, Guang; Dai, Caili; Zhao, Mingwei

    2014-01-01

    Dispersed particle gel (DPG) particles of nano- to micron- to mm-size have been prepared successfully and will be used for profile control treatment in mature oilfields. The profile control and enhanced oil recovery mechanisms of DPG particles have been investigated using core flow tests and visual simulation experiments. Core flow test results show that DPG particles can easily be injected into deep formations and can effectively plug the high permeability zones. The high profile improvement rate improves reservoir heterogeneity and diverts fluid into the low permeability zone. Both water and oil permeability were reduced when DPG particles were injected, but the disproportionate permeability reduction effect was significant. Water permeability decreases more than the oil permeability to ensure that oil flows in its own pathways and can easily be driven out. Visual simulation experiments demonstrate that DPG particles can pass directly or by deformation through porous media and enter deep formations. By retention, adsorption, trapping and bridging, DPG particles can effectively reduce the permeability of porous media in high permeability zones and divert fluid into a low permeability zone, thus improving formation profiles and enhancing oil recovery. PMID:24950174

  15. Improvement of the tool life of a micro-end mill using nano-sized SiC/Ni electroplating method.

    PubMed

    Park, Shinyoung; Kim, Kwang-Su; Roh, Ji Young; Jang, Gyu-Beom; Ahn, Sung-Hoon; Lee, Caroline Sunyong

    2012-04-01

    High mechanical properties of a tungsten carbide micro-end-mill tool was achieved by extending its tool life by electroplating nano-sized SiC particles (< 100 nm) that had a hardness similar to diamond in a nickel-based material. The co-electroplating method on the surface of the micro-end-mill tool was applied using SiC particles and Ni particles. Organic additives (saccharin and ammonium chloride) were added in a Watts bath to improve the nickel matrix density in the electroplating bath and to smooth the surface of the co-electroplating. The morphology of the coated nano-sized SiC particles and the composition were measured using Scanning Electron Microscope and Energy Dispersive Spectrometer. As the Ni/SiC co-electroplating layer was applied, the hardness and friction coefficient improved by 50%. Nano-sized SiC particles with 7 wt% were deposited on the surface of the micro-end mill while the Ni matrix was smoothed by adding organic additives. The tool life of the Ni/SiC co-electroplating coating on the micro-end mill was at least 25% longer than that of the existing micro-end mills without Ni/SiC co-electroplating. Thus, nano-sized SiC/Ni coating by electroplating significantly improves the mechanical properties of tungsten carbide micro-end mills.

  16. Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites

    NASA Astrophysics Data System (ADS)

    Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung

    2013-06-01

    We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.

  17. One-dimensional spatial dark soliton-induced channel waveguides in lithium niobate crystal.

    PubMed

    Zhang, Peng; Ma, Yanghua; Zhao, Jianlin; Yang, Dexing; Xu, Honglai

    2006-04-01

    The anisotropic dependence of the formation of one-dimensional (1-D) spatial dark solitons on the orientation of intensity gradients in lithium niobate crystal is numerically specified. Based on this, we propose an approach to fabricate channel waveguides by employing 1-D spatial dark solitons. By exposure of two 1-D dark solitons with different orientations, channel waveguides can be created. The structures of the channel waveguides can be tuned by adjustment of the widths of the solitons and/or the angles between the two exposures. A square channel waveguide is experimentally demonstrated in an iron-doped lithium niobate crystal by exposure of two orthogonal 1-D dark solitons in sequence.

  18. Development of accident tolerant FeCrAl-ODS steels utilizing Ce-oxide particles dispersion

    NASA Astrophysics Data System (ADS)

    Shibata, Hiroki; Ukai, Shigeharu; Oono, Naoko H.; Sakamoto, Kan; Hirai, Mutsumi

    2018-04-01

    FeCrAl-ODS ferritic steels with Ce-oxide dispersion instead of Y-oxide were produced for the accident tolerant fuel cladding of the light water reactor. Excess oxygen (Ex.O) was added to improve the mechanical property. The tensile strength at Ex.O = 0 is around 200 MPa at 700 °C, mainly owing to dispersed Ce2O3 particles in less than 10 nm size. The formation of the fine Ce2O3 particles is dominated by a coherent interface with ferritic matrix. With increasing Ex.O, an increased of number density of coarser Ce-Al type oxide particles over 10 nm size is responsible for the improvement of the tensile strength. Change of the type of oxide particle, CeO2, Ce2O3, CeAlO3, Al2O3, in FeCrAl-ODS steel was thermodynamically analyzed as a parameter of Ex.O.

  19. Excitation function of alpha-particle-induced reactions on natNi from threshold to 44 MeV

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Kim, K. S.; Nadeem, M.; Sudár, S.; Kim, G. N.

    2017-05-01

    Excitation functions of the natNi(α,x)62,63,65Zn, natNi(α,x)56,57Ni and natNi(α,x)56,57,58m+gCo reactions were measured from the respective thresholds to 44MeV using the stacked-foil activation technique. The tests for the beam characterization are described. The radioactivity was measured using HPGe γ-ray detectors. Theoretical calculations on α-particles-induced reactions on natNi were performed using the nuclear model code TALYS-1.8. A few results are new, the others strengthen the database. Our experimental data were compared with results of nuclear model calculations and described the reaction mechanism.

  20. Study of multiple hologram recording in lithium niobate

    NASA Technical Reports Server (NTRS)

    Gaylord, T. K.; Callen, W. R.

    1974-01-01

    The results of detailed experimental and theoretical considerations relating to multiple hologram recording in lithium niobate are reported. The following problem areas are identified and discussed: (1) the angular selectivity of the stored holograms, (2) interference effects due to the crystal surfaces, (3) beam divergence effects, (4) material recording sensitivity, and (5) scattered light from material inhomogeneities.

  1. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  2. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  3. Fabrication of ternary Ni-TiO2-TiC composite coatings and their enhanced microhardness for metal finishing application

    NASA Astrophysics Data System (ADS)

    Kumaraguru, S.; Kumar, Gopika G.; Raghu, S.; Gnanamuthu, RM.

    2018-07-01

    Nickel (Ni) is extensively used for major engineering application. But nickel exhibits lower mechanical properties such as hardness and wear resistance than Ni-based composite materials. So, in this work, we significantly improve the mechanical properties of Ni by incorporating titanium dioxide (TiO2) and titanium carbide (TiC) particles. Ni-TiO2-TiC composite coatings are successfully prepared on mild steel specimens by means of electrodeposition technique. The prepared coatings are characterized by employing X-ray diffraction (XRD), energy dispersive X-ray fluorescence spectroscopy (EDXRF), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vicker's hardness tester. The surface morphological analysis points out the growth of cauliflower morphology and pyramid-like structure decorated with spherical particles at room temperature. Likewise, hill-valley like structure has been formed in the electrolyte temperature of 75 °C. The upshot of electrolyte temperature and concentration of TiO2-TiC particles on the microhardness of the composite deposits is investigated. The microhardness value is superior when the higher quantity of TiO2-TiC particles encapsulated in the coatings.

  4. Amperometric glucose sensor based on the Ni(OH)2/Al(OH)4- electrode obtained from a thin Ni3Al foil

    NASA Astrophysics Data System (ADS)

    Jarosz, Magdalena; Socha, Robert P.; Jóźwik, Paweł; Sulka, Grzegorz D.

    2017-06-01

    In this report, we present a facile and relatively fast method to roughen the surface of Ni3Al-based intermetallic foil, and test it as an amperometric non-enzymatic glucose sensor. The alloy samples underwent chemical etching in a H3PO4:CH3COOH (HAc):HNO3:H2O (24:1:1:7 in volume) solution in order to achieve a high surface area with more electroactive sites. The Ni(OH)2/Al(OH)4- electrode was fabricated using potential cycling technique in a highly concentrated alkaline solution. The electrodes were tested electrochemically for oxidation of glucose. We have demonstrated that Ni(OH)2/Al(OH)4- electrodes exhibit high sensitivity towards glucose detection (796 μAmM-1cm-2) and short response time (3 s) upon successive addition of glucose. Moreover, as for a non-nanometric material, prepared electrodes show a relatively good linear correlation between current density and glucose concentration (0.025-0.45 mM) and limit of detection (47.6 μM). For more in-depth characterization of presented material, electrodes were examined using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  5. Improving the corrosion wear resistance of AISI 316L stainless steel by particulate reinforced Ni matrix composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Zhuo, Chengzhi; Tao, Jie; Jiang, Shuyun; Liu, Linlin

    2009-01-01

    In order to overcome the problem of corrosion wear of AISI 316L stainless steel (SS), two kinds of composite alloying layers were prepared by a duplex treatment, consisting of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating, respectively, and subsequent surface alloying with Ni-Cr-Mo-Cu by a double glow process. The microstructure of the two kinds of nanoparticle reinforced Ni-based composite alloying layers was investigated by means of SEM and TEM. The electrochemical corrosion behaviour of composite alloying layers compared with the Ni-based alloying layer and 316L SS under different conditions was characterized by potentiodynamic polarization test and electrochemical impedance spectroscopy. Results showed that under alloying temperature (1000 °C) conditions, amorphous nano-SiO2 particles still retained the amorphous structure, whereas nano-SiC particles were decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. In static acidic solution, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is lower than that of the Ni-based alloying layer. However, the corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiO2 particles interlayer is prominently superior to that of the Ni-based alloying layer under acidic flow medium condition and acidic slurry flow condition. The corrosion resistance of the composite alloying layer with the brush plating Ni/nano-SiC particles interlayer is evidently lower than that of the Ni-based alloying layer, but higher than that of 316L SS under all test conditions. The results show that the highly dispersive nano-SiO2 particles are helpful in improving the corrosion wear resistance of the Ni-based alloying layer, whereas carbides and silicide phase are deleterious to that of the Ni-based alloying layer due to the fact that the preferential removal of the matrix around the precipitated phase takes place by the chemical

  6. Quenching of Particle-Gas Combustible Mixtures Using Electric Particulate Suspension (EPS) and Dispersion Methods

    NASA Technical Reports Server (NTRS)

    Colver, Gerald M.; Goroshin, Samuel; Lee, John H. S.

    2001-01-01

    A cooperative study is being carried out between Iowa State University and McGill University. The new study concerns wall and particle quenching effects in particle-gas mixtures. The primary objective is to measure and interpret flame quenching distances, flammability limits, and burning velocities in particulate suspensions. A secondary objective is to measure particle slip velocities and particle velocity distribution as these influence flame propagation. Two suspension techniques will be utilized and compared: (1) electric particle suspension/EPS; and (2) flow dispersion. Microgravity tests will permit testing of larger particles and higher and more uniform dust concentrations than is possible in normal gravity.

  7. Hydrothermal method of synthesis of rare-earth tantalates and niobates

    DOEpatents

    Nyman, May D; Rohwer, Lauren E.S.; Martin, James E

    2012-10-16

    A hydrothermal method of synthesis of a family of rare-earth Group 5 oxides, where the Group 5 oxide is a niobate or tantalate. The rare-earth Group 5 oxides can be doped with suitable emitter ions to form nanophosphors.

  8. Pulse electrodeposition of self-lubricating Ni-W/PTFE nanocomposite coatings on mild steel surface

    NASA Astrophysics Data System (ADS)

    Sangeetha, S.; Kalaignan, G. Paruthimal; Anthuvan, J. Tennis

    2015-12-01

    Ni-W/PTFE nanocomposite coatings with various contents of PTFE (polytetafluoroethylene) particles were prepared by pulse current (PC) electrodeposition from the Ni-W plating bath containing self lubricant PTFE particles to be co-deposited. Co-deposited PTFE particulates were uniformly distributed in the Ni-W alloy matrix. The coatings were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Analysis (EDAX), X-ray Diffractometry (XRD) and Vicker's micro hardness tester. Tafel Polarization and electrochemical Impedance methods were used to evaluate the corrosion resistance behaviour of the nanocomposite coatings in 3.5% NaCl solution. It was found that, the Ni-W/PTFE nanocomposite coating has better corrosion resistance than the Ni-W alloy coating. Surface roughness and friction coefficient of the coated samples were assessed by Mitutoyo Surftest SJ-310 (ISO1997) and Scratch tester TR-101-M4 respectively. The contact angle (CA) of a water droplet on the surface of nanocomposite coating was measured by Optical Contact Goniometry (OCA 35). These results indicated that, the addition of PTFE in the Ni-W alloy matrix has resulted moderate microhardness, smooth surface, less friction coefficient, excellent water repellency and enhanced corrosion resistance of the nanocomposite coatings.

  9. Long Life Na/NiCl2 Cells

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1996-01-01

    The premature capacity failure of Na/NiCl2 secondary cells due to agglomeration of nickel particles on the surface of the NiCl2 cathode is prevented by addition of a minor amount such as 10 percent by weight of a transition metal such as Co, Fe or Mn to the cathode. The chlorides of the transition metals have lower potentials than nickel chloride and chlorinate during charge. A uniform dispersion of the transition metals in the cathodes prevents agglomeration of nickel, maintains morphology of the electrode, maintains the electrochemical area of the electrode and thus maintains capacity of the electrode. The additives do not effect sintering. The addition of sulfur to the liquid catholyte is expected to further reduce agglomeration of nickel in the cathode.

  10. Hypercrosslinked particles for the extraction of sweeteners using dispersive solid-phase extraction from environmental samples.

    PubMed

    Lakade, Sameer S; Zhou, Qing; Li, Aimin; Borrull, Francesc; Fontanals, Núria; Marcé, Rosa M

    2018-04-01

    This work presents a new extraction material, namely, Q-100, based on hypercrosslinked magnetic particles, which was tested in dispersive solid-phase extraction for a group of sweeteners from environmental samples. The hypercrosslinked Q-100 magnetic particles had the advantage of suitable pore size distribution and high surface area, and showed good retention behavior toward sweeteners. Different dispersive solid-phase extraction parameters such as amount of magnetic particles or extraction time were optimized. Under optimum conditions, Q-100 showed suitable apparent recovery, ranging in the case of river water sample from 21 to 88% for all the sweeteners, except for alitame (12%). The validated method based on dispersive solid-phase extraction using Q-100 followed by liquid chromatography with tandem mass spectrometry provided good linearity and limits of quantification between 0.01 and 0.1 μg/L. The method was applied to analyze samples from river water and effluent wastewater, and four sweeteners (acesulfame, saccharin, cyclamate, and sucralose) were found in both types of sample. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of Hydrogen and Number of Particle Variants on Ordinary and Two-Way Shape Memory Effects in Ti-Ni Single Crystals

    NASA Astrophysics Data System (ADS)

    Kireeva, I. V.; Platonova, Yu. N.; Chumlyakov, Yu. I.

    2017-02-01

    The ordinary and two-way shape memory effects (SMEs) are investigated for [ overline{1} 12] single crystals of Ti-51.3Ni (at.%) alloy aged at 823 K for 1.5 h in free state and under tensile stress of 150 MPa without hydrogen and after saturation by hydrogen. It is established that without hydrogen in [ overline{1} 12] single crystals with one and four variants of Ti3Ni4 particles the maximum magnitude of the ordinary SME is 1.9-2.6% under the external stress σext = 250 MPa. Under σext > 250 MPa, crystals are destroyed. The magnitude of the two-way SME caused by the B2- R- B19' MT equal to 1.1% at σext = 0 is observed in [ overline{1} 12] single crystals with one variant of Ti3Ni4 particles. The physical reason for the observed two-way SME is the internal compressive stresses oriented along the [ overline{1} 12] directions arising from one variant of Ti3Ni4 particles as a result of aging under tensile stress of 150 MPa. It is established that hydrogen does not influence the TR temperature, reduces the plasticity, and suppresses the two-way SME. The suppression of two-way SME in the [ overline{1} 12] single crystals of the Ti-51.3Ni (at.%) alloy with one variant of Ti3Ni4 particles is caused by shielding of stress fields from one variant of Ti3Ni4 particles and multiple nucleation of R- and B19' martensite variants under loading with saturation by hydrogen.

  12. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  13. Effect of Finite Particle Size on Convergence of Point Particle Models in Euler-Lagrange Multiphase Dispersed Flow

    NASA Astrophysics Data System (ADS)

    Nili, Samaun; Park, Chanyoung; Haftka, Raphael T.; Kim, Nam H.; Balachandar, S.

    2017-11-01

    Point particle methods are extensively used in simulating Euler-Lagrange multiphase dispersed flow. When particles are much smaller than the Eulerian grid the point particle model is on firm theoretical ground. However, this standard approach of evaluating the gas-particle coupling at the particle center fails to converge as the Eulerian grid is reduced below particle size. We present an approach to model the interaction between particles and fluid for finite size particles that permits convergence. We use the generalized Faxen form to compute the force on a particle and compare the results against traditional point particle method. We apportion the different force components on the particle to fluid cells based on the fraction of particle volume or surface in the cell. The application is to a one-dimensional model of shock propagation through a particle-laden field at moderate volume fraction, where the convergence is achieved for a well-formulated force model and back coupling for finite size particles. Comparison with 3D direct fully resolved numerical simulations will be used to check if the approach also improves accuracy compared to the point particle model. Work supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  14. Electrochemical properties of rapidly solidified Si-Ti-Ni(-Cu) base anode for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-11-01

    In this study, rapidly solidified Si-Ti-Ni-Cu alloys have been investigated as high capacity anodes for Li-ion secondary batteries. To obtain nano-sized Si particles dispersed in the inactive matrix, the alloy ribbons were fabricated using the melt spinning process. The thin ribbons were pulverized using ball-milling to make a fine powder of ˜ 4 µm average size. Coin-cell assembly was carried out under an argon gas in a glove box, in which pure lithium was used as a counter-electrode. The cells were cycled using the galvanostatic method in the potential range of 0.01 V and 1.5 V vs. Li/Li+. The microstructure and morphology were examined using an x-ray diffractometer, Field-Emission Scanning Electron Microscopy and High Resolution Transmission Electron Microscopy. Among the anode alloys, the Si70Ti15Ni15 electrodes had the highest discharge capacity (974.1 mAh/g) after the 50th cycle, and the Si60Ti16Ni16Cu8 electrode showed the best coulombic efficiency of ˜95.9% in cyclic behavior. It was revealed that the Si7Ni4Ti4 crystal phase coexisting with an amorphous phase, could more efficiently act as a buffer layer than the fully crystallized Si7Ni4Ti4 phase. Consequently, the electrochemical properties of the anode materials pronouncedly improved when the nano-sized primary Si particle was dispersed in the inactive Si7Ni4Ti4-based matrix mixed with an amorphous structure.

  15. Method of preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals

    DOEpatents

    Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng

    1994-01-01

    A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.

  16. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds

    PubMed Central

    Wu, Rongrong; Shen, Feiran; Hu, Fengxia; Wang, Jing; Bao, Lifu; Zhang, Lei; Liu, Yao; Zhao, Yingying; Liang, Feixiang; Zuo, Wenliang; Sun, Jirong; Shen, Baogen

    2016-01-01

    Magnetostructural coupling, which is the coincidence of crystallographic and magnetic transition, has obtained intense attention for its abundant magnetoresponse effects and promising technological applications, such as solid-state refrigeration, magnetic actuators and sensors. The hexagonal Ni2In-type compounds have attracted much attraction due to the strong magnetostructural coupling and the resulted giant negative thermal expansion and magnetocaloric effect. However, the as-prepared samples are quite brittle and naturally collapse into powders. Here, we report the effect of particle size on the magnetostructural coupling and magnetocaloric effect in the Ni2In-type Mn-Fe-Ni-Ge compound, which undergoes a large lattice change across the transformation from paramagnetic austenite to ferromagnetic martensite. The disappearance of martensitic transformation in a large amount of austenitic phase with reducing particle size, to our best knowledge, has not been reported up to now. The ratio can be as high as 40.6% when the MnNi0.8Fe0.2Ge bulk was broken into particles in the size range of 5~15 μm. Meanwhile, the remained magnetostructural transition gets wider and the magnetic hysteresis becomes smaller. As a result, the entropy change drops, but the effective cooling power RCeffe increases and attains to the maximum at particles in the range of 20~40 μm. These observations provide constructive information and highly benefit practical applications for this class of novel magnetoresponse materials. PMID:26883719

  17. Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal

    NASA Astrophysics Data System (ADS)

    Kim, Taek-Seung; Song, Hee Jo; Dar, Mushtaq Ahmad; Lee, Hack-Jun; Kim, Dong-Wan

    2018-05-01

    Magnetic metal/carbon nano-materials are attractive for pollutant adsorption and removal. In this study, ultrafine nickel/carbon nanoparticles are successfully prepared via electrical wire explosion processing in ethanol media for the elimination of pollutant organic dyes such as Rhodamine B and methylene blue in aqueous solutions. High specific surface areas originating from both the nano-sized particles and the existence of carbon on the surface of Ni nanoparticles enhance dye adsorption capacity. In addition to this, the excellent dispersity of Ni/C nanoparticles in aqueous dye solutions leads to superior adsorption rates. The adsorption kinetics for the removal of organic dyes by Ni/C nanoparticles agree with a pseudo-second-order model and follow Freundlich adsorption isotherm behavior.

  18. Pulse Current Electrodeposition and Anticorrosion Performance of Ni-W-Mica Composite Coatings

    NASA Astrophysics Data System (ADS)

    Yang, Qiangbin; He, Yi; Fan, Yi; Li, Han; Xu, Wei; Zhan, Yingqing

    2017-03-01

    Ni-W-mica composite coatings were prepared on C45 steel via pulse electrodeposition from a Watts bath containing mica. The mica particles were co-deposited into the Ni-W coating matrix, and the structures, morphologies and mechanical performances of the coatings were investigated. Scanning electron microscopy and energy dispersive x-ray spectroscopy revealed that a small amount of mica caused the Ni-W-mica coating to form of a compact and uniform surface structure. The electrochemical behaviors of the coatings were evaluated by potentiodynamic polarization measurements and electrochemical impedance spectroscopy in 3.5 wt.% NaCl solutions at pH 7 and under typical engineering application environments. The results revealed that the addition of mica to the Ni-W coating could improve the corrosion resistance of the coating.

  19. Design of multi-wavelength tunable filter based on Lithium Niobate

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Yao, Yuan; Zhang, Yue; Song, Hongyun

    2018-05-01

    A multi-wavelength tunable filter is designed. It consists of multiple waveguides among multiple waveguide gratings. A pair of electrodes were placed on both sides of each waveguide. The tunable filter uses the electro-optic effect of Lithium Niobate to tune the phase caused by each waveguide. Consequently, the wavelength and wavelength spacing of the filter are tuned by changing external voltages added on the electrode pairs. The tunable property of the filter is analyzed by phase matching condition and transfer-matrix method. Numerical results show that not only multiple wavelengths with narrow bandwidth are tuned with nearly equal spacing by synchronously changing the voltages added on all electrode pairs, but also the number of wavelengths is determined by the number of phase shifts caused by electrode pairs. Furthermore, due to the electro-optic effect of Lithium Niobate, the tuning speed of the filter can reach the order of ns.

  20. Effects of compressibility on turbulent relative particle dispersion

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen K.

    2016-08-01

    In this paper, phenomenological developments are used to explore the effects of compressibility on the relative particle dispersion (RPD) in three-dimensional (3D) fully developed turbulence (FDT). The role played by the compressible FDT cascade physics underlying this process is investigated. Compressibility effects are found to lead to reduction of RPD, development of the ballistic regime and particle clustering, corroborating the laboratory experiment and numerical simulation results (Cressman J. R. et al., New J. Phys., 6 (2004) 53) on the motion of Lagrangian tracers on a surface flow that constitutes a 2D compressible subsystem. These formulations are developed from the scaling relations for compressible FDT and are validated further via an alternative dimensional/scaling development for compressible FDT similar to the one given for incompressible FDT by Batchelor and Townsend (Surveys in Mechanics (Cambridge University Press) 1956, p. 352). The rationale for spatial intermittency effects is legitimized via the nonlinear scaling dependence of RPD on the kinetic-energy dissipation rate.

  1. Fabrication of nano ZrO2 dispersed novel W79Ni10Ti5Nb5 alloy by mechanical alloying and pressureless sintering

    NASA Astrophysics Data System (ADS)

    Sahoo, R. R.; Patra, A.; Karak, S. K.

    2017-02-01

    A high energy planetary ball-mill was employed to synthesize tungsten (W) based alloy with nominal composition of W79Ni10Ti5Nb5(ZrO2)1 (in wt. %) for 20 h with chrome steel as grinding media, toluene as process control agent (PCA) along with compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h using Ar atmosphere. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS), elemental mapping and Transmission electron microscopy (TEM) was used to study the phase formation, microstructure of both milled powder and consolidated alloy. The crystallite size of W in W79Ni10Ti5Nb5(ZrO2)1 powder was 37 nm, 14.7 nm at 10 h and 20 h of milling respectively and lattice strain enhances to 0.54% at 20 h of milling. The crystallite size reduction is more at 10 h of milling and the rate drop beyond 10 to 20 h of milling. The intense improvement in dislocation density was evident upto 10 h of milling and the rate decreases between 10 to 20 h of milling. Increase in the lattice parameter of tungsten in W79Ni10Ti5Nb5(ZrO2)1 alloy upto 0.09% was observed at 10 h of milling owing to severe stress assisted deformation followed by contraction upto 0.07% at 20 h of milling due to formation of solid solution. The large spherical particles at 0 h of milling transformed to elongated shape at 10 h of milling and finer morphology at 20 h of milling. The average particle size reduced from 100 µm to 4.5 µm with the progress of milling from 0 to 20 h. Formation of fine polycrystallites of W was revealed by bright field TEM analysis and the observed crystallite size from TEM study was well supported by the evaluated crystallite size from XRD. XRD pattern and SEM micrograph of sintered alloy revealed the formation of NbNi, Ni3Ti intermetallic phases. Densification of 91.5% was attained in the 20 h milled and sintered alloy. Mechanical behaviour of the sintered product was evaluated by hardness and wear study. W79Ni10Ti5Nb5(ZrO2)1 alloy

  2. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  3. High temperature wear performance of HVOF-sprayed Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr hardmetal coatings

    NASA Astrophysics Data System (ADS)

    Zhou, Wuxi; Zhou, Kesong; Li, Yuxi; Deng, Chunming; Zeng, Keli

    2017-09-01

    A novel Cr3C2-WC-NiCoCrMo and commercial Cr3C2-NiCr thermal spray-grade powders with particle size of -45 + 15 μm were prepared by an agglomeration and sintering process. Cr3C2-WC-NiCoCrMo and Cr3C2-NiCr coatings were deposited by high velocity oxygen fuel (HVOF) spraying. The fundamental properties of both coatings were evaluated and friction wear test against Al2O3 counterbodies of both coatings at high temperatures (450 °C, 550 °C, 650 °C) were carried out ball-on-disk high temperature tribometer. All specimens were characterized by optical microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and 3D non-contact surface mapping profiler. The results have shown that the Cr3C2-WC-NiCoCrMo coating exhibited lower porosity, higher micro-hardness compared to the Cr3C2-NiCr coating. The Cr3C2-WC-NiCoCrMo coating also exhibited better wear resistance and higher friction coefficient compared to the Cr3C2-NiCr coating when sliding against the Al2O3 counterpart. Wear rates of both coatings increased with raising temperature. Both coatings experienced abrasive wear; hard phase particles (WC and Cr3C2) with different sizes, distributed in the matrix phase, will effectively improve the resistance against wear at high temperatures.

  4. Optimal design of DC-based polarization beam splitter in lithium niobate on insulator

    NASA Astrophysics Data System (ADS)

    Gong, Zisu; Yin, Rui; Ji, Wei; Wang, Junbao; Wu, Chonghao; Li, Xiao; Zhang, Shicheng

    2017-08-01

    We propose a DC-based polarization beam splitter (PBS) in lithium niobate on insulator (LNOI). Utilizing the high birefringence property of Lithium Niobate (LiNbO3, LN), the device is achieved by simple structure in a short length. With the use of beam propagation method (BPM), the simulation results show that the device has a good performance for the separation of TE and TM polarizations with a high extinction ratio (about 35 dB). The simulated fabrication tolerance for the variation of the waveguide width is about 100 nm and the bandwidth is about 65 nm when the extinction ratio is higher than 10 dB.

  5. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    PubMed

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Microstructures responsible for the invar and permalloy effects in Fe-Ni alloys

    NASA Astrophysics Data System (ADS)

    Ustinovshchikov, Yu. I.; Shabanova, I. N.; Lomova, N. V.

    2015-05-01

    The experimental studies of Fe68Ni32 and Fe23Ni77 alloys by transmission electron microscopy and X-ray electron spectroscopy show that the ordering-separation phase transition in these alloys occurs in a temperature range near 600°C. At temperatures higher than the transition temperature, the ordering energy of the alloy is positive, and the structures contain clusters enriched in one of the components. After heat treatment at the temperatures where the invar effect in the Fe68Ni32 alloy is maximal, a modulated microstructure forms. Below the transition temperature, the ordering energy is negative, which provides a tendency to formation of chemical compounds. After aging at these temperatures (where the Fe23Ni77 alloy exhibits high permalloy properties), highly dispersed completely coherent particles of the FeNi3 phase with structure L12 precipitate in a solid solution.

  7. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    PubMed

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Simple approach to detection and estimation of photoactivity of silver particles on graphene oxide in aqueous-organic dispersion

    NASA Astrophysics Data System (ADS)

    Vlasov, D. V.; Vlasova, T. D.; Apresyan, L. A.; Krasovskiy, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The effect of sediment flotation was observed in dispersion of graphene oxide flakes with Ag-particles deposited thereon in the aqueous-organic (containing dimethylformamide) under the visible light action, with subsequent stabilization of the dispersion, which does not occur in the absence of Ag-particles. The main reason for this laser light induced movement of sediment graphene oxide flakes may be associated with the appearance of small bubbles. The further development of this approach seem to be able to estimate the of graphene flakes photoactivity with different activating particles.

  9. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2017-01-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  10. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Containerless electromagnetic levitation melting of Cu-Fe and Ag-Ni alloys

    NASA Technical Reports Server (NTRS)

    Abbaschian, G. J.; Ethridge, E. C.

    1983-01-01

    The feasibility of producing silver or copper alloys containing finely dispersed nickel or iron particles, respectively, by utilizing containerless electromagnetic levitation casting techniques was investigated. A levitation coil was designed to successfully levitate and melt a variety of alloys including Nb-Ge, Cu-Fe, Fe-C, and Ag-Ni. Samples of 70 Cu-30 Fe and 80 Ag-20 Ni (atomic %), prepared by mechanical pressing of the constituent powders, were levitated and heated either to the solid plus liquid range of the alloys or to the fully liquid region. The samples were then solidified by passing helium gas into the bell jar or they were dropped into a quenching oil. The structure of the samples which were heated to the solid plus liquid range consists of uniform distribution of Fe or Ni particle in their respective matrices. A considerable amount of entrapped gas bubbles were contained. Upon heating for longer periods or to higher temperatures, the bubbles coalesced and burst, causing the samples to become fragmented and usually fall out of the coil.

  12. Whispering gallery mode lithium niobate microresonators for photonics applications

    NASA Astrophysics Data System (ADS)

    Maleki, Lute; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Matsko, Andrey B.

    2003-07-01

    We review various photonics applications of whispering gallery mode (WGM) dielectric resonators and focus on the capability of generating trains of short optical pulses using WGM lithium niobate cavities. We introduce schemes of optical frequency comb generators, actively mode-locked lasers, and coupled opto-electronic oscillators where WGM cavities are utilized for the light amplification and modulation.

  13. Effect of Extremes: How El Niño Events Affect Reef Fish Population Connectivity in the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wren, J.; Toonen, R. J.

    2016-02-01

    As a result of climate change, scientists predict stronger, more frequent El Niño events in the future. These events in the Central Equatorial Pacific cause increased sea surface temperatures (SST), a depressed thermocline, and decreased primary production. The oceanographic effects in the Hawaiian Archipelago located in the Subtropical North Pacific, are not equally well understood, and have shown both increased and decreased SST and primary production during El Niño events. Marine larval fish development rates can be affected by factors such as food availability and temperature, thus oceanographic changes caused by El Niño can potentially alter larval dispersal patterns throughout the Hawaiian Archipelago, affecting regional population connectivity. Using a two dimensional Lagrangian particle dispersal model coupled with high resolution Hybrid Coordinate Ocean Model (HYCOM) currents for the Hawaiian Archipelago we are able to model annual settlement probabilities and self-recruitment, important metrics for understanding population dynamics and connectivity. Preliminary data comparing modeled dispersal during the 1997-98 El Niño with four years of normal state oceanographic conditions (2011-2014), showed an increase in total settlement during the El Niño years for the North Western Hawaiian Islands, and a decreased settlement success for the Main Hawaiian Islands. Self-recruitment across the archipelago was lower during El Niño and the distance the successful settlers traveled was greater, indicating that El Niño may be playing an important role in long distance dispersal and genetic exchange between distant sites not otherwise connected. We see a much greater connectivity between the Hawaiian Archipelago and Johnnston Atoll during the El Niño event, with a significant increase of larval exchange in both directions. Since these ecologically rare but extreme events can have a disproportionate influence on dispersal, it's important to understand how

  14. Synthesis and characterization of Ca{sup 2+} substituted barium niobate nanopaticles for photocatalytic and luminescence applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudhe, C.M.; Nagdeote, S.B.; Palikundwar, U.A., E-mail: chandraguptadudhe@gmail.com

    2016-09-15

    Highlights: • Nanoparticles of Ca{sup 2+} (30 mol%) substituted BaNb{sub 2}O{sub 6} were synthesized. • Ca{sup 2+} ions occupy newer 8d Wyckoff positions rather than 4c. • Self-activated photoluminescence was observed. • Excellent H{sub 2} generation tendency from pure water under UV light was also observed. - Abstract: Ca{sup 2+} substituted barium niobate i.e. Ca{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} (x = 0.3) compound in nanoparticles form was synthesized by a simple co-precipitation method for the first time and its structural characterization has been done by using powder X-ray diffraction data. Other characterizations were done by using transmission electron microscopy, energymore » dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy. It was found that the Ca{sub x}Ba{sub 1-x}Nb{sub 2}O{sub 6} (x = 0.3) compound stabilizes in the orthorhombic phase (Pbcn space group) with the lattice parameters a = 14.984 Å, b = 5.761 Å and c = 5.216 Å. A representative TEM image shows the irregular sphere like morphology of the synthesized particles with the size ranging from 70 to 120 nm. The optical band gap energy was found to be 3.74 eV. It was observed that the synthesized nanoparticles exhibit excellent H{sub 2} evolution tendency and self–activated photoluminescence under the excitation of UV light. These activities were assigned to the nanocrystalline nature of the synthesized material.« less

  15. Parameterizing Urban Canopy Layer transport in an Lagrangian Particle Dispersion Model

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.

    2016-04-01

    The percentage of people living in urban areas is rising worldwide, crossed 50% in 2007 and is even higher in developed countries. High population density and numerous sources of air pollution in close proximity can lead to health issues. Therefore it is important to understand the nature of urban pollutant dispersion. In the last decades this field has experienced considerable progress, however the influence of large roughness elements is complex and has as of yet not been completely described. Hence, this work studied urban particle dispersion close to source and ground. It used an existing, steady state, three-dimensional Lagrangian particle dispersion model, which includes Roughness Sublayer parameterizations of turbulence and flow. The model is valid for convective and neutral to stable conditions and uses the kernel method for concentration calculation. As most Lagrangian models, its lower boundary is the zero-plane displacement, which means that roughly the lower two-thirds of the mean building height are not included in the model. This missing layer roughly coincides with the Urban Canopy Layer. An earlier work "traps" particles hitting the lower model boundary for a recirculation period, which is calculated under the assumption of a vortex in skimming flow, before "releasing" them again. The authors hypothesize that improving the lower boundary condition by including Urban Canopy Layer transport could improve model predictions. This was tested herein by not only trapping the particles, but also advecting them with a mean, parameterized flow in the Urban Canopy Layer. Now the model calculates the trapping period based on either recirculation due to vortex motion in skimming flow regimes or vertical velocity if no vortex forms, depending on incidence angle of the wind on a randomly chosen street canyon. The influence of this modification, as well as the model's sensitivity to parameterization constants, was investigated. To reach this goal, the model was

  16. Fabrication of Ni@Ti core-shell nanoparticles by modified gas aggregation source

    NASA Astrophysics Data System (ADS)

    Hanuš, J.; Vaidulych, M.; Kylián, O.; Choukourov, A.; Kousal, J.; Khalakhan, I.; Cieslar, M.; Solař, P.; Biederman, H.

    2017-11-01

    Ni@Ti core-shell nanoparticles were prepared by a vacuum based method using the gas aggregation source (GAS) of nanoparticles. Ni nanoparticles fabricated in the GAS were afterwards coated by a Ti shell. The Ti shell was deposited by means of magnetron sputtering. The Ni nanoparticles were decelerated in the vicinity of the magnetron to the Ar drift velocity in the second deposition chamber. X-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy analysis of the nanoparticles showed the core-shell structure. It was shown that the thickness of the shell can be easily tuned by the process parameters with a maximum achieved thickness of the Ti shell ~2.5 nm. The core-shell structure was confirmed by the STEM analysis of the particles.

  17. Deposition of bi-dispersed particles in inkjet-printed evaporating colloidal drops

    NASA Astrophysics Data System (ADS)

    Sun, Ying; Joshi, Abhijit; Chhasatia, Viral

    2010-11-01

    In this study, the deposition behaviors of inkjet-printed evaporating colloidal drops consisting of bi-dispersed micro and nano-sized particles are investigated by fluorescence microscopy and SEM. The results on hydrophilic glass substrates show that, evaporatively-driven outward flow drives the nanoparticles to deposit close to the pinned contact line while an inner ring deposition is formed by microparticles. This size-induced particle separation is consistent with the existence of a wedge-shaped drop edge near the contact line region of an evaporating drop on a hydrophilic substrate. The replenishing evaporatively-driven flow assembles nanoparticles closer to the pinned contact line forming an outer ring of nanoparticles and this particle jamming further enhances the contact line pinning. Microparticles are observed to form an inner ring inside the nano-sized deposits. This size-induced particle separation presents a new challenge to the uniformity of functional materials in bioprinting applications where nanoparticles and micro-sized cells are mixed together. On the other hand, particle self-assembly based on their sizes provides enables easy and well-controlled pattern formation. The effects of particle size contrast, particle volume fraction, substrate surface energy, and relative humidity of the printing environment on particle separation are examined in detail.

  18. Particle dispersion in a stably stratified channel flow

    NASA Astrophysics Data System (ADS)

    Pasquero, C.; Armenio, V.

    2003-04-01

    The motion of particles in a stably stratified channel flow is relevant in geophysic and environmental applications. In the present research this problem has been studied numerically using a mixed Lagrangian-Eulerian technique (Lagrangian motion of an ensemble of particles in an Eulerian field) by means of large eddy simulation. A stratified channel flows can be decomposed into a buoyancy affected region, with a strong turbulent activity, close to the walls, and into a buoyancy dominated region, where turbulence is strongly inhibited, in the center of the channel. For strong stratifications, counter gradient heat fluxes steepen the density gradient moving hot fluid up and cold fluid down. The stratification in the central region of the channel becomes extremely stable. However, the vertical turbulent energy, defined as the difference between the total vertical kinetic energy and its temporal average, is very strong. Particle statistics have shown that this can be related to the presence of high frequency internal waves, that do not contribute to dispersion because of their highly coherent behavior. Vertical stratification is shown to reduce or increase the decorrelation time for vertical motion, depending on the Richardson number. When stratification is increased there are two competing effects: Structures have a smaller vertical scale (acting to reduce the decorrelation time) and vertical velocities are smaller (acting to increase the decorrelation time, since particles stay for a longer time into a given structure in the flow). It has been shown that for low stratification the first mechanism dominates, while for large stratification the second effect is more important. The research is in progress and results for both fluid and inertial particles will be presented at the conference.

  19. Characterization of the alkaline/neutral invertase gene in Dendrobium officinale and its relationship with polysaccharide accumulation.

    PubMed

    Gao, F; Cao, X F; Si, J P; Chen, Z Y; Duan, C L

    2016-05-06

    Dendrobium officinale is one of the most well-known traditional Chinese medicines, and polysaccharide is its main active ingredient. Many studies have investigated the synthesis and accumulation mechanisms of polysaccharide, but until recently, little was known about the molecular mechanism of how polysaccharide is synthesized because no related genes have been cloned. In this study, we cloned an alkaline/neutral invertase gene from D. officinale (DoNI) by the rapid amplification of cDNA ends (RACE) method. DoNI was 2231 bp long and contained an open reading frame that predicted a 62.8-kDa polypeptide with 554-amino acid residues. An alkaline/neutral invertase conserved domain was predicted from this deduced amino acid sequence, and DoNI had a similar deduced amino acid sequence to Setaria italica and Oryza brachyantha. We also found that DoNI expression in different tissues was closely related to DoNI activity, and more importantly, polysaccharide level. Our results indicate that DoNI is associated with polysaccharide accumulation in D. officinale.

  20. Water oxidation by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate: new findings and an alternative mechanism.

    PubMed

    Najafpour, Mohammad Mahdi; Feizi, Hadi

    2018-05-08

    Herein, the water-oxidation reaction by Ni(1,4,8,11-tetraazacyclotetradecane)2+ in the presence of carbonate was reinvestigated by scanning electron microscopy, energy dispersive spectrometry, electrochemistry, and high-resolution spectroelectrochemical and hydrogen nuclear magnetic resonance spectroscopy methods. These methods showed that the complex was not stable under water-oxidation conditions. The role of nanosized particles or Ni ions on the surface of the electrode for water oxidation was studied and it is proposed that Ni ions or Ni oxides on the surface of the electrode are at least one of the candidates contributing to the observed catalysis.

  1. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions.

    PubMed

    Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2018-05-11

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe 2 O 3 , BiVO 4 , TiO 2 , or WO 3 ) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.

  2. Modulation in magnetic exchange interaction, core shell structure and Hopkinson's peak with chromium substitution into Ni0.75Co0.25Fe2O4 nano particles

    NASA Astrophysics Data System (ADS)

    Uday Bhasker, S.; Choudary, G. S. V. R. K.; Reddy, M. V. Ramana

    2018-05-01

    The ever growing applications and ever evolving challenges of magnetic nano particles has been motivating the researchers from various disciplines towards this area of magnetic nano particles. Cation substitutional effect on the magnetic structure of the nanoparticles forms a crucial aspect in their applications. Here the environmentally benign auto combustion method was employed to synthesize chromium substituted nickel cobalt ferrite (Ni0.75Co0.25Fe2-xCrxO4; x = 0, 0.10, 0.15) nano particles, from aqueous metal nitrate solutions. Chromium substitution has shown its effect on the structural, magnetic and electrical properties of Ni0.75Co0.25Fe2O4. Structural and phase analysis of the prepared samples show increased phase purity of ferrite sample with increasing Cr substitution. The TEM (Transmission Electron Microscope) image confirms the nano size of the particles, EDS (Energy dispersive X-ray Spectroscopy) has supported the stoichiometry of the prepared samples and FTIR (Fourier-transform infrared spectroscopic) analysis confirms the spinel structure and also suggests cation redistributions with chromium substitution. VSM (Vibrational Sample Magnetometer) is used to study the magnetic properties through magnetic hysteresis (M-H) loop and magnetic Hopkinson effect. All samples show hysteresis and show reduction in magnetic properties with increase in chromium content. The thermo magnetic study shows Hopkinson peak(s) in the magnetization vs. temperature (M-T) graph and also shows variation in the nature of Hopkinson peak with chromium substitution. Possible reasons for the changes in the nature of the peak are discussed.

  3. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  4. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition

    NASA Astrophysics Data System (ADS)

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l-1, 30 g l-1, 60 g l-1, 90 g l-1) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l-1, the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l-1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  5. Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition.

    PubMed

    Yang, Qionglian; Ru, Juanjian; Song, Peng; Hu, Mingyu; Feng, Jing

    2018-05-01

    Ni-decorated h-BN powders are fabricated with ChCl-EG as additive via electroless plating in the paper. As comparison, the different additive concentration of choline chloride-ethylene glycol (ChCl-EG) ionic liquid (0 g l -1 , 30 g l -1 , 60 g l -1 , 90 g l -1 ) is presented. The effects of ChCl-EG concentration are studied, including the surface morphologies, phase analysis of Ni-decorated h-BN powders and the residual Ni 2+ concentration is measured in electroless plating bath. It is demonstrated that the deposition phenomena of nickel particles on h-BN surface is changed with the addition of ChCl-EG. When the concentration of ChCl-EG is 30 g l -1 , the Ni particles on h-BN surface are in dispersed and spheroid state with the average size of 10-1000 nm. It can be found that 30 g l -1 ChCl-EG is conducive to the arise of deposition phenomena, which is the formation of the single nickel particle on h-BN surface. Besides, more Ni particles are deposited on h-BN surface with the increase of nickel plating times, which is characterized with scanning electron microscope and transmission electron microscope. Furthermore, the deposition phenomenon and growth mechanism are proposed without and with ChCl-EG as additive to further elaborate the formation of Ni particles on h-BN surface.

  6. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform

  7. On-chip tunable dispersion in a ring laser gyroscope for enhanced rotation sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Jiaming; Lin, Jian; Li, Wenxiu; Xue, Xia; Huang, Anping; Xiao, Zhisong

    2016-05-01

    A gyroscope structure with tailored local dispersion profile to enhance sensitivity is proposed, which uses lithium niobate (LiNbO3) thin film as the on-chip material of gyroscope's resonator. A Mach-Zehnder interferometer (MZI) structure as a coupler, which induces a different reference phase shift in each arm, is inserted into the position between ring resonator and output bus waveguide. Through modulating reference phase shift in MZI, theoretical rotation sensitivity enhancement as large as one order of magnitude is presented.

  8. Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sharma, Himani; Jain, Shubham; Raj, Pulugurtha Markondeya; Murali, K. P.; Tummala, Rao

    2015-10-01

    Metal-polymer composites were investigated for their microwave properties in the frequency range of 30-1000 MHz to assess their application as inductor cores and electromagnetic isolation shield structures. NiFe and Fe nanoparticles were dispersed in epoxy as nanocomposites, in different volume fractions. The permittivity, permeability, and loss tangents of the composites were measured with an impedance analyzer and correlated with the magnetic properties of the particle such as saturation magnetization and field anisotropy. Fe-epoxy showed lower magnetic permeability but improved frequency stability, compared to the NiFe-epoxy composites of the same volume loading. This is attributed to the differences in nanoparticle's structure such as effective metal core size and particle-porosity distribution in the polymer matrix. The dielectric properties of the nanocomposites were also characterized from 30 MHz to 1000 MHz. The instabilities in the dielectric constant and loss tangent were related to the interfacial polarization relaxation of the particles and the dielectric relaxation of the surface oxides.

  9. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, R.F.

    1994-05-10

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05--0.1 C, 8--12 Cr, 1--5 Co, 0.5--2.0 Ni, 0.41--1.0 Mo, 0.1--0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels. 2 figures.

  10. Creep resistant, precipitation-dispersion-strengthened, martensitic stainless steel and method thereof

    DOEpatents

    Buck, Robert F.

    1994-01-01

    An iron-based, corrosion-resistant, precipitation strengthened, martensitic steel essentially free of delta ferrite for use at high temperatures has a nominal composition of 0.05-0.1 C, 8-12 Cr, 1-5 Co, 0.5-2.0 Ni, 0.41-1.0 Mo, 0.1-0.5 Ti, and the balance iron. This steel is different from other corrosion-resistant martensitic steels because its microstructure consists of a uniform dispersion of fine particles, which are very closely spaced, and which do not coarsen at high temperatures. Thus at high temperatures this steel combines the excellent creep strength of dispersion-strengthened steels, with the ease of fabricability afforded by precipitation hardenable steels.

  11. Fabrication of Oxide Dispersion Strengthened Bond Coats with Low Al2O3 Content

    NASA Astrophysics Data System (ADS)

    Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; Vaßen, Robert

    2017-06-01

    Nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organic additive stearic acid on the manufacturing process of Al2O3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.

  12. Photoluminescence of Copper-Doped Lithium Niobate Crystals

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Sidorov, N. V.

    2018-05-01

    The photoluminescence (PL) of copper-doped lithium niobate single crystals is studied using different UV-Vis light-emitting diodes and a pulse-periodic laser with a wavelength of 266 nm as excitation radiation sources. With the resonance excitation from a 527-nm light-emitting diode, the intensity of PL increases sharply (by two orders of magnitude). When using a 467-nm light-emitting diode for excitation, the PL spectrum is characterized by the presence of multiphonon lines in the range of 520-620 nm.

  13. Physical and Mechanical Properties of LoVAR: A New Lightweight Particle-Reinforced Fe-36Ni Alloy

    NASA Technical Reports Server (NTRS)

    Stephenson, Timothy; Tricker, David; Tarrant, Andrew; Michel, Robert; Clune, Jason

    2015-01-01

    Fe-36Ni is an alloy of choice for low thermal expansion coefficient (CTE) for optical, instrument and electrical applications in particular where dimensional stability is critical. This paper outlines the development of a particle-reinforced Fe-36Ni alloy that offers reduced density and lower CTE compared to the matrix alloy. A summary of processing capability will be given relating the composition and microstructure to mechanical and physical properties.

  14. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  15. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Single-particle and collective excitations in Ni 62

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf 7/2 and νg 9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg( 48Ca,2α4nγ) 62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Asmore » a result, two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f 7/2 protons and g 9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  17. Single-particle and collective excitations in Ni 62

    DOE PAGES

    Albers, M.; Zhu, S.; Ayangeakaa, A. D.; ...

    2016-09-01

    In this study, level sequences of rotational character have been observed in several nuclei in the A = 60 mass region. The importance of the deformation-driving πf 7/2 and νg 9/2 orbitals on the onset of nuclear deformation is stressed. A measurement was performed in order to identify collective rotational structures in the relatively neutron-rich 62Ni isotope. Here, the 26Mg( 48Ca,2α4nγ) 62Ni complex reaction at beam energies between 275 and 320 MeV was utilized. Reaction products were identified in mass (A) and charge (Z) with the fragment mass analyzer (FMA) and γ rays were detected with the Gammasphere array. Asmore » a result, two collective bands, built upon states of single-particle character, were identified and sizable deformation was assigned to both sequences based on the measured transitional quadrupole moments, herewith quantifying the deformation at high spin. In conclusion, based on cranked Nilsson-Strutinsky calculations and comparisons with deformed bands in the A = 60 mass region, the two rotational bands are understood as being associated with configurations involving multiple f 7/2 protons and g 9/2 neutrons, driving the nucleus to sizable prolate deformation.« less

  18. Influence of electrical boundary conditions on profiles of acoustic field and electric potential of shear-horizontal acoustic waves in potassium niobate plates.

    PubMed

    Kuznetsova, I E; Nedospasov, I A; Kolesov, V V; Qian, Z; Wang, B; Zhu, F

    2018-05-01

    The profiles of an acoustic field and electric potential of the forward and backward shear-horizontal (SH) acoustic waves of a higher order propagating in X-Y potassium niobate plate have been theoretically investigated. It has been shown that by changing electrical boundary conditions on a surface of piezoelectric plates, it is possible to change the distributions of an acoustic field and electric potential of the forward and backward acoustic waves. The dependencies of the distribution of a mechanical displacement and electrical potential over the plate thickness for electrically open and electrically shorted plates have been plotted. The influence of a layer with arbitrary conductivity placed on a one or on the both plate surfaces on the profiles under study, phase and group velocities of the forward and backward acoustic waves in X-Y potassium niobate has been also investigated. The obtained results can be useful for development of the method for control of a particle or electrical charge movement inside the piezoelectric plates, as well a sensor for definition of the thin film conductivity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A novel inverse method for determining the refractive indices of medium and dispersed particles simultaneously by turbidity measurement.

    PubMed

    Xu, Shenghua; Liu, Jie; Sun, Zhiwei; Zhang, Pu

    2008-10-01

    The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. In this study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature.

  20. Emergent Weyl excitations in systems of polar particles.

    PubMed

    Syzranov, Sergey V; Wall, Michael L; Zhu, Bihui; Gurarie, Victor; Rey, Ana Maria

    2016-12-12

    Weyl fermions are massless chiral particles first predicted in 1929 and once thought to describe neutrinos. Although never observed as elementary particles, quasiparticles with Weyl dispersion have recently been experimentally discovered in solid-state systems causing a furore in the research community. Systems with Weyl excitations can display a plethora of fascinating phenomena and offer great potential for improved quantum technologies. Here, we show that Weyl excitations generically exist in three-dimensional systems of dipolar particles with weakly broken time-reversal symmetry (by for example a magnetic field). They emerge as a result of dipolar-interaction-induced transfer of angular momentum between the J=0 and J=1 internal particle levels. We also discuss momentum-resolved Ramsey spectroscopy methods for observing Weyl quasiparticles in cold alkaline-earth-atom systems. Our results provide a pathway for a feasible experimental realization of Weyl quasiparticles and related phenomena in clean and controllable atomic systems.

  1. Anomalous Diffusion of Particles Dispersed in Xanthan Solutions Subjected to Shear Flow

    NASA Astrophysics Data System (ADS)

    Takikawa, Yoshinori; Yasuta, Muneharu; Fujii, Shuji; Orihara, Hiroshi; Tanaka, Yoshimi; Nishinari, Katsuyoshi

    2018-05-01

    Xanthan gum exhibits viscoelastic and shear-thinning properties. We investigate the Brownian motion of particles dispersed in xanthan gum solutions that are subjected to simple shear flow. The mean square displacements (MSDs) are obtained in both the flow and vorticity directions. In the absence of shear flow, subdiffusion is observed, MSD ∝ tα with α < 1, where t is time. In the presence of shear flow, however, the exponent α becomes larger together with the MSD itself in both the flow and vorticity directions. We show that the diffusion is enhanced by Taylor dispersion in the flow direction, whereas in the vorticity direction it is enhanced by nonthermal self-diffusion.

  2. Dispersion of iron nano-particles on expanded graphite for the shielding of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Huang, Yu'an; Yang, Yang; Shen, Jianyi; Tang, Tao; Huang, Runsheng

    2010-10-01

    Composite materials containing electrically conductive expanded graphite (EG) and magnetic iron nano-particles for electromagnetic shielding were prepared by impregnating EG with an ethanol solution containing iron nitrate and acetic acid, followed by drying and reduction in H 2. Magnetic nano-iron particles were found to be highly dispersed on the surface of EG in the Fe/EG composites, and played the role of enhancing the electromagnetic shielding effectiveness (SE) at low frequencies (0.3-10 MHz), which seemed to depend proportionally on magnetic hysteresis loss of loaded iron nano-particles.

  3. Fabrication process and electromagnetic wave absorption characterization of a CNT/Ni/epoxy nanocomposite.

    PubMed

    Ryu, Seongwoo; Mo, Chan Bin; Lee, Haeshin; Hong, Soon Hyung

    2013-11-01

    Since carbon nanotube (CNT) was first discovered in 1991, it has been considered as a viable type of conductive filler for electromagnetic wave absorption materials in the GHz range. In this paper, pearl-necklace-structure CNT/Ni nano-powders were fabricated by a polyol process as conductive fillers. Compared to synthesized CNT, pearl-necklace Ni-decorated CNT increased the electrical conductivity by an order of 1 due to the enhancement of the Ni-conductive network. Moreover, the decorated Ni particles prevented the agglomeration of CNTs by counterbalancing the Van der Walls interaction between the CNTs. A CNT/Ni nanocomposite showed a homogeneous dispersion in an epoxy-based matrix. This enhanced physical morphology and electrical properties lead to an increase in the loss tangent and reflection loss in the CNT/Ni/Epoxy nanocomposite compared to these characteristics of a CNT/Epoxy nanocomposite in range of 8-12 GHz. The electromagnetic wave absorption properties of CNT/Ni/epoxy nanocomposites will provide enormous opportunities for electronic applications where lightweight EMI shielding or electro-magnetic wave absorption properties are necessary.

  4. Monolithic acoustic graphene transistors based on lithium niobate thin film

    NASA Astrophysics Data System (ADS)

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  5. Neutron single-particle strengths at N =40 , 42: Neutron knockout from Ni,7068 ground and isomeric states

    NASA Astrophysics Data System (ADS)

    Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.

    2016-11-01

    The distribution of single-particle strength in Ni,6967 was characterized with one-neutron knockout reactions from intermediate-energy Ni,7068 secondary beams, selectively populating neutron-hole configurations at N =39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ -ray decays, are used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well with shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. These results suggest that our understanding of the low-lying states in the neutron-rich, semimagic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.

  6. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To

  7. Elemental Anisotropic Growth and Atomic-Scale Structure of Shape-Controlled Octahedral Pt-Ni-Co Alloy Nanocatalysts.

    PubMed

    Arán-Ais, Rosa M; Dionigi, Fabio; Merzdorf, Thomas; Gocyla, Martin; Heggen, Marc; Dunin-Borkowski, Rafal E; Gliech, Manuel; Solla-Gullón, José; Herrero, Enrique; Feliu, Juan M; Strasser, Peter

    2015-11-11

    Multimetallic shape-controlled nanoparticles offer great opportunities to tune the activity, selectivity, and stability of electrocatalytic surface reactions. However, in many cases, our synthetic control over particle size, composition, and shape is limited requiring trial and error. Deeper atomic-scale insight in the particle formation process would enable more rational syntheses. Here we exemplify this using a family of trimetallic PtNiCo nanooctahedra obtained via a low-temperature, surfactant-free solvothermal synthesis. We analyze the competition between Ni and Co precursors under coreduction "one-step" conditions when the Ni reduction rates prevailed. To tune the Co reduction rate and final content, we develop a "two-step" route and track the evolution of the composition and morphology of the particles at the atomic scale. To achieve this, scanning transmission electron microscopy and energy dispersive X-ray elemental mapping techniques are used. We provide evidence of a heterogeneous element distribution caused by element-specific anisotropic growth and create octahedral nanoparticles with tailored atomic composition like Pt1.5M, PtM, and PtM1.5 (M = Ni + Co). These trimetallic electrocatalysts have been tested toward the oxygen reduction reaction (ORR), showing a greatly enhanced mass activity related to commercial Pt/C and less activity loss than binary PtNi and PtCo after 4000 potential cycles.

  8. Terahertz birefringence of potassium niobate crystals

    NASA Astrophysics Data System (ADS)

    Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.

    2018-03-01

    We present terahertz optical properties (refractive indices and absorption coefficients) of potassium niobate crystals measured by time-domain spectroscopy in the range of 0.2-2.0 THz. We observe average refractive indices nx = 5.25, ny = 4.8, nz = 5.9 for corresponding optical axes X, Y, Z with the large birefringence of Δn = nz - ny = 1.1. We report rising absorption coefficient at higher frequencies (α ∼ 50 cm-1 at 1 THz for all three axes) while the dichroism is not pronounced. Somewhat higher absorption compared to the previous results could be attributed to some polydomain structure remaining in the crystal.

  9. Effect of 120 MeV 28Si9+ ion irradiation on structural and magnetic properties of NiFe2O4 and Ni0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Raghuvanshi, S.; Satalkar, M.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    NiFe2O4, Ni0.5Zn0.5Fe2O4 samples were synthesized using sol-gel auto combustion method, and irradiated by using 120 MeV 28Si9+ ion with ion fluence of 1×1012 ions/cm2. Characterization of pristine, irradiated samples were done using X-Ray Diffraction (XRD), Field Emission Scanning Microscopy (FE-SEM), Energy Dispersive X-ray Analysis (EDAX) and Vibrating Sample Magnetometer (VSM). XRD validates the single phase nature of pristine, irradiated Ni- Zn nano ferrite except for Ni ferrite (pristine, irradiated) where secondary phases of α-Fe2O3 and Ni is observed. FE- SEM images of pristine Ni, Ni-Zn ferrite show inhomogeneous nano-range particle size distribution. Presence of diamagnetic ion (Zn2+) in NiFe2O4 increases oxygen positional parameter (u 4¯3m ), experimental, theoretical saturation magnetization (Msexp., Msth.), while decreases the grain size (Ds) and coercivity (Hc). With irradiation Msexp., Msth. increases but not much change are observed in Hc. New antistructure modeling for the pristine, irradiated Ni and Ni-Zn ferrite samples was used for describing the surface active centers.

  10. Le niobate de lithium a haute temperature pour les applications ultrasons =

    NASA Astrophysics Data System (ADS)

    De Castilla, Hector

    L'objectif de ce travail de maitrise en sciences appliquees est de trouver puis etudier un materiau piezoelectrique qui est potentiellement utilisable dans les transducteurs ultrasons a haute temperature. En effet, ces derniers sont actuellement limites a des temperatures de fonctionnement en dessous de 300°C a cause de l'element piezoelectrique qui les compose. Palier a cette limitation permettrait des controles non destructifs par ultrasons a haute temperature. Avec de bonnes proprietes electromecaniques et une temperature de Curie elevee (1200°C), le niobate de lithium (LiNbO 3) est un bon candidat. Mais certaines etudes affirment que des processus chimiques tels que l'apparition de conductivite ionique ou l'emergence d'une nouvelle phase ne permettent pas son utilisation dans les transducteurs ultrasons au-dessus de 600°C. Cependant, d'autres etudes plus recentes ont montre qu'il pouvait generer des ultrasons jusqu'a 1000°C et qu'aucune conductivite n'etait visible. Une hypothese a donc emerge : une conductivite ionique est presente dans le niobate de lithium a haute temperature (>500°C) mais elle n'affecte que faiblement ses proprietes a hautes frequences (>100 kHz). Une caracterisation du niobate de lithium a haute temperature est donc necessaire afin de verifier cette hypothese. Pour cela, la methode par resonance a ete employee. Elle permet une caracterisation de la plupart des coefficients electromecaniques avec une simple spectroscopie d'impedance electrochimique et un modele reliant de facon explicite les proprietes au spectre d'impedance. Il s'agit de trouver les coefficients du modele permettant de superposer au mieux le modele avec les mesures experimentales. Un banc experimental a ete realise permettant de controler la temperature des echantillons et de mesurer leur impedance electrochimique. Malheureusement, les modeles actuellement utilises pour la methode par resonance sont imprecis en presence de couplages entre les modes de vibration. Cela

  11. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  12. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-03-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  13. Transport in a Trellised Agricultural Canopy: Turbulence and Particle Dispersion

    NASA Astrophysics Data System (ADS)

    Miller, Nathan E.

    Turbulent transport of momentum, scalars, and heavy particles within plant canopies is strongly impacted by the canopy's effect on the flow field in the canopy sub-layer (CSL). Although considerable research has been conducted on momentum and particle transport in and above dense homogeneous plant canopies, relatively little has been performed in perennial trellised canopies which have repetitive inhomogeneities at the scale of the canopy height. Particle transport in such canopies is of great interest due to the increasing use of training systems of this type by growers and due to the multitude of particle types regularly dispersed in these canopies, e.g., fungal spores and droplets sprayed by growers. The focus of this work is on the transport of momentum and fungal-spore-sized particles in a trellised vineyard canopy. Due to the discrete two-dimensional nature of the vineyard canopy, CSL flow characteristics differ from those seen in homogeneous canopies and change as a function of the above-canopy wind direction. To determine the specifics of how the trellised canopy geometry and local meteorological conditions combine to determine the characteristics of momentum and particle transport under all possible wind directions, multiple field campaigns were conducted in a vineyard in Oregon. During each of these campaigns, extensive meteorological data were collected while particles were released into the canopy and particle concentrations were sampled at downwind locations. The meteorological and plume data showed that the canopy exerted inhomogeneous nonisotropic drag, caused channeling of the flow along the aisles, and led to persistent coherent flow effects. The combination of these effects led to momentum statistics varying with wind direction, particle transport being biased to along the rows, and plume shapes being more complicated than those seen in homogeneous canopies or freestream flows.

  14. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  15. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions

    PubMed Central

    2018-01-01

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%. PMID:29780886

  16. Development and High Temperature Property Evaluation of Ni-Co-Cr-Al Composite Electroforms

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Siju; Balaraju, J. N.; Ravisankar, B.

    2015-05-01

    Ni-Co-Cr-Al composite electroforms were developed with cobalt content of 10 and 40 wt.%. Cr and Al nano-particles were suspended in sulphamate electrolyte and co-deposited in the Ni-Co matrices. The surface morphology was investigated using field emission scanning electron microscope and the composition analyzed by energy-dispersive x-ray analysis. The oxidation resistance of the electroforms was studied from 600 to 1000 °C. The weight gain of Ni-10 wt.%Co-Cr-Al was less (better oxidation resistance) compared to Ni-Cr-Al and Ni-40 wt.%Co-Cr-Al. The x-ray diffraction studies revealed that the oxidation product formed on the surface of Ni-Cr-Al and Ni-10 wt.%Co-Cr-Al consisted of NiO and Al2O3, while Ni-40 wt.%Co-Cr-Al comprised oxides such as NiCo2O4, CrO3, CoO, NiO, and Al2O3. The hot corrosion behavior was investigated in 75%Na2SO4 + 25%NaCl environment at 800 °C. It was found that the hot corrosion resistance of the composite coating improved with increase in cobalt content. The probable composition suitable for high-temperature applications was found to be Ni-10 wt.%Co-Cr-Al.

  17. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  18. Evolution of the N = 40 neutron subshell in 20 ≤ Z ≤ 30 nuclei within the dispersive optical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bespalova, O. V., E-mail: besp@sinp.msu.ru; Ermakova, T. A.; Klimochkina, A. A.

    2016-07-15

    The evolution of single-particle neutron spectra in the N = 40 isotones {sup 60}Ca, {sup 62}Ti, {sup 64}Cr, {sup 66}Fe, {sup 68}Ni, and {sup 70}Zn is calculated on the basis of the mean-field model featuring a dispersive optical potential. The results of these calculations agree with the idea that the degree of collectivity becomes higher in the {sup 64}Сr nucleus and that the coupling of single-particle motion to this collectivity becomes stronger, as well as with available experimental data, which are indicative of the closure of the N = 40 subshell in {sup 68}Ni and of the trend toward thismore » closure in {sup 60}Ca.« less

  19. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premarani, R.; Saravanakumar, S., E-mail: sarophy84@gmail.com; Chandramohan, R.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Nimore » dopant that is associated with variation in crystallite sizes in the nano regime.« less

  20. Preliminary test results of electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1982-01-01

    A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.

  1. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex

    PubMed Central

    Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail

    2013-01-01

    [NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867

  2. Hierarchical hybrid of Ni3N/N-doped reduced graphene oxide nanocomposite as a noble metal free catalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; Li, Yingjun; Li, Yetong; Huang, Keke; Wang, Qin; Zhang, Jun

    2017-04-01

    Novel nickel nitride (Ni3N) nanoparticles supported on nitrogen-doped reduced graphene oxide nanosheets (N-RGOs) are synthesized via a facile strategy including hydrothermal and subsequent calcination methods, in which the reduced graphene oxide nanosheets (RGOs) are simultaneously doped with nitrogen species. By varying the content of the RGOs, a series of Ni3N/N-RGO nanocomposites are obtained. The Ni3N/N-RGO-30% hybrid nanocomposite exhibits superior catalytic activity towards oxygen reduction reaction (ORR) under alkaline condition (0.1 M KOH). Furthermore, this hybrid catalyst also demonstrates high tolerance to methanol poisoning. The RGO containing rich N confers the nanocomposite with large specific surface area and high electronic conduction ability, which can enhance the catalytic efficiency of Ni3N nanoparticles. The enhanced catalytic activity can be attributed to the synergistic effect between Ni3N and nitrogen doped reduced graphene oxide. In addition, the sufficient contact between Ni3N nanoparticles and the N-RGO nanosheets simultaneously promotes good nanoparticle dispersion and provides a consecutive activity sites to accelerate electron transport continuously, which further enhance the ORR performance. The Ni3N/N-RGO may be further an ideal candidate as efficient and inexpensive noble metal-free ORR electrocatalyst in fuel cells.

  3. Test results of modified electrical charged particle generator for application to fog dispersal

    NASA Technical Reports Server (NTRS)

    Frost, W.; Huang, K. H.

    1983-01-01

    Modifications to a charged particle generator for use in fog dispersal applications were made and additional testing carried out. The modified nozzle, however, did not work as planned, and reported results are the unmodified nozzle. The addition of a positive displacement pump to supply the liquid water was highly successful. Measurements of the generator output current were made with a cylindrical collector system as well as with the needle probe used in previous studies. Measurements with the cylindrical collector and the needle probe showed identical agreement within the variability of the experiment. A high-voltage prove was purchased, and measurements of the corona voltage as well as the voltage variation in the charged particle jet were made. Electric fields in the vertical direction on the order of 1,000,000 v/m were measured. The voltage distribution along the centerline of the jet was compared with the numerical solutions of the Poisson equation and showed very good agreement. Velocity measurements using a pitot tube were made. The resulting measurements were compared with theoretical and other reported experimental results. The measured data showed the appropriate trends and agreed well with reported results. Based on the measured current-to-mass ratio from the charged particle generator, a calculation of the average droplet size was made. Droplet sizes were estimated to range between 0.8 and 0.4 microns. Using measured data, an analysis of the height to which the droplet can be dispersed by the charged particle generator was made. Although the mathematical model is highly simplified, the results indicated that particles would achieve heights on the order of 80 m.

  4. Development of Oxide Dispersion Strengthened MCrAlY Coatings

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Schläfer, T.; Richardt, K.; Brühl, M.

    2008-12-01

    MCrAlY materials are widely used as bond coats for thermal barrier coatings on turbine blades. The aim of this work is to improve mechanical properties and wear resistance of thermal sprayed NiCoCrAlY-coatings by strengthening the coating with hard phase particles. In order to retain the effect of the dispersion reinforcement at high temperatures, the use of temperature-stable oxide hard phases such as ZrO2-Y2O3 is necessary. To realize this new material structure, the high-energy ball-milling process is applied and analyzed. The mixture ratio between NiCoCrAlY and ZrO2-Y2O3 was varied between 5 and 10 wt.% ZrO2-Y2O3. The influences of the milling time of the high-energy ball-milling process on the distribution of the hard phases in the metal matrix were analyzed. After spraying with a HVOF system the mechanical properties of the coatings are measured and compared with conventional NiCoCrAlY coatings.

  5. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

    NASA Astrophysics Data System (ADS)

    Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.

    2017-12-01

    Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

  6. Surface morphology control of cross-linked polymer particles via dispersion polymerization.

    PubMed

    Peng, Bo; Imhof, Arnout

    2015-05-14

    Cross-linked polymer colloids (poly(methyl methacrylate) and polystyrene) with diverse shapes were prepared in polar solvents (ethanol, methanol and water) via dispersion polymerization, in which a linear addition of the cross-linker was used during reaction. Apart from spherical particles we found dented spheres or particles covered with nodules, or a combination of both. A comprehensive investigation was carried out, mainly concentrating on the effect of the experimental conditions (e.g., the addition start time and total addition time, cross-linker density and the solvency of the solvents) on particle morphologies. Consequently, we suggest a number of effective ways for the synthesis of regular (spherical) colloidal particles through maintaining a relatively low concentration of the cross-linker during the entire reaction, or forcing the co-polymerization (of monomer and cross-linker) locus to the continuous medium, or using a high quality or quantity of the stabilizer. Moreover, the size of the particles was also precisely manipulated by varying the polarity of the solvents, the concentration of the cross-linker, and the amount and average molecular weight of the stabilizer. In addition, the formation of the heavily dented particles with a very rough surface prepared under a pure or oxygen-'contaminated' nitrogen environment was monitored over time. The results accumulated in this article are of use for a better understanding of the mechanism of the polymerization and control over the structure and property of polymer particles.

  7. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    NASA Astrophysics Data System (ADS)

    Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.

    2015-09-01

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.

  8. On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095; Huang, C.-K., E-mail: huangck@lanl.gov

    The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTDmore » scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.« less

  9. Elastic and inelastic scattering of alpha particles on /sup 5/8Ni and /sup 6/0Ni in a broad range of energy and angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzanowski, A.; Dabrowski, H.; Freindl, L.

    1978-03-01

    The differential cross sections for ..cap alpha.. particles elastically and inelastically scattered from /sup 5/8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from /sup 6/0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5/sup 0/ lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for /sup 5/8Ni and 32.3 and 104 MeV for /sup 6/0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of bothmore » real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of /sup 5/8Ni. Both elastic scattering data and coupling with the first excited state of /sup 5/8Ni are well reproduced using the above potential in the wide scattering energy range.« less

  10. Electrodeposition of Ni-Mo alloy coatings for water splitting reaction

    NASA Astrophysics Data System (ADS)

    Shetty, Akshatha R.; Hegde, Ampar Chitharanjan

    2018-04-01

    The present study reports the development of Ni-Mo alloy coatings for water splitting applications, using a citrate bath the inducing effect of Mo (reluctant metal) on electrodeposition, its relationship with their electrocatalytic efficiency were studied. The alkaline water splitting efficiency of Ni-Mo alloy coatings, for both hydrogen evolution reaction (HER) and oxygen evolution reaction were tested using cyclic voltammetry (CV) and chronopotentiometry (CP) techniques. Moreover, the practical utility of these electrode materials were evaluated by measuring the amount of H2 and O2 gas evolved. The variation in electrocatalytic activity with composition, structure, and morphology of the coatings were examined using XRD, SEM, and EDS analyses. The experimental results showed that Ni-Mo alloy coating is the best electrode material for alkaline HER and OER reactions, at lower and higher deposition current densities (c. d.'s) respectively. This behavior is attributed by decreased Mo and increased Ni content of the alloy coating and the number of electroactive centers.

  11. Assessment of sub-grid scale dispersion closure with regularized deconvolution method in a particle-laden turbulent jet

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Zhao, Xinyu; Ihme, Matthias

    2017-11-01

    Particle-laden turbulent flows are important in numerous industrial applications, such as spray combustion engines, solar energy collectors etc. It is of interests to study this type of flows numerically, especially using large-eddy simulations (LES). However, capturing the turbulence-particle interaction in LES remains challenging due to the insufficient representation of the effect of sub-grid scale (SGS) dispersion. In the present work, a closure technique for the SGS dispersion using regularized deconvolution method (RDM) is assessed. RDM was proposed as the closure for the SGS dispersion in a counterflow spray that is studied numerically using finite difference method on a structured mesh. A presumed form of LES filter is used in the simulations. In the present study, this technique has been extended to finite volume method with an unstructured mesh, where no presumption on the filter form is required. The method is applied to a series of particle-laden turbulent jets. Parametric analyses of the model performance are conducted for flows with different Stokes numbers and Reynolds numbers. The results from LES will be compared against experiments and direct numerical simulations (DNS).

  12. Dispersion of Rod-like Particles of Nafion in Salt-Free Water/1-Propanol and Water/Ethanol Solutions.

    PubMed

    Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko

    2014-12-26

    The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.

  13. Large energy absorption in Ni-Mn-Ga/polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feuchtwanger, Jorge; Richard, Marc L.; Tang, Yun J.

    2005-05-15

    Ferromagnetic shape memory alloys can respond to a magnetic field or applied stress by the motion of twin boundaries and hence they show large hysteresis or energy loss. Ni-Mn-Ga particles made by spark erosion have been dispersed and oriented in a polymer matrix to form pseudo 3:1 composites which are studied under applied stress. Loss ratios have been determined from the stress-strain data. The loss ratios of the composites range from 63% to 67% compared to only about 17% for the pure, unfilled polymer samples.

  14. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  15. Bimetallic NiFe2O4 synthesized via confined carburization in NiFe-MOFs for efficient oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Fang, Zhiqiang; Hao, Zhaomin; Dong, Qingsong; Cui, Yong

    2018-04-01

    Transition metal oxides that derived from metal-organic framework (MOF) precursor have intensively received attention because of their numerous electrochemical applications. Bimetallic Ni-Fe oxides have been rarely reported on the basis of MOF-related strategy. Herein, a bimetallic NiFe2O4 was successfully synthesized via confined carburization in NiFe-MOF precursors and characterized by XRD, XPS, SEM, and TEM. After conducting an investigation of oxygen evolution reaction (OER), the as-synthesized NiFe2O4 material exhibited good catalytic efficiency and high stability and durability in alkaline media. The as-synthesized NiFe2O4 material would promote the development of MOFs in non-noble-metal OER catalyst.

  16. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  17. Extensive Diminution of Particle Size and Amorphization of a Crystalline Drug Attained by Eminent Technology of Solid Dispersion: A Comparative Study.

    PubMed

    Singh, Gurjeet; Sharma, Shailesh; Gupta, Ghanshyam Das

    2017-07-01

    The present study emphasized on the use of solid dispersion technology to triumph over the drawbacks associated with the highly effective antihypertensive drug telmisartan using different polymers (poloxamer 188 and locust bean gum) and methods (modified solvent evaporation and lyophilization). It is based on the comparison between selected polymers and methods for enhancing solubility through particle size reduction. The results showed different profiles for particle size, solubility, and dissolution of formulated amorphous systems depicting the great influence of polymer/method used. The resulting amorphous solid dispersions were characterized using x-ray diffraction (XRD), differential scanning calorimetry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and particle size analysis. The optimized solid dispersion (TEL 19) prepared with modified locust bean gum using lyophilization technique showed reduced particle size of 184.5 ± 3.7 nm and utmost solubility of 702 ± 5.47 μg/mL in water, which is quite high as compared to the pure drug (≤1 μg/mL). This study showed that the appropriate selection of carrier may lead to the development of solid dispersion formulation with desired solubility and dissolution profiles. The optimized dispersion was later formulated into fast-dissolving tablets, and further optimization was done to obtain the tablets with desired properties.

  18. Magnon dispersion in thin magnetic films.

    PubMed

    Balashov, T; Buczek, P; Sandratskii, L; Ernst, A; Wulfhekel, W

    2014-10-01

    Although the dispersion of magnons has been measured in many bulk materials, few studies deal with the changes in the dispersion when the material is in the form of a thin film, a system that is of interest for applications. Here we review inelastic tunneling spectroscopy studies of magnon dispersion in Mn/Cu3Au(1 0 0) and present new studies on Co and Ni thin films on Cu(1 0 0). The dispersion in Mn and Co films closely follows the dispersion of bulk samples with negligible dependence on thickness. The lifetime of magnons depends slightly on film thickness, and decreases considerably as the magnon energy increases. In Ni/Cu(1 0 0) films the thickness dependence of dispersion is much more pronounced. The measurements indicate a considerable mode softening for thinner films. Magnon lifetimes decrease dramatically near the edge of the Brillouin zone due to a close proximity of the Stoner continuum. The experimental study is supported by first-principles calculations.

  19. Study of electroless Ni-W-P alloy coating on martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitasari, Arini, E-mail: arini-nikitasari@yahoo.com; Mabruri, Efendi, E-mail: efendi-lipi@yahoo.com

    Electroless nickel phospor (Ni-P) is widely used in many industries due to their corrosion and wear resistance, coating uniformity, and ability to coat non-conductive surfaces. The unique properties of tungsten such as high hardness, higher melting point, lower coefficient of linear thermal expansion, and high tensile strength have created a lot of interest in developing ternary Ni-W-P alloys. This article presents the study of electroless Ni-W-P alloys coating using acid or alkaline bath on martensitic stainless steel. Nickel sulfate and sodium tungstate were used as nickel and tungsten sources, respectively, and sodium hypophosphite was used as a reducing agent. Acidmore » or alkaline bath refer to bath pH condition was adjusted by adding sulfuric acid. Martensitic stainless steel was immersed in Ni-W-P bath for 15, 30, and 60 minutes. The substrate of martensitic stainless steel was subjected to pre-treatment (polishing and cleaning) and activation prior to electroless plating. The plating characteristics were investigated for concentration ratio of nickel and hypophosphite (1:3), sodium tungstate concentration 0,1 M, immersion time (15 min, 30 min, 60 min), and bath condition (acid, alkaline). The electroless Ni-W-P plating was heat treated at 400°C for 1 hour. Deposits were characterized using scanning electron microscope (SEM) and corrosion measurement system (CMS).« less

  20. "Hypothetical" Heavy Particles Dynamics in LES of Turbulent Dispersed Two-Phase Channel Flow

    NASA Technical Reports Server (NTRS)

    Gorokhovski, M.; Chtab, A.

    2003-01-01

    The extensive experimental study of dispersed two-phase turbulent flow in a vertical channel has been performed in Eaton's research group in the Mechanical Engineering Department at Stanford University. In Wang & Squires (1996), this study motivated the validation of LES approach with Lagrangian tracking of round particles governed by drag forces. While the computed velocity of the flow have been predicted relatively well, the computed particle velocity differed strongly from the measured one. Using Monte Carlo simulation of inter-particle collisions, the computation of Yamamoto et al. (2001) was specifically performed to model Eaton's experiment. The results of Yamamoto et al. (2001) improved the particle velocity distribution. At the same time, Vance & Squires (2002) mentioned that the stochastic simualtion of inter-particle collisions is too expensive, requiring significantly more CPU resources than one needs for the gas flow computation. Therefore, the need comes to account for the inter-particle collisions in a simpler and still effective way. To present such a model in the framework of LES/Lagrangian particle approach, and to compare the calculated results with Eaton's measurement and modeling of Yamamoto is the main objective of the present paper.

  1. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core-shell particles with varied shell thickness and shell diffusion coefficient.

    PubMed

    Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2015-08-14

    In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Adsorption Characteristics of LaNi 5Particles

    NASA Astrophysics Data System (ADS)

    Song, M. Y.; Park, H. R.

    1997-11-01

    Nitrogen adsorption on an intermetallic compound, LaNi 5, was studied before and after activation and after hydriding-dehydriding cycling. The specific surface area of activated LaNi 5was 0.271±0.004 m 2g -1. Adsorption and desorption isotherms of activated LaNi 5were obtained. The adsorption isotherm was similar to type II among the five types of isotherms classified by S. Brunauer, L. S. Deming, W S. Deming, and E. Teller ( J. Am. Chem. Soc.62, 1723, 1940). Its hysteresis curve had the type B form among de Boer's five types of hysteresis. Desorption pore-size analyses showed that the activated LaNi 5had only a few mesopores, the diameters of which were around 20-110 Å. The average adsorption rate of the activated LaNi 5showed a first-order dependence on nitrogen pressure at 77 K.

  3. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications.

    PubMed

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-26

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  4. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    PubMed Central

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-01-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26113394

  5. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    NASA Astrophysics Data System (ADS)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  6. Neutron single-particle strengths at N = 40 , 42: Neutron knockout from Ni 68 , 70 ground and isomeric states

    DOE PAGES

    Recchia, F.; Weisshaar, D.; Gade, A.; ...

    2016-11-28

    The distribution of single-particle strength in 67,69Ni was characterized with one-neutron knockout reactions from intermediate-energy 68,70Ni secondary beams, selectively populating neutron-hole configurations at N = 39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ-ray decays, is used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well to shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. Furthermore, these results suggest that our understanding of the low-lyingmore » states in the neutron-rich, semi-magic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.« less

  7. Lithium niobate single-crystal and photo-functional device

    DOEpatents

    Gopalan, Venkatraman; Mitchell, Terrence E.; Kitamura, Kenji; Furukawa, Yasunori

    2001-01-01

    Provided are lithium niobate single-crystal that requires a low voltage of not larger than 10 kV/nm for its ferroelectric polarization inversion and of which the polarization can be periodically inverted with accuracy even at such a low voltage, and a photo-functional device comprising the crystal. The crystal has a molar fraction of Li.sub.2 O/(Nb.sub.2 O.sub.5 +Li.sub.2 O) of falling between 0.49 and 0.52. The photo-functional device can convert a laser ray being incident thereon.

  8. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N., E-mail: ramakrishnan@monash.edu

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use ofmore » a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.« less

  9. Particle dispersion and turbulence modification in a dilute mist non-isothermal turbulent flow downstream of a sudden pipe expansion

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Pakhomov, M. A.

    2011-12-01

    Flow, particles dispersion and heat transfer of dilute gas-droplet turbulent flow downstream of a pipe sudden expansion have been numerically investigated for the conditions of heated dry wall. An Euler two-fluid model with additional turbulence transport equations for gas and particulate phases was employed in the study. Gas phase turbulence was modelled using the elliptic blending Reynolds stress model of Fadai-Ghotbi et al. (2008). Two-way coupling is achieved between the dispersed and carrier phases. The partial equations of Reynolds stresses and temperature fluctuations, and the turbulent heat flux equations in dispersed phase by Zaichik (1999) were applied. Fine droplets get readily entrained with the detached flow, spread throughout the whole pipe cross-section. On the contrary, large particles, due to their inertia, do not appear in the recirculation zone and are presented only in the shear layer region. The presence of fine dispersed droplets in the flow attenuates the gas phase turbulence of up 25 %. Heat transfer in the mist flow increased (more than twice in comparison with the single-phase air flow). Intensification of heat transfer is observed both in the recirculation zone and flow development region in the case of fine particles. Large particles enhanced heat transfer only in the reattachment zone. Comparison between simulated results and experimental data of Hishida et al. (1995) for mist turbulent separated flow behind a backward-facing step shows quite good agreement.

  10. Catalytic dehydrogenation of isobutane in the presence of hydrogen over Cs-modified Ni2P supported on active carbon

    NASA Astrophysics Data System (ADS)

    Xu, Yanli; Sang, Huanxin; Wang, Kang; Wang, Xitao

    2014-10-01

    In this article, an environmentally friendly non-noble-metal class of Cs-Ni2P/active carbon (AC) catalyst was prepared and demonstrated to exhibit enhanced catalytic performance in isobutane dehydrogenation. The results of activity tests reveal that Ni/AC catalyst was highly active for isobutane cracking, which led to the formation of abundant methane and coke. After the introduction of phosphorus through impregnation with ammonium di-hydrogen phosphate and H2-temperature programmed reduction, undesired cracking reactions were effectively inhibited, and the selectivity to isobutene and stability of catalyst increased remarkably. The characterization results indicate that, after the addition of phosphorous, the improvement of dehydrogenation selectivity is ascribed to the partial positive charges carried on Ni surface in Ni2P particles, which decreases the strength of Nisbnd C bond between Ni and carbonium-ion intermediates and the possibility of excessive dehydrogenation. In addition, Cs-modified Ni2P/AC catalysts display much higher catalytic performance as compared to Ni2P/AC catalyst. Cs-Ni2P-6.5 catalyst has the highest catalytic performance, and the selectivity to isobutene higher than 93% can be obtained even after 4 h reaction. The enhancement in catalytic performance of the Cs-modified catalysts is mainly attributed to the function of Cs to improve the dispersion of Ni2P particles, transfer electron from Cs to Ni, and decrease acid site number and strength.

  11. Bridgman growth of lead potassium niobate crystals

    NASA Astrophysics Data System (ADS)

    Fan, Shiji; Sun, Renying; Lin, Yafang; Wu, Jindi

    1999-03-01

    Lead potassium niobate Pb 2KNb 5O 15 (PKN) crystals with tetragonal tungsten bronze (TTB) structure have been grown by the modified Bridgman (BR) method. Nearly sealed Pt crucibles and small temperature gradients in the Bridgman furnace can limit volatilization of PbO and cracking of as-grown PKN crystals. Transparent PKN crystals of 1 inch diameter by ˜2 inch length with brownish color have been grown successfully at a crucible lowering rate <0.5 mm/h and a temperature gradient of 10-15°C/cm across the solid-liquid interface. Coupling between twins and growth directions of the crystal is also discussed.

  12. Development of dispersion strengthened nickel-chromium alloy (Ni-Cr-ThO2) sheet for space shuttle vehicles, part 2

    NASA Technical Reports Server (NTRS)

    Klingler, L. J.; Weinberger, W. R.; Bailey, P. G.; Baranow, S.

    1972-01-01

    Two dispersion strengthened nickel base alloy systems were developed for use at temperatures up to 1204 C(2200 F); TD nickel chromium (TDNiCr) and TD nickel chromium aluminum (TDNiCrA1). They are considered candidate materials for use on the thermal protection systems of the space shuttle and for long term use in aircraft gas turbine engine applications. Improved manufacturing processes were developed for the fabrication of TDNiCr sheet and foil to specifications. Sheet rolling process studies and extrusion studies were made on two aluminum containing alloys: Ni-16%Cr-3.5%A1-2%ThO2 and Ni-16%Cr-5.0%A12%ThO2. Over 1600 kg.(3500 lb.) of plate, sheet, foil, bar and extrusion products were supplied to NASA Centers for technology studies.

  13. Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  14. Study on immobilization of yeast alcohol dehydrogenase on nanocrystalline Ni-Co ferrites as magnetic support.

    PubMed

    Shakir, Mohammad; Nasir, Zeba; Khan, Mohd Shoeb; Lutfullah; Alam, Md Fazle; Younus, Hina; Al-Resayes, Saud Ibrahim

    2015-01-01

    The covalent binding of yeast alcohol dehydrogenase (YADH) enzyme complex in a series of magnetic crystalline Ni-Co nanoferrites, synthesized via sol-gel auto combustion technique was investigated. The structural analysis, morphology and magnetic properties of Ni-Co nanoferrites were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), vibrating-sample magnetometer (VSM), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). The comparative analysis of the HRTEM micrographs of bare magnetic nanoferrite particles and particles immobilized with enzyme revealed an uniform distribution of the particles in both the cases without undergoing change in the size which was found to be in the range 20-30 nm. The binding of YADH to Ni-Co nanoferrites and the possible binding mechanism have been suggested by comparing the FTIR results. The binding properties of the immobilized YADH enzyme were also studied by kinetic parameters, optimum operational pH, temperature, thermal stability and reusability. The immobilized YADH exhibits enhanced thermal stability as compared to the free enzyme over a wide range of temperature and pH, and showed good durability after recovery by magnetic separation for repeated use. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.

    PubMed

    Majedi, Seyed Mohammad; Lee, Hian Kee

    2017-02-24

    Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM 2.5 )) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m 3 in air) and 0.09μg/L (corresponding to ∼0.04ng/m 3 in air). The developed method was successfully applied to the analysis of PM 2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m 3 in the air sampled. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Facile Synthesis of Core/Shell-like NiCo2O4-Decorated MWCNTs and its Excellent Electrocatalytic Activity for Methanol Oxidation

    PubMed Central

    Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2016-01-01

    The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633

  17. Synthesis of u-channelled spherical Fex(CoyNi1-y)100-x Janus colloidal particles with excellent electromagnetic wave absorption performance.

    PubMed

    Li, Hao; Cao, Zhenming; Lin, Jiayao; Zhao, Hui; Jiang, Qiaorong; Jiang, Zhiyuan; Liao, Honggang; Kuang, Qin; Xie, Zhaoxiong

    2018-01-25

    Due to their distinctive structure, inherently anisotropic properties and broad applications, Janus colloidal particles have attracted tremendous attention and it is significant to synthesize high yield Janus colloidal particles in a cost-effective and reliable way. On the other hand, due to the expanded electromagnetic interference problems, it is highly desired to develop excellent electromagnetic wave absorbing materials with an ultra-wide absorption bandwidth for practical application. Herein, a confined liquid-solid redox reaction strategy has been developed to fabricate a series of Fe x (Co y Ni 1-y ) 100-x ternary alloy particles. The as-prepared particles are in the form of u-channelled noncentrosymmetric spheres, one kind of Janus colloidal particles which have been rarely observed. Due to the combination and synergy effects of multi-magnetic metals, the polycrystalline structure and their specific morphology, the as-prepared particles possess multiple magnetic resonance and multiple dielectric relaxation processes, and therefore show excellent electromagnetic wave absorption performances. In particular, the strongest reflection loss (RL) of the Fe 15 (Co 0.2 Ni 0.8 ) 85 Janus colloidal particles is up to -36.9 dB with a thickness of 2.5 mm, and the effective absorption (RL < -10 dB) bandwidth can reach 9.2 GHz (8-17.2 GHz) with a thickness of 2 mm. Such a wide bandwidth has barely been reported for magnetic metal alloys under a single thickness. These results suggest that the Fe x (Co y Ni 1-y ) 100-x Janus particles could be a promising candidate for highly efficient electromagnetic wave absorbing materials for practical application.

  18. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  19. Controlling dispersion forces between small particles with artificially created random light fields

    PubMed Central

    Brügger, Georges; Froufe-Pérez, Luis S.; Scheffold, Frank; José Sáenz, Juan

    2015-01-01

    Appropriate combinations of laser beams can be used to trap and manipulate small particles with optical tweezers as well as to induce significant optical binding forces between particles. These interaction forces are usually strongly anisotropic depending on the interference landscape of the external fields. This is in contrast with the familiar isotropic, translationally invariant, van der Waals and, in general, Casimir–Lifshitz interactions between neutral bodies arising from random electromagnetic waves generated by equilibrium quantum and thermal fluctuations. Here we show, both theoretically and experimentally, that dispersion forces between small colloidal particles can also be induced and controlled using artificially created fluctuating light fields. Using optical tweezers as a gauge, we present experimental evidence for the predicted isotropic attractive interactions between dielectric microspheres induced by laser-generated, random light fields. These light-induced interactions open a path towards the control of translationally invariant interactions with tuneable strength and range in colloidal systems. PMID:26096622

  20. Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah

    2017-04-01

    Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.

  1. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co

  2. Morphology Control of Carbon-Free Spinel NiCo 2 O 4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media

    DOE PAGES

    Devaguptapu, Surya V.; Hwang, Sooyeon; Karakalos, Stavros; ...

    2017-12-06

    Spinel NiCo 2O 4 is considered a promising precious metal-free catalyst that is also carbon-free for oxygen electrocatalysis. Current efforts mainly focus on optimal chemical doping and substituent to tune its electronic structures for enhanced activity. Here, we study its morphology control and elucidate the morphology-dependent catalyst performance for bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Three types of NiCo 2O 4 catalysts with significantly distinct morphologies were prepared using temple-free, Pluronic-123 (P-123) soft, and SiO 2 hard templates, respectively, via hydrothermal methods following by a calcination. While the hard-template yields sphere-like dense structures, soft-template assists themore » formation of a unique nano-needle cluster assembly containing abundant meso- and macro pores. Furthermore, the effect of morphology of NiCo 2O 4 on their corresponding bifunctional catalytic performance was systematically investigated. The flower-like nano-needle assembly NiCo 2O 4 catalyst via the soft template method exhibited the highest catalytic activity and stability for both ORR and OER. In particular, it exhibited an onset and half-wave potentials of 0.94 and 0.82 V vs. RHE, respectively, for the ORR in alkaline media. Although it is still inferior to Pt, the NiCo 2O 4 represents one of the best ORR catalyst compared to other reported carbon-free oxides. Meanwhile, remarkable OER activity and stability were achieved with an onset potential of 1.48 V and a current density of 15 mA/cm 2 at 1.6 V, showing no activity loss after 20,000 potential cycles (0 to 1.9 V). The demonstrated stability is even superior to Ir for the OER. The morphology-controlled approach provides an effective solution to create a robust 3D architecture with increased surface areas and enhanced mass transfer. More importantly, the soft template can yield high degree of spinel crystallinity with ideal stoichiometric ratios between Ni and Co

  3. Blocking effect and numerical study of polymer particles dispersion flooding in heterogeneous reservoir

    NASA Astrophysics Data System (ADS)

    Zhu, Weiyao; Li, Jianhui; Lou, Yu

    2018-02-01

    Polymer flooding has become an effective way to improve the sweep efficiency in many oil fields. Many scholars have carried out a lot of researches on the mechanism of polymer flooding. In this paper, the effect of polymer on seepage is analyzed. The blocking effect of polymer particles was studied experimentally, and the residual resistance coefficient (RRF) were used to represent the blocking effect. We also build a mathematical model for heterogeneous concentration distribution of polymer particles. Furthermore, the effects of polymer particles on reservoir permeability, fluid viscosity and relative permeability are considered, and a two-phase flow model of oil and polymer particles is established. In addition, the model was tested in the heterogeneous stratum model, and three influencing factors, such as particle concentration, injection volume and PPD (short for polymer particle dispersion) injection time, were analyzed. Simulation results show that PPD can effectively improve sweep efficiency and especially improve oil recovery of low permeability layer. Oil recovery increases with the increase of particle concentration, but oil recovery increase rate gradually decreases with that. The greater the injected amount of PPD, the greater oil recovery and the smaller oil recovery increase rate. And there is an optimal timing to inject PPD for specific reservoir.

  4. Effect of particle inertia on fluid turbulence in gas-solid disperse flow

    NASA Astrophysics Data System (ADS)

    Mito, Yoichi

    2016-11-01

    The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.

  5. Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guang Jie; Li, Jun, E-mail: jacob_lijun@sina.com; Luo, Xing

    2014-12-15

    Laser-clad composite coatings on the Ti6Al4V substrate were heat-treated at 700, 800, and 900 °C for 1 h. The effects of post-heat treatment on the microstructure, microhardness, and fracture toughness of the coatings were investigated by scanning electron microscopy, X-ray diffractometry, energy dispersive spectroscopy, and optical microscopy. The wear resistance of the coatings was evaluated under dry reciprocating sliding friction at room temperature. The coatings mainly comprised some coarse gray blocky (W,Ti)C particles accompanied by the fine white WC particles, a large number of black TiC cellular/dendrites, and the matrix composed of NiTi and Ni{sub 3}Ti; some unknown rich Ni-more » and Ti-rich particles with sizes ranging from 10 nm to 50 nm were precipitated and uniformly distributed in the Ni{sub 3}Ti phase to form a thin granular layer after heat treatment at 700 °C. The granular layer spread from the edge toward the center of the Ni{sub 3}Ti phase with increasing temperature. A large number of fine equiaxed Cr{sub 23}C{sub 6} particles with 0.2–0.5 μm sizes were observed around the edges of the NiTi supersaturated solid solution when the temperature was further increased to 900 °C. The microhardness and fracture toughness of the coatings were improved with increased temperature due to the dispersion-strengthening effect of the precipitates. Dominant wear mechanisms for all the coatings included abrasive and delamination wear. The post-heat treatment not only reduced wear volume and friction coefficient, but also decreased cracking susceptibility during sliding friction. Comparatively speaking, the heat-treated coating at 900 °C presented the most excellent wear resistance. - Highlights: • TiC + WC reinforced intermetallic compound matrix composite coatings were produced. • The formation mechanism of the reinforcements was analyzed. • Two precipitates were generated at elevated temperature. • Cracking susceptibility and microhardness of

  6. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  7. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  8. Highly-active oxygen evolution electrocatalyzed by an Fe-doped NiCr2O4 nanoparticle film.

    PubMed

    Zhao, Jinxiu; Li, Xianghong; Cui, Guanwei; Sun, Xuping

    2018-05-11

    Alkaline water splitting offers a simple method for the mass production of hydrogen but suffers from the sluggish kinetics of the anodic oxygen evolution reaction (OER). Here, we report on the development of an Fe-doped NiCr2O4 nanoparticle film on Ni foam (Fe-NiCr2O4/NF) as a non-noble-metal OER electrocatalyst with superior catalytic activity at alkaline pH. Such Fe-NiCr2O4/NF demands overpotentials as low as 228 and 318 mV to drive current densities of 20 and 500 mA cm-2, respectively, in 1.0 M KOH. Notably, it also shows strong long-term electrochemical durability with its activity being retained for at least 60 h.

  9. Periodic domain inversion in x-cut single-crystal lithium niobate thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackwitz, P., E-mail: peterm@mail.upb.de; Rüsing, M.; Berth, G.

    2016-04-11

    We report the fabrication of periodically poled domain patterns in x-cut lithium niobate thin-film. Here, thin films on insulator have drawn particular attention due to their intrinsic waveguiding properties offering high mode confinement and smaller devices compared to in-diffused waveguides in bulk material. In contrast to z-cut thin film lithium niobate, the x-cut geometry does not require back electrodes for poling. Further, the x-cut geometry grants direct access to the largest nonlinear and electro-optical tensor element, which overall promises smaller devices. The domain inversion was realized via electric field poling utilizing deposited aluminum top electrodes on a stack of LNmore » thin film/SiO{sub 2} layer/Bulk LN, which were patterned by optical lithography. The periodic domain inversion was verified by non-invasive confocal second harmonic microscopy. Our results show domain patterns in accordance to the electrode mask layout. The second harmonic signatures can be interpreted in terms of spatially, overlapping domain filaments which start their growth on the +z side.« less

  10. Study to improve the quality of a Mexican straight run gasoil over NiMo/γ-Al 2O 3 catalysts

    NASA Astrophysics Data System (ADS)

    Domínguez-Crespo, M. A.; Díaz-García, L.; Arce-Estrada, E. M.; Torres-Huerta, A. M.; Cortéz-De la Paz, M. T.

    2006-11-01

    Four NiMo catalyst supported on Al 2O 3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.

  11. Attenuation of Gas Turbulence by a Nearly Stationary Dispersion of Fine Particles

    NASA Technical Reports Server (NTRS)

    Paris, A. D.; Eaton, J. K.; Hwang, W.

    1999-01-01

    Turbulence attenuation by greater than a factor of two has been observed in many practical gas flows carrying volume fractions as small as 0.01% of dispersed particles. Particles which cause such attenuation usually are smaller than the smallest scales of the turbulence and have time constants 5 to 10 times greater than the time scale of a typical turbulent eddy. That is, strongly attenuating particles usually have Stokes numbers in the range of 5 to 10, indicating that they do not respond to the turbulent fluctuations, but instead just fall through the flow responding only to the mean flow. There are two mechanisms by which free falling particles may attenuate turbulence. First, the unresponsive particles act as a drag on the turbulent eddies, passing energy from the turbulent eddies to the small scale wakes of the particles where it is quickly dissipated by viscosity. The second mechanism is more complicated. Particles falling under gravity convert gravitational potential energy to turbulent velocity fluctuations. If the particles are large, this mechanism increases the overall turbulence level. However, with moderate size particles, the small scale turbulence generated apparently distorts the turbulent eddies leading to more rapid dissipation. Unfortunately, this conclusion is supported only by circumstantial evidence to date. The objectives of the experiment are to use microgravity to separate the two mechanisms. A region of nearly-isotropic decaying turbulence with zero mean flow will be formed in a box in the microgravity environment. Different sets of particles with Stokes numbers in the range of 2 to 20 will be dispersed in the flow. With zero gravity and no mean fluid velocity the particles will have zero mean velocity. With the large Stokes numbers, the fluctuating velocities will also be small. Therefore, the only attenuation mechanism will be the direct action of the particles on the turbulence. Control experiments will also be done in which the

  12. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding.

    PubMed

    Wu, Fan; Chen, Tao; Wang, Haojun; Liu, Defu

    2017-09-06

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening.

  13. Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C,N)/Ni-Based Composite Coatings by Laser Cladding

    PubMed Central

    Chen, Tao; Wang, Haojun

    2017-01-01

    Using Ni60 alloy, C, TiN and Mo mixed powders as the precursor materials, in situ synthesized Ti(C,N) particles reinforcing Ni-based composite coatings are produced on Ti6Al4V alloys by laser cladding. Phase constituents, microstructures and wear properties of the composite coatings with 0 wt % Mo, 4 wt % Mo and 8 wt % Mo additions are studied comparatively. Results indicate that Ti(C,N) is formed by the in situ metallurgical reaction, the (Ti,Mo)(C,N) rim phase surrounding the Ti(C,N) ceramic particle is synthesized with the addition of Mo, and the increase of Mo content is beneficial to improve the wear properties of the cladding coatings. Because of the effect of Mo, the grains are remarkably refined and a unique core-rim structure that is uniformly dispersed in the matrix appears; meanwhile, the composite coatings with Mo addition exhibit high hardness and excellent wear resistance due to the comprehensive action of dispersion strengthening, fine grain strengthening and solid solution strengthening. PMID:28878190

  14. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    PubMed Central

    Gravina, Marco Abdo; Canavarro, Cristiane; Elias, Carlos Nelson; Chaves, Maria das Graças Afonso Miranda; Brunharo, Ione Helena Vieira Portella; Quintão, Cátia Cardoso Abdo

    2014-01-01

    Objective This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni) Titanium (Ti) conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek), to the wires with addition of copper (CuNiTi 27ºC and 35ºC, Ormco) after traction test. Methods The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV) with EDS system of microanalysis (energy dispersive spectroscopy). Results The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu). As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27ºC and 35ºC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi.4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27ºC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35ºC wires presented inadequate wire-surface roughness in the fracture region. Conclusion CuNiTi 35ºC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region. PMID:24713562

  15. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  16. Effect of decomposition and organic residues on resistivity of copper films fabricated via low-temperature sintering of complex particle mixed dispersions

    NASA Astrophysics Data System (ADS)

    Yong, Yingqiong; Nguyen, Mai Thanh; Tsukamoto, Hiroki; Matsubara, Masaki; Liao, Ying-Chih; Yonezawa, Tetsu

    2017-03-01

    Mixtures of a copper complex and copper fine particles as copper-based metal-organic decomposition (MOD) dispersions have been demonstrated to be effective for low-temperature sintering of conductive copper film. However, the copper particle size effect on decomposition process of the dispersion during heating and the effect of organic residues on the resistivity have not been studied. In this study, the decomposition process of dispersions containing mixtures of a copper complex and copper particles with various sizes was studied. The effect of organic residues on the resistivity was also studied using thermogravimetric analysis. In addition, the choice of copper salts in the copper complex was also discussed. In this work, a low-resistivity sintered copper film (7 × 10-6 Ω·m) at a temperature as low as 100 °C was achieved without using any reductive gas.

  17. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Shetty, Sandhya; Hegde, A. Chitharanjan

    2017-02-01

    In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.'s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm-2 (having 37.6 wt pct Ni) and 1.0 A dm-2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

  18. In situ growth of well-ordered NiFe-MOF-74 on Ni foam by Fe2+ induction as an efficient and stable electrocatalyst for water oxidation.

    PubMed

    Xing, Jiale; Guo, Kailu; Zou, Zehua; Cai, Minmin; Du, Jing; Xu, Cailing

    2018-06-06

    Well-ordered NiFe-MOF-74 is in situ grown on Ni foam by the induction of Fe2+ and directly used as an OER electrocatalyst. Benefited from the intrinsic open porous structure of MOF-74, the in situ formed MOF arrays and the synergistic effect of Ni and Fe, outstanding water oxidation activity is obtained in alkaline electrolytes with an overpotential of 223 mV at 10 mA cm-2.

  19. Effect of the scanning speed on microstructural evolution and wear behaviors of laser cladding NiCrBSi composite coatings

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Li, J.; Song, R.; Bai, L. L.; Shao, J. Z.; Qu, C. C.

    2015-09-01

    Laser cladding composite coatings were fabricated on the surface of the Ti6Al4V substrate by fiber laser cladding the NiCrBSi alloy powder. The influences of scanning speed on the dilution rate and microstructure of the coatings were investigated in detail by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). Combined with the analyses of microhardness and fracture toughness, the wear behaviors of the coatings obtained at different scanning speeds were revealed. Results indicated that the dilution rates of the coatings were similar (about 64.23%) with variations in scanning speed ranging from 5 mm/s to 15 mm/s. An abrupt decrease in dilution rate (37.06%) was observed at the scanning speed of 20 mm/s. Microstructural observation showed that the blocky TiB2 and the cellular dendrite TiC particles were uniformly dispersed in the TiNi-Ti2Ni dual-phase intermetallic compound matrix at scanning speeds of 5-15 mm/s. When the scanning speed was further increased to 20 mm/s, the stripe-shaped CrB, gray irregular-shaped Cr3C2 and black blocky TiC particles uniformly dispersed in the γ(Ni) matrix were synthesized in situ. The particles became finer with the increase in scanning speed. The average microhardness of the coating (1026.5 HV0.2) at the scanning speed of 20 mm/s was enhanced significantly compared with that of the other three coatings (about 886.4 HV0.2). The lowest average friction coefficient (about 0.371) was obtained at the scanning speed of 20 mm/s and was relatively stable with the change in sliding time. The lowest wear loss of the coating was also obtained at the scanning speed of 20 mm/s. Analyses of the worn surfaces showed that the coating prepared at the scanning speed of 20 mm/s was in good condition because of its excellent combination of resistance to micro-cutting and brittle debonding. Comparatively speaking, the coating produced at the scanning speed of 20 mm

  20. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    NASA Astrophysics Data System (ADS)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  1. Barrier coated drug layered particles for enhanced performance of amorphous solid dispersion dosage form.

    PubMed

    Puri, Vibha; Dantuluri, Ajay K; Bansal, Arvind K

    2012-01-01

    Amorphous solid dispersions (ASDs) may entail tailor-made dosage form design to exploit their solubility advantage. Surface phenomena dominated the performance of amorphous celecoxib solid dispersion (ACSD) comprising of amorphous celecoxib (A-CLB), polyvinylpyrrolidone, and meglumine (7:2:1, w/w). ACSD cohesive interfacial interactions hindered its capsule dosage form dissolution (Puri V, Dhantuluri AK, Bansal AK 2011. J Pharm Sci 100:2460-2468). Furthermore, ACSD underwent significant devitrification under environmental stress. In the present study, enthalpy relaxation studies revealed its free surface to contribute to molecular mobility. Based on all these observations, barrier coated amorphous CLB solid dispersion layered particles (ADLP) were developed by Wurster process, using microcrystalline cellulose as substrate and polyvinyl alcohol (PVA), inulin, and polyvinyl acetate phthalate (PVAP) as coating excipients. Capsule formulations of barrier coated-ADLP could achieve rapid dispersibility and high drug release. Evaluation under varying temperature and RH conditions suggested the crystallization inhibitory efficiency in order of inulin < PVA ≈ PVAP; however, under only temperature treatment, crystallization inhibition increased with increase in T(g) of the coating material. Simulated studies using DSC evidenced drug-polymer mixing at the interface as a potential mechanism for surface stabilization. In conclusion, surface modification yielded a fast dispersing robust high drug load ASD based dosage form. Copyright © 2011 Wiley-Liss, Inc.

  2. One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors

    PubMed Central

    Neiva, Eduardo G. C.; Oliveira, Marcela M.; Bergamini, Márcio F.; Marcolino, Luiz H.; Zarbin, Aldo J. G.

    2016-01-01

    Different nanocomposites between reduced graphene oxide (rGO) and Ni(OH)2 nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized. The thin and transparent nanocomposite films (112 to 513 nm thickness, 62.6 to 19.9% transmittance at 550 nm) consist of α-Ni(OH)2 nanoparticles (mean diameter of 4.9 nm) homogeneously decorating the rGO sheets. As a control sample, neat Ni(OH)2 was prepared in the same way, consisting of porous nanoparticles with diameter ranging from 30 to 80 nm. The nanocomposite thin films present multifunctionality and they were applied as electrodes to alkaline batteries, as electrochromic material and as active component to electrochemical sensor to glycerol. In all the cases the nanocomposite films presented better performances when compared to the neat Ni(OH)2 nanoparticles, showing energy and power of 43.7 W h kg−1 and 4.8 kW kg−1 (8.24 A g−1) respectively, electrochromic efficiency reaching 70 cm2 C−1 and limit of detection as low as 15.4 ± 1.2 μmol L−1. PMID:27654065

  3. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    NASA Astrophysics Data System (ADS)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  4. (Fe0.2Ni0.8)0.96S tubular spheres supported on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting.

    PubMed

    Xu, Peiman; Li, Jingwei; Luo, Jiaxian; Wei, Licheng; Zhang, Dawei; Zhou, Dan; Xu, Weiming; Yuan, Dingsheng

    2018-06-21

    Earth-abundant and efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are highly significant for renewable energy systems. However, the performance of existing electrocatalysts is usually restricted by the low electroic conductivity and the limited amount of exposed active sites. In this work, (Fe 0.2 Ni 0.8 ) 0.96 S tubular spheres supported on Ni foam have been prepared by a sulfuration of FeNi layered double hydroxide spheres grown on Ni foam. Benefiting from the unique tubular sphere architecture, the rich inner defects and the enhanced electron interactions between Fe, Ni and S, this electrocatalyst shows low overpotential of 48 mV for HER at 10 mA cm -2 in 1.0 mol L -1 KOH solution, which is one of the lowest value of non-previous electrocatalyts for HER in alkaline electrolyte. Furthermore, assembled this versatile electrode as an alkaline electrolyzer for overall water splitting, a current density of 10 mA cm -2 is achieved at a low cell voltage of 1.56 V, and reach up to 30 mA cm -2 only at an operating cell voltage of 1.65 V.

  5. Synthesis of length-controlled aerosol carbon nanotubes and their dispersion stability in aqueous solution.

    PubMed

    Moon, Young Kyun; Lee, Jaebeom; Lee, Jae Keun; Kim, Tae Kyu; Kim, Soo H

    2009-02-03

    A one-step method combining spray pyrolysis and thermal chemical vapor deposition (CVD) processes was developed to grow hybrid carbon nanotube (CNT)-bimetallic composite particles. Nickel, aluminum, and acetylene were used as the catalytic site, noncatalytic matrix, and hydrocarbon source, respectively. The bimetallic particles (i.e., Al-Ni) were spray pyrolized and subsequently passed through thermal CVD. During the thermal CVD, the catalytic decomposition of acetylene occurred on the free-floating bimetallic particles so that sea urchin-like CNTs were radially grown. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed the CNTs to have a uniform diameter of approximately 10 +/- 2 nm. The length of the CNTs was controlled by varying the residence time of the bimetallic nanoparticles with a length of 200-1000 nm. After nitric acid treatment, the CNTs were released by melting the bimetallic particles. The resulting CNTs were then dispersed in an aqueous solution to examine the effect of the length of CNTs on their dispersion stability, which is a critical issue for the stability and repeatability of the heat transfer performance in nanofluids. Ultraviolet-visible (UV-vis) spectrometer analysis showed that shorter CNTs were less stable than the longer CNTs due to the higher mobility-induced agglomeration of the shorter CNTs.

  6. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles.

    PubMed

    Pradhan, Sulena; Hedberg, Jonas; Blomberg, Eva; Wold, Susanna; Odnevall Wallinder, Inger

    2016-01-01

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30-80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3-15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.

  7. Ni-Co nanoparticles immobilized on a 3D Ni foam template as a highly efficient catalyst for borohydride electrooxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Meisong; Cheng, Yu; Yu, Yanan; Hu, Jingbo

    2017-09-01

    Proton exchange membrane (PEM) fuel cells have drawn a great deal of attention due to the rapidly growing energy consumption. Recently, Ni- and Co-based materials have been considered as promising electorcatalysts owing to their multi-functionality. In this work, Ni and Co nanoparticles are directly immobilized on a three-dimensional Ni foam substrate (Ni-Co/NF) without any conductive agents or polymer binder by a facile ion implantation method. The structure and morphology of the Ni-Co/NF electrode were characterized by scanning electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. The performance of the Ni-Co/NF electrode in the electrochemical oxidation of NaBH4 is investigated by cyclic voltammetry and chronoamperometry. The Ni-Co/NF electrode exhibited excellent electrocatalytic activity and good stability during electrochemical reactions. These properties are attributed to the 3D porous structure of the Ni foam and the synergistic effect of Ni and Co nanoparticles. The enhanced electrocatalytic performance in NaBH4 electrooxidation compared with either Ni or Co nanoparticles alone suggests that the Ni-Co/NF is promising for fuel cell applications.

  8. Reduced Dimensionality Lithium Niobate Microsystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenfield, Matt

    2017-01-01

    The following report describes work performed under the LDRD program at Sandia National Laboratories October 2014 and September 2016. The work presented demonstrates the ability of Sandia Labs to develop state-of-the-art photonic devices based on thin film lithium niobate (LiNbO 3 ). Section 1 provides an introduction to integrated LiNbO 3 devices and motivation for developing thin film nonlinear optical systems. Section 2 describes the design, fabrication, and photonic performance of thin film optical microdisks fabricated from bulk LiNbO 3 using a bulk implantation method developed at Sandia. Sections 3 and 4 describe the development of similar thin film LiNbOmore » 3 structures fabricated from LiNbO 3 on insulator (LNOI) substrates and our demonstration of optical frequency conversion with state-of-the-art efficiency. Finally, Section 5 describes similar microdisk resonators fabricated from LNOI wafers with a buried metal layer, in which we demonstrate electro-optic modulation.« less

  9. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  10. Optical characteristics of particles produced using electroerosion dispersion of titanium in hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Pyachin, S. A.; Burkov, A. A.; Makarevich, K. S.; Zaitsev, A. V.; Karpovich, N. F.; Ermakov, M. A.

    2016-07-01

    Titanium oxide particles are produced using electric-discharge dispersion of titanium in aqueous solution of hydrogen peroxide. Electron vacuum microscopy, X-ray diffraction, and diffuse reflection spectroscopy are used to study the morphology, composition, and optical characteristics of the erosion particles. It has been demonstrated that the particles consist of titanium and titanium oxides with different valences. The edge of the optical absorption is located in the UV spectral range. The band gap is 3.35 eV for indirect transitions and 3.87 eV for direct allowed transitions. The band gap decreases due to the relatively long heating in air at a temperature of 480-550°C, so that powder oxide compositions can be obtained, the optical characteristics of which are similar to optical characteristics of anatase. The erosion products are completely oxidized to rutile after annealing in air at a temperature of 1000°C.

  11. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  12. Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6

    DOE PAGES

    Munsie, T. J. S.; Wilson, M. N.; Millington, A.; ...

    2017-10-13

    Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less

  13. Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb2O6

    NASA Astrophysics Data System (ADS)

    Munsie, T. J. S.; Wilson, M. N.; Millington, A.; Thompson, C. M.; Flacau, R.; Ding, C.; Guo, S.; Gong, Z.; Aczel, A. A.; Cao, H. B.; Williams, T. J.; Dabkowska, H. A.; Ning, F.; Greedan, J. E.; Luke, G. M.

    2017-10-01

    Neutron diffraction and muon spin relaxation (μ SR ) studies are presented for the newly characterized polymorph of NiNb2O6 (β -NiNb2O6) with space group P4 2/n and μ SR data only for the previously known columbite structure polymorph with space group P b c n . The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector k ⃗=(1/2 ,1/2 ,1/2 ) . Single-crystal data confirmed the same k ⃗ vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running along the a or b axis in adjacent Ni2 + layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb2O6 and NiTa2O6 . μ SR data finds a transition temperature of TN˜15 K for this system, while the columbite polymorph exhibits a lower TN=5.7 (3 ) K. Our μ SR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25 (3 ) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28 (3 ) for β -NiNb2O6 , in agreement with the μ SR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. In other words, although both systems appear to be well described by S =1 spin chains, the interchain interactions in the β polymorph are likely much larger.

  14. Neutron diffraction and μ SR studies of two polymorphs of nickel niobate NiNb 2 O 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munsie, T. J. S.; Wilson, M. N.; Millington, A.

    Neutron diffraction and muon spin relaxation (μSR) studies are presented in this paper for the newly characterized polymorph of NiNb 2O 6 (β-NiNb 2O 6) with space group P4 2/n and μSR data only for the previously known columbite structure polymorph with space group Pbcn. The magnetic structure of the P4 2/n form was determined from neutron diffraction using both powder and single-crystal data. Powder neutron diffraction determined an ordering wave vector →k=( 1/ 2, 1/ 2, 1/ 2). Single-crystal data confirmed the same →k vector and showed that the correct magnetic structure consists of antiferromagnetically coupled chains running alongmore » the a or b axis in adjacent Ni 2+ layers perpendicular to the c axis, which is consistent with the expected exchange interaction hierarchy in this system. The refined magnetic structure is compared with the known magnetic structures of the closely related trirutile phases, NiSb 2O 6 and NiTa 2O 6. μSR data finds a transition temperature of T N~15K for this system, while the columbite polymorph exhibits a lower T N=5.7(3) K. Our μSR measurements also allowed us to estimate the critical exponent of the order parameter β for each polymorph. We found β =0.25(3) and 0.16(2) for the β and columbite polymorphs, respectively. The single-crystal neutron scattering data give a value for the critical exponent β =0.28(3) for β-NiNb 2O 6, in agreement with the μSR value. While both systems have β values less than 0.3, which is indicative of reduced dimensionality, this effect appears to be much stronger for the columbite system. Finally, in other words, although both systems appear to be well described by S=1 spin chains, the interchain interactions in the β polymorph are likely much larger.« less

  15. CORRECTING FOR INTERPLANETARY SCATTERING IN VELOCITY DISPERSION ANALYSIS OF SOLAR ENERGETIC PARTICLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laitinen, T.; Dalla, S.; Huttunen-Heikinmaa, K.

    2015-06-10

    To understand the origin of Solar Energetic Particles (SEPs), we must study their injection time relative to other solar eruption manifestations. Traditionally the injection time is determined using the Velocity Dispersion Analysis (VDA) where a linear fit of the observed event onset times at 1 AU to the inverse velocities of SEPs is used to derive the injection time and path length of the first-arriving particles. VDA does not, however, take into account that the particles that produce a statistically observable onset at 1 AU have scattered in the interplanetary space. We use Monte Carlo test particle simulations of energeticmore » protons to study the effect of particle scattering on the observable SEP event onset above pre-event background, and consequently on VDA results. We find that the VDA results are sensitive to the properties of the pre-event and event particle spectra as well as SEP injection and scattering parameters. In particular, a VDA-obtained path length that is close to the nominal Parker spiral length does not imply that the VDA injection time is correct. We study the delay to the observed onset caused by scattering of the particles and derive a simple estimate for the delay time by using the rate of intensity increase at the SEP onset as a parameter. We apply the correction to a magnetically well-connected SEP event of 2000 June 10, and show it to improve both the path length and injection time estimates, while also increasing the error limits to better reflect the inherent uncertainties of VDA.« less

  16. LABORATORY MEASUREMENTS OF NiH BY FOURIER TRANSFORM DISPERSED FLUORESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallon, Raphael; Richard, Cyril; Crozet, Patrick

    2009-05-01

    Red and orange bands of laser-induced fluorescence in NiH have been recorded on a Fourier transform interferometer at Doppler resolution. The spectra show strong transitions to low-lying vibronic states which are not thermally populated in a laboratory source, and therefore do not appear in laser excitation spectra, but which would be expected to contribute significantly to any stellar spectrum. The strongest bands belong to the G[{omega}' 5/2]-X {sub 2} {sup 2}{delta}{sub 3/2}, I[{omega}' 3/2]-X {sub 2}, and {sup 2}{delta}{sub 3/2} I[{omega}' 3/2]-W {sub 1} {sup 2}{pi}{sub 3/2} systems. Measurements are reported for {sup 58}NiH, {sup 60}NiH, and {sup 62}NiH.

  17. Cell degradation of a Na–NiCl 2 (ZEBRA) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.

    2013-09-23

    In this work, the parameters influencing the degradation of a Na-NiCl 2 (ZEBRA) battery were investigated. Planar Na-NiCl 2 cells using β”-alumina solid electrolyte (BASE) were tested with different C-rates, Ni/NaCl ratios, and capacity windows, in order to identify the key parameters for the degradation of Na-NiCl 2 battery. The morphology of NaCl and Ni particles were extensively investigated after 60 cycles under various test conditions using a scanning electron microscope. A strong correlation between the particle size (NaCl and Ni) and battery degradation was observed in this work. Even though the growth of both Ni and NaCl can influencemore » the cell degradation, our results indicate that the growth of NaCl is a dominant factor in cell degradation. The use of excess Ni seems to play a role in tolerating the negative effects of particle growth on degradation since the available active surface area of Ni particles can be still sufficient even after particle growth. For NaCl, a large cycling window was the most significant factor, of which effects were amplified with decrease in Ni/NaCl ratio.« less

  18. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.

    PubMed

    Raja, S Philip; Venkateswaran, C

    2011-03-01

    Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.

  19. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media.

    PubMed

    Tho, Ingunn; Liepold, Bernd; Rosenberg, Joerg; Maegerlein, Markus; Brandl, Martin; Fricker, Gert

    2010-04-16

    The objective of the study was to characterise the aqueous dispersions of ritonavir melt extrudates. More specifically to look into the particular system formed when melt extrudate of a poorly soluble drug dissolved in a hydrophilic polymer matrix containing a surfactant is dispersed in an aqueous medium. Melt extrudates with and without ritonavir were studied. The drug containing extrudate was confirmed to be molecular dispersions of drug in a polymer/surfactant matrix. Particulate dispersions were formed in water from both drug and placebo extrudates. The dispersions were investigated with respect to mean particle size and particle size distribution (photon correlation spectroscopy and optical particle counting), surface charge (zeta potential), particle composition (ultracentrifugation), tendency to form aggregates and precipitate (turbidity), in vitro dissolution rate and drug release. It was concluded that dispersion of melt extrudates in aqueous medium give rise to nano/micro-dispersions. The stability of the nano/micro-dispersion is sensitive to anions and may be subjected to association/aggregation/flocculation as time proceeds after preparation of dispersion. Melt extrudate showed improved dissolution rate and drug release properties compared to crystalline raw material. From studies of single components and physical mixtures of the formulation composition it can be concluded that the drug delivery system itself, namely solid dispersion prepared by melt extrusion technology, plays a key role for the formation of the observed particles. 2010 Elsevier B.V. All rights reserved.

  20. Graphene electrodes for lithium-niobate electro-optic devices.

    PubMed

    Chang, Zeshan; Jin, Wei; Chiang, Kin Seng

    2018-04-15

    We propose and demonstrate the use of graphene electrodes for lithium-niobate electro-optic (EO) devices to exempt the need of incorporating a buffer layer between the waveguide and the electrodes. Using graphene electrodes, our experimental mode converter, based on an EO-generated long-period grating in a LiNbO 3 waveguide, shows a reduction in the half-π voltage by almost three times, compared with the conventional electrode design using metal. With the buffer layer exempted, the device fabrication process is also significantly simplified. The use of graphene electrodes is an effective approach to enhancing the efficiency of EO devices and, at the same time, reducing their fabrication cost.

  1. Specific Features in Measuring Particle Size Distributions in Highly Disperse Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Zagaynov, V. A.; Vasyanovich, M. E.; Maksimenko, V. V.; Lushnikov, A. A.; Biryukov, Yu. G.; Agranovskii, I. E.

    2018-06-01

    The distribution of highly dispersed aerosols is studied. Particular attention is given to the diffusion dynamic approach, as it is the best way to determine particle size distribution. It shown that the problem can be divided into two steps: directly measuring particle penetration through diffusion batteries and solving the inverse problem (obtaining a size distribution from the measured penetrations). No reliable way of solving the so-called inverse problem is found, but it can be done by introducing a parametrized size distribution (i.e., a gamma distribution). The integral equation is therefore reduced to a system of nonlinear equations that can be solved by elementary mathematical means. Further development of the method requires an increase in sensitivity (i.e., measuring the dimensions of molecular clusters with radioactive sources, along with the activity of diffusion battery screens).

  2. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    NASA Astrophysics Data System (ADS)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh

    2017-01-01

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  3. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F.; Mitroy, J.

    2012-03-01

    The long-range non-additive three-body dispersion interaction coefficients Z111, Z112, Z113, and Z122 are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z111 arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z112, Z113, and Z122 arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  4. Surface acoustic waves in acoustic superlattice lithium niobate coated with a waveguide layer

    NASA Astrophysics Data System (ADS)

    Yang, G. Y.; Du, J. K.; Huang, B.; Jin, Y. A.; Xu, M. H.

    2017-04-01

    The effects of the waveguide layer on the band structure of Rayleigh waves are studied in this work based on a one-dimensional acoustic superlattice lithium niobate substrate coated with a waveguide layer. The present phononic structure is formed by the periodic domain-inverted single crystal that is the Z-cut lithium niobate substrate with a waveguide layer on the upper surface. The plane wave expansion method (PWE) is adopted to determine the band gap behavior of the phononic structure and validated by the finite element method (FEM). The FEM is also used to investigate the transmission of Rayleigh waves in the phononic structure with the interdigital transducers by means of the commercial package COMSOL. The results show that, although there is a homogeneous waveguide layer on the surface, the band gap of Rayleigh waves still exist. It is also found that increasing the thickness of the waveguide layer, the band width narrows and the band structure shifts to lower frequency. The present approach can be taken as an efficient tool in designing of phononic structures with waveguide layer.

  5. Correction: Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles.

    PubMed

    Sharma, Vikash; Chotia, Chanderbhan; Tarachand; Ganesan, Vedachalaiyer; Okram, Gunadhor S

    2017-07-21

    Correction for 'Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles' by Vikash Sharma et al., Phys. Chem. Chem. Phys., 2017, 19, 14096-14106.

  6. Elastic and Inelastic Scattering of 27.6 Mev Deuterons in Ni. Report No. 55; DISPERSION ELASTICA E INELASTICA DE DEUTERONES DE 27,6 Mev POR Ni. INFORME NO. 55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, S.; Rosenblatt, J.

    1961-01-01

    Elastic and inelastic differential cross sections in Ni(d,d)Ni with 27.6 Mev deuterons were measured with the aid of scintillation technique. Charged particle spectra from the reaction were observed at laboratory angles of 15 up to 150 degrees, showing the presence of Q-positive stripping protons and elastic and inelastic deuteron groups. Due to isotopic mixture in natural Ni and the rather high level density above 2 Mev of excitation in most of those isotopes, only inelastic deuteron groups going to the first excited states in Ni/sup 58/ and Ni/ sup 60/ could be identified. Elastic angular distribution exhibits similarities to thatmore » obtained by Yntema at 21.6 Mev, showing the typical diffraction patterns. At backward angles, a slight growing in the crosssection was observed which was not observed at 21.6 Mev. By regarding the elastic scattering like a classical light diffraction by a black disk, an interaction radius of 6.8 plus or minus 0.8 f was derived. Inelastic angular distributions were fitted by semiclassical Butler et al. theory and Huby-Newns theory. Due to above-mentioned limitations level mixtures could not be avoided; however, a group of deuterons going to Ni/ sup 58/ 1.45 Mev, probably mixed with Ni/sup 60/ 1.33 Mev, could be identified as proceeding via direct interaction with l = 2 and interaction radius 6.7 f and 6.9 f, respectively. Another inelastic group identified as Ni/sup 58/ 2.46 Mev mixed with Ni/sup 60/ 2.50 Mev is well fitted by l = 2 plus l = 4 and interaction radius 8.9 f and 8.7 f respectively, showing direct interaction behavor. Contributions to the above processes from compound nucleus formation are small as can be seen from absolute cross sections above 50 degrees. Total cross section for the formation of compound nucleus is about 860 mbarn. According to selection rules for deuteron scattering, 2/sup +/ is assigned to levels 1.45 Mev and 2.46 Mev in Ni/sup 58/; however this assignment is not definitive due to background from

  7. Dilute NiO/carbon nanofiber composites derived from metal organic framework fibers as electrode materials for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Yang, Feng; Hu, Hongru

    A new type of carbon nanofiber (CNF) dominated electrode materials decorated with dilute NiO particles (NiO/CNF) has been in situ fabricated by direct pyrolysis of Ni, Zn-containing metal organic framework fibers, which are skillfully constructed by assembling different proportional NiCl2·6H2O and Zn(Ac)2·2H2O with trimesic acid in the presence of N,N-dimethylformamide. With elegant combination of advantages of CNF and evenly dispersed NiO particles, as well as successful modulation of conductivity and porosity of final composites, our NiO/CNF composites display well-defined capacitive features. A high capacitance of 14926 F g–1 was obtained in 6 M KOH electrolyte when the contribution from 0.43more » wt% NiO was considered alone, contributing to over 35% of the total capacitance (234 F g–1 ). This significantly exceeds its theoretical specific capacitance of 2584 F g–1. It has been established from the Ragone plot that a largest energy density of 33.4 Wh kg–1 was obtained at the current density of 0.25 A g–1. Furthermore, such composite electrode materials show good rate capability and outstanding cycling stability up to 5000 times (only 10% loss). The present study provides a brand-new approach to design a high capacitance and stable supercapacitor electrode and the concept is extendable to other composite materials. Keywords: Metal organic framework; Nickel oxide; Carbon nanofiber; In situ synthesis; Capacitance« less

  8. Effect of pulse frequency on microstructural, nanomechanical, and wear properties of electrodeposited Ni-TiN composite coatings

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Tian, Jiyu; Ma, Chunyang; Potts, Matt; Guo, Xue

    2014-12-01

    The current paper reports successful syntheses of Ni-TiN composite coatings by pulse electrodeposition. The effect of pulse frequency on the microstructures, nanomechanical, and wear properties of the coatings was investigated using transmission electron microscopy, X-ray diffraction, nanoindenter, scanning electron microscopy, and wear test instrument. The results showed that the Ni-TiN composite coating prepared at the pulse frequency of 100 Hz showed the presence of a less number of TiN particles and some degrees of aggregation in micro-regions. By contrast, in the Ni-TiN coating deposited at the pulse frequency of 500 Hz, the TiN particles were large in number and dispersed homogeneously, thereby, offering the coating a uniform and fine structure. The average grain diameters of Ni and TiN in the coating prepared at 100 Hz were 154.7 and 44.8 nm, respectively, whereas those for the coating prepared at 500 Hz were 67.3 and 25.9 nm, respectively. The maximum TiN content in the Ni-TiN coating deposited at 800 Hz was approximately 10.5 wt. %. The maximum microhardness and the Young's modulus values for the Ni-TiN composite coatings deposited at 800 Hz were 35.7 GPa and 167.4 GPa, respectively. Furthermore, the Ni-TiN composite coating prepared at 100 Hz had more severe damages, whereas the morphologies of worn surface of the coatings deposited at 500 Hz and 800 Hz were smooth and only a few small pits appeared on the surface.

  9. The dispersion of particles in a separated backward-facing step flow

    NASA Astrophysics Data System (ADS)

    Ruck, B.; Makiola, B.

    1991-05-01

    Flows in technical and natural circuits often involve a particulate phase. To measure the dynamics of suspended, naturally resident or artificially seeded particles in the flow, optical measuring techniques, e.g., laser Doppler anemometry (LDA) can be used advantageously. In this paper the dispersion of particles in a single-sided backward-facing step flow is investigated by LDA. The investigation is of relevance for both, two-phase flow problems in separated flows with the associated particle diameter range of 1-70 μm and the accuracy of LDA with tracer particles of different sizes. The latter is of interest for all LDA applications to measure continuous phase properties, where interest for experimental restraints require tracer diameters in the upper micrometer range, e.g., flame resistant particles for measurements inside reactors, cylinders, etc. For the experiments, a closed-loop wind tunnel with a step expansion was used. Part of this tunnel, the test section, was made of glass. The step had a height H=25 mm (channel height before the step 25 mm, after 50 mm, i.e., an expansion ratio of 2). The width of the channel was 500 mm. The length of the glass test section was chosen as 116 step heights. The wind tunnel, driven by a radial fan, allowed flow velocities up to 50 m/sec which is equivalent to ReH=105. Seeding was performed with particles of well-known size: 1, 15, 30, and 70 μm in diameter. As 1 μm tracers oil droplets were used, whereas for the upper micron range starch particles (density 1.500 kg/m3) were chosen. Starch particles have a spherical shape and are not soluble in cold water. Particle velocities were measured locally using a conventional 1-D LDA system. The measurements deliver the resultant ``flow'' field information stemming from different particle size classes. Thus, the particle behavior in the separated flow field can be resolved. The results show that with increasing particle size, the particle velocity field differs increasingly from

  10. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  11. Photo-induced morphological winding and unwinding motion of nanoscrolls composed of niobate nanosheets with a polyfluoroalkyl azobenzene derivative

    NASA Astrophysics Data System (ADS)

    Nabetani, Yu; Takamura, Hazuki; Uchikoshi, Akino; Hassan, Syed Zahid; Shimada, Tetsuya; Takagi, Shinsuke; Tachibana, Hiroshi; Masui, Dai; Tong, Zhiwei; Inoue, Haruo

    2016-06-01

    Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials.Photo-responsive nanoscrolls can be successfully fabricated by mixing a polyfluoroalkyl azobenzene derivative and a niobate nanosheet, which is exfoliated from potassium hexaniobate. In this study, we have found that the photo-responsive nanoscroll shows a morphological motion of winding and unwinding, which is basically due to the nanosheet sliding within the nanoscroll, by efficient photo-isomerization reactions of the intercalated azobenzene in addition to the interlayer distance change of the nanoscrolls. The relative nanosheet sliding of the nanoscroll is estimated to be ca. 280 nm from the AFM morphology analysis. The distance of the sliding motion is over 20 times that of the averaged nanosheet sliding in the azobenzene/niobate hybrid film reported previously. Photo-responsive nanoscrolls can be expected to be novel photo-activated actuators and artificial muscle model materials. Electronic supplementary information (ESI) available: Fig. S1. Photo-isomerization reaction of nanoscrolls. See DOI: 10.1039/c6nr02177h

  12. Analysing the influence of different street vegetation on traffic-induced particle dispersion using microscale simulations.

    PubMed

    Wania, Annett; Bruse, Michael; Blond, Nadège; Weber, Christiane

    2012-02-01

    Urban vegetation can be viewed as compensation to the environmental drawbacks of urbanisation. However, its ecosystem function is not well-known and, for urban planning, vegetation is mainly considered as an element of urban design. This article argues that planning practice needs to re-examine the impact of vegetation cover in the urban fabric given our evaluation of vegetation's effects on air quality, including the dispersion of traffic-induced particles at street level. Using the three-dimensional microclimate model ENVI-met®, we evaluate these effects regarding the height-to-width ratio of streets flanked by buildings and the vertical and horizontal density of street vegetation. Our results reveal vegetation's effect on particle dispersion through its influence on street ventilation. In general, vegetation was found to reduce wind speed, causing inhibition of canyon ventilation and, consequently, an increase in particle concentrations. Vegetation was also found to reduce wind speed at crown-height and to disrupt the flow field in close vicinity to the canopy. With increasing height-to-width ratio of street canyons, wind speed reduction increases and the disturbance of the flow impacts across a canyon's entire width. We also found that the effect is more pronounced in configurations with poor ventilation, such as the low wind speed, perpendicular inflow direction, and in deep canyons cases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Lagrangian particle dispersion model FLEXPART version 10

    NASA Astrophysics Data System (ADS)

    Pisso, Ignacio; Sollum, Espen; Grythe, Henrik; Kristiansen, Nina; Cassiani, Massimo; Eckhardt, Sabine; Thompson, Rona; Groot Zwaaftnik, Christine; Evangeliou, Nikolaos; Hamburger, Thomas; Sodemann, Harald; Haimberger, Leopold; Henne, Stephan; Brunner, Dominik; Burkhart, John; Fouilloux, Anne; Fang, Xuekun; Phillip, Anne; Seibert, Petra; Stohl, Andreas

    2017-04-01

    The Lagrangian particle dispersion model FLEXPART was in its first original release in 1998 designed for calculating the long-range and mesoscale dispersion of air pollutants from point sources, such as after an accident in a nuclear power plant. The model has now evolved into a comprehensive tool for atmospheric transport modelling and analysis. Its application fields are extended to a range of atmospheric transport processes for both atmospheric gases and aerosols, e.g. greenhouse gases, short-lived climate forces like black carbon, volcanic ash and gases as well as studies of the water cycle. We present the newest release, FLEXPART version 10. Since the last publication fully describing FLEXPART (version 6.2), the model code has been parallelised in order to allow for the possibility to speed up computation. A new, more detailed gravitational settling parametrisation for aerosols was implemented, and the wet deposition scheme for aerosols has been heavily modified and updated to provide a more accurate representation of this physical process. In addition, an optional new turbulence scheme for the convective boundary layer is available, that considers the skewness in the vertical velocity distribution. Also, temporal variation and temperature dependence of the OH-reaction are included. Finally, user input files are updated to a more convenient and user-friendly namelist format, and the option to produce the output-files in netCDF-format instead of binary format is implemented. We present these new developments and show recent model applications. Moreover, we also introduce some tools for the preparation of the meteorological input data, as well as for the processing of FLEXPART output data.

  14. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes.

    PubMed

    Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki

    2015-11-03

    Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain ( S max / E max ) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where S max denotes the maximum strain and E max denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed.

  15. Potassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes

    PubMed Central

    Kawada, Shinichiro; Hayashi, Hiroyuki; Ishii, Hideki; Kimura, Masahiko; Ando, Akira; Omiya, Suetake; Kubodera, Noriyuki

    2015-01-01

    Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkali niobate-based multilayer piezoelectric ceramics co-fired with nickel inner electrodes. Nickel inner electrodes have many advantages, such as high electromigration resistance, high interfacial strength with ceramics, and greater cost effectiveness than silver palladium inner electrodes. However, widely used lead zirconate titanate-based ceramics cannot be co-fired with nickel inner electrodes, and silver palladium inner electrodes are usually used for lead zirconate titanate-based piezoelectric ceramics. A possible alternative is lead-free ceramics co-fired with nickel inner electrodes. We have thus been developing lead-free alkali niobate-based multilayer ceramics co-fired with nickel inner electrodes. The normalized electric-field-induced thickness strain (Smax/Emax) of a representative alkali niobate-based multilayer ceramic structure with nickel inner electrodes was 360 pm/V, where Smax denotes the maximum strain and Emax denotes the maximum electric field. This value is about half that for the lead zirconate titanate-based ceramics that are widely used. However, a comparable value can be obtained by stacking more ceramic layers with smaller thicknesses. In the paper, the compositional design and process used to co-fire lead-free ceramics with nickel inner electrodes are introduced, and their piezoelectric properties and reliabilities are shown. Recent advances are introduced, and future development is discussed. PMID:28793646

  16. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE PAGES

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; ...

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  17. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  18. Trajectory and Relative Dispersion Case Studies and Statistics from the Green River Mesoscale Deformation, Dispersion, and Dissipation Program

    NASA Astrophysics Data System (ADS)

    Niemann, Brand Lee

    A major field program to study beta-mesoscale transport and dispersion over complex mountainous terrain was conducted during 1969 with the cooperation of three government agencies at the White Sands Missile Range in central Utah. The purpose of the program was to measure simultaneously on a large number of days the synoptic and mesoscale wind fields, the relative dispersion between pairs of particle trajectories and the rate of small scale turbulence dissipation. The field program included measurements during more than 60 days in the months of March, June, and November. The large quantity of data generated from this program has been processed and analyzed to provide case studies and statistics to evaluate and refine Lagrangian variable trajectory models. The case studies selected to illustrate the complexities of mesoscale transport and dispersion over complex terrain include those with terrain blocking, lee waves, and stagnation, as well as those with large vertical wind shears and horizontal wind field deformation. The statistics of relative particle dispersion were computed and compared to the classical theories of Richardson and Batchelor and the more recent theories of Lin and Kao among others. The relative particle dispersion was generally found to increase with travel time in the alongwind and crosswind directions, but in a more oscillatory than sustained or even accelerated manner as predicted by most theories, unless substantial wind shears or finite vertical separations between particles were present. The relative particle dispersion in the vertical was generally found to be small and bounded even when substantial vertical motions due to lee waves were present because of the limiting effect of stable temperature stratification. The data show that velocity shears have a more significant effect than turbulence on relative particle dispersion and that sufficient turbulence may not always be present above the planetary boundary layer for "wind direction shear

  19. A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm

    DOE PAGES

    Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; ...

    2016-02-17

    We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.

  20. Statistical models for predicting pair dispersion and particle clustering in isotropic turbulence and their applications

    NASA Astrophysics Data System (ADS)

    Zaichik, Leonid I.; Alipchenkov, Vladimir M.

    2009-10-01

    The purpose of this paper is twofold: (i) to advance and extend the statistical two-point models of pair dispersion and particle clustering in isotropic turbulence that were previously proposed by Zaichik and Alipchenkov (2003 Phys. Fluids15 1776-87 2007 Phys. Fluids 19, 113308) and (ii) to present some applications of these models. The models developed are based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. These models predict the pair relative velocity statistics and the preferential accumulation of heavy particles in stationary and decaying homogeneous isotropic turbulent flows. Moreover, the models are applied to predict the effect of particle clustering on turbulent collisions, sedimentation and intensity of microwave radiation as well as to calculate the mean filtered subgrid stress of the particulate phase. Model predictions are compared with direct numerical simulations and experimental measurements.

  1. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves.

    PubMed

    Li, Zhengkai; Kepkay, Paul; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2007-07-01

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the formation of oil-mineral-aggregates (OMAs) in natural seawater. Results of ultraviolet spectrofluorometry and gas chromatography flame ionized detection analysis indicated that dispersants and mineral fines, alone and in combination, enhanced the dispersion of oil into the water column. Measurements taken with a laser in situ scattering and transmissometer (LISST-100X) showed that the presence of mineral fines increased the total concentration of the suspended particles from 4 to 10microl l(-1), whereas the presence of dispersants decreased the particle size (mass mean diameter) of OMAs from 50 to 10microm. Observation with an epifluorescence microscope indicated that the presence of dispersants, mineral fines, or both in combination significantly increased the number of particles dispersed into the water.

  2. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  3. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors.

    PubMed

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-14

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  4. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    PubMed Central

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  5. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiOx nanoparticles for efficient visible-light-driven hydrogen generation

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ling; Wang, Rong; Zhang, Ming-Yi; Yuan, Yu-Peng; Xue, Can

    2015-10-01

    The Ni/NiOx particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H2 generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H2 production rate of 125 μmol h-1 was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiOx catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H2 generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiOx particles are durable and active catalysts for photocatalytic H2 generation.

  6. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  7. Facile hybridization of Ni@Fe2O3 superparticles with functionalized reduced graphene oxide and its application as anode material in lithium-ion batteries.

    PubMed

    Backert, Gregor; Oschmann, Bernd; Tahir, Muhammad Nawaz; Mueller, Franziska; Lieberwirth, Ingo; Balke, Benjamin; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2016-09-15

    In our present work we developed a novel graphene wrapping approach of Ni@Fe2O3 superparticles, which can be extended as a concept approach for other nanomaterials as well. It uses sulfonated reduced graphene oxide, but avoids thermal treatments and use of toxic agents like hydrazine for its reduction. The modification of graphene oxide is achieved by the introduction of sulfate groups accompanied with reduction and elimination reactions, due to the treatment with oleum. The successful wrapping of nanoparticles is proven by energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy and Raman spectroscopy. The developed composite material shows strongly improved performance as anode material in lithium-ion batteries (compared to unwrapped Ni@Fe2O3) as it offers a reversible capacity of 1051mAhg(-1) after 40 cycles at C/20, compared with 460mAhg(-1) for unwrapped Ni@Fe2O3. The C rate capability is also improved by the wrapping approach, as specific capacities for wrapped particles are about twice of those offered by unwrapped particles. Additionally, the benefit for the use of the advanced superparticle morphology is demonstrated by comparing wrapped Ni@Fe2O3 particles with wrapped Fe2O3 nanorice. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Role of copper in precipitation hardening of high-alloy Cr-Ni cast steels

    NASA Astrophysics Data System (ADS)

    Gajewski, Mirosław

    2006-02-01

    The mechanism of strengthening with second-phase particles that results from heat treatment, i.e., precipitate hardening, plays an important role in modern alloys. The strengthening effect of such particles can result from their coherence with the matrix, inhibition of dislocation slip, inhibition of grain boundary slip, as well as hampering recovery processes due to dislocation network pinning. The results of investigations into high-alloy Cr-Ni-Cu cast steels precipitate hardened with highly dispersed ɛ phase particles are presented within. The influence of heat treatment on changes in microstructure, mechanical properties, and morphology of fracture surfaces obtained under loading have been analyzed. It has been demonstrated that, with the appropriate selection of heat treatment parameters, it is possible to control the precipitation of the hardening ɛ phase and, thus, to change the final mechanical and functional properties.

  9. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  10. Crystal growth and magnetic characterization of a tetragonal polymorph of NiNb2O6

    NASA Astrophysics Data System (ADS)

    Munsie, T. J. S.; Millington, A.; Dube, P. A.; Dabkowska, H. A.; Britten, J.; Luke, G. M.; Greedan, J. E.

    2016-04-01

    A previously unidentified polymorph of nickel niobate, NiNb2O6, was grown and stabilized in single crystalline form using an optical floating zone furnace. Key parameters of the growth procedure involved use of a slight excess of NiO (1.2% by mol), an O2 atmosphere and a growth rate of 25 mm/h. The resulting boule consisted of a polycrystalline exterior shell of the columbite structure - columbite is the thermodynamically stable form of NiNb2O6 under ambient conditions - and a core region consisting of transparent yellow-green single crystals up to 5 mm×2 mm×1 mm in dimension of the previously unidentified phase. The crystal structure, solved from single crystal x-ray diffraction data, is described in the P42/n space group. Interestingly, this is not a subgroup of P42/mnm, the rutile space group. The Ni2+ ions form layers which are displaced such that interlayer magnetic frustration is anticipated. Magnetic susceptibility data shows a broad maximum at approximately 22 K and evidence for long range antiferromagnetic order at approximately 14 K, obtained by Fisher heat capacity analysis as well as heat capacity measurements. The susceptibility data for T > 25 K are well fit by a square lattice S = 1 model, consistent with the Ni sublattice topology.

  11. TOPICAL REVIEW: Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media

    NASA Astrophysics Data System (ADS)

    Kamiya, Hidehiro; Iijima, Motoyuki

    2010-08-01

    Inorganic nanoparticles are indispensable for science and technology as materials, pigments and cosmetics products. Improving the dispersion stability of nanoparticles in various liquids is essential for those applications. In this review, we discuss why it is difficult to control the stability of nanoparticles in liquids. We also overview the role of surface interaction between nanoparticles in their dispersion and characterization, e.g. by colloid probe atomic force microscopy (CP-AFM). Two types of surface modification concepts, post-synthesis and in situ modification, were investigated in many previous studies. Here, we focus on post-synthesis modification using adsorption of various kinds of polymer dispersants and surfactants on the particle surface, as well as surface chemical reactions of silane coupling agents. We discuss CP-AFM as a technique to analyze the surface interaction between nanoparticles and the effect of surface modification on the nanoparticle dispersion in liquids.

  12. Stability of GO Modified by Different Dispersants in Cement Paste and Its Related Mechanism.

    PubMed

    Long, Wu-Jian; Fang, Changle; Wei, Jingjie; Li, Haodao

    2018-05-18

    Graphene oxide (GO) is a potential material to be used as a nano-reinforcement in cement matrix. However, a prerequisite for GO to fulfill its function in the cement matrix is homogeneous dispersion. In this study, the effects of three different dispersing agents (DAs), including polycarboxylate-based high range water reducer (P-HRWR), naphthalene-based high range water reducer (N-HRWR), and air entraining agent (AEA) on the dispersion of GO in aqueous solution, simulated concrete pore solution (SCPS), and suspension of cement pastes were sequentially investigated. Results showed that the dispersion effect of GO in aqueous solutions was improved with different DAs. However, the homogeneous dispersion of GO in aqueous solution re-agglomerated in SCPS and suspension of cement pastes. It was concluded that as the cement content and pH of aqueous solutions increased, GOs re-agglomerated and precipitated in an alkaline solution. A possible mechanism was proposed in this study and it was believed that electrostatic interactions and steric hindrance provided by the P-HRWR further made GOs stable in aqueous solutions. The ions and pH of cement pastes increased with the increasing amount of cement, which caused the separation of P-HRWR from GOs. Therefore, GOs were re-agglomerated and absorbed on the surface of the cement particles, resulting in GOs sedimentation.

  13. The nano-particle dispersion strengthening of V-4Cr-4Ti alloys for high temperature application in fusion reactors

    NASA Astrophysics Data System (ADS)

    Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru

    2013-10-01

    V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.

  14. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  15. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  16. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values

    NASA Astrophysics Data System (ADS)

    Iranmanesh, P.; Tabatabai Yazdi, Sh.; Mehran, M.; Saeednia, S.

    2018-03-01

    In this work, well-dispersed nanoparticles of NiFe2O4 with diameters less than 10 nm and good crystallinity and excellent magnetic properties were synthesized via a simple one-step capping agent-free coprecipitation route from metal chlorides. The ammonia was used as the precipitating agent and also the solution basicity controller. The effect of pH value during the coprecipitation process was investigated by details through microstructural, optical and magnetic characterizations of the synthesized particles using X-ray diffraction, transmission electron microscopy, Fourier transform infrared and UV-vis spectroscopy, and vibrating sample magnetometer. The results showed that the particle size, departure from the inverse spinel structure, the band gap value and the magnetization of Ni ferrite samples increase with pH value from 9 to 11 indicating the more pronounced surface effects in the smaller nanoparticles.

  17. An ultra-small NiFe2O4 hollow particle/graphene hybrid: fabrication and electromagnetic wave absorption property.

    PubMed

    Yan, Feng; Guo, Dong; Zhang, Shen; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin

    2018-02-08

    Herein, ultra-small NiFe 2 O 4 hollow particles, with the diameter and wall thickness of only 6 and 1.8 nm, respectively, were anchored on a graphene surface based on the nanoscale Kirkendall effect. The hybrid exhibits an excellent electromagnetic wave absorption property, comparable or superior to that of most reported absorbers. Our strategy may open a way to grow ultra-small hollow particles on graphene for applications in many fields such as eletromagnetic wave absorption and energy storage and conversion.

  18. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.

    PubMed

    Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M

    2018-05-01

    Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.

  19. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  20. Tribological Behavior of Electroless Ni-P Coatings in Various Corrosive Environments

    NASA Astrophysics Data System (ADS)

    Panja, Bikash; Das, Suman Kalyan; Sahoo, Prasanta

    2016-04-01

    The present paper deals with the study of tribological characteristics, viz. friction and wear, of electroless Ni-P coating in corrosive environments (brine, acidic and alkaline) by varying different coating process parameters as well as varying the tribological testing parameters, viz. applied load and speed. The optimized results of coating process parameters for minimum friction and wear performance of the coating are presented. Moreover, a detailed study of the tribological behavior of the coating is undertaken individually for the three corrosive environments. The results obtained are compared among each other and also with the dry condition test of the coating. It is found that the friction coefficient of Ni-P coating decreases with increase in load for all environments. In case of wear, the wear rate of Ni-P coating gradually increases with increase in load for all mediums but the same decreases after 40N in brine and alkaline mediums. However, for acidic solution, the wear rate shows a continuous increasing trend. It is observed that alkaline and brine environments are favorable from friction and wear point of view of the coating, respectively. Microstructure study of the coatings is also performed and the coating is found to be of cauliflower-like morphology. The coating also exhibits amorphous structure in as-deposited condition, which gradually turns crystalline with heat treatment.

  1. Li Storage of Calcium Niobates for Lithium Ion Batteries.

    PubMed

    Yim, Haena; Yu, Seung-Ho; Yoo, So Yeon; Sung, Yung-Eun; Choi, Ji-Won

    2015-10-01

    New types of niobates negative electrode were studied for using in lithium-ion batteries in order to alternate metallic lithium anodes. The potassium intercalated compound KCa2Nb3O10 and proton intercalated compound HCa2Nb3O10 were studied, and the electrochemical results showed a reversible cyclic voltammetry profile with acceptable discharge capacity. The as-prepared KCa2Nb3O10 negative electrode had a low discharge capacity caused by high overpotential, but the reversible intercalation and deintercalation reaction of lithium ions was activated after exchanging H+ ions for intercalated K+ ions. The initial discharge capacity of HCa2Nb3O10 was 54.2 mAh/g with 92.1% of coulombic efficiency, compared with 10.4 mAh/g with 70.2% of coulombic efficiency for KCa2Nb3O10 at 1 C rate. The improved electrochemical performance of the HCa2Nb3O10 was related to the lower bonding energy between proton cation and perovskite layer, which facilitate Li+ ions intercalating into the cation site, unlike potassium cation and perovskite layer. Also, this negative material can be easily exfoliated to Ca2Nb3O10 layer by using cation exchange process. Then, obtained two-dimensional nanosheets layer, which recently expected to be an advanced electrode material because of its flexibility, chemical stable, and thin film fabricable, can allow Li+ ions to diffuse between the each perovskite layer. Therefore, this new type layered perovskite niobates can be used not only bulk-type lithium ion batteries but also thin film batteries as a negative material.

  2. Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Song, Liang; Wang, Xianping; Wang, Le; Zhang, Ying; Liu, Wang; Jiang, Weibing; Zhang, Tao; Fang, Qianfeng; Liu, Changsong

    2017-04-01

    He-charged oxide dispersion strengthened (ODS) FeCrNi films were prepared by a radio-frequency (RF) plasma magnetron sputtering method in a He and Ar mixed atmosphere at 150 °C. As a comparison, He-charged FeCrNi films were also fabricated at the same conditions through direct current (DC) plasma magnetron sputtering. The doping of He atoms and Y2O3 in the FeCrNi films was realized by the high backscattered rate of He ions and Y2O3/FeCrNi composite target sputtering method, respectively. Inductive coupled plasma (ICP) and x-ray photoelectron spectroscopy (XPS) analysis confirmed the existence of Y2O3 in FeCrNi films, and Y2O3 content hardly changed with sputtering He/Ar ratio. Cross-sectional scanning electron microscopy (SEM) shows that the FeCrNi films were composed of dense columnar nanocrystallines and the thickness of the films was obviously dependent on He/Ar ratio. Nanoindentation measurements revealed that the FeCrNi films fabricated through DC/RF plasma magnetron sputtering methods exhibited similar hardness values at each He/Ar ratio, while the dispersion of Y2O3 apparently increased the hardness of the films. Elastic recoil detection (ERD) showed that DC/RF magnetron sputtered FeCrNi films contained similar He amounts (˜17 at.%). Compared with the minimal change of He level with depth in DC-sputtered films, the He amount decreases gradually in depth in the RF-sputtered films. The Y2O3-doped FeCrNi films were shown to exhibit much smaller amounts of He owing to the lower backscattering possibility of Y2O3 and the inhibition effect of nano-sized Y2O3 particles on the He element.

  3. Evolution of single-particle structure and beta-decay near 78Ni

    NASA Astrophysics Data System (ADS)

    Borzov, I. N.

    2012-12-01

    The extended self-consistent beta-decay model has been applied for bet-decay rates and delayed neutron emission probabilities of spherical neutron-rich isotopes near the r-process paths. Unlike a popular global FRDM+RPA model, in our fully microscopic approach, the Gamow-Teller and first-forbidden decays are treated on the same footing. The model has been augmented by blocking of the odd particle in order to account for important ground-state spin-parity inversion effect which has been shown to exist in the region of the most neutron-rich doubly-magic nucleus 78Ni. Finally, a newly developed form of density functional DF3a has been employed which gives a better spin-orbit splitting due to the modified tensor components of the density functional.

  4. Investigation of protein adsorption performance of Ni2+-attached diatomite particles embedded in composite monolithic cryogels.

    PubMed

    Ünlü, Nuri; Ceylan, Şeyda; Erzengin, Mahmut; Odabaşı, Mehmet

    2011-08-01

    As a low-cost natural adsorbent, diatomite (DA) (2 μm) has several advantages including high surface area, chemical reactivity, hydrophilicity and lack of toxicity. In this study, the protein adsorption performance of supermacroporous composite cryogels embedded with Ni(2+)-attached DA particles (Ni(2+)-ADAPs) was investigated. Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA)-based monolithic composite cryogel column embedded with Ni(2+)-ADAPs was prepared by radical cryo-copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N,N'-methylene-bis-acrylamide (MBAAm) as cross-linker directly in a plastic syringe for affinity purification of human serum albumin (HSA) both from aqueous solutions and human serum. The chemical composition and surface area of DA was determined by XRF and BET method, respectively. The characterization of composite cryogel was investigated by SEM. The effect of pH, and embedded Ni(2+)-ADAPs amount, initial HSA concentration, temperature and flow rate on adsorption were studied. The maximum amount of HSA adsorption from aqueous solution at pH 8.0 phosphate buffer was very high (485.15 mg/g DA). It was observed that HSA could be repeatedly adsorbed and desorbed to the embedded Ni(2+)-ADAPs in poly(2-hydroxyethyl methacrylate) composite cryogel without significant loss of adsorption capacity. The efficiency of albumin adsorption from human serum before and after albumin adsorption was also investigated with SDS-PAGE analyses. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media

    NASA Astrophysics Data System (ADS)

    Zhu, L. D.; Zhao, T. S.; Xu, J. B.; Liang, Z. X.

    Carbon-supported gold nanoparticles (Au/C) are successfully decorated with mono- or sub-monolayer palladium atoms with different Pd/Au atomic ratios by a chemically epitaxial seeded growth method. TEM, UV-vis spectrometry and XRD techniques are used to characterize the particle size, dispersion, palladium coverage on gold seeds and crystal structures of the prepared catalysts. Cyclic voltammetric tests show that the Pd-decorated Au/C (denoted by Pd@Au/C) have higher specific activities than that of Pd/C for the oxidation of ethanol in alkaline media. This suggests that the Pd utilization is improved with such a surface-alloyed nanostructure. In addition, stable chronoamperometric responses are achieved with the so-prepared electrocatalysts during ethanol oxidation.

  6. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    PubMed

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  7. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    PubMed Central

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  8. Theoretical Insight into Dispersion of Silica Nanoparticles in Polymer Melts.

    PubMed

    Wei, Zhaoyang; Hou, Yaqi; Ning, Nanying; Zhang, Liqun; Tian, Ming; Mi, Jianguo

    2015-07-30

    Silica nanoparticles dispersed in polystyrene, poly(methyl methacrylate), and poly(ethylene oxide) melts have been investigated using a density functional approach. The polymers are regarded as coarse-grained semiflexible chains, and the segment sizes are represented by their Kuhn lengths. The particle-particle and particle-polymer interactions are calculated with the Hamaker theory to reflect the relationship between particles and polymer melts. The effects of particle volume fraction and size on the particle dispersion have been quantitatively determined to evaluate their dispersion/aggregation behavior in these polymer melts. It is shown that theoretical predictions are generally in good agreement with the corresponding experimental results, providing the reasonable verification of particle dispersion/agglomeration and polymer depletion.

  9. The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing

    DTIC Science & Technology

    2017-08-01

    access to the GPU for general purpose processing .5 CUDA is designed to work easily with multiple programming languages , including Fortran. CUDA is a...Using Graphics Processing Unit (GPU) Computing by Leelinda P Dawson Approved for public release; distribution unlimited...The Performance Improvement of the Lagrangian Particle Dispersion Model (LPDM) Using Graphics Processing Unit (GPU) Computing by Leelinda

  10. Investigation of enhanced forward and backward anti-stokes Raman signals in lithium niobate waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Da; Hong, Pengda; Ding, Yujie J., E-mail: yding300@gmail.com

    2015-07-07

    We have observed enhancements of the anti-Stokes Raman signals generated in lithium niobate waveguides in the forward and backward configurations by at least one order of magnitude under the pump power of the microwatt level. These output signals were measured using a single photon detector. The forward and backward propagating anti-Stokes signals exhibited different spectral features.

  11. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  12. Low-heat, mild alkaline pretreatment of switchgrass for anaerobic digestion.

    PubMed

    Jin, Guang; Bierma, Tom; Walker, Paul M

    2014-01-01

    This study examines the effectiveness of alkaline pretreatment under mild heat conditions (100°C or 212°F) on the anaerobic co-digestion of switchgrass. The effects of alkaline concentration, types of alkaline, heating time and rinsing were evaluated. In addition to batch studies, continuous-feed studies were performed in triplicate to identify potential digester operational problems caused by switchgrass co-digestion while accounting for uncertainty due to digester variability. Few studies have examined anaerobic digestion of switchgrass or the effects of mild heating to enhance alkaline pretreatment prior to biomass digestion. Results indicate that pretreatment can significantly enhance digestion of coarse-ground (≤ 0.78 cm particle size) switchgrass. Energy conversion efficiency as high as 63% was observed, and was comparable or superior to fine-grinding as a pretreatment method. The optimal NaOH concentration was found to be 5.5% (wt/wt alkaline/biomass) with a 91.7% moisture level. No evidence of operational problems such as solids build-up, poor mixing, or floating materials were observed. These results suggest the use of waste heat from a generator could reduce the concentration of alkaline required to adequately pretreat lignocellulosic feedstock prior to anaerobic digestion.

  13. Chemical Separation of Fe-Ni Particles after Impact

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Fukuyama, S.; Kedves, M. A.; Yamori, A.; Okamoto, M.; Gucsik, A.

    Tiny grains of Fe-Ni system originated from planetesimals or meteoroids can remain under solid (or melt)-solid impact reactions even after impact process, probably together with high pressure form of Fe phase. Impact fragment with major Fe-Si (-Ni) system can be formed under vapor condition of impact reaction from terrestrial and artificial impact craters and spherules, and those with Ni-Cl (-S) system in composi- tion are formed under vapor condition of artificial impact experiments on the Barringer iron meteorite. These impact grains of Fe-bearing composition or high pressure form of iron-rich phases will be found probably on the asteroids in future exploration

  14. The role of grain size and shape in strengthening of dispersion hardened nickel alloys.

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.

  15. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  16. Enhancement of the recycling of waste Ni-Cd and Ni-MH batteries by mechanical treatment.

    PubMed

    Huang, Kui; Li, Jia; Xu, Zhenming

    2011-06-01

    A serious environmental problem was presented by waste batteries resulting from lack of relevant regulations and effective recycling technologies in China. The present work considered the enhancement of waste Ni-Cd and Ni-MH batteries recycling by mechanical treatment. In the process of characterization, two types of waste batteries (Ni-Cd and Ni-MH batteries) were selected and their components were characterized in relation to their elemental chemical compositions. In the process of mechanical separation and recycling, waste Ni-Cd and Ni-MH batteries were processed by a recycling technology without a negative impact on the environment. The technology contained mechanical crushing, size classification, gravity separation, and magnetic separation. The results obtained demonstrated that: (1) Mechanical crushing was an effective process to strip the metallic parts from separators and pastes. High liberation efficiency of the metallic parts from separators and pastes was attained in the crushing process until the fractions reached particle sizes smaller than 2mm. (2) The classified materials mainly consisted of the fractions with the size of particles between 0.5 and 2mm after size classification. (3) The metallic concentrates of the samples were improved from around 75% to 90% by gravity separation. More than 90% of the metallic materials were separated into heavy fractions when the particle sizes were larger than 0.5mm. (4) The size of particles between 0.5 and 2mm and the rotational speed of the separator between 30 and 60 rpm were suitable for magnetic separation during industrial application, with the recycling efficiency exceeding 95%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  18. Growth of the interaction layer around fuel particles in dispersion fuel

    NASA Astrophysics Data System (ADS)

    Olander, D.

    2009-01-01

    Corrosion of uranium particles in dispersion fuel by the aluminum matrix produces interaction layers (an intermetallic-compound corrosion product) around the shrinking fuel spheres. The rate of this process was modeled as series resistances due to Al diffusion through the interaction layer and reaction of aluminum with uranium in the fuel particle to produce UAl x. The overall kinetics are governed by the relative rates of these two steps, the slowest of which is reaction at the interface between Al in the interaction layer and U in the fuel particle. The substantial volume change as uranium is transferred from the fuel to the interaction layer was accounted for. The model was compared to literature data on in-reactor growth of the interaction layer and the Al/U gradient in this layer, the latter measured in ex-reactor experiments. The rate constant of the Al-U interface reaction and the diffusivity of Al in the interaction layer were obtained from this fitting procedure. The second feature of the corrosion process is the transfer of fission products from the fuel particle to the interaction layer due to the reaction. It is commonly assumed that the observed swelling of irradiated fuel elements of this type is due to release of fission gas in the interaction layer to form large bubbles. This hypothesis was tested by using the model to compute the quantity of fission gas available from this source and comparing the pressure of the resulting gas with the observed swelling of fuel plates. It was determined that the gas pressure so generated is too small to account for the observed delamination of the fuel.

  19. Electrochemical properties of LaNi{sub 5{minus}x}Ge{sub x} alloys in Ni-MH batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witham, C.; Hightower, A.; Fultz, B.

    1997-11-01

    Electrochemical studies were performed on LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys with 0 {le} x {le} 0.5. The authors carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption. The electrochemical characteristics of the Ge-substituted alloys are compared to those of the Sn-substituted alloys reported earlier. LaNi{sub 5{minus}x}Ge{sub x} alloys show compositional trends similar to LaNi{sub 5{minus}x}Sn{sub x} alloys, but unlike the Sn-substituted alloys, Ge-substituted alloys continue to exhibit facile kinetics for hydrogen absorption/desorption at high solute concentrations. Cycle lives ofmore » LaNi{sub 5{minus}x}Ge{sub x} electrodes were measured in 300 mAh laboratory test cells and were found to be superior to the Sn-substituted LaNi{sub 5} and comparable to a Mm(Ni, Co, Mn, Al){sub 5} alloy. The optimum Ge content for LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys in alkaline rechargeable cells is in the range 0.4 {le} x {le} 0.5.« less

  20. Magnetically recyclable Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O nano-photocatalyst: structural, optical, magnetic and photocatalytic properties.

    PubMed

    Qasim, Mohd; Asghar, Khushnuma; Singh, Braj Raj; Prathapani, Sateesh; Khan, Wasi; Naqvi, A H; Das, Dibakar

    2015-02-25

    A novel visible light active and magnetically separable nanophotocatalyst, Ni0.5Zn0.5Fe2O4/Zn0.95Ni0.05O (denoted as NZF@Z), with varying amount of Ni0.5Zn0.5Fe2O4, has been synthesized by egg albumen assisted sol gel technique. The structural, optical, magnetic, and photocatalytic properties have been studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FTIR), UV-visible (UV-Vis) spectroscopy, and vibrating sample magnetometry (VSM) techniques. Powder XRD, TEM, FTIR and energy dispersive spectroscopic (EDS) analyses confirm coexistence of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O phases in the catalyst. Crystallite sizes of Ni0.5Zn0.5Fe2O4 and Zn0.95Ni0.05O in pure phases and nanocomposites, estimated from Debye-Scherrer equation, are found to be around 15-25 nm. The estimated particle sizes from TEM and FESEM data are ∼(22±6) nm. The calculated energy band gaps, obtained by Tauc relation from UV-Vis absorption spectra, of Zn0.95Ni0.05O, 15%NZF@Z, 40%NZF@Z and 60%NZF@Z are 2.95, 2.72, 2.64, and 2.54 eV respectively. Magnetic measurements (field (H) dependent magnetization (M)) show all samples to be super-paramagnetic in nature and saturation magnetizations (Ms) decrease with decreasing ferrite content in the nanocomposites. These novel nanocomposites show excellent photocatalytic activities on Rhodamin Dye. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Ni, Yonghong; Zhai, Muheng

    2018-01-01

    Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.

  2. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1989-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  3. Dispersion strengthened copper

    DOEpatents

    Sheinberg, Haskell; Meek, Thomas T.; Blake, Rodger D.

    1990-01-01

    A composition of matter comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide, and a method for making this composition of matter.

  4. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.

    PubMed

    Gong, Ming; Li, Yanguang; Wang, Hailiang; Liang, Yongye; Wu, Justin Z; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-06-12

    Highly active, durable, and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions, including water-splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel-iron layered double hydroxide (NiFe-LDH) nanoplates on mildly oxidized multiwalled carbon nanotubes (CNTs). Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-LDH. The crystalline NiFe-LDH phase in nanoplate form is found to be highly active for oxygen evolution reaction in alkaline solutions. For NiFe-LDH grown on a network of CNTs, the resulting NiFe-LDH/CNT complex exhibits higher electrocatalytic activity and stability for oxygen evolution than commercial precious metal Ir catalysts.

  5. Effect of the up-front heat treatment of gelatin particles dispersed in calcium phosphate cements on the in vivo material resorption and concomitant bone formation.

    PubMed

    Yamamoto, Shoko; Matsushima, Yuta; Kanayama, Yoshitaka; Seki, Azusa; Honda, Haruya; Unuma, Hidero; Sakai, Yasuo

    2017-03-01

    Calcium phosphate cements (CPCs), consisting of a mixture of calcium phosphate powders and setting liquid, have been widely used in orthopedic applications. One of the drawbacks of CPCs is their poor resorbability in the living body, which hinders substitution with natural bones. One of the strategies to facilitate the resorption of CPCs is the incorporation of bioresorbable or water-soluble pore-generating particles (porogens), such as gelatin, in the CPC matrices. In spite of numerous reports, however, little is known about the effect of the dissolution/resorption rate of the porogens on concomitant bone regeneration. In the present study, we prepared preset CPCs dispersed with 10 mass% of low-endotoxin gelatin particles 200-500 μm in diameter having different heat-treatment histories, therefore exhibiting different dissolution rate, and then the obtained CPC/gelatin composites were evaluated for in vivo resorption and concomitant in vivo bone formation behaviors. As the results, the dispersion of gelatin particles markedly promoted in vivo resorption of CPC, and enhanced concomitant bone formation, connective tissue formation, osteoblast proliferation, and vascularization. The dissolution/resorption rate was able to be controlled by changing the up-front heat-treatment temperature. In particular, when CPC/gelatin composites were implanted in distal metaphysis of rabbits, the optimum dissolution/resorption was attained by heat-treating gelatin particles at 383 K for 24 h before dispersing in CPC. Quick resorption of calcium phosphate cement and concomitant bone formation by dispersing properly heat-treated with gelatin particles.

  6. NiSe-Ni0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Chen, Yajie; Ren, Zhiyu; Fu, Huiying; Zhang, Xin; Tian, Guohui; Fu, Honggang

    2018-06-01

    Fabricating cost-effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni 0.85 Se/CP, and NiSe-Ni 0.85 Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe-Ni 0.85 Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single-phase NiSe/CP and Ni 0.85 Se/CP. A current density of 10 mA cm -2 at 1.62 V and a high stability can be obtained by using NiSe-Ni 0.85 Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH - can be more easily adsorbed on NiSe-Ni 0.85 Se than on NiSe and Ni 0.85 Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cyclic stability of superelasticity in the aged [ {bar{1}}23 ]-oriented Ni49Fe18Ga27Co6 single crystals

    NASA Astrophysics Data System (ADS)

    Panchenko, E. Yu.; Chumlyakov, Yu. I.; Timofeeva, E. E.; Vetoshkina, N. G.; Maier, H.

    2013-02-01

    The results of investigation of the effect of precipitates of different sizes, from 5 to 300 nm, on the character of stress-induced martensitic transformations, the value of stress hysteresis and cyclic stability of superelasticity in Ni49Fe18Ga27Со6 (at.%) ferromagnetic single crystals oriented along the [ {bar{1}}23 ] axis are presented. It is shown that a martensitic transformation in single crystals of Ni49Fe18Ga27Со6 containing dispersed particles of the γ- and γ'-phases measuring up to 30 nm (ageing at 673 K for 1 and 4 hours) is characterized by storing considerable elastic energy. It is revealed that these single crystals exhibit higher cyclic stability of superelasticity and a narrower stress hysteresis compared to those in the initial state and aged at 823 K for 0.5 hour, the latter containing much larger (150-300 nm) particles.

  8. A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: nanoscale surface treatment of primary particles.

    PubMed

    Kim, Hyejung; Kim, Min Gyu; Jeong, Hu Young; Nam, Haisol; Cho, Jaephil

    2015-03-11

    Structural degradation of Ni-rich cathode materials (LiNi(x)M(1-x)O2; M = Mn, Co, and Al; x > 0.5) during cycling at both high voltage (>4.3 V) and high temperature (>50 °C) led to the continuous generation of microcracks in a secondary particle that consisted of aggregated micrometer-sized primary particles. These microcracks caused deterioration of the electrochemical properties by disconnecting the electrical pathway between the primary particles and creating thermal instability owing to oxygen evolution during phase transformation. Here, we report a new concept to overcome those problems of the Ni-rich cathode material via nanoscale surface treatment of the primary particles. The resultant primary particles' surfaces had a higher cobalt content and a cation-mixing phase (Fm3̅m) with nanoscale thickness in the LiNi0.6Co0.2Mn0.2O2 cathode, leading to mitigation of the microcracks by suppressing the structural change from a layered to rock-salt phase. Furthermore, the higher oxidation state of Mn(4+) at the surface minimized the oxygen evolution at high temperatures. This approach resulted in improved structural and thermal stability in the severe cycling-test environment at 60 °C between 3.0 and 4.45 V and at elevated temperatures, showing a rate capability that was comparable to that of the pristine sample.

  9. Particle design using a 4-fluid-nozzle spray-drying technique for sustained release of acetaminophen.

    PubMed

    Chen, Richer; Okamoto, Hirokazu; Danjo, Kazumi

    2006-07-01

    We prepared matrix particles of acetaminophen (Act) with chitosan (Cht) as a carrier using a newly developed 4-fluid-nozzle spray dryer. Cht dissolves in acid solutions and forms a gel, but it does not dissolve in alkaline solutions. Therefore, we tested the preparation of controlled release matrix particles using the characteristics of this carrier. Act and Cht mixtures in prescribed ratios were dissolved in an acid solution. We evaluated the matrix particles by preparing a solid dispersion using a 4-fluid-nozzle spray dryer. Observation of the particle morphology by scanning electron microscopy (SEM) revealed that the particles from the spray drying process had atomized to several microns, and that they had become spherical. We investigated the physicochemical properties of the matrix particles by powder X-ray diffraction, differential scanning calorimetry, and dissolution rate analyses with a view to clarifying the effects of crystallinity on the dissolution rate. The powder X-ray diffraction peaks and the heat of the Act fusion in the spray-dried samples decreased with the increase of the carrier content, indicating that the drug was amorphous. These results indicate that the system formed a solid dispersion. Furthermore, we investigated the interaction between the drug and carrier using FT-IR analysis. The FT-IR spectroscopy for the Act solid dispersions suggested that the Act carboxyl group and the Cht amino group formed a hydrogen bond. In addition, the measurement results of the 13C CP/MAS solid-state NMR, indicated that a hydrogen bond had been formed between the Act carbonyl group and the Cht amino group. In the Act-Cht system, the 4-fluid-nozzle spray-dried preparation with a mixing ratio of 1 : 5 obtained a sustained release preparation in all pH test solutions.

  10. Origin of carbonatites of the Matcha alkaline pluton from Turkestan-Alai ridge, Kyrgyz Southern Tien Shan

    NASA Astrophysics Data System (ADS)

    Vrublevskii, V. V.

    2017-12-01

    Postorogenic alkaline intrusions in the Turkestan-Alai segment of the Southern Tien Shan coexist with dikes and veins of carbonatites dated at ˜220 Ma. They are primarily composed of calcite and dolomite (60-85 %), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500°C. Silicate and salt-carbonate melts are derived from sources with mainly negative bulk ɛND(t) ˜ from -11 to 0 and high initial 87Sr/86Sr ratios (˜ 0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM 2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ 13C (-6.5 to -1.9 ‰), δ 18O (9.2-23 %„), δD (-58 to -41 %„), and δ 34S (12.6-12.8 ‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the «last echo» of the Tarim mantle plume.

  11. Glass-Like Thermal Conductivity of (010)-Textured Lanthanum-Doped Strontium Niobate Synthesized with Wet Chemical Deposition

    DOE PAGES

    Foley, Brian M.; Brown-Shaklee, Harlan J.; Campion, Michael J.; ...

    2014-11-08

    We have measured the cross-plane thermal conductivity (κ) of (010)-textured, undoped, and lanthanum-doped strontium niobate (Sr 2-xLa xNb 2O 7-δ) thin films via time-domain thermoreflectance. Then the thin films were deposited on (001)-oriented SrTiO 3 substrates via the highly-scalable technique of chemical solution deposition. We find that both film thickness and lanthanum doping have little effect on κ, suggesting that there is a more dominant phonon scattering mechanism present in the system; namely the weak interlayer-bonding along the b-axis in the Sr 2Nb 2O 7 parent structure. We also compare our experimental results with two variations of the minimum-limit modelmore » for κ and discuss the nature of transport in material systems with weakly-bonded layers. The low cross-plane κ of these scalably-fabricated films is comparable to that of similarly layered niobate structures grown epitaxially.« less

  12. Investigation of optical, electrical and magnetic properties of hexagonal NiTiO3 nanoparticles prepared via ultrasonic dispersion techniques for high power applications

    NASA Astrophysics Data System (ADS)

    Karmakar, Subrata; Manna, Ashis Kumar; Varma, Shikha; Behera, Dhrubananda

    2018-05-01

    Nickel titanate (NiTiO3) nanoparticles were synthesized by ultrasonic dispersion techniques using ethylene glycol monoetheline ether as a solvent. The x-ray diffraction (XRD), Raman, transmission electron micrographs (TEM) exhibit pure phase formation, fine hexagonal nanostructure, agglomerated and inhomogeneous grain growth in nm range (26.5 nm) of as-prepared NiTiO3 nanoparticles. Raman studies on NiTiO3 nanoparticles exposed almost all the active vibrational modes (5Ag + 5Eg) of its crystalline structure. A wide optical band gap (3.02 eV) was observed from UV-DRS spectra which arises from the hybridized Ni- 3d and O- 2p orbitals to the Ti -3d orbitals. The characteristics vibration bands of M-O (Ni–O, and Ti–O) were also analyzed using Fourier Transform Infrared spectrum. The antiferromagnetic (AFM) properties were examined from M-H loop with coercive field 75.02 ± 0.05 Oe and saturation magnetization 0.418 ± 0.05 emu gm‑1. respectively. The dielectrics constant and loss decays with high frequency evaluation and Maxwell–Wagner type of polarization were responsible for its dielectric behavior. The total conductivity was explained using NNH and VRH hopping relaxation model and dc activation energy (0.81 eV) were calculated from Arrhenius plot.

  13. Fabrication of oxide dispersion strengthened bond coats with low Al 2O 3 content [Fabrication of ODS bond coats with low Al 2O 3 content

    DOE PAGES

    Bergholz, Jan; Pint, Bruce A.; Unocic, Kinga A.; ...

    2017-03-23

    Here, nanoscale oxide dispersions have long been used to increase the oxidation and wear resistance of alloys used as bond coatings in thermal barrier coatings. Their manufacturing via mechanical alloying is often accompanied by difficulties regarding their particle size, homogeneous distribution of the oxide dispersions inside the powder, involving considerable costs, due to cold welding of the powder during milling. A significant improvement in this process can be achieved by the use of process control agent (PCA) to achieve the critical balance between cold welding and fracturing, thereby enhancing the process efficiency. In this investigation, the influence of the organicmore » additive stearic acid on the manufacturing process of Al 2O 3-doped CoNiCrAlY powder was investigated. Powders were fabricated via mechanical alloying at different milling times and PCA concentrations. The results showed a decrease in particle size, without hindering the homogeneous incorporation of the oxide dispersions. Two powders manufactured with 0.5 and 1.0 wt.% PCA were deposited by high velocity oxygen fuel (HVOF) spraying. Results showed that a higher content of elongated particles in the powder with the higher PCA content led to increased surface roughness, porosity and decreased coating thickness, with areas without embedded oxide particles.« less

  14. On the decrepitation mechanism of MgNi and LaNi 5-based electrodes studied by in situ acoustic emission

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Idrissi, H.; Roué, L.

    In situ monitoring of the pulverization of amorphous MgNi and crystalline LaNi 5-based alloys has been studied during their hydrogen charge by combining acoustic emission and electrochemical measurements. In both alloys, two classes of acoustic signals with specific temporal and energetic characteristics were detected during their charge: a P1 class related to the particle cracking and a P2 class due to the release of H 2 bubbles. By comparing the P1 activity on both materials as a function of the charge input, it was shown that the pulverization phenomenon becomes significant at a much lower charge input for the LaNi 5-based electrode (∼5-25 mAh g -1) than for the MgNi electrode (∼365 mAh g -1), reflecting the fact that the mechanism responsible of their decrepitation is not similar. Indeed, it was demonstrated that the cracking of the amorphous and porous MgNi material is mainly induced by the hydrogen evolution reaction whereas for the crystalline and denser LaNi 5-based material, the α-β lattice expansion is responsible of its decrepitation. It was also shown that the particle size and the charge current density have a major impact on the MgNi decrepitation. The correlation between the MgNi particle cracking and the discharge capacity decay with cycling was established.

  15. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  16. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    NASA Astrophysics Data System (ADS)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  17. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-05-01

    flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  18. Numerical investigation of particle-blast interaction during explosive dispersal of liquids and granular materials

    NASA Astrophysics Data System (ADS)

    Pontalier, Q.; Lhoumeau, M.; Milne, A. M.; Longbottom, A. W.; Frost, D. L.

    2018-04-01

    flow generated during explosive particle dispersal indicates that the particle momentum flux is the dominant term in the near field. Both the gas and particle loading must be taken into account when determining the damage to nearby structures following the detonation of a high-explosive charge surrounded by a material layer.

  19. An experimental study of the impact of trees and urban form on the turbulent dispersion of heavy particles from near ground point sources

    NASA Astrophysics Data System (ADS)

    Stoll, R., II; Christen, A.; Mahaffee, W.; Salesky, S.; Therias, A.; Caitlin, S.

    2016-12-01

    Pollution in the form of small particles has a strong impact on a wide variety of urban processes that play an important role in the function of urban ecosystems and ultimately human health and well-being. As a result, a substantial body of research exists on the sources, sinks, and transport characteristics of urban particulate matter. Most of the existing experimental work examining point sources employed gases (e.g., SF6) as the working medium. Furthermore, the focus of most studies has been on the dispersion of pollutants far from the source location. Here, our focus is on the turbulent dispersion of heavy particles in the near source region of a suburban neighborhood. To this end, we conducted a series of heavy particle releases in the Sunset neighborhood of Vancouver, Canada during June, 2017. The particles where dispersed from a near ground point source at two different locations. The Sunset neighborhood is composed mostly of single dwelling detached houses and has been used in numerous previous urban studies. One of the release points was just upwind of a 4-way intersection and the other in the middle of a contiguous block of houses. Each location had a significant density of trees. A minimum of four different successful release events were conducted at each site. During each release, fluorescing micro particles (mean diameter approx. 30 micron) were released from ultrasonic atomizer nozzles for a duration of approximately 20 minutes. The particles where sampled at 50 locations (1.5 m height) in the area downwind of the release over distances from 1-15 times the mean canopy height ( 6 m) using rotating impaction traps. In addition to the 50 sampler locations, instantaneous wind velocities were measured with eight sonic anemometers distributed horizontally and vertically throughout the release area. The resulting particle plume distributions indicate a strong impact of local urban form in the near source region and a high degree of sensitivity to the local

  20. An experimental study of the impact of trees and urban form on the turbulent dispersion of heavy particles from near ground point sources

    NASA Astrophysics Data System (ADS)

    Stoll, R., II; Christen, A.; Mahaffee, W.; Salesky, S.; Therias, A.; Caitlin, S.

    2017-12-01

    Pollution in the form of small particles has a strong impact on a wide variety of urban processes that play an important role in the function of urban ecosystems and ultimately human health and well-being. As a result, a substantial body of research exists on the sources, sinks, and transport characteristics of urban particulate matter. Most of the existing experimental work examining point sources employed gases (e.g., SF6) as the working medium. Furthermore, the focus of most studies has been on the dispersion of pollutants far from the source location. Here, our focus is on the turbulent dispersion of heavy particles in the near source region of a suburban neighborhood. To this end, we conducted a series of heavy particle releases in the Sunset neighborhood of Vancouver, Canada during June, 2017. The particles where dispersed from a near ground point source at two different locations. The Sunset neighborhood is composed mostly of single dwelling detached houses and has been used in numerous previous urban studies. One of the release points was just upwind of a 4-way intersection and the other in the middle of a contiguous block of houses. Each location had a significant density of trees. A minimum of four different successful release events were conducted at each site. During each release, fluorescing micro particles (mean diameter approx. 30 micron) were released from ultrasonic atomizer nozzles for a duration of approximately 20 minutes. The particles where sampled at 50 locations (1.5 m height) in the area downwind of the release over distances from 1-15 times the mean canopy height ( 6 m) using rotating impaction traps. In addition to the 50 sampler locations, instantaneous wind velocities were measured with eight sonic anemometers distributed horizontally and vertically throughout the release area. The resulting particle plume distributions indicate a strong impact of local urban form in the near source region and a high degree of sensitivity to the local

  1. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  2. Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data

    PubMed Central

    Lander, Tonya A; Klein, Etienne K; Oddou-Muratorio, Sylvie; Candau, Jean-Noël; Gidoin, Cindy; Chalon, Alain; Roig, Anne; Fallour, Delphine; Auger-Rozenberg, Marie-Anne; Boivin, Thomas

    2014-01-01

    Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local-scale wind data and a regional-scale wind-dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long-distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional-scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long-distance dispersal of this invasive seed wasp. This result confirms that long-distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data

  3. Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Rongeat, C.; Grosjean, M.-H.; Ruggeri, S.; Dehmas, M.; Bourlot, S.; Marcotte, S.; Roué, L.

    Several methods have been investigated to enhance the cycle life of amorphous MgNi used as the negative electrode for Ni-MH batteries. The first approach involves modifying its surface composition in different ways, including the electroless deposition of a chromate conversion coating, the addition of chromate salt or NaF into the electrolyte and the mechanical coating of the particles with various compounds (e.g. TiO 2). Another approach consists of developing (MgNi + AB 5) composite materials. However, the cycle life of these modified MgNi electrodes remains unsatisfactory. On the other hand, the modification of the bulk composition of the MgNi alloy with elements such as Ti and Al appears to be more effective. For instance, a Mg 0.9Ti 0.1NiAl 0.05 electrode retains 67% of its initial discharge capacity (404 mAh g -1) after 15 cycles compared to 29% for MgNi. The charging conditions also have a great influence on the electrode cycle life as demonstrated by the existence of a charge input threshold below which minor capacity decay occurs. In addition, the particle size has a major influence on the electrode performance. We have developed an optimized electrode constituted of Mg 0.9Ti 0.1NiAl 0.05 particles with the appropriate size (>150 μm) showing a capacity decay rate as low as ∼0.2% per cycle when charged at 300 mAh g -1.

  4. Subcarrier multiplexing with dispersion reduction and direct detection

    DOEpatents

    Sargis, Paul D.; Haigh, Ronald E.; McCammon, Kent G.

    1997-01-01

    An SCM system for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream.

  5. Subcarrier multiplexing with dispersion reduction and direct detection

    DOEpatents

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1997-01-21

    An SCM system is disclosed for simultaneously reducing the concomitant problems of receiver complexity and dispersion penalty and without requiring the use of an expensive, high-bandwidth optical detector. The system provides both a dispersion reduction and a direct detection to the receiver, with microwave mixers and lithium niobate external modulators that produce sidebands that are only separated by a few gigahertz from a principal laser optical carrier. Digital data streams are independently impressed upon these sidebands for transmission over an ordinary single-mode fiber. Independent high-speed data streams are upconverted to microwave frequencies. These subcarriers are then combined with a microwave power combiner and amplified with a microwave amplifier. A solid-state 1550-nm laser carrier is modulated by the microwave subcarriers. An erbium-doped fiber amplifier (EDFA) is used just prior to long-distance transmission over ordinary single-mode fiber. The transmitted optical signal may then traverse multiple EDFAs to compensate for long-haul optical fiber losses prior to detection. At a receiving end, the optical signal is split into multiple paths. The subcarrier channels are optically pre-selected using a narrowband optical filter, such as a fiber Fabry-Perot (FFP) filter. An optical detector converts the selected optical signal into a baseband electrical data stream. 2 figs.

  6. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  7. Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vassal, N.; Salmon, E.; Fauvarque, J.F.

    1999-01-01

    Sealed alkaline solid polymer electrolyte nickel/metal hydride laboratory cells have been constructed and tested to evaluate their properties. Studies of the cycle life, self-discharge, and behavior of cells at different temperatures were carried out. The first results on the electrochemical behavior of an alkaline solid polymer electrolyte [based on poly(ethylene oxide), potassium hydroxide, and water] medium are presented here and show good reversibility of this all-solid-state system for more than 500 cycles, without significant loss of capacity and with a reasonable average discharge efficiency (close to 80%). The temperature-dependence study allowed the determination of optimum operating conditions between 0 andmore » 40 C. Characteristics of the solid polymer electrolyte based Ni/MH cells are compared to those of several other rechargeable battery systems.« less

  8. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  9. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-07-22

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  10. Indoor emission, dispersion and exposure of total particle-bound polycyclic aromatic hydrocarbons during cooking

    NASA Astrophysics Data System (ADS)

    Gao, Jun; Jian, Yating; Cao, Changsheng; Chen, Lei; Zhang, Xu

    2015-11-01

    Cooking processes highly contribute to indoor polycyclic aromatic hydrocarbon (PAH) pollution. High molecular weight and potentially carcinogenic PAHs are generally found attached to small particles, i.e., particulate phase PAHs (PPAHs). Due to the fact that indoor particle dynamics have been clear, describing the indoor dynamics of cooking-generated PPAHs within a specific time span is possible. This paper attempted to quantify the dynamic emission rate, simultaneous spatial dispersion and individual exposure of PPAHs using a cooking source. Experiments were conducted in a real-scale kitchen chamber to elucidate the time-resolved emission and effect of edible oil temperature and mass. Numerical simulations based on indoor particle dynamics were performed to obtain the spatial dispersion and individual inhalation intake of PPAHs under different emission and ventilation conditions. The present work examined the preheating cooking stage, at which edible oil is heated up to beyond its smoke point. The dynamic emission rate peak point occurred much earlier than the oil heating temperature. The total PPAH emission ranged from 2258 to 6578 ng upon heating 40-85 g of edible oil. The overall intake fraction by an individual within a period of 10 min, including 3 min for heating and 7 min for natural cooling, was generally ∼1/10,000. An important outcome of this work was that the overall intake fraction could be represented by multiplying the range hood escape efficiency by the inhalation-to-ventilation rate ratio, which would be no greater than the same ratio. The methodology and results of this work were extendible for the number-based assessment of PPAHs. This work is expected to help us understand the health risks due to inhalation exposure to cooking-generated PPAHs in the kitchen.

  11. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng, E-mail: yupengyuan@ahu.edu.cn, E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x}more » particles are durable and active catalysts for photocatalytic H{sub 2} generation.« less

  12. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    PubMed

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Pulsed laser deposition of lithium niobate thin films

    NASA Astrophysics Data System (ADS)

    Canale, L.; Girault-Di Bin, C.; Cosset, F.; Bessaudou, A.; Celerier, A.; Decossas, J.-Louis; Vareille, J.-C.

    2000-12-01

    Pulsed laser deposition of Lithium Niobate thin films onto sapphire (0001) substrates is reported. Thin films composition and structure have been determined using Rutherford Backscattermg Spectroscopy (RBS) and X-ray diffraction ( XRD) experiments. The influe:nce of deposition parameters such as substrate temperature, oxygen pressure and target to substrate distance on the composition and the structure of the films has been studied. Deposition temperature is found to be an important parameter which enables us to grow LiNbO3 films without the Li deficient phase LiNb3O8. Nearly stoichiometric thin fihns have been obtained for an oxygen pressure of 0. 1 Ton and a substrate temperature of 800°C. Under optimized conditions the (001) preferential orientation of growth, suitable for most optical applications, has been obtained.

  14. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    NASA Astrophysics Data System (ADS)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  15. Ferroelasticity in the LnNbO/sub 4/-type rare earth niobates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brixner, L.H.; Whitney, J.F.; Zumsteg, F.C.

    1977-01-01

    The previously reported phase transitions for the isostructural rare earth niobates between 500/sup 0/C and 850/sup 0/C correspond to a point group transformation 4/mF2/m, which is purely ferroelastic. The correct room temperature point group for all LnNbO/sub 4/ compounds is 2/m. Crystal growth and domain wall behavior is discussed for LaNbO/sub 4/. The high temperature phase transition is described for YbNbO/sub 4/.

  16. Effect of particle size of drug on conversion of crystals to an amorphous state in a solid dispersion with crospovidone.

    PubMed

    Sugamura, Yuka; Fujii, Makiko; Nakanishi, Sayaka; Suzuki, Ayako; Shibata, Yusuke; Koizumi, Naoya; Watanabe, Yoshiteru

    2011-01-01

    The effect of particle size on amorphization of drugs in a solid dispersion (SD) was investigated for two drugs, indomethacin (IM) and nifedipine (NP). The SD of drugs were prepared in a mixture with crospovidone by a variety of mechanical methods, and their properties investigated by particle sizing, thermal analysis, and powder X-ray diffraction. IM, which had an initial particle size of 1 µm and tends to aggregate, was forced through a sieve to break up the particles. NP, which had a large initial particle size, was jet-milled. In both cases, reduction of the particle size of the drugs enabled transition to an amorphous state below the melting point of the drug. The reduction in particle size is considered to enable increased contact between the crospovidone and drug particles, increasing interactions between the two compounds. © 2011 Pharmaceutical Society of Japan

  17. Aerial dispersal of particles emitted inside plant canopies: Application to the spread of plant diseases

    NASA Astrophysics Data System (ADS)

    Pan, Ying

    This work combines numerical, experimental, and theoretical methods to investigate the dispersion of particles inside and above plant canopies. The large-eddy simulation (LES) approach is used to reproduce turbulence statistics and three-dimensional particle dispersion within the canopy roughness sublayer. The Eulerian description of conservation laws of fluid momentum and particle concentration implies that the continuous concentration field is advected by the continuous flow field. Within the canopy, modifications are required for the filtered momentum and concentration equations, because spatial filtering of flow variables and concentration field is inapplicable to a control volume consisting of both fluid and solid elements. In this work, the canopy region is viewed as a space occupied by air only. The sink of airflow momentum induced by forces acting on the surfaces of canopy elements is parameterized as a non-conservative virtual body force that dissipates the kinetic energy of the air. This virtual body force must reflect the characteristic of the surface forces exerted by canopy elements within the control volume, and is parameterized as a "drag force" following standard practice in LES studies. Specifically, the "drag force" is calculated as a product of a drag coefficient, the projected leaf area density, and the square of velocity. Using a constant drag coefficient, this model allows first-order accuracy in reproducing the vertically integrated sink of momentum within the canopy layer for airflows of high Reynolds number. The corresponding LES results of first- and second-order turbulence statistics are in good agreement with experimental data obtained in the field interior, within and just above mature maize canopies. However, the distribution of momentum sink among weak and strong events has not been well reproduced, inferred from the significant underestition of streamwise and vertical velocity skewness as well as the fractions of vertical momentum

  18. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  19. EMAT enhanced dispersion of particles in liquid

    DOEpatents

    Kisner, Roger A.; Rios, Orlando; Melin, Alexander M.; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz; Wilgen, John B.

    2016-11-29

    Particulate matter is dispersed in a fluid material. A sample including a first material in a fluid state and second material comprising particulate matter are placed into a chamber. The second material is spatially dispersed in the first material utilizing EMAT force. The dispersion process continues until spatial distribution of the second material enables the sample to meet a specified criterion. The chamber and/or the sample is electrically conductive. The EMAT force is generated by placing the chamber coaxially within an induction coil driven by an applied alternating current and placing the chamber and induction coil coaxially within a high field magnetic. The EMAT force is coupled to the sample without physical contact to the sample or to the chamber, by another physical object. Batch and continuous processing are utilized. The chamber may be folded within the bore of the magnet. Acoustic force frequency and/or temperature may be controlled.

  20. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460