Science.gov

Sample records for ni60ag40 metallic glass

  1. Metal Halide Optical Glasses.

    DTIC Science & Technology

    1988-01-01

    HEAVY METAL FLUORIDE GLASSES C. T. Moynihan, R. Mossadegh and S. N. Crichton Materials Engineering Department, Rensselaer Polytechnic Institute Troy...and Tesar, A. A., J. Am. Ceram. Soc., 67, p. C-164 (1984). 11. Crichton , S. N., Mossadegh, R., Schroeder, J., and Moynihan, C. T., unpublished data. 12...FLUORIDE GLASSES C. T. Moynihan, S. M. Opalka, R. Mossadegh, S. N. Crichton and A. J. Bruce Center for Glass Science and Technology Materials Engineering

  2. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  3. Triad ''Metal - Enamel - Glass''

    NASA Astrophysics Data System (ADS)

    Mukhina, T.; Petrova, S.; Toporova, V.; Fedyaeva, T.

    2014-10-01

    This article shows how to change the color of metal and glass. Both these materials are self-sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested.

  4. Polyamorphism in metalic glass.

    SciTech Connect

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  5. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  6. Quinary metallic glass alloys

    DOEpatents

    Lin, X.; Johnson, W.L.

    1998-04-07

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3}K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf){sub a}(Al,Zn){sub b}(Ti,Nb){sub c}(Cu{sub x}Fe{sub y}(Ni,Co){sub z}){sub d} wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d{hor_ellipsis}y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  7. Quinary metallic glass alloys

    DOEpatents

    Lin, Xianghong; Johnson, William L.

    1998-01-01

    At least quinary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise zirconium and/or hafnium in the range of 45 to 65 atomic percent, titanium and/or niobium in the range of 4 to 7.5 atomic percent, and aluminum and/or zinc in the range of 5 to 15 atomic percent. The balance of the alloy compositions comprise copper, iron, and cobalt and/or nickel. The composition is constrained such that the atomic percentage of iron is less than 10 percent. Further, the ratio of copper to nickel and/or cobalt is in the range of from 1:2 to 2:1. The alloy composition formula is: (Zr,Hf).sub.a (Al,Zn).sub.b (Ti,Nb).sub.c (Cu.sub.x Fe.sub.y (Ni,Co).sub.z).sub.d wherein the constraints upon the formula are: a ranges from 45 to 65 atomic percent, b ranges from 5 to 15 atomic percent, c ranges from 4 to 7.5 atomic percent, d comprises the balance, d.multidot.y is less than 10 atomic percent, and x/z ranges from 0.5 to 2.

  8. Relaxation Pathways in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella; Busch, Ralf

    2017-09-01

    At temperatures below the glass transition temperature, physical properties of metallic glasses, such as density, viscosity, electrical resistivity or enthalpy, slowly evolve with time. This is the process of physical aging that occurs among all types of glasses and leads to structural changes at the microscopic level. Even though the relaxation pathways are ruled by thermodynamics as the glass attempts to re-attain thermodynamic equilibrium, they are steered by sluggish kinetics at the microscopic level. Understanding the structural and dynamic pathways of the relaxing glassy state is still one of the grand challenges in materials physics. We review some of the recent experimental advances made in understanding the nature of the relaxation phenomenon in metallic glasses and its implications to the macroscopic and microscopic properties changes of the relaxing glass.

  9. Metallic Glass Cooling

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (354KB JPEG, 2700 x 2038 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300189.html.

  10. Elastic heterogeneity in metallic glasses.

    SciTech Connect

    Dmowski, , W.; Iwashita, T.; Chuang, C.-P.; Almer, J. D; Egami, T.; X-Ray Science Division; Univ. of Tennessee; ORNL

    2010-01-01

    When a stress is applied on a metallic glass it deforms following Hook's law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about 3/4 in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  11. Processing of bulk metallic glass.

    PubMed

    Schroers, Jan

    2010-04-12

    Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

  12. Elastic Heterogeneity in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Dmowski, W.; Iwashita, T.; Chuang, C.-P.; Almer, J.; Egami, T.

    2010-11-01

    When a stress is applied on a metallic glass it deforms following Hook’s law. Therefore it may appear obvious that a metallic glass deforms elastically. Using x-ray diffraction and anisotropic pair-density function analysis we show that only about (3)/(4) in volume fraction of metallic glasses deforms elastically, whereas the rest of the volume is anelastic and in the experimental time scale deform without resistance. We suggest that this anelastic portion represents residual liquidity in the glassy state. Many theories, such as the free-volume theory, assume the density of defects in the glassy state to be of the order of 1%, but this result shows that it is as much as a quarter.

  13. Thermal rejuvenation in metallic glasses

    PubMed Central

    Saida, Junji; Yamada, Rui; Wakeda, Masato; Ogata, Shigenobu

    2017-01-01

    Abstract Structural rejuvenation in metallic glasses by a thermal process (i.e. through recovery annealing) was investigated experimentally and theoretically for various alloy compositions. An increase in the potential energy, a decrease in the density, and a change in the local structure as well as mechanical softening were observed after thermal rejuvenation. Two parameters, one related to the annealing temperature, T a/T g, and the other related to the cooling rate during the recovery annealing process, V c/V i, were proposed to evaluate the rejuvenation phenomena. A rejuvenation map was constructed using these two parameters. Since the thermal history of metallic glasses is reset above 1.2T g, accompanied by a change in the local structure, it is essential that the condition of T a/T g ≥ 1.2 is satisfied during annealing. The glassy structure transforms into a more disordered state with the decomposition of icosahedral short-range order within this temperature range. Therefore, a new glassy structure (rejuvenation) depending on the subsequent quenching rate is generated. Partial rejuvenation also occurs in a Zr55Al10Ni5Cu30 bulk metallic glass when annealing is performed at a low temperature (T a/T g ~ 1.07) followed by rapid cooling. This behavior probably originates from disordering in the weakly bonded (loosely packed) region. This study provides a novel approach to improving the mechanical properties of metallic glasses by controlling their glassy structure. PMID:28458739

  14. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  15. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  16. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  17. Structural Aspects of Metallic Glasses

    SciTech Connect

    Miracle, Daniel; Egami, Takeshi; Flores, Katharine M; Kelton, Kenneth

    2007-01-01

    A recent structural model reconciles apparently conflicting features of randomness, short-range order, and medium-range order that coexist in metallic glasses. In this efficient cluster packing model, short-range order can be described by efficiently packed solute-centered clusters, producing more than a dozen established atomic clusters, including icosahedra. The observed preference for icosahedral short-range order in metallic glasses is consistent with the theme of efficient atomic packing and is further favored by solvent-centered clusters. Driven by solute-solute avoidance, medium-range order results from the organization in space of overlapping, percolating (via connected pathways), quasi-equivalent clusters. Cubic-like and icosahedral-like organization of these clusters are consistent with measured medium-range order. New techniques such as fluctuation electron microscopy now provide more detailed experimental studies of medium-range order for comparison with model predictions. Microscopic free volume in the efficient cluster packing model is able to represent experimental and computational results, showing free volume complexes ranging from subatomic to atomic-level sizes. Free volume connects static structural models to dynamic processes such as diffusion and deformation. New approaches dealing with 'free' and 'anti-free' microscopic volume and coordinated atomic motion show promise for modeling the complex dynamics of structural relaxations such as the glass transition. Future work unifying static and dynamic structural views is suggested.

  18. Reactive cluster model of metallic glasses

    SciTech Connect

    Jones, Travis E.; Miorelli, Jonathan; Eberhart, Mark E.

    2014-02-28

    Though discovered more than a half century ago metallic glasses remain a scientific enigma. Unlike crystalline metals, characterized by short, medium, and long-range order, in metallic glasses short and medium-range order persist, though long-range order is absent. This fact has prompted research to develop structural descriptions of metallic glasses. Among these are cluster-based models that attribute amorphous structure to the existence of clusters that are incommensurate with crystalline periodicity. Not addressed, however, are the chemical factors stabilizing these clusters and promoting their interconnections. We have found that glass formers are characterized by a rich cluster chemistry that above the glass transformation temperature promotes exchange as well as static and vibronic sharing of atoms between clusters. The vibronic mechanism induces correlated motions between neighboring clusters and we hypothesize that the distance over which these motions are correlated mediates metallic glass stability and influences critical cooling rates.

  19. Hardening of shear band in metallic glass.

    PubMed

    Wang, J G; Hu, Y C; Guan, P F; Song, K K; Wang, L; Wang, G; Pan, Y; Sarac, B; Eckert, J

    2017-08-01

    Strain hardening, originating from defects such as the dislocation, avails conventional metals of high engineering reliability in applications. However, the hardenability of metallic glass is a long-standing concern due to the lack of similar defects. In this work, we carefully examine the stress-strain relationship in three bulk monolithic metallic glasses. The results show that hardening is surely available in metallic glasses if the effective load-bearing area is considered instantly. The hardening is proposed to result from the remelting and ensuing solidification of the shear-band material under a hydrostatic pressure imposed by the normal stress during the shear banding event. This applied-pressure quenching densifies the metallic glass by discharging the free volume. On the other hand, as validated by molecular dynamics simulations, the pressure promotes the icosahedral short-range order. The densification and icosahedral clusters both contribute to the increase of the shear strength and therefore the hardening in metallic glasses.

  20. High-Entropy Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Wang, W. H.

    2014-10-01

    The high-entropy alloys are defined as solid-solution alloys containing five or more than five principal elements in equal or near-equal atomic percent. The concept of high mixing entropy introduces a new way for developing advanced metallic materials with unique physical and mechanical properties that cannot be achieved by the conventional microalloying approach based on only a single base element. The metallic glass (MG) is the metallic alloy rapidly quenched from the liquid state, and at room temperature it still shows an amorphous liquid-like structure. Bulk MGs represent a particular class of amorphous alloys usually with three or more than three components but based on a single principal element such as Zr, Cu, Ce, and Fe. These materials are very attractive for applications because of their excellent mechanical properties such as ultrahigh (near theoretical) strength, wear resistance, and hardness, and physical properties such as soft magnetic properties. In this article, we review the formation and properties of a series of high-mixing-entropy bulk MGs based on multiple major elements. It is found that the strategy and route for development of the high-entropy alloys can be applied to the development of the MGs with excellent glass-forming ability. The high-mixing-entropy bulk MGs are then loosely defined as metallic glassy alloys containing five or more than five elements in equal or near-equal atomic percent, which have relatively high mixing entropy compared with the conventional MGs based on a single principal element. The formation mechanism, especially the role of the mixing entropy in the formation of the high-entropy MGs, is discussed. The unique physical, mechanical, chemical, and biomedical properties of the high-entropy MGs in comparison with the conventional metallic alloys are introduced. We show that the high-mixing-entropy MGs, along the formation idea and strategy of the high-entropy alloys and based on multiple major elements, might provide

  1. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  2. Unusual fast secondary relaxation in metallic glass

    PubMed Central

    Wang, Q.; Zhang, S.T.; Yang, Y.; Dong, Y.D.; Liu, C.T.; Lu, J.

    2015-01-01

    The relaxation spectrum of glassy solids has long been used to probe their dynamic structural features and the fundamental deformation mechanisms. Structurally complicated glasses, such as molecular glasses, often exhibit multiple relaxation processes. By comparison, metallic glasses have a simple atomic structure with dense atomic packing, and their relaxation spectra were commonly found to be simpler than those of molecular glasses. Here we show the compelling evidence obtained across a wide range of temperatures and frequencies from a La-based metallic glass, which clearly shows two peaks of secondary relaxations (fast versus slow) in addition to the primary relaxation peak. The discovery of the unusual fast secondary relaxation unveils the complicated relaxation dynamics in metallic glasses and, more importantly, provides us the clues which help decode the structural features serving as the ‘trigger' of inelasticity on mechanical agitations. PMID:26204999

  3. Large size metallic glass gratings by embossing

    NASA Astrophysics Data System (ADS)

    Ma, J.; Yi, J.; Zhao, D. Q.; Pan, M. X.; Wang, W. H.

    2012-09-01

    Bulk metallic glasses have excellent thermoforming ability in their wide supercooled liquid region. We show that large-size metallic glass grating (˜8 × 8 mm2) with fine periodicity and ultra smooth surface feature can be readily fabricated by hot embossing. The method for fabrication of gratings is proved to be much cheaper, and requires low pressure and short time (less than 30 s). The metallic glass gratings exhibit comparable optical properties such as rainbow-like spectrum when shone by fluorescent lamp light.

  4. "Work-Hardenable" ductile bulk metallic glass.

    PubMed

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  5. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  6. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  7. Cyclic Deformation in Metallic Glasses.

    PubMed

    Sha, Z D; Qu, S X; Liu, Z S; Wang, T J; Gao, H

    2015-10-14

    Despite the utmost importance and decades of experimental studies on fatigue in metallic glasses (MGs), there has been so far little or no atomic-level understanding of the mechanisms involved. Here we perform molecular dynamics simulations of tension-compression fatigue in Cu50Zr50 MGs under strain-controlled cyclic loading. It is shown that the shear band (SB) initiation under cyclic loading is distinctly different from that under monotonic loading. Under cyclic loading, SB initiation takes place when aggregates of shear transformation zones (STZs) accumulating at the MG surface reach a critical size comparable to the SB width, and the accumulation of STZs follows a power law with rate depending on the applied strain. It is further shown that almost the entire fatigue life of nanoscale MGs under low cycle fatigue is spent in the SB-initiation stage, similar to that of crystalline materials. Furthermore, a qualitative investigation of the effect of cycling frequency on the fatigue behavior of MGs suggests that higher cycling frequency leads to more cycles to failure. The present study sheds light on the fundamental fatigue mechanisms of MGs that could be useful in developing strategies for their engineering applications.

  8. Designing tensile ductility in metallic glasses

    PubMed Central

    Sarac, Baran; Schroers, Jan

    2013-01-01

    Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses. PMID:23863967

  9. Designing tensile ductility in metallic glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran; Schroers, Jan

    2013-07-01

    Effectiveness of a second phase in metallic glass heterostructures to improve mechanical properties varies widely. Unfortunately, methods to fabricate such heterostructures like foams and composites do not allow controlled variation of structural features. Here we report a novel strategy, which allows us to vary heterostructural features independently, thereby enabling a systematic and quantitative study. Our approach reveals the optimal microstructural architecture for metallic glass heterostructures to achieve tensile ductility. Critical design aspect is a soft second phase, which is most effective when spacing between the second phase assumes the critical crack length of the metallic glass. This spacing should coincide with the second phase’s size, and beyond, the specific second phase morphology of the heterostructure is crucial. These toughening strategies are only effective in samples that are large compared with the spacing of the second phase. The identified design aspects provide guidance in designing tensile ductility into metallic glasses.

  10. Ultrahigh stability of atomically thin metallic glasses

    SciTech Connect

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  11. Shaping metallic glasses by electromagnetic pulsing

    PubMed Central

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-01-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals. PMID:26853460

  12. Wetting of metals and glasses on Mo

    SciTech Connect

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  13. Shaping metallic glasses by electromagnetic pulsing

    NASA Astrophysics Data System (ADS)

    Kaltenboeck, Georg; Demetriou, Marios D.; Roberts, Scott; Johnson, William L.

    2016-02-01

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  14. Shaping metallic glasses by electromagnetic pulsing.

    PubMed

    Kaltenboeck, Georg; Demetriou, Marios D; Roberts, Scott; Johnson, William L

    2016-02-08

    With damage tolerance rivalling advanced engineering alloys and thermoplastic forming capabilities analogous to conventional plastics, metallic glasses are emerging as a modern engineering material. Here, we take advantage of their unique electrical and rheological properties along with the classic Lorentz force concept to demonstrate that electromagnetic coupling of electric current and a magnetic field can thermoplastically shape a metallic glass without conventional heating sources or applied mechanical forces. Specifically, we identify a process window where application of an electric current pulse in the presence of a normally directed magnetic field can ohmically heat a metallic glass to a softened state, while simultaneously inducing a large enough magnetic body force to plastically shape it. The heating and shaping is performed on millisecond timescales, effectively bypassing crystallization producing fully amorphous-shaped parts. This electromagnetic forming approach lays the groundwork for a versatile, time- and energy-efficient manufacturing platform for ultrastrong metals.

  15. Origin of embrittlement in metallic glasses

    PubMed Central

    Garrett, Glenn R.; Demetriou, Marios D.; Launey, Maximilien E.; Johnson, William L.

    2016-01-01

    Owing to their glassy nature, metallic glasses demonstrate a toughness that is extremely sensitive to the frozen-in configurational state. This sensitivity gives rise to “annealing embrittlement,” which is often severe and in many respects limits the technological advancement of these materials. Here, equilibrium configurations (i.e., “inherent states”) of a metallic glass are established around the glass transition, and the configurational properties along with the plane-strain fracture toughness are evaluated to associate the intrinsic glass toughness with the inherent state properties and identify the fundamental origin of embrittlement. The established correlations reveal a one-to-one correspondence between toughness and shear modulus continuous over a broad range of inherent states, suggesting that annealing embrittlement is controlled almost solely by an increasing resistance to shear flow. This annealing embrittlement sensitivity is shown to vary substantially between metallic glass compositions, and appears to correlate well with the fragility of the metallic glass. PMID:27573817

  16. Fabrication of metallic glass structures

    DOEpatents

    Cline, Carl F.

    1986-01-01

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.

  17. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  18. Bioactive glass coatings for orthopedic metallic implants

    SciTech Connect

    Lopez-Esteban, Sonia; Saiz, Eduardo; Fujino, Sigheru; Oku, Takeo; Suganuma, Katsuaki; Tomsia, Antoni P.

    2003-06-30

    The objective of this work is to develop bioactive glass coatings for metallic orthopedic implants. A new family of glasses in the SiO2-Na2O-K2O-CaO-MgO-P2O5 system has been synthesized and characterized. The glass properties (thermal expansion, softening and transformation temperatures, density and hardness) are in line with the predictions of established empirical models. The optimized firing conditions to fabricate coatings on Ti-based and Co-Cr alloys have been determined and related to the glass properties and the interfacial reactions. Excellent adhesion to alloys has been achieved through the formation of 100-200 nm thick interfacial layers (Ti5Si3 on Ti-based alloys and CrOx on Co-Cr). Finally, glass coatings, approximately 100 mu m thick, have been fabricated onto commercial Ti alloy-based dental implants.

  19. Structural rejuvenation in bulk metallic glasses

    DOE PAGES

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; ...

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  20. Structural rejuvenation in bulk metallic glasses

    SciTech Connect

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; Bei, Hongbin; Yokoyama, Y.; Egami, Takeshi

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  1. Thulium-based bulk metallic glass

    SciTech Connect

    Yu, H. B.; Yu, P.; Wang, W. H.; Bai, H. Y.

    2008-04-07

    We report the formation and properties of a thulium-based bulk metallic glass (BMG). Compared with other known rare-earth (RE) based BMGs, Tm-based BMGs show features of excellent glass formation ability, considerable higher elastic modulus, smaller Poisson's ratio, high mechanical strength, and intrinsic brittleness. The reasons for the different properties between the Tm-based and other RE-based BMGs are discussed. It is expected that the Tm-based glasses with the unique properties are appropriate candidates for studying some important issues in BMGs.

  2. From powders to bulk metallic glass composites.

    PubMed

    Krämer, Lisa; Champion, Yannick; Pippan, Reinhard

    2017-07-27

    One way to adjust the properties of materials is by changing its microstructure. This concept is not easily applicable on bulk metallic glasses (BMGs), because they do not consist of grains or different phases and so their microstructure is very homogeneous. One obvious way to integrate inhomogeneities is to produce bulk metallic glass composites (BMGCs). Here we show how to generate BMGCs via high-pressure torsion (HPT) starting from powders (amorphous Zr-MG and crystalline Cu). Using this approach, the composition can be varied and by changing the applied shear strains, the refinement of the microstructure is adjustable. This process permits to produce amorphous/crystalline composites where the scale of the phases can be varied from the micro- to the nanometer regime. Even mixing of the two phases and the generation of new metallic glasses can be achieved. The refinement of microstructure increases the hardness and a hardness higher than the initial BMG can be obtained.

  3. Bulk Metallic Glasses Deform via Slip Avalanches

    NASA Astrophysics Data System (ADS)

    Antonaglia, James; Wright, Wendelin J.; Gu, Xiaojun; Byer, Rachel R.; Hufnagel, Todd C.; LeBlanc, Michael; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-04-01

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  4. Bulk metallic glasses deform via slip avalanches.

    PubMed

    Antonaglia, James; Wright, Wendelin J; Gu, Xiaojun; Byer, Rachel R; Hufnagel, Todd C; LeBlanc, Michael; Uhl, Jonathan T; Dahmen, Karin A

    2014-04-18

    For the first time in metallic glasses, we extract both the exponents and scaling functions that describe the nature, statistics, and dynamics of slip events during slow deformation, according to a simple mean field model. We model the slips as avalanches of rearrangements of atoms in coupled shear transformation zones (STZs). Using high temporal resolution measurements, we find the predicted, different statistics and dynamics for small and large slips thereby excluding self-organized criticality. The agreement between model and data across numerous independent measures provides evidence for slip avalanches of STZs as the elementary mechanism of inhomogeneous deformation in metallic glasses.

  5. Intermediate Temperature Brittleness in Metallic Glasses.

    PubMed

    Wang, Chao; Cao, Qing Ping; Wang, Xiao Dong; Zhang, Dong Xian; Ramamurty, Upadrasta; Narayan, Ramasubramanian Lakshmi; Jiang, Jian-Zhong

    2017-04-01

    All metallic glasses (MGs), irrespective of their compositions, become brittle in the intermediate temperature range of 0.6-0.7 Tg However, most materials are expected to carry higher strains during deformation with increasing temperature. This behavior of MGs is explained by describing the competition between shear banding and diffusive relaxation processes, and is reminiscent of the "intermediate temperature ductility minimum" observed in polycrystalline metals. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Statistical Mechanics of Metallic Glasses and Liquids

    NASA Astrophysics Data System (ADS)

    Egami, T.; Levashov, V. A.; Morris, J. R.; Haruyama, O.

    2010-07-01

    It is difficult to formulate the statistical mechanical theory of liquids and glasses, because phonons, which are the basis for the statistical mechanics of lattice dynamics in crystals, are strongly scattered and have a very short lifetime in liquids and glasses. Instead computer simulation and the “free-volume” theory are most frequently used in explaining experimental results on metallic glasses. However, both of them suffer from serious problems, as discussed in this article. We propose an alternative approach based upon the dynamics of the atomic level stresses. We review recent progress with this approach and show that it is possible to calculate thermodynamic quantities, including the glass transition temperature and the kinetics of structural relaxation, by this approach.

  7. Producing Metallic Glasses With Acoustic Leviation

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Feng, I. A.

    1983-01-01

    Acoustic fields support and cool liquid particles. Levitated by sound energy, liquid drop in acoustic standing-wave field surrounded by acousticically-induced jet streams. Streaming gas cools drow below its freezing point in small fraction of second. Allows new amorphous alloys including "metallic glass" to be formed.

  8. Mechanical heterogeneity and mechanism of plasticity in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Zhao, D. Q.; Pan, M. X.; Shek, C. H.; Wang, W. H.

    2009-01-01

    The mechanical heterogeneity is quantified based on the spatial nanohardness distributions in three bulk metallic glasses with different plasticities. It is found that the metallic glass with high mechanical heterogeneity is more plastic. We propose that the appropriate mechanical heterogeneity makes the metallic glasses meliorate their plasticity by increasing inelastic strained area and promoting energy dissipation.

  9. Method for forming glass-to-metal seals

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  10. Method for forming glass-to-metal seals

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-08-26

    Disclosed is a method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

  11. Atomic Transport in Metallic Glasses.

    DTIC Science & Technology

    1983-11-01

    creep, amorphous metals, canpositionally modulated films, structural relaxation, iso-configurational flow, bimolecular kinetics, Stokes-Einstein relation ...34 731471 60 rcoe F I iov s isasso Einstain relation from the viscosity. - S/N8CUN@4* 40 CLASSIPICATIOOW OF T04lS PAGEL(010 fON41 EW PREFACE This report...12- tion, B is related to the macroscopic interdiffusion coefficient, B, by r 2 K 13 I+ -.1 (2) where f; is the second derivative, with respect to

  12. Metallic glass nanostructures: fabrication, properties, and applications.

    PubMed

    Liu, Lianci; Hasan, Molla; Kumar, Golden

    2014-02-21

    Remarkable progress has been made in fabrication and characterization of metal nanostructures because of their crucial role in energy conversion, nanophotonics, nanoelectronics, and biodiagnostics. Less emphasis has been placed on the synthesis of nanostructures from metallic alloys, which are better suited than elemental metals for certain applications such as fuel-cell catalysts. The main challenges in fabrication of alloy nanostructures are controlling their chemical stoichiometry, crystal structures, and shapes because of anisotropic nucleation and growth rates. These limitations can be overcome by using metallic glasses (amorphous metal alloys) which are isotropic and provide additional control handles through their tunable compositions and degree of crystallinity. Here, we review the recent developments in fabrication and characterization of metallic glass (MG) nanostructures. The focus is on sub-micron structures synthesized by unconventional thermoplastic techniques. A concept of self-assembly is introduced for fashioning functional structures using MG nanostructures as building blocks. The article concludes with a brief discussion about unique properties and prospective applications of MG nanostructures.

  13. Microgravity metal processing: from undercooled liquids to bulk metallic glasses

    PubMed Central

    Hofmann, Douglas C; Roberts, Scott N

    2015-01-01

    Bulk metallic glasses (BMGs) are a novel class of metal alloys that are poised for widespread commercialization. Over 30 years of NASA and ESA (as well as other space agency) funding for both ground-based and microgravity experiments has resulted in fundamental science data that have enabled commercial production. This review focuses on the history of microgravity BMG research, which includes experiments on the space shuttle, the ISS, ground-based experiments, commercial fabrication and currently funded efforts. PMID:28725709

  14. Foamed Bulk Metallic Glass (Foam) Investigation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This soldering iron has an evacuated copper capsule at the tip that contains a pellet of Bulk Metallic Glass (BMG) aboard the International Space Station (ISS). Prior to flight, researchers sealed a pellet of bulk metallic glass mixed with microscopic gas-generating particles into the copper ampoule under vacuum. Once heated in space, such as in this photograph, the particles generated gas and the BMG becomes a viscous liquid. The released gas made the sample foam within the capsule where each microscopic particle formed a gas-filled pore within the foam. The inset image shows the oxidation of the sample after several minutes of applying heat. Although hidden within the brass sleeve, the sample retained the foam shape when cooled, because the viscosity increased during cooling until it was solid.

  15. Phonon dispersion relation of metallic glasses

    NASA Astrophysics Data System (ADS)

    Crespo, Daniel; Bruna, Pere; Valles, Araceli; Pineda, Eloi

    2016-10-01

    Experimental data on the phase sound speed of metallic glasses show anomalies in the terahertz range, reflecting an underlying complex behavior of their phonon dispersion spectrum not yet explained. We determine the phonon dispersion curve of metallic glasses by means of massive molecular dynamics simulations, allowing us to obtain the low-q region behavior with unprecedented detail. Results confirm that the sound speed is constant below the THz range, down to the macroscopic limit. On the contrary, a hardening of the sound speed, more notable in the transverse case, is found in the THz range. This behavior is modeled in terms of a relaxation model. The model gives quantitative agreement and allows us to determine a new threshold frequency ωh, at the end of the boson-peak region. Above ωh the shear modulus increases dramatically, reflecting the end of the amorphous-like acoustic propagation region characterized by the excess density of vibrational states.

  16. Crystallization of Beryllium-Boron Metallic Glasses

    SciTech Connect

    Jankowski, A F; Wall, M A; Nieh, T G

    2002-02-14

    Prior studies of evaporation and sputter deposition show that the grain size of pure beryllium can be dramatically refined through the incorporation of metal impurities. Recently, the addition of boron at a concentration greater than 11% is shown to serve as a glassy phase former in sputter deposited beryllium. Presently, thermally induced crystallization of the beryllium-boron metallic glass is reported. The samples are characterized during an in-situ anneal treatment with bright field imaging and electron diffraction using transmission electron microscopy. A nanocrystalline structure evolves from the annealed amorphous phase and the crystallization temperature is affected by the boron concentration.

  17. Chemical segregation in metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  18. Friction behavior of glass and metals in contact with glass in various environments

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  19. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  20. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  1. A Process for Making Bulk Heavy Metal Fluoride Glasses.

    DTIC Science & Technology

    This invention relates to the preparation of glasses, and, in particular, relates to the preparation of heavy metal fluoride glasses with...reproducible high optical qualities. Considerable effort has been expended to develop heavy metal fluoride glasses ( HMFG ) as a viable family of infrared

  2. Metallic glass nanostructures of tunable shape and composition

    PubMed Central

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J.; Schroers, Jan

    2015-01-01

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top–down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties. PMID:25901951

  3. Metallic glass nanostructures of tunable shape and composition.

    PubMed

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J; Schroers, Jan

    2015-04-22

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top-down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties.

  4. A predictive structural model for bulk metallic glasses

    PubMed Central

    Laws, K. J.; Miracle, D. B.; Ferry, M.

    2015-01-01

    Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667

  5. A predictive structural model for bulk metallic glasses.

    PubMed

    Laws, K J; Miracle, D B; Ferry, M

    2015-09-15

    Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, 'bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses.

  6. Hard and fragile holmium-based bulk metallic glasses

    SciTech Connect

    Luo, Q.; Zhao, D.Q.; Pan, M.X.; Wang, R.J.; Wang, W.H.

    2006-05-01

    A family of holmium-based bulk metallic glasses (BMGs) with high glass-forming ability is obtained. The Ho-based BMGs exhibit much larger elastic moduli and high thermal stability in contrast to other known rare-earth (RE)-based BMGs. In particular, the BMGs show a large value of fragility. It is expected that the hard RE-based glasses with high glass-forming ability and fragile behaviors make them the appropriate candidate for glass transition study.

  7. Stability of bulk metallic glass structure

    SciTech Connect

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  8. High temperature glass coatings for superalloys and refractory metals

    NASA Technical Reports Server (NTRS)

    Chapman, J. W.; Grekila, R. B.; Hirayama, C.; Mattox, D. M.

    1970-01-01

    New glasses are used as protective coatings on metals and alloys susceptible to oxidation at high temperatures in oxidizing atmospheres. Glasses are stable and solid at temperatures up to 1000 deg C, adhere well to metal surfaces, and are usable for metals with broad range of expansion coefficients.

  9. Thermomechanical Behavior of Molded Metallic Glass Nanowires

    NASA Astrophysics Data System (ADS)

    Magagnosc, Daniel J.; Chen, Wen; Kumar, Golden; Schroers, Jan; Gianola, Daniel S.

    2016-01-01

    Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits, and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate, and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale.

  10. Thermomechanical Behavior of Molded Metallic Glass Nanowires

    PubMed Central

    Magagnosc, Daniel J.; Chen, Wen; Kumar, Golden; Schroers, Jan; Gianola, Daniel S.

    2016-01-01

    Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits, and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate, and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale. PMID:26787400

  11. Thermomechanical Behavior of Molded Metallic Glass Nanowires.

    PubMed

    Magagnosc, Daniel J; Chen, Wen; Kumar, Golden; Schroers, Jan; Gianola, Daniel S

    2016-01-20

    Metallic glasses are disordered materials that offer the unique ability to perform thermoplastic forming operations at low thermal budget while preserving excellent mechanical properties such as high strength, large elastic strain limits, and wear resistance owing to the metallic nature of bonding and lack of internal defects. Interest in molding micro- and nanoscale metallic glass objects is driven by the promise of robust and high performance micro- and nanoelectromechanical systems and miniature energy conversion devices. Yet accurate and efficient processing of these materials hinges on a robust understanding of their thermomechanical behavior. Here, we combine large-scale thermoplastic tensile deformation of collections of Pt-based amorphous nanowires with quantitative thermomechanical studies of individual nanowires in creep-like conditions to demonstrate that superplastic-like flow persists to small length scales. Systematic studies as a function of temperature, strain-rate, and applied stress reveal the transition from Newtonian to non-Newtonian flow to be ubiquitous across the investigated length scales. However, we provide evidence that nanoscale specimens sustain greater free volume generation at elevated temperatures resulting in a flow transition at higher strain-rates than their bulk counterparts. Our results provide guidance for the design of thermoplastic processing methods and methods for verifying the flow response at the nanoscale.

  12. Slip avalanche in nanoscratching of metallic glasses

    NASA Astrophysics Data System (ADS)

    Han, D. X.; Wang, G.; Ren, J. L.; Song, S. X.; Li, J.; Yi, J.; Jia, Y. D.; Xu, H.; Chan, K. C.; Liaw, P. K.

    2017-09-01

    Slip avalanches, similar to discrete earthquake events, of Zr-, Co-, and Ce-based metallic glasses during nanoscratching were investigated. Differing from the conventional continuum approach, mean-field theory, which is an inherently-discrete model, was applied to analytically compute intermittent slip avalanches. Mean-field theory was first connected with the potential energy barrier and concentration of free volume in order to study the stick-slip behavior. The results suggest that the motion behavior of free volume affects the critical slip avalanche size.

  13. New Class of Plastic Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Chen, L. Y.; Fu, Z. D.; Zhang, G. Q.; Hao, X. P.; Jiang, Q. K.; Wang, X. D.; Cao, Q. P.; Franz, H.; Liu, Y. G.; Xie, H. S.; Zhang, S. L.; Wang, B. Y.; Zeng, Y. W.; Jiang, J. Z.

    2008-02-01

    An intrinsic plastic Cu45Zr46Al7Ti2 bulk metallic glass (BMG) with high strength and superior compressive plastic strain of up to 32.5% was successfully fabricated by copper mold casting. The superior compressive plastic strain was attributed to a large amount of randomly distributed free volume induced by Ti minor alloying, which results in extensive shear band formation, branching, interaction and self-healing of minor cracks. The mechanism of plasticity presented here suggests that the creation of a large amount of free volume in BMGs by minor alloying or other methods might be a promising new way to enhance the plasticity of BMGs.

  14. An Assessment of Binary Metallic Glasses: Correlations Between Structure, Glass Forming Ability and Stability (Preprint)

    DTIC Science & Technology

    2009-04-01

    through 3.5) and physical properties of the constituent elements (Sections 3.6 and 3.7) on the thermal stability and thickness of binary metallic glasses...containing alkali metals , inert gas and halogen elements were not found in this assessment. Most metallic elements have been used to produce binary metallic ... properties such as partial pair distribution functions recommend binary metallic glasses for more extensive characterization. There are surprisingly few

  15. Stochastic metallic-glass cellular structures exhibiting benchmark strength.

    PubMed

    Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L

    2008-10-03

    By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.

  16. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  17. Correlations between elastic moduli and molar volume in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Wang, W. H.; Yu, H. B.; Bai, H. Y.

    2009-03-01

    We report clear correlations between bulk modulus (K) and average molar volume Vm, and between Poisson's ratio ν and Vm for various bulk metallic glasses. The origin for the correlations between elastic moduli and Vm are discussed. The established correlation, associated with Poisson's ratio ν, and since the ν correlates with plasticity of metallic glasses, indicates that the average molar volume is important factor to be considered for plastic metallic glasses searching. The found correlations also suggest a close relation between the mechanical properties and the short-range atomic bonding, and assist in understanding deformation behavior in metallic glasses.

  18. Sink property of metallic glass free surfaces

    SciTech Connect

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  19. Sink property of metallic glass free surfaces

    DOE PAGES

    Shao, Lin; Fu, Engang; Price, Lloyd; ...

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  20. Criticality in Bulk Metallic Glass Constituent Elements

    NASA Astrophysics Data System (ADS)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-07-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  1. Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Glasses

    PubMed Central

    Zhao, Yuan-Yun; Inoue, Akihisa; Chang, Chuntao; Liu, Jian; Shen, Baolong; Wang, Xinmin; Li, Run-Wei

    2014-01-01

    The high plasticity of metallic glasses is highly desirable for a wide range of novel engineering applications. However, the physical origin of the ductile/brittle behaviour of metallic glasses with various compositions and thermal histories has not been fully clarified. Here we have found that metallic glasses with compositions at or near intermetallic compounds, in contrast to the ones at or near eutectics, are extremely ductile and also insensitive to annealing-induced embrittlement. We have also proposed a close correlation between the element distribution features and the plasticity of metallic glasses by tracing the evolutions of the element distribution rearrangement and the corresponding potential energy change within the sliding shear band. These novel results provide useful and universal guidelines to search for new ductile metallic glasses at or near the intermetallic compound compositions in a number of glass-forming alloy systems. PMID:25043428

  2. Nanoscale size effects in crystallization of metallic glass nanorods.

    PubMed

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J

    2015-09-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding.

  3. Thermal behaviors of liquid La-based bulk metallic glasses

    SciTech Connect

    Zhang, D. W.; Wang, X. D. E-mail: jiangjz@zju.edu.cn; Lou, H. B.; Cao, Q. P.; Jiang, J. Z. E-mail: jiangjz@zju.edu.cn; Wang, L. W.; Zhang, D. X.

    2014-12-14

    Thermal behaviors of liquid La-based bulk metallic glasses have been measured by using the dilatometer with a self-sealed sample cell. It is demonstrated that the strong glass forming liquid not only has the small thermal expansion coefficient but also shows the slow variation rate. Moreover, the strong glass former has relatively dense atomic packing and also small density change in the liquid state. The results suggest that the high glass forming ability of La-based metallic glasses would be closely related to the slow atomic rearrangements in liquid melts.

  4. Application of the model of delocalized atoms to metallic glasses

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.

    2017-01-01

    The parameters of the model of delocalized atoms applied to metallic glasses have been calculated using the data on empirical constants of the Vogel-Fulcher-Tammann equation (for the temperature dependence of viscosity). It has been shown that these materials obey the same glass-formation criterion as amorphous organic polymers and inorganic glasses. This fact qualitatively confirms the universality of the main regularities of the liquid-glass transition process for all amorphous materials regardless of their origin. The energy of the delocalization of an atom in metallic glasses, Δɛ e ≈ 20-25 kJ/mol, coincides with the results obtained for oxide inorganic glasses. It is substantially lower than the activation energies for a viscous flow and for ion diffusion. The delocalization of an atom (its displacement from the equilibrium position) for amorphous metallic alloys is a low-energy small-scale process similar to that for other glass-like systems.

  5. Hidden topological order and its correlation with glass-forming ability in metallic glasses.

    PubMed

    Wu, Z W; Li, M Z; Wang, W H; Liu, K X

    2015-01-12

    Unlike the well-defined long-range periodic order that characterizes crystals, so far the inherent atomic packing mode in glassy solids remains mysterious. Based on molecular dynamics simulations, here we find medium-range atomic packing orders in metallic glasses, which are hidden in the diffraction data in terms of structure factors or pair correlation functions. The analysis of the hidden orders in various metallic glasses indicates that the glassy and crystalline solids share a nontrivial structural homology in short-to-medium range, and the hidden orders are formulated by inheriting partial crystalline orders during glass formation. As the number of chemical components increases, more hidden orders are often developed in a metallic glass and entangled topologically. We use this phenomenon to explain the geometric frustration in glass formation and the glass-forming ability of metallic alloys.

  6. Microwave Absorbing Properties of Metallic Glass/Polymer Composites

    DTIC Science & Technology

    2011-09-01

    of strategic importance for stealth technology. This work examined high magnetic permeability cobalt -based metallic glasses dispersed in epoxy...of strategic importance for stealth technology. This work examined high magnetic permeability cobalt -based metallic glasses dispersed in epoxy...present day. Lossy materials such as carbonyl iron and ferrites have been used in stealth technology as well as other electromagnetic shielding

  7. The dynamic compressive behavior of beryllium bearing bulk metallic glasses

    SciTech Connect

    Bruck, H.A.; Rosakis, A.J.; Johnson, W.L.

    1996-02-01

    In 1993, a new beryllium bearing bulk metallic glass with the nominal composition of Zr{sub 41.25}Ti{sub 13.75}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} was discovered at Caltech. This metallic glass can be cast as cylindrical rods as large as 16 mm in diameter, which permitted specimens to be fabricated with geometries suitable for dynamic testing. For the first time, the dynamic compressive yield behavior of a metallic glass was characterized at strain rates of 10{sup 2} to 10{sup 4}/s by using the split Hopkinson pressure bar. A high-speed infrared thermal detector was also used to determine if adiabatic heating occurred during dynamic deformation of the metallic glass. From these tests it appears that the yield stress of the metallic glass is insensitive to strain rate and no adiabatic heating occurs before yielding. {copyright} {ital 1996 Materials Research Society.}

  8. Quantifying the origin of metallic glass formation

    PubMed Central

    Johnson, W. L.; Na, J. H.; Demetriou, M. D.

    2016-01-01

    The waiting time to form a crystal in a unit volume of homogeneous undercooled liquid exhibits a pronounced minimum τX* at a ‘nose temperature' T* located between the glass transition temperature Tg, and the crystal melting temperature, TL. Turnbull argued that τX* should increase rapidly with the dimensionless ratio trg=Tg/TL. Angell introduced a dimensionless ‘fragility parameter', m, to characterize the fall of atomic mobility with temperature above Tg. Both trg and m are widely thought to play a significant role in determining τX*. Here we survey and assess reported data for TL, Tg, trg, m and τX* for a broad range of metallic glasses with widely varying τX*. By analysing this database, we derive a simple empirical expression for τX*(trg, m) that depends exponentially on trg and m, and two fitting parameters. A statistical analysis shows that knowledge of trg and m alone is therefore sufficient to predict τX* within estimated experimental errors. Surprisingly, the liquid/crystal interfacial free energy does not appear in this expression for τX*. PMID:26786966

  9. Quantifying the origin of metallic glass formation

    NASA Astrophysics Data System (ADS)

    Johnson, W. L.; Na, J. H.; Demetriou, M. D.

    2016-01-01

    The waiting time to form a crystal in a unit volume of homogeneous undercooled liquid exhibits a pronounced minimum τX* at a `nose temperature' T* located between the glass transition temperature Tg, and the crystal melting temperature, TL. Turnbull argued that τX* should increase rapidly with the dimensionless ratio trg=Tg/TL. Angell introduced a dimensionless `fragility parameter', m, to characterize the fall of atomic mobility with temperature above Tg. Both trg and m are widely thought to play a significant role in determining τX*. Here we survey and assess reported data for TL, Tg, trg, m and τX* for a broad range of metallic glasses with widely varying τX*. By analysing this database, we derive a simple empirical expression for τX*(trg, m) that depends exponentially on trg and m, and two fitting parameters. A statistical analysis shows that knowledge of trg and m alone is therefore sufficient to predict τX* within estimated experimental errors. Surprisingly, the liquid/crystal interfacial free energy does not appear in this expression for τX*.

  10. Bulk metallic glass coating of polymer substrates

    NASA Astrophysics Data System (ADS)

    Soinila, Erno; Sharma, Parmanand; Heino, Markku; Pischow, Kaj; Inoue, Akihisa; Hänninen, Hannu

    2009-01-01

    Bulk Metallic Glass (BMG) alloy with the composition of Zr55Cu30Al10Ni5 was deposited by sputtering as thin films on several different engineering polymers and polymer composites. Polycarbonate, polymethyl methacrylate, polyamide 12, polyarylamide (50GF=50 % glass fibers), polyphenylene sulfide (30GF) and polybutylene terephthalate (30GF) were used as substrates. The microstructure of the deposited BMG coatings was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results of XRD and SEM studies were consistent with amorphous microstructure. Elemental compositions of the coatings were verified by energy dispersive spectroscopy (EDS). Mechanical properties of the coatings were compared to copper mould cast BMG using nano- indentation tests with similar results. According to the cross-cut tape tests good adhesion was achieved between the studied BMG alloy and all other polymer substrates except polycarbonate. Nano-indentation results showed similar mechanical properties for coating and cast BMG. The results of this study look promising as they open new opportunities for BMG- polymer composite applications.

  11. Sliding induced crystallization of metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction and wear experiments, electron microscopy, and diffraction studies were conducted with an Fe67Co18B14Si1 ferrous-base metallic glass in sliding contact with aluminum oxide at room temperature in air. The results indicate that the amorphous alloy can be crystallized during the sliding process. Crystallization of the wear surface causes high friction. Plastic flow occurred on the amorphous alloy with sliding, and the flow film of the alloy transferred to the aluminum oxide surface. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and powdery and whiskery oxide debris. Generation of oxide wear debris particles on an alloy can cause transitions in friction behavior.

  12. Metallic glass-strengthened thermoplastic elastomer composites

    NASA Astrophysics Data System (ADS)

    Liu, Xue; Liu, Hao; Wang, Dong; Wang, Enpeng; Liu, Wenjian; Yao, Kefu; Chen, Na

    2017-06-01

    Thermoplastic elastomers (TPEs) and metallic glasses (MGs), both lack of long-range ordering structure, have different physical and mechanical properties. To combine unique viscoelasticity of elastomers and excellent wear resistance of MGs, we propose to introduce a Pd40Ni40Si4P16 MG into a commercial styrene-butadiene-styrene (SBS) TPE to form MG/TPE composites. Serving as a hard and strong second phase dispersed in the SBS matrix, the micrometer-sized MG particles can effectively improve the wear resistance of the matrix due to a strengthening effect. In particular, the MG/TPE composite with an addition of 60 wt% MG shows significantly enhanced wear resistance up to about three times that of the SBS matrix. The present results provide a new way to enhance the wear resistance of the widely used TPEs, which may generate immense economic value by extending their service life.

  13. Cavitation instability in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Dai, L. H.; Huang, X.; Ling, Z.

    2015-09-01

    Recent experiments have shown that fracture surfaces of bulk metallic glasses (BMGs) usually exhibit an intriguing nanoscale corrugation like fractographic feature mediated by nanoscale void formation. We attribute the onset of this nanoscale corrugation to TTZs (tension transformation zones) mediated cavitation. In our recent study, the spall experiments of Zr-based BMG using a single-stage light gas gun were performed. To uncover the mechanisms of the spallation damage nucleation and evolution, the samples were designed to be subjected to dynamic tensile loadings of identical amplitude but with different durations by making use of the multi-stress pulse and the double-flyer techniques. It is clearly revealed that the macroscopic spall fracture in BMGs originates from the nucleation, growth and coalescence of micro-voids. Then, a microvoid nucleation model of BMGs based on free volume theory is proposed, which indicates that the nucleation of microvoids at the early stage of spallation in BMGs is resulted from diffusion and coalescence of free volume. Furthermore, a theoretical model of void growth in BMGs undergoing remote dynamic hydrostatic tension is developed. The critical condition of cavitation instability is obtained. It is found that dynamic void growth in BMGs can be well controlled by a dimensionless inertial number characterizing the competition between intrinsic and extrinsic time scales. To unveil the atomic-level mechanism of cavitation, a systematic molecular dynamics (MD) simulation of spallation behaviour of a binary metallic glass with different impact velocities was performed. It is found that micro-void nucleation is determined TTZs while the growth is controlled by shear transformation zones (STZs) at atomic scale.

  14. Metal particle manipulation by laser irradiation in borosilicate glass.

    PubMed

    Hidai, Hirofumi; Yamazaki, Takato; Itoh, Sho; Hiromatsu, Kuniaki; Tokura, Hitoshi

    2010-09-13

    We propose a new technique of manipulating a metal particle in borosilicate glass. A metal particle that is heated by laser illumination heats the surrounding glass by radiation and conduction. A softened glass enabled metal particle migration. A 1-µm-thick platinum film was deposited on the back surface of a glass plate and irradiated with a green CW laser beam through the glass. As a result, the platinum film was melted and implanted into the glass as a particle. Platinum particles with diameters of 3 to 50 μm migrated at speeds up to 10 mm/s. In addition to platinum particles, nickel and austenitic stainless steel (SUS304) particles can be implanted.

  15. Ultra-stiff metallic glasses through bond energy density design

    NASA Astrophysics Data System (ADS)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J.; Raabe, Dierk; Schneider, Jochen M.

    2017-07-01

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co33.0Ta3.5B63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å-3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  16. Separating the configurational and vibrational entropy contributions in metallic glasses

    NASA Astrophysics Data System (ADS)

    Smith, Hillary L.; Li, Chen W.; Hoff, Andrew; Garrett, Glenn R.; Kim, Dennis S.; Yang, Fred C.; Lucas, Matthew S.; Swan-Wood, Tabitha; Lin, J. Y. Y.; Stone, M. B.; Abernathy, D. L.; Demetriou, Marios D.; Fultz, B.

    2017-09-01

    Glassy materials exist in nature and play a critical role in technology, but key differences between the glass, liquid and crystalline phases are not well understood. Over several decades there has been controversy about the specific heat absorbed as a glass transforms to a liquid--does this originate from vibrational entropy or configurational entropy? Here we report direct in situ measurements of the vibrational spectra of strong and fragile metallic glasses in the glass, liquid and crystalline phases. For both types of material, the measured vibrational entropies of the glass and liquid show a tiny excess over the crystal, representing less than 5% of the total excess entropy measured with step calorimetry. These results reveal that the excess entropy of metallic glasses is almost entirely configurational in origin, consistent with the early theories of Gibbs and co-workers describing the glass transition as a purely configurational transition.

  17. Crystal nucleation and glass formation in metallic alloy melts

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.

  18. Characterization of activation energy for flow in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Wang, W. H.; Liu, Y. H.; Bai, H. Y.

    2011-01-01

    The molar volume (Vm) scaled flow activation energy (ΔE), namely as the activation energy density ρE=ΔE/Vm, is proposed to describe the flow of metallic glasses. Based on the energy landscape, both the shear and bulk moduli are critical parameters accounting for the ρE of both homogeneous and inhomogeneous flows in metallic glasses. The expression of ρE is determined experimentally to be a simple expression of ρE=(10)/(11)G+(1)/(11)K. The energy density perspective depicts a realistic picture for the flow in metallic glasses and is suggestive for understanding the glass transition and deformation in metallic glasses.

  19. Electromagnetic vibration process for producing bulk metallic glasses.

    PubMed

    Tamura, Takuya; Amiya, Kenji; Rachmat, Rudi S; Mizutani, Yoshiki; Miwa, Kenji

    2005-04-01

    It is known that the cooling rate from the liquid state is an important factor in the production of bulk metallic glasses. However, the effects of other factors such as electric and magnetic fields have not been thoroughly investigated. Here, we present a new method for producing bulk metallic glasses by using electromagnetic vibrations with simultaneous imposition of an alternating electric current and a magnetic field. This method was found to be effective in enhancing apparent glass-forming ability in Mg65-Cu25-Y10 (atomic percent) alloys. Indeed, larger bulk metallic glasses could be obtained by the electromagnetic vibration process under the same cooling conditions. We presume that disappearance or decrement of clusters by the electromagnetic vibrations applied to the liquid state cause suppression of crystal nucleation. This electromagnetic vibration process should be effective in other bulk metallic glass systems if the clusters in the liquid state cause the crystal nucleation.

  20. The correlation between shear elastic modulus and glass transition temperature of bulk metallic glasses

    SciTech Connect

    Lu Zhibin; Li Jiangong; Shao Hang; Ni Xia; Gleiter, H.

    2009-03-02

    Based on Varshni equation, the shear elastic modulus at the glass transition temperature [G(T{sub g})] and the shear elastic modulus at 0 K [G(0)] were calculated from the elastic modulus measured at room temperature for various bulk metallic glasses (BMGs). The G(T{sub g})/G(0) ratios for various BMGs are almost the same and have a value around 0.85. This unique correlation implies that the glass transition occurs when the shear modulus of a BMG decreases to about 85% of G(0). This correlation between shear modulus and glass transition is of significance in understanding the glass transition of BMGs.

  1. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  2. Ductility and work hardening in nano-sized metallic glasses

    SciTech Connect

    Chen, D. Z.; Gu, X. W.; An, Q.; Goddard, W. A.; Greer, J. R.

    2015-02-09

    In-situ nano-tensile experiments on 70 nm-diameter free-standing electroplated NiP metallic glass nanostructures reveal tensile true strains of ∼18%, an amount comparable to compositionally identical 100 nm-diameter focused ion beam samples and ∼3 times greater than 100 nm-diameter electroplated samples. Simultaneous in-situ observations and stress-strain data during post-elastic deformation reveal necking and work hardening, features uncharacteristic for metallic glasses. The evolution of free volume within molecular dynamics-simulated samples suggests a free surface-mediated relaxation mechanism in nano-sized metallic glasses.

  3. The plastic yield and flow behavior in metallic glasses

    NASA Astrophysics Data System (ADS)

    Thamburaja, Prakash; Klusemann, Benjamin; Adibi, Sara; Bargmann, Swantje

    2015-02-01

    Metallic glasses have vast potential applications as components in microelectronics- and nanoelectronics-type devices. The design of such components through computer simulations requires the input of a faithful set of continuum-based constitutive equations. However, one long-standing controversial issue in modeling the plastic behavior of metallic glasses at the continuum level is the use of the most appropriate plastic yield criterion and flow rule. Guided by a series of molecular dynamics simulations conducted at low-homologous temperatures under homogeneous deformations, we quantitatively prove that the continuum plastic behavior in metallic glasses is most accurately described by a von Mises-type plastic yield criterion and flow rule.

  4. Elastocapillary bundling of high aspect-ratio metallic glass nanowires

    NASA Astrophysics Data System (ADS)

    Hu, Zhonglue; Uzun, Ceren; Dong, Ziye; Li, Wei; Bernussi, Ayrton A.; Kumar, Golden

    2017-07-01

    Collapsing and bundling of wet nanostructures can be a desirable or an unwanted phenomenon depending on the target application. We study the effect of the aspect-ratio and solvent surface tension on bundling of Pt-based metallic glass nanowires prepared by thermoplastic molding. The results show that the bundling can be quantitatively described by the competition between the Laplacian capillary force and the elastic restoring force. Supercritical CO2 drying can prevent bundling to form vertically aligned metallic glass nanowires with high aspect-ratios (>15). Optical measurements and simulations reveal that the diffuse reflectance of metallic glass nanowires strongly depends on their profile (vertical or bundled).

  5. Process for direct conversion of reactive metals to glass

    DOEpatents

    Rajan, John B.; Kumar, Romesh; Vissers, Donald R.

    1990-01-01

    Radioactive alkali metal is introduced into a cyclone reactor in droplet form by an aspirating gas. In the cyclone metal reactor the aspirated alkali metal is contacted with silica powder introduced in an air stream to form in one step a glass. The sides of the cyclone reactor are preheated to ensure that the initial glass formed coats the side of the reactor forming a protective coating against the reactants which are maintained in excess of 1000.degree. C. to ensure the formation of glass in a single step.

  6. The shells of atomic structure in metallic glasses

    NASA Astrophysics Data System (ADS)

    Pan, S. P.; Feng, S. D.; Qiao, J. W.; Dong, B. S.; Qin, J. Y.

    2016-02-01

    We proposed a scheme to describe the spatial correlation between two atoms in metallic glasses. Pair distribution function in a model iron was fully decomposed into several shells and can be presented as the spread of nearest neighbor correlation via distance. Moreover, angle distribution function can also be decomposed into groups. We demonstrate that there is close correlation between pair distribution function and angle distribution function for metallic glasses. We think that our results are very helpful understanding the atomic structure of metallic glasses.

  7. Fractal atomic-level percolation in metallic glasses.

    PubMed

    Chen, David Z; Shi, Crystal Y; An, Qi; Zeng, Qiaoshi; Mao, Wendy L; Goddard, William A; Greer, Julia R

    2015-09-18

    Metallic glasses are metallic alloys that exhibit exotic material properties. They may have fractal structures at the atomic level, but a physical mechanism for their organization without ordering has not been identified. We demonstrated a crossover between fractal short-range (<2 atomic diameters) and homogeneous long-range structures using in situ x-ray diffraction, tomography, and molecular dynamics simulations. A specific class of fractal, the percolation cluster, explains the structural details for several metallic-glass compositions. We postulate that atoms percolate in the liquid phase and that the percolating cluster becomes rigid at the glass transition temperature.

  8. The Prospects for Mechanical Ratcheting of Bulk Metallic Glasses

    SciTech Connect

    Wright, W; Dauskardt, R H; Nix, W D

    2003-11-12

    The major mechanical shortcoming of metallic glasses is their limited ductility at room temperature. Monolithic metallic glasses sustain only a few percent plastic strain when subjected to uniaxial compression and essentially no plastic strain under tension. Here we describe a room temperature deformation process that may have the potential to overcome the limited ductility of monolithic metallic glasses and achieve large plastic strains. By subjecting a metallic glass sample to cyclic torsion, the glass is brought to the yield surface; the superposition of a small uniaxial stress (much smaller than the yield stress) should then produce increments in plastic strain along the tensile axis. This accumulation of strain during cyclic loading, commonly known as ratcheting, has been extensively investigated in stainless and carbon steel alloys, but has not been previously studied in metallic glasses. We have successfully demonstrated the application of this ratcheting technique of cyclic torsion with superimposed tension for polycrystalline Ti-6Al-4V. Our stability analyses indicate that the plastic deformation of materials exhibiting elastic--perfectly plastic constitutive behavior such as metallic glasses should be stable under cyclic torsion, however, results obtained thus far are inconclusive.

  9. Metallic Glass Cooling Inside The TEMPUS Furnace

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (1.1MB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300188.html.

  10. Metallic Glass Cooling Inside The TEMPUS Furnace

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A sample of advanced metallic glass alloy cools down during an experiment with the TEMPUS furnace on STS-94, July 7, 1997, MET:5/23:35 (approximate). The sequence shows the sample glowing, then fading to black as scientists began the process of preserving the liquid state, but lowering the temperature below the normal solidification temperature of the alloy. This process is known as undercooling. (10 second clip covering approximately 50 seconds.) TEMPUS (stands for Tiegelfreies Elektromagnetisches Prozessiere unter Schwerelosigkeit (containerless electromagnetic processing under weightlessness). It was developed by the German Space Agency (DARA) for flight aboard Spacelab. The DARA project scientist was Igon Egry. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). DARA and NASA are exploring the possibility of flying an advanced version of TEMPUS on the International Space Station. (1.1MB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300188.html.

  11. General nanomoulding with bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, Ze; Schroers, Jan

    2015-04-01

    Bulk metallic glasses (BMGs) are ideal for nanomoulding as they possess desirable strength for molds as well as for moldable materials and furthermore lack intrinsic size limitations. Despite their attractiveness, only recently Pt-based BMGs have been successfully molded into pores ranging 10-100 nm (Kumar et al 2009 Nature 457 868-72). Here, we introduce a quantitative theory, which reveals previous challenges in filling nanosized pores. This theory considers, in addition to a viscous and a capillary term, also oxidation, which becomes increasingly more important on smaller length scales. Based on this theory we construct a nanomoulding processing map for BMG, which reveals the limiting factors for BMG nanomoulding. Based on the quantitative prediction of the processing map, we introduce a strategy to reduce the capillary effect through a wetting layer, which allows us to mold non-noble BMGs below 1 μm in air. An additional benefit of this strategy is that it drastically facilitates demoulding, one of the main challenges of nanomoulding in general.

  12. Atomistic simulation of nanoformed metallic glass

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da

    2015-07-01

    The effects of forming speed and temperature on the forming mechanism and mechanics of Cu50Zr25Ti25 metallic glass are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. These effects are investigated in terms of atomic trajectories, flow field, slip vectors, internal energy, radial distribution function, and elastic recovery of nanoimprint lithography (NIL) patterns. The simulation results show that a shear transformation zone (STZ) forms at the substrate surface underneath the mold during the forming process. The STZ area increases with mold displacement (D). The movement speed of substrate atoms underneath the mold increases with increasing D value. The movement directions of substrate atoms underneath the mold are more agreeable for a larger D value. The stick-slip phenomenon becomes more obvious with increasing D value and imprint speed. The substrate energy increases with increasing imprint speed and temperature. Great NIL pattern transfer is obtained with unloading at low temperatures (e.g., room temperature).

  13. Structure and constitution of glass and steel compound in glass-metal composite

    SciTech Connect

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.; Nikiforov, Pavel A.

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  14. Ammonia-treated phosphate glasses useful for sealing to metals

    SciTech Connect

    Brow, R.K.; Day, D.E.

    1990-12-31

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  15. Ammonia-treated phosphate glasses useful for sealing to metals

    DOEpatents

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  16. High expansion coefficient glasses can be sealed to common metals

    NASA Technical Reports Server (NTRS)

    Camp, F. E.; Champman, J. W.; Hirayama, C.

    1970-01-01

    New series of high expansion coefficient glasses can be sealed by fusion onto hot surfaces of metals and alloys. Glasses have relatively low working temperatures, good chemical durability, and can be used in electrical insulators and feedthroughs to fluid or vacuum systems.

  17. Replacement of oxide glass with metallic glass for Ag screen printing metallization on Si emitter

    NASA Astrophysics Data System (ADS)

    Kim, Se Yun; Jee, Sang Soo; Lim, Ka Ram; Kim, Won Tae; Kim, Do Hyang; Lee, Eun-Sung; Kim, Young Hwan; Lee, Sang Mock; Lee, Jun Ho; Eckert, Jürgen

    2011-05-01

    Cu-Zr-based metallic glass (MG) has been applied as a binding agent of Ag paste for front contact formation in Si solar cell by screen printing process. Use of electroconductive MG binder significantly improves the quality of the contact by the formation of highly dense 10-50 nm size Ag crystallites and the noncorrugation of the emitter surface with a very shallow Ag crystallite penetration depth of 10-30 nm. Nanoscale Ag crystallites form on the emitter surface by local Si-Cu-Ag eutectic melting, leading to the formation of pyramidal pits on the Si emitter surface, followed by precipitation of Ag crystallites during cooling.

  18. Polyamorphism in Yb-based metallic glass induced by pressure

    DOE PAGES

    Li, Liangliang; Luo, Qiang; Li, Renfeng; ...

    2017-04-25

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. Furthermore, this discovery in Yb-based metallic glass, combined with the previous reportsmore » on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.« less

  19. Polyamorphism in Yb-based metallic glass induced by pressure.

    PubMed

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W; Chupas, Peter J; Wang, Luhong; Liu, Haozhe

    2017-04-25

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.

  20. Polyamorphism in Yb-based metallic glass induced by pressure

    PubMed Central

    Li, Liangliang; Luo, Qiang; Li, Renfeng; Zhao, Haiyan; Chapman, Karena W.; Chupas, Peter J.; Wang, Luhong; Liu, Haozhe

    2017-01-01

    The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses. PMID:28440339

  1. Localized crystallization in shear bands of a metallic glass.

    PubMed

    Yan, Zhijie; Song, Kaikai; Hu, Yong; Dai, Fuping; Chu, Zhibing; Eckert, Jürgen

    2016-01-13

    Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individual shear bands of Zr60Al15Ni25 metallic glass subjected to cold rolling. We find that crystallization in individual shear bands preferentially occurs in the regions neighboring the amorphous matrix, where the materials are subjected to compressive stresses demonstrated by our finite element simulations. Our results provide direct evidence that the mechanically induced crystallization kinetics is closely related with the stress state. The crystallization kinetics under compressive and tensile stresses are interpreted within the frameworks of potential energy landscape and classical nucleation theory, which reduces the role of stress state in mechanically induced crystallization in a metallic glass.

  2. Localized crystallization in shear bands of a metallic glass

    PubMed Central

    Yan, Zhijie; Song, Kaikai; Hu, Yong; Dai, Fuping; Chu, Zhibing; Eckert, Jürgen

    2016-01-01

    Stress-induced viscous flow is the characteristic of atomic movements during plastic deformation of metallic glasses in the absence of substantial temperature increase, which suggests that stress state plays an important role in mechanically induced crystallization in a metallic glass. However, it is poorly understood. Here, we report on the stress-induced localized crystallization in individual shear bands of Zr60Al15Ni25 metallic glass subjected to cold rolling. We find that crystallization in individual shear bands preferentially occurs in the regions neighboring the amorphous matrix, where the materials are subjected to compressive stresses demonstrated by our finite element simulations. Our results provide direct evidence that the mechanically induced crystallization kinetics is closely related with the stress state. The crystallization kinetics under compressive and tensile stresses are interpreted within the frameworks of potential energy landscape and classical nucleation theory, which reduces the role of stress state in mechanically induced crystallization in a metallic glass. PMID:26758530

  3. Metallic glass composition. [That does not embrittle upon annealing

    DOEpatents

    Kroeger, D.M.; Koch, C.C.

    1984-09-14

    This patent pertains to a metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon, carbon and phosphorous to which is added an amount of a ductility-enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  4. Statistical thermodynamics and atomic structure of metallic glasses

    NASA Astrophysics Data System (ADS)

    Lass, Eric Andrew

    The purpose of this research is to develop an improved atomic scale understanding of the thermodynamic and kinetic behavior of a metallic glass. A realistic link between the macroscopic and atomic behavior of a metallic glass has not yet been achieved. The most widespread model describing the amorphous state, borrowed from the description of liquids, is the free volume model. It is primarily phenomenological, and does not explain the observed properties of a metallic glass in many aspects. This is because the idea of free volume in a metallic glass is fundamentally flawed in several respects. For example, unlike in the liquid phase, atomic mobility is limited in a glass, and requires thermal activation. Recently, structural models have been developed based on the idea of efficient atomic packing. While geometric these models successfully describe atomic structure, the underlying governing principles, thermodynamics, are mitigated or often neglected. The model described in this work takes advantage of the short-range atomic order inherent in metallic glasses. Developed around the central atoms model (CAM), it uses a statistical thermodynamic approach, and can more accurately describe the amorphous state on the atomic level. Each atom is considered to be surrounded by a "cage" of nearest-neighbors (NNs). In an ideal metallic glass, these cages are described by geometrically preferred configurations. The enthalpy of each possible NN cage is calculated from the energy of a cluster of two, three, or four atoms. The structure and thermodynamics of the metallic glass are dependent on the probability distributions of NN cages. Defects, termed bond deficiencies (BDs), are introduced into the model, and are analogous to vacancies in a crystalline material, except they occupy less volume, and cost less energy to create. These defects are considered to be thermodynamically stable, and provide the primary vehicle of atomic transport. CAM is applied to ideal and defect

  5. Plasticity in the Supercooled Liquid Region of Bulk Metallic Glasses

    SciTech Connect

    Nieh, T G; Wadsworth, J; Liu, C T; Ice, G E

    2000-10-30

    Intensive efforts have been carried out over the past decade to develop means to slow down the phase transformation kinetics during the forming of metallic glasses. As a result of these efforts, some metallic glasses can now be fabricated in bulk forms (BMG) from the liquid state at cooling rates on the order of 1-10 K/s, which is close to that of conventional casting. This enables the production of bulk amorphous alloys with a thickness of {approx}10 mm. While advances in amorphous metallic alloy development have been impressive, they have been made largely through experience [1]. Three main conclusions drawn from this study are: (1) Bulk metallic glasses generally have excellent mechanical formability in the supercooled liquid region. (2) Bulk metallic glasses may not be necessarily behave like a Newtonian fluid (i.e. m=1). The non-Newtonian behavior is associated with glass instability during deformation. (3) Multi-component Bulk metallic glasses can be used as the precursor of a nanocrystalline solid. However, the nanocrystalline solid is not necessarily superplastic. The non-superplastic behavior is caused by the difficult strain accommodation at grain triple junctions.

  6. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  7. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth.

    PubMed

    Chen, L; Cao, C R; Shi, J A; Lu, Z; Sun, Y T; Luo, P; Gu, L; Bai, H Y; Pan, M X; Wang, W H

    2017-01-06

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd_{40}Ni_{10}Cu_{30}P_{20} metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  8. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  9. Ceramic-glass-metal seal by microwave heating

    DOEpatents

    Meek, T.T.; Blake, R.D.

    1983-10-04

    A method for producing a ceramic-glass-metal seal by microwaving, mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid-phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  10. Prominent β-relaxations in yttrium based metallic glasses

    SciTech Connect

    Luo, P.; Lu, Z.; Zhu, Z. G.; Li, Y. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-19

    Most metallic glasses (MGs) exhibit weak slow β-relaxation. We report the prominent β-relaxation in YNiAl metallic glass with a wide composition range. Compared with other MGs, the MGs show a pronounced β-relaxation peak and high β-relaxation peak temperature, and the β-relaxation behavior varies significantly with the changes of the constituent elements, which is attributed to the fluctuations of chemical interactions between the components. We demonstrate the correlation between the β-relaxation and the activation of flow units for mechanical behaviors of the MG and show that the MG is model system for studying some controversial issues in glasses.

  11. Ceramic-glass-metal seal by microwave heating

    DOEpatents

    Meek, Thomas T.; Blake, Rodger D.

    1985-01-01

    A method for producing a ceramic-glass-metal seal by microwaving mixes a slurry of glass sealing material and coupling agent and applies same to ceramic and metal workpieces. The slurry and workpieces are then insulated and microwaved at a power, time and frequency sufficient to cause a liquid phase reaction in the slurry. The reaction of the glass sealing material forms a chemically different seal than that which would be formed by conventional heating because it is formed by diffusion rather than by wetting of the reactants.

  12. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability.

    PubMed

    Fujita, T; Konno, K; Zhang, W; Kumar, V; Matsuura, M; Inoue, A; Sakurai, T; Chen, M W

    2009-08-14

    We report the atomic structure of a multicomponent Cu45Zr45Ag10 bulk metallic glass investigated by state-of-the-art experimental and computational techniques. In comparison with a binary Cu50Zr50 metallic glass, Zr-rich interpenetrating clusters centered by paired and stringed Ag atoms and Cu-rich icosahedra are widely observed in the ternary Cu45Zr45Ag10 alloy. The atomic-scale heterogeneity caused by chemical short- and medium-range order is found to play a key role in stabilizing the liquid phase and in improving the glass forming ability of the multicomponent alloy.

  13. Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review

    NASA Astrophysics Data System (ADS)

    Li, Ning; Chen, Wen; Liu, Lin

    2016-04-01

    Bulk metallic glasses are a fascinating class of metallic alloys with an isotropic amorphous structure that is rapidly quenched from liquid melts. The absence of a crystalline micro-structure endows them with a portfolio of properties such as high strength, high elasticity, and excellent corrosion resistance. Whereas the limited plasticity and hence poor workability at ambient temperature impede the structural application of bulk metallic glasses, the unique superplasticity within the supercooled liquid region opens an alternative window of so-called thermoplastic forming, which allows precise and versatile net-shaping of complex geometries on length scales ranging from nanometers to centimeters that were previously unachievable with conventional crystalline metal processing. Thermoplastic forming not only breaks through the bottleneck of the manufacture of bulk metallic glasses at ambient temperature but also offers an alluring prospect in micro-engineering applications. This paper comprehensively reviews some pivotal aspects of bulk metallic glasses during thermoplastic micro-forming, including an in-depth understanding of the crystallization kinetics of bulk metallic glasses and the thermoplastic processing time window, the thermoplastic forming map that clarifies the relationship between the flow characteristics and the formability, the interfacial friction in micro-forming and novel forming methods to improve the formability, and the potential applications of the hot-embossed micro-patterns/components.

  14. A microscopic continuum model for defect dynamics in metallic glasses

    NASA Astrophysics Data System (ADS)

    Acharya, Amit; Widom, Michael

    2017-07-01

    Motivated by results of the topological theory of glasses accounting for geometric frustration, we develop the simplest possible continuum mechanical model of defect dynamics in metallic glasses that accounts for topological, energetic, and kinetic ideas. A geometrical description of ingredients of the structure of metallic glasses using the concept of local order based on Frank-Kasper phases and the notion of disclinations as topological defects in these structures is proposed. This novel kinematics is incorporated in a continuum mechanical framework capable of describing the interactions of disclinations and also of dislocations (interpreted as pairs of opposite disclinations). The model is aimed towards the development of a microscopic understanding of the plasticity of such materials. We discuss the expected predictive capabilities of the model vis-a-vis some observed physical behaviors of metallic glasses.

  15. Glass ceramic-to-metal seals

    DOEpatents

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  16. High strength glass-ceramic to metal seals

    SciTech Connect

    Haws, L D; Kramer, D P; Moddeman, W E; Wooten, G W

    1986-12-01

    In many applications, ceramics are joined to other materials, especially metals. In such cases, interfacial strength is as important as the strength of each constituent material. Examples are presented for tailoring materials and processes to optimize the glass-ceramic-to-metal seal. Means for detecting defects, nondestructively, are also identified.

  17. Crystallization of heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  18. Crystallization of heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  19. Metal coated glasses by sputtering and their microfouling properties

    NASA Astrophysics Data System (ADS)

    Kougo, T.; Kanematsu, H.; Wada, N.; Hihara, T.; Minekawa, M.; Fujita, Y.

    2014-02-01

    Some elements as contaminant tend to be concentrated in biofilm. In order to prevent the fogging of glass, it is very important to control biofilm formation by metal dissolution. In this study, Metals were deposited on glass substrate by Helicon-wave-excited-plasma sputtering process. Sample was very thin metals layer like as half mirror, it could transmit light. The results of biofilm formation test, biofilm formation were inhibited on Cu, Sn and Cr, and light transmission of these samples was not degradation. It could be said that inhibition of biofilm formation was effective to suppressing cloudiness.

  20. Formation of bulk metallic glass by fluxing

    NASA Technical Reports Server (NTRS)

    Kui, H. W.; Turnbull, D.; Greer, A. L.

    1984-01-01

    Bulk specimens (0.4-4 g mass) of the alloy Pd40Ni40P20 have been undercooled consistently to the glass state, with no detectable superficial crystallinity, in a molten flux of dehydrated boron oxide. The minimum dimension of the most massive glass specimen, so formed, was 1.0 cm. The absence of crystallinity in the specimens was confirmed by X-ray diffraction, scanning electron microscopy, and calorimetry.

  1. High-throughput drawing and testing of metallic glass nanostructures.

    PubMed

    Hasan, Molla; Kumar, Golden

    2017-03-02

    Thermoplastic embossing of metallic glasses promises direct imprinting of metal nanostructures using templates. However, embossing high-aspect-ratio nanostructures faces unworkable flow resistance due to friction and non-wetting conditions at the template interface. Herein, we show that these inherent challenges of embossing can be reversed by thermoplastic drawing using templates. The flow resistance not only remains independent of wetting but also decreases with increasing feature aspect-ratio. Arrays of assembled nanotips, nanowires, and nanotubes with aspect-ratios exceeding 1000 can be produced through controlled elongation and fracture of metallic glass structures. In contrast to embossing, the drawing approach generates two sets of nanostructures upon final fracture; one set remains anchored to the metallic glass substrate while the second set is assembled on the template. This method can be readily adapted for high-throughput fabrication and testing of nanoscale tensile specimens, enabling rapid screening of size-effects in mechanical behavior.

  2. Relating Dynamic Properties to Atomic Structure in Metallic Glasses

    SciTech Connect

    Sheng, H.W.; Ma, E.; Kramer, Matthew J.

    2012-07-18

    Atomic packing in metallic glasses is not completely random but displays various degrees of structural ordering. While it is believed that local structures profoundly affect the properties of glasses, a fundamental understanding of the structure–property relationship has been lacking. In this article, we provide a microscopic picture to uncover the intricate interplay between structural defects and dynamic properties of metallic glasses, from the perspective of computational modeling. Computational methodologies for such realistic modeling are introduced. Exploiting the concept of quasi-equivalent cluster packing, we quantify the structural ordering of a prototype metallic glass during its formation process, with a new focus on geometric measures of subatomic “voids.” Atomic sites connected with the voids are found to be crucial in terms of understanding the dynamic, including vibrational and atomic transport, properties. Normal mode analysis is performed to reveal the structural origin of the anomalous boson peak (BP) in the vibration spectrum of the glass, and its correlation with atomic packing cavities. Through transition-state search on the energy landscape of the system, such structural disorder is found to be a facilitating factor for atomic diffusion, with diffusion energy barriers and diffusion pathways significantly varying with the degree of structural relaxation/ordering. The implications of structural defects for the mechanical properties of metallic glasses are also discussed.

  3. Computational studies of the glass-forming ability of model bulk metallic glasses.

    PubMed

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D; O'Hern, Corey S

    2013-09-28

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate R(c) below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing R(c), and thus good glass-formers possess small values of R(c). We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change R(c) significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ~10(11) K/s, which is several orders of magnitude higher than R(c) for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  4. Computational studies of the glass-forming ability of model bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Minglei; Papanikolaou, Stefanos; Liu, Yanhui; Schroers, Jan; Shattuck, Mark D.; O'Hern, Corey S.

    2013-09-01

    Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate Rc below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing Rc, and thus good glass-formers possess small values of Rc. We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change Rc significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ˜1011 K/s, which is several orders of magnitude higher than Rc for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.

  5. Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites

    NASA Astrophysics Data System (ADS)

    Stalmashonak, Andrei; Seifert, Gerhard; Abdolvand, Amin

    Glasses and other dielectrics containing metallic nanoparticles are very promising materials for applications in optoelectronics due to their unique linear and non-linear optical properties. These properties are dominated by the strong surface plasmon resonance (SPR) of the metal nanoparticles. The SPR occurs when the electron and light waves couple with each other at a metal-dielectric interface. These are regarded as the collective oscillation of the nanoparticle (NP) electrons.

  6. Partial Coordination Numbers in Binary Metallic Glasses (Postprint)

    DTIC Science & Technology

    2011-12-07

    AFRL-RX-WP-JA-2015-0115 PARTIAL COORDINATION NUMBERS IN BINARY METALLIC GLASSES (POSTPRINT) Daniel B. Miracle AFRL/RXCM Kevin Laws...Approved for public release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY ©2011 The Minerals , Metals...2011 The Minerals , Metals & Materials Society and ASM International. The U.S. Government is joint author of the work and has the right to use

  7. Correlation Between Local Structure and Boson Peak in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ahmad, Azkar Saeed; Zhao, Xiangnan; Xu, Mingxiang; Zhang, Dongxian; Hu, Junwen; Fecht, Hans J.; Wang, Xiaodong; Cao, Qingping; Jiang, J. Z.

    2017-01-01

    We made a systematic study of the boson peak for six different Zr-based metallic glasses and found a universal correlation between average local atomic structure and boson peak. It is found that the boson peak can be decomposed into six characteristic vibratory modes, i.e., Debye's vibratory mode and five Einstein's vibratory modes. By using the Ioffe-Regel condition over all studied Zr-based metallic glasses, we reveal that atomic pair correlation function exactly maps on the low-temperature dynamics and the origin of the boson peak, which is the sum of vibrations of local density fluctuation domains in the glasses. In addition, it is found that the Debye's type oscillators are the major contributors to the low-temperature specific heat capacities. This study opens a new way of understanding the relationship of the physical properties with the atomic arrangements in glasses.

  8. Recent advances in bulk metallic glasses for biomedical applications.

    PubMed

    Li, H F; Zheng, Y F

    2016-05-01

    With a continuously increasing aging population and the improvement of living standards, large demands of biomaterials are expected for a long time to come. Further development of novel biomaterials, that are much safer and of much higher quality, in terms of both biomedical and mechanical properties, are therefore of great interest for both the research scientists and clinical surgeons. Compared with the conventional crystalline metallic counterparts, bulk metallic glasses have unique amorphous structures, and thus exhibit higher strength, lower Young's modulus, improved wear resistance, good fatigue endurance, and excellent corrosion resistance. For this purpose, bulk metallic glasses (BMGs) have recently attracted much attention for biomedical applications. This review discusses and summarizes the recent developments and advances of bulk metallic glasses, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based alloying systems for biomedical applications. Future research directions will move towards overcoming the brittleness, increasing the glass forming ability (GFA) thus obtaining corresponding bulk metallic glasses with larger sizes, removing/reducing toxic elements, and surface modifications. Bulk metallic glasses (BMGs), also known as amorphous alloys or liquid metals, are relative newcomers in the field of biomaterials. They have gained increasing attention during the past decades, as they exhibit an excellent combination of properties and processing capabilities desired for versatile biomedical implant applications. The present work reviewed the recent developments and advances of biomedical BMGs, including Ti-based, Zr-based, Fe-based, Mg-based, Zn-based, Ca-based and Sr-based BMG alloying systems. Besides, the critical analysis and in-depth discussion on the current status, challenge and future development of biomedical BMGs are included. The possible solution to the BMG size limitation, the brittleness of BMGs has been

  9. Rejuvenation of metallic glasses by non-affine thermal strain.

    PubMed

    Ketov, S V; Sun, Y H; Nachum, S; Lu, Z; Checchi, A; Beraldin, A R; Bai, H Y; Wang, W H; Louzguine-Luzgin, D V; Carpenter, M A; Greer, A L

    2015-08-13

    When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually deleterious. Glasses are the solids that form on cooling a liquid if crystallization is avoided--they might be considered the ultimate, uniform solids, without the microstructural features and defects associated with polycrystals. Here we explore the effects of cryogenic thermal cycling on glasses, specifically metallic glasses. We show that, contrary to the null effect expected from uniformity, thermal cycling induces rejuvenation, reaching less relaxed states of higher energy. We interpret these findings in the context that the dynamics in liquids become heterogeneous on cooling towards the glass transition, and that there may be consequent heterogeneities in the resulting glasses. For example, the vibrational dynamics of glassy silica at long wavelengths are those of an elastic continuum, but at wavelengths less than approximately three nanometres the vibrational dynamics are similar to those of a polycrystal with anisotropic grains. Thermal cycling of metallic glasses is easily applied, and gives improvements in compressive plasticity. The fact that such effects can be achieved is attributed to intrinsic non-uniformity of the glass structure, giving a non-uniform coefficient of thermal expansion. While metallic glasses may be particularly suitable for thermal cycling, the non-affine nature of strains in glasses in general deserves further study, whether they are induced by applied stresses or by temperature change.

  10. Glass-to-Metal Seal Against Liquid Helium

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Gatewood, John R.

    1987-01-01

    Simple compression joint with indium gasket forms demountable seal for superfluids. Seal developed for metal lid on glass jar used in experiments on liquid helium. Glass container allows contents to be viewed for such purposes as calibration of liquid-level detectors and adjustments of displacement plungers. Seal contains liquid helium even when temperature drops below 2.19K. Made from inexpensive, commercially available materials and parts.

  11. Relaxation Behavior of Ca-Based Bulk Metallic Glasses (Postprint)

    DTIC Science & Technology

    2009-09-03

    DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) April 2014 Interim 19 March 2014 – 31 March 2014 4. TITLE AND SUBTITLE RELAXATION...liquids.[2 4] Almost all bulk metallic glasses show intermediate fragile behavior.[ 5 ] Slow kinet- ics of crystallization due to high viscosity/high...on u is used to calculate the activation enthalpy of structural relax- ation, DHg, at the glass transition: [17] DHg ¼ R d lnu d 1 . Tcalg ½ 5

  12. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.

    PubMed

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin

    2016-06-22

    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  13. Relaxation Behavior of Ca-Based Bulk Metallic Glasses (Preprint)

    DTIC Science & Technology

    2009-04-01

    Almost all bulk metallic glasses show intermediate fragile behavior [ 5 The fragile behavior of supercooled glass forming liquids can generally be...transition [17 ( )calgg Td dRH 1 lnϕ −=∆ ]: ( 5 ) where R is the gas constant. The calorimetric fragility index mc is then often calculated as: mc...temperatures of the start and the end of the glass transition, respectively, and τg = 1000 s. Equation (6) is equivalent to Equation 4 5 (2) only if ∆Tg

  14. Ordering and dimensional crossovers in metallic glasses and liquids

    NASA Astrophysics Data System (ADS)

    Chen, David Z.; An, Qi; Goddard, William A.; Greer, Julia R.

    2017-01-01

    The atomic-level structures of liquids and glasses are amorphous, lacking long-range order. We characterize the atomic structures by integrating radial distribution functions (RDF) from molecular dynamics (MD) simulations for several metallic liquids and glasses: C u46Z r54 , N i80A l20 , N i33.3Z r66.7 , and P d82S i18 . Resulting cumulative coordination numbers (CN) show that metallic liquids have a dimension of d =2.55 ±0.06 from the center atom to the first coordination shell and metallic glasses have d =2.71 ±0.04 , both less than 3. Between the first and second coordination shells, both phases crossover to a dimension of d =3 , as for a crystal. Observations from discrete atom center-of-mass position counting are corroborated by continuously counting Cu glass- and liquid-phase atoms on an artificial grid, which accounts for the occupied atomic volume. Results from Cu grid analysis show short-range d =2.65 for Cu liquid and d =2.76 for Cu glass. Cu grid structures crossover to d =3 at ξ ˜8 Å (˜3 atomic diameters). We study the evolution of local structural dimensions during quenching and discuss its correlation with the glass transition phenomenon.

  15. Melt-Quenched Hybrid Glasses from Metal-Organic Frameworks.

    PubMed

    Tao, Haizheng; Bennett, Thomas D; Yue, Yuanzheng

    2017-05-01

    While glasses formed by quenching the molten states of inorganic non-metallic, organic, and metallic species are known, those containing both inorganic and organic moieties are far less prevalent. Network materials consisting of inorganic nodes linked by organic ligands do however exist in the crystalline or amorphous domain. This large family of open framework compounds, called metal-organic frameworks (MOFs) or coordination polymers, has been investigated intensively in the past two decades for a variety of applications, almost all of which stem from their high internal surface areas and chemical versatility. Recently, a selection of MOFs has been demonstrated to undergo melting and vitrification upon cooling. Here, these recent discoveries and the connections between the fields of MOF chemistry and glass science are summarized. Possible advantages and applications for MOF glasses produced by utilizing the tunable chemistry of the crystalline state are also highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  17. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  18. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  19. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

    SciTech Connect

    Zhao, K.; Xia, X. X.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2011-04-04

    We report a high entropy metallic glass of Zn{sub 20}Ca{sub 20}Sr{sub 20}Yb{sub 20}(Li{sub 0.55}Mg{sub 0.45}){sub 20} via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

  20. Role of Alloying Additions in Glass Formation and Properties of Bulk Metallic Glasses

    PubMed Central

    Chen, Na; Martin, Laura; Luzguine-Luzgin, Dmitri V.; Inoue, Akihisa

    2010-01-01

    Alloying addition, as a means of improving mechanical properties and saving on costs of materials, has been applied to a broad range of uses and products in the metallurgical fields. In the field of bulk metallic glasses (BMGs), alloying additions have also proven to play effective and important roles in promoting glass formation, enhancing thermal stability and improving plasticity of the materials. Here, we review the work on the role of alloying additions in glass formation and performance improvement of BMGs, with focus on our recent results of alloying additions in Pd-based BMGs. PMID:28883386

  1. Lithium and Sodium Resistance of Alkali Metal Vapor Resistant Glasses

    NASA Astrophysics Data System (ADS)

    Kishinevski, Anatoly; Hall, Matthew

    2014-05-01

    A common challenge in atomic physics is that of containing an alkali metal vapor at an elevated temperature and concurrently being able to excite and probe atomic transitions within. Typically glass is used as the material to construct the container, as it is easy to manipulate into any geometry and offers thermal, mechanical, and optical properties that no other material is capable. Unfortunately it has been well established that alkali metal gasses/vapors react readily with silica containing glass and results in a progressive darkening of the material. As the darkening reaction progresses, the optical transmission properties of the glass progressively degrade to an eventual point of uselessness. Alkali metals have been used extensively in frequency standards and magnetometers. The finite life of these alkali metal vapor-containing devices has been accepted despite varying attempts by different teams to solve this problem. As a viable solution, it has been identified there exist a family of glass compositions that contain a marginal amount of silica, may be lampworked using traditional glassblowing techniques, and that offer substantially better alkali vapor resistance. The evaluation of these glasses and their resistance to sodium and lithium vapor at varying pressures and temperatures are discussed.

  2. EFFECTS OF TEST TEMPERATURE ON FLOW OF METALLIC GLASSES

    SciTech Connect

    A.S. NOURI; Y. LIU; P. WESSELING; J. LEWANDOWSKI

    2006-04-12

    Micro-hardness experiments were conducted over a range of temperatures using a Nikon QM micro-hardness machine on a number of metallic glass (e.g. Zr-, Fe-, Al-) systems. Although high micro-hardness was exhibited at room temperature, significant hardness reductions were exhibited near the glass transition temperature, T{sub g}. The effects of changes in test temperature on the micro-hardness will be reported. The effects of exposure time on the hardness evolution at a given temperature will also be summarized to illustrate some of the differences in behavior of the systems shown. The extreme softening near T{sub g}, characteristic of bulk metallic glass systems, enables the exploration of novel deformation processing. In order to develop deformation processing windows, the evaluation of bulk metallic glass mechanical properties under quasi-static conditions and the determination of flow properties at different temperatures and strain rates are reported. The use of such information to create layered/composite bulk metallic glasses will be summarized.

  3. Structural features of plastic deformation in bulk metallic glasses

    SciTech Connect

    Scudino, S. Shakur Shahabi, H.; Stoica, M.; Kühn, U.; Kaban, I.; Escher, B.; Eckert, J.; Vaughan, G. B. M.

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  4. Atomistic mechanisms of cyclic hardening in metallic glass

    NASA Astrophysics Data System (ADS)

    Deng, Chuang; Schuh, Christopher A.

    2012-06-01

    Molecular dynamics with an embedded-atom method potential is used to simulate the nanoindentation of Cu63.5Zr36.5 metallic glasses. In particular, the effects of cyclic loading within the nominal elastic range on the overall strength and plasticity of metallic glass are studied. The simulated results are in line with the characteristics of experimentally observed hardening effects. In addition, analysis based on local von Mises strain suggests that the hardening is induced by confined microplasticity and stiffening in regions of the originally preferred yielding path, requiring a higher applied load to trigger a secondary one.

  5. Nanoscale patterning of metal nanoparticle distribution in glasses

    PubMed Central

    2013-01-01

    We show that electric field imprinting technique allows for patterning of metal nanoparticles in the glass matrix at the subwavelength scale. The formation of glass-metal nanocomposite strips with a width down to 150 nm is demonstrated. The results of near-field microscopy of imprinted patterns are in good agreement with the performed numerical modeling. Atomic force microscopy reveals that imprinting also results in the formation of nanoscale surface profile with the height going down with the decrease of the strip width. The experiments prove the applicability of this technique for the fabrication of nanoscale plasmonic components. PMID:23724801

  6. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1986-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  7. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, Robert C.

    1988-01-01

    Amorphous metallic precipitates having the formula (M.sub.1).sub.a (M.sub.2).sub.b wherein M.sub.1 is at least one transition metal, M.sub.2 is at least one main group metal and the integers "a" and "b" provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  8. Synthesis of new amorphous metallic spin glasses

    DOEpatents

    Haushalter, R.C.

    1985-02-11

    Disclosed are: amorphous metallic precipitates having the formula (M/sub 1/)/sub a/(M/sub 2/)/sub b/ wherein M/sub 1/ is at least one transition metal, M/sub 2/ is at least one main group metal and the integers ''a'' and ''b'' provide stoichiometric balance; the precipitates having a degree of local order characteristic of chemical compounds from the precipitation process and useful electrical and mechanical properties.

  9. Structural Anisotropy in Metallic Glasses Induced by Mechanical Deformation

    SciTech Connect

    Dmowski, Wojtek; Egami, Takeshi

    2008-01-01

    Metallic glasses have been studied vigorously since the first report on amorphous gold-silicon alloy back in 1960.[1] Initially soft magnetic properties were the most promising features for industrial applications. The recent development of bulk metallic glasses (BMGs)[2 5] initiated interests in engineering applications such as structural or biomedical materials because of attractive properties such as high strength,[6] high elasticity,[7,8] and good corrosion resistance,[9,10] among others. In addition, high temperature processing of BMGs allows for near-net-shape formability,[11 13] which could simplify and possibly reduce the cost of the final product. The glasses retain the disordered atomic structure of a liquid, and ideally are isotropic solids. Frequently because of processing conditions, such as directional heat flow, some structural anisotropy is produced during quenching, and has been observed by structural investigations. Usually, annealing at high temperatures results in an isotropic structure. Also, formation of uniaxial magnetic anisotropy[14] had been observed in studies of creep deformed ferromagnetic metallic glasses. Samples with a near-zero magnetostriction coefficient had been studied to establish the origin of the magnetic anisotropy. It was concluded that anisotropy resulted from the atomic level anisotropy[15] and not the heterogeneous internal stress distribution. Indeed X-ray diffraction study of the creep deformed metallic glass showed bond anisotropy.[ 16,17] Such structural studies had been cumbersome and lengthy because they required measurement of many orientations with high statistics. Recently we have shown that use of an area detector and high energy X-rays at a synchrotron source can speed up data collection without compromising statistics.[18] In this contribution, we present data showing structural anisotropy in glassy samples after homogenous (creep) and inhomogeneous (compression) mechanical deformation. The observation of the

  10. High-rate squeezing process of bulk metallic glasses

    PubMed Central

    Fan, Jitang

    2017-01-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials. PMID:28338092

  11. High-rate squeezing process of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Jitang

    2017-03-01

    High-rate squeezing process of bulk metallic glasses from a cylinder into an intact sheet achieved by impact loading is investigated. Such a large deformation is caused by plastic flow, accompanied with geometrical confinement, shear banding/slipping, thermo softening, melting and joining. Temperature rise during the high-rate squeezing process makes a main effect. The inherent mechanisms are illustrated. Like high-pressure torsion (HPT), equal channel angular pressing (ECAP) and surface mechanical attrition treatments (SMAT) for refining grain of metals, High-Rate Squeezing (HRS), as a multiple-functions technique, not only creates a new road of processing metallic glasses and other metallic alloys for developing advanced materials, but also directs a novel technology of processing, grain refining, coating, welding and so on for treating materials.

  12. Superconducting property of Zr-Co-Al-Nb metallic glasses

    NASA Astrophysics Data System (ADS)

    Okai, D.; Nagai, R.; Motoyama, G.; Kimura, H. M.; Inoue, A.

    2011-11-01

    The superconducting property of Zr55Co(30-x)Al15Nbx (x = 0-20 at.%) metallic glasses fabricated by rapid solidification was investigated. The Zr55Co(30-x)Al15Nbx (x = 5-20 at.%) metallic glasses with a mixture structure of amorphous and nanocrystal phases exhibited superconductivity of Tc,on = 1.8-2.6 K. The maximum Tc,on = 2.6 K was obtained for the Zr55Co10Al15Nb20 metallic glass. This was attributable to the superconducting property of nanocrystalline particles contained in the Zr55Co10Al15Nb20 alloy. The increase of Nb element in the Zr55Co(30-x)Al15Nbx alloy led to the increase of Tc,on and the decrease of glass transition temperature. The glass transition temperature was between 704 and 749 K for the Zr55Co(30-x)Al15Nbx (x = 0-20 at.%) alloys. The temperature interval of supercooled liquid state was between 51 and 68 K for the Zr55Co(30-x)Al15Nbx (x = 0-20 at.%) alloys.

  13. Combinatorial Strategies for the Development of Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Ding, Shiyan

    The systematic identification of multi-component alloys out of the vast composition space is still a daunting task, especially in the development of bulk metallic glasses that are typically based on three or more elements. In order to address this challenge, combinatorial approaches have been proposed. However, previous attempts have not successfully coupled the synthesis of combinatorial libraries with high-throughput characterization methods. The goal of my dissertation is to develop efficient high-throughput characterization methods, optimized to identify glass formers systematically. Here, two innovative approaches have been invented. One is to measure the nucleation temperature in parallel for up-to 800 compositions. The composition with the lowest nucleation temperature has a reasonable agreement with the best-known glass forming composition. In addition, the thermoplastic formability of a metallic glass forming system is determined through blow molding a compositional library. Our results reveal that the composition with the largest thermoplastic deformation correlates well with the best-known formability composition. I have demonstrated both methods as powerful tools to develop new bulk metallic glasses.

  14. Evolution of elastic heterogeneity during aging in metallic glasses.

    PubMed

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2014-06-01

    The properties of glasses vary widely depending on the way they are prepared, even though their structures appear similar. We show that the local potential energy landscape (PEL) sensitively reflects the stability differences through simulation of local structural excitation in a model metallic glass. It is observed that the spectrum of local structural excitation develops a pseudogap at low energies as the glass becomes more stable. We also demonstrate that the spatial variation of the atomic level shear modulus, rather than the distribution of the magnitude of the single atom shear modulus, is more closely related to the nature of the PEL and the stabilities of glasses. In particular, local aggregation of atoms with low shear modulus greatly contributes to instability of the system.

  15. Evolution of elastic heterogeneity during aging in metallic glasses

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2014-06-01

    The properties of glasses vary widely depending on the way they are prepared, even though their structures appear similar. We show that the local potential energy landscape (PEL) sensitively reflects the stability differences through simulation of local structural excitation in a model metallic glass. It is observed that the spectrum of local structural excitation develops a pseudogap at low energies as the glass becomes more stable. We also demonstrate that the spatial variation of the atomic level shear modulus, rather than the distribution of the magnitude of the single atom shear modulus, is more closely related to the nature of the PEL and the stabilities of glasses. In particular, local aggregation of atoms with low shear modulus greatly contributes to instability of the system.

  16. Soldering of Thin Film-Metallized Glass Substrates

    SciTech Connect

    Hosking, F.M.; Hernandez, C.L.; Glass, S.J.

    1999-03-31

    The ability to produce reliable electrical and structural interconnections between glass and metals by soldering was investigated. Soldering generally requires premetallization of the glass. As a solderable surface finish over soda-lime-silicate glass, two thin films coatings, Cr-Pd-Au and NiCr-Sn, were evaluated. Solder nettability and joint strengths were determined. Test samples were processed with Sn60-Pb40 solder alloy at a reflow temperature of 210 C. Glass-to-cold rolled steel single lap samples yielded an average shear strength of 12 MPa. Solder fill was good. Control of the Au thickness was critical in minimizing the formation of AuSn{sub 4} intermetallic in the joint, with a resulting joint shear strength of 15 MPa. Similar glass-to-glass specimens with the Cr-Pd-Au finish failed at 16.5 MPa. The NiCr-Sn thin film gave even higher shear strengths of 20-22.5 MPa, with failures primarily in the glass.

  17. Diffusion between glass and metals for optical fiber preform extrusion

    NASA Astrophysics Data System (ADS)

    Yeo, Felicia Yan Xin; Zhang, Zhifeng; Kumar Chakkathara Janardhanan Nair, Dileep; Zhang, Yilei

    2015-07-01

    When silica is extruded, diffusion of metal atoms into silica results contamination to the silica being heated, and thus is a serious concern for the glass extrusion process, such as extrusion of glass fiber preform. This paper examines diffusion between fused silica and two high strength metals, the stainless steel SS410 and the superalloy Inconel 718, at 1000 °C and under the normal atmosphere condition by SEM and Electron Dispersion Spectrum. It is found that diffusion occurs between silica and SS410, and at the same time, SS410 is severely oxidized during diffusion experiment. On the contrary, the diffusion between Inconel 718 and silica is unnoticeable, suggesting excellent high temperature performance of Inconel 718 for glass extrusion.

  18. Predicting Novel Bulk Metallic Glasses via High- Throughput Calculations

    NASA Astrophysics Data System (ADS)

    Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J.; Schroers, J.; Curtarolo, S.

    Bulk metallic glasses (BMGs) are materials which may combine key properties from crystalline metals, such as high hardness, with others typically presented by plastics, such as easy processability. However, the cost of the known BMGs poses a significant obstacle for the development of applications, which has lead to a long search for novel, economically viable, BMGs. The emergence of high-throughput DFT calculations, such as the library provided by the AFLOWLIB consortium, has provided new tools for materials discovery. We have used this data to develop a new glass forming descriptor combining structural factors with thermodynamics in order to quickly screen through a large number of alloy systems in the AFLOWLIB database, identifying the most promising systems and the optimal compositions for glass formation. National Science Foundation (DMR-1436151, DMR-1435820, DMR-1436268).

  19. Kinetics, Thermodynamics, and Structure of Bulk Metallic Glass Forming Liquids

    NASA Astrophysics Data System (ADS)

    Busch, Ralf; Gallino, Isabella

    2017-09-01

    Bulk metallic glass forming melts are viscous liquids compared with pure metals and conventional alloys. They show intermediate kinetic fragility and low thermodynamic driving force for crystallization, leading to sluggish crystallization kinetics, leaving time for good glass forming ability and bulk casting thickness. We relate the kinetics to the thermodynamics of the supercooled liquid using the Adam-Gibbs equation. The kinetic fragility is also connected to the structural changes in the liquid and can be quantitatively linked to the robustness of medium-range order in the supercooled liquid with increasing temperature. Liquid-liquid transitions from fragile behavior at high temperature to strong behavior at low temperature in the supercooled liquid and in the vicinity of the glass transition emerge as a common phenomenon.

  20. The properties of metal-reinforced glass ionomer materials.

    PubMed

    Chung, K H

    1993-01-01

    The physical properties and bond strengths of two glass ionomer materials reinforced with silver and amalgam alloy powders were compared with those of a conventional material from the same manufacture as well as two commercially available products. The diametral tensile strength, hardness and bonding strength are improved with the addition of either commercial available silver particles or fabricated high-copper amalgam alloy powders to the glass. Simple mixture of the metal or alloy powders with the glass ionomer cement seems to be feasible to improve the properties of the regular cement. However, further studies in formulating an optimal composition of metal or alloy, setting characteristics and long-term clinical evaluation are necessary before proposing uses for this new material.

  1. Formation of nanostructured metallic glass thin films upon sputtering.

    PubMed

    Ketov, Sergey V; Joksimovic, Rastko; Xie, Guoqiang; Trifonov, Artem; Kurihara, Kazue; Louzguine-Luzgin, Dmitri V

    2017-01-01

    Morphology evolution of the multicomponent metallic glass film obtained by radio frequency (RF) magnetron sputtering was investigated in the present work. Two modes of metallic glass sputtering were distinguished: smooth film mode and clustered film mode. The sputtering parameters, which have the most influence on the sputtering modes, were determined. As a result, amorphous Ni-Nb thin films with a smooth surface and nanoglassy structure were deposited on silica float glass and Si substrates. The phase composition of the target appeared to have a significant influence on the chemical composition of the deposited amorphous thin film. The differences in charge transport and nanomechanical properties between the smooth and nanoglassy Ni-Nb film were also determined.

  2. Design of Cu8Zr5-based bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Xia, J. H.; Wang, Q.; Dong, C.; Chen, L. Y.; Ou, X.; Liu, J. F.; Jiang, J. Z.; Klementiev, K.; Saksl, K.; Franz, H.; Schneider, J. R.; Gerward, L.

    2006-06-01

    Basic polyhedral clusters have been derived from intermetallic compounds at near-eutectic composition by considering a dense packing and random arrangement of atoms at shell sites. Using such building units, bulk metallic glasses can be formed. This strategy was verified in the Cu-Zr binary system, where we have demonstrated the existence of Cu8Zr5 icosahedral clusters in Cu61.8Zr38.2, Cu64Zr36, and Cu64.5Zr35.5 amorphous alloys. Furthermore, ternary bulk metallic glasses can be developed by doping the basic Cu-Zr alloy with a minority element. This hypothesis was confirmed in systems (Cu0.618Zr0.382)100-xNbx, where x =1.5 and 2.5at.%, and (Cu0.618Zr0.382)98Sn2. The present results may open a route to prepare amorphous alloys with improved glass forming ability.

  3. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOEpatents

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  4. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    SciTech Connect

    Shanthi, M.; Gupta, M.; Jarfors, A. E. W.; Tan, M. J.

    2011-01-17

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their low density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.

  5. Structural anisotropy in metallic glasses induced by mechanical deformation

    SciTech Connect

    Dmowski, W.; Egami, T.

    2009-03-06

    We observed structural anisotropy in metallic glasses samples deformed by homogenous mechanical creep and by inhomogeneous compression using high energy X-ray diffraction. Pair distribution function analysis indicates bond anisotropy in the first atomic shell. This suggests that mechanical deformation involves rearrangements in a cluster of atoms by a bond reformation.

  6. Key factors affecting mechanical behavior of metallic glass nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-01

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors.

  7. Focus: Nucleation kinetics of shear bands in metallic glass.

    PubMed

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  8. Key factors affecting mechanical behavior of metallic glass nanowires.

    PubMed

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-30

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors.

  9. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  10. Focus: Nucleation kinetics of shear bands in metallic glass

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Perepezko, J. H.

    2016-12-01

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  11. Key factors affecting mechanical behavior of metallic glass nanowires

    PubMed Central

    Zhang, Qi; Li, Qi-Kai; Li, Mo

    2017-01-01

    Both strengthening and weakening trends with decreasing diameter have been observed for metallic glass nanowires, sometimes even in the samples with the same chemical composition. How to reconcile the results has reminded a puzzle. Since the detailed stress state and microstructure of metallic glass nanowires may differ from each other significantly depending on preparation, to discover the intrinsic size effect it is necessary to study metallic glass nanowires fabricated differently. Here we show the complex size effects from one such class of metallic glass nanowires prepared by casting using molecular dynamics simulations. As compared with the nanowires of the same composition prepared by other methods, the cast nanowires deform nearly homogeneously with much lower strength but better ductility; and also show strengthening in tension but weakening in compression with decreasing wire diameter. The subtle size dependence is shown to be related to the key factors including internal and surface stress state, atomic structure variation, and presence of various gradients. The complex interplay of these factors at decreasing size leads to the different deformation behaviors. PMID:28134292

  12. Producing Magnesium Metallic Glass By Disintegrated Melt Deposition

    NASA Astrophysics Data System (ADS)

    Shanthi, M.; Gupta, M.; Jarfors, A. E. W.; Tan, M. J.

    2011-01-01

    Bulk metallic glasses are new class of engineering materials that exhibit high resistance to crystallization in the under cooled liquid state. The development of bulk metallic glasses of thickness 1cm or less has opened new doors for fundamental studies of both liquid state and glass transition previously not feasible in metallic materials. Moreover, bulk metallic glasses exhibit superior hardness, strength, specific strength, and elastic strain limit, along with good corrosion and wear resistance. Thus they are potential candidates in various sports, structural, engineering and medical applications. Among several BMGs investigated, magnesium-based BMGs have attracted considerable attention because of their low density and superior mechanical properties. The major drawback of this magnesium based BMGs is poor ductility. This can be overcome by the addition of ductile particles/reinforcement to the matrix. In this study, a new technique named disintegrated melt deposition technique was used to synthesize magnesium based BMGs. Rods of different sizes are cast using the current method. Mechanical characterization studies revealed that the amorphous rods produced by the current technique showed superior mechanical properties.

  13. Glass transition temperature of bulk metallic glasses: A linear connection with the mixing enthalpy

    NASA Astrophysics Data System (ADS)

    Li, Xuelian; Bian, Xiufang; Hu, Lina; Wu, Yuqin; Guo, Jing; Zhang, Junyan

    2007-05-01

    A linear relationship is found between the glass transition temperature Tg and the absolute value of the mixing enthalpy, |ΔHchem|, for bulk metallic glass systems. The increasing (or lowering) of Tg with an admixture of metals or other elements manifests itself in the larger (or smaller) of |ΔHchem| in a given system. The results indicate that the composition dependence of Tg results from the change of excess entropy (Sex) during thermal excitation. The |ΔHchem|, which relates to the strength of interaction among different atoms, corresponds to part of the Sex at Tg [Sex(Tg)]. The glass transition temperatures for Cu-Zr (Hf)-, Zr-Cu-, and La-Al-based glassy alloys are correlated with the interaction intensity between their based binary eutectic compositions, respectively.

  14. Plastic Deformation in Zirconium Based Metallic Glasses via Nanoindentation

    NASA Astrophysics Data System (ADS)

    Melgarejo-Pinto, Zenon Humberto

    Since the discovery in 1960 of Au-Si amorphous alloy by rapidly quenching with cooling rates up to 106 K/s metallic glasses became as an important research topic in the materials science community because of their intriguing processing routes, structure and properties. Recently, new multicomponent glassy- alloy systems, bulk metallic glasses (BMGs), appeared with lower critical cooling rates (103 to 1 K/s) and superlative properties, such as corrosion resistance, biocompatibility, and high strength/modulus ratio. Nevertheless, low temperature brittleness remains a concern. This brittleness comes from the tendency of plastic deformation to concentrate into extremely narrow shear bands. The present research pursues a better understanding of plastic deformation in metallic glasses (MGs) by studying, via nanoindentation, the effect of thermal history, composition, and loading paths on the mechanical behavior of Zr-based MGs. Differential scanning calorimeter (DSC) analysis helps to assess structural relaxation near glass transition temperature (T g). Broadband nanoindentation creep (BNC) and load transient nanoindentation experiments contribute to characterize the hardness-strain rate behavior and indentation size effects, respectively. As-cast Zr 50Cu45Al5 (at. %) metallic glasses evidenced hardness-strain rate loading path dependence, which gradually disappears by effect of the annealing treatments. Back-stresses effect is theorized as the cause of load path dependence behavior. Relaxation effect at low and high strain rates in BNC traces and load ramps "overshoots" in transient experiments enabled to confirm structural changes during mechanical deformation, which is not considered by thermal activation models of deformation. Most of the Zr-based metallic glasses exhibited measurable overshoot indentation size effect. Nonetheless, creep fraction size effect was observed just in as-cast Zr50Cu45Al5 alloys. Rheological mechanical model helps to both characterize the

  15. Crystallization Kinetics of Two Metallic Glasses by Mossbauer Spectroscopy.

    DTIC Science & Technology

    1981-03-07

    AOAIOO 818 AIR FORCE INST OF TECH 5R1544T-PATTERSCOi APS ON SCHOO-.ETC F/ S 1/ft B CRYSTALLIZATION KINETICS OF TWO METALLIC $LASSES BY MOSSBAUER...PTS CFRA& PTI(C TAR U:-,nnounced J117tificniticfl- -- -CRYSTALLIZATION KINETICS OF TWO - METALLIC GLASSES BY N103SBAUER SPECT RO SCOP7. / Thesisw SDeni...E:- Belier AFIT/GNE/PH-/81M-l 7t Captahn USAF ID t Approved for public release; distribution unlim.ni1. CRYSTALLIZATION KINETICS OF TWO METALLIC

  16. Photo-induced-heat localization on nanostructured metallic glasses

    NASA Astrophysics Data System (ADS)

    Uzun, Ceren; Kahler, Niloofar; de Peralta, Luis Grave; Kumar, Golden; Bernussi, Ayrton A.

    2017-09-01

    Materials with large photo-thermal energy conversion efficiency are essential for renewable energy applications. Photo-excitation is an effective approach to generate controlled and localized heat at relatively low excitation optical powers. However, lateral heat diffusion to the surrounding illuminated areas accompanied by low photo-thermal energy conversion efficiency remains a challenge for metallic surfaces. Surface nanoengineering has proven to be a successful approach to further absorption and heat generation. Here, we show that pronounced spatial heat localization and high temperatures can be achieved with arrays of amorphous metallic glass nanorods under infrared optical illumination. Thermography measurements revealed marked temperature contrast between illuminated and non-illuminated areas even under low optical power excitation conditions. This attribute allowed for generating legible photo-induced thermal patterns on textured metallic glass surfaces.

  17. Glass-metal objects from archaeological excavation: corrosion study

    NASA Astrophysics Data System (ADS)

    Greiner-Wronowa, Elżbieta; Zabiegaj, Dominika; Piccardo, Paolo

    2013-12-01

    This paper contributes to the investigations on history, technology, and degradation of middle age objects (metallic rings with mounted glass beads) recently excavated under the Main Square in Krakow (Poland). Moreover, they were discovered in soil layers differing by chemical composition and microclimate parameters. Historical material is indeed very limited in terms of quantity and sample size, and the following nondestructive analyses were applied: scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS), X-ray diffraction (XRD), and X-ray fluorescence spectroscopy (XRF). The glass and the metal were separately tested. Metallography on cross-sections (by both optical and scanning electron microscopy) was applied only on microfragments sampled from metallic rings. The achieved results pointed out how the local microclimate affected the degradation of the analyzed rings developing locally different corrosion processes. Each tested glass of "ring eye" shows a specific chemical composition. All glass pieces were covered by silica gel, and locally more advanced corrosion has been found.

  18. Structural aspects of elastic deformation of a metallic glass

    SciTech Connect

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-02-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr{sub 57}Ti{sub 5}Cu{sub 20}Ni{sub 8}Al{sub 10} bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity.

  19. Characteristics of Johari-Goldstein relaxations in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, Jichao; Casalini, Riccardo; Pelletier, Jean-Marc; Kato, Hidemi; Yao, Yao; Yao'S Group Team; Chemistry Division, Naval Research Laboratory Team; Pvmh, Mateis, Insa de Lyon Team; Kato'S Lab Team

    2015-03-01

    The dynamics of Pd-based metallic glasses was studied by mechanical spectroscopy and modulated differential scanning calorimetry. The results show the change in composition has a significant effect on the α relaxation dynamics. All Pd-based metallic glasses have similar fragilities, 59 < m <67, and Kohlrausch stretched exponents, 0.59 <βKWW <0.60. The values of m and βKWW correlate well with the general relation proposed by Böhmer et al. for other glassy materials and the substitution of the Ni with Cu induced a large change in the time constant of the β relaxation, τβ. The activation energy, Uβ, of the β relaxation was generally independent of chemical composition. In all cases, 25 glass formers. From the heat capacity and mechanical loss, the number of dynamically correlated units, Ncwere obtained; significantly larger Nc values for these metallic glasses were observed compared with glassy materials.

  20. Alloy with metallic glass and quasi-crystalline properties

    SciTech Connect

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  1. Experimental and Computational Investigations of Strain Localization in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Bharathula, Ashwini

    Metallic glasses are metallic alloy systems with disordered atomic structure. Due to their unique amorphous structure, they exhibit an extraordinary set of properties that are ideal for a wide variety of applications ranging from electrical transformers, armor-piercing projectiles, sporting goods and fuel cells to precision gears for micromotors. In particular, owing to their exceptional mechanical properties like near-theoretical strength (1--3 GPa), large elastic strain range (2--3%), and unusual formability above the glass transition temperature, metallic glasses have tremendous potential in structural applications. Unfortunately, their unique structure also gives rise to significant limitations, such as limited ductility at room temperature due to rapid localization of plastic flow in shear bands. However, when the test volumes approach the size of a shear band nucleus (˜50--500 nm), it is believed that shear band formation and propagation can be constrained, leading to enhanced plasticity and failure strength. This study investigates the phenomenon of strain localization using both experimental and computational techniques. On the experimental front, sample size effects on strength, plasticity and deformation modes were explored in a Zr-based bulk metallic glass via micron- and sub-micron scale compression testing. Specimens with diameters ranging from 200 nm to a few microns were fabricated using Focused Ion Beam technique and were tested under uniaxial compression in a nanoindentation set-up with a flat punch tip. Effect of extrinsic factors like specimen geometry and machine stiffness on deformation behavior was discussed. Shear banding was shown to be more stable at this length scale than in macro-scale testing because of a smaller specimen to load frame stiffness ratio. It was found that as the specimen size is reduced to below 300 nm, the deformation mode changes from being discrete and inhomogeneous to more continuous flow including both localized and

  2. Melting, solidification, remelting, and separation of glass and metal

    SciTech Connect

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending.

  3. Liquid-solid joining of bulk metallic glasses

    DOE PAGES

    Huang, Yongjiang; Xue, Peng; Guo, Shu; ...

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  4. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  5. Liquid-solid joining of bulk metallic glasses

    PubMed Central

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-01-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components. PMID:27471073

  6. Liquid-solid joining of bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-01

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  7. Memory Effect Manifested by a Boson Peak in Metallic Glass

    NASA Astrophysics Data System (ADS)

    Luo, P.; Li, Y. Z.; Bai, H. Y.; Wen, P.; Wang, W. H.

    2016-04-01

    We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.

  8. Temperature dependent evolution of dynamic heterogeneity in metallic glass

    NASA Astrophysics Data System (ADS)

    Luo, P.; Li, M. X.; Jiang, H. Y.; Wen, P.; Bai, H. Y.; Wang, W. H.

    2017-04-01

    Substantial efforts in theoretical and experimental studies have demonstrated that the dynamics in supercooled liquids is spatially heterogeneous. However, a complete description concerning the dynamic heterogeneity evolution from liquid to rigid glass is still lacking. Here, by a combining study of the dynamic and static mechanical responses, we quantify the characterization of dynamic heterogeneity and its temperature evolution spanning an unprecedented broad temperature range in metallic glass. We show that the dynamic heterogeneity persists from the warm liquid state into the rigid glassy state and becomes progressively pronounced with cooling, accompanied by increasing breadth of the relaxation rate dispersion.

  9. Liquid-solid joining of bulk metallic glasses.

    PubMed

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. The liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  10. Correlation between average melting temperature and glass transition temperature in metallic glasses

    NASA Astrophysics Data System (ADS)

    Lu, Zhibin; Li, Jiangong

    2009-02-01

    The correlation between average melting temperature (⟨Tm⟩) and glass transition temperature (Tg) in metallic glasses (MGs) is analyzed. A linear relationship, Tg=0.385⟨Tm⟩, is observed. This correlation agrees with Egami's suggestion [Rep. Prog. Phys. 47, 1601 (1984)]. The prediction of Tg from ⟨Tm⟩ through the relationship Tg=0.385⟨Tm⟩ has been tested using experimental data obtained on a large number of MGs. This relationship can be used to predict and design MGs with a desired Tg.

  11. Atomic-Scale Mechanisms of the Glass-Forming Ability in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Guo, G. Q.; Chen, L. Y.; Huang, C. L.; Ge, T.; Chen, D.; Liaw, P. K.; Saksl, K.; Ren, Y.; Zeng, Q. S.; LaQua, B.; Chen, F. G.; Jiang, J. Z.

    2012-09-01

    The issue, composition dependence of glass-forming ability (GFA) in metallic glasses (MG), has been investigated by systematic experimental measurements coupled with theoretical calculations in Cu-Zr and Ni-Nb alloy systems. It is found that the atomic-level packing efficiency strongly relates to their GFA. The best GFA is located at the largest difference in the packing efficiency of the solute-centered clusters between the glassy and crystal alloys in both MG systems. This work provides an understanding of GFA from atomic level and will shed light on the development of new MGs with larger critical sizes.

  12. Fracture and deformation of a zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Flores, Katharine Marie

    Combining low density, high strength, large elastic strains, and a high fracture toughness, bulk metallic glasses are ideal for a variety of applications. This study focuses on the fracture and plastic deformation mechanisms of a recently developed Zr-Ti-Ni-Cu-Be bulk metallic glass. These alloys exhibit failure strengths of ˜2 GPa and toughness values of 10--30 MPa√m with remarkably little plastic deformation. Intense shear bands, associated with localized changes in free volume and glass viscosity, form and propagate seemingly unimpeded through the material, causing catastrophic failure. Shear band formation is associated with localized melting of the glass, as evidenced by molten droplets and vein patterns on the fracture surface. A central question regarding the formation of shear bands is whether this melting is a result of adiabatic heating or due to a mean stress induced free volume dilatation. To address these issues, the temperature increase on the side face of fracture samples was measured. Utilizing heat conduction and dissipation models, a crack tip temperature increase of 139 K was predicted at fracture initiation, consistent with the dissipation of plastic work as heat. The effect of mean stresses on the softening behavior of the metallic glass was also examined. A superimposed mean stress alters the initial free volume, changing the stress required for strain localization in a shear band. Experimental results indicated that a constant tensile mean stress characterized failure, and that this stress was sufficient to cause a significant viscosity decrease. In the vicinity of crack tips, shear bands form stable damage zones. When properly stabilized, these zones increase the apparent toughness to more than 80 MPa√m. By modeling the damage zone as an array of branch cracks, we show that the intrinsic toughness of the material is ˜15 MPa√m, consistent with estimates based on Taylor's fluid meniscus instability. This has important implications for

  13. Atom Probe Tomography Characterization of a Gas Atomized Metallic Glass

    SciTech Connect

    Miller, Michael K; Venkataraman, Shankar; Eckert, Jurgen; Schultz, Ludwig; Sordelet, Daniel

    2006-01-01

    Summary form only given. A number of metallic glasses that exhibit a wide supercooled liquid region before crystallization and a high glass-forming ability have been discovered. These metallic glasses exhibit useful properties such as high strength and high stiffness and can be fabricated from the melt in a bulk form with a thickness of {approx} 10 mm. The high glass-forming ability facilitates the formation of metallic glass powders by conventional gas-atomization technique. Subsequent consolidation of the powders to any dimensions is possible due to the viscous flow of the material in the supercooled liquid region. Hence, the synthesis of bulk metallic glasses using gas atomization coupled with subsequent consolidation holds a promising future. Atom probe tomography, X-ray diffraction and differential scanning calorimetry (DSC) characterizations of gas atomized powder particles of a Cu{sub 47}Ti{sub 33}Zr{sub 11}Ni{sub 8}Si{sub 1} metallic glass have been performed. The needle-shaped specimens required for the local electrode atom probe were fabricated from individual 10-40 mum diameter particles with the use of a dual beam focused ion beam miller. The microstructure of the alloy was investigated from the as-atomized powder and annealing treatments up to the completion of the first and second exothermic events at 785 and 838 K. Atom probe tomography revealed that the microstructure consisted of an interconnected network structure of two amorphous phases after an annealing treatment of 360 min. at 623 K. A fine-scale multiphase microstructure of an irregularly shaped copper-enriched and titanium-, nickel- and silicon-depleted phase that was 10-20 nm in extent, a higher number density of smaller, {approx}10 nm diameter, and roughly spherical titanium-enriched and copper- and zirconium-depleted phase and a matrix phase was found after continuous heating in a DSC to 785 and 838 K. The scanning electron microscope also revealed 4 distinct coarser phases consistent

  14. Glass Stability and Kinetic Analysis of Iron-Metalloid Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Santhaweesuk, Charuayporn

    Multicomponent Fe-based bulk metallic glasses (BMGs) with a combination of excellent properties such as good soft magnetic properties, high strength, high hardness, and high corrosion resistance have attracted increasing attention both from a basic science research standpoint and due to their industrial application potential. However, many of the elemental additions which lead to the easiest glass formation are expensive. The identification of alloys composed of abundant and inexpensive elements that still retain excellent properties would promote applications for engineering and industry. In short, the development of the Fe-based BMG without any glass-forming metal elements and with high glass forming ability is desired. This study shows that the thermal stability of the Fe-based alloys can be improved beyond a simple rule of mixtures prediction by utilizing a well-balance multi-metalloid approach. The kinetics aspect of glass-forming ability is studied experimentally for Fe-B-Si-P alloys. The systematic variation in alloy composition gives access to differences in phase selection and the final dimensions of glass formation. Two alloys, representing the best glass-forming composition and the poorest glass-forming composition, were studied in terms of their stability to crystallization, solidification microstructure evolution and thermal history. The utility of the wedge-casting technique is developed to examine bulk glass-forming alloys by combining multiple temperature profiles of the quenching melt with a measurement-based kinetic analysis of the phase selection competition and critical cooling rate conditions. Based upon direct thermal measurement, microstructural analysis and kinetic modeling, it was found that both representative alloys show a board spectrum of solidification microstructures which include a critical cooling rate range. The kinetic competition in the formation of certain phases can enhance or detract from the final dimension of bulk glass

  15. Structural disorder in metallic glass-forming liquids.

    PubMed

    Pan, Shao-Peng; Feng, Shi-Dong; Wang, Li-Min; Qiao, Jun-Wei; Niu, Xiao-Feng; Dong, Bang-Shao; Wang, Wei-Min; Qin, Jing-Yu

    2016-06-09

    We investigated structural disorder by a new structural parameter, quasi-nearest atom (QNA), in atomistic configurations of eight metallic glass-forming systems generated through molecular dynamics simulations at various temperatures. Structural analysis reveals that the scaled distribution of the number of QNA appears to be an universal property of metallic liquids and the spatial distribution of the number of QNA displays to be clearly heterogeneous. Furthermore, the new parameter can be directly correlated with potential energy and structural relaxation at the atomic level. Some straightforward relationships between QNA and other properties (per-atom potential energy and α-relaxation time) are introduced to reflect structure-property relationship in metallic liquids. We believe that the new structural parameter can well reflect structure disorder in metallic liquids and play an important role in understanding various properties in metallic liquids.

  16. Glass Former Effects on Photoluminescence and Optical Properties of Some Heavy Metal Oxide Glasses Doped with Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Marzouk, M. A.; Abo-Naf, S. M.; Zayed, H. A.; Hassan, N. S.

    2017-03-01

    Heavy metal oxide (PbO and Bi2O3) glasses doped with transition metal (TM) ions (TiO2, V2O5, Cr2O3, and MnO2) and having low content of common glass formers (B2O3, SiO2, or P2O5) were prepared by the conventional melt annealing method. Ultraviolet, visible absorption, and photoluminescence properties of these glasses were measured, and the data were employed to investigate the prepared glassy samples. The optical absorption spectra of TiO2 and V2O5 exhibited three bands centered at about 240, 305, and 380 nm, followed by a broad asymmetrical near-visible band centered at 425-432 nm, while Cr2O3 and MnO2 exhibited an extended visible peak at 517-548 nm. Results showed that the luminescence intensity changed with different transition metal oxides. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (ΔE) were calculated. The calculated values of the optical energy gap were found to be dependent on the glass composition. The changing values of optical band gap and band tail can be related to the structural changes that are taking place in the glass samples. The variations of the luminescence intensity, values of optical band gap, band tail, and refractive index gave an indication of the potential use of the prepared glasses to design novel optical functional materials with higher optical performance.

  17. ‘Crystal Genes’ in Metallic Liquids and Glasses

    SciTech Connect

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-03-31

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

  18. ‘Crystal Genes’ in Metallic Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-03-01

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems.

  19. ‘Crystal Genes’ in Metallic Liquids and Glasses

    PubMed Central

    Sun, Yang; Zhang, Feng; Ye, Zhuo; Zhang, Yue; Fang, Xiaowei; Ding, Zejun; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ho, Kai-Ming

    2016-01-01

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disorder transitions in condensed matter systems. PMID:27030071

  20. Low Temperature Heat Capacity of a Severely Deformed Metallic Glass

    NASA Astrophysics Data System (ADS)

    Bünz, Jonas; Brink, Tobias; Tsuchiya, Koichi; Meng, Fanqiang; Wilde, Gerhard; Albe, Karsten

    2014-04-01

    The low temperature heat capacity of amorphous materials reveals a low-frequency enhancement (boson peak) of the vibrational density of states, as compared with the Debye law. By measuring the low-temperature heat capacity of a Zr-based bulk metallic glass relative to a crystalline reference state, we show that the heat capacity of the glass is strongly enhanced after severe plastic deformation by high-pressure torsion, while subsequent thermal annealing at elevated temperatures leads to a significant reduction. The detailed analysis of corresponding molecular dynamics simulations of an amorphous Zr-Cu glass shows that the change in heat capacity is primarily due to enhanced low-frequency modes within the shear band region.

  1. ‘Crystal Genes’ in Metallic Liquids and Glasses

    DOE PAGES

    Sun, Yang; Zhang, Feng; Ye, Zhuo; ...

    2016-03-31

    We analyze the underlying structural order that transcends liquid, glass and crystalline states in metallic systems. A genetic algorithm is applied to search for the most common energetically favorable packing motifs in crystalline structures. These motifs are in turn compared to the observed packing motifs in the actual liquid or glass structures using a cluster-alignment method. Using this method, we have revealed the nature of the short-range order in Cu64Zr36 glasses. More importantly, we identified a novel structural order in the Al90Sm10 system. In addition, our approach brings new insight into understanding the origin of vitrification and describing mesoscopic order-disordermore » transitions in condensed matter systems.« less

  2. Spinodal Decomposition of Ni-Nb-Y metallic Glasses

    SciTech Connect

    Mattern, Norbert; G, Goerigk; Vainio, U; Miller, Michael K; Gemming, T; Eckert, J

    2009-01-01

    Phase-separated Ni-Nb-Y metallic glasses were prepared by rapid quenching from the melt. The early stages of decomposition were characterized in Ni-Nb-Y alloys with Ni contents of more than 60 at.%. Strongly correlated chemical fluctuations with a nanometer length scale were found to exist in the as-quenched state. The observed fluctuation lengths range from 5 to 12 nm, depending on the actual composition of the glass. The 'frozen-in' early stages of decomposition occur in the deeply undercooled melt due to the reduction in the critical temperature of liquid-liquid phase separation with Ni content. Annealing of the phase-separated Ni{sub 70}Nb{sub 15}Y{sub 15} glass below the crystallization temperature leads to an increase in the amplitude of the fluctuations. However, the wavelength was unchanged, which provides evidence for the spinodal character of the decomposition.

  3. Melting, Solidification, Remelting, and Separation of Glass and Metal

    SciTech Connect

    M. A. Ebadian; R. C.Xin; Z. F. Dong

    1998-11-02

    Several kinds of radioactive waste exist in mixed forms at DOE sites throughout the United States. These Wastes consist of radionuclides and some usefil bme materials. One purpose of waste treatment technologies is to vitrify the radionuclides into durable, stable glass-like materials to reduce the size of the waste form requiring final disposal. The other purpose is to recycle and reuse most of the usefi.d base materials. Thus, improved techniques for the separation of molten metal and glass are essential. Several high temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. These processes include the plasma hearth process, which is being developed by Science Applications International Corporation (SAIC), and the arc melter vitrification process, which is being developed at Idaho National Engineering Laboratory. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to suppoti these process. A separation method is also needed for the radioactively contaminated scrap metal recycling processe; in order to obtain highly refined recycled metals.

  4. Glass ceramics for sealing to high-thermal-expansion metals

    SciTech Connect

    Wilder, Jr., J. A.

    1980-10-01

    Glass ceramics were studied, formulated in the Na/sub 2/O CaO.P/sub 2/O/sub 5/, Na/sub 2/O.BaOP/sub 2/O/sub 5/, Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/, and Li/sub 2/O.BaO.P/sub 2/O/sub 5/ systems to establish their suitability for sealing to high thermal expansion metals, e.g. aluminum, copper, and 300 series stainless steels. Glass ceramics in Na/sub 2/O.CaO.P/sub 2/O/sub 5/ and Na/sub 2/O.BaO.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion in the range 140 x 10/sup -1/ per /sup 0/C less than or equal to ..cap alpha.. less than or equal to 225 x 10/sup -7/ per /sup 0/C and fracture toughness values generally greater than those of phosphate glasses; they are suitable for fabricating seals to high thermal expansion metals. Crystal phases include NaPo/sub 3/, (NaPO/sub 3/)/sub 3/, NaBa(PO/sub 3/)/sub 3/, and NaCa(PO/sub 3/)/sub 3/. Glass ceramics formed in the Na/sub 2/O.Al/sub 2/O/sub 3/.P/sub 2/O/sub 5/ systems have coefficients of thermal expansion greater than 240 x 10/sup -7/ per /sup 0/C, but they have extensive microcracking. Due to their low thermal expansion values (..cap alpha.. less than or equal to 120 x 10/sup -7/ per /sup 0/C), glass ceramics in the Li/sub 2/O.BaO.P/sub 2/O/sub 5/ system are unsuitable for sealing to high thermal expansion metals.

  5. Characterization of Mechanical, Thermal and Wear Properties of Titanium Rich Metallic Glasses.

    DTIC Science & Technology

    1982-12-20

    I D-Ai23 595 CHRACTERIZATION OF MECHANICAL THERMAL AND NEAR / I PROPERTIES OF TITANIUM RI..(U) NORTHEASTERN UNIY BOSTON INA INST OF CHEMICAL ANALYSIS...Mechanical, Thermal andJun 78 - 15 ar 82 Wear Properties of Titanium Rich Metallic Glasses 6. PERFORMINGORG. REPORT NUMBER 7. AUTHOR(e) G. CONTRACT OR GRANT...b, blockh nmibor) metallic glasses transition metal glasses 2 titanium alloy glasses . /reactive alloys /alloys - properties " ABSTRAc C (emwn sm

  6. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  7. Optical reflectivity improvement by upgrading metallic glass film quality

    SciTech Connect

    Wang, W. H.; Hsu, J. H.; Huang, J. C.

    2013-10-14

    The effects of atomic-defect and free-volume amounts of metallic glassy film on the optical reflectivity and mechanical properties of the sputtered metallic glass thin films are explored. With a lower Ar working pressure and the proper post-annealing at temperatures slightly lower than the glass-transition temperature T{sub g}, film free volumes and defects would reduce, resulting in better atomic bonding and higher film hardness/modulus, which in turn leads to lower electric resistivity and higher optical reflectivity. Annealing above T{sub g} would induce crystalline structure which would lead to competition with the optical transition of the Drude free electrons and hinder the optical reflectivity in the visible range.

  8. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  9. Self-propagating waves of crystallization in metallic glasses

    NASA Astrophysics Data System (ADS)

    Rogachev, A. S.; Vadchenko, S. G.; Aronin, A. S.; Rouvimov, S.; Nepapushev, A. A.; Kovalev, I. D.; Baras, F.; Politano, O.; Rogachev, S. A.; Mukasyan, A. S.

    2017-08-01

    Self-propagating thermal waves of the amorphous-crystalline transformation in Fe-based metallic glasses, obtained by melt spinning, were observed using a high-speed infrared camera and reported here. Some experimental results are also reported concerning oscillating waves in the CuTi glassy foils. The thermal characteristics and wave propagating velocities, as well as the microstructure and atomic structure transformations, were studied. A comparison of the results with exothermic reaction waves and explosive crystallization shows that the self-propagating waves in metallic glasses are slower and less violent than classical explosive crystallization in deposited films; thus, we suggest naming this phenomenon "soft explosive crystallization." The experimental data were confirmed by molecular dynamics simulation of the crystallization phenomenon.

  10. Flash Joule heating for ductilization of metallic glasses.

    PubMed

    Okulov, I V; Soldatov, I V; Sarmanova, M F; Kaban, I; Gemming, T; Edström, K; Eckert, J

    2015-07-29

    Metallic glasses (MGs) inherit their amorphous structure from the liquid state, which predetermines their ability to withstand high loads approaching the theoretical limit. However, the absence of slip systems makes them very sensitive to the type of loading and extremely brittle in tension. The latter can be improved by precipitation of ductile crystals, which suppress a catastrophic propagation of shear bands in a glassy matrix. Here we report a novel approach to obtain MG-matrix composites with tensile ductility by flash Joule heating applied to Cu47.5Zr47.5Al5 (at.%) metallic glass. This homogeneous, volumetric and controllable rapid heat treatment allows achieving uniformly distributed metastable B2 CuZr crystals in the glassy matrix. It results in a significant tensile strain of 6.8±0.5%. Moreover, optimized adjustment of the heat-treatment conditions enables tuning of microstructure to achieve desired mechanical properties.

  11. Elastic properties and atomic bonding character in metallic glasses

    SciTech Connect

    Rouxel, T.; Yokoyama, Y.

    2015-07-28

    The elastic properties of glasses from different metallic systems were studied in the light of the atomic packing density and bonding character. We found that the electronegativity mismatch (Δe{sup −}) between the host- and the major solute-elements provides a plausible explanation to the large variation observed for Poisson's ratio (ν) among metallic glasses (MGs) (from 0.28 for Fe-based to 0.43 for Pd-based MGs), notwithstanding a similar atomic packing efficiency (C{sub g}). Besides, it is found that ductile MGs correspond to Δe{sup −} smaller than 0.5 and to a relatively steep atomic potential well. Ductility is, thus, favored in MGs exhibiting a weak bond directionality on average and opposing a strong resistance to volume change.

  12. An electronic criterion for assessing intrinsic brittleness of metallic glasses

    SciTech Connect

    Wang, X. F.; Jones, T. E.; Wu, Y.; Lu, Z. P.; Halas, S.; Durakiewicz, T.; Eberhart, M. E.

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG’s work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function – the surface dipole – and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  13. Atomic structure of biodegradable Mg-based bulk metallic glass.

    PubMed

    Christie, J K

    2015-05-21

    We have used highly accurate first-principles molecular dynamics simulations to elucidate the structure of Mg60Zn35Ca5 and Mg72Zn23Ca5 bulk metallic glasses, which are candidate materials for biomedical implants; these two compositions exhibit different behaviours when implanted. The environments of each species are different, and average coordination numbers are ∼13 for Mg, ∼11 for Zn and ∼18-19 for Ca. A wide range of local environments were found and icosahedral motifs, often seen in bulk metallic glasses, were among the most common for both Mg and Zn. Through the computation of a chemical short-range order parameter, a moderate avoidance of Zn-Zn bonding over Zn-Mg or Zn-Ca was observed. No statistically significant difference in structure was observed between the two compositions.

  14. An electronic criterion for assessing intrinsic brittleness of metallic glasses.

    PubMed

    Wang, X F; Jones, T E; Wu, Y; Lu, Z P; Halas, S; Durakiewicz, T; Eberhart, M E

    2014-07-14

    Bulk metallic glasses (BMGs) are characterized by a number of remarkable physical and mechanical properties. Unfortunately, these same materials are often intrinsically brittle, which limits their utility. Consequently, considerable effort has been expended searching for correlations between the phenomenologically complex mechanical properties of metallic glasses and more basic properties, such correlations might provide insight into the structure and bonding controlling the deformation properties of BMGs. While conducting such a search, we uncovered a weak correlation between a BMG's work function and its susceptibility to brittle behavior. We argue that the basis for this correlation is a consequence of a component of the work function - the surface dipole - and a fundamental bond property related to the shape of the charge density at a bond critical point. Together these observations suggest that simple first principle calculations might be useful in the search for tougher BMGs.

  15. Nano-scale solute partitioning in devitrified bulk metalic glass.

    SciTech Connect

    Yang, L.; Miller, M. K.; Wang, X. L.; Liu, C. T.; Stoica, A. D.; Ma, D.; Almer, J.; Shi, D.; ORNL; Univ. of Cincinnati; Univ. of Tennessee

    2009-01-01

    Devitrification of bulk metallic glass leads to a novel microstructure, with high-density nanoscale crystalline precipitates evenly distributed in a glassy matrix. Significant chemical segregation is revealed at unprecedented detail by atom-probe tomography. This level of detail is crucial for understanding the interference peaks observed in small-angle X-ray and neutron scattering experiments, an unsolved mystery for over a decade.

  16. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    SciTech Connect

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; Kramer, M. J.; Voyles, Paul M.

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, Tg, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.

  17. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE PAGES

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr50Cu35Al15 and Zr50Cu45Al5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr50Cu35Al15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, Tg, than in Zr50Cu45Al5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr50Cu35Al15 on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clustersmore » grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  18. Variation of internal friction with time in metallic glasses near glass transition temperature

    NASA Astrophysics Data System (ADS)

    Hiki, Y.; Miyauchi, Y.; Karasawa, R.; Tamura, R.

    2013-02-01

    Internal friction (IF) of a bulk metallic glass Zr55Cu30Al10Ni5 has been measured near and below/above the glass transition temperature Tg. The specimen is prepared by rapid cooling the liquid mother alloy through casting into a copper ingot. The size of the specimen is about 30 mm × 2 mm × 0.8 mm. The amorphous state of the specimen is checked by the X-ray diffraction, and the temperatures of glass transition (Tg=666 K) and crystallization (Tx=746 K) are determined by the DSC method. The specimen is stabilized by annealing at Tg-10 K for 10 h. The IF measurement is performed by using DMA (TA Instrument) apparatus at the frequency of 0.1 Hz. The deformation mode of vibration is the cantilever bending. The specimen is kept at a constant temperature T, and the IF value Q-1 is measured as a function of duration time t( = 0˜2.5×104s). The temperature is controlled by the apparatus. The measurement is successively carried out at various temperatures T = (Tg-50K)˜(Tg+50K). The Q-1-vs-t behavior is different in different temperature ranges. At lower and higher temperatures, Q-1-vs-t shows the single relaxation. At temperatures near Tg, Q-1-vs-t appears to be quite irregular. These results are considered on the basis of the characteristics of the glass-forming materials and the glass transition.

  19. Experimental and theoretical study on the driving force and glass flow by laser-induced metal sphere migration in glass

    PubMed Central

    Hidai, Hirofumi; Wada, Jun; Iwamoto, Tatsuki; Matsusaka, Souta; Chiba, Akira; Kishi, Tetsuo; Morita, Noboru

    2016-01-01

    Light is able to remotely move matter. Among various driving forces, laser-induced metal sphere migration in glass has been reported. The temperature on the laser-illuminated side of the sphere was higher than that on the non-illuminated side. This temperature gradient caused non-uniformity in the interfacial tension between the glass and the melted metal as the tension decreased with increasing temperature. In the present study, we investigated laser-induced metal sphere migration in different glasses using thermal flow calculations, considering the temperature dependence of the material parameters. In addition, the velocity of the glass flow generated by the metal sphere migration was measured and compared with thermal flow calculations. The migration velocity of the stainless steel sphere increased with increasing laser power density; the maximum velocity was 104 μm/s in borosilicate glass and 47 μm/s in silica glass. The sphere was heated to more than 2000 K. The temperature gradient of the interfacial tension between the stainless steel sphere and the glass was calculated to be −2.29 × 10−5 N/m/K for borosilicate glass and −2.06 × 10−5 N/m/K for silica glass. Glass flowed in the region 15–30 μm from the surface of the sphere, and the 80-μm sphere migrated in a narrow softened channel. PMID:27934897

  20. Cr-based bulk metallic glasses with ultrahigh hardness

    NASA Astrophysics Data System (ADS)

    Si, J. J.; Wang, T.; Wu, Y. D.; Cai, Y. H.; Chen, X. H.; Wang, W. Y.; Liu, Z. K.; Hui, X. D.

    2015-06-01

    This letter reports quaternary Cr-Co-Nb-B bulk metallic glasses (BMGs) with ultrahigh hardness and Young's moduli. Especially, Cr55Co24Nb7B14 BMG exhibits ultrahigh Vickers hardness and Young's modulus of 1605 and 278 GPa, respectively, and the highest specific Young's modulus of 37.0 × 106 N m/kg among all the developed BMGs so far. It is considered that the high hardness and Young's moduli for this kind of BMGs are intrinsically attributed to the strong interactions between metallic constituent elements and B.

  1. MELTING, SOLIDIFICATION, REMELTING, AND SEPARATION OF GLASS AND METAL

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1998-11-01

    The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. A basic knowledge of the thermal, transport, and metallurgical phenomena that occur in the melting and solidification of glass, metal, and their mixtures is the foundation of the development of the separation methods. In association with this project, an innovative liquid-liquid extractor/separator will be developed to meet the separation needs for efficient extraction/separation devices for the various DOE liquid waste treatment processes.

  2. Energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions

    NASA Astrophysics Data System (ADS)

    Habib, K.; Jiang, W.; Rahman, B. M. A.; Grattan, K. T. V.

    2017-03-01

    A criterion of the energy efficiency of iron–boron–silicon metallic glasses in sulfuric acid solutions is proposed for the first time. The criterion has been derived based on calculating the limit of the ratio value of the conductivity of a metallic glass in aqueous solution to the conductivity of the metallic glass in air. In other words, the conductivity ratio of a metallic glass in aqueous solution to the conductivity of the metallic glass in air  = 1, was applied to determine the energy efficiency of the metallic glass in the aqueous solution when the conductivity of a metallic glass in air became equal (decreased) to the steady conductivity of the metallic glass in aqueous solution as a function of time of the exposure of the metallic glass to the aqueous solution. This criterion was not only used to determine the energy efficiency of different metallic glasses, but also, the criterion was used to determine the energy efficiency of metallic glasses exposed to a wide range of sulfuric acid concentrations. These conductivity values were determined by the electrochemical impedance spectroscopy (EIS). In addition, the criterion can be applied under diverse test conditions with a predetermined period of the operational life of the metallic glasses as functional materials. Furthermore, variations of the energy efficiency of the metallic glasses as a function of the acid concentration and time were produced by fitting the experimental data to a numerical model using a nonlinear regression method. The profiles of the metallic glasses exhibit a less conservative behavior of the energy efficiency than the proposed analytical criterion.

  3. Metallic glass thin films for potential biomedical applications.

    PubMed

    Kaushik, Neelam; Sharma, Parmanand; Ahadian, Samad; Khademhosseini, Ali; Takahashi, Masaharu; Makino, Akihiro; Tanaka, Shuji; Esashi, Masayoshi

    2014-10-01

    We introduce metallic glass thin films (TiCuNi) as biocompatible materials for biomedical applications. TiCuNi metallic glass thin films were deposited on the Si substrate and their structural, surface, and mechanical properties were investigated. The fabricated films showed good biocompatibility upon exposure to muscle cells. Also, they exhibited an average roughness of <0.2 nm, high wear resistance, and high mechanical properties (hardness ∼6.9 GPa and reduced modulus ∼130 GPa). Top surface of the TiCuNi films was shown to be free from Ni and mainly composed of a thin titanium oxide layer, which resulted in the high surface biocompatibility. In particular, there was no cytotoxicity effect of metallic glass films on the C2C12 myoblasts and the cells were able to proliferate well on these substrates. Low cost, viscoelastic behavior, patternability, high electrical conductivity, and the capability to coat various materials (e.g., nonbiocompatible materials) make TiCuNi as an attractive material for biomedical applications. © 2014 Wiley Periodicals, Inc.

  4. Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses

    PubMed Central

    Heo, Jaewon; Kim, Sunghwan; Ryu, Seunghwa; Jang, Dongchan

    2016-01-01

    Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to ~1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation. PMID:26988265

  5. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  6. Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses.

    PubMed

    Heo, Jaewon; Kim, Sunghwan; Ryu, Seunghwa; Jang, Dongchan

    2016-03-18

    Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to ~1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation.

  7. Rapid screening of potential metallic glasses for biomedical applications.

    PubMed

    Lin, C H; Huang, C H; Chuang, J F; Huang, J C; Jang, J S C; Chen, C H

    2013-12-01

    This paper presents a rapid screening process to select potential titanium and zirconium based metallic glasses (MGs) for bio-material applications. Electrochemical activity of 7 MGs including 6 bulk metallic glasses and 1 thin-film deposited MG in simulation body and human serum is first inspected. A low-voltage potential state test is also developed to simulate the cell membrane potential that the implant MGs will suffer. Results show that the MGs composed of Ti65Si15Ta10Zr10 and Ta57Zr23Cu12Ti8 exhibit excellent electrochemical stability in both simulation body fluid and human serum. In addition, the copper content in the MGs plays an important role on the electrochemical activity. MGs with the copper content higher than 17.5% show significant electrochemical responses. The cytotoxicity of the solid MG samples and the corrosion released ions are also evaluated by an in-vitro MTT test utilizing the murine bone marrow stem cells. Results indicate that all the solid MG samples show no acute cytotoxicity yet the corrosion released ions show significant toxicity for murine bone marrow stem cells. The rapid screening process developed in the present study suggests that the Ti65Si15Ta10Zr10 metallic glass has high potential for biomedical applications due to its good electrochemical stability and very low cytotoxicity. © 2013.

  8. Understanding the Properties and Structure of Metallic Glasses at the Atomic Level

    SciTech Connect

    Egami, T.

    2010-01-01

    Liquids and glasses have been well known to human kind for millennia. And yet major mysteries remain in the behavior of glasses and liquids at the atomic level, and identifying the microscopic mechanisms that control the properties of glasses is one of the most challenging unsolved problems in physical sciences. For this reason, applying simplistic approaches to explain the behavior of metallic glasses can lead to serious errors. On the other hand because metallic glasses are atomic glasses with relatively simple structure, they may offer better opportunities to advance our fundamental understanding on the nature of the glass. The difficulties inherent to the problem and some recent advances are reviewed here.

  9. Influence of thin-film metallic glass coating on fatigue behavior of bulk metallic glass: Experiments and finite element modeling

    DOE PAGES

    Yu, Chia-Chi; Chu, Jinn P.; Jia, Haoling; ...

    2017-03-21

    In this paper, a coating of the Zr-based thin-film metallic glass (TFMG) was deposited on the Zr50Cu30Al10Ni10 bulk metallic glass (BMG) to investigate shear-band evolution under four-point-bend fatigue testing. The fatigue endurance-limit of the TFMG-coated samples is ~ 33% higher than that of the BMG. The results of finite-element modeling (FEM) revealed a delay in the shear-band nucleation and propagation in TFMG-coated samples under applied cyclic-loading. The FEM study of spherical indentation showed that the redistribution of stress by the TFMG coating prevents localized shear-banding in the BMG substrate. Finally, the enhanced fatigue characteristics of the BMG substrates can bemore » attributed to the TFMG coatings retarding shear-band initiation at defects on the surface of the BMG.« less

  10. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  11. Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity.

    PubMed

    Zhu, Shengli; Xie, Guoqiang; Qin, Fengxiang; Wang, Xinmin; Inoue, Akihisa

    2012-09-01

    We developed Ni- and Be-free Zr(45+x)Cu(40-x)Al₇Pd₅Nb₃ bulk metallic glasses with large glass-forming ability and unusual plasticity. The alloys have large critical diameters (larger than 10 mm) in a wide composition range (x=0-20). The Zr₅₀Cu₃₅Al₇Pd₅Nb₃ and Zr₅₅Cu₃₀Al₇Pd₅Nb₃ alloys exhibit the largest critical diameter (between 18 and 20 mm). The Zr(45+x)Cu(40-x)Al₇Pd₅Nb₃ bulk metallic glasses also have large plastic elongation in wide composition range (x=10-17). The Zr₆₂Cu₂₃Al₇Pd₅Nb₃ bulk metallic glass exhibits significant plasticity (over 20% of plastic elongation). With increasing Zr content, the compressive strength decreases except for the Zr₆₇Cu₁₈Al₇Pd₅Nb₃ alloy. The fragility parameters were calculated to evaluate the glass-forming ability and plasticity. The fragility exhibits more sensitive correlation with plasticity than glass-forming ability. The ZrCuAlPdNb bulk metallic glasses have high crystallization activation energies of above 300 kJ/mol. The ZrCuAlPdNb bulk metallic glasses are favorable for application to biomaterials.

  12. Glass-ceramic hermetic seals to high thermal expansion metals

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1987-04-28

    A process for forming glass-ceramic materials from an alkaline silica-lithia glass composition comprising 60-72 mole-% SiO/sub 2/, 18-27 mole-% Li/sub 2/O, 0-5 mole-% Al/sub 2/O/sub 3/, 0-6 mole-% K/sub 2/O, 0-3 mole-% B/sub 2/O/sub 3/, and 0.5-2.5 mole-% P/sub 2/O/sub 5/, which comprises heating said glass composition at a first temperature within the 950-1050/degree/C range for 5-60 minutes, and then at a devitrification temperature within the 700-900/degree/C range for about 5-300 minutes to obtain a glass-ceramic having a thermal expansion coefficient of up to 210 x 10/sup /minus/7///degree/C. These ceramics form strong, hermetic seals with high expansion metals such as stainless steel alloys. An intermediate nucleation heating step conducted at a temperature within the range of 675-750/degree/C for 10-120 minutes may be employed between the first stage and the devitrification stage. 1 fig., 2 tabs.

  13. Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen

    2016-06-01

    Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing.

  14. Relaxational Dynamics of a Model Glass-forming Metallic Liquid

    NASA Astrophysics Data System (ADS)

    Jaiswal, Abhishek; O'Keeffe, Stephanie; Podlesnyak, Andrey; Ehlers, Georg; Mills, Rebecca; Lokshin, Konstantin; Dmowski, Wojciech; Egami, Takeshi; Zhang, Yang

    2015-03-01

    Understanding the diffusional behavior of multi-component glass-forming metallic liquids is of critical importance to the development of novel alloy systems such as bulk metallic glasses (BMG). However, such diffusions are highly activated and complicated because of structural disorder induced by quenching, and chemical disorders induced by size mismatch. Herein, we report temperature and wave-vector transfer (Q) dependence of two-step collective relaxations in the BMG (LM601: ZrCuNiAl) melt measured by quasi-elastic neutron scattering. Q-dependence of both fast and slow relaxation time, and the adiabatic sound speed are found to obey the principle of de Gennes narrowing. The measured spectra show a distinct vibrational mode at around 15 meV. Classical Molecular Dynamics (MD) simulation of CuZrAl system, using EAM potential shows that this acoustic mode arises from local vibrations of Al in the cage formed by Cu and Zr atoms. Furthermore, we observed a breakdown of Stokes-Einstein relation in the MD simulated system well above its melting temperature. Accompanied dynamical clustering was detected using unsupervised machine learning techniques. These mechanisms in tandem can be responsible for the excellent glass-forming ability of this material.

  15. Fatigue-Resistance Enhancements by Glass-Forming Metallic Films

    SciTech Connect

    Liu, F. X.; Liaw, Peter K; Jiang, W. H.; Chiang, C L; Gao, Yanfei; Guan, Y F; Chu, J. P.; Rack, P. D.

    2007-01-01

    Zr-based glass-forming metallic films were coated on a 316L stainless steel and a Ni-based alloy by the magnetron-sputter deposition. Four-point-bending fatigue tests were conducted on those coated materials with the film surface on the tensile side. Results showed that the fatigue life and fatigue-endurance limit of the materials could be considerably improved, and the enhancements vary with the maximum applied stress and the substrate material. Fractographs showed that the film remained well adhered to the substrate even after the severe plastic deformation. Surface-roughness measurements indicated the improvement of the surface finishes due to the deposition of the glass-forming film. Nanoindentation test results suggested that the thin film exhibited both high yield strength and good ductility. The reduction of the surface roughness, good adhesion between the film and the substrate, and the excellent strength and ductility of the glass-forming metallic film are the major factors for the fatigue-resistance enhancements of the coated material. A micromechanical model is developed to illustrate the mechanisms of fatigue-resistance enhancements through the interaction between the amorphous film and the substrate slip bands.

  16. Compressed correlation functions and fast aging dynamics in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ruta, B.; Baldi, G.; Monaco, G.; Chushkin, Y.

    2013-02-01

    We present x-ray photon correlation spectroscopy measurements of the atomic dynamics in a Zr67Ni33 metallic glass, well below its glass transition temperature. We find that the decay of the density fluctuations can be well described by compressed, thus faster than exponential, correlation functions which can be modeled by the well-known Kohlrausch-Williams-Watts function with a shape exponent β larger than one. This parameter is furthermore found to be independent of both waiting time and wave-vector, leading to the possibility to rescale all the correlation functions to a single master curve. The dynamics in the glassy state is additionally characterized by different aging regimes which persist in the deep glassy state. These features seem to be universal in metallic glasses and suggest a nondiffusive nature of the dynamics. This universality is supported by the possibility of describing the fast increase of the structural relaxation time with waiting time using a unique model function, independently of the microscopic details of the system.

  17. Towards the Better: Intrinsic Property Amelioration in Bulk Metallic Glasses

    PubMed Central

    Sarac, Baran; Zhang, Long; Kosiba, Konrad; Pauly, Simon; Stoica, Mihai; Eckert, Jürgen

    2016-01-01

    Tailoring the intrinsic length-scale effects in bulk metallic glasses (BMGs) via post-heat treatment necessitates a systematic analyzing strategy. Although various achievements were made in the past years to structurally enhance the properties of different BMG alloys, the influence of short-term sub-glass transition annealing on the relaxation kinetics is still not fully covered. Here, we aim for unraveling the connection between the physical, (thermo)mechanical and structural changes as a function of selected pre-annealing temperatures and time scales with an in-house developed Cu46Zr44Al8Hf2 based BMG alloy. The controlled formation of nanocrystals below 50 nm with homogenous distribution inside the matrix phase via thermal treatment increase the material’s resistance to strain softening by almost an order of magnitude. The present work determines the design aspects of metallic glasses with enhanced mechanical properties via nanostructural modifications, while postulating a counter-argument to the intrinsic property degradation accounted for long-term annealing. PMID:27273477

  18. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  19. Glass-to-metal bonding process improves stability and performance of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Trent, R. L.

    1970-01-01

    Anodic bonding of glass coverslips to photodiodes and photovoltaic devices eliminates the need for adhesive. The process requires relatively low temperatures /less than 560 degrees C/ and the metals and glass remain solid throughout the bonding process.

  20. Plasmonic glasses: optical properties of amorphous metal-dielectric composites.

    PubMed

    Antosiewicz, Tomasz J; Apell, S Peter

    2014-01-27

    Plasmonic glasses composed of metallic inclusions in a host dielectric medium are investigated for their optical properties. Such structures characterized by short-range order can be easily fabricated using bottom-up, self-organization methods and may be utilized in a number of applications, thus, quantification of their properties is important. We show, using T-Matrix calculations of 1D, 2D, and 3D plasmonic glasses, that their plasmon resonance position oscillates as a function of the particle spacing yielding blue- and redshifts up to 0.3 eV in the visible range with respect to the single particle surface plasmon. Their properties are discussed in light of an analytical model of an average particle's polarizability that originates from a coupled dipole methodology.

  1. Liquid-solid joining of bulk metallic glasses

    SciTech Connect

    Huang, Yongjiang; Xue, Peng; Guo, Shu; Wu, Yang; Cheng, Xiang; Fan, Hongbo; Ning, Zhiliang; Cao, Fuyang; Xing, Dawei; Sun, Jianfei; Liaw, Peter K.

    2016-07-29

    Here, we successfully welded two bulk metallic glass (BMG) materials, Zr51Ti5Ni10Cu25Al9 and Zr50.7Cu28Ni9Al12.3 (at. %), using a liquid-solid joining process. An atomic-scale metallurgical bonding between two BMGs can be achieved. The interface has a transition layer of ~50 μm thick. In conclusion, the liquid-solid joining of BMGs can shed more insights on overcoming their size limitation resulting from their limited glass-forming ability and then promoting their applications in structural components.

  2. Second virial coefficient and mechanical moduli of metallic glasses

    NASA Astrophysics Data System (ADS)

    Cao, Wan Qiang

    2013-10-01

    The relationship between the bulk, shear moduli and second virial coefficient of amorphous materials is derived according to their dependences with the radial distribution function. Lennard-Jones-Gaussian potential is used to investigate the relationship between second virial coefficient and temperature, where Lennard-Jones potential represents interactions with the nearest neighbor atoms, and Gaussian potential is responsible for the multi-atom interactions including the next nearest neighbor atoms and heterogeneous structures for a metallic glass. The results show that deep potential well formed by Gaussian potential causes a large second virial coefficient at low temperatures, which is very obvious for the larger fragility glasses. The quadratic form relationship of shear modulus and compositions is proposed, and confirmed by the experimental results of PdxNi100-x-20P20 alloy.

  3. High-entropy bulk metallic glasses as promising magnetic refrigerants

    NASA Astrophysics Data System (ADS)

    Huo, Juntao; Huo, Lishan; Li, Jiawei; Men, He; Wang, Xinmin; Inoue, Akihisa; Chang, Chuntao; Wang, Jun-Qiang; Li, Run-Wei

    2015-02-01

    In this paper, the Ho20Er20Co20Al20RE20 (RE = Gd, Dy, and Tm) high-entropy bulk metallic glasses (HE-BMGs) with good magnetocaloric properties are fabricated successfully. The HE-BMGs exhibit a second-order magnetic phase transition. The peak of magnetic entropy change ( ΔSMpk ) and refrigerant capacity (RC) reaches 15.0 J kg-1 K-1 and 627 J kg-1 at 5 T, respectively, which is larger than most rare earth based BMGs. The heterogeneous nature of glasses also contributes to the large ΔSMpk and RC. In addition, the magnetic ordering temperature, ΔSMpk and RC can be widely tuned by alloying different rare earth elements. These results suggest that the HE-BMGs are promising magnetic refrigerant at low temperatures.

  4. Pressure-induced elastic anomaly in a polyamorphous metallic glass

    NASA Astrophysics Data System (ADS)

    Zeng, Qiaoshi; Zeng, Zhidan; Lou, Hongbo; Kono, Yoshio; Zhang, Bo; Kenney-Benson, Curtis; Park, Changyong; Mao, Wendy L.

    2017-05-01

    The pressure-induced transitions discovered in metallic glasses (MGs) have attracted considerable research interest offering an exciting opportunity to study polyamorphism in densely packed systems. Despite the large body of work on these systems, the elastic properties of the MGs during polyamorphic transitions remain unclear. Here, using an in situ high-pressure ultrasonic sound velocity technique integrated with x-ray radiography and x-ray diffraction in a Paris-Edinburgh cell, we accurately determined both the compressional and shear wave velocities of a polyamorphous Ce68Al10Cu20Co2 MG up to 5.8 GPa. We observed elastic anomalies of a MG with minima (at ˜1.5 GPa) in the sound velocities, bulk modulus, and Poisson's ratio during its polyamorphic transition. This behavior was discussed in comparison to the elastic anomalies of silica glass and crystalline Ce.

  5. Density variations of plastic carriers in metallic glasses during aging

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    Thermally induced deformation in metallic glasses was investigated by sampling the potential energy landscape (PEL) and probing the changes in the atomic properties (e.g. energy, displacement, stress). We demonstrate that there exists a universal plastic carrier in amorphous materials, which corresponds to the hopping between local minima on PEL. However very interestingly, the density of plastic carrier is largely affected by the aging history of the glasses. The higher fictive temperature (i . e . fast cooling rate), the larger density of plastic carrier is contained in the system. In particular, we observe a scaling of ρ~exp(- α/Tfic) , which is consistent with the prediction of shear transformation zone theory. The work is supported by U.S. Department of Energy.

  6. Glass formation, chemical properties and surface analysis of Cu-based bulk metallic glasses.

    PubMed

    Qin, Chunling; Zhao, Weimin; Inoue, Akihisa

    2011-01-01

    This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu-Hf-Ti-(Mo, Nb, Ta, Ni) and Cu-Zr-Ag-Al-(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  7. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    PubMed Central

    Qin, Chunling; Zhao, Weimin; Inoue, Akihisa

    2011-01-01

    This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni) and Cu–Zr–Ag–Al–(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance. PMID:21731441

  8. Reentrant spin glass ordering in an Fe-based bulk metallic glass

    SciTech Connect

    Luo, Qiang; Shen, Jun

    2015-02-07

    We report the results of the complex susceptibility, temperature, and field dependence of DC magnetization and the nonequilibrium dynamics of a bulk metallic glass Fe{sub 40}Co{sub 8}Cr{sub 15}Mo{sub 14}C{sub 15}B{sub 6}Er{sub 2}. Solid indication of the coexistence of reentrant spin glass (SG) and ferromagnetic orderings is determined from both DC magnetization and AC susceptibility under different DC fields. Dynamics scaling of AC susceptibility indicates critical slowing down to a reentrant SG state with a static transition temperature T{sub s} = ∼17.8 K and a dynamic exponent zv = ∼7.3. The SG nature is further corroborated from chaos and memory effects, magnetic hysteresis, and aging behavior. We discuss the results in terms of the competition among random magnetic anisotropy and exchange interactions and compare them with simulation predictions.

  9. Stability of Bulk Metallic Glass Structure. Final Report

    SciTech Connect

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  10. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams

    PubMed Central

    Al-Sahlani, Kadhim; Taherishargh, Mehdi; Kisi, Erich

    2017-01-01

    Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles’ strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20–0.26 g/cm3), the resulting foam exhibits a low density (1.03–1.19 g/cm3) that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70–80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa. PMID:28902158

  11. Controlled Shrinkage of Expanded Glass Particles in Metal Syntactic Foams.

    PubMed

    Al-Sahlani, Kadhim; Taherishargh, Mehdi; Kisi, Erich; Fiedler, Thomas

    2017-09-13

    Metal matrix syntactic foams have been fabricated via counter-gravity infiltration of a packed bed of recycled expanded glass particles (EG) with A356 aluminum alloy. Particle shrinkage was studied and has been utilized to increase the particles' strength and tailor the mechanical properties of the expanded glass/metal syntactic foam (EG-MSF). The crushing strength of particles could be doubled by shrinking them for 20 min at 700 °C. Owing to the low density of EG (0.20-0.26 g/cm³), the resulting foam exhibits a low density (1.03-1.19 g/cm³) that increases slightly due to particle shrinkage. Chemical and physical analyses of EG particles and the resulting foams were conducted. Furthermore, metal syntactic foam samples were tested in uni-axial compression tests. The stress-strain curves obtained exhibit three distinct regions: elastic deformation followed by a stress plateau and densification commencing at 70-80% macroscopic strain. Particle shrinkage increased the mechanical strength of the foam samples and their average plateau stress increased from 15.5 MPa to 26.7 MPa.

  12. Atomic caging in multicomponent glass-forming metallic liquids

    NASA Astrophysics Data System (ADS)

    Wong, Kaikin; Chen, Changjiu; Koza, Michael Marek; Samwer, Konrad; Mavila Chathoth, Suresh

    2015-05-01

    We have examined the effect of density on atomic caging in highly dense glass-forming metallic liquids, Ni59.5Nb40.5 and Ni60Nb34.8Sn5.2 using quasielastic neutron scattering. The density of the liquids is unusually high and close to the mode-coupling dynamic transition. The self-correlation function obtained from the QENS data shows stretching and the temperature dependence of the diffusion coefficient shows non-Arrhenius behavior. The mean relaxation time exhibits a non-linear variation with Q 2, which is an indicative of a jump diffusion process in these highly dense liquids. We use a simple jump diffusion model to obtain the residence time of Ni atoms in these alloy liquids. The residence time of Ni atoms exhibits a linear dependence with density of these alloy liquids, but shows an abrupt change in the slope approximately at a density of 7.5 \\text{g cm}-3 . The present observation indicates that the time at which the atoms are trapped in cages is not a monotonic function of density in hard-sphere-like metallic liquids. Our results indicate the existence of a hidden dynamic transition in glass-forming metallic liquids.

  13. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit.

    PubMed

    Wu, Fu-Fa; Chan, K C; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-06-16

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19' phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties.

  14. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  15. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOEpatents

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  16. Electrical conductivity of a bulk metallic glass composite

    NASA Astrophysics Data System (ADS)

    Wang, K.; Fujita, T.; Chen, M. W.; Nieh, T. G.; Okada, H.; Koyama, K.; Zhang, W.; Inoue, A.

    2007-10-01

    The authors report the electrical conductivity of a bulk metallic glass (BMG) based composite fabricated by warm extrusion of a mixture of gas-atomized glassy powders and ductile α-brass powders. The conductivity of the BMG composite can be well modeled by the percolation theory and the critical percolation threshold volume of the high-conductive brass phase was estimated to be about 10%. It was found that the short irregular brass fibers can dramatically reduce the resistivity of the BMG, leading to an improved material with both high strength and good conductivity for functional applications.

  17. Crossover from Localized to Cascade Relaxations in Metallic Glasses.

    PubMed

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-24

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. The origin of the cascade process in the fast quenched system is attributed to the higher density of local minima on the underlying potential energy landscape.

  18. The kinetic origin of delayed yielding in metallic glasses

    NASA Astrophysics Data System (ADS)

    Ye, Y. F.; Liu, X. D.; Wang, S.; Fan, J.; Liu, C. T.; Yang, Y.

    2016-06-01

    Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.

  19. Crossover from localized to cascade relaxations in metallic glasses

    SciTech Connect

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-21

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of local minima on the underlying potential energy landscape.

  20. Crossover from Localized to Cascade Relaxations in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-01

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. The origin of the cascade process in the fast quenched system is attributed to the higher density of local minima on the underlying potential energy landscape.

  1. Precisely predicting and designing the elasticity of metallic glasses

    SciTech Connect

    Liu, Z. Q. E-mail: zhfzhang@imr.ac.cn; Wang, R. F.; Qu, R. T.; Zhang, Z. F. E-mail: zhfzhang@imr.ac.cn

    2014-05-28

    We reveal that the elastic moduli of metallic glasses (MGs) invariably vary in a much steeper manner than that predicted by the conventional “rule of mixtures” in individual alloy systems. Such deviations are proved to originate fundamentally from their disordered atomic structures and intrinsic local heterogeneities. By treating the MGs as atomic-level dual phase hybrids, we further propose universal relations to be capable of precisely predicting and designing the elastic constants of MGs. This may contribute to the development of MGs with intended properties and behaviors, and allow new understandings on the structures and properties as well as their relationships in MGs.

  2. Plastic stability of metallic glass composites under tension

    NASA Astrophysics Data System (ADS)

    Wu, F. F.; Li, S. T.; Zhang, G. A.; Wu, X. F.; Lin, P.

    2013-10-01

    The plastic stability of metallic glass composites (MGCs) under tension was investigated. There exists a critical normalized strain-hardening rate determining the plastic stability of MGCs: if the normalized strain-hardening rate is smaller than the critical normalized strain-hardening rate, the plastic instability occurs, thus, leading to localized plastic strain in MGCs; otherwise the plastic stability is in charge of the plastic deformation of the MGCs, so the strain localization or necking is effectively suppressed, which results in homogeneous elongation in MGCs.

  3. Structural Signature of Plastic Deformation in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Peng, H. L.; Li, M. Z.; Wang, W. H.

    2011-04-01

    The structure feature of a model CuZr metallic glass during deformation is investigated by molecular dynamics simulations. A spatially heterogeneous irreversible rearrangement is observed in terms of nonaffine displacement. We find that regions with smaller nonaffine displacement have more Voronoi pentagons, while in those with larger nonaffine displacement other types of faces are more populated. We use the degree of local fivefold symmetry (LFFS) as the structural indicator to predict plastic deformation of local structures and find that the plastic events prefer to be initiated in regions with a lower degree of LFFS and propagate toward regions with a higher degree of LFFS.

  4. The kinetic origin of delayed yielding in metallic glasses

    SciTech Connect

    Ye, Y. F.; Liu, X. D.; Wang, S.; Liu, C. T.; Yang, Y.; Fan, J.

    2016-06-20

    Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.

  5. Nanoimprint of gratings on a bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Chu, J. P.; Wijaya, H.; Wu, C. W.; Tsai, T. R.; Wei, C. S.; Nieh, T. G.; Wadsworth, Jeffrey

    2007-01-01

    The authors demonstrate that optical gratings with 600 and 1500nm periods on a Pd40Ni40P20 bulk metallic glass (BMG) can be faithfully imprinted in air from Si dies. Results of scanning electron microscopy, atomic force microscopy, and optical diffraction analysis show the fine line feature of ˜150nm. The gratings have smooth and uniform surface profiles with comparable optical properties as the original Si dies. The BMG gratings can be further used to imprint the second-generation replicas on polymethylmethacrylate. Thereby, BMG is a suitable material not only for imprinting nanostructured parts such as gratings, but also as a good die material for nanoimprints.

  6. Magnetic behavior of Gd4Co3 metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Ji Liang; Zheng, Zhi Gang; Cao, Wen Huan; Shek, Chan Hung

    2013-01-01

    Metallic glass was successfully fabricated of the Gd4Co3 intermetallic composition. Analysis of the magnetization-temperature data showed that the moment per Gd atom was larger than its theoretical value and indicated the contribution from the Co moment. The maximum magnetic entropy change of glassy Gd4Co3 was determined as -7.2 J kg-1 K-1 at 50 kOe and -3.8 J kg-1 K-1 at 20 kOe, which are both much larger than those of its crystalline state.

  7. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  8. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  9. Structure of glasses containing transition metal ions. Progress report, February 1, 1979-January 31, 1980

    SciTech Connect

    White, W B; Furukawa, T; Tsong, I S.T.; Fox, K; Herman, J S; Houser, C; Nelson, C

    1980-02-01

    New normal coordinate calculations were used to relate the vibrational frequencies of silicate glasses to Si-O force constants. These appear to account for the observed frequency shifts with degree of silica polymerization. Raman spectroscopy has been used to elucidate the structure of sodium borosilicate glasses and of sodium aluminosilicate glasses. Structures of compositionally complex glasses can be understood if spectra are measured on many glasses spaced at small compositional intervals. Optical absorption spectra were used to investigate the structural setting of iron in alkali silicate glasses. Research on the alkali-hydrogen exchange in alkali silicate glasses was completed and additional work on ternary glasses is under way. A series of appendices present completed work on the structural investigations of alkali borosilicate glasses, on the structural setting of transition metal ions in glasses, and on the diffusion of hydrogen in alkali silicate glasses.

  10. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  11. Influence of etching and annealing on evolution of surface structure of metallic glass

    NASA Astrophysics Data System (ADS)

    Ushakov, Ivan V.; Feodorov, Victor A.; Permyakova, Inga J.

    2004-04-01

    Evolution of surface structure of metallic glass subjected to etching was investigated. The changes of surface structure of metallic glass 82K3XCP after chemical etching and different modes of annealing were studied. Samples of metallic glass were etched in solutions of sulphurous acid with different concentration. Corrosion-resistance was determined. The dependence of corrosion rate on acid concentration was found. Characteristic concentric circumferences on the etching surface were investigated. Their formation mechanism is discussed. Crystallization on surface stimulated by both acid and annealing was examined. The formation of first dendrites on surface of annealed metallic glass and their evolution were investigated.

  12. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    SciTech Connect

    Lan, Si; Wei, Xiaoya; Wu, Xuelian; Wang, Xun-Li; Zhou, Jie; Lu, Zhaoping; Feygenson, Mikhail; Neuefeind, Jörg

    2014-11-17

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr{sub 56}Cu{sub 36}Al{sub 8}, an average glass former, follows continuous nucleation and growth, while that of Zr{sub 46}Cu{sub 46}Al{sub 8}, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  13. Design of Bulk Metallic Glasses and Glass Matrix Composites Near Intermetallic Composition by the Principle of Competitive Growth

    NASA Astrophysics Data System (ADS)

    Ma, G. Z.; Chen, D.

    2016-11-01

    A Cu49Zr51 intermetallic is used as a base for synthesizing metallic glasses and composites with glass matrixes [(Cu49Zr51)100 - x Al x , where x = 0, 2, 4, 6, 8, 10 and 12 at.%]. The introduction of aluminum raises the microhardness and the ultimate compressive strength. In addition, the suppression of formation of crystalline phase upon the introduction of 8 at.% Al provides a glass-like structure in alloy (Cu49Zr51)92Al8. The formation of the glass-like structure is discussed within the concept of competitive nucleation of different intermetallics.

  14. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    DOE PAGES

    Lan, Si; Wei, Xiaoya; Zhou, Jie; ...

    2014-11-18

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  15. Impact of spatial dimension on structural ordering in metallic glass

    NASA Astrophysics Data System (ADS)

    Hu, Yuan-Chao; Tanaka, Hajime; Wang, Wei-Hua

    2017-08-01

    Metallic glasses (MGs) have so far attracted considerable attention for their applications as bulk materials. However, new physics and applications often emerge by dimensional reduction from three dimensions (3D) to two dimensions (2D). Here, we study, by molecular dynamics simulations, how the liquid-to-glass transition of a binary C u50Z r50 MG is affected by spatial dimensionality. We find clear evidence that crystal-like structural ordering controls both dynamic heterogeneity and slow dynamics, and thus plays a crucial role in the formation of the 2DMG. Although the 2DMG reproduces the dynamical behaviors of its 3D counterpart by considering Mermin-Wagner-type fluctuations specific to 2D, this atomic-scale structural mechanism is essentially different from that for the 3DMG in which icosahedral clusters incompatible with crystallographic symmetry play a key role in glassy behaviors. Our finding provides a structural mechanism for the formation of 2DMGs, which cannot be inferred from the knowledge of 3DMGs. The results suggest a structural basis for the glass transition in 2DMG and provide possible explanations for some previous experimental observations in ultrathin film MGs.

  16. Glass Frit Filters for Collecting Metal Oxide Nanoparticles

    NASA Technical Reports Server (NTRS)

    Ackerman, John; Buttry, Dan; Irvine, Geoffrey; Pope, John

    2005-01-01

    Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.

  17. Glass Fiber Reinforced Metal Pressure Vessel Design Guide

    NASA Technical Reports Server (NTRS)

    Landes, R. E.

    1972-01-01

    The Engineering Guide presents curves and general equations for safelife design of lightweight glass fiber reinforced (GFR) metal pressure vessels operating under anticipated Space Shuttle service conditions. The high composite vessel weight efficiency is shown to be relatively insensitive to shape, providing increased flexibility to designers establishing spacecraft configurations. Spheres, oblate speroids, and cylinders constructed of GFR Inconel X-750, 2219-T62 aluminum, and cryoformed 301 stainless steel are covered; design parameters and performance efficiencies for each configuration are compared at ambient and cryogenic temperature for an operating pressure range of 690 to 2760 N/sq cm (1000 to 4000 psi). Design variables are presented as a function of metal shell operating to sizing (proof) stress ratios for use with fracture mechanics data generated under a separate task of this program.

  18. Inherent structure length in metallic glasses: simplicity behind complexity.

    PubMed

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Herein, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.

  19. Inherent structure length in metallic glasses: Simplicity behind complexity

    DOE PAGES

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; ...

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomicmore » distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.« less

  20. Inherent structure length in metallic glasses: simplicity behind complexity

    PubMed Central

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-01-01

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Herein, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures. PMID:26245801

  1. Inherent structure length in metallic glasses: Simplicity behind complexity

    SciTech Connect

    Wu, Yuan; Wang, Hui; Cheng, Yongqiang; Liu, Xiongjun; Hui, Xidong; Nieh, Taigang; Wang, Yandong; Lu, Zhaoping

    2015-08-06

    One of the central themes in materials science is the structure-property relationship. In conventional crystalline metals, their mechanical behaviour is often dictated by well-defined structural defects such as dislocations, impurities, and twins. However, the structure-property relationship in amorphous alloys is far from being understood, due to great difficulties in characterizing and describing the disordered atomic-level structure. Here, we report a universal, yet simple, correlation between the macroscopic mechanical properties (i.e., yield strength and shear modulus) and a unique characteristic structural length in metallic glasses (MGs). Lastly, our analysis indicates that this characteristic length can incorporate effects of both the inter-atomic distance and valence electron density in MGs, and result in the observed universal correlation. The current findings shed lights on the basic understanding of mechanical properties of MGs from their disordered atomic structures.

  2. Structural perspectives on the elastic and mechanical properties of metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Zhu, Z. G.; Xue, R. J.; Ding, D. W.; Bai, H. Y.; Wang, W. H.

    2013-11-01

    The flow units of glasses are generally perceived to be a local rearrangement of atoms that are microstructural origin for plastic deformation and relaxations in metallic glasses. We find a relationship of the effective concentration of flow units and some properties such as elastic moduli, micro-hardness and plasticity of metallic glasses. The relationship helps in understanding the softening phenomenon, structural heterogeneous, evolution process of flow units, and widespread mechanical behavior of metallic glasses and can reveal the essential structural mechanism of the Poisson's ratio criterion for plasticity in metallic glasses. The relationship also indicates that the flow unit is a key structural parameter for understanding and controlling the properties and the performance of metallic glasses.

  3. Developing and Characterizing Bulk Metallic Glasses for Extreme Applications

    NASA Astrophysics Data System (ADS)

    Roberts, Scott Nolan

    Metallic glasses have typically been treated as a "one size fits all" type of material. Every alloy is considered to have high strength, high hardness, large elastic limits, corrosion resistance, etc. However, similar to traditional crystalline materials, properties are strongly dependent upon the constituent elements, how it was processed, and the conditions under which it will be used. An important distinction which can be made is between metallic glasses and their composites. Charpy impact toughness measurements are performed to determine the effect processing and microstructure have on bulk metallic glass matrix composites (BMGMCs). Samples are suction cast, machined from commercial plates, and semi-solidly forged (SSF). The SSF specimens have been found to have the highest impact toughness due to the coarsening of the dendrites, which occurs during the semi-solid processing stages. Ductile to brittle transition (DTBT) temperatures are measured for a BMGMC. While at room temperature the BMGMC is highly toughened compared to a fully glassy alloy, it undergoes a DTBT by 250 K. At this point, its impact toughness mirrors that of the constituent glassy matrix. In the following chapter, BMGMCs are shown to have the capability of being capacitively welded to form single, monolithic structures. Shear measurements are performed across welded samples, and, at sufficient weld energies, are found to retain the strength of the parent alloy. Cross-sections are inspected via SEM and no visible crystallization of the matrix occurs. Next, metallic glasses and BMGMCs are formed into sheets and eggbox structures are tested in hypervelocity impacts. Metallic glasses are ideal candidates for protection against micrometeorite orbital debris due to their high hardness and relatively low density. A flat single layer, flat BMG is compared to a BMGMC eggbox and the latter creates a more diffuse projectile cloud after penetration. A three tiered eggbox structure is also tested by firing

  4. Effective temperature dynamics of shear bands in metallic glasses.

    PubMed

    Daub, Eric G; Klaumünzer, David; Löffler, Jörg F

    2014-12-01

    We study the plastic deformation of bulk metallic glasses with shear transformation zone (STZ) theory, a physical model for plasticity in amorphous systems, and compare it with experimental data. In STZ theory, plastic deformation occurs when localized regions rearrange due to applied stress and the density of these regions is determined by a dynamically evolving effective disorder temperature. We compare the predictions of STZ theory to experiments that explore the low-temperature deformation of Zr-based bulk metallic glasses via shear bands at various thermal temperatures and strain rates. By following the evolution of effective temperature with time, strain rate, and temperature through a series of approximate and numerical solutions to the STZ equations, we successfully model a suite of experimentally observed phenomena, including shear-band aging as apparent from slide-hold-slide tests, a temperature-dependent steady-state flow stress, and a strain-rate- and temperature-dependent transition from stick-slip (serrated flow) to steady-sliding (nonserrated flow). We find that STZ theory quantitatively matches the observed experimental data and provides a framework for relating the experimentally measured energy scales to different types of atomic rearrangements.

  5. On the Shear Band Direction in Metallic Glasses

    SciTech Connect

    Gao, Yanfei; Wang, Lu; Bei, Hongbin; Nieh, Tai-Gang

    2011-01-01

    This paper shows that it is inappropriate to relate the angle between loading axis and shear-band (or fracture) plane in metallic glasses under uniaxial loading conditions to the coefficient of internal friction in the Mohr-Coulomb model. Shear bands in metallic glasses are a result of material instability (which can be predicted from constitutive parameters and loading conditions), but not a yield phenomenon. Specifically, the shear band directions depend on Poisson s ratio, the ratios of three deviatoric principal stresses to Mises stress, the coefficient of internal friction, and the dilatancy factor. The last parameter describes whether the plastic flow is associative or non-associative. Theoretical predictions based on the classic Rudnicki-Rice model agree well with a compilation of observations in uniaxial mechanical tests. Furthermore, we identify three (two) regimes under the two-dimensional cylindrical (three-dimensional spherical) contact where different shear-band directions may occur. When using bonded interface technique to visualize the shear bands under the contact, it should be noted that the stress component normal to the bonded interface is released, resulting into the commonly observed semi-circular shear bands whose directions are predicted to follow the larger in-plane principal stress.

  6. Local atomic structures of single-component metallic glasses

    NASA Astrophysics Data System (ADS)

    Trady, Salma; Hasnaoui, Abdellatif; Mazroui, M.'hammed; Saadouni, Khalid

    2016-10-01

    In this study we examine the structural properties of single-component metallic glasses of aluminum. We use a molecular dynamics simulation based on semi-empirical many-body potential, derived from the embedded atom method (EAM). The radial distribution function (RDF), common neighbors analysis method (CNA), coordination number analysis (CN) and Voronoi tessellation are used to characterize the metal's local structure during the heating and cooling (quenching). The simulation results reveal that the melting temperature depends on the heating rate. In addition, atomic visualization shows that the structure of aluminum after fast quenching is in a glassy state, confirmed quantitatively by the splitting of the second peak of the radial distribution function, and by the appearance of icosahedral clusters observed via CNA technique. On the other hand, the Wendt-Abraham parameters are calculated to determine the glass transition temperature (Tg), which depends strongly on the cooling rate; it increases while the cooling rate increases. On the basis of CN analysis and Voronoi tessellation, we demonstrate that the transition from the Al liquid to glassy state is mainly due to the formation of distorted and perfect icosahedral clusters.

  7. Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr

    NASA Astrophysics Data System (ADS)

    Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-06-01

    The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.

  8. Laser backwriting process on glass via ablation of metal targets

    NASA Astrophysics Data System (ADS)

    Castelo, A.; Nieto, D.; Bao, C.; Flores-Arias, M. T.; Pérez, M. V.; Gómez-Reino, C.; López-Gascón, C.; de la Fuente, G. F.

    2007-05-01

    Ablation of metal targets onto pyrex glass substrates, using a Q-switched Nd:YAG laser working at 355 nm, was used to study the potential of a laser backwriting process for the fabrication of optical waveguides via an index of refraction change. Metal foils of stainless steel, aluminum, copper, brass and gold have been used as blanks and irradiated by focusing the laser beam through a cylindrical lens under continuous movement in a direction perpendicular to the irradiation. An horizontal setup was found suitable to improve the effect of the plume in the sample. Results were obtained for two different configurations. Transversal profiles were analysed using a contact profilometer, comparing results obtained for the different configurations, traverse speeds and metal targets used. Two ablation regimes were identified, which are related to a critical laser fluence value of 2.7 J/cm 2. Surface micrographs obtained by scanning electron microscopy are discussed, together with the characteristics of the structures attained, taking into account the optical and thermal properties of the ablated metal blanks.

  9. Study of irradiation damage induced by He2+ ion irradiation in Ni62Ta38 metallic glass and W metal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaonan; Mei, Xianxiu; Zhang, Qi; Li, Xiaona; Wang, Yingmin; Wang, Younian

    2017-09-01

    Metallic glasses are considered to possess good resistant against irradiation due to their inherent structural long-range disorder and a lack of grain boundaries. The He2+ with an energy of 300 keV was used to irradiate Ni62Ta38 binary metallic glass to investigate its resistance against the irradiation, and the irradiated behaviour of the metallic glass was compared with that of W metal. The irradiation fluence range over 2.0 × 1017 ions/cm2-1.6 × 1018 ions/cm2. The TEM results show that nanocrystals of μ-NiTa phase and Ni2Ta phase appeared in Ni62Ta38 metallic glass under the irradiation fluence of 1.6 × 1018 ions/cm2. The SEM results show that the surfaces of Ni62Ta38 metallic glasses maintained flat and smooth, whereas a large area of blisters with peeling formed on the surface of W metal at the irradiation fluence of 1.0 × 1018 ions/cm2. It indicates that the critical irradiation fluence of surface breakage of the Ni62Ta38 metallic glass is higher than that of W metal. After the irradiation, stress was generated in the surface layer of W metal, leading to the increase of the hardness of W metal.

  10. Densification and strain hardening of a metallic glass under tension at room temperature.

    PubMed

    Wang, Z T; Pan, J; Li, Y; Schuh, C A

    2013-09-27

    The deformation of metallic glasses involves two competing processes: a disordering process involving dilatation, free volume accumulation, and softening, and a relaxation process involving diffusional ordering and densification. For metallic glasses at room temperature and under uniaxial loading, disordering usually dominates, and the glass can fail catastrophically as the softening process runs away in a localized mode. Here we demonstrate conditions where the opposite, unexpected, situation occurs: the densifying process dominates, resulting in stable plastic deformation and work hardening at room temperature. We report densification and hardening during deformation in a Zr-based glass under multiaxial loading, in a notched tensile geometry. The effect is driven by stress-enhanced diffusional relaxation, and is attended by a reduction in exothermic heat and hardening signatures similar to those observed in the classical thermal relaxation of glasses. The result is significant, stable, plastic, extensional flow in metallic glasses, which suggest a possibility of designing tough glasses based on their flow properties.

  11. Beta relaxations and their correlations to plasticity in metallic glasses and soft disordered systems

    NASA Astrophysics Data System (ADS)

    Yu, Hai-Bin

    2015-03-01

    Focusing on metallic glasses as model systems, we show that mechanical properties and deformation mechanisms of glassy materials are closely related to a kind of dynamical process inherent in glasses, i.e., the so-called Johari-Goldstein beta relaxations. Microscopically, we demonstrate that beta relaxations and the basic deformation units of glasses have the same activation energy, and this activation energy correlates with the deformability of metallic glasses. Macroscopically, we illustrate that metallic glasses with pronounced beta relaxations around room temperature could have outstanding tensile plasticity, and the transition from brittle to ductile in tension and the beta relaxations follow a same temperature-time relationship. We will also show how to tune the beta relaxations by the understanding of chemical influence to get desirable properties. Atomic signatures of beta relaxations in metallic glasses will be addressed based on recent computer simulations.

  12. Crystal nucleation in glass-forming alloy and pure metal melts under containerless and vibrationless conditions

    NASA Technical Reports Server (NTRS)

    Turnbull, D.

    1979-01-01

    Crystal nucleation behavior in metallic alloys known to form glasses in melt quenching was characterized and from this characterization the possibility that massive amounts of certain alloys could be slow cooled to the glass state was assessed. Crystal nucleation behavior of pure liquid metals was examined experimentally, under containerless conditions, and theoretically.

  13. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  14. High pressure die casting of Fe-based metallic glass.

    PubMed

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  15. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  16. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    PubMed Central

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-01-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses. PMID:27991571

  17. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  18. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces.

    PubMed

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-19

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  19. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  20. Unique Properties of Lunar Impact Glass: Nanophase Metallic Fe Synthesis

    SciTech Connect

    Liu, Yang; Taylor, Lawrence A.; Thompson, James R; Schnare, Darren W.; Park, Jae-Sung

    2007-01-01

    Lunar regolith contains important materials that can be used for in-situ resource utilization (ISRU) on the Moon, thereby providing for substantial economic savings for development of a manned base. However, virtually all activities on the Moon will be affected by the deleterious effects of the adhering, abrasive, and pervasive nature of lunar dust (<20 {micro}m portion of regolith, which constitutes {approx}20 wt% of the soil). In addition, the major impact-produced glass in the lunar soil, especially agglutinitic glass (60-80 vol% of the dust), contains unique nanometer-sized metallic Fe (np-Fe{sup 0}), which may pose severe pulmonary problems for humans. The presence of the np-Fe0 imparts considerable magnetic susceptibility to the fine portion of the lunar soil, and dust mitigation techniques can be designed using these magnetic properties. The limited availability of Apollo lunar soils for ISRU research has made it necessary to produce materials that simulate this unique np-Fe{sup 0} property, for testing different dust mitigation methods using electromagnetic fields, and for toxicity studies of human respiratory and pulmonary systems, and for microwave treatment of lunar soil to produce paved roads, etc. A method for synthesizing np-Fe{sup 0} in an amorphous silica matrix is presented here. This type of specific simulant can be used as an additive to other existing lunar soil simulants.

  1. High stored energy of metallic glasses induced by high pressure

    NASA Astrophysics Data System (ADS)

    Wang, C.; Yang, Z. Z.; Ma, T.; Sun, Y. T.; Yin, Y. Y.; Gong, Y.; Gu, L.; Wen, P.; Zhu, P. W.; Long, Y. W.; Yu, X. H.; Jin, C. Q.; Wang, W. H.; Bai, H. Y.

    2017-03-01

    Modulating energy states of metallic glasses (MGs) is significant in understanding the nature of glasses and controlling their properties. In this study, we show that high stored energy can be achieved and preserved in bulk MGs by high pressure (HP) annealing, which is a controllable method to continuously alter the energy states of MGs. Contrary to the decrease in enthalpy by conventional annealing at ambient pressure, high stored energy can occur and be enhanced by increasing both annealing temperature and pressure. By using double aberration corrected scanning transmission electron microscopy, it is revealed that the preserved high energy, which is attributed to the coupling effect of high pressure and high temperature, originates from the microstructural change that involves "negative flow units" with a higher atomic packing density compared to that of the elastic matrix of MGs. The results demonstrate that HP-annealing is an effective way to activate MGs into higher energy states, and it may assist in understanding the microstructural origin of high energy states in MGs.

  2. EXAFS studies of the local atomic environment in metal-metal glasses

    SciTech Connect

    Wong, J.; Lytle, F. W.; Liebermann, H. H.; Tanner, L. E.

    1980-01-01

    The interatomic distances and nearest neighbor coordinations of constituent atoms in a series of metal-metal glasses: M'/sub 100-x/M''/sub x/ where M' = Zr, Nb, M'' = Fe, Ni, Cu and x varies from 30 to 60 at %, have been determined using the EXAFS technique in conjunction with the x-ray synchrotron source at Stanford. Fourier transforms of the EXAFS signals clearly indicate there are like as well as unlike atom pairs in the first coordination shell about both the M' and M'' atoms. The ratio of like and unlike pairs scales linearly with composition and is indicative of random mixing in these binary glasses. The M'-M'' separation are shorter than sum of the Goldschmidt radii and implies chemical interaction between the M' and M'' atoms.

  3. Processing dependence of mechanical properties of metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2015-02-16

    Compared to their crystalline counterparts, nanowires made of metallic glass have not only superb properties but also remarkable processing ability. They can be processed easily and cheaply like plastics via a wide range of methods. To date, the underlying mechanisms of how these different processing routes affect the wires' properties as well as the atomic structure remains largely unknown. Here, by using atomistic modeling, we show that different processing methods can greatly influence the mechanical properties. The nanowires made via focused ion beam milling and embossing exhibit higher strength but localized plastic deformation, whereas that made by casting from liquid shows excellent ductility with homogeneous deformation but reduced strength. The different responses are reflected sensitively in the underlying atomic structure and packing density, some of which have been observed experimentally. The presence of the gradient of alloy concentration and surface effect will be discussed.

  4. Microscopic origin of nonlinear nonaffine deformation in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Zaccone, A.; Schall, P.; Terentjev, E. M.

    2014-10-01

    The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the many-body dynamics. The resulting nonlinear stress-strain (constitutive) relation is very simple, with few fitting parameters, yet contains all the microscopic physics. The theory is successfully tested against experimental data on metallic glasses, and it is able to reproduce the ubiquitous feature of stress-strain overshoot upon varying temperature and shear rate. A clear atomic-level interpretation is provided for the stress overshoot, in terms of the competition between the elastic instability caused by nonaffine deformation of the glassy cage and the stress buildup due to viscous dissipation.

  5. Universal structural parameter to quantitatively predict metallic glass properties

    SciTech Connect

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; Asta, Mark; Ritchie, Robert O.; Ma, Evan

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parameter correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.

  6. Universal structural parameter to quantitatively predict metallic glass properties

    PubMed Central

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; Asta, Mark; Ritchie, Robert O.; Ma, Evan

    2016-01-01

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce ‘flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parameter correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales. PMID:27941922

  7. Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Wang, D. P.; Yang, Y.; Niu, X. R.; Lu, J.; Yang, G. N.; Wang, W. H.; Liu, C. T.

    2017-06-01

    Using the method of contact resonance ultrasonic actuation (CRUA), we observed evidence of local structural rejuvenation at the surface of metallic glasses (MGs), arising from the increase of the vibration amplitude of the atoms after the resonance actuation. By adjusting the CRUA parameters, the size, pattern, and extent of the rejuvenated zones could be tailored. Nanoindentation tests revealed suppressed nucleation of shear bands after CRUA, originating from the homogenization of the local structure induced by the ultrasonic vibration. Compared with the structural homogenization from annealing, this method will not sacrifice the concentration of the free volume for the local structural constraint. These results are useful to understand the evolution of the microstructure and local structural rejuvenation of MGs, as well as the design of MGs with improved plasticity from the nanoscale to the microscale.

  8. Universal structural parameter to quantitatively predict metallic glass properties

    DOE PAGES

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; ...

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parametermore » correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.« less

  9. Atomic picture of elastic deformation in a metallic glass

    SciTech Connect

    Wang, X. D.; Aryal, S.; Zhong, C.; Ching, W. Y.; Sheng, H. W.; Zhang, H.; Zhang, D. X.; Cao, Q. P.; Jiang, J. Z.

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.

  10. Metallic glass nanofibers in future hydrogel-based scaffolds.

    PubMed

    Sadeghian, Ramin Banan; Ahadian, Samad; Yaginuma, Shin; Ramón-Azcón, Javier; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2014-01-01

    Electrically conductive reinforced hydrogels offer a wide range of applications as three-dimensional scaffolds in tissue engineering. We report electrical and mechanical characterization of methacrylated gelatin (GelMA) hydrogel, containing palladium-based metallic glass nanofibers (MGNF). Also we show that the fibers are biocompatible and C2C12 myoblasts in particular, planted into the hybrid hydrogel, tend to attach to and elongate along the fibers. The MGNFs in this work were created by gas atomization. Ravel of fibers were embedded in the GelMA prepolymer in two different concentrations (0.5 and 1.0 mg/ml), and then the ensemble was cured under UV light, forming the hybrid hydrogel. The conductivity of the hybrid hydrogel was proportional to the fiber concentration.

  11. Crossover from localized to cascade relaxations in metallic glasses

    DOE PAGES

    Fan, Yue; Iwashita, Takuya; Egami, Takeshi

    2015-07-21

    Thermally activated deformation is investigated in two metallic glass systems with different cooling histories. By probing the atomic displacements and stress changes on the potential energy landscape, two deformation modes, a localized process and cascade process, have observed. The localized deformation involves fewer than 30 atoms and appears in both systems, and its size is invariant with cooling history. However, the cascade deformation is more frequently observed in the fast quenched system than in the slowly quenched system. As a result, the origin of the cascade process in the fast quenched system is attributed to the higher density of localmore » minima on the underlying potential energy landscape.« less

  12. Thermal vibrations in the metallic glass Cu64Zr36

    NASA Astrophysics Data System (ADS)

    Schönfeld, Bernd; Zemp, Jérôme; Stuhr, Uwe

    2017-01-01

    Neutrons with 14.7 and 34 meV energy were used to determine the elastic and inelastic part of the structure factor for the metallic glass Cu64Zr36 at 250 K. Based on the temperature dependence of the elastic scattering between 150 K and RT, an average mean-square displacement < {{u}2}> =0.027(3) ~{{{\\mathringA}}2} at 250 K is obtained. The experimental scattering-vector dependence of inelastic scattering in reference to elastic scattering is found to be well described by the Debye model. Both results are supported by molecular dynamics simulations. A procedure is presented to separate the elastic part also in total x-ray scattering. This allows the smearing of structural information due to thermal vibrations to be eliminated.

  13. Universal structural parameter to quantitatively predict metallic glass properties.

    PubMed

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; Asta, Mark; Ritchie, Robert O; Ma, Evan

    2016-12-12

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce 'flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parameter correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.

  14. Fabrication of metallic glass micro grooves by thermoplastic forming

    NASA Astrophysics Data System (ADS)

    Wang, Fengyan; Zhang, Hong; Liang, Xiong; Gong, Feng; Ma, Jiang

    2017-02-01

    Metallic glasses (MGs) are considered as ideal materials for miniature fabrication because of their excellent thermoplastic forming ability in the supercooled liquid region. We show that Pd-based MG micro grooves, which are essential for microdluidic devices, can be prepared by a highly efficient and precise fabrication method. The scanning electron microscope observation and surface profiler measurement show that the MG micro grooves have superior dimensional accuracy. The excellent corrosion resistance of MGs compared with silicon, which is the conventional microfluidic device material, is also proved by the weight-loss corrosion method. Our results indicate that MG can be a promising candidate material for the fabrication of microfluidic devices and may have broad applications in the biomedical areas.

  15. Shear-banding Induced Indentation Size Effect in Metallic Glasses

    PubMed Central

    Lu, Y. M.; Sun, B. A.; Zhao, L. Z.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Shear-banding is commonly regarded as the “plasticity carrier” of metallic glasses (MGs), which usually causes severe strain localization and catastrophic failure if unhindered. However, through the use of the high-throughput dynamic nanoindentation technique, here we reveal that nano-scale shear-banding in different MGs evolves from a “distributed” fashion to a “localized” mode when the resultant plastic flow extends over a critical length scale. Consequently, a pronounced indentation size effect arises from the distributed shear-banding but vanishes when shear-banding becomes localized. Based on the critical length scales obtained for a variety of MGs, we unveil an intrinsic interplay between elasticity and fragility that governs the nanoscale plasticity transition in MGs. Our current findings provide a quantitative insight into the indentation size effect and transition mechanisms of nano-scale plasticity in MGs. PMID:27324835

  16. Elasticity dominates strength and failure in metallic glasses

    SciTech Connect

    Liu, Z. Q.; Qu, R. T.; Zhang, Z. F.

    2015-01-07

    Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitative relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.

  17. Universal structural parameter to quantitatively predict metallic glass properties

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Cheng, Yong-Qiang; Sheng, Howard; Asta, Mark; Ritchie, Robert O.; Ma, Evan

    2016-12-01

    Quantitatively correlating the amorphous structure in metallic glasses (MGs) with their physical properties has been a long-sought goal. Here we introduce `flexibility volume' as a universal indicator, to bridge the structural state the MG is in with its properties, on both atomic and macroscopic levels. The flexibility volume combines static atomic volume with dynamics information via atomic vibrations that probe local configurational space and interaction between neighbouring atoms. We demonstrate that flexibility volume is a physically appropriate parameter that can quantitatively predict the shear modulus, which is at the heart of many key properties of MGs. Moreover, the new parameter correlates strongly with atomic packing topology, and also with the activation energy for thermally activated relaxation and the propensity for stress-driven shear transformations. These correlations are expected to be robust across a very wide range of MG compositions, processing conditions and length scales.

  18. Rate dependent of strength in metallic glasses at different temperatures

    PubMed Central

    Wang, Y. W.; Bian, X. L.; Wu, S. W.; Hussain, I.; Jia, Y. D.; Yi, J.; Wang, G.

    2016-01-01

    The correlation between the strength at the macroscale and the elastic deformation as well as shear cracking behavior at the microscale of bulk metallic glasses (BMGs) is investigated. The temperatures of 298 K and 77 K as well as the strain rate ranging from 10−6 s−1 to 10−2 s−1 are applied to the BMGs, in which the mechanical responses of the BMGs are profiled through the compression tests. The yield strength is associated with the activation of the elementary deformation unit, which is insensitive to the strain rate. The maximum compressive strength is linked to the crack propagation during shear fracture process, which is influenced by the strain rate. The cryogenic temperature of 77 K significantly improves the yield strength and the maximum compressive strength of the BMGs. PMID:27270688

  19. Universal mechanism of thermo-mechanical deformation in metallic glasses

    DOE PAGES

    Dmowski, W.; Tong, Y.; Iwashita, T.; ...

    2015-02-11

    Here we investigated the atomistic structure of metallic glasses subjected to thermo-mechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in-situ, at high temperatures as a time dependent deformation in the elastic regime, and ex-situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples undergone thermo-mechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level and the sign of the stress, demonstrating universal behavior and pointing to unique atomistic unit of anelastic deformation. The structural changes due tomore » creep are strongly localized within the second nearest neighbors, involving only a small group of atoms.« less

  20. Atomic picture of elastic deformation in a metallic glass

    DOE PAGES

    Wang, X. D.; Aryal, S.; Zhong, C.; ...

    2015-03-17

    The tensile behavior of a Ni₆₀Nb₄₀ metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples,more » mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.« less

  1. General 2.5 power law of metallic glasses

    PubMed Central

    Zeng, Qiaoshi; Lin, Yu; Liu, Yijin; Zeng, Zhidan; Shi, Crystal Y.; Zhang, Bo; Lou, Hongbo; Sinogeikin, Stanislav V.; Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong; Yang, Wenge; Wang, Weihua; Sheng, Hongwei; Mao, Ho-kwang; Mao, Wendy L.

    2016-01-01

    Metallic glass (MG) is an important new category of materials, but very few rigorous laws are currently known for defining its “disordered” structure. Recently we found that under compression, the volume (V) of an MG changes precisely to the 2.5 power of its principal diffraction peak position (1/q1). In the present study, we find that this 2.5 power law holds even through the first-order polyamorphic transition of a Ce68Al10Cu20Co2 MG. This transition is, in effect, the equivalent of a continuous “composition” change of 4f-localized “big Ce” to 4f-itinerant “small Ce,” indicating the 2.5 power law is general for tuning with composition. The exactness and universality imply that the 2.5 power law may be a general rule defining the structure of MGs. PMID:26831105

  2. Atomic picture of elastic deformation in a metallic glass.

    PubMed

    Wang, X D; Aryal, S; Zhong, C; Ching, W Y; Sheng, H W; Zhang, H; Zhang, D X; Cao, Q P; Jiang, J Z

    2015-03-17

    The tensile behavior of a Ni60Nb40 metallic glass (MG) has been studied by using ab initio density functional theory (DFT) calculation with a large cell containing 1024 atoms (614 Ni and 410 Nb). We provide insight into how a super elastic limit can be achieved in a MG. Spatially inhomogeneous responses of single atoms and also major polyhedra are found to change greatly with increasing external stress when the strain is over 2%, causing the intrinsically viscoelastic behavior. We uncover the origin of the observed super elastic strain limit under tension (including linear and viscoelastic strains) in small-sized MG samples, mainly caused by inhomogeneous distribution of excess volumes in the form of newly formed subatomic cavities.

  3. Universal mechanism of thermo-mechanical deformation in metallic glasses

    SciTech Connect

    Dmowski, W.; Tong, Y.; Iwashita, T.; Egami, Takeshi; Yokoyama, Y.

    2015-02-11

    Here we investigated the atomistic structure of metallic glasses subjected to thermo-mechanical creep deformation using high energy x-ray diffraction and molecular dynamics simulation. The experiments were performed in-situ, at high temperatures as a time dependent deformation in the elastic regime, and ex-situ on samples quenched under stress. We show that all the anisotropic structure functions of the samples undergone thermo-mechanical creep can be scaled into a single curve, regardless of the magnitude of anelastic strain, stress level and the sign of the stress, demonstrating universal behavior and pointing to unique atomistic unit of anelastic deformation. The structural changes due to creep are strongly localized within the second nearest neighbors, involving only a small group of atoms.

  4. Molecular dynamics analysis of relaxation state control of metallic glasses via thermal and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Miyazaki, Narumasa; Masato Wakeda Team; Shigenobu Ogata Team

    2014-03-01

    Metallic glasses have excellent properties such as high fracture toughness and large elastic strain limit, high corrosion resistance, however they generally exhibit brittle fracture mode at ambient temperature. Since mechanical properties of metallic glasses depend on the degree of relaxation state, it can be tuned by controlling the degree of relaxation state. In this computational study, we focus on a method to control the relaxation state of metallic glasses via thermal and mechanical loadings. Using molecular dynamics, a metallic glass model was applied thermal loading composed of heating, annealing and quenching with external stress. Here, different annealing temperatures ranging from 0.5Tg to 1.5Tg [K] (Tg: the glass transition temperature), and external stresses ranging from 0 to 10 [GPa] were applied. We found that thermal loading below Tg leads the metallic glasses more relaxed state. On the other hand, the external stress brings metallic glasses less relaxed state, because external stress changes the shape of potential energy surface. These finding allow us to control the relaxation state of metallic glasses. Department of Mechanical Science and Bioengineering, Osaka Univ., Center for Elements Strategy Initiative for Structural Materials, Kyoto Univ.

  5. Bulk metallic glass-like scattering signal in small metallic nanoparticles.

    PubMed

    Doan-Nguyen, Vicky V T; Kimber, Simon A J; Pontoni, Diego; Reifsnyder Hickey, Danielle; Diroll, Benjamin T; Yang, Xiaohao; Miglierini, Marcel; Murray, Christopher B; Billinge, Simon J L

    2014-06-24

    The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order.

  6. Bulk Metallic Glass-like Scattering Signal in Small Metallic Nanoparticles

    SciTech Connect

    Doan-Nguyen, VVT; Kimber, SAJ; Pontoni, D; Hickey, DR; Diroll, BT; Yang, XH; Miglierini, M; Murray, CB; Billinge, SJL

    2014-06-01

    The atomic structure of Ni-Pd nanoparticles has been studied using atomic pair distribution function (PDF) analysis of X-ray total scattering data and with transmission electron microscopy (TEM). Larger nanoparticles have PDFs corresponding to the bulk face-centered cubic packing. However, the smallest nanoparticles have PDFs that strongly resemble those obtained from bulk metallic glasses (BMGs). In fact, by simply scaling the distance axis by the mean metallic radius, the curves may be collapsed onto each other and onto the PDF from a metallic glass sample. In common with a wide range of BMG materials, the intermediate range order may be fit with a damped single-frequency sine wave. When viewed in high-resolution TEM, these nanoparticles exhibit atomic fringes typical of those seen in small metallic clusters with icosahedral or decahedral order. These two seemingly contradictory results are reconciled by calculating the PDFs of models of icosahedra that would be consistent with the fringes seen in TEM. These model PDFs resemble the measured ones when significant atom-position disorder is introduced, drawing together the two diverse fields of metallic nanoparticles and BMGs and supporting the view that BMGs may contain significant icosahedral or decahedral order.

  7. Low reflectance of nano-patterned Pt-Cu-Ni-P bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Tarigan, Hendra J.; Kahler, Niloofar; Ramos, Nelson Sepúlveda; Kumar, Golden; Bernussi, Ayrton A.

    2015-07-01

    Materials that exhibit very high absorption and low reflectance at optical frequencies are important in a variety of light harvesting applications. We explore nano-scale topography of bulk metallic glasses to realize metallic surfaces with controllable reflectance. Diffuse reflectance as low as 1.6% in the visible range is achieved with nano-patterned Pt-based model bulk metallic glass without further optimization. Effect of pattern dimensions (size, spacing, and aspect-ratio) on the reflectance of bulk metallic glasses is investigated using a combination of simulation and experiments.

  8. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    PubMed Central

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic ‘confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses. PMID:27480126

  9. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-04-01

    Over centuries, structural glasses have been deemed as a strong yet inherently `brittle' material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2-4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses.

  10. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    PubMed Central

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-01-01

    Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

  11. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    NASA Astrophysics Data System (ADS)

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-08-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic `confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses.

  12. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    NASA Astrophysics Data System (ADS)

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X.-L.

    2017-03-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  13. Examining metallic glass formation in LaCe:Nb by ion implantation

    DOE PAGES

    Sisson, Richard; Reinhart, Cameron; Bridgman, Paul; ...

    2017-01-01

    In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film ofmore » La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.« less

  14. Examining metallic glass formation in LaCe:Nb by ion implantation

    SciTech Connect

    Sisson, Richard; Reinhart, Cameron; Bridgman, Paul; Jevremovic, Tatjana

    2017-01-01

    In order to combine niobium (Nb) with lanthanum (La) and cerium (Ce), Nb ions were deposited within a thin film of these two elements. According to the Hume-Rothery rules, these elements cannot be combined into a traditional crystalline metallic solid. The creation of an amorphous metallic glass consisting of Nb, La, and Ce is then investigated. Amorphous metallic glasses are traditionally made using fast cooling of a solution of molten metals. In this paper, we show the results of an experiment carried out to form a metallic glass by implanting 9 MeV Nb 3+ atoms into a thin film of La and Ce. Prior to implantation, the ion volume distribution is calculated by Monte Carlo simulation using the SRIM tool suite. As a result, using multiple methods of electron microscopy and material characterization, small quantities of amorphous metallic glass are indeed identified.

  15. 16 CFR 1500.49 - Technical requirements for determining a sharp metal or glass edge in toys and other articles...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... sharp metal or glass edge in toys and other articles intended for use by children under 8 years of age... § 1500.49 Technical requirements for determining a sharp metal or glass edge in toys and other articles... metal or glass edges on toys and other articles intended for use by children under 8 years of age, and...

  16. 16 CFR 1500.49 - Technical requirements for determining a sharp metal or glass edge in toys and other articles...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... sharp metal or glass edge in toys and other articles intended for use by children under 8 years of age... § 1500.49 Technical requirements for determining a sharp metal or glass edge in toys and other articles... metal or glass edges on toys and other articles intended for use by children under 8 years of age, and...

  17. 16 CFR 1500.49 - Technical requirements for determining a sharp metal or glass edge in toys and other articles...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... sharp metal or glass edge in toys and other articles intended for use by children under 8 years of age... § 1500.49 Technical requirements for determining a sharp metal or glass edge in toys and other articles... metal or glass edges on toys and other articles intended for use by children under 8 years of age, and...

  18. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  19. Fracture behaviors under pure shear loading in bulk metallic glasses.

    PubMed

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang

    2016-12-23

    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.

  20. Fracture behaviors under pure shear loading in bulk metallic glasses

    PubMed Central

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang

    2016-01-01

    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials. PMID:28008956

  1. Fracture behaviors under pure shear loading in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Chen, Cen; Gao, Meng; Wang, Chao; Wang, Wei-Hua; Wang, Tzu-Chiang

    2016-12-01

    Pure shear fracture test, as a special mechanical means, had been carried out extensively to obtain the critical information for traditional metallic crystalline materials and rocks, such as the intrinsic deformation behavior and fracture mechanism. However, for bulk metallic glasses (BMGs), the pure shear fracture behaviors have not been investigated systematically due to the lack of a suitable test method. Here, we specially introduce a unique antisymmetrical four-point bend shear test method to realize a uniform pure shear stress field and study the pure shear fracture behaviors of two kinds of BMGs, Zr-based and La-based BMGs. All kinds of fracture behaviors, the pure shear fracture strength, fracture angle and fracture surface morphology, are systematically analyzed and compared with those of the conventional compressive and tensile fracture. Our results indicate that both the Zr-based and La-based BMGs follow the same fracture mechanism under pure shear loading, which is significantly different from the situation of some previous research results. Our results might offer new enlightenment on the intrinsic deformation and fracture mechanism of BMGs and other amorphous materials.

  2. Promising antimicrobial capability of thin film metallic glasses.

    PubMed

    Chu, Y Y; Lin, Y S; Chang, C M; Liu, J-K; Chen, C H; Huang, J C

    2014-03-01

    Thin film metallic glasses (TFMGs) are demonstrated to exhibit excellent surface flatness, high corrosion resistance and satisfactory hydrophobic properties. Moreover, the antimicrobial and biocompatibility abilities of TFMGs are examined and the results are compared with the behavior of pure Ag and 316L stainless steel. Three TFMGs, Al48Ag37Ti15, Zr54Ti35Si11, and Zr59Ti22Ag19, are prepared by sputtering to assess the antimicrobial performance against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, which are the most common nosocomial infection pathogens. Experimental results show that the antimicrobial effect of the Al- or Ag-containing AlAgTi and ZrTiAg TFMGs is similar to that of the pure Ag coating. The ZrTiSi TFMG with no Ag or Al shows poor antimicrobial capability. The physical properties of highly smooth surface and hydrophobic nature alone are not sufficient to result in promising antimicrobial ability. The chemical metal ion release still plays a major role, which should be born in mind in designing biomedical devices.

  3. Glass surface metal deposition with high-power femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Deng, Cheng; Bai, Shuang

    2016-12-01

    Using femtosecond fiber laser-based additive manufacturing (AM), metal powder is deposited on glass surface for the first time to change its surface reflection and diffuse its transmission beam. The challenge, due to mismatch between metal and glass on melting temperature, thermal expansion coefficient, brittleness, is resolved by controlling AM parameters such as power, scan speed, hatching, and powder thickness. Metal powder such as iron is successfully deposited and demonstrated functions such as diffusion of light and blackening effects.

  4. Shear banding in metallic glasses described by alignments of Eshelby quadrupoles

    NASA Astrophysics Data System (ADS)

    Hieronymus-Schmidt, Vitalij; Rösner, Harald; Wilde, Gerhard; Zaccone, Alessio

    2017-04-01

    Plastic deformation of metallic glasses performed well below the glass transition temperature leads to the formation of shear bands as a result of shear localization. It is believed that shear banding originates from individual stress concentrators having quadrupolar symmetry. To elucidate the underlying mechanisms of shear-band formation, microstructural investigations were carried out on sheared zones using transmission electron microscopy. Here we show evidence of a characteristic signature present in shear bands manifested in the form of sinusoidal density variations. We present an analytical solution for the observed postdeformation state derived from continuum mechanics using an alignment of quadrupolar stress-field perturbations for the plastic events. Since we observe qualitatively similar features for three different types of metallic glasses that span the entire range of characteristic properties of metallic glasses, we conclude that the reported deformation behavior is generic for all metallic glasses, and thus has far-reaching consequences for the deformation behavior of amorphous solids in general.

  5. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Schnabel, Volker; Jaya, B. Nagamani; Köhler, Mathias; Music, Denis; Kirchlechner, Christoph; Dehm, Gerhard; Raabe, Dierk; Schneider, Jochen M.

    2016-11-01

    A paramount challenge in materials science is to design damage-tolerant glasses. Poisson’s ratio is commonly used as a criterion to gauge the brittle-ductile transition in glasses. However, our data, as well as results in the literature, are in conflict with the concept of Poisson’s ratio serving as a universal parameter for fracture energy. Here, we identify the electronic structure fingerprint associated with damage tolerance in thin film metallic glasses. Our correlative theoretical and experimental data reveal that the fraction of bonds stemming from hybridised states compared to the overall bonding can be associated with damage tolerance in thin film metallic glasses.

  6. Thermodynamic Origins of Shear Band Formation and the Universal Scaling Law of Metallic Glass Strength

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Liu, C. T.; Wang, W. H.; Inoue, A.; Sakurai, T.; Chen, M. W.

    2009-08-01

    We report a universal scaling law, τy=3R(Tg-RT)/V, that uncovers an inherent relationship of the yield strength τy with the glass transition temperature Tg and molar volume V of metallic glasses. This equation is derived from fundamental thermodynamics and validated by various metallic glasses with well-defined yielding. The linearity between τy and Tg demonstrates the intrinsic correlation between yielding and glass-liquid transition, which contributes to the basic understanding of the strength and deformation of glassy alloys.

  7. Proposed thermodynamic method to predict the glass formation of the ternary transition metal systems.

    PubMed

    Wang, T L; Li, J H; Liu, B X

    2009-04-14

    By considering the energetic competition between the crystalline solid solution and glass phase, a thermodynamic method is proposed to predict/determine the glass forming range of a ternary metal system and in terms of the dynamics, the parameter gamma(ABC)* is further defined to search for a proper alloy with superior glass forming ability in the system. 10 more ternary/binary metal systems, e.g. the Cu-Zr-Ti and Cu-Hf-Ti systems, were studied and the predicted alloys of superior glass forming ability match well with those reported from experimental observations.

  8. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses

    PubMed Central

    Schnabel, Volker; Jaya, B. Nagamani; Köhler, Mathias; Music, Denis; Kirchlechner, Christoph; Dehm, Gerhard; Raabe, Dierk; Schneider, Jochen M.

    2016-01-01

    A paramount challenge in materials science is to design damage-tolerant glasses. Poisson’s ratio is commonly used as a criterion to gauge the brittle-ductile transition in glasses. However, our data, as well as results in the literature, are in conflict with the concept of Poisson’s ratio serving as a universal parameter for fracture energy. Here, we identify the electronic structure fingerprint associated with damage tolerance in thin film metallic glasses. Our correlative theoretical and experimental data reveal that the fraction of bonds stemming from hybridised states compared to the overall bonding can be associated with damage tolerance in thin film metallic glasses. PMID:27819318

  9. Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses.

    PubMed

    Schnabel, Volker; Jaya, B Nagamani; Köhler, Mathias; Music, Denis; Kirchlechner, Christoph; Dehm, Gerhard; Raabe, Dierk; Schneider, Jochen M

    2016-11-07

    A paramount challenge in materials science is to design damage-tolerant glasses. Poisson's ratio is commonly used as a criterion to gauge the brittle-ductile transition in glasses. However, our data, as well as results in the literature, are in conflict with the concept of Poisson's ratio serving as a universal parameter for fracture energy. Here, we identify the electronic structure fingerprint associated with damage tolerance in thin film metallic glasses. Our correlative theoretical and experimental data reveal that the fraction of bonds stemming from hybridised states compared to the overall bonding can be associated with damage tolerance in thin film metallic glasses.

  10. Measurements of slow β -relaxations in metallic glasses and supercooled liquids

    NASA Astrophysics Data System (ADS)

    Zhao, Z. F.; Wen, P.; Shek, C. H.; Wang, W. H.

    2007-05-01

    Dynamic mechanical measurements were performed on a series of strong and fragile metallic glass-forming liquids in isochronous and isothermal routes. Our results indicate that slow β -relaxation mode is ubiquitous in metallic glass-forming systems though it may manifest as an excess wing in strong glasses due to strong coupling with the α -relaxation. Furthermore, we find that the degree of coupling between α -relaxation and slow β -relaxation correlates with the fragility of these glass-forming liquids. The possible mechanism and the connections between α -relaxation and slow β -relaxation are discussed.

  11. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-07-18

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  12. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  13. On the nature of heat effects and shear modulus softening in metallic glasses: A generalized approach

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.; Makarov, A. S.; Afonin, G. V.; Mitrofanov, Yu. P.

    2014-01-01

    The paper presents a new approach to the nature of heat effects and shear modulus softening in metallic glasses. The approach is based on the assumption that the glass contains quenched-in "defects"—elastic dipoles. Using the nonlinear elastic representation of the internal energy of glass with quenched-in elastic dipoles, we derive a simple analytical law, which connects the heat flow and temperature derivative of the shear modulus. Specially performed experiments confirmed the validity of this law. The exothermal and endothermal heat processes in glass reveal through the relaxation of the shear modulus confirming it as a key parameter for the understanding the relaxation processes in glasses.

  14. Thermo-mechanical relaxation of stresses in a glass-metal junction

    NASA Astrophysics Data System (ADS)

    Lyubimova, O. N.; Solonenko, E. P.

    2016-10-01

    This work deals with the evaluation of the stress-strain state in an infinite layered cylindrical junction of glass with steel. Structural changes in the glass behavior are described by the Tool-Narayanaswamy-Mazurin-Moynihan model. The relaxation processes in the glass have been presented by the temperature regime depending of the fictive temperature Tf, the relaxation time τ' or the viscosity η and the thermal expansion coefficient α(1). The calculations of the stress components in the glass have been made by using the viscoelastic model. The presented model allows to find the optimal annealing conditions for the creation of the glass- metal composite material.

  15. Relaxation kinetics and mechanical stability of metallic glasses and supercooled melts

    NASA Astrophysics Data System (ADS)

    Mayr, S. G.

    2009-02-01

    Metallic glasses are characterized by a rather complex viscoelastic response and the occurrence of the glass transition, while the atomistic origins are still poorly understood. Using a realistic CuTi model glass we employ global and local elasticity tensors for a thorough analysis of relaxation kinetics and mechanical stability. We obtain strong indication that (i) α relaxation is governed by an underlying process (identified as slow β relaxation) which resembles diffusion in its temperature dependence, (ii) glasses reveal intrinsic mechanical instabilities, which are closely linked to collective shear events within shear transformation zones, and (iii) glass transition can be understood as a percolation transition of mechanically unstable regions.

  16. Nonlinear response and avalanche behavior in metallic glasses

    NASA Astrophysics Data System (ADS)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  17. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    SciTech Connect

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared to the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.

  18. Effect of Zr on microstructure of metallic glass coatings prepared by gas tunnel type plasma spraying.

    PubMed

    Kobayashi, A; Kuroda, T; Kimura, H; Inoue, A

    2012-06-01

    Metallic glass is one of the most attractive advanced materials, and many researchers have conducted various developmental research works. Metallic glass is expected to be used as a functional material because of its excellent physical and chemical functions such as high strength and high corrosion resistance. However, the application for small size parts has been carried out only in some industrial fields. In order to widen the industrial application fields, a composite material is preferred for the cost performance. In the coating processes of metallic glass with the conventional deposition techniques, there is a difficulty to form thick coatings due to their low deposition rate. Thermal spraying method is one of the potential candidates to produce metallic glass composites. Metallic glass coatings can be applied to the longer parts and therefore the application field can be widened. The gas tunnel plasma spraying is one of the most important technologies for high quality ceramic coating and synthesizing functional materials. As the gas tunnel type plasma jet is superior to the properties of other conventional type plasma jets, this plasma has great possibilities for various applications in thermal processing. In this study, the gas tunnel type plasma spraying was used to form the metallic glass coatings on the stainless-steel substrate. The microstructure and surface morphology of the metallic glass coatings were examined using Fe-based metallic glass powder and Zr-based metallic glass powder as coating material. For the mechanical properties the Vickers hardness was measured on the cross section of both the coatings and the difference between the powders was compared.

  19. Formation of metallic and metallic-glass hollow spheres and their solidification characteristics

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    Various metals and metallic glass systems have bene processed into hollow spheres with sizes ranging from 3 mm to 440 microns in diameter. The technique for the formation of the large hollow spheres, in general, is based on the fluid-dynamic instability of a hollow annular jet. A refined technique has also been developed for microshell formation, in which discrete bubbles are injected into the stream of the molten material and individually 'flushed' out at a frequency related to the Rayleigh jet instability. The surfaces of those spheres of all sizes exhibit a range of contrasting solidification behaviors and characteristics. Metal shells of varying materials, sizes, aspect ratios, sphericity and concentricity have many useful and novel applications.

  20. Phase transformations and thermodynamics of aluminum-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  1. Dynamic mechanical properties of a Ti-based metallic glass matrix composite

    SciTech Connect

    Li, Jinshan Cui, Jing; Bai, Jie; Kou, Hongchao; Wang, Jun; Qiao, Jichao

    2015-04-21

    Dynamic mechanical behavior of a Ti{sub 50}Zr{sub 20}Nb{sub 12}Cu{sub 5}Be{sub 13} bulk metallic glass composite was investigated using mechanical spectroscopy in both temperature and frequency domains. Storage modulus G′ and loss modulus G″ are determined by temperature, and three distinct regions corresponding to different states in the bulk metallic glass composite are characterized. Physical parameters, such as atomic mobility and correlation factor χ, are introduced to analyze dynamic mechanical behavior of the bulk metallic glass composite in the framework of quasi-point defects (QPD) model. The experimental results are in good agreement with the prediction of QPD model.

  2. On the mechanism of material removal in nanometric cutting of metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Pengzhe; Fang, Fengzhou

    2014-08-01

    Metallic glasses find wide applications in nanotechnology and micro electro-mechanical systems because of their unique physical properties due to their amorphous structures. The material removal mechanism in nanometric cutting of Cu50Zr50, a typical metallic glass, is studied using molecular dynamics method. The chip formation, workpiece deformation and scratching forces under various scratching depths, scratching velocities and temperatures are investigated. The effect of void defect on the cutting behaviors of metallic glass is also explored. The results show that the material removal in nanometric cutting process is based on extrusion instead of shearing, achieving a good understanding of material removal at the nanoscale.

  3. Siderophile element fractionation in meteor crater impact glasses and metallic spherules

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; See, T. H.; Scott, E. R. D.

    1993-01-01

    Meteor Crater, Arizona provides an opportunity to study, in detail, elemental fractionation processes occurring during impacts through the study of target rocks, meteorite projectile and several types of impact products. We have performed EMPA and INAA on target rocks, two types of impact glass and metallic spherules from Meteor Crater. Using literature data for the well studied Canyon Diablo iron we can show that different siderophite element fractionations affected the impact glasses than affected the metallic spherules. The impact glasses primarily lost Au, while the metallic spherules lost Fe relative to other siderophile elements.

  4. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Ultrasonic Welding

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.

  5. Atomic-level structures and physical properties of magnetic CoSiB metallic glasses

    NASA Astrophysics Data System (ADS)

    Shan, Guangcun; Liang Zhang, Ji; Li, Jiong; Zhang, Shuo; Jiang, Zheng; Huang, Yuying; Shek, Chan-Hung

    2014-02-01

    Two CoSiB metallic glasses of low Co contents, which consist of different clusters, have recently been developed by addition of solute atoms. In this work, the atomic structure and the magnetic properties of the two CoBSi metallic glasses were elucidated by state-of-the-art extended X-ray absorption fine structure spectroscopy (EXAFS) combining with ab initio molecular-dynamics (AIMD) computational techniques. Besides, the origin of these magnetic behaviors was discussed in view of the EXAFS results and atomic structures of the metallic glasses.

  6. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses.

    PubMed

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer; Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal-transition metal and transition metal-metalloid (TM-M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM-M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  7. In-situ study of crystallization kinetics in ternary bulk metallic glass alloys with different glass forming abilities

    SciTech Connect

    Lan, Si; Wei, Xiaoya; Zhou, Jie; Lu, Zhaoping; Wu, Xuelian; Feygenson, Mikhail; Neuefeind, Jorg C.; Wang, Xun-Li

    2014-11-18

    In-situ transmission electron microcopy and time-resolved neutron diffraction were used to study crystallization kinetics of two ternary bulk metallic glasses during isothermal annealing in the supercooled liquid region. It is found that the crystallization of Zr56Cu36Al8, an average glass former, follows continuous nucleation and growth, while that of Zr46Cu46Al8, a better glass former, is characterized by site-saturated nucleation, followed by slow growth. Possible mechanisms for the observed differences and the relationship to the glass forming ability are discussed.

  8. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    NASA Astrophysics Data System (ADS)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  9. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  10. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  11. Bulk Formation of Metallic Glasses and Amorphous Silicon from the Melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1985-01-01

    By using metallic glass compositions with a high relative glass transition temperature, such as Pd40Ni40P20, homogeneous nucleation also becomes negligible. Large (5g) masses of this alloys were obtained using a molten B2O3 flux. Presently, bulk glass formation in iron based glasses is being investigated. It is expected that if an undercooling of about 250K can be achieved in a Ge or Si melt, formation of the amorphous semiconductor phase (rather than the crystal) may be kinetically favored. The volumetric behavior of undercooled liquid Ga droplet dispersion is investigated by dilatometry. A theoretical model (both analytical and numerical) was developed for transient nucleation in glass forming melts. The model, originally designed for isothermal conditions, was extended to continuous quenching. It is being applied to glass formation in various metallic and oxide systems. A further refinement will be the inclusion of diffusion controlled interfacial rearrangements governing the growth of the crystal embryos.

  12. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminum oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  13. Universal fractional noncubic power law for density of metallic glasses.

    PubMed

    Zeng, Qiaoshi; Kono, Yoshio; Lin, Yu; Zeng, Zhidan; Wang, Junyue; Sinogeikin, Stanislav V; Park, Changyong; Meng, Yue; Yang, Wenge; Mao, Ho-Kwang; Mao, Wendy L

    2014-05-09

    As a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance. However, by using high pressure as a clean tuning parameter and high-resolution in situ techniques developed specifically for probing the density of amorphous materials, we surprisingly found that the density of a MG varies with the 5/2 power of q1, instead of the expected cubic relationship. Further studies of MGs of different compositions repeatedly produced the same fractional power law of 5/2 in all three MGs we investigated, suggesting a universal feature in MG.

  14. Achieving high energy absorption capacity in cellular bulk metallic glasses

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wu, F. F.; Xia, L.

    2015-01-01

    Cellular bulk metallic glasses (BMGs) have exhibited excellent energy-absorption performance by inheriting superior strength from the parent BMGs. However, how to achieve high energy absorption capacity in cellular BMGs is vital but mysterious. In this work, using step-by-step observations of the deformation evolution of a series of cellular BMGs, the underlying mechanisms for the remarkable energy absorption capacity have been investigated by studying two influencing key factors: the peak stress and the decay of the peak stress during the plastic-flow plateau stages. An analytical model of the peak stress has been proposed, and the predicted results agree well with the experimental data. The decay of the peak stress has been attributed to the geometry change of the macroscopic cells, the formation of shear bands in the middle of the struts, and the “work-softening” nature of BMGs. The influencing factors such as the effect of the strut thickness and the number of unit cells have also been investigated and discussed. Strategies for achieving higher energy absorption capacity in cellular BMGs have been proposed. PMID:25973781

  15. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-02-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.

  16. Macrophage responses to a Zr-based bulk metallic glass.

    PubMed

    Huang, Lu; Zhang, Tao; Liaw, Peter K; He, Wei

    2014-10-01

    Bulk metallic glasses (BMGs) are considered to be a competitive candidate of biomedical materials, owing to their appealing mechanical properties and high thermal processability. Based on the established biosafety of the Zr-based BMGs, macrophage responses to (Zr₅₅ Al₁₀ Ni₅ Cu₃₀)₉₉ Y₁ (atomic percent) BMG were investigated in the present study, in comparison with Ti-6Al-4V alloy. The adhesion of RAW 264.7 macrophages to both alloys was found to be mediated by protein adsorption. The Zr-based BMG is capable of supporting regular adhesion and proliferation of macrophages, indicating its good biocompatibility, which agrees with previous findings using other mammalian cells. A lower degree of morphological activation was revealed on Zr-based BMG substrates than on Ti-6Al-4V substrates, which is evidenced by smaller spreading areas and less ruffling on cell surfaces. Smaller amount of proinflammatory cytokine, tumor necrosis factor-alpha, was secreted by macrophages cultured on Zr-based BMGs, which further confirms the lower level of inflammation induced by BMG than by Ti alloys. © 2013 Wiley Periodicals, Inc.

  17. Tuned critical avalanche scaling in bulk metallic glasses

    SciTech Connect

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; Wraith, Matthew; Qiao, Junwei; Zhang, Yong; Liaw, Peter K.; Uhl, Jonathan T.; Dahmen, Karin A.

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters, such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.

  18. Icosahedral superclusters in Cu64Zr36 metallic glass

    NASA Astrophysics Data System (ADS)

    Zemp, J.; Celino, M.; Schönfeld, B.; Löffler, J. F.

    2014-10-01

    The presence of superclusters based on Cu-centered icosahedra was studied via classical molecular dynamics simulations in Cu64Zr36 metallic glass. Medium-range order was identified by determining the nearest-neighbor histogram and bond-angle distribution of superclusters. A heterogeneous distribution of icosahedra was observed while other common cluster types are distributed homogeneously. The degree of superclustering, as quantified by the number of cap-sharing bonds per icosahedron, was found to depend only on the icosahedron fraction, irrespective of thermal history. This is further supported by a long-time annealing in the supercooled liquid regime, where the number of icosahedra significantly increases and the formation of superclusters is consequently enhanced. While distorted icosahedra are not found in the vicinity of full icosahedra, the Zr-centered ⟨0 0 12 4⟩ clusters show a high spatial correlation to Cu-centered icosahedra. This is indicative of early stages of crystallization into a Cu2Zr Laves phase.

  19. Engineering cellular response using nanopatterned bulk metallic glass.

    PubMed

    Padmanabhan, Jagannath; Kinser, Emily R; Stalter, Mark A; Duncan-Lewis, Christopher; Balestrini, Jenna L; Sawyer, Andrew J; Schroers, Jan; Kyriakides, Themis R

    2014-05-27

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern-cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials.

  20. Properties of polyamorphous Ce75Al25 metallic glasses

    SciTech Connect

    Zeng, Q.-S.; Struzhkin, Viktor V.; Fang, Y. Z.; Gao, C. X.; Luo, H. B.; Wang, X. D.; Lathe, C.; Mao, Wendy L.; Wu, F. M.; Mao, Ho-kwang; Jiang, J. Z.

    2010-08-17

    The thermal stability and electronic transport properties of polyamorphous Ce{sub 75} Al{sub 25} metallic glass (MG) have been investigated using in situ high-pressure, high-temperature, energy-dispersive synchrotron x-ray diffraction and in situ high-pressure and low-temperature, four-probe resistance measurements. The results are compared with the properties of La{sub 75} Al{sub 25} MG. The pressure dependence of the crystallization temperature and resistance of the Ce{sub 75} Al{sub 25} MG exhibited turning points at the polyamorphic transition pressure, 1.5 GPa, and they clearly presented different behaviors below and above 1.5 GPa. In contrast, no turning points were observed in the La{sub 75} Al{sub 25} MG (La has no 4f electron). Additionally, the pressure-tuned temperature coefficient of resistance of the Ce{sub 75} Al{sub 25} MG was observed. These results revealed switchable properties in the polyamorphous Ce{sub 75} Al{sub 25} MG that are linked with 4f electron delocalization.

  1. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass

    PubMed Central

    2015-01-01

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern–cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials. PMID:24724817

  2. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  3. Serration Dynamics in a Zr-Based Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Qiao, J. W.; Yang, H. J.; Liaw, P. K.; Huang, C. J.; Li, L. F.

    2015-06-01

    Intermittent or serrated plastic flows have been widely observed in irreversible deformation through shear banding in bulk metallic glasses (BMGs). The strain-rate-dependent plasticity under uniaxial compression at 2 × 10-3, 2 × 10-4, and 2 × 10-5 s-1 in a Zr-based BMG is investigated. Serration events have a typical time scale at a relatively higher strain rate (2 × 10-3 s-1), while at lower strain rates, there is a lack of typical time scale. During serrations, the stress is falling rapidly, and the amplitude of the stress drop between the neighboring serrations is approximately equal. The stress drop vs time satisfies the exponential decay rule during jerk flows. Due to the serrated flow corresponding to the internal shear process, the free-volume model and stick-slip model are introduced to explain how the shear bands form and propagate and the cooperation of multiple shear bands. The mechanism is explained by relating the atomic-scale deformation with the macroscopic shear-band behavior, offering key ingredients to fundamentally cognize serrations in jerk flows.

  4. Tuned critical avalanche scaling in bulk metallic glasses

    DOE PAGES

    Antonaglia, James; Xie, Xie; Schwarz, Gregory; ...

    2014-03-17

    In this study, ingots of the bulk metallic glass (BMG), Zr64.13Cu15.75Ni10.12Al10 in atomic percent (at. %), are compressed at slow strain rates. The deformation behavior is characterized by discrete, jerky stress-drop bursts (serrations). Here we present a quantitative theory for the serration behavior of BMGs, which is a critical issue for the understanding of the deformation characteristics of BMGs. The mean-field interaction model predicts the scaling behavior of the distribution, D(S), of avalanche sizes, S, in the experiments. D(S) follows a power law multiplied by an exponentially-decaying scaling function. The size of the largest observed avalanche depends on experimental tuning-parameters,more » such as either imposed strain rate or stress. Similar to crystalline materials, the plasticity of BMGs reflects tuned criticality showing remarkable quantitative agreement with the slip statistics of slowly-compressed nanocrystals. The results imply that material-evaluation methods based on slip statistics apply to both crystalline and BMG materials.« less

  5. Friction and wear of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Sliding friction experiments, X-ray photoelectron spectroscopy (XPS) analysis, and electron microscopy and diffraction studies were conducted with ferrous base metallic glasses (amorphous alloys) in contact with aluminium oxide at temperatures to 750 C in a vacuum. Sliding friction experiments were also conducted in argon and air atmospheres. The results of the investigation indicate that the coefficient of friction increases with increasing temperature to 350 C in vacuum. The increase in friction is due to an increase in adhesion resulting from surface segregation of boric oxide and/or silicon oxide to the surface of the foil. Above 500 C the coefficient of friction decreased rapidly. The decrease correlates with the segregation of boron nitride to the surface. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and/or silicon oxide at 350 C and boron nitride above 500 C. The segregation of contaminants is responsible for the friction behavior. The amorphous alloys have superior wear resistance to crystalline 304 stainless steel. The relative concentrations of the various constituents at the surfaces of the amorphous alloys are very different from the nominal bulk compositions.

  6. APT Characterization of Some Iron-Based Bulk Metallic Glasses

    SciTech Connect

    Miller, Michael K; Liu, Chain T; Wright, J. A.; Tang, W.; Hildal, K.

    2006-01-01

    A microstructural characterization was performed on 3 iron-based bulk metallic glasses. These alloys were an arc cast Fe{sub 61}Y{sub 2}Zr{sub 8}Co{sub 6}Al{sub 1}Mo{sub 7}B{sub 15}A2 alloy, a twin roll cast Fe{sub 68}Y{sub 2}Zr{sub 2}Nb{sub 2}Cr{sub 1.5}V{sub 4.5}B{sub 20} DarpaQ21 alloy and a vacuum induction melted Fe{sub 50.7}Y{sub 1.5}Cr{sub 14.5}Mo{sub 13}C{sub 14.8}B{sub 5.5} Darva101-Y alloy. The alloys were characterized by scanning electron microscopy and atom probe tomography in the as-cast condition. Some micrometer and nanometer scale precipitates were observed in all 3 alloys indicating that the alloy compositions are not fully optimized in the as-cast state. The Darva101-Y alloy was also characterized after annealing above the onset of crystallization temperature for 1 h at 610 C. This annealing treatment produced a mixture of crystalline phase: M{sub 6}(BC) and Fe{sub 14}Y{sub 2}B in addition to a high temperature M{sub 23}C{sub 6} phase that is indicated from XRD and previous research.

  7. Compressive fracture morphology and mechanism of metallic glass

    NASA Astrophysics Data System (ADS)

    Qu, R. T.; Zhang, Z. F.

    2013-11-01

    We quantitatively investigated the fracture morphologies of Zr52.5Cu17.9Ni14.6Al10Ti5 and Pd78Cu6Si16 metallic glasses (MGs) under compression. The characteristic features of the compressive fracture morphology were captured, and the shear vein patterns were found to be not a one-to-one correspondence between two opposing fracture surfaces in an identical sample. This finding experimentally confirms that the compressive failure behaves in a fracture mode of pure shear (mode II). Quantitative measurements show that a ˜1 μm thickness layer with materials not only inside but also adjacent to the major shear band contributes to the formation of shear vein patterns. The critical shear strain to break a shear band was found to be more than 105% and higher in more ductile MGs under compression than tension. Estimation on the temperature rise at the fracture moment indicates that only ˜5% of the total elastic energy stored in the sample converts into the heat required for melting the layer to form the vein patterns. The mode II fracture toughness was also estimated based on the quantitative measurements of shear vein pattern and found larger than the mode I fracture toughness. Finally, the deformation and fracture mechanisms of MGs under tension and compression were compared and discussed. These results may improve the understanding on the fracture behaviors and mechanisms of MGs and may provide instructions on future design for ductile MGs with high resistance for fracture.

  8. The Critical Criterion on Runaway Shear Banding in Metallic Glasses.

    PubMed

    Sun, B A; Yang, Y; Wang, W H; Liu, C T

    2016-02-19

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures.

  9. Strain gradient drives shear banding in metallic glasses

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  10. The Critical Criterion on Runaway Shear Banding in Metallic Glasses

    PubMed Central

    Sun, B. A.; Yang, Y.; Wang, W. H.; Liu, C. T.

    2016-01-01

    The plastic flow of metallic glasses (MGs) in bulk is mediated by nanoscale shear bands, which is known to proceed in a stick-slip manner until reaching a transition state causing catastrophic failures. Such a slip-to-failure transition controls the plasticity of MGs and resembles many important phenomena in natural science and engineering, such as friction, lubrication and earthquake, therefore has attracted tremendous research interest over past decades. However, despite the fundamental and practical importance, the physical origin of this slip-to-failure transition is still poorly understood. By tracking the behavior of a single shear band, here we discover that the final fracture of various MGs during compression is triggered as the velocity of the dominant shear band rises to a critical value, the magnitude of which is independent of alloy composition, sample size, strain rate and testing frame stiffness. The critical shear band velocity is rationalized with the continuum theory of liquid instability, physically originating from a shear-induced cavitation process inside the shear band. Our current finding sheds a quantitative insight into deformation and fracture in disordered solids and, more importantly, is useful to the design of plastic/tough MG-based materials and structures. PMID:26893196

  11. Evolution of atomic rearrangements in deformation in metallic glasses.

    PubMed

    Shang, B S; Li, M Z; Yao, Y G; Lu, Y J; Wang, W H

    2014-10-01

    Atomic rearrangements induced by shear stress are fundamental for understanding deformation mechanisms in metallic glasses (MGs). Using molecular dynamic simulation, the atomic rearrangements characterized by nonaffine displacements (NADs) and their spatial distribution and evolution with tensile stress in Cu50Zr50 MG were investigated. It was found that in the elastic regime the atomic rearrangements with the largest NADs are relatively homogeneous in space, but exhibit strong spatial correlation, become localized and inhomogeneous, and form large clusters as strain increases, which may facilitate the so-called shear transformation zones. Furthermore, initially they prefer to take place around Cu atoms which have more nonicosahedral configurations. As strain increases, the preference decays and disappears in the plastic regime. The atomic rearrangements with the smallest NADs are preferentially located around Cu atoms, too, but with more icosahedral or icosahedral-like atomic configurations. The preference is maintained in the whole deformation process. In contrast, the atomic rearrangements with moderate NADs distribute homogeneously, and do not show explicit preference or spatial correlation, acting as matrix during deformation. Among the atomic rearrangements with different NADs, those with largest and smallest NADs are nearest neighbors initially, but separating with increasing strain, while those with largest and moderate NADs always avoid to each other. The correlations in the fluctuations of the NADs confirm the long-range strain correlation and the scale-free characteristic of NADs in both elastic and plastic deformation, which suggests a universality of the scaling in the plastic flow in MGs.

  12. Strengthening and toughening metallic glasses: The elastic perspectives and opportunities

    SciTech Connect

    Liu, Z. Q.; Zhang, Z. F.

    2014-04-28

    There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs can be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.

  13. Influence of the Substrate on the Formation of Metallic Glass Coatings by Cold Gas Spraying

    NASA Astrophysics Data System (ADS)

    Henao, John; Concustell, Amadeu; Dosta, Sergi; Cinca, Núria; Cano, Irene G.; Guilemany, Josep M.

    2016-06-01

    Cold gas spray technology has been used to build up coatings of Fe-base metallic glass onto different metallic substrates. In this work, the effect of the substrate properties on the viscoplastic response of metallic glass particles during their impact has been studied. Thick coatings with high deposition efficiencies have been built-up in conditions of homogeneous flow on substrates such as Mild Steel AISI 1040, Stainless Steel 316L, Inconel 625, Aluminum 7075-T6, and Copper (99.9%). Properties of the substrate have been identified to play an important role in the viscoplastic response of the metallic glass particles at impact. Depending on the process gas conditions, the impact morphologies show not only inhomogeneous deformation but also homogeneous plastic flow despite the high strain rates, 108 to 109 s-1, involved in the technique. Interestingly, homogenous deformation of metallic glass particles is promoted depending on the hardness and the thermal diffusivity of the substrate and it is not exclusively a function of the kinetic energy and the temperature of the particle at impact. Coating formation is discussed in terms of fundamentals of dynamics of undercooled liquids, viscoplastic flow mechanisms of metallic glasses, and substrate properties. The findings presented in this work have been used to build up a detailed scheme of the deposition mechanism of metallic glass coatings by the cold gas spraying technology.

  14. Development of flame resistant metal and metal-glass blended structures

    NASA Technical Reports Server (NTRS)

    Coskren, R. J.

    1971-01-01

    A description is given of the design and fabrication of candidate flame-resistant woven and knitted fabrics, tapes, webbings, and cords as replacements for those items used in the Apollo spacecraft which were previously made of nylon and polyester. Structures made from Chromel R metal fibers (74% Ni, 20% Cr, 2-1/2% Fe, 2-1/2% Al, 1/2% Si, 1/2% Mo), Beta glass fibers and high-temperature organic fibers such as PBI (polybenzimidazole) were developed and evaluated. The feasibility of improving the performance of selected fabrics by using CNR (carboxy nitroso rubber) or other nonflammable coatings were also investigated.

  15. Bulk formation of metallic glasses and amorphous silicon from the melt

    NASA Technical Reports Server (NTRS)

    Spaepen, F.

    1984-01-01

    Procedures and compositions for producing metallic glasses in bulk at slow cooling rates were investigated. An attempt was made to form the amorphous phase of the tetrahedrally coordinated elements (Si or Ge) by undercooling the melt. The crystal nucleation behavior of pure liquids and glass formers were examined.

  16. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders.

    PubMed

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V; Inoue, Akihisa; Perepezko, John H

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses.

  17. Excellent capability in degrading azo dyes by MgZn-based metallic glass powders

    PubMed Central

    Wang, Jun-Qiang; Liu, Yan-Hui; Chen, Ming-Wei; Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Perepezko, John H.

    2012-01-01

    The lack of new functional applications for metallic glasses hampers further development of these fascinating materials. In this letter, we report for the first time that the MgZn-based metallic glass powders have excellent functional ability in degrading azo dyes which are typical organic water pollutants. Their azo dye degradation efficiency is about 1000 times higher than that of commercial crystalline Fe powders, and 20 times higher than the Mg-Zn alloy crystalline counterparts. The high Zn content in the amorphous Mg-based alloy enables a greater corrosion resistance in water and higher reaction efficiency with azo dye compared to crystalline Mg. Even under complex environmental conditions, the MgZn-based metallic glass powders retain high reaction efficiency. Our work opens up a new opportunity for functional applications of metallic glasses. PMID:22639726

  18. Microscopic iron metal on glass and minerals - A tool for studying regolith maturity

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Morris, R. V.; Lauer, H. V., Jr.; Mckay, D. S.

    1993-01-01

    A novel method of producing mixtures of glass or minerals with iron metal is presented. A portion of the Fe(2+) in basaltic glass and minerals can be reduced to metal in a few hours at 1100 C and an oxygen fugacity well below the iron-wustite buffer. Part of the iron metals forms rounded submicrometer blebs on the surfaces and in some cases within the grains. A concentration of such blebs equivalent to 20-30 percent of a grain's surface area can totally dominate the reflectance spectra of basaltic glass, pyroxene, and olivine. The production of optically opaque iron metal blebs, combined with the decline in Fe(2+), affects the glass and mineral reflectance spectra in three ways: by lowering the overall reflectivity, reducing the spectral contrast of absorption features, and producing a continuum with a general rise in reflectivity toward longer wavelengths.

  19. Plasma-sprayed metal-glass fluoride coatings for lubrication to 1170 K (1650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1974-01-01

    Plasma spray of Nichrome matrix composite contains dispersed glass for oxidation protection and calcium fluoride for lubrication. Coatings can be applied to bearing journals and bearing bores. Coating was easily machinable and had excellent bond strength on substrate metal.

  20. Release of Implanted Noble Gases from Metallic Glass Vitreloy During Pyrolysis

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Hohenberg, C. M.; Burnett, D. S.; Woolum, D. S.

    2000-01-01

    Vitreloy, a metallic vitreous glass, was examined as a potential target material for the Genesis Mission solar wind collector. Stepped pyrolysis revealed that He and Ne implanted in Vitreloy were efficiently re-trapped during phase transitions.

  1. Preparation of oxide glasses from metal alkoxides by sol-gel method

    NASA Technical Reports Server (NTRS)

    Kamiya, K.; Yoko, T.; Sakka, S.

    1987-01-01

    An investigation is carried out on the types of siloxane polymers produced in the course of the hydrolysis of silicon tetraethoxide, as well as the preparation of oxide glasses from metal alkoxides by the sol-gel method.

  2. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Sun, Bingli; Zhao, Na; Li, Qian; Hou, Jianhua; Feng, Weina

    2014-12-01

    The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd40Cu30Ni10P20 bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens-Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  3. Release of Implanted Noble Gases from Metallic Glass Vitreloy During Pyrolysis

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Hohenberg, C. M.; Burnett, D. S.; Woolum, D. S.

    2000-01-01

    Vitreloy, a metallic vitreous glass, was examined as a potential target material for the Genesis Mission solar wind collector. Stepped pyrolysis revealed that He and Ne implanted in Vitreloy were efficiently re-trapped during phase transitions.

  4. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    SciTech Connect

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-07

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 {mu}{Omega} cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  5. Soft magnetic composites manufactured by warm co-extrusion of bulk metallic glass and steel powders

    NASA Astrophysics Data System (ADS)

    Johnson, Francis; Raber, Thomas R.; Zabala, Robert J.; Buresh, Steve J.; Tanico, Brian

    2013-05-01

    Soft magnetic composites of Fe-based bulk metallic glass and low-alloy steel have been manufactured by warm co-extrusion of precursor powders at temperatures within the supercooled liquid region of the glass. Composites were manufactured with amorphous volume fractions of 75%, 67%, and 100%. Full consolidation of the constituent powders was observed with the bulk metallic glass remaining substantially amorphous. The composite electrical resistivity was observed to be anisotropic with a resistivity of 79 μΩ cm measured transverse to the extrusion axis in a sample with 75% amorphous volume fraction. A 0-3 connectivity pattern with the low-resistivity steel phase embedded in a 3-dimensionally connected high-resistivity bulk metallic glass phase was observed with scanning electron microscopy. This confirms that the flow characteristics of the bulk metallic glass and the steel powders were comparable during extrusion at these temperatures. The saturation magnetization of 1.3 T was consistent with the volume weighted average of the saturation magnetization of the two phases. A relatively high quasistatic coercivity of 8 Oe was measured and is likely due to slight crystallization of the bulk metallic glass as well as domain wall pinning at prior particle boundaries. Careful control of the thermal environment during the extrusion process is required to minimize glass crystallization and achieve the desired balance of magnetic and electrical properties.

  6. Nanoscale Structure, Dynamics, and Aging Behavior of Metallic Glass Thin Films

    PubMed Central

    Burgess, J. A. J.; Holt, C. M. B.; Luber, E. J.; Fortin, D. C.; Popowich, G.; Zahiri, B.; Concepcion, P.; Mitlin, D.; Freeman, M. R.

    2016-01-01

    Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100−xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections. PMID:27498698

  7. Effect of several surface treatments on the strength of a glass ceramic-to-metal seal

    SciTech Connect

    Kramer, D P; Salerno, R F; Egleston, E E

    1982-02-10

    Test shells of Inconel 625, Inconel 718, 21-6-9 stainless steel, and Hastelloy, C-276 were plasma and/or chemically cleaned before sealing with a multi-component glass-ceramic-to-metal seal was evaluated using a hydrostatic burst test. The results show that plasma cleaning can be used to increase the hydrostatic burst strength and hermeticity of a glass ceramic-to-metal seal.

  8. Structural origins of the boson peak in metals: From high-entropy alloys to metallic glasses

    NASA Astrophysics Data System (ADS)

    Brink, Tobias; Koch, Leonie; Albe, Karsten

    2016-12-01

    The boson peak appears in all amorphous solids and is an excess of vibrational states at low frequencies compared to the phonon spectrum of the corresponding crystal. Until recently, the consensus was that it originated from "defects" in the glass. The nature of these defects is still under discussion, but the picture of regions with locally disturbed short-range order and/or decreased elastic constants has gained some traction. Recently, a different theory was proposed: The boson peak was attributed to the first van Hove singularity of crystal lattices which is only smeared out by the disorder. This new viewpoint assumes that the van Hove singularity is simply shifted by the decreased density of the amorphous state and is therefore not a glass-specific anomaly. In order to resolve this issue, we use computer models of a four-component alloy, alternatively with chemical disorder (high-entropy alloy), structural disorder, and reduced density. Comparison to a reference glass of the same composition reveals that the boson peak consists of additional vibrational modes which can be induced solely by structural disorder. While chemical disorder introduces fluctuations of the elastic constants, we find that those do not lead to sufficient local softening to induce these modes. A boson peak due to a reduction of density could be excluded for the present metallic system.

  9. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    NASA Astrophysics Data System (ADS)

    Aji, D. P. B.; Johari, G. P.

    2014-12-01

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (-dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  10. Preparation of Heavy Metal Fluoride Glasses in the Bulk Form.

    DTIC Science & Technology

    1985-01-01

    34PAILES Raw tateriai- Used to 6 ,-)reoare ZULM.Ai! Glass -iI 2BLAN Gass Melts Pricr 7 to izrjved F’u’rnace Seals fif ZBLAN Glass Melts Dore wit-i ti-te...BEth dry ritrger arnd argor have beer, used as tc- v-, rnac-e aton-sphere, the glass being melti;ecu urcer a gas fl-w or a’orox i matel y 4 LPii...34O-ring") Gas Inlet Push Rod Seal (Ŕ-ring") Push Rod FIGURE 5 Furnace lised to mnelt ZBLAN glass . 1 12 S WAC MoistureAnalyze Pedet rol Panel FIGURE 3

  11. The shear band controlled deformation in metallic glass: a perspective from fracture.

    PubMed

    Yang, G N; Shao, Y; Yao, K F

    2016-02-22

    Different from the homogenous deformation in conventional crystalline alloys, metallic glasses and other work-softening materials deform discontinuously by localized plastic strain in shear bands. Here by three-point bending test on a typical ductile Pd-Cu-Si metallic glass, we found that the plastic deformed region during fracture didn't follow the yielding stress distribution as the conventional material mechanics expected. We speculated that such special behavior was because the shear bands in metallic glasses could propagate easily along local shear stress direction once nucleated. Based on a 3D notch tip stress field simulation, we considered a new fracture process in a framework of multiple shear band deformation mechanism instead of conventional materials mechanics, and successfully reproduced the as-observed complicate shear band morphologies. This work clarifies many common misunderstandings on metallic glasses fracture, and might also provide a new insight to the shear band controlled deformation. It suggests that the deformation of metallic glasses is sensitive to local stress condition, and therefore their mechanical properties would depend on not only the material, but also other external factors on stress condition. We hope that start from this work, new methods, criteria, or definitions could be proposed to further study these work-softening materials, especially for metallic glasses.

  12. The shear band controlled deformation in metallic glass: a perspective from fracture

    PubMed Central

    Yang, G. N.; Shao, Y.; Yao, K. F.

    2016-01-01

    Different from the homogenous deformation in conventional crystalline alloys, metallic glasses and other work-softening materials deform discontinuously by localized plastic strain in shear bands. Here by three-point bending test on a typical ductile Pd-Cu-Si metallic glass, we found that the plastic deformed region during fracture didn’t follow the yielding stress distribution as the conventional material mechanics expected. We speculated that such special behavior was because the shear bands in metallic glasses could propagate easily along local shear stress direction once nucleated. Based on a 3D notch tip stress field simulation, we considered a new fracture process in a framework of multiple shear band deformation mechanism instead of conventional materials mechanics, and successfully reproduced the as-observed complicate shear band morphologies. This work clarifies many common misunderstandings on metallic glasses fracture, and might also provide a new insight to the shear band controlled deformation. It suggests that the deformation of metallic glasses is sensitive to local stress condition, and therefore their mechanical properties would depend on not only the material, but also other external factors on stress condition. We hope that start from this work, new methods, criteria, or definitions could be proposed to further study these work-softening materials, especially for metallic glasses. PMID:26899145

  13. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    SciTech Connect

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer Thorpe, Steven John

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  14. Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Guan, Pengfei; Chen, Mingwei; Egami, Takeshi

    2010-05-01

    Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of realistic potentials we find a simple scaling relationship between temperature and stress as they affect viscosity. The scaling relationship provides new insight into the microscopic mechanism of shear flow in the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape. The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of stress-induced glass transition.

  15. Alternative understanding for the enthalpy vs volume change upon structural relaxation of metallic glasses

    NASA Astrophysics Data System (ADS)

    Khonik, V. A.; Kobelev, N. P.

    2014-03-01

    It has been argued that the densification observed upon structural relaxation of metallic glasses can be explained not by the "free volume annihilation," as it is custom to consider, but by the annealing of interstitialcy-like "defects" frozen-in upon glass production. A simple expression for the enthalpy release due to relaxation of defect-induced dilatational energy has been proposed. The expression is shown to be in agreement with recent detailed experimental data on the heat release occurring upon structural relaxation of Au-based metallic glass [J. Bünz and G. Wilde, J. Appl. Phys. 114, 223503 (2013)].

  16. On the Stress-Temperature Scaling for Steady-State Flow in Metallic Glasses

    SciTech Connect

    Guan, Pengfei; Chen, Mingwei; Egami, T.

    2010-01-01

    Through computer simulation of steady-state flow in a Zr50Cu40Al10 metallic glass using a set of realistic potentials we found a simple scaling relationship between temperature and stress as they affect viscosity. The scaling relationship provides new insights for the microscopic mechanism of shear flow in the glassy state, in terms of the elastic energy of the applied stress modifying the local energy landscape. The results suggest that the plastic flow and mechanical failure in metallic glasses are consequences of stress-induced glass transition.

  17. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Arora, Harpreet Singh; Lefebvre, Joseph; Bhowmick, Sanjit; Mukherjee, Sundeep

    2017-01-01

    The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress-strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

  18. Nanometer scale atomic structure of zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo

    We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.

  19. Measurement of local internal friction in metallic glasses

    SciTech Connect

    Wagner, H.; Büchsenschütz-Göbeler, M.; Luo, Y.; Samwer, K.; Kumar, A.; Arnold, W.

    2014-04-07

    Atomic force acoustic microscopy (AFAM), an advanced scanning probe microscopy technique, has been used to measure local elastic properties with a spatial resolution given by the tip-sample contact radius. AFAM is based on inducing out-of-plane vibrations in the specimen. The vibrations are sensed by the AFM cantilever from by the photodiode signal when its tip is in contact with the material under test. To measure local damping, the inverse quality factor Q{sup −1} of the resonance curve is usually evaluated. Here, from the contact-resonance spectra obtained, we determine the real and imaginary part of the contact stiffness k* and from these two quantities the local damping factor Q{sub loc}{sup −1} is obtained which is proportional to the imaginary part γ of the contact stiffness. The evaluation of the data is based on the cantilever's mass distribution with damped flexural modes and not on an effective point-mass approximation for the cantilever’s motion. The given equation is simple to use and has been employed to study the local Q{sub loc}{sup −1} of amorphous PdCuSi metallic glass and its crystalline counterpart as a function of position of the AFM tip on the surface. The width of the distribution changes dramatically from the amorphous to the crystalline state as expected from the consequences of the potential-energy landscape picture. The center value of the distribution curve for Q{sub loc}{sup −1} coincides very well with published data, based on global ultrasonic or internal friction measurements. This is compared to Q{sub loc}{sup −1} measured in crystalline SrTiO{sub 3}, which exhibits a narrow distribution, as expected.

  20. A Comparative Study of Natural Fiber and Glass Fiber Fabrics Properties with Metal or Oxide Coatings

    NASA Astrophysics Data System (ADS)

    Lusis, Andrej; Pentjuss, Evalds; Bajars, Gunars; Sidorovicha, Uljana; Strazds, Guntis

    2015-03-01

    Rapidly growing global demand for technical textiles industries is stimulated to develop new materials based on hybrid materials (yarns, fabrics) made from natural and glass fibres. The influence of moisture on the electrical properties of metal and metal oxide coated bast (flax, hemp) fibre and glass fibre fabrics are studied by electrical impedance spectroscopy and thermogravimetry. The bast fibre and glass fiber fabrics are characterized with electrical sheet resistance. The method for description of electrical sheet resistance of the metal and metal oxide coated technical textile is discussed. The method can be used by designers to estimate the influence of moisture on technical data of new metal coated hybrid technical textile materials and products.

  1. Correlation between medium-range order structure and glass-forming ability for Al-based metallic glasses

    SciTech Connect

    Wu, N. C.; Yan, M.; Zuo, L.; Wang, J. Q.

    2014-01-28

    To clarify the correlation of medium-range order (MRO) structure with glass forming ability (GFA) of Al-based metallic glasses, Al{sub 86}Ni{sub 14-a}Y{sub a} (a = 2∼9 at. %) metallic glasses were analyzed by x-ray diffraction in detail and further verified by synchrotron high-energy x-ray diffraction. The prepeak that reflects the MRO structural evolution was found to be much sensitive to alloy composition. We have proposed an icosahedral supercluster MRO structure model in Al-TM (transition metal)-RE (rare earth metal) system, which consists of 12 RE(TM)-centered clusters on the vertex of icosahedral supercluster, one RE(TM)-centered clusters in the center, and TM(RE) atoms located at RE(TM)-centered cluster tetrahedral interstices in the icosahedral supercluster. It was indicated that the MRO structural stability mainly depends on the interaction of efficient dense packing and electrochemical potential equalization principle. The Al{sub 86}Ni{sub 9}Y(La){sub 5} alloys present good GFA due to the combination of the two structural factors.

  2. Spatially Resolved Distribution Function and the Medium-Range Order in Metallic Liquid and Glass

    NASA Astrophysics Data System (ADS)

    Fang, X. W.; Wang, C. Z.; Hao, S. G.; Kramer, M. J.; Yao, Y. X.; Mendelev, M. I.; Ding, Z. J.; Napolitano, R. E.; Ho, K. M.

    2011-12-01

    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu64.5Zr35.5 alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe ``Bergman triacontahedron'' packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  3. Spatially resolved distribution function and the medium-range order in metallic liquid and glass

    SciTech Connect

    Fang, Xiaowei; Wang, Cai-Zhuang; Hao, Shaogang; Kramer, Matthew; Yao, Yongxin; Mendelev, Mikhail; Napolitano, Ralph; Ho, Kai-Ming

    2011-12-23

    The structural description of disordered systems has been a longstanding challenge in physical science. We propose an atomic cluster alignment method to reveal the development of three-dimensional topological ordering in a metallic liquid as it undercools to form a glass. By analyzing molecular dynamic (MD) simulation trajectories of a Cu{sub 64.5}Zr{sub 35.5} alloy, we show that medium-range order (MRO) develops in the liquid as it approaches the glass transition. Specifically, around Cu sites, we observe 'Bergman triacontahedron' packing (icosahedron, dodecahedron and icosahedron) that extends out to the fourth shell, forming an interpenetrating backbone network in the glass. The discovery of Bergman-type MRO from our order-mining technique provides unique insights into the topological ordering near the glass transition and the relationship between metallic glasses and quasicrystals.

  4. The formation of silver metal nanoparticles by ion implantation in silicate glasses

    NASA Astrophysics Data System (ADS)

    Vytykacova, S.; Svecova, B.; Nekvindova, P.; Spirkova, J.; Mackova, A.; Miksova, R.; Böttger, R.

    2016-03-01

    It has been shown that glasses containing silver metal nanoparticles are promising photonics materials for the fabrication of all-optical components. The resulting optical properties of the nanocomposite glasses depend on the composition and structure of the glass, as well as on the type of metal ion implanted and the experimental procedures involved. The main aim of this article was to study the influence of the conditions of the ion implantation and the composition of the glass on the formation of metal nanoparticles in such glasses. Four various types of silicate glasses were implanted with Ag+ ions with different energy (330 keV, 1.2 MeV and 1.7 MeV), with the fluence being kept constant (1 × 1016 ions cm-2). The as-implanted samples were annealed at 600 °C for 1 h. The samples were characterised in terms of: the nucleation of metal nanoparticles (linear optical absorption), the migration of silver through the glass matrix during the implantation and post-implantation annealing (Rutherford backscattering spectroscopy), and the oxidation state of silver (photoluminescence in the visible region).

  5. PIXE characterization of tissues surrounding metallic prostheses coated with biological glasses

    NASA Astrophysics Data System (ADS)

    Barbotteau, Y.; Irigaray, J. L.; Moretto, Ph.

    2004-01-01

    Biological glasses can be used as coatings for metallic prostheses in order to prevent corrosion. According to their composition, these glasses have different properties. We studied, in vivo, two glasses referred to as BVA and BVH. They are used as coatings of Ti6Al4V metallic implant. BVA glass disappears after 3 months of implantation and is replaced by bone. Prostheses initially coated by this glass have a larger osseous contact perimeter compared to the uncoated prostheses. This ensures a better anchoring of the implant and limits the micro-motions which cause wear debris. BVH glass keeps a constant composition during implantation and it is used like a layer which isolates metal implant from biological environment. In order to characterize the bony environment surrounding implants, we have used PIXE and RBS methods. This paper shows results of the behavior of bony tissue under micro-beam, the quality tests of new bone which replaces the BVA glass coating and the evaluation of corrosion effects. Titanium release in bony tissues begins when the metal surface of the prosthesis is exposed to biological fluids. After a few months of implantation, the titanium contamination is stabilized and remains localized within the first tens of micrometers of surrounding bone.

  6. High metal reactivity and environmental risks at a site contaminated by glass waste.

    PubMed

    Augustsson, A; Åström, M; Bergbäck, B; Elert, M; Höglund, L O; Kleja, D B

    2016-07-01

    This study addresses the reactivity and risks of metals (Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn, As and Sb) at a Swedish site with large glass waste deposits. Old glassworks sites typically have high total metal concentrations, but as the metals are mainly bound within the glass waste and considered relatively inert, environmental investigations at these kinds of sites are limited. In this study, soil and landfill samples were subjected to a sequential chemical extraction procedure. Data from batch leaching tests and groundwater upstream and downstream of the waste deposits were also interpreted. The sequential extraction revealed that metals in <2 mm soil/waste samples were largely associated with geochemically active fractions, indicating that metals are released from pristine glass and subsequently largely retained in the surrounding soil and/or on secondary mineral coatings on fine glass particles. From the approximately 12,000 m(3) of coarse glass waste at the site, almost 4000 kg of Pb is estimated to have been lost through corrosion, which, however, corresponds to only a small portion of the total amount of Pb in the waste. Metal sorption within the waste deposits or in underlying soil layers is supported by fairly low metal concentrations in groundwater. However, elevated concentrations in downstream groundwater and in leachates of batch leaching tests were observed for several metals, indicating on-going leaching. Taken together, the high metal concentrations in geochemically active forms and the high amounts of as yet uncorroded metal-rich glass, indicate considerable risks to human health and the environment. Copyright © 2016. Published by Elsevier Ltd.

  7. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses.

    PubMed

    Wang, B; Shang, B S; Gao, X Q; Wang, W H; Bai, H Y; Pan, M X; Guan, P F

    2016-12-01

    Being a key feature of a glassy state, low temperature relaxation has important implications on the mechanical behavior of glasses; however, the mechanism of low temperature relaxation is still an open issue, which has been debated for decades. By systematically investigating the influences of cooling rate and pressure on low temperature relaxation in the Zr50Cu50 metallic glasses, it is found that even though pressure does induce pronounced local structural change, the low temperature-relaxation behavior of the metallic glass is affected mainly by cooling rate, not by pressure. According to the atomic displacement and connection mode analysis, we further demonstrate that the low temperature relaxation is dominated by the dispersion degree of fast dynamic atoms rather than the most probable atomic nonaffine displacement. Our finding provides the direct atomic-level evidence that the intrinsic heterogeneity is the key factor that determines the low temperature-relaxation behavior of the metallic glasses.

  8. Intermittent Aging Dynamics in a Metallic Glass Studied by X-ray Photon Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evenson, Zach; Ruta, Beatrice; Hechler, Simon; Stolpe, Moritz; Pineda, Eloi; Gallino, Isabella; Busch, Ralf

    Although physical aging is a universal feature of glasses and other non-equilibrium matter, the atomic-level processes involved still remain a puzzling mystery. Here we study the microscopic aging dynamics of a metallic glass using coherent X-rays. Contrary to the common assumption of a steady slowing down of the dynamics usually observed in macroscopic studies, we show that the structural relaxation processes underlying aging in this metallic glass are intermittent and highly heterogeneous at the atomic scale. Moreover, physical aging is triggered by cooperative atomic rearrangements, driven by the relaxation of internal stresses. These results strengthen the similarities between metallic glasses and non-equilibrium soft materials and a suggest a common microscopic origin stemming from from a complex energy landscape.

  9. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids

    PubMed Central

    Hu, Y. C.; Li, F. X.; Li, M. Z.; Bai, H. Y.; Wang, W. H.

    2015-01-01

    With sufficient high cooling rates, a variety of liquids, including metallic melts, will cross a glass transition temperature and solidify into glass accompanying a marked increase of the shear viscosity in approximately 17 orders of magnitude. Because of the intricate atomic structure and dynamic behaviours of liquid, it is yet difficult to capture the underlying structural mechanism responsible for the marked slowing down during glass transition, which impedes deep understanding of the formation and nature of glasses. Here, we report that a universal structural indicator, the average degree of five-fold local symmetry, can well describe the slowdown dynamics during glass transition. A straightforward relationship between structural parameter and viscosity (or α-relaxation time) is introduced to connect the dynamic arrest and the underlying structural evolution. This finding would be helpful in understanding the long-standing challenges of glass transition mechanism in the structural perspective. PMID:26387592

  10. Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids.

    PubMed

    Hu, Y C; Li, F X; Li, M Z; Bai, H Y; Wang, W H

    2015-09-21

    With sufficient high cooling rates, a variety of liquids, including metallic melts, will cross a glass transition temperature and solidify into glass accompanying a marked increase of the shear viscosity in approximately 17 orders of magnitude. Because of the intricate atomic structure and dynamic behaviours of liquid, it is yet difficult to capture the underlying structural mechanism responsible for the marked slowing down during glass transition, which impedes deep understanding of the formation and nature of glasses. Here, we report that a universal structural indicator, the average degree of five-fold local symmetry, can well describe the slowdown dynamics during glass transition. A straightforward relationship between structural parameter and viscosity (or α-relaxation time) is introduced to connect the dynamic arrest and the underlying structural evolution. This finding would be helpful in understanding the long-standing challenges of glass transition mechanism in the structural perspective.

  11. Communication: Enthalpy relaxation in a metal-organic zeolite imidazole framework (ZIF-4) glass-former

    NASA Astrophysics Data System (ADS)

    Xu, Di; Liu, Yingdan; Tian, Yongjun; Wang, Li-Min

    2017-03-01

    Amorphization in metal-organic framework materials initiated by the collapsed crystal offers new access to glasses; however, the understanding of such glasses remains to be clarified. Here, we studied the glass transition thermodynamics and kinetics in a zeolitic imidazolate framework ZIF-4 utilizing enthalpy relaxation measurements. The calorimetric glass transition profile and relaxation behaviors in ZIF-4 are found to reproduce the basic features and correlations manifested by conventional melt-quenched glasses. A comparison with various melt-quenched glasses suggests that the low fragility of ZIF-4 is ascribed to the low thermal-pressure coefficient due to the directional tetrahedral bond, partly leading to the low vibrational entropy in the melt-crystal entropy difference.

  12. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    DOE PAGES

    Sun, Yang; Zhang, Yue; Zhang, Feng; ...

    2016-07-07

    Here, the atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-rangemore » order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.« less

  13. Communication: Enthalpy relaxation in a metal-organic zeolite imidazole framework (ZIF-4) glass-former.

    PubMed

    Xu, Di; Liu, Yingdan; Tian, Yongjun; Wang, Li-Min

    2017-03-28

    Amorphization in metal-organic framework materials initiated by the collapsed crystal offers new access to glasses; however, the understanding of such glasses remains to be clarified. Here, we studied the glass transition thermodynamics and kinetics in a zeolitic imidazolate framework ZIF-4 utilizing enthalpy relaxation measurements. The calorimetric glass transition profile and relaxation behaviors in ZIF-4 are found to reproduce the basic features and correlations manifested by conventional melt-quenched glasses. A comparison with various melt-quenched glasses suggests that the low fragility of ZIF-4 is ascribed to the low thermal-pressure coefficient due to the directional tetrahedral bond, partly leading to the low vibrational entropy in the melt-crystal entropy difference.

  14. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation.

    PubMed

    Wang, Q; Li, J H; Liu, B X

    2015-06-14

    With the aid of ab initio calculations, a realistic interatomic potential was constructed for the Mg-Cu-Y ternary system under the proposed formalism of smoothed and long-range second-moment approximation of tight-binding. Taking the potential as the starting base, an atomistic computation/simulation route was developed for designing favored and optimized compositions for Mg-Cu-Y metallic glass formation. Simulations revealed that the physical origin of metallic glass formation is the collapse of crystalline lattice when solute concentration exceeds a critical value, thus leading to predict a hexagonal region in the Mg-Cu-Y composition triangle, within which metallic glass formation is energetically favored. It is proposed that the hexagonal region can be defined as the intrinsic glass formation region, or quantitative glass formation ability of the system. Inside the hexagonal region, the driving force for formation of each specific glassy alloy was further calculated and correlated with its forming ability in practice. Calculations pinpointed the optimized stoichiometry in the Mg-Cu-Y system to be Mg64Cu16Y20, at which the formation driving force reaches its maximum, suggesting that metallic glasses designed to have compositions around Mg64Cu16Y20 are most stable or easiest to obtain. The predictions derived directly from the atomistic simulations are supported by experimental observations reported so far in the literature. Furthermore, Honeycutt-Anderson analysis indicated that pentagonal bipyramids (although not aggregating to form icosahedra) dominate in the local structure of the Mg-Cu-Y metallic glasses. A microscopic picture of the medium-range packing can then be described as an extended network of the pentagonal bipyramids, entangled with the fourfold and sixfold disclination lines, jointly fulfilling the space of the metallic glasses.

  15. Evaluation of the relationship between the effective strain and the springback behavior during the deformation of metallic glass ribbons

    SciTech Connect

    Lee, M H; Park, E S; Ott, R T; Kim, B S; Eckert, J

    2014-08-11

    We evaluated the role of effective strain on the plasticity of metallic glasses related to springback phenomena in both ductile Zr-based metallic glass and brittle Hf-based metallic glass. Experimental investigations of the deformation behavior and the intrinsic mechanical properties of metallic glass were performed by room temperature L-bending deformation. The modeling analysis clearly shows that an inhomogeneous effective strain for initiating shear band is generated during deformation, with the brittleness of a metallic glass being dependent on the effective strain reaching the critical fracture strain of the glass. The combined experimental and modeling results reveal broad and general criteria that should allow for deformability of a wide-variety of glass-forming alloys by adjusting the effective strain during deformation.

  16. Preparation of high density heavy metal fluoride glasses with extended ultraviolet and infra red ranges, and such high density heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Martin, Steven W. (Inventor); Huebsch, Jesse (Inventor)

    2001-01-01

    A heavy metal fluoride glass composition range (in mol percent) consisting essentially of: (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24)InF.sub.3 or GaF.sub.3.(4-16)CdF.sub.2.(6-24)YbF.sub.3.(4-22)ZnF.sub.2. In an alternative embodiment, a heavy metal fluoride glass composition range (in mol percent) comprises (16-30)BaF.sub.2.(8-26)HfF.sub.4.(6-24) of (0-24)InF.sub.3, (0-24)GaF.sub.3 and (0-19)AlF.sub.3.(1-16)CdF.sub.2.(6-24)YbF.sub.3.(4-26)ZnF.sub.2. A preferred heavy metal fluoride glass produced in accordance with the present invention comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.7InF.sub.3.5GaF.sub.3.10CdF.sub.2.18YbF.sub.3. 16ZnF.sub.2. A preferred heavy metal fluoride glass has maximum thickness of most preferably about 3 mm. Another preferred heavy metal fluoride glass comprises a composition (in mol %) and comprises about 26BaF.sub.2.18HfF.sub.4.12AlF.sub.3.10CdF.sub.2.18YbF.sub.3.16ZnF.sub.2.

  17. Optical properties of dy doped lead and bismuth borate glasses - effect of glass composition, metal and semiconducting nanoparticles

    NASA Astrophysics Data System (ADS)

    Ooi, Hio Giap

    The optical properties of Dy3+ ions in lead borate and bismuth borate glasses are studied as a function of glass composition with PbO content (29.5 to 69.5mol%) and Bi2O3 content (29.5 to 59.5 mol%). We also studied the effect of metal and semiconducting nanoparticles on the absorption and fluorescence emission of Dy3+ ions in both lead and bismuth borate glasses. The absorption coefficient at each wavelength is obtained from the optical absorption spectrum of a glass sample, and the number density of rare-earth (RE) ions is calculated from the measurement of the glass density. These two parameters are then used to calculate the oscillator strength of each transition using Judd-Ofelt theory. Using the oscillator strength for each transition, we obtained the intensity parameters which represent changes in the symmetry of the ligand field at the Dy 3+ site (due to structural group changes and changes in Dy-O covalency). Radiative transition probabilities, the radiative lifetime of the excited states and the branching ratios are then obtained from these intensity parameters. The fluorescence spectra, obtained using 355 nm and 458 nm laser excitation, are analyzed by determining the area ratio of yellow/blue (Y/B) peaks and the wavelength of the hypersensitive transition (HST). The compositional dependence and effect of nanoparticles on the stimulated emission cross-section (sigmap), are then evaluated using radiative transition probability, the refractive index of the host glass, effective fluorescence linewidth, and the position of the band. In all of the glass systems, it was found that the optical properties are strongly influenced by structural changes arising from compositional variation and size of nanoparticles. Dy 3+ transitions exhibit large sigmap suggesting the possible utilization of these materials in laser applications.

  18. Softening caused by profuse shear banding in a bulk metallic glass

    SciTech Connect

    Bei, Hongbin; Xie, Sujing; George, Easo P

    2006-01-01

    By controlling the specimen aspect ratio and strain rate, compressive strains as high as 80% were obtined in an otherwise brittle metallic glass. Physical and mechanical properties were measured after deformation, and a systematic strain-induced softening was obseerved which contrasts sharply with the hardening typically observed in crystalline metals.

  19. Micro mold filling kinetics of metallic glasses in supercooled liquid state

    NASA Astrophysics Data System (ADS)

    Ma, J.; Huo, L. S.; Zhao, D. Q.; Wang, W. H.

    2013-03-01

    The unique thermoplastic forming ability of metallic glasses in their supercooled liquid state makes them the ideal embossing materials for miniature fabrication. However, the understanding and controlling of micro filling process that is crucial for miniature fabrication and their applications remain fundamental, yet presently unresolved issues. Here, the mold filling kinetics of a model Pd-based metallic glass in supercooled liquid state is studied using different Si micro molds with different channels. A universal kinetic equation, which can describe the filling kinetics of viscous metallic supercooled liquid in micro molds with irregular shapes, is obtained.

  20. Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid.

    PubMed

    Hu, Yuan-Chao; Shang, Bao-Shuang; Guan, Peng-Fei; Yang, Yong; Bai, Hai-Yang; Wang, Wei-Hua

    2016-09-14

    A ternary metallic glass-forming liquid is found to be not strongly correlating thermodynamically, but its average dynamics, dynamic heterogeneities including the high order dynamic correlation length, and static structure are still well described by thermodynamic scaling with the same scaling exponent γ. This may indicate that the metallic liquid could be treated as a single-parameter liquid. As an intrinsic material constant stemming from the fundamental interatomic interactions, γ is theoretically predicted from the thermodynamic fluctuations of the potential energy and the virial. Although γ is conventionally understood merely from the repulsive part of the inter-particle potentials, the strong correlation between γ and the Grüneisen parameter up to the accuracy of the Dulong-Petit approximation demonstrates the important roles of anharmonicity and attractive force of the interatomic potential in governing glass transition of metallic glassformers. These findings may shed light on how to understand metallic glass formation from the fundamental interatomic interactions.

  1. Simulation of the Continuous Casting and Cooling Behavior of Metallic Glasses

    PubMed Central

    Pei, Zhipu; Ju, Dongying

    2017-01-01

    The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons. PMID:28772779

  2. Electrofluidics fabricated by space-selective metallization in glass microfluidic structures using femtosecond laser direct writing.

    PubMed

    Xu, Jian; Wu, Dong; Hanada, Yasutaka; Chen, Chi; Wu, Sizhu; Cheng, Ya; Sugioka, Koji; Midorikawa, Katsumi

    2013-12-07

    Space-selective metallization of the inside of glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating is demonstrated. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures inside photosensitive glass. Then, femtosecond laser ablation followed by electroless metal plating enables flexible deposition of patterned metal films on desired locations of not only the top and bottom walls but also the sidewalls of fabricated microfluidic structures. A volume writing scheme for femtosecond laser irradiation inducing homogeneous ablation on the sidewalls of microfluidic structures is proposed for sidewall metallization. The developed technique is used to fabricate electrofluidics in which microelectric components are integrated into glass microchannels. The fabricated electrofluidics are applied to control the temperature of liquid samples in the microchannels for the enhancement of chemical reactions and to manipulate the movement of biological samples in the microscale space.

  3. Thermal properties of metal-metal bonded Pd(I) complexes supported onto porous Vycor glass.

    PubMed

    Gimenez, Iara F; Alves, Oswaldo L

    2008-06-01

    Thermal behavior of the complexes Pd2(dppm)2Cl2, Pd2(dppm)2(SnCl3)Cl and Pd2(dppm)2(SnCl3)2 (dppm=bis[diphenylphosphino(methane)], ((C6H5)2PCH2P(C6H5)2) in the solid state and immobilized onto porous Vycor glass was studied. Similar decomposition mechanisms were observed for the solid and immobilized complexes, with a small thermal stabilization upon immobilization. The decomposition products were characterized by X-ray diffractometry, Raman and diffuse reflectance infrared spectroscopy, which indicated the presence of a mixture of metallic palladium and oxidized species such as PdO,condensed phosphates, SnO2 and SnP2O7. According to X-ray diffractometry, the decomposition products of the immobilized complexes presented higher amounts of PdO than the solid-state residues, probably as an effect of interactions with silanol groups present in the glass surface.

  4. Remarkably stable amorphous metal oxide grown on Zr-Cu-Be metallic glass

    PubMed Central

    Lim, Ka Ram; Kim, Chang Eun; Yun, Young Su; Kim, Won Tae; Soon, Aloysius; Kim, Do Hyang

    2015-01-01

    In the present study, we investigated the role of an aliovalent dopant upon stabilizing the amorphous oxide film. We added beryllium into the Zr50Cu50 metallic glass system, and found that the amorphous oxide layer of Be-rich phase can be stabilized even at elevated temperature above Tg of the glass matrix. The thermal stability of the amorphous oxide layer is substantially enhanced due to Be addition. As confirmed by high-temperature cross-section HR-TEM, fully disordered Be-added amorphous layer is observed, while the rapid crystallization is observed without Be. To understand the role of Be, we employed ab-initio molecular dynamics to compare the mobility of ions with/without Be dopant, and propose a disordered model where Be dopant occupies Zr vacancy and induces structural disorder to the amorphous phase. We find that the oxygen mobility is slightly suppressed due to Be dopant, and Be mobility is unexpectedly lower than that of oxygen, which we attribute to the aliovalent nature of Be dopant whose diffusion always accompany multiple counter-diffusion of other ions. Here, we explain the origin of superior thermal stability of amorphous oxide film in terms of enhanced structural disorder and suppressed ionic mobility due to the aliovalent dopant. PMID:26658671

  5. A connection between the structural α-relaxation and the β-relaxation found in bulk metallic glass-formers.

    PubMed

    Ngai, K L; Wang, Z; Gao, X Q; Yu, H B; Wang, W H

    2013-07-07

    New metallic glasses containing La or Ce have been introduced having dynamic properties bordering on two extremes of conventional metallic glasses. This provides opportunity to test if the trends or correlations established before in molecular and polymeric glass-formers also exist in the broader family of metallic glasses. Due to the drastically different chemical and physical structures of metallic glass-formers than soft matter, there is no guarantee that any correlation found in the latter will hold in the former. If the trends and correlations are found, the result brings metallic glasses closer to the much wider classes of glass-formers in the similarity of properties. In non-metallic glass-formers, a general and fundamental connection has been established between the non-exponentiality parameter of the structural α-relaxation and the separation between its relaxation time τα and the β-relaxation time τβ. In this paper, we explore the experimental data of metallic glass-formers and show the correlation applies. An explanation of this correlation is given by the Coupling Model. The establishment of the correlation may facilitate the understanding of the roles played by the β-relaxation in macroscopic properties of metallic glasses including the relations to shear transformation zone, ductile-brittle transition in deformation, crystallization, and diffusion.

  6. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous

  7. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites.

    PubMed

    Wang, Z; Georgarakis, K; Nakayama, K S; Li, Y; Tsarkov, A A; Xie, G; Dudina, D; Louzguine-Luzgin, D V; Yavari, A R

    2016-04-12

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  8. H+-induced irradiation damage resistance in Fe- and Ni-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Hongran; Mei, Xianxiu; Zhang, Xiaonan; Li, Xiaona; Wang, Yingmin; Sun, Jianrong; Wang, Younian

    2016-05-01

    In this study, use of 40-keV H+ ion for irradiating metallic glass Fe80Si7.43B12.57 and Ni62Ta38 as well as metallic tungsten (W) at fluences of 1 × 1018 and 3 × 1018 ions/cm2, respectively, was investigated. At the fluence of 1 × 1018 ions/cm2, a crystalline layer appeared in metallic glass Fe80Si7.43B12.57, with α-Fe as the major crystalline phase, coupled with a little Fe2B, Fe3B, and metastable β-Mn-type phase. Fe80Si7.43B12.57 exhibited good soft magnetic properties after irradiation. At the fluence of 3 × 1018 ions/cm2, Ni62Ta38 was found to be amorphous-based, with a little μ-NiTa and Ni3Ta phases. No significant irradiation damage phenomenon appeared in metallic glasses Fe80Si7.43B12.57 and Ni62Ta38. Blistering, flaking, and other damage occurred on the surface of metallic W, and the root-mean-square (RMS) roughness increased with the increase of fluence. Metallic glass Ni62Ta38 exhibited better resistance to H+ irradiation than Fe80Si7.43B12.57, both of which were superior to the metallic W.

  9. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-04-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses.

  10. Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites

    PubMed Central

    Wang, Z.; Georgarakis, K.; Nakayama, K. S.; Li, Y.; Tsarkov, A. A.; Xie, G.; Dudina, D.; Louzguine-Luzgin, D. V.; Yavari, A. R.

    2016-01-01

    Metallic glass-reinforced metal matrix composites are an emerging class of composite materials. The metallic nature and the high mechanical strength of the reinforcing phase offers unique possibilities for improving the engineering performance of composites. Understanding the structure at the amorphous/crystalline interfaces and the deformation behavior of these composites is of vital importance for their further development and potential application. In the present work, Zr-based metallic glass fibers have been introduced in Al7075 alloy (Al-Zn-Mg-Cu) matrices using spark plasma sintering (SPS) producing composites with low porosity. The addition of metallic glass reinforcements in the Al-based matrix significantly improves the mechanical behavior of the composites in compression. High-resolution TEM observations at the interface reveal the formation of a thin interdiffusion layer able to provide good bonding between the reinforcing phase and the Al-based matrix. The deformation behavior of the composites was studied, indicating that local plastic deformation occurred in the matrix near the glassy reinforcements followed by the initiation and propagation of cracks mainly through the matrix. The reinforcing phase is seen to inhibit the plastic deformation and retard the crack propagation. The findings offer new insights into the mechanical behavior of metal matrix composites reinforced with metallic glasses. PMID:27067824

  11. Improved glass-ceramic to metal bonds for pyrotechnic header applications

    SciTech Connect

    Sheppard, D.L.

    1986-10-06

    Lithia-alumina-silica glass-ceramic was bonded inside metal Inconel 718 cylinders under varying proportions of an argon-helium processing gas. The metal members were subjected to chemical etching prior to the bonding process. Interfacial strength was determined by a cylindrical shear test showing response to both treatments. Results show that bond strength is increased with the degree of etching of metal members and with increased concentrations of helium present during bonding.

  12. Correlation of Mechanical Properties in Bulk Metallic Glasses with 27Al NMR Characteristics

    DTIC Science & Technology

    2011-12-01

    dominant shift mecha- nism for metallic systems is given by the Knight shift Kiso. For transition metal alloy systems the Knight shift is ex- pressed... alloy systems is significant comprising ap- proximately half of the total magnetic susceptibility. This is compatible with X-ray and ultraviolet...photoemission studies [24,28] of TE-TL (TE=Zr, Ti; TL=Cu, Ni, Co, Fe) metallic glass alloys that show the DOS at the Fermi level is domi- nated by d

  13. Flexible strain sensors with high performance based on metallic glass thin film

    NASA Astrophysics Data System (ADS)

    Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H.

    2017-09-01

    Searching strain sensitive materials for electronic skin is of crucial significance because of the restrictions of current materials such as poor electrical conductivity, large energy consumption, complex manufacturing process, and high cost. Here, we report a flexible strain sensor based on the Zr55Cu30Ni5Al10 metallic glass thin film which we name metallic glass skin. The metallic glass skin, synthesized by ion beam deposition, exhibits piezoresistance effects with a gauge factor of around 2.86, a large detectable strain range (˜1% or 180° bending angle), and good conductivity. Compared to other e-skin materials, the temperature coefficient of resistance of the metallic glass skin is extremely low (9.04 × 10-6 K-1), which is essential for the reduction in thermal drift. In addition, the metallic glass skin exhibits distinct antibacterial behavior desired for medical applications, also excellent reproducibility and repeatability (over 1000 times), nearly perfect linearity, low manufacturing cost, and negligible energy consumption, all of which are required for electronic skin for practical applications.

  14. Design, fabrication, and application of a directional thermal processing system for controlled devitrification of metallic glasses

    NASA Astrophysics Data System (ADS)

    Meyer, Megan Anne Lamb

    The potential of using metallic glass as a pathway to obtaining novel morphologies and metastable phases has been garnering attention since their discovery. Several rapid solidification techniques; such as gas atomization, melt spinning, laser melting, and splat quenching produce amorphous alloys. A directional thermal processing system (DTPS) was designed, fabricated and characterized for the use of zone processing or gradient-zone processing of materials. Melt-spun CuZr metallic glass alloy was subjected to the DTPS and the relaxation and crystallization responses of the metallic glass were characterized. A range of processing parameters were developed and analyzed that would allow for devitrification to occur. The relaxation and crystallization responses were compared with traditional heat treatment methods of metallic glasses. The new processing method accessed equilibrium and non-equilibrium phases of the alloy and the structures were found to be controllable and sensitive to processing conditions. Crystallized fraction, crystallization onset temperature, and structural relaxation were controlled through adjusting the processing conditions, such as the hot zone temperature and sample velocity. Reaction rates computed from isothermal (TTT) transformation data were not found to be reliable, suggesting that the reaction kinetics are not additive. This new processing method allows for future studying of the thermal history effects of metallic glasses.

  15. Shear avalanches in metallic glasses under nanoindentation: Deformation units and rate dependent strain burst cut-off

    SciTech Connect

    Bian, X. L.; Wang, G.; Gao, Y. L.; Zhai, Q. J.; Chan, K. C.; Ren, J. L.

    2013-09-02

    Indented metallic glasses at the nanoscale deform via strain bursts. Conventional continuum descriptions are not appropriate for such highly stochastic, intermittent deformations. In this study, after a statistical analysis of strain bursts in five metallic glasses, the dependence of the cut-off of the strain burst size on deformation units and loading rate is established. For soft metallic glasses with smaller deformation units, cut-off of the strain burst size truncates the scale-free behavior at larger strain burst sizes. For hard metallic glasses, scale-free behavior occurs in a wide range of strain burst sizes.

  16. Low-density to high-density transition in Ce75Al23Si2 metallic glass.

    PubMed

    Zeng, Q S; Fang, Y Z; Lou, H B; Gong, Y; Wang, X D; Yang, K; Li, A G; Yan, S; Lathe, C; Wu, F M; Yu, X H; Jiang, J Z

    2010-09-22

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce(75)Al(23)Si(2) metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T(x)) between them with a turning point at about 2 GPa. Compared with Ce(75)Al(25) metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T(x) and changes their slopes dT(x)/dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  17. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    SciTech Connect

    Aji, D. P. B.; Johari, G. P.

    2014-12-14

    Consequences of increase in structural fluctuations on heating Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20} and Zr{sub 46.75}Ti{sub 8.25}Cu{sub 7.5}Ni{sub 10}Be{sub 27.5} through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the T{sub g} (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (−dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-T{sub g} feature and a rapid rise at T near T{sub g}. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  18. Experimental design and process analysis for acidic leaching of metal-rich glass wastes.

    PubMed

    Tuncuk, A; Ciftci, H; Akcil, A; Ognyanova, A; Vegliò, F

    2010-05-01

    The removal of iron, titanium and aluminium from colourless and green waste glasses has been studied under various experimental conditions in order to optimize the process parameters and to decrease the metal content in the waste glass by acidic leaching. Statistical design of experiments and ANOVA (analysis of variance) were performed in order to determine the main effects and interactions between the investigated factors (sample ratio, acid concentration, temperature and leaching time). A full factorial experiment was performed by sulphuric acid leaching of glass for metal removal. After treating, the iron content was 530 ppm, corresponding to 1880 ppm initial concentration of Fe(2)O(3) in the original colourless sample. This result is achieved using 1M H(2)SO( 4) and 30% sample ratio at 90(o)C leaching temperature for 2 hours. The iron content in the green waste glass sample was reduced from 3350 ppm initial concentration to 2470 ppm after treating.

  19. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting.

    PubMed

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee; Oh, Yong-Jun

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.

  20. Chemical influence on β-relaxations and the formation of molecule-like metallic glasses.

    PubMed

    Yu, Hai Bin; Samwer, Konrad; Wang, Wei Hua; Bai, Hai Yang

    2013-01-01

    Secondary (also known as Johari-Goldstein or β-) relaxations are an intrinsic feature of supercooled liquids and glasses. They are important in many respects but the underlying mechanisms are not well understood. A long-standing puzzle is why some glasses show β-relaxations as pronounced peaks, whereas others as unobvious excess wings. Here we demonstrate that these different behaviours are related to the fluctuations of chemical interactions by using prototypical systems of metallic glasses. A general rule is summarized: pronounced β-relaxations are associated with systems where all the atomic pairs have large similar negative values of enthalpy of mixing, whereas positive or significant fluctuations in enthalpy of mixing suppress β-relaxations. The emerging physical picture is that strong and comparable interactions among all the constituting atoms maintain string-like atomic configurations for the excitations of β-events and can be considered as the formation of molecule-like metallic glasses.

  1. Structural relaxation driven increase in elastic modulus for a bulk metallic glass

    SciTech Connect

    Arora, Harpreet Singh; Aditya, Ayyagari V.; Mukherjee, Sundeep

    2015-01-07

    The change in elastic modulus as a function of temperature was investigated for a zirconium-based bulk metallic glass. High temperature nano-indentation was done over a wide temperature range from room temperature to the glass-transition. At higher temperature, there was a transition from inhomogeneous to homogeneous deformation, with a decrease in serrated flow and an increase in creep displacement. Hardness was found to decrease, whereas elastic modulus was found to increase with temperature. The increase in elastic modulus for metallic glass at higher temperature was explained by diffusive rearrangement of atoms resulting in free volume annihilation. This is in contrast to elastic modulus increase with temperature for silicate glasses due to compaction of its open three dimensional coordinated structure without any atomic diffusion.

  2. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    PubMed Central

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  3. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-06-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  4. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating.

    PubMed

    Sun, B A; Chen, S H; Lu, Y M; Zhu, Z G; Zhao, Y L; Yang, Y; Chan, K C; Liu, C T

    2016-06-08

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  5. Metallic Halide Optical Glasses: Synthesis and Characterization of IR Transmitting Fluoride Glasses.

    DTIC Science & Technology

    1982-10-01

    impurities. For plasses mel ted under react ive atmosphere s and peaks at 2.9 T- were found LO bc due almost rentirely to surface -OH. t was; generally...I at 1400 cm , ln(To/T) at 3400 cm and Appearance of 62ZrF -33BaF 2-5LaF Glasses Prepared Under Various Processing Conditions. 104 -! Table XXI...Values of Thickness, T , a at 1400 cm , In(T^/T) at40-0 3400 cm and Appearance of 62HfF4 -33BaF 2 -5LaF Glasses Prepared Under Various ProcessL-ig

  6. Proposed Testing to Assess the Accuracy of Glass-To-Metal Seal Stress Analyses.

    SciTech Connect

    Chambers, Robert S.; Emery, John M; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.; Gibson, Cory S; Bencoe, Denise N.

    2014-09-01

    The material characterization tests conducted on 304L VAR stainless steel and Schott 8061 glass have provided higher fidelity data for calibration of material models used in Glass - T o - Metal (GTM) seal analyses. Specifically, a Thermo - Multi - Linear Elastic Plastic ( thermo - MLEP) material model has be en defined for S S304L and the Simplified Potential Energy Clock nonlinear visc oelastic model has been calibrated for the S8061 glass. To assess the accuracy of finite element stress analyses of GTM seals, a suite of tests are proposed to provide data for comparison to mo del predictions.

  7. Structural evolution in Ti-Cu-Ni metallic glasses during heating

    SciTech Connect

    Gargarella, P.; Pauly, S.; Stoica, M.; Kühn, U.; Vaughan, G.; Afonso, C. R. M.; Eckert, J.

    2015-01-01

    The structural evolution of Ti{sub 50}Cu{sub 43}Ni{sub 7} and Ti{sub 55}Cu{sub 35}Ni{sub 10} metallic glasses during heating was investigated by in-situ synchrotron X-ray diffraction. The width of the most intense diffraction maximum of the glassy phase decreases slightly during relaxation below the glass transition temperature. Significant structural changes only occur above the glass transition manifesting in a change in the respective peak positions. At even higher temperatures, nanocrystals of the shape memory B2-Ti(Cu,Ni) phase precipitate, and their small size hampers the occurrence of a martensitic transformation.

  8. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity

    PubMed Central

    Mitrofanov, Y. P.; Wang, D. P.; Makarov, A. S.; Wang, W. H.; Khonik, V. A.

    2016-01-01

    It is shown that all heat effects taking place upon annealing of a metallic glass within the glassy and supercooled liquid states, i.e. heat release below the glass transition temperature and heat absorption above it, as well as crystallization-induced heat release, are related to the macroscopic shear elasticity. The underlying physical reason can be understood as relaxation in the system of interstitialcy-type ”defects” (elastic dipoles) frozen-in from the melt upon glass production. PMID:26975587

  9. Influence of environment on the corrosion of glass-metal connections

    NASA Astrophysics Data System (ADS)

    Szala, Barbara; Greiner-Wronowa, Elżbieta; Piccardo, Paolo; Kwaśniak-Kominek, Monika; Bajda, Tomasz

    2014-09-01

    `Glass sensors' of the eighteenth century Backer glass and the sixteenth century enamel from Limoges have been chosen for a series of experiments. Combinations of these materials with different base materials such as copper and bronze has been investigated. To create surface changes on the `glass sensor', a corrosion process was induced in a controlled environment. A variety of corrosive agents such as hydrochloric acid, sulfuric acid, water and formaldehyde were used. The sample immersed in the corrosive solution was exposed alternately to light and high temperature for a total of 38 weeks. During this period, macroscopic and microscopic observations were made and series of tests such as SEM/EDS and Raman spectroscopy were performed on the surface of the samples. ICP-MS methods were used to determine the change in the chemical composition of the solutions where the samples had corroded. The primary aim of this study was to identify the impact of a number of external corrosive variables such as temperature, humidity and local environment to identify the most damaging environments for glass-metal objects. The obtained results showed the chemical and physical phenomena acting on the surface of the glass, metal or in the place of their joints. Information obtained on this study was used to explain the influence of the environment on the surface of glass-metal materials. Results can be used in the design of conservation work as well as for sustainable conservation.

  10. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    PubMed Central

    Lan, S.; Ren, Y.; Wei, X. Y.; Wang, B.; Gilbert, E. P.; Shibayama, T.; Watanabe, S.; Ohnuma, M.; Wang, X. -L.

    2017-01-01

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment. PMID:28303882

  11. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    DOE PAGES

    Lan, S.; Ren, Y.; Wei, X. Y.; ...

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in-situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clustersmore » over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase which forms the room-temperature glass phase upon quenching. Finally, the outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat-treatment.« less

  12. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses.

    PubMed

    Lan, S; Ren, Y; Wei, X Y; Wang, B; Gilbert, E P; Shibayama, T; Watanabe, S; Ohnuma, M; Wang, X-L

    2017-03-17

    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18 Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment.

  13. Linking structure to fragility in bulk metallic glass-forming liquids

    SciTech Connect

    Wei, Shuai E-mail: m.stolpe@mx.uni-saarland.de; Stolpe, Moritz E-mail: m.stolpe@mx.uni-saarland.de; Gross, Oliver; Gallino, Isabella; Hembree, William; Busch, Ralf; Evenson, Zach; Bednarcik, Jozef; Kruzic, Jamie J.

    2015-05-04

    Using in-situ synchrotron X-ray scattering, we show that the structural evolution of various bulk metallic glass-forming liquids can be quantitatively connected to their viscosity behavior in the supercooled liquid near T{sub g}. The structural signature of fragility is identified as the temperature dependence of local dilatation on distinct key atomic length scales. A more fragile behavior results from a more pronounced thermally induced dilatation of the structure on a length scale of about 3 to 4 atomic diameters, coupled with shallower temperature dependence of structural changes in the nearest neighbor environment. These findings shed light on the structural origin of viscous slowdown during undercooling of bulk metallic glass-forming liquids and demonstrate the promise of predicting the properties of bulk metallic glasses from the atomic scale structure.

  14. Calcium and zinc containing bactericidal glass coatings for biomedical metallic substrates.

    PubMed

    Esteban-Tejeda, Leticia; Díaz, Luis A; Prado, Catuxa; Cabal, Belén; Torrecillas, Ramón; Moya, José S

    2014-07-23

    The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3-SiO2-Na2O-ZnO and SiO2-Na2O-Al2O3-CaO-B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log).

  15. Tensile behavior of laser treated Fe-Si-B metallic glass

    SciTech Connect

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B.

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  16. Calcium and Zinc Containing Bactericidal Glass Coatings for Biomedical Metallic Substrates

    PubMed Central

    Esteban-Tejeda, Leticia; Díaz, Luis A.; Prado, Catuxa; Cabal, Belén; Torrecillas, Ramón; Moya, José S.

    2014-01-01

    The present work presents new bactericidal coatings, based on two families of non-toxic, antimicrobial glasses belonging to B2O3–SiO2–Na2O–ZnO and SiO2–Na2O–Al2O3–CaO–B2O3 systems. Free of cracking, single layer direct coatings on different biomedical metallic substrates (titanium alloy, Nb, Ta, and stainless steel) have been developed. Thermal expansion mismatch was adjusted by changing glass composition of the glass type, as well as the firing atmosphere (air or Ar) according to the biomedical metallic substrates. Formation of bubbles in some of the glassy coatings has been rationalized considering the reactions that take place at the different metal/coating interfaces. All the obtained coatings were proven to be strongly antibacterial versus Escherichia coli (>4 log). PMID:25056542

  17. Low beryllium content Zr-based bulk metallic glass composite with plasticity and work hardenability

    SciTech Connect

    Zheng, Q. E-mail: dujuan@nimte.ac.cn; Du, J. E-mail: dujuan@nimte.ac.cn

    2014-01-28

    A modified Zr-based bulk metallic glass matrix composite Zr{sub 47.67}Cu{sub 40}Ti{sub 3.66}Ni{sub 2.66}Be{sub 6} has been produced by increasing the contents of elements of Zr and Cu with higher Poisson ratio and reducing the contents of Ti, Ni, and Be elements with lower Poisson ratio based on famous metallic glass former Vitreloy 1. A compressive yielding strength of 1804 MPa, fracture strength of 1938 MPa and 3.5% plastic strain was obtained for obtained metallic glass composite. Also, work-hardening behavior was observed during compressive experiment which was ascribed to the interaction of the in situ precipitated CuZr phase and shear bands.

  18. Crystalline monolayer surface of liquid Au-Cu-Si-Ag-Pd: Metallic glass former

    SciTech Connect

    Mechler, S; Yahel, E; Pershan, P S; Meron, M; Lin, B

    2012-02-06

    It is demonstrated by means of x-ray synchrotron reflectivity and diffraction that the surface of the liquid phase of the bulk metallic glass forming alloy Au49Cu26.9Si16.3Ag5.5Pd2.3 consists of a two-dimensional crystalline monolayer phase for temperatures of up to about 50 K above the eutectic temperature. The present alloy as well as glass forming Au82Si18 and Au-Si-Ge alloys containing small amounts of Ge are the only metallic liquids to exhibit surface freezing well above the melting temperature. This suggests that the phenomena of surface freezing in metallic liquids and glass forming ability are related and probably governed by similar physical properties.

  19. Direct conversion of radioactive and chemical waste containing metals, ceramics, amorphous solids, and organics to glass

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1994-05-02

    The Glass Material Oxidation and Dissolution System (CMODS) is a new process for direct conversion of radioactive, mixed, and chemical wastes to glass. The wastes can be in the chemical forms of metals, ceramics, amorphous solids, and organics. GMODS destroys organics and it incorporates heavy metals and radionuclides into a glass. Processable wastes may include miscellaneous spent fuels (SF), SF hulls and hardware, plutonium wastes in different forms, high-efficiency particulate air (HEPA) filters, ion-exchange resins, failed equipment, and laboratory wastes. Thermodynamic calculations indicate theoretical feasibility. Small-scale laboratory experiments (< 100 g per test) have demonstrated chemical laboratory feasibility for several metals. Additional work is needed to demonstrate engineering feasibility.

  20. Magnetic behavior of nanostructured glass covered metallic wires

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Óvári, T. A.; Pop, Gh.; Barariu, Firuta

    1997-04-01

    We present a study of the evolution of the magnetic properties and behavior of Fe73.5Cu1Nb3Si13.5B9 glass covered wires and wires after glass removal with the annealing temperature up to 600 °C starting from the amorphous state. The changes induced in the magnetic properties of these wires are determined by the stress relief process occurring at temperatures below 550 °C, and by the appearance of the nanosized α-FeSi crystalline grains after annealing for 1 h at 550 °C. The nanocrystalline phase formation leads to an improvement of the soft magnetic properties of these wires—increase of permeability and decrease of the coercive force—but also determines the disappearance of the large Barkhausen effect presented by these wires in the amorphous state. Annealing at temperatures over 550 °C determines a depreciation of the soft magnetic properties of both glass covered wires and wires after glass removal. The magnetic behavior of such wires can be fully explained by taking into account the relaxation of the internal stresses with increasing the annealing temperature as well as the changes in the magnetostriction constant due to the appearance of the nanocrystalline grains.